

Table of Contents
Chapter 1: Getting Started - DevOps Concepts, Tools, and Technology 1

Understanding DevOps movement 2
DevOps with changing times 4

The waterfall model 5
Agile Model 7
Collaboration 9
Cloud Computing: The Disruptive Innovation 10
Why DevOps? 10

Benefits of DevOps 11
DevOps lifecycle span class= 12

Build automation 14
Continuous integration 15

Best practices 17
Cloud computing 18
Configuration management 20
Continuous delivery / continuous deployment 21

Best practices for continuous delivery: 23
Continuous monitoring 24
Continuous feedback 26

Tools and technologies 28
Code repositories span class= 28

Advantages 28
Characteristics 28
Differences between SVN and Git 29

Build tools span class= 34
Example of POM.XML 35

Continuous integration tools span class= 36
Key Features and Benefits 38

Configuration management tools span class= 41
Features 42

Cloud service providers 44
Container technology 45

Docker 45
Monitoring tools 46

Zenoss 46
Nagios 47

[ii]

Deployment Orchestration / Continuous Delivery span class= 48
DevOps Dashboard 49

Overview of Sample JEE Application 50
List of Tasks 52

Self-Test Questions 53
Summary 56

Chapter 2: Continuous Integration with Jenkins 2 57
Introduction 58
Installing Jenkins 59

Setting up Jenkins 61
Jenkins dashboard 67
Configuration Java, Maven/Ant in Jenkins 69

Configuring Java 69
Configuring Maven 70

Creating and Configuring build job for Java application with Maven 71
Dashboard view plugin span class= 88
Managing Nodes 91
Email notifications based on build status 99
Jenkins and Sonar integration 103
Self-Test Questions 115
Summary 116

Chapter 3: Building the Code and Configuring Build Pipeline 117
Creating Built-in Delivery Pipelines 118
Building Pipeline plugin 137
Deploying a WAR file 148
Self-Test Questions 158
Summary 159

Chapter 4: Installing and Configuring Chef 160
Getting started with Chef 161
Overview of Hosted Chef 162
Installing and Configuring Chef Workstation 169
Converging Chef node using Chef Workstation 171
Self-Test Questions 192
Summary 193

Chapter 5: Installing and Configuring Docker 195
Overview of Docker Container 195
Understanding difference between Virtual Machines and Containers 199

[iii]

Installing and Configuring Docker on CentOS 200
Creating a first Docker container 203
Managing Containers 210
Self-Test Questions 220
Summary 221

Chapter 6: Cloud Provisioning and Configuration Management with
Chef 222

Chef and Cloud Provisioning 223
Installing Knife Plugins for Amazon Web Services and Microsoft Azure 225
Creating and Configuring Virtual Machine in Amazon EC2 235
Creating and Configuring Virtual Machine in Microsoft Azure 244
Docker Container 249
Self-Test Questions 254
Summary 255

Chapter 7: Deploying Application in AWS, Azure, and Docker 256
Pre-requisites span class= 257
Deploying Application in Docker Container 268
Deploying Application in AWS 272
Deploying Application in Microsoft Azure 286
Self-Test Questions 296
Summary 297

Index 298

1
Getting Started - DevOps

Concepts, Tools, and
Technology

The first rule of any technology used in a business is that automation applied to an efficient
operation will magnify the efficiency. The second is that automation applied to an
inefficient operation will magnify the inefficiency – Bill Gates

DevOps is not a tool or technology; it is an approach or culture that makes things better.
This chapter describes in detail on how DevOps solves different problems of traditional
application delivery cycle. It also describes how it can be used to make Development and
Operations teams efficient and effective to make time to market faster by improving culture.
It also explains key concepts essential for evolving DevOps culture.

Readers will learn about DevOps culture, its lifecycle and its key concepts, tools,
technologies and platforms used for automating different aspects of application lifecycle
management.

In this chapter, we will cover the following topics:

Understanding DevOps movement
DevOps Lifecycle-All about “Continuous”
Continuous Integration
Configuration Management
Continuous Delivery / Continuous Deployment
Continuous Monitoring
Continuous Feedback

Getting Started - DevOps Concepts, Tools, and Technology

[2]

Tools and Technologies
Overview of Sample JEE Application

Understanding DevOps movement
Let's try to understand what DevOps is. Is it a real technical word? Answer is No and the
reason for this is DevOps is not about only technical stuff. It is also not a technology nor an
innovation. In simple terms, DevOps is a blend of complex terminologies. It can be
considered as a concept, culture, development and operational philosophy or a movement.

To understand DevOps, let's revisit the old days of any IT organization. Consider there are
multiple environments where application is deployed. Following sequence of events takes
place when any new feature is implemented or bug is fixed:

The development team writes a code to implement a new feature or fixes a bug.1.
New code is deployed in to development environment and generally tested by
the development team.
New code is deployed in the QA environment where it is verified by the testing2.
team.
New code is provided to the operations team for deploying it into production3.
environment.
Operation team is responsible for managing and maintaining the code4.

Let's list out the possible issues in the above mentioned approach:

Transition of current application build from development environment
to production environment lasts over weeks or months
Priorities of Development Team, QA Team and IT Operations Team are
different in an organization and effective and efficient co-ordination
becomes necessity for smooth operations
Development team is focused on latest development release while Ops
team cares about Stability of an Production environment
Development and Operations team are not aware about each other's
work and work culture
Both teams work in different type of environments; there is a
possibility where development team has resource constraints and
hence they manage different kind of configuration. It may work on
localhost or in Dev environment.
Operations team work on production resources and thus there will be a

Getting Started - DevOps Concepts, Tools, and Technology

[3]

huge gap in configuration and deployment environment. It may not
work where it needs to run – in production environment.
Assumptions are key in such scenario and it is not possible that both
team will work under same set of assumptions
There is a manual work involved in the setting up runtime
environment, configuration, and deployment activities. The biggest
issue with manual application deployment process is its non-
repeatability and manual process is error-prone.
The development team has the installable files, configuration files,
database scripts, and deployment documentation. They provide it to
operations team. All these artifacts are verified in development
environment and not in production or staging.
Each team may take different approach for setting up runtime
environment, configuration, and deployment activities considering
resource constraints and resource availability.
In addition, deployment process needs to be documented for future
usage. Now, maintaining the documentation is a time-consuming task
that requires collaboration between different stakeholders.
Both teams work separately and hence there can be situation where
both use different automation techniques
Both teams are not aware about challenges faced by each other and
hence they may not be able to visualize or understand an ideal scenario
where application works
While operations team is busy in deployment activities, development
team may get another request for feature implementation or bug fix; in
such case, if operations team faces any issues in deployment then they
may try to consult development team who is already occupied in new
implementation. It results in communication gaps and required
collaboration may not happen.
There is hardly any collaboration between the development team and
the operations team. The poor collaboration that causes many issues in
the application deployment to different environments that results into
back and forth communication via mail, chat, calls, meetings, and so on
and it often ends up with quick fixes.
Challenges for Developers Team

Competitive Market creates pressure of on time delivery
Production ready Code Management and New feature
Implementation
Release cycle is often long and hence development team

Getting Started - DevOps Concepts, Tools, and Technology

[4]

has to make assumptions before the application
deployment finally takes place. In such scenario it takes
more time to fix the issues occurred while deployment in
staging or production environment.

Challenges for Operations Team
Resource contention –
Difficult to handle
increasing demands of
resources
Redesigning or tweaking is
needed to run the
application in Production
environment
To diagnose and rectify the
issues after application
deployment in isolation

DevOps with changing times
Time changes everything. In modern era, customers expect and demand extremely quick
response, and we need to deliver new features continuously to stay in the business. Users
and customers today have rapidly changing needs, they expect 24/7 connectivity and
reliability, and access services over smart-phones, tablets and PCs. As software product
vendors – irrespective of whether in development and / or operations – organizations need
to push updates frequently to satisfy customers' needs to stay relevant. In short,
organizations are facing following challenges:

Getting Started - DevOps Concepts, Tools, and Technology

[5]

Change in the behavior of customer or market demand affected the way development
process takes place.

The waterfall model
Since long, Waterfall Model is used for software development.

Getting Started - DevOps Concepts, Tools, and Technology

[6]

It has its own advantages as follows:

Easy to understand
Easy to manage – Input and Output of each phase is defined
Sequential process – Order is maintained
Better control

However, it was useful in the scenarios where requirements are predefined and fixed. As it
is a rigid model with sequential process, we can't go back to any phase and change things. It
has its own share of disadvantages as follows:

No Revision
No outcome or application package until all phases are completed

Getting Started - DevOps Concepts, Tools, and Technology

[7]

Not possible to integrate feedback until all phases are completed
Not suitable for changing requirements
Not suitable for long term and complex projects

Agile Model
In Waterfall model, inefficient estimation, long time to market, and other issues led to a
change. It is known as Agile Model. Agile development or agile methodology is a method
of building an application by empowering individuals and encouraging interactions, by
giving importance to working software, by customer collaboration – using feedback for
improvement in next steps, and responding change in efficient manner. It emphasizes on
customer satisfaction through continuous delivery in small interactions for specific features
in short timelines or sprints.

Getting Started - DevOps Concepts, Tools, and Technology

[8]

One of the most attractive benefits of agile development is Continuous Delivery in short
time frames or in agile terms – Sprints. Now, it is not a one-time deployment but it is the
case of multiple deployments. Why? After each sprint, application with some feature is
ready for showcase. It needs to be deployed in the specific environments for demo and thus
deployment is no longer a one-time activity.

It is extremely essential from organization's perspective to meet changing demands of
customers. To make it more efficient, communication and collaboration between all cross
functional teams is essential. Many organizations have adopted agile methodology.

In such case, traditional manual deployment processes work as a speed breakers for

Getting Started - DevOps Concepts, Tools, and Technology

[9]

incremental deployments. Hence, it is necessary to change other processes also along with
the change in application development methodology. One key can't be used for all the
locks; similarly waterfall is not suitable in all projects. We need to understand that Agile is
customer focused and feedback is vital. Based on customer feedback, changes happen and
release cycles may increase. Just imagine a scenario where input is high but input
processing is slow. Consider an example of a shoe company where one department
prepares shoes and another department is working on final touches and packaging. What
will happen if packaging process is slow and inefficient? It will be a shoe pile up in the
packaging department. Now let's add a twist in this situation. What if shoe making
department brings new machines and improve process of making shoe. It makes shoe
making process 2 to 3 times faster. Now imagine a situation of packaging department.
Similarly, Cloud computing and DevOps has gained momentum that increases speed of
delivery and improve quality of end product. Thus, agile approach of application
development, improvement in technology, and disruptive innovations and approaches has
created a gap between development and operations team.

Collaboration
DevOps attempts to fill the gaps by developing a partnership between Development and
Operations team. DevOps movement emphasizes communication, collaboration and
integration between software developers and IT operations. DevOps promotes
collaboration and collaboration is facilitated by automation and orchestration to improve
processes. In other words, DevOps essentially extends the continuous development goals of
the agile movement to continuous integration and release. DevOps is a combination of agile
practices, processes leveraging the benefits of cloud solutions. Agile development and
testing methodology help us to meet the goals of continuous integrate, develop, build,
deploy, test, and release application. It provides mechanism for constant feedback from
different teams and stakeholders. It also provides transparency, platform for collaboration
across teams such as business analysts, developers and testers. In short, Agile and DevOps
are compatible and increases value of each other.

One of the most popular saying is practice makes a man perfect. What if that saying is
applied in production like environment? It will be much easier to repeat the entire process
as there is no last minute surprises and most of issues in the deployment are already
experienced and dealt with. The development team supports operational requirements such
as deploy scripts, diagnostics, and load and performance testing from the beginning of the
application delivery life cycle; and the operations team provides knowledgeable support
and feedback before, during, and after deployment. The remedy is to integrate the testing,
deployment, and release activities into the development process. By performing all
activities multiple times and ongoing part of development so that by the time you are ready
to release your system into production there is little to no risk, because deployment process

Getting Started - DevOps Concepts, Tools, and Technology

[10]

is already rehearsed it on many different environments in a progressively more production-
like environments.

Cloud Computing: The Disruptive Innovation
One of the major challenges is to manage infrastructure for all environments. Virtualization
and Cloud environment can help to get started with this. Cloud helps us to overcome this
hurdle by providing flexible on demand resources and environments. It provides
distributed access across the globe and helps in effective utilization of resources. Cloud
provides repository of software, tools which can be used on-demand basis. We can clone
environments, reproduce required versions as and when required. The entire development,
test, and production environments can be monitored and managed using the facilities
provided by the cloud providers. With the advent of Cloud computing, it is easy to re-create
every piece of infrastructure used by application with the use of automation. That means
operating systems, OS configuration, runtime environments, its configuration,
infrastructure configuration, and so forth can all be managed. In this way, it is easy to
recreate production environment exactly in an automated fashion. Thus DevOps on Cloud
brings in the best of breed from both agile development as well as cloud solutions. It helps
in providing Distributed Agile in Cloud, leading to Continuous Accelerated Delivery.

Why DevOps?
DevOps is effective because of new methodology, automation tools, agile resources by
cloud service providers, and other disruptive innovations, practices, and technologies.
However, it is not only about tools and technology. DevOps is more about culture than
tools or technology alone.

Technology is just a tool. In terms of getting the kids working together and motivating
them, the teacher is the most important-Bill Gates

There is an urgent need of huge change the way development and operations team
collaborates and communicates. Organizations need to have chnage in culture and have
long term business goals that include DevOps in vision. It is important to establish pain
points and obstacles experienced by different teams or business units and use that
knowledge for refining business strategy and fix goals.

People always fear change. People feared electricity when it was invented, didn't they?
People feared coal; they feared gas-powered engines… There will always be ignorance, and
ignorance leads to fear. But with time, people will come to accept their silicon masters-Bill
Gates

Getting Started - DevOps Concepts, Tools, and Technology

[11]

If we identify common issues faced by different section of organization and change strategy
to bring more value then it makes sense. It can be a stepping stone in the direction of
DevOps. With same old values and objectives, it is difficult to adopt any new path. It is very
important to align people with new process first. For example, team has to understand
value of agile methodology else they will resist using it. They might resist it because they
are comfortable with old process. Hence, it is important to make them realize the benefit
and empower them also to bring the change.

Change is hard because people over estimate the value of what they have-and under
estimate the value of what they may gain by giving that up-James Belasco and Ralph
Stayer

Self-dependent teams bring best out of them when they are empowered. We also need to
understand that power comes with accountability and responsibility. Cross functional
teams work together and enhance the quality by giving their expertise in the development
process; however it is not isolated function. Communication and collaboration across teams
makes quality way higher.

The end objective of DevOps culture is Continuous Improvement. We learn from mistakes
and it becomes experience. Experience helps us to identify robust design patterns and
minimize errors in the processes. This leads to enhancement of productivity and hence we
achieve new heights with continuous innovations.

Software innovation, like almost every other kind of innovation, requires the ability to
collaborate and share ideas with other people, and to sit down and talk with customers and
get their feedback and understand their needs-Bill Gates

Benefits of DevOps
We will be covering all the benefits of DevOps in the following image:

Getting Started - DevOps Concepts, Tools, and Technology

[12]

Collaboration across different stakeholders brings many business and technical benefits that
helps organizations to achieve their business goals.

DevOps lifecycle – all about “Continuous”
Continuous integration (CI), Continuous Testing (CT), and continuous delivery (CD) are
significant part of DevOps culture. CI includes automation of build, unit test and package
process while CD includes application delivery pipeline across different environments. CI
and CD accelerates the application development process through automation across
different phases such as build, test, code analysis and so on; and enables users to achieve
end to end automation for application delivery lifecycle.

Getting Started - DevOps Concepts, Tools, and Technology

[13]

Continuous Integration and Continuous Delivery or Deployment is well supported by
Cloud provisioning and Configuration Management. Continuous Monitoring helps to
identify issues or bottlenecks in the end to end pipeline and helps to make pipeline
effective.

Continuous Feedback is integral part of this pipeline which directs the stakeholders
whether are near to the required outcome or going in the different direction.

Continuous effort – not strength or intelligence – is the key to unlocking our potential-
Winston Churchill

Following diagram shows mapping of different parts of Application delivery pipeline with
toolset for Java Web application.

Getting Started - DevOps Concepts, Tools, and Technology

[14]

We will use Sample spring application throughout this book for demonstration purpose
and hence toolset is related to Java technology.

Build automation
Automated build helps to create application build using build automation tools such as
Apache Ant, Apache Maven, and so on. Automated build process include following
activities:

Compile Source Code into Class files or Binary Files
To provide reference to the third party library files
To provide path of configuration files
Packaging Class files or Binary Files into WAR files in case of Java
To execute automated test cases
To deploy WAR file into local or remote machine
To reduce manual effort in creating WAR file

Apache Maven and Apache Ant automate build process and it makes build process simple,

Getting Started - DevOps Concepts, Tools, and Technology

[15]

repeatable, less error prone as it is a Create once Run Multiple times concept. Build
automation is base of any automation in Application Delivery Pipeline.

Build automation is essential for Continuous Integration and rest of the automation is
effective only if build process is automated. All CI servers such as Jenkins, Atlassian
Bamboo and so on are using build files for continuous integration and creating application
delivery pipeline.

Continuous integration
What is Continuous Integration? In simple words, Continuous Integration (CI) is a software
engineering practice where each check-in by a developer is verified by

Pull mechanism: executing automated build at a scheduled time or
Push mechanism: executing automated build when changes are saved in
repository and
Executing unit test against latest changes available in source code repository.

Getting Started - DevOps Concepts, Tools, and Technology

[16]

The main benefit of continuous integration is quick feedback based on the result of build
execution. If it is successful then all is well else fix the responsibility on the developer whose
commit has broken the build, notify all stakeholders and fix the issue.

Continuous Integration
http://martinfowler.com/articles/continuousIntegration.html

Why CI is needed or in other words, what is the requirement of it? Answer is, it makes
things simple and identify bugs or errors in the code at very early stage of development and
it is relatively easy to fix them. Just imagine if same scenario takes place after a long
duration and there are too many dependencies and complexities we need to manage. In
early stages it is far easier to cure and fix issues; consider health issues as an example and
things will be more clear in that context.

Continuous Integration (CI) is a development practice that requires developers to integrate
code into a shared repository several times a day. Each check-in is then verified by an
automated build, allowing teams to detect problems early.

CI is a significant part and in fact a base of release management strategy of any organization
that wants to develop DevOps culture.

Getting Started - DevOps Concepts, Tools, and Technology

[17]

Following are instant benefits of CI:

Automated integration with Pull or Push mechanism
Repeatable Process without any manual intervention
Automated test case execution
Coding standard verification
Execution of scripts based on the requirement
Quick feedback – Build status notification to stakeholders via mail
Teams are focused on their work and not in managing processes

Jenkins, Apache Continuum, Buildbot, GitLabCI, and so on are some of the examples of
open source CI Tools. AnthillPro, Atlassian Bamboo, TeamCity, Team Foundation Server,
and so on are some of the examples of commercial CI Tools.

Best practices
We will now be looking at the best practices that can be useful while considering
Continuous Integration implementation:

Maintain a code repository such as Git or SVN
Check-in third-party jars, build scripts, other artifacts and so on into Code
repository
It is advisable to execute builds fully from Code repository – Use clean build
Automate the build using Maven or Ant for Java
Make the build self-testing: Create unit tests
Commit all changes at least once a day per feature
Every commit should be built to verify the integrity of changes
Authenticate users and enforce access control (Authentication and Authorization)
Use alphanumeric characters for build names and avoid symbols
Keep different build jobs to maintain granularity and managing operations in a
better way. Single job for all task is difficult when we try to troubleshoot. It also
helps to assign build execution to slave instances if that concept is supported by
CI server
Backup Home directory of CI server regularly as it contains archived builds and
other artifacts too which may be useful in troubleshooting
Make sure CI server has enough free disk space available as it store lot of details
related to builds
Better not to schedule multiple jobs to start at the same time or use master slave

Getting Started - DevOps Concepts, Tools, and Technology

[18]

concept where specific jobs are assigned to slave instances so multiple build jobs
can be executed at same time
Set up Email, SMS or twitter notification to specific stakeholders of a project or an
application. It is advisable to use customized mail to specific stakeholders
It is advisable to use community plugins

Cloud computing
Cloud Computing is regarded as a ground breaking innovation in the recent years. It is
reshaping the technology landscape. With breakthroughs made in appropriate service and
business models, cloud computing has expanded its role as a backbone for IT services.
Based on the experience, organizations improved from dedicated servers to consolidation,
to virtualization to Cloud computing.

Cloud Computing provides elastic and unlimited resources which can be efficiently utilized
in the time of peak load and normal load with pay per use pricing model. Pay as you go
feature is a boon for development team which had faced resources scarcity since years. It is
possible to automate provisioning resources and configuring resources based on
requirements and that has reduced a lot of manual effort.

Getting Started - DevOps Concepts, Tools, and Technology

[19]

NIST SP 800-145, The NIST Definition of Cloud computing
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

It has opened various opportunities in terms of availability of application deployment
environments considering three service models and four deployment models.

Getting Started - DevOps Concepts, Tools, and Technology

[20]

There are four Cloud Deployment Models with that address specific requirements.

Public Cloud: Cloud Infrastructure is available to general public
Private Cloud: Cloud Infrastructure is operated for single organization
Community Cloud: Cloud Infrastructure is shared by specific community that
has shared concerns
Hybrid Cloud: Cloud Infrastructure is composition of two or more cloud models

Cloud computing is pivotal components if we want to achieve our goals of automation to
empower DevOps culture in any organization. Infrastructure can be considered as a code
can be treated similar to code while creating resources, configuring them and managing
resources with use of configuration management tools. Cloud resources play essential role
in to successful adoption of DevOps culture. Elastic, scalable and pay as you go resource
consumption allows organization to use same type of cloud resources in all different
environments. The major problems in all the environments are inconsistency and limited
capacity. Cloud computing solves this problem and that to with economic benefits.

Configuration management
Configuration Management (CM) manages changes in the system or to be more specific, in
the server runtime environment. Let's consider an example where we need to manage
multiple servers with same kind of configuration. For an example, we need to install tomcat

Getting Started - DevOps Concepts, Tools, and Technology

[21]

in each server. What if we need to change port in all servers or update some packages or
provides rights to some users? Any kind of modifications in this scenario is a manual and
error prone process if it is manual. As it is same configuration for all the servers, automation
can be a key here. Automation of installation and modification in server runtime
environment or permissions brings servers in desired state in effective manner.

CM is also about keeping track or versions of details related to state of specific nodes or
servers. It is a far better situation when we need to change in many servers and we can push
those changes to servers or all those server nodes can pull those changes and bring
themselves into compliance of new policy. Centralized change can trigger this or nodes can
communicate with CM server whether they need to update themselves or they are in a
desired state already. CM tools makes process efficient when only changed behaviour is
updated and not all installation and modification are applied again to server nodes.

There are many popular configuration management tools are available in the market such
as Chef, Puppet, Ansible, Salt, and so on. Each tool are different in the way they work but
characteristics and end goal is same – to bring standardized behaviour in state change of
specific nodes without any errors.

Continuous delivery / continuous deployment
Continuous Delivery and Continuous Deployment are used interchangbly more often then
not. However, there is a small difference between them. Continuous Delivery is a process to
deploy application in any environment in automated fashion and continuous feedback to
improve the quality of an application. Continuous Deployment on other hand is all about
deploying application with latest changes to the production environment. In other words
we can say that Continuous Deployment implies Continuous Delivery while Continuous
Delivery doesn't imply Continuous Deployment.

Getting Started - DevOps Concepts, Tools, and Technology

[22]

Continuous Delivery is significant because of the incremental releases after short span of
implementation or sprint in agile terms. To deploy feature ready application from
development to testing may include multiple iterations in a sprint due to change in
requirements or change in interpretation. However, at the end of sprint, final feature ready
application is deployed into the production environment. As we discussed about multiple
deployments in testing environment even in short span of time, it is advisable to have
automated approach for it. Scripts to create infrastructure and runtime environment for all
environments are useful. It is easier to provision resources in such environment.

For example, to deploy an application in Microsoft Azure environment we need following
resources:

Getting Started - DevOps Concepts, Tools, and Technology

[23]

Azure web app configured with specific types of resources
Storage account to store BACPAC file to create database
To create SQL Server to host database
To import BACPAC file from Storage account to create a new database
Deploy a web application into Microsoft Azure environment

In above scenario, we may consider to use configuration file for each environment with
respect to naming conventions and paths. However, we need similar types of resources in
each environment. It is possible that configuration of resources change according to
environment but that can be managed in configuration file for each environment.
Automation scripts can use configuration files based on the environment and create
resources and deploy an application into it. Hence repetative steps can be easily managed
by automated approach and it is helpful in Continuous Delivery and Continuous
Deployment both.

Best practices for continuous delivery:
Following are some common practices we should follow to implement continuous delivery:

Plan to automate everything in a application delivery pipeline:
Consider a situation where a single commit only is required to deploy
an application in the target environment. It should include
compilation, unit test execution, code verification, notification, instance
provisioning, setting up runtime environment, deployment of an
application

Automate repetitive tasks
Automate difficult tasks
Automate manual tasks

Develop and Test newly implemented
feature of bug fixing in a production like
environment; it is possible now with pay
per use resources provided by Cloud
computing

Deploy frequently in
Development and Test
environment to gain
experience and consistency

Getting Started - DevOps Concepts, Tools, and Technology

[24]

Continuous Delivery: Reliable Software Releases through Build, Test, and
Deployment Automation
http://martinfowler.com/books/continuousDelivery.html

Continuous Delivery vs Continuous Deployment
http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deplo
yment/

Continuous Delivery versus Continuous Deploy
http://devops.com/2015/10/30/continuous-delivery-versus-continuous-deploy/

Continuous monitoring
Continuous Monitoring is a backbone of end to end delivery pipeline and open source
monitoring tools are like toppings on an ice cream scoop. It is desirable to have monitoring
at almost every stage to have transparency about all the process as shown in below image. It
also helps in the troubleshooting within quick time. Monitoring should be a well thought
out implementation of plan that starts in the beginning itself.

http://martinfowler.com/books/continuousDelivery.html
http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/
http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/
http://devops.com/2015/10/30/continuous-delivery-versus-continuous-deploy/

Getting Started - DevOps Concepts, Tools, and Technology

[25]

There is a likely scenario where end to end deployment is implemented in automated
fashion but issues arise due to coding problems, query related problems, infrastructure
related issues and so on. We can consider different types of monitoring as shown in the
figure.

Getting Started - DevOps Concepts, Tools, and Technology

[26]

However, there is normal tendency to monitor only infrastructure resources. The question
one must ask is whether it is enough or we must focus on other types of monitoring as well?
To answer this question, we must have monitoring strategy in place in the planning stage
only. It is always better to identify stakeholders, monitoring aspects, and so on based on
culture and experience of an organization.

Continuous monitoring demystified
http://searchsecurity.techtarget.com/feature/Continuous-monitoring-demy
stified

Getting Started - DevOps Concepts, Tools, and Technology

[27]

Continuous feedback
Continuous feedback is the last important component in the DevOps culture that provides
way for improvement and innovation. Feedback always provides way of improvement if it
comes from the stakeholders who know what they need and how the outcome should be.
Feedback from the customer after deployment activities can server to developers as inputs
for improvement as shown in below figure and its correct integration make customer
happy.

Here, we are considering situation where feature implementation is provided to the
stakeholders and they provide their feedback. In waterfall model, feedback cycle is very
long and hence developers may not be aware about whether the end product is what
customer asked for or interpretation of what needs to be delivered is changed somewhere.
In Agile or DevOps culture, shorter feedback cycle is major difference as stakeholders can
actually see the end result of small implementation phase and hence outcome is verified
multiple times. If customer is not satisfied then feedback is available at a stage where it is
not much painful to change things. In waterfall model it was a disaster as feedback used to
come very late. With time and dependencies, complexities increases and changes in such
situation takes long time. In addition to it, none remembers what they wrote 2 months back.
Hence, faster feedback cycle improves overall process and also connects end points as well
as finding patterns in mistakes, learning lessons, and using improved patterns. However,
continuous feedback not only improves technical aspects of implementation but it also

Getting Started - DevOps Concepts, Tools, and Technology

[28]

provides way to assess current features and whether they fits into overall scenario or still
there is a room of improvement. It is important to realize that Continuous feedback plays
significant role in making customers happy by providing improved experience.

Tools and technologies
Tools and technologies play important role in the DevOps culture however it is not the only
part that needs attention. For all parts of application delivery pipeline, different tools,
disruptive innovations, open source initiatives, community plugins and so on are required
to keep the entire pipeline running to produce effective outcomes.

Code repositories – Git
Subversion is a version control system that is used to track all the changes made to files and
folders. By this a track can be kept on the applications which are being built. The features
added months ago can also be tracked using the version code. It is all about tracking the
code. Whenever any new features are added or any new code is made, it is first tested and
then it is committed by the developer. Now the code is sent to the repository to track the
changes and a new version is given to it. A comment can also be made by the developer so
that other developer can easily understand the changes that are made. Other developers
only have to update their checkout to see the changes made.

Advantages
Following are some advantages of using source code repositories:

No. of developers can work simultaneously on the same code
If a computer crashes still the code can be recovered as it was committed in the
server
If a bug occurs the new code can be easily reverted back to the previous version

Git is an open source distributed version control system which is designed to handle from
small to very large projects with speed and efficiency. It is easy to learn and has a good
performance. It comprises of full-fledged repository and version control tracking
capabilities independent of central server or a network access. It was developed and
designed by Linux Torvalds in 2005.

Getting Started - DevOps Concepts, Tools, and Technology

[29]

Characteristics
Following are some significant characteristics of Git:

It provides support for non-linear development
It is compatible with existing systems or protocols
It ensures cryptographic authentication of history
It has well designed pluggable merge strategies
It consists of tool-kit based designs
It supports various merging techniques such as Resolve, Octopus, and Recursive

Differences between SVN and Git
SVN and Git both are very popular source code repositories, however Git is getting more
popular in recent times. Let's see the major differences between them both. The following
figure shows visual difference between SVN and Git.

Getting Started - DevOps Concepts, Tools, and Technology

[30]

(Reference:
https://www.git-tower.com/learn/git/ebook/en/mac/appendix/from-subversion-to-git)

Subversion Git

Getting Started - DevOps Concepts, Tools, and Technology

[31]

Centralized Version Control System Distributed Version Control System

Snapshot of a specific version of the
project is available on developer's
machine.

Complete clone of a full-fledged Repository is
available on developer's machine.

Perform operations such as commit,
merge, blame, revert and so on; verify
branch and log from a central repository.

Perform operations such as commit, merge, blame,
and so on; verify branch and log from a local
repository. Pull and Push operation to remote
repository if developer needs to share work with
others.

URLs are used to trunk, branches, or
tags
Example of Repository URL:
https://<URL/IP
Address>/svn/trunk/AntExample1/

.git is the root of project and commands are used
to address branches and not URLs
Example of Repository URL:
git@github.com:mitesh51/game-of-life.git

Getting Started - DevOps Concepts, Tools, and Technology

[32]

A SVN Workflow:

B05561_01_16

A Git Workflow:

B05561_01_17

File changes are included in the next
commit.

File changes has to be marked explicitly and then
only they are included in the next commit.

Committed work is directly transferred to
central repository and hence direct
connection to repository must be
available.

Committed work is directly transferred to remote
repository. It is committed to local repository. To
share it with other developers, we need to push it
to remote repository and in this case we need a
connection to remote repository.

Each commit gets ascending revision
number

Each commit gets commit hashes rather than
ascending revision number

Getting Started - DevOps Concepts, Tools, and Technology

[33]

Application Directory:

B05561_01_18

Application Directory:

B05561_01_19

.svn directory structure:

B05561_01_20

.git directory structure:

B05561_01_21

Getting Started - DevOps Concepts, Tools, and Technology

[34]

Short Learning Curve Long Learning Curve

Build tools – Maven
Apache Maven is build tool having Apache License 2.0 license. It is used for Java projects
and it can be used in cross platform environment. However it can be used for Ruby, Scala,
C#, and other languages.

The following are the important features of Maven:

Getting Started - DevOps Concepts, Tools, and Technology

[35]

A Project Object Model (POM)- XML file, contains information on name of the application,
owner information, how application distribution file can be created, how dependencies can
be managed.

Example of POM.XML
POM.XML has pre-defined targets such as validate, generate-sources, process-sources,
generate-resources, process-resources, compile, process-test-sources, process-test-resources,

Getting Started - DevOps Concepts, Tools, and Technology

[36]

test-compile, test, package, install, and deploy.

Following is an example of sample pom.xml file that is used in Maven:x

Continuous integration tools – Jenkins
Jenkins is originally open source continuous integration software written in Java having
MIT License. However, Jenkins 2 an open source automation server that focuses on any
automation including continuous integration and continuous delivery.

Jenkins can be used across different platforms such as Windows Ubuntu/Debian, Red
Hat/Fedora, Mac OS X, openSUSE, and FreeBSD. Jenkins enables user to utilize continuous

Getting Started - DevOps Concepts, Tools, and Technology

[37]

integration services for software development in agile environment. It can be used to build
free style software project based on Apache Ant and Maven 2/ Maven 3 Project. It can also
execute Windows batch commands and shell scripts.

It can be easily customized with the use of plug-ins. There are different kinds of plug-ins
available to customize Jenkins based on specific needs. Categories of plug-ins include
Source code management (that is, Git Plugin, CVS Plugin, Bazaar Plugin), build triggers (i.e.
Accelerated Build Now Plugin, Build Flow Plug-in), Build reports (that is, CodeScanner
Plug-in, Disk Usage Plug-in), Authentication and user management (i.e. Active Directory
plug-in, Github OAuth Plug-in), Cluster management and distributed build (that is,
Amazon EC2 Plugin, Azure Slave Plugin), and so on.

To know more about all plugins, visit
https://wiki.jenkins-ci.org/display/JENKINS/Plugins

To explore on how to create a new plugin, visit
https://wiki.jenkins-ci.org/display/JENKINS/Plugin+tutorial

To download different versions of plugins, visit
https://updates.jenkins-ci.org/download/plugins/

Continuous Integration Server: Jenkins http://jenkins.io/

Jenkins accelerates the software development process through automation

https://wiki.jenkins-ci.org/display/JENKINS/Plugins
https://wiki.jenkins-ci.org/display/JENKINS/Plugin+tutorial
https://updates.jenkins-ci.org/download/plugins/

Getting Started - DevOps Concepts, Tools, and Technology

[38]

Key Features and Benefits
Following are some striking benefits of Jenkins:

Easy install, easy upgrade, easy configuration
Supported Platforms: Windows, Ubuntu/Debian, Red Hat/Fedora/CentOS, Mac
OS X, openSUSE, FreeBSD, OpenBSD, Solaris, Gentoo
Manages and controls development lifecycle processes
Non java projects supported by Jenkins: .Net, Ruby, PHP, Drupal, Perl, C++,
Node.js, Python, Android, Scala
A development methodology of daily integrations verified by automated builds
Every commit can trigger a build
Jenkins is a fully featured technology platform that enables users to implement
Continuous Integration (CI) and Continuous Delivery (CD)
Use of Jenkins is not limited from continuous integration (CI) to continuous
delivery (CD). It is possible to include model and orchestrate entire pipeline with
the use of Jenkins as it supports shell and windows batch commands execution.
Jenkins 2.0 supports delivery pipeline that uses a domain-specific language (DSL)
for modeling entire deployment or delivery pipeline
Pipeline as code provides a common language-DSL to help development and
operations teams to collaborate in effective manner
Jenkins 2 brings new GUI with stage view to observe the progress across delivery
pipeline
Jenkins 2.0 is fully backward compatible to Jenkins 1.x series of releases
Jenkins 2 now requires Servlet 3.1 to run
Use embedded Winstone-Jetty or use container that supports Servlet 3.1 (for
example, Tomcat 8)
GitHub, Collabnet, SVN, TFS code repositories, and so on are supported by
Jenkins for Collaborative Development
Continuous Integration: Automate build, test – automated testing (Continuous
Testing), package, and static code analysis
Supports common test frameworks such as HP ALM Tools, Junit, Selenium,
MSTest, and so on
For Continuous Testing, Jenkins has plugins for both; Jenkins slaves can execute
the test suites on different platforms
Jenkins supports static code analysis tools such as Code Verification support by
Checkstyle and Findbug. It also integrates with Sonar
Continuous Delivery and Continuous Deployment: automates the application

Getting Started - DevOps Concepts, Tools, and Technology

[39]

deployment pipeline; Integration with popular configuration management tools,
and automated environment provisioning
To achieve continuous delivery and deployment, Jenkins Supports Automatic
Deployment; it provides plug-in for direct integration with IBM uDeploy
Highly configurable tool-plugins-based architecture that provides support to
many technology, repositories, build tools, and test tools; an Open-source CI
server and provides 400+ plugins to achieve extensibility
Supports Distributed builds: Jenkins supports the “master/slave” mode, where
the workload of building projects are delegated to multiple “slave” nodes
Machine-consumable remote access API to retrieve information from Jenkins for
programmatic consumption, to trigger a new build, and so on
Deliver better application faster by automating the application development
lifecycle allowing faster delivery

Jenkins – Build Pipeline (Quality Gates) provides Build Pipeline View of upstream and
downstream connected jobs: Chain of jobs each one subjecting build to quality assurance
steps. It has the ability to define manual triggers for jobs that require intervention prior to
execution such as an approval process outside of Jenkins.

Getting Started - DevOps Concepts, Tools, and Technology

[40]

Jenkins can be used with following tools in different categories.

Language Java .Net

Code Repositories Subversion, Git, CVS, StarTeam

Build Tools Ant, Maven NAnt,
MS
Build

Code Analysis Tools Sonar, CheckStyle, Findbugs, Ncover, Visual Studio Code
Metrics PowerTool

Continuous Integration Jenkins

Getting Started - DevOps Concepts, Tools, and Technology

[41]

Continuous Testing Jenkins Plugins (HP Quality Center 10.00, with the
QuickTest Professional Add-in, HP Unified Functional
Testing 11.5x and 12.0x, HP Service Test 11.20 and 11.50,
HP LoadRunner 11.52 and 12.0x, HP Performance Center
12.xx, HP QuickTest Professional 11.00, HP Application
Lifecycle Management 11.00, 11.52, and 12.xx, HP ALM
Lab Management 11.50, 11.52, and 12.xx), Junit, MSTest,
VsTest)

Infrastructure
Provisioning

Configuration Management Tool – Chef

Virtualization / Cloud
Service Provider

VMware, AWS – Amazon Web Services, Microsoft Azure
(IaaS), Traditional Environment

Continuous Delivery /
Deployment

Chef / Deployment Plugin / Shell Scripting / Powershell
Scripts / Windows Batch Commands

Configuration management tools – Chef
Software Configuration Management (SCM) is a software engineering discipline
comprising of tools and techniques that an organizations used to manage the changes in
software components. It includes technical aspects of the project, communication, and
control of modifications changes to the projects during development phase. It also called as
Software Control Management. It constitutes of practices for all software projects ranging
from development, rapid prototyping, or ongoing maintenance. It enriches the reliability
and quality of software.

Chef is a configuration management tool which is used to transform the infrastructure into
code. It automates building, deploying, and managing of the infrastructure. By using chef,
infrastructure can be considered as a code. Concept behind chef is of reusability. It uses
recipes to automate the infrastructure. Recipes are instructions required for configuring
databases, web servers, and load balances. It describes every part of the infrastructure and
how it should be configured, deployed, and managed. It uses building blocks known as
resources. A resource describes parts of infrastructure such as template, package, and files
to be installed.

This recipes and configuration data are stored in Chef Servers. Chef Client is installed on
each node of the network. A node can be physical or virtual server.

The Chef client periodically checks the Chef server for the latest recipes and to see if the
node is in compliance with the policy defined by the recipes. If it is out of date, the Chef
client runs them on the node to bring it up to date.

Getting Started - DevOps Concepts, Tools, and Technology

[42]

Features
Following are some important features of Chef Configuration Management Tool:

Chef Server
It manages a huge amount of the nodes
It maintains a blueprint of the infrastructure

Chef Client
It manages various
operating systems such as
Linux, Windows, Mac OS,
Solaris, and FreeBSD
It provides integration with
cloud providers.

It is easy to
manage the

Getting Started - DevOps Concepts, Tools, and Technology

[43]

containers in a
version-able,
testable, and
repeatable
way
Chef provides
automation
Platform to
continuously
define, build,
and manage
Cloud
infrastructure
that is used
for
deployment
It enables
resource
provisioning
and
configuration
of resources
programmatic
ally and it will
help in the
deployment
pipeline to
automate
provisioning
and
configuration

Three basic concepts of Chef will enable organizations to quickly manage any infrastructure
with Chef:

Achieving desired state
Centralized modeling of IT infrastructure
Resource primitives that serve as building blocks

Getting Started - DevOps Concepts, Tools, and Technology

[44]

Chef Configuration Management tool https://www.chef.io/

Chef Management Console https://manage.chef.io/login

Cloud service providers
AWS and Microsoft Azure are popular public cloud providers in recent times. They provide
cloud services in different areas and both have they strong areas. Based on the organization
culture and past partnership anyone can be considered after detailed assessment based on
requirements.

Followings are side by side comparison in terms of services:

AWS Microsoft Azure

Virtual Machines Amazon EC2 Virtual Machine

PaaS Elastic Beanstalk Azure Web Apps

Container Services Amazon EC2 Container Services Azure Container Services

RDBMS Amazon RDS Azure SQL Database

NoSQL DynamoDB DocumentDB

BIG Data Amazon EMR HD Insight

Networking Amazon VPC Virtual Network

Cache Amazon Elasticache Azure RadisCache

Import/Export Amazon Import/Export Azure Import/Export

Search Amazon CloudSearch Azure Search

CDN CloudFront Azure CDN

Identity and Access
Management

AWS IAM and Directory Services Azure Active Directory

Automation AWS OpsWorks Azure Automation

Getting Started - DevOps Concepts, Tools, and Technology

[45]

Amazon Web Services http://aws.amazon.com/

Microsoft Azure https://azure.microsoft.com

Container technology
Containers use OS level virtualization where kernel is shared between isolated user spaces.
Docker and OpenVZ are popular open source example of operating system-level
virtualization technology.

Docker
Docker is an open source initiative to wrap code, runtime environment, system tools, and
libraries. Docker containers share the kernel they are running on and hence they start
instantly and lightweight in nature. Docker containers runs on Microsoft operating systems
and Linux distributions. It is important to understand how containers and virtual machines
are different. Below is the comparison table of Virtual machines and Containers.

Virtual Machine Docker Container

Getting Started - DevOps Concepts, Tools, and Technology

[46]

B05561_01_27 (www.docker.com)

B05561_01_28 (www.docker.com)

Virtual machines depend on the traditional virtualization. It can be considered as Hardware
level Virtualization.

Container depends on containerization technique at a kernel level. It can be considered as
Operating system level Virtualization.

Each virtual machine contains Guest operating system, Binaries, and library files and application
itself.

Each container include application, Binaries, and library files but the major difference compared
to virtual machine is the shared kernal; each container runs as isolated process in user space on
Host OS.

Size of the each virtual machine is in GBs as each one runs on its own. As each container runs as isolated process in user space on Host OS and separate operating
system is not required for each container, size of each container is much less.

Each virtual machine has its own set of resources – better isolation and less sharing of resources. Each container share kernel and hence more scope of sharing resources.

Virtual Machine can not run on Container. Container can run on Virtual machine.

Docker – the open-source application container engine
https://github.com/docker/docker

Monitoring tools
There are many open source tools are available for monitoring resources. Zenoss and
Nagios are one of the most popular open source tools adopted by many organizations.

Zenoss
Zenoss is an agent less and open source management platform for application, server, and

Getting Started - DevOps Concepts, Tools, and Technology

[47]

network released under the GNU General Public License (GPL) version 2 based on the Zope
application server. Zenoss Core consists of extensible programming language Python,
object-oriented web server Zope Application server, Monitoring protocol Net, Graph and
log time series data by RRDtool, MySQL, and event-driven networking engine Twisted. It
provides easy to use web portal to monitor alerts, performance, configuration, and
inventory.

Zenoss Core 5 http://www.zenoss.org/

Getting Started - DevOps Concepts, Tools, and Technology

[48]

Nagios
Nagios is a cross platform and open source monitoring tool for infrastructure and network.
It monitors network services such as FTP, HTTP, SSH, and SMTP. It monitors resources,
detects the problems, and alerts the stakeholders. Nagios can empower organizations and
service providers to identify and resolve issues in a way that outages have minimal impact
on IT infrastructure and processes hence highest compliance to SLAs. Nagios can monitor
cloud resources such as compute, storage, and network.

The Industry Standard In IT Infrastructure Monitoring
https://www.nagios.org/

Deployment Orchestration / Continuous Delivery
– Jenkins
Build pipeline or Deployment Pipeline or Application Delivery pipeline, can be used to
achieve end to end automation for all operations. Starting from Continuous Integration,
Cloud Provisioning, Configuration Management, Continuous Delivery, Continuous
Deployment, and Notifications. Jenkins plugins can be used for overall orchestration of all
activities involved in end to end automation.

Continuous Integration: Jenkins
Configuration Management: Chef
Cloud Service Providers: AWS, Microsoft Azure
Container Technology: Docker
Continuous Delivery / Deployment: ssh
End to End Orchestration: Jenkins Plugins

Following is a sample representation of end to end automation using different tools:

Getting Started - DevOps Concepts, Tools, and Technology

[49]

Jenkins can be used to manage unit testing, code verification; Chef can be used for setting
up runtime environment; knife plugins can be used for creating a virtual machine in AWS
or in Microsoft Azure; Build pipeline or Deployment pipeline plugin in Jenkins can be used
for managing deployment orchestration.

From a single pipeline dashboard, we can view status of all builds which are configured in
pipeline. Each build in the pipeline is a kind of quality gate. If one build fails then execution
won't go further. Another dimensions can be added such as notification based on
compilation failures, unit test failure or for unsuccessful deployment. Final deployment can
be based on some sort of permission from a specific stakeholder. We can consider a scenario
for parameterized build or promoted build concept. What we will do? Wait for upcoming
chapters and all secretes will be revealed.

DevOps Dashboard
One of the most desired components to get into DevOps culture is Dashboard functionality
or GUI that provides combined status of all end to end activities. For automation tools, easy

Getting Started - DevOps Concepts, Tools, and Technology

[50]

to use web GUI is handful for management of resources. For end to end automation in
application deployment activity, multiple open source or commercial tools are used. There
is a high possibility where single product may not be used for all activities. For example, Git
or SVN as repository, Jenkins as CI server, IBM Urbancode Deploy as deployment
orchestration tool. In such scenario, it is easier if there is single pane of glass view where we
can track multiple tools for a specific application.

Hygieia is an open source DevOps dashboard that provides way to track status of
deployment pipeline. It basically tracks 6 different areas as of now including features (Jira,
VersionOne), code repo (GitHub, Subversion), build (Jenkins, Hudson), quality (Sonar,
Cucumber/Selenium), monitoring, and deployment (IBM UrbanCode Deploy)

CapitalOne DevOps Dashboard https://github.com/capitalone/Hygieia

Overview of Sample JEE Application
We are going to use PetClinic Application available on GitHub.

A sample Spring-based application
https://github.com/spring-projects/spring-petclinic

The PetClinic sample application can be used to build simple and robust database-oriented
applications to demonstrate the use of Spring's core functionality. It is accessible via web
browser.

Getting Started - DevOps Concepts, Tools, and Technology

[51]

A few use cases:

Add a new pet owner, a new pet, and information pertaining to a visit to the pet's
visitation history to the system
Update the information pertaining to a pet and a pet owner
View a list of veterinarians and their specialties, a pet owner, a pet, and pet's
visitation history

Once WAR file is created, we can deploy it in Tomcat or another web server and to verify it
in localhost, visit h t t p : / / l o c a l h o s t : 8 0 8 0 / p e t c l i n i c. We will see something like:

Getting Started - DevOps Concepts, Tools, and Technology

[52]

List of Tasks
Following are the tasks we will try to complete in rest of the chapters:

Jenkins Installation, Configuration, UI Personalization
Java configuration (JAVA_HOME) in Jenkins
Maven or Ant configuration in Jenkins
Plugins installation and configuration in Jenkins
Security (Access Control, Authorization, Project based Security) in
Jenkins
Jenkins build configuration and Execution
Email Notification Configuration
Deployment of WAR file to Web Application Server
Eclipse Integration with source code repository
Create and configure a Build / Deployment Pipeline

Getting Started - DevOps Concepts, Tools, and Technology

[53]

Install and Configure Chef – Configuration Management tool
Install and Configure Docker
Create and configure Virtual machine in AWS and Microsoft Azure
and containers
Deploy WAR file into Virtual Machine and Container
Configure Infrastructure monitoring
Orchestrate Application delivery pipeline using Jenkins plugins

Self-Test Questions
Which of the following statement is not related to Development team in1.
Traditional Environment?

1. Competitive Market creates pressure of on time delivery of feature or bug fixing

2. Production ready Code Management and New feature Implementation

3. Release cycle is often long and hence development team has to make assumptions before
the application deployment finally takes place

4. Redesigning or tweaking is needed to run the application in Production environment

Which of the following are benefits of DevOps?1.

5. Collaboration, Management, and security for the complete application development
lifecycle management

6. Continuous innovation because of continuous development of new ideas

7. Faster delivery of new features or resolution of issues

8. Automated deployments and standardized configuration management for different
environments

9. All of the above

Which of the following are parts of DevOps culture or Application Delivery1.
Pipeline?

10. Continuous Integration

Getting Started - DevOps Concepts, Tools, and Technology

[54]

11. Cloud Provisioning

12. Configuration Management

13. Continuous Delivery / Deployment

14. Continuous Monitoring

15. Continuous Feedback

Which of the following are by product of DevOps culture or Application Delivery1.
Pipeline?

16. Continuous Integration

17. Continuous Delivery / Deployment

18. Continuous Monitoring

19. Continuous Feedback

20. Continuous Improvement

21. Continuous Innovation

State whether following statement is True or False: Jenkins and Atlassian Bamboo1.
are a build automation tool.

22. True

23. False

State whether following statement is True or False: Apache Ant and Apache1.
Maven are Continuous Integration Tools

24. True

25. False

State whether following statement is True or False: Chef is a configuration1.
management tool.

26. True

27. False

Getting Started - DevOps Concepts, Tools, and Technology

[55]

State whether following statement is True or False: Build automation is essential1.
for Continuous Integration and rest of the automation is effective only if build
process is automated.

28. True

29. False

State whether following statement is True or False: Subversion is a Distributed1.
Version Control System.

30. True

31. False

State whether following statement is True or False: Git is a Centralized Version1.
Control System.

32. True

33. False

Which of the followings are Cloud Deployment Models according to NIST's1.
definition of Cloud Computing?

34. Public Cloud

35. Private Cloud

36. Community Cloud

37. Hybrid Cloud

38. All of the above

Which of the followings are Cloud Service Models according to NIST's definition1.
of Cloud Computing?

39. Software as a Service

40. Platform as a Service

41. Infrastructure as a Service

42. All of the above

Getting Started - DevOps Concepts, Tools, and Technology

[56]

State whether following statement is True or False: AWS and Microsoft Azure are1.
Public Cloud Service Providers

43. True

44. False

Which of the following are main component of Chef Installation?1.

45. Chef Server / Hosted Chef

46. Chef Workstation

47. Nodes

48. All of the Above

Summary
In this chapter, we have learnt about difficulties faced by development and operations team
in traditional environment and how Agile helps in such scenario. What has changed after
arrival of agile development methodology and what challenges it brought with its arrival?
We have covered important aspects of DevOps culture including Continuous Integration
and Continuous Delivery. We also covered details regarding Cloud computing and
Configuration Management that enhances the processes and helps to adopt DevOps
culture.

In terms of tools and technologies, we have covered brief overview of SVN, Git, Apache
Maven, Jenkins, AWS, Microsoft Azure, Chef, Nagios, Zenoss, and Hygieia-DevOps
Dashboard.

In the next chapter, we will see how to install and configure Jenkins and how to implement
Continuous Integration best practices by using sample spring application available on
Github.

It is a right time to quote Charles Darwin as it is relevant in the context of DevOps culture:

It is not the most intellectual or the strongest species that survives, but the species that
survives is the one that is able to adapt to or adjust best to the changing environment in
which it finds itself.

2
Continuous Integration with

Jenkins 2
“The way to get started is to quit talking and begin doing.” – Walt Disney

Jenkins 2 has already arrived. Jenkins 2 comes with Built-in support for delivery pipelines,
Improved usability – a new setup experience and total backwards compatibility with
existing Jenkins installations. For the last time, we are using Jenkins 2 in this book.

This chapter describes in detail how Jenkins plays an important role in Continuous
Integration. It covers how to prepare runtime environment for application lifecycle
management and configure it with Jenkins. It manages all aspects of running a build to
create a distribution file or war file for deployment by integrating source code repository
such as SVN / Git for Sample JEE application. Jenkins 2 is recently made available for
general usage and we have used Jenkins 2 in this book.

Readers will learn how to install and configure Jenkins and they will be able to get end to
end experience from build job creation, configuration of build job, static code analysis,
notifications, Jenkins plugins etc. and details on what exactly the sample application is all
about.

In this chapter, we will cover the following topics:

Jenkins – Introduction
Jenkins installation with plugins
Java, Maven/Ant, configuration in Jenkins
Create and configure build job for Java application with Maven
Dashboard view plugin – overview and usage
Email notifications based on build status

Continuous Integration with Jenkins 2

[58]

Jenkins and Sonar integration

Introduction
We all know what Continuous Integration (CI) is, right? It is the first step in our journey.

“The journey of a thousand miles begins with one step.” Lao Tzu father of Taoism

In simple words, CI is a software engineering practice where each check-in by a developer
is verified by

Pull mechanism: executing automated build at a scheduled time or
Push mechanism: executing automated build when changes are saved in
repository and
Executing unit test against latest changes available in source code repository.

Jenkins doesn't need an introduction; still it is an open source and one the most popular
Continuous Integrations tools available in the market. It helps in automating repetitive task
of continuous integration. Jenkins makes the process effective and transparent.

“We are what we repeatedly do. Excellence, then, is not an act, but a habit.” – Aristotle

Next question you may ask is what makes Jenkins so popular? I have already given one
reason; can you recollect?

Yes, because it is open source; however, open source tools come with predefined notions
but Jenkins community is different and Jenkins as a tool is quite different.

So, what are the other reasons for popularity of Jenkins? Let's have a look:

Written in Java
Extensibility: 400+ plugins for different integrations are available

Source code management
Build triggers
Build reports
Artifact uploaders
External site/tool integrations
UI plugins
Authentication and user management
Cluster management and distributed build

Continuous Integration with Jenkins 2

[59]

Others
Supports Java, .NET, Ruby, Groovy,
Grails, PHP, Android, iOS Applications
Easy to use

Easy Installation
Easy Configuration

Simple
learning curve
User Interface
was already
simple, now
improved
after Jenkins 2
is available for
General
Availability

Installing Jenkins
Jenkins provides multiple ways to install it for all types of users. We can install Jenkins on
following operating systems of platforms:

Ubuntu/Debian
Windows
Mac OS X
OpenBSD
FreeBSD
OpenSUSE
Gentoo
CentOS/Fedora/Red Hat

One of the easiest options I recommend is to use WAR file. WAR file can be used with
container or Web application Server or without it. Java installation is must before we intend
to use WAR file for Jenkins.

Download jenkins.war file from https://jenkins.io/1.
Open command prompt in Windows or Terminal in CentOS; go to the directory2.
where Jenkins.war file is stored and execute following command in command

https://jenkins.io/

Continuous Integration with Jenkins 2

[60]

prompt or terminal:

java - jar jenkins.war

Once, Jenkins is fully up and running as shown in the screenshot below,1.
explore Jenkins in the web browser by visiting http://localhost:8080.

By default, Jenkins works on port 8080. Execute the following command at1.
command prompt in Windows or Terminal in Linux:

java -jar jenkins.war --httpPort=9999

For https, use the following command at command prompt in Windows or1.
Terminal in Linux:

Continuous Integration with Jenkins 2

[61]

java -jar jenkins.war --httpsPort=8888

Once Jenkins is running, visit Jenkins home directory. In our case we have1.
installed Jenkins 2 on CentOS 6.7 virtual machine.
Go to /home/<username>/.jenkins directory as shown in the screenshot below. If2.
.jenkins directory is not available then make sure that hidden files are visible. In
CentOS, press ctrl+h to make hidden files visible.

Setting up Jenkins
Now that we have installed Jenkins, let's verify whether Jenkins is running or not. Open any
browser installed in your system and navigate to http://localhost:8080 or
http://<IP_ADDRESS>:8080. If you have already used Jenkins earlier and recently
downloaded Jenkins 2 WAR file, then it will ask for security setup.

To unlock Jenkins, we will follow these steps:

Continuous Integration with Jenkins 2

[62]

1. Go to .jenkins directory and open initialAdminPassword file from secrets subdirectory
as shown below:

2. Copy password available in that file and paste it in Administrator password box
and click on Continue as shown below:

Continuous Integration with Jenkins 2

[63]

3. Clicking Continue will redirect you to Customize Jenkins page as shown below.
Click on Install suggested plugins.

Continuous Integration with Jenkins 2

[64]

4. Installation of required plugins will start. Make sure that you have internet
connection working.

Continuous Integration with Jenkins 2

[65]

5. Once all required plugins are installed; you will see Create First Admin User page.
Provide required details and click on Save and Finish.

Continuous Integration with Jenkins 2

[66]

6. Jenkins is Ready! Our Jenkins setup is completed. Click on Start using Jenkins.

Continuous Integration with Jenkins 2

[67]

Get Jenkins plugins at:
https://wiki.jenkins-ci.org/display/JENKINS/Plugins

Jenkins dashboard
Jenkins dashboard is a simple and powerful place where we can manage all builds and
hence we can manage application delivery pipeline too. Open http://<localhost or IP
address>:8080 from browser. Log in with the user credentials which we have created
earlier. It will direct us to dashboard of Jenkins.

Let's understand the dashboard parameters:

New Item: To create new build job, pipeline or build flow in Jenkins 2.

Continuous Integration with Jenkins 2

[68]

Manage Jenkins: Allows Jenkins 2 administrator to manage plugins,
users, security, nodes, credentials, global tools configuration and so on.

Continuous Integration with Jenkins 2

[69]

To know about existing nodes that are used for build execution, click
on Manage Nodes. master node entry will be available. It is the node
where Jenkins is installed. We can add multiple slave node to
distribute the load the we will learn later in this chapter.

Once we have installed Jenkins and as we become familiar with the Jenkins dashboard, the
next is to configure different tools that are used for build execution and create a base for
Continuous Integration.

In next section, we will install or configure Java, Maven, Ant and so on.

Configuration Java, Maven/Ant in Jenkins
In Jenkins 2, Global Tool Configuration section is introduced and that is a good move. All
major configurations related to external tools, their locations and automatic installers tools
can be done in this section. Earlier, these configurations were part on Configure System
which used to make that page bit cluttered.

Configuring Java
To configureJava, provide Name and JAVA_HOME path or click on Install automatically.

Continuous Integration with Jenkins 2

[70]

Configuring Maven
To configure Maven, download installable files of Maven, extract it and keep in some
directory of your Jenkins virtual machine. In Global Tool Configuration section, provide
Name and JAVA_HOME path or click on Install automatically.

Continuous Integration with Jenkins 2

[71]

That's it! Our major configurations for running a simple build is done. Now let's go to the
Home page of Jenkins dashboard to create and configure build job.

Creating and Configuring build job for Java
application with Maven
Now, let's perform steps to create and configure a new build job. Go to Jenkins Dashboard
and click on New Item.

Go through all the options available of type of jobs we can create. In our case let's create a
freestyle project for a demo purpose:

Enter an item name such as PetClinic.1.
Select Freestyle project.2.
Click on OK.3.

Continuous Integration with Jenkins 2

[72]

Let's verify what this operation does! Go to Jenkins home directory and navigate1.
to jobs directory.

We can see directory is created for newly created job with same name as shown
below in the screenshot.

Continuous Integration with Jenkins 2

[73]

Next step is to configure source code repository with build job. We will use open source
spring application that is hosted on GitHub as information is provided in Chapter 1,Getting
Started-DevOps Concepts, Tools, and Technology.

1. Create a GitHub account and fork https://github.com/spring-projects/spring-
petclinic.

2. After that we will get URL similar to: https://github.com/mitesh51/spring-petclinic.

Install Git on virtual machine by using instruction available on
Git documentation.

Getting Started – Installing Git at:
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Continuous Integration with Jenkins 2

[74]

Download for Windows at: https://git-scm.com/

3. Let's generate a new SSH key to use for authentication. Open terminal in CentOS
virtual machine and make sure Git is installed in it.

4. Execute ssh-keygen -t rsa -b 4096 -C "your_email@example.com" command by
substituting in GitHub email address.

5. Press Enter when you are prompted for Enter file in which to save the key.

6. Add your SSH key to the ssh-agent.

Continuous Integration with Jenkins 2

[75]

7. Verify newly generated keys in .ssh folder.

8. To configure GitHub account to use new SSH key, add it to your GitHub account.
Go to https://github.com/mitesh51 and click on Settings.

Continuous Integration with Jenkins 2

[76]

9. In the Personal settings sidebar, click SSH and GPG keys. Click New SSH key.

Continuous Integration with Jenkins 2

[77]

10. Open /.ssh/id_rsa.pub file in editor from CentOS virtual machine and copy the
content.

Continuous Integration with Jenkins 2

[78]

11. In the Title field, add a descriptive label for the new key and paste the copied key
content. Click on the Add SSH key as shown below:

Continuous Integration with Jenkins 2

[79]

12. Verify the added SSH Key.

Continuous Integration with Jenkins 2

[80]

13. Now, let's verify authentication.

Once Git authentication is done, let's configure PetClinic build job.

1. Click on the PetClinic build job in Jenkins dashboard. Click on Configure link of
a PetClinic build job.

2. In Source Code Management provide Git URL for the Sample spring project we
forked as shown below:

Continuous Integration with Jenkins 2

[81]

3. We will Configure Build Triggers and Build Environment as shown:

4. Click on Add build step and select Invoke top-level Maven targets. Select Maven
version we configured in Global Tools Configuration. Enter Maven target and Click
on Save.

Continuous Integration with Jenkins 2

[82]

5. Let's manually trigger the build by clicking on Build Now.

Continuous Integration with Jenkins 2

[83]

6. Click on the Build number with # sign. Open Console Output. Verify the Git
operations executing before Maven target execution.

Continuous Integration with Jenkins 2

[84]

7. Once source code is available in the build job's workspace, Maven target will be
executed and war file will be created. Verify the build status.

8. To verify the workspace of a build Job, click on the Workspace link. Verify all the

Continuous Integration with Jenkins 2

[85]

files available in the workspace. We can find these files in .jenkins folder under specific
build job.

Our sample application has JUnit test cases and to execute them, we need to configure JUnit
related settings in build job configuration.

In Post-build Actions, select Publish JUnit test result report.1.
Provide path for Test Report XMLs based on the workspace.2.
Click on Apply and then click on Save.3.

Continuous Integration with Jenkins 2

[86]

4. Once we configure JUnit settings in a build, wait for the build execution based on
scheduling or click on the Build Now link.

5. Verify the build status on Jenkins dashboard and you will see Test Result link with
small summary. Click on the Test Result link.

Continuous Integration with Jenkins 2

[87]

6. Verify all test execution status package wise. It also provides information related to
duration, failed test cases.

In the next section we will cover Dashboard View plugin to customize view for build jobs.

Continuous Integration with Jenkins 2

[88]

Dashboard view plugin – overview and
usage
Dashboard View plugin provides different view implementation considering portal kind of
layout. We can select different build jobs to be included in new view and configure different
portlets for view.

To configure:

Go to Plugin Manager from Manage Jenkins, and click on the Available1.
tab. Search for Dashboard View plugin and click Install without restart.

2. Once installation of Dashboard View plugin is completed successfully, we can
create a new view by clicking on the + sign on Jenkins dashboard.

3. Enter View name, select view type and click on OK.

Continuous Integration with Jenkins 2

[89]

4. Click on Edit and configure Dashboard Portlets for top view, left column, right
column, and bottom view. We can use different portlets such as Test Statistics
Chart, Trends, and so on.

5. Add different portlets based on needs into the view and save it. Sample view is

Continuous Integration with Jenkins 2

[90]

given in the below screenshot:

6. Once we run the build job, we can find test result chart on the build job's dashboard
as well.

In the next section, one of the most popular feature of Jenkins and that is distributed builds.

Continuous Integration with Jenkins 2

[91]

Consider a scenario where you want different Java applications that need different kind of
JDK version to compile source files?

How to manage such situation in an effective manner? We will see answers in next section.

Managing Nodes
Jenkins provides Master-Slave concept to manage above mentioned scenarios. We can
assign different build jobs to different slaves in build configuration and Master-Slave
manage its overall lifecycle. Master node itself can execute the build if slave node is not
configured explicitly in the build job configuration.

There are quite a few reasons why we should use this feature of Jenkins:

Build job execution requires resources and they compete for resource availability.
Different runtime environment for different build jobs.
To distribute the load across slave nodes.

To make things more clear, we need not to install Jenkins in the slave nodes. We only need
to configure slave node properly which we will demonstrate in this section.

The only requirements are:

Configurations and Runtime Environment has to be available on the slave node.
Path needs to be configured correctly on Master node for Runtime. Environments
or tools used by slave node for execution.

To create a slave node in Jenkins 2:

1. Click on Manage Jenkins link on Jenkins dashboard.

Continuous Integration with Jenkins 2

[92]

2. Verify that only Master node's entry is available. To add a new node, click on
New Node in left sidebar. Enter node name in Node name field and click on OK.

3. Next step is to configure the newly created node. Enter Remote root directory
that will store details related to build jobs on slave node. Give Labels to this node.
Labels can be used to assign different build jobs to specific slave machine.

Continuous Integration with Jenkins 2

[93]

4. In Jenkins 2, after creating slave node and configuring it, if there is an error
slaveAgentPort.disabled as shown in figure below, then we need to first solve it
and then perform the further steps.

Continuous Integration with Jenkins 2

[94]

5. Go to Manage Jenkins page, and click on Configure Global Security link.
Select Enable security and select Fixed or RandomTCP port for JNLP agents and
save the configuration.

6. Next step is to connect Jenkins slave with Jenkins Master. We will connect agent
to Jenkins by using command line.

Continuous Integration with Jenkins 2

[95]

7. Download the slave.jar file and put it on slave node.

8. Execute following code in the terminal or command prompt based on the operating
systems on the slave node:

 java -jar slave.jar -jnlpUrl http://192.168.1.34:8080/computer/TestServer/slave-agent.jnlp -
secret 65464e02c58c85b192883f7848ad2758408220bed2f3af715c01c9b01cb72f9b

Continuous Integration with Jenkins 2

[96]

9. Verify the status of slave node in the Jenkins dashboard.

Continuous Integration with Jenkins 2

[97]

10. Now, we can see two nodes in Jenkins dashboard.

11. To configure build job to run on master, open build configuration and in General
section select Restrict where this project can be run.

12. In Label Expression, enter label of the master node.

Continuous Integration with Jenkins 2

[98]

13. To configure build job to run on slave node, enter label of slave node in Label
Expression. We can also configure JDK or other required path for build execution.

14. To configure tools specific to slave node, click on Configure in Manage Nodes
section. In Node Properties, configure Tool Locations for slave node as shown in
below image:

Continuous Integration with Jenkins 2

[99]

In the next section, we will see how to configure email notifications.

Email notifications based on build status
“Failure is simply the opportunity to begin again, this time more intelligently.” – Henry
Ford

However, it is extremely vital to be aware about failure or at least to know when things fail
to fix it and remove issues.

Notifications are always helpful in case of failures. Consider a scenario where build failure
or test case failure has to be notified to specific set of stakeholders. In such situation it is
desirable to have email notifications.

We will use Gmail configuration for setting up email notifications.

To make things work,

Go to: https://www.google.com/settings/u/1/security/lesssecureapps and1.

Continuous Integration with Jenkins 2

[100]

Turn onAccess for less secure apps as shown below to send email
notifications from Jenkins 2.

2. In Jenkins dashboard:

1. Click on Manage Jenkins and go to Configure System section.

2. Go to E-mail Notification sub section and enter values for SMTP Server
and Default user e-mail suffix.

3. Select Use SMTP Authentication checkbox, enter User Name and
Password.

4. Select Use SSL checkbox, enter SMTP Port, Reply-To Address.

5. Finally select Test configuration by sending test e-mail. If Email
configurations are correct then you will find a message Email was
successfully sent.

Continuous Integration with Jenkins 2

[101]

6. To verify Email notifications, simulate failure in one of the build job.
Open any build job and click on Configure.

7. In Post-build Actions, click on Add post-build action

3. Select E-mail Notification.

4. Enter list of Recipients.

5. Select Send e-mail for every unstable build and Send separate e-mails to
individuals who broke the build.

Continuous Integration with Jenkins 2

[102]

In our case, we execute compile goal against Maven build and we wanted to publish JUnit
Test result to simulate failure. We can see that compilation of files are successful but Post-
build action fails and it triggers Email notification based on the configuration.

Following is the Email received from Jenkins build job failure. It contains stack trace of the
execution.

Continuous Integration with Jenkins 2

[103]

Let's consider a scenario where we want to send customized content in the mail. How to
achieve that?

Hint: Configure Extended E-mail Notification. Try it as an exercise.

Jenkins and Sonar integration
SonarQube is an open source tool to manage code quality of an application. It manages
seven axes of code quality such as Architecture & Design, Duplications, Unit Tests,
Potential Bugs, Complexities, Coding Rules, and Comments. It covers programming
languages such as ABAP, C/C++, C#, COBOL, CSS, Erlang, Flex / ActionScript, Groovy,
Java, Java Properties, JavaScript, JSON, Objective-C, PHP, PL/I, PL/SQL, Puppet, Python,
RPG, Swift, VB.NET, Visual Basic 6, Web, and XML. One of the striking feature is its
extensibility. It is easy to cover new languages and adding rules engines using extension
mechanism called plugins.

To install, SonarQube plugin,

Go to Manage Jenkins, click on Manage Plugins. Click on Available tab.1.
Search SonarQube plugin and install it by clicking on Install without
restart.

Continuous Integration with Jenkins 2

[104]

2. Download sonar from http://www.sonarqube.org/downloads/.

3. Extract installable directory from the zip file and go to bin sub-directory.

4. Based on the operating system, select the installable directory and run the
StartSona.* file as shown in below image.

Continuous Integration with Jenkins 2

[105]

5. Once Sonar is up and running, Open browser and visit http://localhost:9000/ or
http://<IP_Address>:9000/. We will get the Sonar dashboard.

One of the important step for Jenkins 2 and Sonar integration is security token.

Go to My Account link on top right corner.1.
Click on security tab and Generate Tokens.2.

Continuous Integration with Jenkins 2

[106]

3. Enter Token name and click on Generate. Copy the token value and click
on Done.

Continuous Integration with Jenkins 2

[107]

4. Verify the Tokens column in the Sonar dashboard.

Once we have a security token ready, next step is to integrate Jenkins and Sonar.

Continuous Integration with Jenkins 2

[108]

In Manage Jenkins section, click on Configure System and add1.
SonarQube servers. Here provide Server URL and security token and save
the settings.

2. In Global Tool Configuration, configure SonarQube Scanner installations also.

Once all Sonar related installations and configurations are completed, we need to add Build
step to execute SonarQube Scanner. Run the build Job.

We need sonar-project.properties for Sonar configuration with specific application.1.
In our sample application, sonar-project.properties file is already available.

Continuous Integration with Jenkins 2

[109]

Required metadata
sonar.projectKey=java-sonar-runner-simple
sonar.projectName=Simple Java project analyzed with the SonarQube Runner
sonar.projectVersion=1.0

Comma-separated paths to directories with sources (required)
sonar.sources=src

Language
sonar.language=java

Encoding of the source files
sonar.sourceEncoding=UTF-8

2. Verify the console output of a build job for Sonar execution.

 D:\##DevOps Book\Installables\sonar-scanner-2.6
 INFO: Scanner configuration file: D:\##DevOps Book\Installables\sonar-
scanner-2.6\conf\sonar-scanner.properties
 INFO: Project root configuration file: d:\jenkins\workspace\PetClinic-Test\sonar-
project.properties
 INFO: SonarQube Scanner 2.6
 INFO: Java 1.8.0-ea Oracle Corporation (64-bit)
 INFO: Windows 8.1 6.3 amd64
 INFO: Error stacktraces are turned on.
 INFO: User cache: C:\Users\MItesh\.sonar\cache
 INFO: Load global repositories
 INFO: Load global repositories (done) | time=1131ms
 INFO: User cache: C:\Users\MItesh\.sonar\cache
 INFO: Load plugins index
 INFO: Load plugins index (done) | time=16ms
 INFO: Download sonar-csharp-plugin-4.4.jar
 INFO: Download sonar-java-plugin-3.10.jar
 INFO: Download sonar-scm-git-plugin-1.0.jar
 INFO: Download sonar-scm-svn-plugin-1.2.jar
 INFO: Download sonar-javascript-plugin-2.10.jar
 INFO: SonarQube server 5.4
 INFO: Default locale: "en_US", source code encoding: "UTF-8"
 INFO: Process project properties
 INFO: Load project repositories
 INFO: Load project repositories (done) | time=133ms
 INFO: Apply project exclusions
 INFO: Load quality profiles
 INFO: Load quality profiles (done) | time=927ms
 INFO: Load active rules
 INFO: Load active rules (done) | time=4068ms
 INFO: Publish mode
 INFO: ------------- Scan Simple Java project analyzed with the SonarQube Runner

Continuous Integration with Jenkins 2

[110]

 INFO: Language is forced to java
 INFO: Load server rules
 INFO: Load server rules (done) | time=656ms
 INFO: Base dir: d:\jenkins\workspace\PetClinic-Test
 INFO: Working dir: d:\jenkins\workspace\PetClinic-Test\.sonar
 INFO: Source paths: src
 INFO: Source encoding: UTF-8, default locale: en_US
 INFO: Index files
 INFO: 56 files indexed
 INFO: Quality profile for java: Sonar way
 INFO: JaCoCoSensor: JaCoCo report not found : d:\jenkins\workspace\PetClinic-
Test\target\jacoco.exec
 INFO: JaCoCoItSensor: JaCoCo IT report not found: d:\jenkins\workspace\PetClinic-
Test\target\jacoco-it.exec
 INFO: Sensor JavaSquidSensor
 INFO: Configured Java source version (sonar.java.source): none
 INFO: JavaClasspath initialization...
 INFO: Bytecode of dependencies was not provided for analysis of source files, you might
end up with less precise results. Bytecode can be provided using sonar.java.libraries property
 INFO: JavaClasspath initialization done: 1 ms
 INFO: JavaTestClasspath initialization...
 INFO: Bytecode of dependencies was not provided for analysis of test files, you might end
up with less precise results. Bytecode can be provided using sonar.java.test.libraries property
 INFO: JavaTestClasspath initialization done: 1 ms
 INFO: Java Main Files AST scan...
 INFO: 56 source files to be analyzed
 INFO: 46/56 files analyzed, current file: d:\jenkins\workspace\PetClinic-
Test\src\test\java\org\springframework\samples\petclinic\service\AbstractClinicServiceTests.ja
va
 INFO: Java Main Files AST scan done: 12107 ms
 INFO: Java bytecode has not been made available to the analyzer. The
org.sonar.java.bytecode.visitor.DependenciesVisitor@4f1150f5,
org.sonar.java.checks.unused.UnusedPrivateMethodCheck@3fba233d are disabled.
 INFO: Java Test Files AST scan...
 INFO: 0 source files to be analyzed
 INFO: Java Test Files AST scan done: 1 ms
 INFO: Sensor JavaSquidSensor (done) | time=15295ms
 INFO: Sensor Lines Sensor
 INFO: 56/56 source files have been analyzed
 INFO: 0/0 source files have been analyzed
 INFO: Sensor Lines Sensor (done) | time=28ms
 INFO: Sensor QProfileSensor
 INFO: Sensor QProfileSensor (done) | time=29ms
 INFO: Sensor SurefireSensor
 INFO: parsing d:\jenkins\workspace\PetClinic-Test\target\surefire-reports
 INFO: Sensor SurefireSensor (done) | time=531ms
 INFO: Sensor SCM Sensor
 INFO: SCM provider for this project is: git

Continuous Integration with Jenkins 2

[111]

 INFO: 56 files to be analyzed
 INFO: 56/56 files analyzed
 INFO: Sensor SCM Sensor (done) | time=3754ms
 INFO: Sensor Code Colorizer Sensor
 INFO: Sensor Code Colorizer Sensor (done) | time=9ms
 INFO: Sensor CPD Sensor
 INFO: JavaCpdIndexer is used for java
 INFO: Sensor CPD Sensor (done) | time=303ms
 INFO: Analysis report generated in 1055ms, dir size=294 KB
 INFO: Analysis reports compressed in 629ms, zip size=191 KB
 INFO: Analysis report uploaded in 524ms
 INFO: ANALYSIS SUCCESSFUL, you can browse
 http://localhost:9000/dashboard/index/java-sonar-runner-simple
 INFO: Note that you will be able to access the updated dashboard once the server has
processed the submitted analysis report
 INFO: More about the report processing at
 http://localhost:9000/api/ce/task?id=AVRjchhfszI1jSgY1AZe
 INFO: --
 INFO: EXECUTION SUCCESS
 INFO: --
 INFO: Total time: 57.737s
 INFO: Final Memory: 52M/514M
 INFO: --
 Recording test results
 Finished: SUCCESS

3. Let's verify the Sonar UI at
http://localhost:9000/dashboard/index/java-sonar-runner-simple

4. In the Projects section, we can find project details available now. Click on the
project name.

Continuous Integration with Jenkins 2

[112]

5. We can see the result of analysis here. Quality Gate is passed. It provides details
about Technical Debt, Duplications, and Structure too.

6. Quality Gates can be defined in the Sonar dashboard. We have used default

Continuous Integration with Jenkins 2

[113]

quality gate here.

7. To verify Lines of code, Complexity, and Comment lines click on Structure tab
in Sonar dashboard.

Continuous Integration with Jenkins 2

[114]

8. To get more insights into issues in specific files, click on Technical Debt tab and
click on Bubbles available in the chart.

Continuous Integration with Jenkins 2

[115]

Sonar stores historical data in 24-hour slices.

Self-Test Questions
1. State whether following statement is True or False: Jenkins is written in Java.

True1.
False2.

2. On which of the following operating systems Jenkins can be installed?

Ubuntu/Debian1.
Windows2.
Mac OS X3.
CentOS/Fedora/Red Hat4.
All of the above5.

Continuous Integration with Jenkins 2

[116]

3. Which of the following command can be used to change the default port on which
Jenkins is running?

java -jar jenkins.war –httpPort=99991.
java -jar jenkins.war –http=99992.
java -jar jenkins.war –https=99993.
java -jar jenkins.war –httpsPort=99994.

4. State whether following statement is True or False: Sonar stores historical data in 22-hour
slices

True1.
False2.

Summary
In this chapter, we have learnt about some new features in Jenkins 2, why Jenkins is so
popular, how to install Jenkins, what are improvements with respect to security and plugin
installations while setup, how to configure Java and Maven, what happens in the
background when we create a new job in Jenkins, how to authenticate with Git, how to
configure Git in Jenkins, unit test execution in sample spring application, how to configure
dashboard view plugin with different portlets for customized view, how to manage master
and slave node for load distribution and managing different environment as per need, how
to configure E-mail notifications for build status, and how to integrate sonar and Jenkins.

In the next chapter, we will see one of the most important aspect in terms of orchestration of
end to end pipeline of application delivery. We will discuss Pipeline concept of Jenkins 2
and Build Pipeline Plugin.

It is a right time to quote Ralph Waldo Emerson as it is relevant in the context of failures
while build execution in the process of Continuous Integration:

“Our greatest glory is not in never failing, but in rising up every time we fail.”

3
Building the Code and

Configuring Build Pipeline
“Start wide, expand further, and never look back.”

– Arnold Schwarzenegger

It is always better to start early and visualize the things which we want to achieve. That is
the objective of this chapter. It is easy to visualize the end or realize the importance of this
chapter when we will be ending the last line of last chapter of this book. One of the
Highlights of Jenkins 2 release is Built-in support for delivery pipelines. We know that
Jenkins is a Continuous Integration server but what if we want to use it for Continuous
Delivery or Continuous Deployment too? Automation and Orchestration both are equally
important while dealing with application delivery pipeline.

This chapter describes in detail how to create pipeline of different jobs for a sample JEE
application. It will also cover deployment of an application to local web/application server
and configuration of Build pipeline for lifecycle of continuous integration. This way Jenkins
users can model application delivery pipelines as code. Once we can make it as a code then
we can store in code repository and it can be managed in a better way. One important
benefit is collaboration. As it can be stored in version control, different teams can reuse it for
different operations based on the environment.

Readers will learn how to manage lifecycle of continuous integration including pulling code
from code repository, building the code, unit test execution, and static code analysis using
different jobs.

In this chapter, we will cover the following topics:

Built-in Delivery Pipelines of Jenkins 2

Building the Code and Configuring Build Pipeline

[118]

Build Pipeline Configuration for End to End Automation to manage lifecycle of
continuous integration
Deploying a WAR file from Jenkins to Local Tomcat Server

Creating Built-in Delivery Pipelines
Jenkins 2 provides a way to create delivery pipelines using a Domain-Specific Language
(DSL).

Steps for creating Built-in Delivery Pipeline are as follows:

Go to Jenkins dashboard and click on New Item.1.
Enter an item name and select Pipeline as shown in below image.2.
Click on OK.3.

Building the Code and Configuring Build Pipeline

[119]

4. In case you have existing Pipeline available then you can create new
pipeline by copying from it.

5. Go to Advanced Project Options. For the learning purpose, input echo

Building the Code and Configuring Build Pipeline

[120]

'Hello from Pipeline Demo' in the Script box.

6. Click on Save to save the configuration.

7. As we have not created any stage, we will get warning as shown in the
below image. However, we can execute the pipeline for demo purpose.

Building the Code and Configuring Build Pipeline

[121]

8. Click on the Build Now. Verify the Console Output. We can see the
successful completion of script execution.

Building the Code and Configuring Build Pipeline

[122]

Let's go step by step and learn how we can create script. To make things easier refer
Pipeline DSL Reference or use Snippet Generator. Select the checkbox and then select a
Sample Step. Provide specific parameters required by the step and click on Generate
Groovy.

Example 1: Groovy script to build a job. It triggers a new downstream job to build.

Sample Step build: Build a Job

Parameters Project to build: PetClinic-Compile
Parameters: None
Other configurations: Default

Building the Code and Configuring Build Pipeline

[123]

Example 2: Create a step – Generate a build step. It is used to configure post build actions or
in general build step that are Pipeline-compatible based on the dropdown list.

Sample Step step: General Build Setup

Parameters Build Step: Publish JUnit test result report
Test Report XMLs: **/target/surefire-reports/TEST-*.xml
Other configurations: Default

Building the Code and Configuring Build Pipeline

[124]

Example 3: To archive build job artifacts.

Sample Step archive: Archive artifacts

Parameters Includes: It includes artifacts using comma separated list matching Ant style
pattern for archiving artifacts.
Excludes: It excludes artifacts using comma separated list matching Ant-
style pattern for not archiving artifacts.

Building the Code and Configuring Build Pipeline

[125]

Example 4: For example, to run build step on a specific node, we need to write a script. Use
Snippet Generator and select sample step node and select the slave node label. Click on
Generate Groovy.

Sample Step node: Allocate node

Parameters Label: Label associated with slave node. Refer to Chapter 2, Continuous
Integration with Jenkins. for more details on Master Slave nodes in Jenkins 2.

Building the Code and Configuring Build Pipeline

[126]

Example 5: Groovy script to mark definite sections of a build as being controlled by limited
concurrency.

Sample Step stage: Stage

Parameters Stage Name: Compile / Test / Deploy
Other configurations: Default

Building the Code and Configuring Build Pipeline

[127]

For test purpose let's try a simple scenario to create pipeline for compiling source files and
executing unit test cases.

1. Let's write below script in the Script Box.

echo 'Hello from Pipeline Demo'
stage 'Compile'
build 'PetClinic-Compile'
stage 'Test'
build 'PetClinic-Test'

Building the Code and Configuring Build Pipeline

[128]

2. Click on the Build Now and go to Console Output to verify the execution
process.

Building the Code and Configuring Build Pipeline

[129]

3. Go to Build Job's main page. We can see Stage view here. Remember, we have
created two stages, one is compile and another is test. Stage view provides instant
visualization. It provides details such as build completion time, on which node
build has been executed, build has been failed or executed successfully.

Building the Code and Configuring Build Pipeline

[130]

4. In the specific build execution, we can verify Pipeline Steps also.

5. Click on Full stage view to get full screen view as shown in below image:

Building the Code and Configuring Build Pipeline

[131]

6. To get details specific to stage, mouse over specific stage and it will show us
status of that stage execution as well as Logs link.

Building the Code and Configuring Build Pipeline

[132]

7. Click on the Stage Logs link and it will provide log details respective to stage.
Click on dropdown to get more details about logs.

Building the Code and Configuring Build Pipeline

[133]

8. Let's consider a scenario where we want to execute different stages on different
nodes.

echo 'Hello from Pipeline Demo'
stage 'Compile'
node {
 git url: 'https://github.com/mitesh51/spring-petclinic.git'
 def mvnHome = tool 'Maven3.3.1'
 sh "${mvnHome}/bin/mvn -B compile"
}
stage 'Test'
node('WindowsNode') {
 git url: 'https://github.com/mitesh51/spring-petclinic.git'
 def mvnHome = tool 'WindowsMaven'
 bat "${mvnHome}\\bin\\mvn -B verify"
 step([$class: 'ArtifactArchiver', artifacts: '**/target/*.war', fingerprint: true])
 step([$class: 'JUnitResultArchiver', testResults: '**/target/surefire-reports/TEST-*.xml'])
}

Building the Code and Configuring Build Pipeline

[134]

9. Click on Build Now and verify the Stage View.

10. Pipeline steps describes drill down details of execution as shown below:

Building the Code and Configuring Build Pipeline

[135]

11. Let's verify stage logs for Git Operation. Mouse over the compile stage and
click on logs. Expand Git dropdown as shown in the below image to get more
details.

Building the Code and Configuring Build Pipeline

[136]

Can you guess what can be the potential issue with Groovy script for creating pipeline?

Yes, again it is a code. It becomes difficult to manage it over the time and hence it is always
better to store them in repository. In Pipeline definition, there is an option available to load
Pipeline script from SCM. We can select SCM from Git or Subversion and then we need to
provide repository details and script file details.

Building the Code and Configuring Build Pipeline

[137]

Getting Started with Pipeline at https://jenkins.io/doc/pipeline/

Building Pipeline plugin
We have seen built-in pipeline concept of Jenkins 2. It is a very flexible and powerful
concept but for that we need to write a groovy script. One another way that has easy
learning curve is to use build pipeline plugin. It provides simple visualization upstream
and downstream build jobs. It also allows manual triggers for a situation where we need
approvals for executing specific build. We can create chain of jobs for end to end
automation. Here we assume that reader is aware about concept of upstream and
downstream build jobs.

Building the Code and Configuring Build Pipeline

[138]

To create a Build pipeline:

Install Build Pipeline plugin.1.
On Jenkins dashboard, click on plus sign that will open a page to create2.
Build Pipeline View. Provide name for the build pipeline and click on OK.

It is important to configure upstream and downstream build jobs.

Building the Code and Configuring Build Pipeline

[139]

We have created multiple build jobs to compile the source code, to verify source code using
Sonar, and to execute JUnit test cases.

We have defined the order also, if compilation is successful and then rest of the two build
jobs will be executed. In our case it is PetClinic-Code and PetClinic-Test.

Go to configuration page of PetClinic-Compile build job.1.
Go to Post-build Actions section.2.
Enter name of the Build jobs in the Project to build box. We can provide a3.
comma separated list here.
Click on SAVE to save the configuration.4.

Building the Code and Configuring Build Pipeline

[140]

5. Verify list of the Downstream projects on Build Job's main page.

Building the Code and Configuring Build Pipeline

[141]

6. Now, the next step is to configure Build Pipeline view that we have created
earlier.

Name Name of the Build pipeline

Description Description is displayed on the Build Pipeline View Page. It can be
used to display details such as Pipeline, resources, objective of the
pipeline, flow, and so on.

Filter build queue Only jobs in this specific view will be shown in the queue.

Filter build executors To show build executors that could execute the jobs in this view.

Build Pipeline View Title Build Pipeline View Title to display on the Jenkins Dashboard

Layout Based on upstream/downstream relationship: This layout mode
derives the pipeline structure based on the upstream/downstream
trigger relationship between jobs.

Select Initial Job Set the initial or parent Job in the build pipeline view. Rest of the
Build Job will be considered based on upstream/downstream
relationship.

No Of Displayed Builds Number of build pipelines to display in the view.

Restrict triggers to most
recent successful builds

To restrict the display of a Trigger button to only the most recent
successful build pipelines.

Building the Code and Configuring Build Pipeline

[142]

Always allow manual
trigger on pipeline steps

To execute again a successful pipeline step using the same
parameter values if the build is parameterized.

Show pipeline project
headers

To show the pipeline definition header in the pipeline view.

Show pipeline parameters
in project headers

To list the parameters used to run the latest successful job in the
pipeline's project headers.

Show pipeline parameters
in revision box

To list the the parameters used to run the first job in each pipeline's
revision box.

Refresh frequency (in
seconds)

Provide frequency at which the Build Pipeline Plugin updates the
build lightbox in seconds

URL for custom CSS files Custom CSS file if any

Console Output Link
Style

Lightbox, New Window, This Window

7. We have select PetClinic-Compile build job as Initial Job as shown in the below
image:

Building the Code and Configuring Build Pipeline

[143]

8. On the View page, we can run the build pipeline, view history, configure the
pipeline, delete the pipeline, and so on. Click on Run to execute Build pipeline for
the first time.

Building the Code and Configuring Build Pipeline

[144]

9. Following are color codes by default:

Color Description

Red Indicates Failed execution of Build Job

Green Indicates Successful execution of Build Job

Blue Indicates Build Job that hasn't been executed

Yellow Indicates Running Build Job

10. Now just observe the execution of build job in this pipeline.

Building the Code and Configuring Build Pipeline

[145]

12. We can see all jobs in Green as all the builds have been executed successfully,
as shown in the image below:

Let's configure Build pipeline using manual trigger:

Building the Code and Configuring Build Pipeline

[146]

Show pipeline project headers, Show pipeline parameters in project1.
headers, Show pipeline parameters in revision box, and so on.

2. Let's save and verify the changes in the Build pipeline view. Verify the manual
trigger and Headers with health details of each build job.

Building the Code and Configuring Build Pipeline

[147]

3. Verify the History of the Build pipeline as shown in below image.

Building the Code and Configuring Build Pipeline

[148]

Download Build Pipeline Plugin at:
https://wiki.jenkins-ci.org/display/JENKINS/Build+Pipeline+Plugin

Deploying a WAR file
For Maven and Tomcat integration, lets create an admin user. We will use admin user
credential to deploy an application into Tomcat server.

Open apache-tomcat-7.0.68\conf\tomcat-users.xml and add following statements1.
into it.

Here we define roles such as manager-gui, manager-script. For this deployment,
we will use manager-script role.

Building the Code and Configuring Build Pipeline

[149]

Create a user with name admin and assign password and roles as below:

<role rolename="manager-gui"/>
<role rolename="manager-script"/>
<user username="admin" password="cloud@123" roles="manager-script" />

Now, we need to add Tomcat's admin user that we created in the Maven setting1.
file.

<servers>
<server>
 <id>tomcat-development-server</id>
 <username>admin</username>
 <password>password</password>
</server>
</servers>

2. Now let's edit pom.xml file. Find Tomcat Plugin block in Pom.xml and add
following details. Make sure that Server Name is same that we provided in
settings.xml of Maven as Id.

<plugin>
 <groupId>org.apache.tomcat.maven</groupId>
 <artifactId>tomcat7-maven-plugin</artifactId>
 <version>2.2</version>
 <configuration>
 <server>tomcat-development-server</server>
 <url>http://192.168.1.35:9999/manager/text</url>
 <warFile>target\petclinic.war</warFile>
 <path>/petclinic</path>
 </configuration>
 </plugin>

4. We can verify the execution from command line using mvn tomcat7:deploy
command. Maven deploy the WAR file to Tomcat 7 using Manager App
http://localhost:8080/manager/text, on path /petclinic.

5. In case of any failures because of already existing WAR file in Tomcat webapps
folder, use tomcat7:redeploy.

Let's create a build job in Jenkins and add a build step to invoke top-level Maven targets:

Use tomcat7:redeploy as goals. Save the configuration.1.

Building the Code and Configuring Build Pipeline

[150]

2. Execute the build by click on Build Now. Verify the deployment process in the
Console Output.

3. Once WAR file is uploaded successfully, Build Job will be completed
successfully.

Building the Code and Configuring Build Pipeline

[151]

When we use tomcat7:deploy or tomcat7:redeploy then it includes package lifecycle in the
execution. If we want to only deploy the WAR file, then we can use tomcat7:deploy-only as
shown in below console output.

Let's try to integrate deploy operation in the build pipeline.

We need to do following things:

Compile source files.1.
Execute JUnit test cases.2.

Building the Code and Configuring Build Pipeline

[152]

Archive artifact / WAR file.3.
Copy artifact to deploy build job.4.

It is used to archive the build artifact such as jar files, war files, and zip
files so it can be downloaded later. Add post build action in to
PetClinic-Test file to archive artifact.

5. Execute the build job as shown below and verify whether it is successfully
archived or not.

6. We need to add a build step to copy artifacts from PetClinic-Test. Install Copy
Artifact Plugin.

Building the Code and Configuring Build Pipeline

[153]

7. Configure Copy Artifact plugin in the PetClinic-Deploy Build job as shown in
the below image.

8. Verify the workspace directory. Go to PetClinic-Test's target directory. If war
file is there from past build, then remove it.

Building the Code and Configuring Build Pipeline

[154]

9. Verify the target directory of PetClinic-Deploy folder. No WAR file is available.

10. Add PetClinic-Deploy as Downstream project in the PetClinic-Test. Run the
Build Pipeline.

Building the Code and Configuring Build Pipeline

[155]

11. Verify the execution of Build Pipeline. Click on the Light box of any build job
available in the Build Pipeline. Verify the PetClinic-Test console output.

Once PetClinic-Test build job is execution is completed then:

Verify the target folder in workspace.
We will see WAR file in the target directory as shown in the below

Building the Code and Configuring Build Pipeline

[156]

image.

Verify the execution of PetClinic-Deploy build job.1.

2. Verify the build job's status in the Jenkins dashboard.

Building the Code and Configuring Build Pipeline

[157]

3. Click on the light box of Build pipeline view, it will direct us to console
output of specific build job. Click on PetCLinic-Deploy lighbox.

4. Verify the Console output.

Building the Code and Configuring Build Pipeline

[158]

5. Verify the successfully uploaded file as per the configuration.

For the self exercise, try to use build flow plugin.

Self-Test Questions
1. Which feature is one of the Highlights of Jenkins 2 release?

a. Built-in support for continuous integration

b. Built-in support for JUnit

c. Built-in support for delivery pipelines

d. Built-in support for Apache Maven

2. Which language is used to create delivery pipelines ?

a. Java

b. C++

Building the Code and Configuring Build Pipeline

[159]

c. C#

d. Domain-specific language

3. In Build Pipeline plugin, what is the significance of Blue color?

a. Indicates Failed execution of Build Job

b. Indicates Successful execution of Build Job

c. Indicates Build Job that hasn't been executed

d. Indicates Running Build Job

Summary
In this chapter, we have covered latest feature of Jenkins 2 that is one of the Highlights of
Jenkins 2 release – Built-in support for delivery pipelines. We have described in details how
to use it. It has covered simple groovy script to build a job, to generate a build step, to
archive build job artifacts, to run build step on a specific node, to mark definite sections of a
build as being controlled by limited concurrency and so on. We have provided a scenario
where we want to execute different stages on different nodes. The other similar type of
plugin is installed and configured with example – Build Pipeline plugin.

In the next chapter, we will discuss about one of the important pillar of DevOps culture and
that is Configuration Management using Chef. First we will see how to install Chef
workstation and configure it with Hosted Chef. We will consider installing tomcat using
community cookbooks of tomcat installation.

4
Installing and Configuring Chef
“Give me six hours to chop down a tree and I will spend the first four sharpening the axe.”
– Abraham Lincoln

We are going to see how Chef is useful in end to end automation of Application delivery
lifecycle. Chef in our context plays a vital role considering the usage of it. We are going to
use it for setup of runtime environment and standardized the process of configuration
management rather than implementing customized way to install tools using scripts.
Centralized configuration management makes it easy to control and configure resources
without complexities.

This chapter describes in detail about configuration management tool Chef, installation of
its components and alternatives; configuration of components and convergence of node
based on the cookbooks for preparing runtime environment for JEE application. However,
writing cookbooks, and detailed description of Chef component is out of scope as it will
take too much space.

You will learn how to install and configure Chef-configuration management tool and
convergence of node based on cookbooks/role.

In this chapter, we will cover the following topics:

Getting started with Chef
Overview of Hosted Chef
Installing and Configuring Chef Workstation
Converging Chef node using Chef Workstation

Installing and Configuring Chef

[161]

Getting started with Chef
Chef is one of the most popular configuration tools in the open source world. We have
discussed briefly about Chef in Chapter 1, Getting Started-DevOps Concepts, Tools, and
Technology.

Let's try to get our hands on it for provisioning instances and configuration management.
However, before that we will understand basics about it.

There are three major components in Chef:

Open Source Chef Server or Hosted Chef: Chef Server or Hosted Chef is the
pivotal component that stores cookbooks and other important details of
registered nodes. It is used to configure and manage Nodes with the use of Chef
workstation.
Chef Workstation: Chef Workstation works as local repository where Knife is
installed. Knife is used to upload cookbooks to Chef server or execute plugins
commands.
Node: Node is a physical or virtual machine in any environment where we need
to configure runtime environments or perform operations with the use of Chef
configuration management tool. Node communicates with Chef server (Open
source or hosted) and get configuration details related to itself and then start
executing steps based on it. Chef Server can be installed on physical machine or
on virtual machine with open source installable file based on the operating
systems. Another easiest way to use is Hosted Chef where we need not to install
and configure Chef server. We can use SaaS offering from Chef. It allows up to
five nodes. The biggest benefit is we need not manage Chef server or upgrade it.
Hence, we save ourselves from management and maintenance overhead.

To get a first look of the Chef website, visit https://chef.io. You will see a Chef home page as
shown below:

Installing and Configuring Chef

[162]

There are lot of details available of Chef and Cloud related integration and knife plugins
too. We will create a Hosted Chef account in the section and configure it with local
workstation. To go ahead, click on the MANAGEMENT CONSOLE link available in the
right top corner of the Chef website.

Overview of Hosted Chef
Click on MANAGEMENT CONSOLE or visit the URL1.
https://manage.chef.io/login. We are going to start from scratch so click on Click
here to get started!

Installing and Configuring Chef

[163]

Enter Full Name, Email, and Username in the text boxes; check mark on I agree2.
to the Terms of Service and the Master License and Services Agreement. Click
on Get Started button.

Installing and Configuring Chef

[164]

We will get a message, Thanks for signing up!3.

Open you Mail inbox and click on the verification link to complete the creation of4.
Hosted Chef account. We will get Email Verification Successful message. Click
on Create User button.

Next task is to create an organization. Click on Create New Organization.5.

Installing and Configuring Chef

[165]

Provide Full Name and Short Name for the organization and click on the Create6.
Organization button.

Bingo! We have created our hosted Chef account and now we can start using it.7.
Next step is to download a starter kit.

When we Download Starter Kit, User and Organization Keys will be reset. Make8.
sure to keep it at safe place. Click on Proceed.

Installing and Configuring Chef

[166]

Let's have a quick walk through of the Hosted Chef portal or dashboard:

Click on the Nodes and it will show an empty list as no node is configured using1.
Chef Server. Note this as we are going to see the same screen when we will
configure a node.

Click on the Administration tab and verify the user created at the time of2.
registration.

Installing and Configuring Chef

[167]

Reports tab is having no data as convergence process hasn't taken place and no3.
success or failure data is available.

Installing and Configuring Chef

[168]

Once we have Hosted Chef account available; next step is to configure Chef workstation.

First, download Chef-client from https://downloads.chef.io/chef-client/redhat/ as1.
we are going to use CentOS virtual machine to act as Workstation.
Select Operating System and select the Chef client version. Download the Chef2.
client installation files as per the platform available.

Chef development kit installation is useful for installing development tools and it3.
can be useful for knife plugins installations for AWS and Azure. Download Chef
Development Kit from https://downloads.chef.io/chef-dk/.

Installing and Configuring Chef

[169]

In the next section we will see how to configure Chef workstation.

Installing and Configuring Chef Workstation
Before installing Chef-client for preparing workstation, let's try to verify whether Chef
client is installed or not.

Execute chef-client -version to verify it.1.

 [mitesh@devops1 Desktop]$ chef-client -version
 bash: chef-client: command not found

Go to the directory where Chef client installable is stored.2.

 [mitesh@devops1 Desktop]$ cd chef/
 [mitesh@devops1 chef]$ ls
 chef-12.9.41-1.el6.x86_64.rpm chefdk-0.13.21-1.el6.x86_64.rpm

Run the downloaded Chef client rpm using rpm -ivh chef-<version>.rpm command3.

 [mitesh@devops1 chef]$ rpm -ivh chef-12.9.41-1.el6.x86_64.rpm
 warning: chef-12.9.41-1.el6.x86_64.rpm: Header V4 DSA/SHA1
 Signature, key ID 83ef826a: NOKEY
 error: can't create transaction lock on /var/lib/rpm/.rpm.lock

Installing and Configuring Chef

[170]

 (Permission denied)

Permission is denied to execute hence use sudo to run the command and verify4.
the installation process.

 [mitesh@devops1 chef]$ sudo rpm -ivh chef-12.9.41-
 1.el6.x86_64.rpm
 [sudo] password for mitesh:
 warning: chef-12.9.41-1.el6.x86_64.rpm: Header V4 DSA/SHA1
 Signature, key ID 83ef826a: NOKEY
 Preparing...
 ### [100%]
 1:chef
 ### [100%]
 Thank you for installing Chef!

After successful installation, let's verify Chef client version.5.

 [mitesh@devops1 chef]$ chef-client -version
 Chef: 12.9.41

Now, next step is to use Starter Kit that we downloaded while creating account in
Hosted Chef.

Extract the chef-repo compressed file and verify the content. Copy the .chef6.
directory into root or user folder:

Installing and Configuring Chef

[171]

Verify the cookbooks folder available in chef-repo directory:7.

In .chef directory, open the knife.rb file that contains different configurations. All8.
the configurations are already available. Adjust path of cookbooks directory if
needed.

For more information on knife configuration options, visit at:
http://docs.chef.io/config_rb_knife.html

 current_dir = File.dirname(__FILE__)
 log_level :info
 log_location STDOUT
 node_name "discovertechno51"
 client_key "#{current_dir}/
 discovertechno51.pem"
 validation_client_name "dtechno-validator"
 validation_key "#{current_dir}/dtechno-
 validator.pem"
 chef_server_url "https://api.chef.io/
 organizations/dtechno"
 cookbook_path ["#{current_dir}/../cookbooks"]

Chef Workstation configuration is completed. Next step is to converge the node9.
using Chef workstation.

Installing and Configuring Chef

[172]

Converging Chef node using Chef
Workstation
First of all, let's login to Chef Workstation which we have setup.

Open the terminal and verify the IP address with ifconfig command.1.

 [root@devops1 chef-repo]# ifconfig
 eth3 Link encap:Ethernet HWaddr 00:0C:29:D9:30:7F
 inet addr:192.168.1.35 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::20c:29ff:fed9:307f/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:841351 errors:0 dropped:0 overruns:0 frame:0
 TX packets:610551 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:520196141 (496.0 MiB) TX bytes:278125183 (265.2 MiB)
 lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:1680 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1680 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:521152 (508.9 KiB) TX bytes:521152 (508.9 KiB)

Verify the knife version installed on the Chef workstation with knife –version2.
command.

 [root@devops1 chef]# knife --version
 Chef: 12.9.41

knife node list command is used to get list of nodes served by Chef server. In our3.
case Hosted Chef. As we haven't converged any single node so list will be empty.

 [root@devops1 chef-repo]# knife node list

Create a virtual machine using VMware workstation of Virtual box. Install4.
CentOS. Once VM is ready, find out its IP address and note it.
In Chef Workstation, open terminal and try to take ssh of the node or VM created5.
recently.

 [root@devops1 chef-repo]# ssh root@192.168.1.37

The authenticity of host '192.168.1.37 (192.168.1.37)' can't be established.6.

Installing and Configuring Chef

[173]

 RSA key fingerprint is 4b:56:28:62:53:59:e8:e0:5e:5f:54:08:c1:0c:1e:6c.
 Are you sure you want to continue connecting (yes/no)? yes
 Warning: Permanently added '192.168.1.37' (RSA) to the list of known hosts.
 root@192.168.1.37's password:
 Last login: Thu May 28 10:26:06 2015 from 192.168.1.15

Now, we have taken ssh of node from Chef workstation. Verify IP address and7.
we know we are accessing a different machine by remote access or ssh access.

 [root@localhost ~]# ifconfig
 eth1 Link encap:Ethernet HWaddr 00:0C:29:44:9B:4B
 inet addr:192.168.1.37 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::20c:29ff:fe44:9b4b/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:11252 errors:0 dropped:0 overruns:0 frame:0
 TX packets:6628 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:14158681 (13.5 MiB) TX bytes:466365 (455.4 KiB)
 lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:59513 errors:0 dropped:0 overruns:0 frame:0
 TX packets:59513 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:224567119 (214.1 MiB) TX bytes:224567119 (214.1 MiB)
 [root@localhost ~]#

Let's verify Node virtual machine; In my VM Chef client was already installed8.
hence execution of rpm -qa *chef* command gave me result.

 [root@localhost Desktop]# rpm -qa *chef*
 chef-12.3.0-1.el6.x86_64

Let's remove the Chef client installation using yum remove command.9.

 [root@localhost Desktop]# yum remove chef-12.3.0-1.el6.x86_64
 Loaded plugins: fastestmirror, refresh-packagekit, security
 Setting up Remove Process
 Resolving Dependencies
 --> Running transaction check
 ---> Package chef.x86_64 0:12.3.0-1.el6 will be erased
 --> Finished Dependency Resolution
 Dependencies Resolved
 ===
 Package Arch Version Repository Size
 ===

Installing and Configuring Chef

[174]

 Removing:
 chef x86_64 12.3.0-1.el6 installed 125 M
 Transaction Summary
 ===
 Remove 1 Package(s)
 Installed size: 125 M
 Is this ok [y/N]: y
 Downloading Packages:
 Running rpm_check_debug
 Running Transaction Test
 Transaction Test Succeeded
 Running Transaction
 Erasing : chef-12.3.0-1.el6.x86_64 1/1
 Verifying : chef-12.3.0-1.el6.x86_64 1/1
 Removed:
 chef.x86_64 0:12.3.0-1.el6
 Complete!
 You have new mail in /var/spool/mail/root

We have removed chef client; verify again.10.

 [root@localhost Desktop]# chef-client -version
 bash: chef-client: command not found

Let's remove Tomcat installation also if it is installed on the node.11.

 [root@localhost Desktop]# yum remove tomcat6
 Loaded plugins: fastestmirror, refresh-packagekit, security
 Setting up Remove Process
 Resolving Dependencies
 --> Running transaction check
 ---> Package tomcat6.x86_64 0:6.0.24-83.el6_6 will be erased
 --> Processing Dependency: tomcat6 = 6.0.24-83.el6_6 for package: tomcat6-admin-
 webapps-6.0.24-83.el6_6.x86_64
 --> Running transaction check
 ---> Package tomcat6-admin-webapps.x86_64 0:6.0.24-83.el6_6 will be erased
 --> Finished Dependency Resolution
 Dependencies Resolved
 ===
 Package Arch Version Repository Size
 ===
 Removing:
 tomcat6 x86_64 6.0.24-83.el6_6 @updates 188 k
 Removing for dependencies:
 tomcat6-admin-webapps x86_64 6.0.24-83.el6_6 @updates 62 k
 Transaction Summary
 ===
 Remove 2 Package(s)

Installing and Configuring Chef

[175]

 Installed size: 250 k
 Is this ok [y/N]: y
 Downloading Packages:
 Running rpm_check_debug
 Running Transaction Test
 Transaction Test Succeeded
 Running Transaction
 Erasing : tomcat6-admin-webapps-6.0.24-83.el6_6.x86_64 1/2
 Erasing : tomcat6-6.0.24-83.el6_6.x86_64 2/2
 warning: /etc/tomcat6/server.xml saved as /etc/tomcat6/server.xml.rpmsave
 warning: /etc/tomcat6/logging.properties saved as /etc/tomcat6/
 logging.properties.rpmsave
 warning: /etc/sysconfig/tomcat6 saved as /etc/sysconfig/tomcat6.rpmsave
 Verifying : tomcat6-admin-webapps-6.0.24-83.el6_6.x86_64 1/2
 Verifying : tomcat6-6.0.24-83.el6_6.x86_64 2/2
 Removed:
 tomcat6.x86_64 0:6.0.24-83.el6_6
 Dependency Removed:
 tomcat6-admin-webapps.x86_64 0:6.0.24-83.el6_6
 Complete!
 You have new mail in /var/spool/mail/root
 [root@localhost Desktop]# yum remove tomcat6
 Loaded plugins: fastestmirror, refresh-packagekit, security
 Setting up Remove Process
 No Match for argument: tomcat6
 Loading mirror speeds from cached hostfile
 * base: centos.excellmedia.net
 * extras: centos.excellmedia.net
 * rpmforge: ftp.riken.jp
 * updates: centos.excellmedia.net
 Package(s) tomcat6 available, but not installed.
 No Packages marked for removal

Verify JDK installation on node.12.

 [root@localhost Desktop]# java -version
 java version "1.7.0_75"
 OpenJDK Runtime Environment (rhel-2.5.4.0.el6_6-x86_64 u75-b13)
 OpenJDK 64-Bit Server VM (build 24.75-b04, mixed mode)

Exit from the SSH of node virtual machine. Now we are are having control of13.
Chef workstation machine and we will try to converge the node VM we have
recently accessed remotely.
Use knife command to converge the node. Give IP address / DNS name, user,14.
password, and name of the node.
Verify the output:15.

Installing and Configuring Chef

[176]

 [root@devops1 chef-repo]# knife bootstrap 192.168.1.37 -x root -P cloud@123
 -N tomcatserver
 Doing old-style registration with the validation key at /home/mitesh/chef-
 repo/.chef/dtechno-validator.pem...
 Delete your validation key in order to use your user credentials instead
 Connecting to 192.168.1.37
 192.168.1.37 -----> Installing Chef Omnibus (-v 12)
 192.168.1.37 downloading https://omnitruck-direct.chef.io/chef/install.sh
 192.168.1.37 to file /tmp/install.sh.26574/install.sh
 192.168.1.37 trying wget...
 192.168.1.37 el 6 x86_64
 192.168.1.37 Getting information for chef stable 12 for el...
 192.168.1.37 downloading https://omnitruck-direct.chef.io/stable/chef/
 metadata?v=12&p=el&pv=6&m=x86_64
 192.168.1.37 to file /tmp/install.sh.26586/metadata.txt
 192.168.1.37 trying wget...
 192.168.1.37 sha1 859bc9be9a40b8b13fb88744079ceef1832831b0
 192.168.1.37 sha256 c43f48e5a2de56e4eda473a3ee0a80aa1aaa6c8621d90
 84e033d8b9cf3efc328
 192.168.1.37 url https://packages.chef.io/stable/el/6/chef-12.9.41-
 1.el6.x86_64.rpm
 192.168.1.37 version 12.9.41
 192.168.1.37 downloaded metadata file looks valid...
 192.168.1.37 downloading https://packages.chef.io/stable/el/6/chef-12.9.41-
 1.el6.x86_64.rpm
 192.168.1.37 to file /tmp/install.sh.26586/chef-12.9.41-1.el6.x86_64.rpm
 192.168.1.37 trying wget...
 192.168.1.37 Comparing checksum with sha256sum...
 192.168.1.37 Installing chef 12
 192.168.1.37 installing with rpm...
 192.168.1.37 warning: /tmp/install.sh.26586/chef-12.9.41-1.el6.x86_64.rpm:
 Header V4 DSA/SHA1 Signature, key ID 83ef826a: NOKEY
 192.168.1.37 Preparing...
 ### [100%]
 192.168.1.37 1:chef
 ### [100%]
 192.168.1.37 Thank you for installing Chef!
 192.168.1.37 Starting the first Chef Client run...
 192.168.1.37 Starting Chef Client, version 12.9.41
 192.168.1.37 Creating a new client identity for tomcatserver using the
 validator key.
 192.168.1.37 resolving cookbooks for run list: []
 192.168.1.37 Synchronizing Cookbooks:
 192.168.1.37 Installing Cookbook Gems:
 192.168.1.37 Compiling Cookbooks...
 192.168.1.37 [2016-05-12T23:47:49-07:00] WARN: Node tomcatserver has an
 empty run list.
 192.168.1.37 Converging 0 resources

Installing and Configuring Chef

[177]

 192.168.1.37
 192.168.1.37 Running handlers:
 192.168.1.37 Running handlers complete
 192.168.1.37 Chef Client finished, 0/0 resources updated in 37 seconds

There was no run list or role associated with the knife command but convergence16.
is successful.
Let's verify Hosted Chef account. We can see the Node Name and IP Address in17.
the Nodes section of dashboard. Click on the Nodes and verify details:

Select a node and check Details, Attributes associated with it, and Permissions18.
as shown below:

Installing and Configuring Chef

[178]

Verify cpu attributes associated with the node and other details:19.

Convergence process was successful and we can see that in Reports section of the20.
Hosted Chef account:

Installing and Configuring Chef

[179]

Till now, we have seen how to created Hosted Chef account, how to configure Chef
workstation, and how to converge node.

Now it is time to install software packages using cookbooks. The question should be, why
we want to do it?

Let's revisit the context. We want to create an end to end pipeline where application source
files are compiled, unit tests are executed, package file is created, new virtual machine is
created, runtime environment is setup, and finally the deployment.

To set up runtime environment automatically, we would like to use Chef community
cookbooks.

Visit https://github.com/opscode-cookbooks and find all community cookbooks1.
which are required to setup runtime environment as shown below:

Installing and Configuring Chef

[180]

We are using Sample spring application that is PetClinic application. For JEE2.
application, we need to install Java and Tomcat for running the application.
Download the tomcat cookbook from3.
https://supermarket.chef.io/cookbooks/tomcat and go the Dependencies section
on that page. Without dependencies uploaded on Chef server, we can't upload
tomcat cookbook on the Chef server to use it.
Download OpenSSL and Chef Sugar from4.
https://supermarket.chef.io/cookbooks/openssl and
https://supermarket.chef.io/cookbooks/chef-sugar respectively.
For Java installation, download the cookbook5.
https://supermarket.chef.io/cookbooks/java and its dependency as well
https://supermarket.chef.io/cookbooks/apt. Extract all compressed file in the
cookbooks directory:

Installing and Configuring Chef

[181]

Go to cookbooks directory in the terminal and verify the sub-directories of6.
community cookbooks.

 [root@devops1 cookbooks]# ls
 apt chefignore chef-sugar java openssl starter tomcat
 [root@devops1 cookbooks]# cd ..

Upload the apt cookbook with knife cookbook upload apt command.7.

 [root@devops1 chef-repo]# knife cookbook upload apt
 Uploading apt [3.0.0]
 Uploaded 1 cookbook.

Verify the Cookbooks section in the Hosted Chef whether apt Cookbook is8.
uploaded or not.

Installing and Configuring Chef

[182]

Make sure to upload all dependencies first, else it will give error. Upload all other9.
cookbooks in order.

 [root@devops1 chef-repo]# knife cookbook upload chef-sugar
 Uploading chef-sugar [3.3.0]
 Uploaded 1 cookbook.
 [root@devops1 chef-repo]# knife cookbook upload java
 Uploading java [1.39.0]
 Uploaded 1 cookbook.
 [root@devops1 chef-repo]# knife cookbook upload openssl
 Uploading openssl [4.4.0]
 Uploaded 1 cookbook.
 [root@devops1 chef-repo]# knife cookbook upload tomcat
 Uploading tomcat [0.17.0]
 Uploaded 1 cookbook.

Once all cookbooks are uploaded, verify in Hosted Chef account:10.

Installing and Configuring Chef

[183]

Once all cookbooks are uploaded successfully, we need to create a Role. A role is defined for
a specific function and it provides a path for different patterns and workflow processes. For
an example, the web server role can consist of Tomcat server recipes and any custom
attributes.

Go to policy section and create a role. Provide Name and Description and click1.
on Next as shown:

A Run List keeps roles/recipes in a proper manner and order. We can say that2.
run-list describes the specification of a node. Select Tomcat from the Available

Installing and Configuring Chef

[184]

Recipes section and drag it to Current Run List section and click on Create Role.

Verify Role details in Hosted Chef dashboard:3.

Now we are ready to associate role while converging the node. Add role to the4.
node with knife node run_list add tomcatserver "role[v-tomcat]" command

Installing and Configuring Chef

[185]

 [root@devops1 chef-repo]# knife node run_list add tomcatserver "role[v-tomcat]"
 tomcatserver:
 run_list: role[v-tomcat]
 [root@devops1 chef-repo]#

Role is associated with the node now and next time chef client will run on the5.
node, it will see whether it is in the sync with its assignment or not. If not then it
will execute the steps to bring the status in the compliance with the role assigned.

 [root@localhost Desktop]# chef-client
 Starting Chef Client, version 12.9.41
 resolving cookbooks for run list: ["tomcat"]
 Synchronizing Cookbooks:
 - tomcat (0.17.0)
 - chef-sugar (3.3.0)
 - java (1.39.0)
 - apt (3.0.0)
 - openssl (4.4.0)
 Installing Cookbook Gems:
 Compiling Cookbooks...
 [2016-05-13T02:46:48-07:00] WARN:
 Chef::Provider::AptRepository already exists!
 Cannot create deprecation class for LWRP provider apt_repository from
 cookbook apt
 [2016-05-13T02:46:48-07:00] WARN: AptRepository already exists! Deprecation
 class overwrites Custom resource apt_repository from cookbook apt
 Converging 3 resources
 Recipe: tomcat::default
 * yum_package[tomcat6] action install
 - install version 6.0.24-94.el6_7 of package tomcat6
 * yum_package[tomcat6-admin-webapps] action install
 - install version 6.0.24-94.el6_7 of package tomcat6-admin-webapps
 * tomcat_instance[base] action configure (up to date)
 * directory[/usr/share/tomcat6/lib/endorsed] action create (up to date)
 * template[/etc/sysconfig/tomcat6] action create
 - update content in file /etc/sysconfig/tomcat6 from 10e169 to d7a9c0
 --- /etc/sysconfig/tomcat6 2016-03-22 14:33:38.000000000 -0700
 +++ /etc/sysconfig/.chef-tomcat620160513-38410-1ok6v3f 2016-05-13
 2:56:00.766994188 -0700
 @@ -1,3 +1,9 @@
 +#
 +# Dynamically generated by Chef on localhost
 +#
 +# Local modifications will be overwritten by Chef.
 +#
 +# Service-specific configuration file for tomcat6. This will be sourced
 by the SysV init script after the global configuration file
 # /etc/tomcat6/tomcat6.conf, thus allowing values to be overridden in

Installing and Configuring Chef

[186]

 @@ -15,29 +21,28 @@
 #
 # Where your java installation lives
 -#JAVA_HOME="/usr/lib/jvm/java"
 +JAVA_HOME=
 # Where your tomcat installation lives
 -#CATALINA_BASE="/usr/share/tomcat6"
 -#CATALINA_HOME="/usr/share/tomcat6"
 -#JASPER_HOME="/usr/share/tomcat6"
 -#CATALINA_TMPDIR="/var/cache/tomcat6/temp"
 +CATALINA_BASE="/usr/share/tomcat6"
 +CATALINA_HOME="/usr/share/tomcat6"
 +JASPER_HOME="/usr/share/tomcat6"
 +CATALINA_TMPDIR="/var/cache/tomcat6/temp"

 # You can pass some parameters to java here if you wish to
 -#JAVA_OPTS="-Xminf0.1 -Xmaxf0.3"
 +JAVA_OPTS="-Xmx128M -Djava.awt.headless=true"

 # Use JAVA_OPTS to set java.library.path for libtcnative.so
 #JAVA_OPTS="-Djava.library.path=/usr/lib64"
 # What user should run tomcat
 -#TOMCAT_USER="tomcat"
 -#TOMCAT_GROUP="${TOMCAT_GROUP:-`id -gn $TOMCAT_USER`}"
 -#
 +TOMCAT_USER="tomcat"
 +
 # You can change your tomcat locale here
 #LANG="en_US"

 # Run tomcat under the Java Security Manager
 -#SECURITY_MANAGER="false"
 +SECURITY_MANAGER="false"

 # Time to wait in seconds, before killing process
 #SHUTDOWN_WAIT="30"
 @@ -48,8 +53,11 @@
 # Set the TOMCAT_PID location
 #CATALINA_PID="/var/run/tomcat6.pid"

 -# Connector port is 8080 for this tomcat6 instance
 -#CONNECTOR_PORT="8080"
 +# JVM parameters passed only for start and run commands
 +CATALINA_OPTS=""
 +
 +# Endorse .jar files in this directory
 +JAVA_ENDORSED_DIRS="/usr/share/tomcat6/lib/endorsed"

Installing and Configuring Chef

[187]

 # If you wish to further customize your tomcat environment,
 # put your own definitions here
 - change mode from '0664' to '0644'
 - restore selinux security context
 * template[/etc/tomcat6/server.xml] action create
 - update content in file /etc/tomcat6/server.xml from 178c5e to 71d23a
 --- /etc/tomcat6/server.xml 2016-03-22 14:31:26.000000000 -0700
 +++ /etc/tomcat6/.chef-server.xml20160513-38410-wjv3fl 2016-05-13
 2:56:01.693994187 -0700
 @@ -1,5 +1,9 @@
 <?xml version='1.0' encoding='utf-8'?>
 <!--
 + Dynamically generated by Chef on localhost
 + Local modifications will be overwritten by Chef.
 +-->
 +<!--
 Licensed to the Apache Software Foundation (ASF) under one or more
 contributor license agreements. See the NOTICE file distributed with
 this work for additional information regarding copyright ownership.
 @@ -22,7 +26,9 @@
 <Server port="8005" shutdown="SHUTDOWN">
 <!--APR library loader. Documentation at /docs/apr.html -->
 + <!--
 <Listener className="org.apache.catalina.core.AprLifecycleListener"
 SSLEngine="on" /> + -->

 <!--Initialize Jasper prior to webapps are loaded. Documentation at
 /docs/jasper-howto.html -->
 <Listener className="org.apache.catalina.core.JasperListener"/>
 <!-- Prevent memory leaks due to use of particular java/javax APIs-->
 @@ -46,19 +52,18 @@
 </GlobalNamingResources>
 <!-- A "Service" is a collection of one or more "Connectors" that
 share a single "Container" Note: A "Service" is not itself a
 "Container", + a single "Container" Note: A "Service" is not
 itself a "Container", so you may not define subcomponents such as
 "Valves" at this level.
 Documentation at /docs/config/service.html
 -->
 <Service name="Catalina">
 -
 + <!--The connectors can use a shared executor, you can define one or
 more named thread pools-->
 <!--
 - <Executor name="tomcatThreadPool" namePrefix="catalina-exec-"
 + <Executor name="tomcatThreadPool" namePrefix="catalina-exec-"
 maxThreads="150" minSpareThreads="4"/>
 -->

Installing and Configuring Chef

[188]

 -
 -
 + <!-- A "Connector" represents an endpoint by which requests are
 received and responses are returned. Documentation at :
 Java HTTP Connector: /docs/config/http.html (blocking & non-blocking)
 @@ -66,30 +71,36 @@
 APR (HTTP/AJP) Connector: /docs/apr.html
 Define a non-SSL HTTP/1.1 Connector on port 8080
 -->
 - <Connector port="8080" protocol="HTTP/1.1"
 - connectionTimeout="20000"
 - redirectPort="8443" />
 + <Connector port="8080" protocol="HTTP/1.1"
 + connectionTimeout="20000"
 + URIEncoding="UTF-8"
 + redirectPort="8443"
 + />
 <!-- A "Connector" using the shared thread pool-->
 <!--
 <Connector executor="tomcatThreadPool"
 - port="8080" protocol="HTTP/1.1"
 - connectionTimeout="20000"
 + port="8080" protocol="HTTP/1.1"
 + connectionTimeout="20000"
 redirectPort="8443" />
 - -->
 + -->
 <!-- Define a SSL HTTP/1.1 Connector on port 8443
 -
 + This connector uses the JSSE configuration, when using APR,
 the connector should be using the OpenSSL style configuration
 described in the APR documentation -->
 - <!--
 <Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
 + keystoreFile="/etc/tomcat6/keystore.jks"
 + keystorePass="DBtN03iR_YIigSPG5zW4"
 + keystoreType="jks"
 + truststorePass="DBtN03iR_YIigSPG5zW4"
 maxThreads="150" scheme="https" secure="true"
 clientAuth="false" sslProtocol="TLS" />
 - -->
 <!-- Define an AJP 1.3 Connector on port 8009 -->
 - <Connector port="8009" protocol="AJP/1.3" redirectPort="8443" />
 + <Connector port="8009"
 + protocol="AJP/1.3"
 + tomcatAuthentication="true"
 + redirectPort="8443" />
 -

Installing and Configuring Chef

[189]

 <!-- An Engine represents the entry point (within Catalina) that
 processes every request. The Engine implementation for Tomcat
 stand alone analyzes the HTTP headers included with the
 request, and passes them
 @@ -97,16 +108,16 @@
 Documentation at /docs/config/engine.html -->

 <!-- You should set jvmRoute to support load-balancing via AJP ie :
 - <Engine name="Catalina" defaultHost="localhost"
 jvmRoute="jvm1">
 - -->
 - <Engine name="Catalina" defaultHost="localhost">
 + <Engine name="Catalina" defaultHost="localhost" jvmRoute="jvm1">
 + -->
 + <Engine name="Catalina" defaultHost="localhost" >

 <!--For clustering, please take a look at documentation
 at: /docs/cluster-howto.html (simple how to)
 /docs/config/cluster.html (reference documentation) -->
 <!--
 <Cluster className="org.apache.catalina.ha.tcp.SimpleTcpCluster"/>
 - -->
 + -->

 <!-- The request dumper valve dumps useful debugging information
 about the request and response data received and sent by
 Tomcat.
 @@ -127,7 +138,8 @@
 -->
 <Host name="localhost" appBase="webapps"
 unpackWARs="true" autoDeploy="true"
 - xmlValidation="false" xmlNamespaceAware="false">
 + xmlValidation="false" xmlNamespaceAware="false"
 + >
 <!-- SingleSignOn valve, share authentication between web
 applications
 Documentation at: /docs/config/valve.html -->

 @@ -138,7 +150,7 @@
 <!-- Access log processes all example.
 Documentation at: /docs/config/valve.html -->
 <!--
 - <Valve className="org.apache.catalina.valves.AccessLogValve"
 directory="logs"
 + <Valve className="org.apache.catalina.valves.AccessLogValve"
 directory="logs"
 prefix="localhost_access_log." suffix=".txt" pattern="common"
 resolveHosts="false"/>

Installing and Configuring Chef

[190]

 -->
 - change mode from '0664' to '0644'
 - restore selinux security context
 * template[/etc/tomcat6/logging.properties] action create
 - update content in file /etc/tomcat6/logging.properties from fb8198 to
 d3364b
 --- /etc/tomcat6/logging.properties 2016-03-22 14:31:26.000000000
 -0700
 +++ /etc/tomcat6/.chef-logging.properties20160513-38410-1jqpw7h 2016-
 05-13 02:56:02.086994187 -0700
 @@ -13,10 +13,12 @@
 # See the License for the specific language governing permissions and
 # limitations under the License.
 -handlers = 1catalina.org.apache.juli.FileHandler,
 2localhost.org.apache.juli.FileHandler,
 3manager.org.apache.juli.FileHandler, 4host-
 manager.org.apache.juli.FileHandler, java.util.logging.ConsoleHandler
 +handlers = 1catalina.org.apache.juli.FileHandler,
 2localhost.org.apache.juli.FileHandler,
 java.util.logging.ConsoleHandler
 .handlers = 1catalina.org.apache.juli.FileHandler,
 java.util.logging.ConsoleHandler
 +.level = INFO
 +
 ##
 # Handler specific properties.
 # Describes specific configuration info for Handlers.
 @@ -30,18 +32,9 @@
 2localhost.org.apache.juli.FileHandler.directory = ${catalina.base}/logs
 2localhost.org.apache.juli.FileHandler.prefix = localhost.

 -3manager.org.apache.juli.FileHandler.level = FINE
 -3manager.org.apache.juli.FileHandler.directory = ${catalina.base}/logs
 -3manager.org.apache.juli.FileHandler.prefix = manager.
 -
 -4host-manager.org.apache.juli.FileHandler.level = FINE
 -4host-manager.org.apache.juli.FileHandler.directory =
 ${catalina.base}/logs
 -4host-manager.org.apache.juli.FileHandler.prefix = host-manager.
 -
 java.util.logging.ConsoleHandler.level = FINE
 java.util.logging.ConsoleHandler.formatter =
 ava.util.logging.SimpleFormatter

 -
 ##
 # Facility specific properties.
 # Provides extra control for each logger.

Installing and Configuring Chef

[191]

 @@ -49,17 +42,4 @@

 org.apache.catalina.core.ContainerBase.[Catalina].[localhost].level =
 INFO
 org.apache.catalina.core.ContainerBase.[Catalina].[localhost].handlers =
 2localhost.org.apache.juli.FileHandler
 -
 -org.apache.catalina.core.ContainerBase.[Catalina].[localhost].
 /manager].level = INFO
 -org.apache.catalina.core.ContainerBase.[Catalina].[localhost].
 [/manager].handlers = 3manager.org.apache.juli.FileHandler
 -
 -org.apache.catalina.core.ContainerBase.[Catalina].[localhost].[/host-
 manager].level = INFO
 -org.apache.catalina.core.ContainerBase.[Catalina].[localhost].[/host-
 manager].handlers = 4host-manager.org.apache.juli.FileHandler
 -
 -# For example, set the com.xyz.foo logger to only log SEVERE
 -# messages:
 -#org.apache.catalina.startup.ContextConfig.level = FINE
 -#org.apache.catalina.startup.HostConfig.level = FINE
 -#org.apache.catalina.session.ManagerBase.level = FINE
 -#org.apache.catalina.core.AprLifecycleListener.level=FINE
 - change mode from '0664' to '0644'
 - restore selinux security context
 * execute[Create Tomcat SSL certificate] action run (up to date)
 * service[tomcat6] action start
 - start service service[tomcat6]
 * execute[wait for tomcat6] action run
 - execute sleep 5
 * service[tomcat6] action enable
 - enable service service[tomcat6]
 * execute[wait for tomcat6] action run
 - execute sleep 5
 * execute[wait for tomcat6] action nothing (skipped due to action
 :nothing)
 * service[tomcat6] action restart
 - restart service service[tomcat6]
 * execute[wait for tomcat6] action run
 - execute sleep 5

 Running handlers:
 Running handlers complete
 Chef Client finished, 11/15 resources updated in 09 minutes 59 seconds
 You have new mail in /var/spool/mail/root
 [root@localhost Desktop]# service tomcat6 status
 tomcat6 (pid 39782) is running... [OK]
 You have new mail in /var/spool/mail/root

Installing and Configuring Chef

[192]

 Observe the above output and we will come to know what exactly happens when
 convergence takes place.

Verify the Reports section in the Hosted Chef account to get latest details.6.

Now we know how to create Hosted Chef account, configure workstation and how to
converge the node.

Self-Test Questions
In which category Chef falls in from following?1.
Continuous Integration2.
Configuration Management3.
All of the Above4.
None of the Above5.

What are the 3 main components of Chef installation?1.
Chef Server2.
Chef Workstation3.

Installing and Configuring Chef

[193]

Chef Node4.
All of the Above5.
None of the Above6.

Which command can be used to check the version of Chef client?1.
chefclient -version2.
chef-client -version3.
chefclient –version4.
chef-client –version5.
None of the Above6.

What is the name of the configuration file in Chef?1.
knife.java2.
knife.py3.
knife.rb4.
knife.sh5.
None of the Above6.

Which command is used for listing node available in Chef server?1.
knife node list2.
knife client list3.
knife node listing4.
knife nodes list5.
None of the Above6.

Summary
In this chapter, we have covered how we can create Hosted Chef account, how to configure
a workstation, how to upload a community cookbook to Hosted Chef account, how to
converge a node, how to use community cookbooks to install tomcat, how to verify the
convergence of node on Hosted Chef account and how to verify success and failure Reports.
Essentially, we are standardizing process of setting up runtime environment from a
centralized location. Most of the configuration tools do almost similar things and it can be
decided based on experience and other features on the selection of Configuration
Management tool. Automating the repetitive process in any field is the key to increase the
efficiency and configuration management tools do exactly that in end to end automation of
application delivery.

Installing and Configuring Chef

[194]

In the next chapter, we will discuss about Docker, one of the most popular and recent buzz
word in recent times. It is also one of the most disruptive innovations. We will see how
Docker containers are different from Virtual machines, how to install it and some basics of
it.

5
Installing and Configuring

Docker
“If you cannot do great things, do small things in a great way.”
 - Napoleon Hill

Docker, yes one of the hot topics of technical discussions in recent times. It is an open
source container based technology and considered as one of the disruptive innovations of
recent times. Docker containers are isolated packages that contains enough or required
components to run an application.

This chapter describes in detail container technology and how it is different from virtual
machines by comparing benefits of both. It will cover overview of Docker, its installation
and configuration details; it will also cover how to create CentOS container for application
deployment.

We will also cover Docker hub and basic architecture of Docker. In this chapter we will see
how to use tomcat image available on Docker hub and then create a sample image with Java
and tomcat installation with Dockerfile.

In this chapter, we will cover the following topics:

Overview of Docker Container
Understanding difference between Virtual Machines and Containers
Installation and Configuration of Docker on CentOS
Creating a First Docker Container
Managing Containers

Installing and Configuring Docker

[196]

Overview of Docker Container
Docker is an open-source initiative for OS Virtualization that automates the deployment of
applications inside software containers. It provides isolated user space and hence provides
user based processes, space, and file system. Behind the scene it shares Linux Host Kernel.

Docker has two main Components with Client Server Architecture:

Docker Host: Docker host contains Docker daemon, containers, and images.
Docker Engine is an important component that provides the core Docker
technology. This core Docker technology enables images and containers concepts.
When we install Docker successfully, we run a simple command. In our case we
will consider CentOS for the container.

To run an interactive shell in the CentOS image:

 docker run -i -t ubuntu /bin/bash

-i flag: Initiates an interactive container

-t flag: Creates a pseudo-TTY that attaches stdin and stdout

Image: Centos

/bin/bash: Starts a shell

When we run above command, it verifies whether the centos image is available
locally or not. If it is not available, then it will download the image from the
Docker Hub.

Image has filesystem and parameter that can be used at runtime while container is

Installing and Configuring Docker

[197]

an instance of an Image with a state. It is simple to understand that container
changes while Images not.

Docker Hub: Docker hub is a Software as a Service (SaaS) for sharing and
managing Docker containers. It is a kind of centralized registry service. As a user,
we can use it to build and ship applications. It allows to create pipeline to
integrate with code repositories, collaboration, image discovery, and automation.

Let's navigate to https://hub.docker.com and sign up by providing username,1.
email, and password details:

Activate account by clicking on the activation link sent to email id mentioned in2.
the sign up process:

Installing and Configuring Docker

[198]

After successful activation link, login to Docker hub account:3.

Following is the screenshot of Docker Dashboard. Try to explore Docker4.
dashboard as a self exercise:

Click on the Repositories to find images available in public domain. Search5.

Installing and Configuring Docker

[199]

CentOS image available in the Docker hub and you will get list of all CentOS
images available in the Docker hub.

In the next section, we will see why Containers are gaining so much attraction by
comparing them with Virtual Machines.

Understanding difference between Virtual
Machines and Containers
In the recent times, Cloud computing is part of almost all technical discussions. Usages of
virtual machines have served a lot in utilizing resources efficiently. However, Docker
containers have given them competition and in fact containers are more effective.

Let's find out basic differences between both and find out the reason behind popularity of
containers:

Virtual Machine Docker

Installing and Configuring Docker

[200]

In Virtual Machine, we need to install
operating system with the related device
drivers and hence footprint or size of the
virtual machine is huge. For a normal VM
with Tomcat and Java installed, it may take
up to 10 GB.

It shares the operating system and device
drivers of the host. Containers are created
from the images and for tomcat installed
container, size is less than 500 MB.

Overhead of memory management and
device drivers. VM is having all the
components which a normal physical
machine has in terms of operations.

Containers are small in size and hence
effectively gives faster and better performance.

In VM, hypervisor abstracts resources. Containers abstract the operating system.

In VM, the package includes not only the
application but also the necessary binaries
and libraries, and an entire guest operating
system. For example: CentOS 6.7, Windows
2003, and so on.

Containers runs as an isolated user space,
processes, and file system in user space on the
host operating system itself, and it shares the
kernel with other containers. Sharing and
resource utilization are at its best in containers
and now extra overhead is available. It works
with minimum required resources.

Cloud service providers use hypervisor to
provide a standard runtime environment for
VMs. Hypervisor comes in type 1 and type ii
category.

Docker makes it efficient and easier to port
applications across environments

In the next section, we will install and configure Docker on CentOS virtual machine.

Installing and Configuring Docker

[201]

Installing and Configuring Docker on
CentOS
To create a Virtual machine using VMware Workstation or Virtual box, Install CentOS 6.6
or CentOS 6.7.

We are using CentOS 6.7 to run Docker. For CentOS-6, there is a minor issue of package
name conflict with a system tray application and its executable, hence the Docker RPM
package was called docker-io:

Let's install docker-io:1.

 [root@localhost Desktop]# yum install docker-io
 Loaded plugins: fastestmirror, refresh-packagekit, security
 Setting up Install Process
 Loading mirror speeds from cached hostfile
 * epel: ftp.riken.jp
 Resolving Dependencies
 --> Running transaction check
 ---> Package docker-io.x86_64 0:1.7.1-2.el6 will be installed
 --> Processing Dependency: lxc for package: docker-io-1.7.1-2.el6.x86_64
 --> Running transaction check
 ---> Package lxc.x86_64 0:1.0.8-1.el6 will be installed
 --> Processing Dependency: lua-lxc(x86-64) = 1.0.8-1.el6 for package: lxc-1.0.8-
 1.el6.x86_64
 --> Processing Dependency: lua-alt-getopt for package: lxc-1.0.8-1.el6.x86_64
 --> Processing Dependency: liblxc.so.1()(64bit) for package: lxc-1.0.8-
 1.el6.x86_64
 --> Running transaction check
 ---> Package lua-alt-getopt.noarch 0:0.7.0-1.el6 will be installed
 ---> Package lua-lxc.x86_64 0:1.0.8-1.el6 will be installed
 --> Processing Dependency: lua-filesystem for package: lua-lxc-1.0.8-
 1.el6.x86_64
 ---> Package lxc-libs.x86_64 0:1.0.8-1.el6 will be installed
 --> Running transaction check
 ---> Package lua-filesystem.x86_64 0:1.4.2-1.el6 will be installed
 --> Finished Dependency Resolution
 Dependencies Resolved

Package Arch Version Repository Size

 Installing:

docker-io x86_64 1.7.1-2.el6 epel 4.6 M
 Installing for dependencies:

Installing and Configuring Docker

[202]

lua-alt-getopt noarch 0.7.0-1.el6 epel 6.9 k

lua-filesystem x86_64 1.4.2-1.el6 epel 24 k

lua-lxc x86_64 1.0.8-1.el6 epel 16 k

lxc x86_64 1.0.8-1.el6 epel 122 k

lxc-libs x86_64 1.0.8-1.el6 epel 255 k
 Transaction Summary
 ==

 Install 6 Package(s)

 Total download size: 5.0 M
 Installed size: 20 M

 Is this ok [y/N]: y

 Downloading Packages:
 (1/6): docker-io-1.7.1-2.el6.x86_64.rpm | 4.6 MB 04:32
 (2/6): lua-alt-getopt-0.7.0-1.el6.noarch.rpm | 6.9 kB 00:01
 (3/6): lua-filesystem-1.4.2-1.el6.x86_64.rpm | 24 kB 00:01
 (4/6): lua-lxc-1.0.8-1.el6.x86_64.rpm | 16 kB 00:01
 (5/6): lxc-1.0.8-1.el6.x86_64.rpm | 122 kB 00:03
 (6/6): lxc-libs-1.0.8-1.el6.x86_64.rpm | 255 kB 00:11
 ---Total 17 kB/s | 5.0 MB 05:02

 Running rpm_check_debug
 Running Transaction Test
 Transaction Test Succeeded

 Running Transaction
 Installing : lxc-libs-1.0.8-1.el6.x86_64 1/6
 Installing : lua-filesystem-1.4.2-1.el6.x86_64 2/6
 Installing : lua-lxc-1.0.8-1.el6.x86_64 3/6
 Installing : lua-alt-getopt-0.7.0-1.el6.noarch 4/6
 Installing : lxc-1.0.8-1.el6.x86_64 5/6
 Installing : docker-io-1.7.1-2.el6.x86_64 6/6
 Verifying : lxc-libs-1.0.8-1.el6.x86_64 1/6
 Verifying : lua-lxc-1.0.8-1.el6.x86_64 2/6
 Verifying : lxc-1.0.8-1.el6.x86_64 3/6
 Verifying : docker-io-1.7.1-2.el6.x86_64 4/6
 Verifying : lua-alt-getopt-0.7.0-1.el6.noarch 5/6
 Verifying : lua-filesystem-1.4.2-1.el6.x86_64 6/6

 Installed:
 docker-io.x86_64 0:1.7.1-2.el6

Installing and Configuring Docker

[203]

 Dependency Installed:
 lua-alt-getopt.noarch 0:0.7.0-1.el6 lua-filesystem.x86_64 0:1.4.2-1.el6 lua-
 lxc.x86_64 0:1.0.8-1.el6 lxc.x86_64 0:1.0.8-1.el6
 lxc-libs.x86_64 0:1.0.8-1.el6

 Complete!
 You have new mail in /var/spool/mail/root

Let's try to run Sample Hello World Image of Docker:2.

 [root@localhost Desktop]# docker run hello-world
 Post http:///var/run/docker.sock/v1.19/containers/create: dial unix
 /var/run/docker.sock: no such file or directory. Are you trying to connect to a
 TLS-enabled daemon without TLS?
 You have new mail in /var/spool/mail/root

Sample image execution didn't complete successfully as Docker service was not3.
running. Let's verify the Docker installation:

First, start the Docker service:

 [root@localhost Desktop]# service docker start
 Starting cgconfig service: [OK]
 Starting docker: [OK]
 You have new mail in /var/spool/mail/root

Verify status of Docker service:

 [root@localhost Desktop]# service docker status
 docker (pid 12340) is running...

So we have successfully installed Docker and verified whether its services are running or
not on CentOS 6.7 virtual machine.

Creating a first Docker container
Just to get a feel of Docker, let's run a sample hello-world container which we tried to do
earlier without success.

hello-world image is not available locally so it will fetch it from the Docker hub:

 [root@localhost Desktop]# docker run hello-world
 Unable to find image 'hello-world:latest' locally
 latest: Pulling from hello-world
 d59cd4c39e50: Pull complete

Installing and Configuring Docker

[204]

 f1d956dc5945: Pull complete
 Digest: sha256:4f32210e234b4ad5cac92efacc0a3d602b02476c754f13d517e1ada048e5a8ba
 Status: Downloaded newer image for hello-world:latest
 Hello from Docker.

This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

The Docker client contacted the Docker daemon.1.
The Docker daemon pulled the “hello-world” image from the Docker Hub.2.
The Docker daemon created a new container from that image which runs the3.
executable that produces the output you are currently reading.
The Docker daemon streamed that output to the Docker client, which sent it to4.
your terminal.

Let's try something more ambitious:

You can run an Ubuntu container with:1.

 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker Hub
account at: https://hub.docker.com
For more examples and ideas, visit at:
https://docs.docker.com/engine/userguide/

 You have new mail in /var/spool/mail/root
 [root@localhost Desktop]#

Now we have one image available locally. Let's try to create an Ubuntu container2.
and open its bash command directly:

 [root@localhost Desktop]# docker run -it ubuntu bash
 Unable to find image 'ubuntu:latest' locally
 latest: Pulling from ubuntu
 dd25ab30afb3: Pull complete
 a83540abf000: Pull complete
 630aff59a5d5: Pull complete
 cdc870605343: Pull complete
 686477c12982: Pull complete
 Digest:
 sha256:5718d664299eb1db14d87db7bfa6945b28879a67b74f36da3e34f5914866b71c
 Status: Downloaded newer image for ubuntu:latest

Installing and Configuring Docker

[205]

Use Docker images command to verify the existing images available locally:3.

 [root@localhost Desktop]# docker images
 REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
 ubuntu latest 686477c12982 5 weeks ago 120.7 MB
 hello-world latest f1d956dc5945 6 weeks ago 967 B

After these two examples, let's try to understand client server architecture of Docker using
another example of tomcat container.

Let's recollect our main objective. We want to deploy sample spring application named Pet-
clinic in tomcat server. For that in the rest of the section we will try to use existing tomcat
image and also create sample image with tomcat installation.

Go to Docker hub and find the tomcat container. Verify the supported tomcat1.
installations on the same web page in Docker hub:

Verify the images with Docker images command and then try to run tomcat2.
image. It will take some time.
Once image is pulled completely, container will be created and bash shell will be3.
available for command execution:

Installing and Configuring Docker

[206]

Let's try to install tomcat 8.0 and we will notice that image will be pulled from4.
Docker hub. However, most of the parts are already available locally:

[root@localhost Desktop]# docker run -it --rm tomcat:8.0
Unable to find image 'tomcat:8.0' locally
8.0: Pulling from tomcat
7d7852532044: Already exists
435cb21051b6: Already exists
4c76b3c13563: Already exists
35e170305690: Already exists
14fa7ed0654b: Already exists
02dec3806bda: Already exists
b50599b96e33: Already exists
ec7e4967fab4: Already exists
499b5c54f1ed: Already exists
cc5b39d4a8b7: Already exists
290876b830ae: Already exists
30167fbc73d4: Already exists
3a80d45737ff: Already exists
d4c89486429f: Already exists
4513ebd4451d: Already exists
4d3f030833b5: Already exists
9b29824628e2: Already exists
91fa6d6b4e7a: Already exists
aa3cd4ef3986: Already exists
1e96877e40eb: Already exists
fa9f8e22fb74: Already exists
1f2d29d5c90e: Already exists

Installing and Configuring Docker

[207]

56fec8c9f483: Already exists
7245ac6b1b71: Already exists
5d4577339b14: Already exists
Digest: sha256:2af935d02022b22717e41768dc523a62d4c78106997ff467d652a506b70bc860

Status: Downloaded newer image for tomcat:8.0

Using CATALINA_BASE: /usr/local/tomcat
Using CATALINA_HOME: /usr/local/tomcat
Using CATALINA_TMPDIR: /usr/local/tomcat/temp
Using JRE_HOME: /usr/lib/jvm/java-7-openjdk-amd64/jre
Using CLASSPATH: /usr/local/tomcat/bin/bootstrap.jar:/usr/local/tomcat/bin/tomcat-juli.jar
19-Jun-2016 10:54:03.230 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log
Server version: Apache Tomcat/8.0.36
19-Jun-2016 10:54:03.233 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log
Server built: Jun 9 2016 13:55:50 UTC
19-Jun-2016 10:54:03.233 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log
Server number: 8.0.36.0
19-Jun-2016 10:54:03.234 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log
OS Name: Linux
19-Jun-2016 10:54:03.234 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log
OS Version: 2.6.32-573.26.1.el6.x86_64
19-Jun-2016 10:54:03.234 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log
Architecture: amd64
19-Jun-2016 10:54:03.235 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log
Java Home: /usr/lib/jvm/java-7-openjdk-amd64/jre
19-Jun-2016 10:54:03.235 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log
JVM Version: 1.7.0_101-b00
19-Jun-2016 10:54:03.236 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log
JVM Vendor: Oracle Corporation
19-Jun-2016 10:54:03.236 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log
CATALINA_BASE: /usr/local/tomcat
19-Jun-2016 10:54:03.236 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log
CATALINA_HOME: /usr/local/tomcat
19-Jun-2016 10:54:03.238 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log
Command line argument: -
Djava.util.logging.config.file=/usr/local/tomcat/conf/logging.properties
19-Jun-2016 10:54:03.238 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log
Command line argument: -Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager
19-Jun-2016 10:54:03.238 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log
Command line argument: -Djdk.tls.ephemeralDHKeySize=2048
19-Jun-2016 10:54:03.239 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log
Command line argument: -Djava.endorsed.dirs=/usr/local/tomcat/endorsed
19-Jun-2016 10:54:03.239 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log
Command line argument: -Dcatalina.base=/usr/local/tomcat
19-Jun-2016 10:54:03.240 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log
Command line argument: -Dcatalina.home=/usr/local/tomcat
19-Jun-2016 10:54:03.240 INFO [main] org.apache.catalina.startup.VersionLoggerListener.log

Installing and Configuring Docker

[208]

Command line argument: -Djava.io.tmpdir=/usr/local/tomcat/temp
19-Jun-2016 10:54:03.241 INFO [main]
org.apache.catalina.core.AprLifecycleListener.lifecycleEvent Loaded APR based Apache
Tomcat Native library 1.2.7 using APR version 1.5.1.
19-Jun-2016 10:54:03.241 INFO [main]
org.apache.catalina.core.AprLifecycleListener.lifecycleEvent APR capabilities: IPv6 [true],
sendfile [true], accept filters [false], random [true].
19-Jun-2016 10:54:03.258 INFO [main]
org.apache.catalina.core.AprLifecycleListener.initializeSSL OpenSSL successfully initialized
(OpenSSL 1.0.2h 3 May 2016)
19-Jun-2016 10:54:03.408 INFO [main] org.apache.coyote.AbstractProtocol.init Initializing
ProtocolHandler ["http-apr-8080"]
19-Jun-2016 10:54:03.446 INFO [main] org.apache.coyote.AbstractProtocol.init Initializing
ProtocolHandler ["ajp-apr-8009"]
19-Jun-2016 10:54:03.453 INFO [main] org.apache.catalina.startup.Catalina.load Initialization
processed in 822 ms
19-Jun-2016 10:54:03.520 INFO [main] org.apache.catalina.core.StandardService.startInternal
Starting service Catalina
19-Jun-2016 10:54:03.520 INFO [main] org.apache.catalina.core.StandardEngine.startInternal
Starting Servlet Engine: Apache Tomcat/8.0.36
19-Jun-2016 10:54:03.533 INFO [localhost-startStop-1]
org.apache.catalina.startup.HostConfig.deployDirectory Deploying web application directory
/usr/local/tomcat/webapps/examples
19-Jun-2016 10:54:04.649 INFO [localhost-startStop-1]
org.apache.catalina.startup.HostConfig.deployDirectory Deployment of web application
directory /usr/local/tomcat/webapps/examples has finished in 1,115 ms
19-Jun-2016 10:54:04.649 INFO [localhost-startStop-1]
org.apache.catalina.startup.HostConfig.deployDirectory Deploying web application directory
/usr/local/tomcat/webapps/host-manager
19-Jun-2016 10:54:04.684 INFO [localhost-startStop-1]
org.apache.catalina.startup.HostConfig.deployDirectory Deployment of web application
directory /usr/local/tomcat/webapps/host-manager has finished in 34 ms
19-Jun-2016 10:54:04.684 INFO [localhost-startStop-1]
org.apache.catalina.startup.HostConfig.deployDirectory Deploying web application directory
/usr/local/tomcat/webapps/docs
19-Jun-2016 10:54:04.709 INFO [localhost-startStop-1]
org.apache.catalina.startup.HostConfig.deployDirectory Deployment of web application
directory /usr/local/tomcat/webapps/docs has finished in 25 ms
19-Jun-2016 10:54:04.709 INFO [localhost-startStop-1]
org.apache.catalina.startup.HostConfig.deployDirectory Deploying web application directory
/usr/local/tomcat/webapps/ROOT
19-Jun-2016 10:54:04.739 INFO [localhost-startStop-1]
org.apache.catalina.startup.HostConfig.deployDirectory Deployment of web application
directory /usr/local/tomcat/webapps/ROOT has finished in 30 ms
19-Jun-2016 10:54:04.739 INFO [localhost-startStop-1]
org.apache.catalina.startup.HostConfig.deployDirectory Deploying web application directory
/usr/local/tomcat/webapps/manager
19-Jun-2016 10:54:04.801 INFO [localhost-startStop-1]

Installing and Configuring Docker

[209]

org.apache.catalina.startup.HostConfig.deployDirectory Deployment of web application
directory /usr/local/tomcat/webapps/manager has finished in 61 ms
19-Jun-2016 10:54:04.817 INFO [main] org.apache.coyote.AbstractProtocol.start Starting
ProtocolHandler ["http-apr-8080"]
19-Jun-2016 10:54:04.828 INFO [main] org.apache.coyote.AbstractProtocol.start Starting
ProtocolHandler ["ajp-apr-8009"]
19-Jun-2016 10:54:04.830 INFO [main] org.apache.catalina.startup.Catalina.start Server startup
in 1376 ms
19-Jun-2016 12:05:22.546 INFO [Thread-3] org.apache.coyote.AbstractProtocol.pause Pausing
ProtocolHandler ["http-apr-8080"]
19-Jun-2016 12:05:22.580 INFO [Thread-3] org.apache.coyote.AbstractProtocol.pause Pausing
ProtocolHandler ["ajp-apr-8009"]
19-Jun-2016 12:05:22.582 INFO [Thread-3]
org.apache.catalina.core.StandardService.stopInternal Stopping service Catalina
19-Jun-2016 12:05:22.626 INFO [Thread-3] org.apache.coyote.AbstractProtocol.stop Stopping
ProtocolHandler ["http-apr-8080"]
19-Jun-2016 12:05:22.688 INFO [Thread-3] org.apache.coyote.AbstractProtocol.stop Stopping
ProtocolHandler ["ajp-apr-8009"]
19-Jun-2016 12:05:22.743 INFO [Thread-3] org.apache.coyote.AbstractProtocol.destroy
Destroying ProtocolHandler ["http-apr-8080"]
19-Jun-2016 12:05:22.745 INFO [Thread-3] org.apache.coyote.AbstractProtocol.destroy
Destroying ProtocolHandler ["ajp-apr-8009"]
You have new mail in /var/spool/mail/root

Container is created successfully, verify existing containers by using docker ps5.
command:

Once we have tomcat container ready, let's try to find out it's IP address so we can access
the Tomcat using it.

Use docker inspect command with container id to find out the IP address of the container:

Installing and Configuring Docker

[210]

Docker networking is a different concept itself and it is not in the scope of this book so we
are not going to cover it.

However, let's verify whether the tomcat container is running properly or not:

So finally, we are able to run Tomcat container. In next section we will try to cover some
basic but useful commands and try to build an image.

Installing and Configuring Docker

[211]

Managing Containers
Let's try to run tomcat container as background process. It is best practice to run Docker
container as a background process to avoid stopping containers accidently from terminal:

Use -d parameter:1.

 [root@localhost Desktop]# docker run -d tomcat
 68c6d1f7bc631613813ffb761cc833156a70e2063c2a743dd2729fe73b2873f9

Verify the container that is created recently:2.

 [root@localhost Desktop]# docker ps
 CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
 68c6d1f7bc63 tomcat "catalina.sh run" 15 seconds ago
 Up 11 seconds 8080/tcp desperate_hypatia
 You have new mail in /var/spool/mail/root

Get the IP address of the container with docker inspect command and providing3.
container id:

[root@localhost Desktop]# docker inspect 68c6d1f7bc63
[
{
 "Id": "68c6d1f7bc631613813ffb761cc833156a70e2063c2a743dd2729fe73b2873f9",
 "Created": "2016-06-21T18:25:20.73708668Z",
 "Path": "catalina.sh",
 "Args": [
 "run"
],
 "State": {
 "Running": true,
 "Paused": false,
 "Restarting": false,
 "OOMKilled": false,
 "Dead": false,
 "Pid": 20448,
 "ExitCode": 0,
 "Error": "",
 "StartedAt": "2016-06-21T18:25:23.086757711Z",
 "FinishedAt": "0001-01-01T00:00:00Z"
 },
 "Image": "5d4577339b146f4e71ddb267812213bdc1a612eeb48a5f3c95f105b7894a4a73",
 "NetworkSettings": {
 "Bridge": "",
 "EndpointID": "7ef4f440a137222ad96c20bd53330875ec8192499419f8d5d9c9a337c6044f9f",

Installing and Configuring Docker

[212]

 "Gateway": "172.17.42.1",
 "GlobalIPv6Address": "",
 "GlobalIPv6PrefixLen": 0,
 "HairpinMode": false,
 "IPAddress": "172.17.0.10",
 "IPPrefixLen": 16,
 "IPv6Gateway": "",
 "LinkLocalIPv6Address": "",
 "LinkLocalIPv6PrefixLen": 0,
 "MacAddress": "02:42:ac:11:00:0a",
 "NetworkID": "c5d8d33430092901b8f643f96f9d0fee2d70b45db782bd405a10a38b8cb12447",
 "PortMapping": null,
 "Ports": {
 "8080/tcp": null
 },
 "SandboxKey": "/var/run/docker/netns/68c6d1f7bc63",
 "SecondaryIPAddresses": null,
 "SecondaryIPv6Addresses": null
 },
 "ResolvConfPath":
 "/var/lib/docker/containers/68c6d1f7bc631613813ffb761cc833156a70e2063c2a743
 dd2729fe73b2873f9/resolv.conf",
 "HostnamePath": "/var/lib/docker/containers/68c6d1f7bc631613813ffb761cc833156a70e2063c
 2a743dd2729fe73b2873f9/hostname",
 "HostsPath": "/var/lib/docker/containers/68c6d1f7bc631613813ffb761cc833156a70e2063
 c2a743dd2729fe73b2873f9/hosts",
 "LogPath": "/var/lib/docker/containers/68c6d1f7bc631613813ffb761cc833156a70e2063c2
a743dd2729fe73b2873f9/68c6d1f7bc631613813ffb761cc833156a70e2063c2a743dd2729fe73b287
3f9-
 json.log",
 "Name": "/desperate_hypatia",
 "RestartCount": 0,
 "Driver": "devicemapper",
 "ExecDriver": "native-0.2",
 "MountLabel": "",
 "ProcessLabel": "",
 "Volumes": {},
 "VolumesRW": {},
 "AppArmorProfile": "",
 "ExecIDs": null,
 "HostConfig": {
 "Binds": null,
 "ContainerIDFile": "",
 "LxcConf": [],
 "Memory": 0,
 "MemorySwap": 0,
 "CpuShares": 0,
 "CpuPeriod": 0,

Installing and Configuring Docker

[213]

 "CpusetCpus": "",
 "CpusetMems": "",
 "CpuQuota": 0,
 "BlkioWeight": 0,
 "OomKillDisable": false,
 "Privileged": false,
 "PortBindings": {},
 "Links": null,
 "PublishAllPorts": false,
 "Dns": null,
 "DnsSearch": null,
 "ExtraHosts": null,
 "VolumesFrom": null,
 "Devices": [],
 "NetworkMode": "bridge",
 "IpcMode": "",
 "PidMode": "",
 "UTSMode": "",
 "CapAdd": null,
 "CapDrop": null,
 "RestartPolicy": {
 "Name": "no",
 "MaximumRetryCount": 0
 },
 "SecurityOpt": null,
 "ReadonlyRootfs": false,
 "Ulimits": null,
 "LogConfig": {
 "Type": "json-file",
 "Config": {}
 },
 "CgroupParent": ""
 },
 "Config": {
 "Hostname": "68c6d1f7bc63",
 "Domainname": "",
 "User": "",
 "AttachStdin": false,
 "AttachStdout": false,
 "AttachStderr": false,
 "PortSpecs": null,
 "ExposedPorts": {
 "8080/tcp": {}
 },
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": [

Installing and Configuring Docker

[214]

 "PATH=/usr/local/tomcat/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
 "LANG=C.UTF-8",
 "JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64/jre",
 "JAVA_VERSION=7u101",
 "JAVA_DEBIAN_VERSION=7u101-2.6.6-2~deb8u1",
 "CATALINA_HOME=/usr/local/tomcat",
 "OPENSSL_VERSION=1.0.2h-1",
 "TOMCAT_MAJOR=8",
 "TOMCAT_VERSION=8.0.36",
 "TOMCAT_TGZ_URL=https://www.apache.org/dist/tomcat/tomcat-8/v8.0.36/bin/apache-
 tomcat-8.0.36.tar.gz"
],
 "Cmd": [
 "catalina.sh",
 "run"
],
 "Image": "tomcat",
 "Volumes": null,
 "VolumeDriver": "",
 "WorkingDir": "/usr/local/tomcat",
 "Entrypoint": null,
 "NetworkDisabled": false,
 "MacAddress": "",
 "OnBuild": null,
 "Labels": {}
 }
}
]

Note the IP address: http://172.17.0.10:8080/ and try to access it in the browser:4.

Installing and Configuring Docker

[215]

Obvious question will be, how to stop containers, right? To get details of running
containers, use command docker ps:

Observer last column that is Names and we can see some strange name
desperate_hypatia that is automatically allocated to a container if it is not given
explicitly;

 [root@localhost Desktop]# docker ps
 CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
 68c6d1f7bc63 tomcat "catalina.sh run" 15 minutes ago
 Up 15 minutes 8080/tcp desperate_hypatia

Let's stop the container using container name that is automatically assigned.5.

 [root@localhost Desktop]# docker stop desperate_hypatia
 desperate_hypatia

If we want to give custom name to the container, then we can give it by using --6.
name operator as shown below:

 [root@localhost Desktop]# docker run -d --name devops_tomcat tomcat
 cf2c1d19070fab73b840f94009391ad211f010044a7763fe201a115b0bc6a4b8
 You have new mail in /var/spool/mail/root
 [root@localhost Desktop]# docker ps
 CONTAINER ID IMAGE COMMAND CREATED

Installing and Configuring Docker

[216]

 STATUS PORTS NAMES
 cf2c1d19070f tomcat "catalina.sh run" 10 seconds ago
 Up 9 seconds 8080/tcp devops_tomcat

Can we see the list of all containers which are stopped? Yes, we can. Use docker7.
ps -a command as shown below to get the list of stopped containers:

 [root@localhost Desktop]# docker ps -a
 CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
 68c6d1f7bc63 tomcat "catalina.sh run" 16 minutes ago Exited (143) 47
seconds ago desperate_hypatia
 51e055a3414b ubuntu "ls -l" 43 minutes ago Exited (0) 43 minutes ago
sick_meitner
 a6f402e7a2a8 ubuntu "ls" 43 minutes ago Exited (0) 43 minutes ago
naughty_hopper
 a4699613f112 ubuntu "bash" 47 minutes ago Exited (127) 46 minutes
ago backstabbing_bardeen
 66a04d9137d8 ubuntu "/bin/bash" 47 minutes ago Exited (0) 47 minutes
ago hungry_mcclintock
 a27b460778e6 ubuntu "pwd" 48 minutes ago Exited (0) 48 minutes
ago dreamy_yonath
 You have new mail in /var/spool/mail/root

Container's life time is limited to the existence of parent process.

 [root@localhost Desktop]# docker run -p 8080:9090 -d --name devops_tomcat9
 tomcat
 0f8c251929b2f316bac1d53c5b8d03a155d790dada1ce2fcf94f95844a3acfef

To get the access of terminal of the container, use below command after creation8.
of the container:

 [root@localhost Desktop]# docker exec -it devops_tomcat9 bash

Once we have an access to console of the container, verify IP address via ip addr9.
show eth0 command:

 root@0f8c251929b2:/usr/local/tomcat# ip addr show eth0
 57: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
 link/ether 02:42:ac:11:00:14 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.20/16 scope global eth0
 inet6 fe80::42:acff:fe11:14/64 scope link
 valid_lft forever preferred_lft forever

Installing and Configuring Docker

[217]

 root@0f8c251929b2:/usr/local/tomcat# ip route
 172.17.0.0/16 dev eth0 proto kernel scope link src 172.17.0.20
 default via 172.17.42.1 dev eth0
 root@0f8c251929b2:/usr/local/tomcat#

Now, let's try to search Docker images available in the Docker hub. Try docker10.
search command to find tomcat images available in Docker hub:

 [root@localhost Desktop]# docker search tomcat
 NAME DESCRIPTION STARS OFFICIAL AUTOMATED
 tomcat Apache Tomcat is an open source implementa... 750 [OK]
 dordoka/tomcat Ubuntu 14.04, Oracle JDK 8 and Tomcat 8 ba... 19 [OK]
 consol/tomcat-7.0 Tomcat 7.0.57, 8080, "admin/admin" 16 [OK]
 consol/tomcat-8.0 Tomcat 8.0.15, 8080, "admin/admin" 14 [OK]
 cloudesire/tomcat Tomcat server, 6/7/8 8 [OK]
 davidcaste/alpine-tomcat Apache Tomcat 7/8 using Oracle Java 7/8 wi... 7 [OK]
 andreptb/tomcat Debian Jessie based image with Apache Tomc... 4 [OK]
 fbrx/tomcat Minimal Tomcat image based on Alpine Linux 2 [OK]
 openweb/oracle-tomcat A fork off of Official tomcat image with O... 2 [OK]
 kieker/tomcat 2 [OK]
 dreaminsun/tomcat optimized tomcat 1 [OK]
 chrisipa/tomcat Tomcat docker image based on Debian Jessie... 1 [OK]
 abzcoding/tomcat-redis a tomcat container with redis as session m... 1 [OK]
 cirit/tomcat Tomcat Docker Image with collectd 1 [OK]
 ericogr/tomcat Tomcat 8, 8080, "docker/docker" 1 [OK]
 jtech/tomcat Latest Tomcat production distribution on l... 1 [OK]
 nicescale/tomcat Tomcat service for NiceScale. http://nices... 1 [OK]
 mccoder/tomcat Tomcat with APR 0 [OK]
 foobot/tomcat 0 [OK]
 bitnami/tomcat Bitnami Tomcat Docker Image 0 [OK]
 stakater/tomcat Tomcat based on Ubuntu 14.04 and Oracle Java 0 [OK]
 tb4mmaggots/tomcat Apache Tomcat micro container 0 [OK]
 cheewai/tomcat Tomcat and Oracle JRE in docker 0 [OK]
 inspectit/tomcat Tomcat with inspectIT 0 [OK]
 davidcaste/debian-tomcat Yet another Debian Docker image for Tomcat... 0 [OK]

Let's verify the existing images again:11.

 [root@localhost Desktop]# docker images
 REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
 tomcat 8.0 5d4577339b14 7 days ago 359.2 MB
 tomcat latest 5d4577339b14 7 days ago 359.2 MB
 centos latest 2a332da70fd1 2 weeks ago 196.7 MB
 ubuntu latest 686477c12982 7 weeks ago 120.7 MB
 hello-world latest f1d956dc5945 8 weeks ago 967 B
 You have new mail in /var/spool/mail/root

Installing and Configuring Docker

[218]

Our next step is to create a sample image file. We can build Docker image using12.
Dockerfile. It provides step by step instructions to build images.

Let's try with simple CentOS image:

Dockerfile contains following two lines:1.

 FROM centos
 MAINTAINER mitesh <mitesh.soxxxxxx@xxxxxxxx.com>

Go to the same directory in terminal and use docker build . to build an image:2.

 [root@localhost Desktop]# docker build .
 Sending build context to Docker daemon 681.6 MB
 Sending build context to Docker daemon
 Step 0 : FROM centos
 ---> 2a332da70fd1
 Step 1 : MAINTAINER mitesh < mitesh.soxxxxxx@xxxxxxxx.com >
 ---> Running in 305e8da05500
 ---> b636e26a333a
 Removing intermediate container 305e8da05500
 Successfully built b636e26a333a
 You have new mail in /var/spool/mail/root

We have successfully build sample Docker image. Verify it:3.

 [root@localhost Desktop]# docker images
 REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
 <none> <none> b636e26a333a 16 seconds ago 196.7 MB
 tomcat 8.0 5d4577339b14 7 days ago 359.2 MB
 tomcat latest 5d4577339b14 7 days ago 359.2 MB
 centos latest 2a332da70fd1 2 weeks ago 196.7 MB
 ubuntu latest 686477c12982 7 weeks ago 120.7 MB
 hello-world latest f1d956dc5945 8 weeks ago 967 B

To run tomcat from the host IP address or from localhost:

 [root@localhostmitesh]#docker run -p 8180:8080 -d --name
 devopstomcat1devopstomcatnew
 b5f054ee4ac36d67279db10497fe7a780aecf2a72a7f52fa31ee80c618d98e4a

Here, 8081 is port for Host. Verify newly created container using dockerps command.

 [root@localhostmitesh]#dockerps
 CONTAINER ID IMAGE COMMAND CREATED STATUS
 PORTS NAMES
 b5f054ee4ac3 devopstomcatnew "catalina.sh run" 21 seconds ago Up 20 seconds
 0.0.0.0:8180->8080/tcp devopstomcat1

Installing and Configuring Docker

[219]

Use docker inspect command to get the IP address of the container. Browse
http://172.17.0.14:8080/ from the Host Virtual machine:

Browse http://localhost:8180/ from the Host virtual machine; observe the Port number here.

To copy file from Container to Host virtual machine use dockercp command.

Installing and Configuring Docker

[220]

 [root@localhostmitesh]#dockercp43f71c5d2ac0:/usr/local/tomcat/conf/tomcat-users.xml
 /root/Desktop/

Here 43f71c5d2ac0 is a container ID followed by colon, source path on container and
destination path on Host virtual machine.

Till now we have covered basics of Docker, it architecture, some basic operations and so on.
This will essentially helps us while doing end to end orchestration as well as performing
Docker related operations.

Self-Test Questions
State True or False: Docker has a Client Server architecture.1.
True2.
False3.

State True or False: Docker has two main components – Docker Host and Docker1.
hub
True2.
False3.

State True or False: While creating a container, image has to be available locally1.
else operation fails.
True2.
False3.

State True or False: Docker Hub is used to store and manage containers.1.
True2.
False3.

State True or False: Overhead of memory management and device drivers is1.
extremely high in Docker containers
True2.
False3.

State True or False: For CentOS-6, Docker RPM package is called docker-io.1.
True2.
False3.

Installing and Configuring Docker

[221]

State True or False: docker ps -a command is used to see the list of stopped1.
containers.
True2.
False3.

Summary
In this chapter, we have covered Overview of Docker Container, architecture details, details
of main components of Docker including quick overview of Docker hub. Based on the
overview, we tried to compare virtual machines with Docker containers to gain clear
picture why containers are gaining traction in recent times.

After gaining some understanding on virtual machines and containers, we have covered
process of Docker installation on CentOS 6.x virtual machine. We created hello-world
container, ubuntu and CentOS containers from the images available in Docker hub.

Our main aim is to use tomcat container for deploying sample spring application so we
used tomcat image and created container from it for verification. To gain more
understanding, we used Dockerfile to build an image with Java and Tomcat.

In the context of container, Ted Engstrom's below quote is quite suitable:

“Anything that is wasted effort represents wasted time. The best management of our time
thus becomes linked inseparably with the best utilization of our efforts.”
 - Ted Engstrom

In the next chapter, we will see how to create a virtual machine in Amazon Web Services
and Microsoft Azure using Chef and how to setup runtime environment using Chef
configuration management tool.

6
Cloud Provisioning and

Configuration Management with
Chef

“You may delay, but time will not.”
 - Benjamin Franklin

Let's revisit what we have covered till now and what was our goal in the first chapter. Our
main objective is to create end to end automated pipeline for application deployment. We
considered source code repositories, build tools, continuous integration, configuration
management to setup runtime environment, resource provisioning in cloud and containers,
continuous delivery, continuous deployment, continuous monitoring, continuous feedback,
continuous improvement, and continuous innovation. We want to use end to end pipeline
for sample spring application petclinic. In Chapter 4, Installing and Configuring Chef and
Chapter 5, Installing and Configuring Docker we have covered Chef configuration
management tool and Docker containers in brief manner. Both are the topic for a book in its
own self. Now we are at the stage where we understand basics of configuration
management and containers so we can go for resource provisioning in Cloud environment
using Chef and install runtime environment required to run Petclinic. In this scenario, it
will be an installation of Java and Tomcat.

This chapter describes in detail how to install knife plugins that are used to manage cloud
resources using Chef. It will cover creating instances in the AWS and Azure with the use of
knife-EC2 and knife-azure plugins. It will also cover how Chef is used to manage Docker
containers.

In this chapter, we will explore the following topics:

Cloud Provisioning and Configuration Management with Chef

[223]

Chef and Cloud Provisioning
Installing Knife Plugins for Amazon EC2 and Microsoft Azure
Creating and Configuring Virtual Machine in Amazon Web Services
Creating and Configuring Virtual Machine in Microsoft Azure
Manage Docker containers with Chef

Chef and Cloud Provisioning
Chef is not only used for setting up runtime environment or configuration management but
it is used for resource provisioning in cloud environment. It supports Cloud service
providers such as Microsoft Azure, Amazon Web Services, VMware, OpenStack, HP Cloud,
Google Compute Engine and so on. Chef provides more flexibilities to the concept of
infrastructure as a code and brings configuration management also into picture. Knife
plugins are used to manage or use different Cloud service providers. With knife plugins, it
is easier to provision and de-provision resources along with controlled and centralized
configuration management.

We will specifically focus on Infrastructure Provisioning in Cloud Environment and Setup
Runtime Environment with Configuration Management tool.

Cloud Provisioning and Configuration Management with Chef

[224]

We will provision resources in public cloud environment using knife plugins with the use
of Chef workstation. We have configured Chef workstation in Chapter 4, Installing and
Configuring Chef. From Chef workstation, we can execute knife commands to create
instances (Chef Node) in different cloud environments. In our case, we will provision
resources in Amazon EC2 and Microsoft Azure:

Chef Workstation to CSP: Create new instance in your Cloud environment1.
CSP: Ok … Done! New instance is up and Running. (Chef Node is available)2.
Chef Node to Chef Server: Hello!3.
Chef Server to Chef Node: Here is your task… Download Chef Client4.
Chef Server <-> Chef Node: A secure handshake; Chef server generates a security5.
certificate. Security certificate is used to authenticate the new node's upcoming
requests
Chef Server to Chef Node: Here is your list of recipes that you need to install.6.
Chef Node to Chef Server: Thank you, I am updated!7.

Some of the major benefits we get through Chef configuration management tool's usage
with different Cloud platforms are:

Easy policy enforcement with centralized control
Enable setup of consistent runtime environment

Cloud Provisioning and Configuration Management with Chef

[225]

Build Repeatable Infrastructure to avoid manual effort and errors
Enable rapid deployment of new applications
Enable easy restoration of environments
Enable disaster recovery and business continuity
Community-based cookbooks and recipes
Faster time to market to remain in Competition
Supports major Cloud service providers through Plugins

In the next section, we will install knife plugins for some popular cloud platforms.

Installing Knife Plugins for Amazon Web
Services and Microsoft Azure
Chef can be used to automate AWS services with the use of knife plugins. Knife EC2 is Chef
knife plugin for Amazon EC2 that allows us to create and manage instances in the Amazon
EC2.

For more details on the Knife EC2 plugin visit
at:https://github.com/chef/knife-ec2.

Documentation for Knife EC2 plugin is available at:
https://github.com/chef/knife-ec2/blob/master/README.md.

We can configure Amazon EC2 credentials for knife-EC2 in knife.rb file using
knife[:aws_access_key_id] and knife[:aws_secret_access_key] as shown below:

knife[:aws_access_key_id] = "Your AWS Access Key ID"
knife[:aws_secret_access_key] = "Your AWS Secret Access Key"

Let's verify whether ruby is installed or not. If not then we need to install it along1.
with gems for installing knife plugins:

 knife-ec2[root@devops1 Desktop]# ruby -v
 ruby 1.8.7 (2013-06-27 patchlevel 374) [x86_64-linux]

The version ruby 1.8.7 is old so we need to install ruby > 2.0. Verify the Chef2.
client is installed or not? As this is a workstation we installed and configured,
Chef version will be available.

 [root@devops1 Desktop]# knife -v

Cloud Provisioning and Configuration Management with Chef

[226]

 Chef: 12.9.41

Install RVM using \curl -sSL https://get.rvm.io | bash. It allows to install and3.
manage multiple environments in simple manner.

 [root@devops1 Desktop]# \curl -sSL https://get.rvm.io | bash
 Downloading https://github.com/rvm/rvm/archive/master.tar.gz
 Creating group 'rvm'
 Installing RVM to /usr/local/rvm/
 stat: cannot stat `/<gconf>/ a<entry name='login_shell' mtime='1463163726'
 type='bool' value='true'/>': No such file or directory
 stat: cannot stat `/<gconf>/ a<entry name='login_shell' mtime='1463163726'
 type='bool' value='true'/>': No such file or directory
 Installation of RVM in /usr/local/rvm/ is almost complete:
 * First you need to add all users that will be using rvm to 'rvm' group,
 and logout - login again, anyone using rvm will be operating with `umask
 u=rwx,g=rwx,o=rx`.
 * To start using RVM you need to run `source /etc/profile.d/rvm.sh`
 in all your open shell windows, in rare cases you need to reopen all shell
 windows.
 # Administrator,
 #
 # Thank you for using RVM!
 # We sincerely hope that RVM helps to make your life easier and more
 enjoyable!!!
 #
 # ~Wayne, Michal & team.

In case of problems, visit at:
https://rvm.io/help and https://twitter.com/rvm_io

Let's install additional Ruby dependencies:4.

 [root@devops1 Desktop]# yum install gcc g++ make automake autoconf curl-devel openssl-
 devel zlib-devel httpd-devel apr-devel apr-util-devel sqlite-devel
 Loaded plugins: fastestmirror, refresh-packagekit, security
 Setting up Install Process
 Loading mirror speeds from cached hostfile
 * base: centos.excellmedia.net
 * extras: centos.excellmedia.net
 * updates: centos.excellmedia.net
 Package gcc-4.4.7-16.el6.x86_64 already installed and latest version
 No package g++ available.
 Package 1:make-3.81-20.el6.x86_64 already installed and latest version
 Package automake-1.11.1-4.el6.noarch already installed and latest version

Cloud Provisioning and Configuration Management with Chef

[227]

 Package autoconf-2.63-5.1.el6.noarch already installed and latest version
 Package libcurl-devel-7.19.7-46.el6.x86_64 already installed and latest version
 Package openssl-devel-1.0.1e-42.el6_7.4.x86_64 already installed and latest version
 Package zlib-devel-1.2.3-29.el6.x86_64 already installed and latest version
 Package sqlite-devel-3.6.20-1.el6_7.2.x86_64 already installed and latest version
 Resolving Dependencies
 --> Running transaction check
 ---> Package apr-devel.x86_64 0:1.3.9-5.el6_2 will be installed
 ---> Package apr-util-devel.x86_64 0:1.3.9-3.el6_0.1 will be installed
 --> Processing Dependency: openldap-devel for package: apr-util-devel-1.3.9-
 3.el6_0.1.x86_64
 --> Processing Dependency: db4-devel for package: apr-util-devel-1.3.9-3.el6_0.1.x86_64
 ---> Package httpd-devel.x86_64 0:2.2.15-47.el6.centos.4 will be installed
 --> Running transaction check
 ---> Package db4-devel.x86_64 0:4.7.25-20.el6_7 will be installed
 --> Processing Dependency: db4-cxx = 4.7.25-20.el6_7 for package: db4-devel-4.7.25-
 20.el6_7.x86_64
 --> Processing Dependency: libdb_cxx-4.7.so()(64bit) for package: db4-devel-4.7.25-
 20.el6_7.x86_64
 ---> Package openldap-devel.x86_64 0:2.4.40-7.el6_7 will be installed
 --> Processing Dependency: cyrus-sasl-devel >= 2.1 for package: openldap-devel-2.4.40-
 7.el6_7.x86_64
 --> Running transaction check
 ---> Package cyrus-sasl-devel.x86_64 0:2.1.23-15.el6_6.2 will be installed
 ---> Package db4-cxx.x86_64 0:4.7.25-20.el6_7 will be installed
 --> Finished Dependency Resolution
 Dependencies Resolved
==
 Package Arch Version Repository Size
==
 Installing:
 apr-devel x86_64 1.3.9-5.el6_2 base 176 k
 apr-util-devel x86_64 1.3.9-3.el6_0.1 base 69 k
 httpd-devel x86_64 2.2.15-47.el6.centos.4 updates 155 k
 Installing for dependencies:
 cyrus-sasl-devel x86_64 2.1.23-15.el6_6.2 base 303 k
 db4-cxx x86_64 4.7.25-20.el6_7 updates 588 k
 db4-devel x86_64 4.7.25-20.el6_7 updates 6.6 M
 openldap-devel x86_64 2.4.40-7.el6_7 updates 1.1 M
 Transaction Summary
 ===
 Install 7 Package(s)
 Total download size: 8.9 M
 Installed size: 33 M
 Is this ok [y/N]: y
 Downloading Packages:
 (1/7): apr-devel-1.3.9-5.el6_2.x86_64.rpm | 176 kB 00:00
 (2/7): apr-util-devel-1.3.9-3.el6_0.1.x86_64.rpm | 69 kB 00:00

Cloud Provisioning and Configuration Management with Chef

[228]

 (3/7): cyrus-sasl-devel-2.1.23-15.el6_6.2.x86_64.rpm | 303 kB 00:01
 (4/7): db4-cxx-4.7.25-20.el6_7.x86_64.rpm | 588 kB 00:02
 (5/7): db4-devel-4.7.25-20.el6_7.x86_64.rpm | 6.6 MB 00:32
 (6/7): httpd-devel-2.2.15-47.el6.centos.4.x86_64.rpm | 155 kB 00:00
 (7/7): openldap-devel-2.4.40-7.el6_7.x86_64.rpm | 1.1 MB 00:05

 Total 196 kB/s | 8.9 MB 00:46
 Running rpm_check_debug
 Running Transaction Test
 Transaction Test Succeeded
 Running Transaction
 Warning: RPMDB altered outside of yum.
 Installing : apr-devel-1.3.9-5.el6_2.x86_64 1/7
 Installing : db4-cxx-4.7.25-20.el6_7.x86_64 2/7
 Installing : db4-devel-4.7.25-20.el6_7.x86_64 3/7
 Installing : cyrus-sasl-devel-2.1.23-15.el6_6.2.x86_64 4/7
 Installing : openldap-devel-2.4.40-7.el6_7.x86_64 5/7
 Installing : apr-util-devel-1.3.9-3.el6_0.1.x86_64 6/7
 Installing : httpd-devel-2.2.15-47.el6.centos.4.x86_64 7/7
 Verifying : db4-devel-4.7.25-20.el6_7.x86_64 1/7
 Verifying : apr-devel-1.3.9-5.el6_2.x86_64 2/7
 Verifying : httpd-devel-2.2.15-47.el6.centos.4.x86_64 3/7
 Verifying : openldap-devel-2.4.40-7.el6_7.x86_64 4/7
 Verifying : apr-util-devel-1.3.9-3.el6_0.1.x86_64 5/7
 Verifying : cyrus-sasl-devel-2.1.23-15.el6_6.2.x86_64 6/7
 Verifying : db4-cxx-4.7.25-20.el6_7.x86_64 7/7
 Installed:
 apr-devel.x86_64 0:1.3.9-5.el6_2 apr-util-devel.x86_64 0:1.3.9-3.el6_0.1
 httpd-devel.x86_64 0:2.2.15-47.el6.centos.4
 Dependency Installed:
 cyrus-sasl-devel.x86_64 0:2.1.23-15.el6_6.2 db4-cxx.x86_64 0:4.7.25-20.el6_7
 db4-devel.x86_64 0:4.7.25-20.el6_7 openldap-devel.x86_64 0:2.4.40-7.el6_7
 Complete!

We have successfully installed Ruby and its dependencies. Now let's install5.
rubygems:

 [root@devops1 Desktop]# yum install rubygems
 Loaded plugins: fastestmirror, refresh-packagekit, security
 Setting up Install Process
 Loading mirror speeds from cached hostfile
 * base: centos.excellmedia.net
 * extras: centos.excellmedia.net
 * updates: centos.excellmedia.net
 Resolving Dependencies
 --> Running transaction check
 ---> Package rubygems.noarch 0:1.3.7-5.el6 will be installed
 --> Finished Dependency Resolution

Cloud Provisioning and Configuration Management with Chef

[229]

 Dependencies Resolved
 ===
 Package Arch Version Repository Size
 ===
 Installing:
 rubygems noarch 1.3.7-5.el6 base 207 k
 Transaction Summary
 ===Install 1
Package(s)
 Total download size: 207 k
 Installed size: 713 k
 Is this ok [y/N]: y
 Downloading Packages:
 rubygems-1.3.7-5.el6.noarch.rpm | 207 kB 00:01
 Running rpm_check_debug
 Running Transaction Test
 Transaction Test Succeeded
 Running Transaction
 Installing : rubygems-1.3.7-5.el6.noarch 1/1
 Verifying : rubygems-1.3.7-5.el6.noarch 1/1
 Installed:
 rubygems.noarch 0:1.3.7-5.el6
 Complete!

Update the gems:6.

[root@devops1 Desktop]# gem update
Updating installed gems
Updating fog
Fetching: fog-xenserver-0.2.3.gem (100%)
Successfully installed fog-xenserver-0.2.3
Fetching: trollop-2.1.2.gem (100%)
Successfully installed trollop-2.1.2
Fetching: rbvmomi-1.8.2.gem (100%)
Successfully installed rbvmomi-1.8.2
.
.
.
Parsing documentation for rake-11.1.2
Done installing documentation for rake after 3 seconds
Updating rdoc
Fetching: rdoc-4.2.2.gem (100%)
Depending on your version of ruby, you may need to install ruby rdoc/ri data:

<= 1.8.6 : unsupported
 = 1.8.7 : gem install rdoc-data; rdoc-data --install
 = 1.9.1 : gem install rdoc-data; rdoc-data --install
>= 1.9.2 : nothing to do! Yay!

Cloud Provisioning and Configuration Management with Chef

[230]

Successfully installed rdoc-4.2.2
Parsing documentation for rdoc-4.2.2
Installing ri documentation for rdoc-4.2.2
Installing darkfish documentation for rdoc-4.2.2
(eval):3: warning: string literal in condition
(eval):2: warning: string literal in condition
Done installing documentation for rdoc after 56 seconds
Parsing documentation for rdoc-4.2.2
Done installing documentation for rdoc after 34 seconds
Updating test-unit
Fetching: test-unit-3.1.8.gem (100%)
Successfully installed test-unit-3.1.8
Parsing documentation for test-unit-3.1.8
Installing ri documentation for test-unit-3.1.8
Installing darkfish documentation for test-unit-3.1.8
Done installing documentation for test-unit after 12 seconds
Parsing documentation for test-unit-3.1.8
Done installing documentation for test-unit after 7 seconds
Gems updated: fog fog-aliyun fog-cloudatcost fog-dynect fog-google fog-openstack fog-
rackspace fog-vsphere fog-xenserver rbvmomi trollop xml-simple mini_portile2 minitest
power_assert rake rdoc test-unit

Let's install ruby with version 2.1.0 using ruby version manager:7.

 [root@devops1 Desktop]# rvm install 2.1.0
 Searching for binary rubies, this might take some time.
 Found remote file
https://rvm_io.global.ssl.fastly.net/binaries/centos/6/x86_64/ruby-2.1.0.tar.bz2
 Checking requirements for centos.
 Requirements installation successful.
 ruby-2.1.0 - #configure
 ruby-2.1.0 - #download
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 100 20.1M 100 20.1M 0 0 147k 0 0:02:19 0:02:19 --:--:-- 143k
 ruby-2.1.0 - #validate archive
 ruby-2.1.0 - #extract
 ruby-2.1.0 - #validate binary
 ruby-2.1.0 - #setup
 ruby-2.1.0 - #gemset created /usr/local/rvm/gems/ruby-2.1.0@global
 ruby-2.1.0 - #importing gemset /usr/local/rvm/gemsets/global.gems...
 ruby-2.1.0 - #generating global wrappers........
 ruby-2.1.0 - #gemset created /usr/local/rvm/gems/ruby-2.1.0
 ruby-2.1.0 - #importing gemsetfile /usr/local/rvm/gemsets/default.gems evaluated to empty
gem list
 ruby-2.1.0 - #generating default wrappers........

Use the latest version of the ruby in terminal for command execution:8.

Cloud Provisioning and Configuration Management with Chef

[231]

 [root@devops1 Desktop]# rvm use 2.1.0
 Using /usr/local/rvm/gems/ruby-2.1.0

Verify the overall system with gem update –system:9.

 [root@devops1 Desktop]# gem update --system
 Updating rubygems-update
 Fetching: rubygems-update-2.6.4.gem (100%)
 Successfully installed rubygems-update-2.6.4
 Parsing documentation for rubygems-update-2.6.4
 Installing ri documentation for rubygems-update-2.6.4
 Installing darkfish documentation for rubygems-update-2.6.4
 Done installing documentation for rubygems-update after 5 seconds
 Installing RubyGems 2.6.4
 RubyGems 2.6.4 installed
 Parsing documentation for rubygems-2.6.4
 Installing ri documentation for rubygems-2.6.4
 === 2.6.3 / 2016-04-05
 --
 RubyGems installed the following executables:
 /usr/local/rvm/rubies/ruby-2.1.0/bin/gem
 Ruby Interactive (ri) documentation was installed. ri is kind of like man
 pages for ruby libraries. You may access it like this:
 ri Classname
 ri Classname.class_method
 ri Classname#instance_method
 If you do not wish to install this documentation in the future, use the
 --no-document flag, or set it as the default in your ~/.gemrc file. See
 'gem help env' for details.
 RubyGems system software updated

Now everything is updated and working fine. Let's install rails:10.

 [root@devops1 Desktop]# gem install rails
 Fetching: rack-1.6.4.gem (100%)
 Successfully installed rack-1.6.4
 Fetching: concurrent-ruby-1.0.2.gem (100%)
 Successfully installed concurrent-ruby-1.0.2
 Fetching: sprockets-3.6.0.gem (100%)
 Successfully installed sprockets-3.6.0
 .
 .
 .
 Parsing documentation for mail-2.6.4
 Installing ri documentation for mail-2.6.4
 Parsing documentation for actionmailer-4.2.6
 Installing ri documentation for actionmailer-4.2.6
 Parsing documentation for rails-4.2.6

Cloud Provisioning and Configuration Management with Chef

[232]

 Installing ri documentation for rails-4.2.6
 Done installing documentation for rack, concurrent-ruby, sprockets, thread_safe, tzinfo,
minitest, i18n, activesupport, mini_portile2, nokogiri, loofah, rails-html-sanitizer, rails-
deprecated_sanitizer, rails-dom-testing, rack-test, erubis, builder, actionview, actionpack,
sprockets-rails, thor, railties, arel, activemodel, activerecord, globalid, activejob, mime-types-
data, mime-types, mail, actionmailer, rails after 1204 seconds
 32 gems installed

Finally, execute /opt/chefdk/embedded/bin/gem install knife-ec2 to install knife ec211.
plugin:

 [root@devops1 Desktop]# /opt/chefdk/embedded/bin/gem install knife-ec2
 WARNING: You don't have /root/.chefdk/gem/ruby/2.1.0/bin in your PATH,
 gem executables will not run.
 Successfully installed rubyntlm-0.6.0
 Successfully installed nori-2.6.0
 Successfully installed multi_json-1.12.0
 Successfully installed little-plugger-1.1.4
 Successfully installed logging-2.1.0
 Successfully installed httpclient-2.8.0
 Successfully installed gyoku-1.3.1
 Building native extensions. This could take a while...
 Successfully installed ffi-1.9.10
 Successfully installed gssapi-1.2.0
 Successfully installed winrm-1.8.1
 Successfully installed knife-windows-1.4.1
 .
 .
 .
 Fetching: fog-1.29.0.gem (100%)
 Successfully installed fog-1.29.0
 Fetching: knife-ec2-0.12.0.gem (100%)
 Successfully installed knife-ec2-0.12.0
 38 gems installed

Verify whether knife ec2 commands are available for execution or not:12.

 [root@devops1 Desktop]# knife ec2 --help
 FATAL: Cannot find subcommand for: 'ec2 --help'
 Available ec2 subcommands: (for details, knife SUB-COMMAND --help)
 ** EC2 COMMANDS **
 knife ec2 amis ubuntu DISTRO [TYPE] (options)
 knife ec2 flavor list (options)
 knife ec2 server create (options)
 knife ec2 server delete SERVER [SERVER] (options)
 knife ec2 server list (options)

We have successfully installed knife ec2 plugin. Let's install knife azure plugin to create and

Cloud Provisioning and Configuration Management with Chef

[233]

manage Microsoft Azure resources:

Here, we have mentioned version of a plugin as well because at the time of1.
writing there was some issues with the latest version of the plugin:

[root@devops1 Desktop]# /opt/chefdk/embedded/bin/gem install knife-azure -v 1.5.2
WARNING: You don't have /root/.chefdk/gem/ruby/2.1.0/bin in your PATH,
 gem executables will not run.
Successfully installed rubyntlm-0.6.0
Successfully installed nori-2.6.0
Successfully installed multi_json-1.12.0
Successfully installed little-plugger-1.1.4
Successfully installed logging-2.1.0
Successfully installed httpclient-2.8.0
Successfully installed gyoku-1.3.1
Building native extensions. This could take a while...
Successfully installed ffi-1.9.10
Successfully installed gssapi-1.2.0
Successfully installed winrm-1.8.1
Successfully installed knife-windows-1.4.1
Successfully installed knife-azure-1.5.2
12 gems installed

Let's try to install plugin for VMware workstation. Use ruby version 2.1.0:2.

[root@devops1 Desktop]# rvm use 2.1.0
Using /usr/local/rvm/gems/ruby-2.1.0

Install knife-wsfusion plugin:3.

[root@devops1 Desktop]# /opt/chefdk/embedded/bin/gem install knife-wsfusion
Fetching: uuidtools-2.1.5.gem (100%)
WARNING: You don't have /root/.chefdk/gem/ruby/2.1.0/bin in your PATH,
 gem executables will not run.
Successfully installed uuidtools-2.1.5
Fetching: syslog-logger-1.6.8.gem (100%)
Successfully installed syslog-logger-1.6.8
Fetching: sfl-2.2.gem (100%)
Successfully installed sfl-2.2
Fetching: net-telnet-0.1.1.gem (100%)
Successfully installed net-telnet-0.1.1
Fetching: net-ssh-3.1.1.gem (100%)
.
.
.
Fetching: chef-zero-4.6.2.gem (100%)
Successfully installed chef-zero-4.6.2
Fetching: bundler-1.12.3.gem (100%)

Cloud Provisioning and Configuration Management with Chef

[234]

Successfully installed bundler-1.12.3
Fetching: chef-12.9.41.gem (100%)
Successfully installed chef-12.9.41
Fetching: knife-wsfusion-0.1.1.gem (100%)
Successfully installed knife-wsfusion-0.1.1
42 gems installed

Now, knife-wsfusion plugin is installed. Let's verify all the require knife plugins4.
available now:

 [root@devops1 Desktop]# knife --help
 Usage: knife sub-command (options)
 -s, --server-url URL Chef Server URL
 --chef-zero-host HOST Host to start chef-zero on
 --chef-zero-port PORT Port (or port range) to start chef-zero on. Port
 ranges like 1000,1010 or 8889-9999 will try all given
 ports until one works.
 -k, --key KEY API Client Key
 --[no-]color Use colored output, defaults to enabled
 -c, --config CONFIG The configuration file to use
 --defaults Accept default values for all questions
 -d, --disable-editing Do not open EDITOR, just accept the data as is
 -e, --editor EDITOR Set the editor to use for interactive commands
 -E, --environment ENVIRONMENT Set the Chef environment (except for in searches,
 where this will be flagrantly ignored)
 --[no-]fips Enable fips mode
 -F, --format FORMAT Which format to use for output
 --[no-]listen Whether a local mode (-z) server binds to a port
 -z, --local-mode Point knife commands at local repository instead of
 server
 -u, --user USER API Client Username
 --print-after Show the data after a destructive operation
 -V, --verbose More verbose output. Use twice for max verbosity
 -v, --version Show chef version
 -y, --yes Say yes to all prompts for confirmation
 -h, --help Show this message
 Available subcommands: (for details, knife SUB-COMMAND --help)
 ** AZURE COMMANDS **
 knife azure ag create (options)
 knife azure ag list (options)
 knife azure image list (options)
 knife azure internal lb create (options)
 knife azure internal lb list (options)
 knife azure server create (options)
 knife azure server delete SERVER [SERVER] (options)
 knife azure server list (options)
 knife azure server show SERVER [SERVER]
 knife azure vnet create (options)

Cloud Provisioning and Configuration Management with Chef

[235]

 knife azure vnet list (options)
 .
 .
 .
 ** EC2 COMMANDS **
 knife ec2 amis ubuntu DISTRO [TYPE] (options)
 knife ec2 flavor list (options)
 knife ec2 server create (options)
 knife ec2 server delete SERVER [SERVER] (options)
 knife ec2 server list (options)
 .
 .
 .
 ** WSFUSION COMMANDS **
 knife wsfusion create (options)
 ** WSMAN COMMANDS **
 knife wsman test QUERY (options)
 [root@devops1 Desktop]#

We have successfully installed knife plugins and in the next section we will try to create
virtual machine in the Amazon EC2.

Creating and Configuring Virtual Machine in
Amazon EC2
Before creating and configuring virtual machine in Amazon EC2, let's verify existing nodes
converged by Chef. Local virtual machine is only configured using Chef:

 [root@devops1 Desktop]# knife node list
 tomcatserver

To provision a new virtual machine require following parameters with knife ec21.
server create command:

Parameter Value Description

-I ami-1ecae776 Id of Amazon Machine Image

-f t2.micro Type of Virtual Machine

-N DevOpsVMonAWS Name of the Chef Node

–aws-access-key-id Your Access Key ID AWS Account Access Key ID

–aws-secret-access-key Your Secret Access Key AWS Account Secret Access Key

Cloud Provisioning and Configuration Management with Chef

[236]

-S Book SSH Key

–identity-file book.pem .PEM File

–ssh-user ec2-user User for AWS Instance

-r role[v-tomcat] Chef Role

 [root@devops1 Desktop]# knife ec2 server create -I ami-1ecae776 -f t2.micro -N
DevOpsVMonAWS --aws-access-key-id '< Your Access Key ID >' --aws-secret-access-key '<
Your Secret Access Key >' -S book --identity-file book.pem --ssh-user ec2-user -r role[v-
tomcat]
 Instance ID: i-640d2de3
 Flavor: t2.micro
 Image: ami-1ecae776
 Region: us-east-1
 Availability Zone: us-east-1a
 Security Groups: default
 Tags: Name: DevOpsVMonAWS
 SSH Key: book
 Waiting for EC2 to create the instance......
 Public DNS Name: ec2-52-90-219-205.compute-1.amazonaws.com
 Public IP Address: 52.90.219.205
 Private DNS Name: ip-172-31-1-27.ec2.internal
 Private IP Address: 172.31.1.27

At this stage AWS EC2 instance is created and it is waiting for sshd access to2.
become available:

 Waiting for sshd access to become available....................done
 Creating new client for DevOpsVMonAWS
 Creating new node for DevOpsVMonAWS
 Connecting to ec2-52-90-219-205.compute-1.amazonaws.com
 ec2-52-90-219-205.compute-1.amazonaws.com -----> Installing Chef Omnibus (-v 12)
 ec2-52-90-219-205.compute-1.amazonaws.com downloading
https://omnitruck-direct.chef.io/chef/install.sh
 ec2-52-90-219-205.compute-1.amazonaws.com to file /tmp/install.sh.2311/install.sh
 ec2-52-90-219-205.compute-1.amazonaws.com trying wget...
 ec2-52-90-219-205.compute-1.amazonaws.com el 6 x86_64
 ec2-52-90-219-205.compute-1.amazonaws.com Getting information for chef stable 12 for el...
 ec2-52-90-219-205.compute-1.amazonaws.com downloading
https://omnitruck-direct.chef.io/stable/chef/metadata?v=12&p=el&pv=6&m=x86_64
 ec2-52-90-219-205.compute-1.amazonaws.com to file /tmp/install.sh.2316/metadata.txt
 ec2-52-90-219-205.compute-1.amazonaws.com trying wget...
 ec2-52-90-219-205.compute-1.amazonaws.com sha1
859bc9be9a40b8b13fb88744079ceef1832831b0
 ec2-52-90-219-205.compute-1.amazonaws.com sha256
c43f48e5a2de56e4eda473a3ee0a80aa1aaa6c8621d9084e033d8b9cf3efc328
 ec2-52-90-219-205.compute-1.amazonaws.com url

Cloud Provisioning and Configuration Management with Chef

[237]

https://packages.chef.io/stable/el/6/chef-12.9.41-1.el6.x86_64.rpm
 ec2-52-90-219-205.compute-1.amazonaws.com version 12.9.41
 ec2-52-90-219-205.compute-1.amazonaws.com downloaded metadata file looks valid...
 ec2-52-90-219-205.compute-1.amazonaws.com downloading
https://packages.chef.io/stable/el/6/chef-12.9.41-1.el6.x86_64.rpm
 ec2-52-90-219-205.compute-1.amazonaws.com to file
/tmp/install.sh.2316/chef-12.9.41-1.el6.x86_64.rpm
 ec2-52-90-219-205.compute-1.amazonaws.com trying wget...
 ec2-52-90-219-205.compute-1.amazonaws.com Comparing checksum with sha256sum...
 ec2-52-90-219-205.compute-1.amazonaws.com Installing chef 12
 ec2-52-90-219-205.compute-1.amazonaws.com installing with rpm...
 ec2-52-90-219-205.compute-1.amazonaws.com warning:
/tmp/install.sh.2316/chef-12.9.41-1.el6.x86_64.rpm: Header V4 DSA/SHA1 Signature, key ID
83ef826a: NOKEY
 ec2-52-90-219-205.compute-1.amazonaws.com Preparing...
################################# [100%]
 ec2-52-90-219-205.compute-1.amazonaws.com Updating / installing...
 ec2-52-90-219-205.compute-1.amazonaws.com 1:chef-12.9.41-1.el6
################################# [100%]
 ec2-52-90-219-205.compute-1.amazonaws.com Thank you for installing Chef!

At this stage, Chef client is installed on AWS instance. It is ready for the very first3.
Chef Client run with version 12.9.41:

 ec2-52-90-219-205.compute-1.amazonaws.com Starting the first Chef Client run...
 ec2-52-90-219-205.compute-1.amazonaws.com Starting Chef Client, version 12.9.41

Now, it is ready to resolve cookbooks based on the role and install runtime4.
environments:

 ec2-52-90-219-205.compute-1.amazonaws.com resolving cookbooks for run list: ["tomcat"]
 ec2-52-90-219-205.compute-1.amazonaws.com Synchronizing Cookbooks:
 ec2-52-90-219-205.compute-1.amazonaws.com - tomcat (0.17.0)
 ec2-52-90-219-205.compute-1.amazonaws.com - java (1.39.0)
 ec2-52-90-219-205.compute-1.amazonaws.com - apt (3.0.0)
 ec2-52-90-219-205.compute-1.amazonaws.com - openssl (4.4.0)
 ec2-52-90-219-205.compute-1.amazonaws.com - chef-sugar (3.3.0)
 ec2-52-90-219-205.compute-1.amazonaws.com Installing Cookbook Gems:
 ec2-52-90-219-205.compute-1.amazonaws.com Compiling Cookbooks...
 .
 .
 .
 ec2-52-90-219-205.compute-1.amazonaws.com Converging 3 resources
 ec2-52-90-219-205.compute-1.amazonaws.com Recipe: tomcat::default
 ec2-52-90-219-205.compute-1.amazonaws.com * yum_package[tomcat6] action install
 ec2-52-90-219-205.compute-1.amazonaws.com - install version 6.0.45-1.4.amzn1 of
package tomcat6
 ec2-52-90-219-205.compute-1.amazonaws.com * yum_package[tomcat6-admin-webapps]

Cloud Provisioning and Configuration Management with Chef

[238]

action install
 ec2-52-90-219-205.compute-1.amazonaws.com - install version 6.0.45-1.4.amzn1 of
package tomcat6-admin-webapps
 ec2-52-90-219-205.compute-1.amazonaws.com * tomcat_instance[base] action configure
(up to date)
 .
 .
 .

Runtime environment is setup and now it is time to start the tomcat services in5.
AWS instance:

 ec2-52-90-219-205.compute-1.amazonaws.com
 ec2-52-90-219-205.compute-1.amazonaws.com * service[tomcat6] action start
 ec2-52-90-219-205.compute-1.amazonaws.com - start service service[tomcat6]
 ec2-52-90-219-205.compute-1.amazonaws.com * execute[wait for tomcat6] action run
 ec2-52-90-219-205.compute-1.amazonaws.com - execute sleep 5
 ec2-52-90-219-205.compute-1.amazonaws.com * service[tomcat6] action enable
 ec2-52-90-219-205.compute-1.amazonaws.com - enable service service[tomcat6]
 ec2-52-90-219-205.compute-1.amazonaws.com * execute[wait for tomcat6] action run
 ec2-52-90-219-205.compute-1.amazonaws.com - execute sleep 5
 ec2-52-90-219-205.compute-1.amazonaws.com * execute[wait for tomcat6] action nothing
(skipped due to action :nothing)
 ec2-52-90-219-205.compute-1.amazonaws.com * service[tomcat6] action restart
 ec2-52-90-219-205.compute-1.amazonaws.com - restart service service[tomcat6]
 ec2-52-90-219-205.compute-1.amazonaws.com * execute[wait for tomcat6] action run
 ec2-52-90-219-205.compute-1.amazonaws.com - execute sleep 5
 ec2-52-90-219-205.compute-1.amazonaws.com
 ec2-52-90-219-205.compute-1.amazonaws.com Running handlers:
 ec2-52-90-219-205.compute-1.amazonaws.com Running handlers complete
 ec2-52-90-219-205.compute-1.amazonaws.com Chef Client finished, 13/15 resources updated
in 01 minutes 13 seconds

Details of the newly created AWS instances:6.

 Instance ID: i-640d2de3
 Flavor: t2.micro
 Image: ami-1ecae776
 Region: us-east-1
 Availability Zone: us-east-1a
 Security Groups: default
 Security Group Ids: default
 Tags: Name: DevOpsVMonAWS
 SSH Key: book
 Root Device Type: ebs
 Root Volume ID: vol-1e0e83b5
 Root Device Name: /dev/xvda
 Root Device Delete on Terminate: true

Cloud Provisioning and Configuration Management with Chef

[239]

 Block devices
 ===========================
 Device Name: /dev/xvda
 Volume ID: vol-1e0e83b5
 Delete on Terminate: true
 ===========================
 Public DNS Name: ec2-52-90-219-205.compute-1.amazonaws.com
 Public IP Address: 52.90.219.205
 Private DNS Name: ip-172-31-1-27.ec2.internal
 Private IP Address: 172.31.1.27
 Environment: _default
 Run List: role[v-tomcat]
 You have new mail in /var/spool/mail/root
 [root@devops1 Desktop]#

Go to https://aws.amazon.com/ and login with admin or IAM credentials:7.

Click on the Instances in the left sidebar or Running Instances to get to the8.
details about AWS instances. Verify Name, tag, Public DNS and other details
that we get in the Chef client run:

Cloud Provisioning and Configuration Management with Chef

[240]

Now let's go to Hosted Chef dashboard and login. Click on the Nodes and verify9.
the newly created / converged node:

Cloud Provisioning and Configuration Management with Chef

[241]

Verify Instance details and Run List:10.

Check the Attributes section in Hosted Chef dashboard:11.

All seems to be nicely finished when it comes to creation and configuration of AWS
instances and its registration on Hosted Chef.

Let's try to access the tomcat server installed on newly created AWS instance:

Cloud Provisioning and Configuration Management with Chef

[242]

We get The connection has timed out:1.

The reason for this is restriction of Security Groups in AWS. Verify the security2.
group the AWS instance belongs to:

Cloud Provisioning and Configuration Management with Chef

[243]

Go to Security groups section on AWS dashboard. Select the default security3.
group and verify Inbound rules. We can see only SSH rule is available:

Let's edit new custom rule with port 8080:4.

Cloud Provisioning and Configuration Management with Chef

[244]

Now verify the URL and we will get the Tomcat page on AWS instance.5.

In the next section we will see how to create and configure virtual machine in Microsoft
Azure.

Creating and Configuring Virtual Machine in
Microsoft Azure
For knife azure plugin to communicate with Azure's REST API, we need to give Knife
information regarding our Azure account and credentials:

Sign in to the Azure portal and download a publish settings file by visiting1.
https://manage.windowsazure.com/publishsettings/index?client=xplat.
Store it on a CHef workstation in to a local file system and refer this local file by2.
doing an entry in knife.rb:

 knife[:azure_publish_settings_file] = "~/<name>.publishsettings"

Following are the parameters used to create a virtual machine in Microsoft3.
Azure:

Cloud Provisioning and Configuration Management with Chef

[245]

Parameter Value Description

–azure-dns-name distechnodemo DNS Name

–azure-vm-name dtserver02 Virtual
Machine
Name

–azure-vm-size Small Virtual
Machine
Size

-N DevOpsVMonAzure2 Name of
the Chef
Node

–azure-storage-account classicstorage9883 Azure
Storage
Account

–bootstrap-protocol cloud-api Bootstrap
Protocol

–azure-source-image 5112500ae3b842c8b9c604889f8753c3__OpenLogic-CentOS-67-20160310 Name of
the Azure
Source
Image

–azure-service-location Central US Azure
location to
host Virtual
Machine

–ssh-user dtechno SSH User

–ssh-password <Your Password> SSH
Password

-r role[v-tomcat] Role

–ssh-port 22 SSH Port

 [root@devops1 Desktop]# knife azure server create --azure-dns-name 'distechnodemo' --
azure-vm-name 'dtserver02' --azure-vm-size 'Small' -N DevOpsVMonAzure2 --azure-storage-
account 'classicstorage9883' --bootstrap-protocol 'cloud-api' --azure-source-image
'5112500ae3b842c8b9c604889f8753c3__OpenLogic-CentOS-67-20160310' --azure-service-
location 'Central US' --ssh-user 'dtechno' --ssh-password 'cloud@321' -r role[v-tomcat] --ssh-
port 22
 Creating new client for DevOpsVMonAzure2
 Creating new node for DevOpsVMonAzure2

 Waiting for virtual machine to reach status 'provisioning'..............vm state 'provisioning'
reached after 2.47 minutes.

Cloud Provisioning and Configuration Management with Chef

[246]

 ..
 DNS Name: distechnodemo.cloudapp.net
 VM Name: dtserver02
 Size: Small
 Azure Source Image: 5112500ae3b842c8b9c604889f8753c3__OpenLogic-
CentOS-67-20160310
 Azure Service Location: Central US
 Private Ip Address: 100.73.210.70
 Environment: _default
 Runlist: ["role[v-tomcat]"]
 Resource provisioning is going to start.
 Waiting for Resource Extension to reach status 'wagent provisioning'.....Resource extension
state 'wagent provisioning' reached after 0.17 minutes.
 Waiting for Resource Extension to reach status 'installing'....................Resource extension
state 'installing' reached after 2.21 minutes.
 Waiting for Resource Extension to reach status 'provisioning'.....Resource extension state
'provisioning' reached after 0.19 minutes.
 ..
 DNS Name: distechnodemo.cloudapp.net
 VM Name: dtserver02
 Size: Small
 Azure Source Image: 5112500ae3b842c8b9c604889f8753c3__OpenLogic-
CentOS-67-20160310
 Azure Service Location: Central US
 Private Ip Address: 100.73.210.70
 Environment: _default
 Runlist: ["role[v-tomcat]"]
 [root@devops1 Desktop]#

Go to Hosted Chef portal and click on the Nodes to verify whether new node is4.
registered in the Hosted Chef server or not:

Cloud Provisioning and Configuration Management with Chef

[247]

Click on the Reports section on Hosted Chef Server and verify the graphs for5.
Runs Summary, Run Durations, and Run Counts:

Now let's go to Azure Classic Portal and verify the newly created Virtual6.
machine:

Cloud Provisioning and Configuration Management with Chef

[248]

Click on the VIRTUAL MACHINES in Microsoft Azure and get details on it:7.

On the bottom of the page, verify the extensions section and see the chef-server8.
enabled:

Cloud Provisioning and Configuration Management with Chef

[249]

Verify the tomcat installation and creating virtual machine in the VMware Workstation as a
self-exercise the way we did it for AWS instance.

For VMware workstation, use https://github.com/chipx86/knife-wsfusion
for reference.

Just to remind again, we are now close to our main objective and that is end to end
automation of application deployment pipeline. We have covered Continuous Integration,
Cloud Provisioning, Containers, and Configuration Management. Remaining is actual
deployment, monitoring, and orchestration of all activities involved in the end to end
automation.

Docker Container
Docker containers are extremely lightweight. We are going to use Tomcat as a web
application server to deploy Petclinic application. Docker Hub already have the tomcat
image so we are not going to configure too many things except users for accessing Tomcat
Manager:

In Tomcat-users.xml add role and user as shown in below section:1.

Cloud Provisioning and Configuration Management with Chef

[250]

<?xml version='1.0' encoding='utf-8'?>
<!–
Licensed to the Apache Software Foundation (ASF) under one or more contributor license
agreements. See the NOTICE file distributed with this work for additional information
regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of
the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the
License.
–>
<tomcat-users xmlns=”http://tomcat.apache.org/xml”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://tomcat.apache.org/xml tomcat-users.xsd”
version=”1.0″>
<!–
NOTE: By default, no user is included in the “manager-gui” role required to operate the
“/manager/html” web application. If you wish to use this app, you must define such a user
– the username and password are arbitrary. It is strongly recommended that you do NOT
use one of the users in the commented out section below since they are intended for use
with the examples web application.
–>
<!–
NOTE: The sample user and role entries below are intended for use with the examples
web application. They are wrapped in a comment and thus are ignored when reading this
file. If you wish to configure these users for use with the examples web application, do not
forget to remove the <!.. ..> that surrounds them. You will also need to set the passwords
to something appropriate.
–>
<role rolename=”manager-gui”/>
<user username=”admin” password=”admin@123″ roles=”manager-gui”/>
</tomcat-users>

Now we are going to use the image available in the Docker hub and add the2.
tomcat-sers.xml to /usr/local/tomcat/conf/tomcat-users.xml.Create a Dockerfile as
shown below:

Cloud Provisioning and Configuration Management with Chef

[251]

FROM tomcat:8.0
MAINTAINER Mitesh <mitesh.xxxx @xxxxx.com>
COPY tomcat-users.xml /usr/local/tomcat/conf/tomcat-users.xml

Once everything is ready, use docker build command to build a new image:3.

 [root@localhost mitesh]# docker build -t devopstomcatnew .
 Sending build context to Docker daemon 8.192 kB
 Sending build context to Docker daemon
 Step 0 : FROM tomcat:8.0
 ---> 5d4577339b14
 Step 1 : MAINTAINER Mitesh <mitesh.soni@outlook.com>
 ---> Running in 9430cac12c4c
 ---> c63f90db4c14
 Removing intermediate container 9430cac12c4c
 Step 2 : COPY tomcat-users.xml /usr/local/tomcat/conf/tomcat-users.xml
 ---> eb50c4ceefb5
 Removing intermediate container 7f31aed05097
 Successfully built eb50c4ceefb5
 You have new mail in /var/spool/mail/root

Image is successfully built. Let's verify using docker images command:4.

 [root@localhost mitesh]# docker images
 REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
 devopstomcatnew latest eb50c4ceefb5 10 seconds ago 359.2 MB
 devopstomcat8 latest f3537165ebe7 10 minutes ago 344.6 MB
 devopstomcat latest 400f097677e9 9 days ago 658.4 MB
 tomcat6 latest 400f097677e9 9 days ago 658.4 MB
 tomcat 9.0 ce07000625c6 2 weeks ago 344.6 MB
 centos latest 2a332da70fd1 4 weeks ago 196.7 MB
 ubuntu latest 686477c12982 8 weeks ago 120.7 MB
 hello-world latest f1d956dc5945 9 weeks ago 967 B

Create a container from the newly created tomcat image.5.
Verify existing containers using docker ps and docker ps -a command:6.

 [root@localhost mitesh]# docker ps
 CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
 You have new mail in /var/spool/mail/root
 [root@localhost mitesh]# docker ps -a
 CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
 [root@localhost mitesh]# docker run -p 8180:8080 -d --name devopstomcat1
 devopstomcatnewb5f054ee4ac36d67279db10497fe7a780aecf2a72a7f52fa31ee80

Cloud Provisioning and Configuration Management with Chef

[252]

 c618d98e4a

Verify existing containers using docker ps and docker ps -a command:7.

 [root@localhost mitesh]# docker ps
 CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
 b5f054ee4ac3 devopstomcatnew "catalina.sh run" 21 seconds ago
 Up 20 seconds 0.0.0.0:8180->8080/tcp devopstomcat1

Use docker inspect b5f054ee4ac3 command to get the IP address and browse8.
tomcat web server using IP address and Port:

Click on the Manager App button. It will ask for User Name and Password. Give9.
Inputs and click on OK:

Cloud Provisioning and Configuration Management with Chef

[253]

Now we can access the tomcat manager application:10.

We can use Tomcat Manager Application to deploy application. Till now we have seen
Continuous Integration, Configuration Management, Containers, and Cloud Provisioning.

Cloud Provisioning and Configuration Management with Chef

[254]

Next, we will see application deployment using different methods, Monitoring, and End to
end automation pipeline using Orchestration.

Self-Test Questions
Which of the followings are benefits of Chef Configuration Management?1.
Easy policy enforcement with centralized control2.
Enable setup of consistent runtime environment3.
Enable easy restoration of environments4.
Enable disaster recovery and business continuity5.
Community-based cookbooks and recipes6.
All of the Above7.

Which two parameters are configured for Amazon EC2 credentials for knife-ec21.
in knife.rb file?
knife[:aws_access_key_id] = “Your AWS Access Key ID”2.
knife[:aws_secret_access_key] = “Your AWS Secret Access Key”3.
Both a and b4.

Which of the followings are knife EC2 commands?1.
knife ec2 flavor list (options)2.
knife ec2 server create (options)3.
knife ec2 server delete SERVER [SERVER] (options)4.
knife ec2 server list (options)5.
All of the Above6.

State True or False: rvm use command is used to set the Ruby version.1.
True2.
False3.

Which of the followings are knife Azure commands?1.
knife azure server create (options)2.
knife azure server delete SERVER [SERVER] (options)3.
knife azure server list (options)4.
knife azure image list (options)5.
All of the Above6.

Cloud Provisioning and Configuration Management with Chef

[255]

State True or False: In knife ec2 server create command -I parameter is used for1.
Type of Virtual Machine
True2.
False3.

State True or False: In knife ec2 server create command -N parameter is used for1.
Name of the Chef Node
True2.
False3.

Summary
In this chapter, we have covered how to provision resources in Cloud and configure them.
We used knife ec2 and knife azure plugin to create virtual machine in AWS and Microsoft
Azure. We used Docker Hub Tomcat image to build a new image with tomcat-users.xml file
which has role and user configured to access Tomcat Manager web app.

In the next Chapter, we will cover different methods to deploy an application in Tomcat
web container. Just to revisit the end goal of the book: End to End automation using
application deployment pipeline.

7
Deploying Application in AWS,

Azure, and Docker
Ultimate automation… will make our modern industry as primitive and outdated as the
stone age man looks to us today.
 - Albert Einstein

Finally, we are at the Business end of the book and our focus is on deployment automation,
monitoring, and orchestration.

Why?

Answer is to achieve End to End Application lifecycle Automation or End to End
Deployment Automation.

First we will go step by step to deploy our Petclinic application into remote tomcat server.
Once that is achieved, it can be used as common practice for all. This chapter describes in
detail all steps required to deploy sample application into different environment once
configuration management tool prepare it for the final deployment. We will also learn how
to deploy application in different environments such as cloud or container based
environment.

This chapter will also cover on how to Deploy Application on Platform as a Service model.
We will deploy application in AWS Elastic Beanstalk.

In this chapter, we will cover the following topics:

Pre-requisites – To deploy application on Remote Server
Deploying Application in AWS
Deploying Application in Microsoft Azure

Deploying Application in AWS, Azure, and Docker

[257]

Deploying Application in Docker Container

Pre-requisites – To deploy application on
Remote Server
To deploy an application on remote server, let's take the following steps:

First, let's start an agent on Windows machine, open command prompt and run1.
the command as it is given in Manage Nodes of Jenkins dashboard. Change URL
appropriately:

 java -jar slave.jar -jnlpUrl
 http://192.168.0.100:8080/computer/TestServer/slave-agent.jnlp -secret
 65464e02c58c85b192883f7848ad2758408220bed2f3af715c01c9b01cb72f9b

Jul 06, 2016 8:56:54 PM hudson.remoting.jnlp.MaincreateEngine
INFO: Setting up slave: TestServer
Jul 06, 2016 8:56:54 PM hudson.remoting.jnlp.Main$CuiListener<init>
INFO: Jenkins agent is running in headless mode.
Jul 06, 2016 8:56:54 PM hudson.remoting.jnlp.Main$CuiListener status
INFO: Locating server among [http://192.168.1.34:8080/,
http://192.168.0.100:8080/]
Jul 06, 2016 8:57:15 PM hudson.remoting.jnlp.Main$CuiListener status
INFO: Handshaking
Jul 06, 2016 8:57:15 PM hudson.remoting.jnlp.Main$CuiListener status
INFO: Connecting to 192.168.0.100:33903
Jul 06, 2016 8:57:15 PM hudson.remoting.jnlp.Main$CuiListener status
INFO: Trying protocol: JNLP3-connect
Jul 06, 2016 8:57:16 PM hudson.remoting.jnlp.Main$CuiListener status
INFO: Server didn't accept the handshake: Unknown
protocol:Protocol:JNLP3-connect
Jul 06, 2016 8:57:16 PM hudson.remoting.jnlp.Main$CuiListener status
INFO: Connecting to 192.168.0.100:33903
Jul 06, 2016 8:57:16 PM hudson.remoting.jnlp.Main$CuiListener status
INFO: Trying protocol: JNLP2-connect
Jul 06, 2016 8:57:16 PM hudson.remoting.jnlp.Main$CuiListener status
INFO: Connected

Now our Agent is connected to Master. Let's verify the status of Agent on the2.
Master Node where Jenkins is running.:

Deploying Application in AWS, Azure, and Docker

[258]

Click on the Agent TestServer and get all the details regarding projects tied to the3.
Agents as shown in below screenshot:

Once we have Agent node ready, let's prepare a remote server ready by downloading and
setting up tomcat server.

In our case we need not to do it for Cloud instances as they will be configured using Chef
configuration management tool. This is more understanding perspective on how we used to
do it earlier and how all installation and other activities can be automated using Chef. Let's
take a step-by-step tour:

Download Tomcat 7 version from https://tomcat.apache.org/download-70.cgi. We1.
are going to use Deploy plugin from Jenkins and it requires specific versions of
Tomcat for deployment.

Deploying Application in AWS, Azure, and Docker

[259]

Extract the tomcat installation files:2.

Deploying Application in AWS, Azure, and Docker

[260]

Open command prompt and go to the bin directory to start the Tomcat.3.

 C:\>cd apache-tomcat-7.0.70\bin

Run startup.bat file in the command prompt.4.

 C:\apache-tomcat-7.0.70\bin>startup.bat

Neither the JAVA_HOME nor the JRE_HOME environment variable is defined. At
least one of these environment variable is needed to run this program

Oops! We need to set environment variables. Go to Control Panel | All Control5.
Panel Items | System
Click on Advanced system settings:6.

Click on the Environment Variables… to set JAVA_ HOME:7.

Deploying Application in AWS, Azure, and Docker

[261]

Click on New… and create a new variable for JAVA_HOME with value C:\Program8.
Files\Java\jdk1.8.0 and click OK:

Deploying Application in AWS, Azure, and Docker

[262]

Click OK once again:9.

Open new command prompt and verify the Java Version:10.

 C:\>java -version
 java version "1.8.0-ea"
 Java(TM) SE Runtime Environment (build 1.8.0-ea-b115)
 Java HotSpot(TM) 64-Bit Server VM (build 25.0-b57, mixed mode)

Now go to tomcat\bin directory and execute startup.bat file:11.

 C:\apache-tomcat-7.0.70\bin>startup.bat
 Using CATALINA_BASE: "C:\apache-tomcat-7.0.70"
 Using CATALINA_HOME: "C:\apache-tomcat-7.0.70"
 Using CATALINA_TMPDIR: "C:\apache-tomcat-7.0.70\temp"
 Using JRE_HOME: "C:\Program Files\Java\jdk1.8.0"
 Using CLASSPATH: "C:\apache-tomcat-7.0.70\bin\bootstrap.jar;C:\apache-
 tomcat-7.0.70\bin\tomcat-juli.jar"
 C:\apache-tomcat-7.0.70\bin>

Now our Tomcat is running. It may have similar type of output as given below.12.
Verify Server startup message:

Deploying Application in AWS, Azure, and Docker

[263]

INFO: Starting Servlet Engine: Apache Tomcat/7.0.70
Jul 06, 2016 9:29:07 PM
org.apache.catalina.startup.HostConfigdeployDirectory
INFO: Deploying web application directory
C:\apache-tomcat-7.0.70\webapps\docs
Jul 06, 2016 9:29:08 PM
org.apache.catalina.util.SessionIdGeneratorBasecreateSecureRandom
INFO: Creation of SecureRandom instance for session ID generation using
[SHA1PRNG] took [331] milliseconds.
Jul 06, 2016 9:29:09 PM
org.apache.catalina.startup.HostConfigdeployDirectory
INFO: Deployment of web application directory
C:\apache-tomcat-7.0.70\webapps\docs has finished in 1,887 ms
Jul 06, 2016 9:29:09 PM
org.apache.catalina.startup.HostConfigdeployDirectory
INFO: Deploying web application directory
C:\apache-tomcat-7.0.70\webapps\examples
Jul 06, 2016 9:29:11 PM
org.apache.catalina.startup.HostConfigdeployDirectory
INFO: Deployment of web application directory
C:\apache-tomcat-7.0.70\webapps\examples has finished in 2,474 ms
Jul 06, 2016 9:29:11 PM
org.apache.catalina.startup.HostConfigdeployDirectory
INFO: Deploying web application directory
C:\apache-tomcat-7.0.70\webapps\host-manager
Jul 06, 2016 9:29:11 PM
org.apache.catalina.startup.HostConfigdeployDirectory
INFO: Deployment of web application directory
C:\apache-tomcat-7.0.70\webapps\host-manager has finished in 140 ms
Jul 06, 2016 9:29:11 PM
org.apache.catalina.startup.HostConfigdeployDirectory
INFO: Deploying web application directory
C:\apache-tomcat-7.0.70\webapps\manager
Jul 06, 2016 9:29:11 PM
org.apache.catalina.startup.HostConfigdeployDirectory
INFO: Deployment of web application directory
C:\apache-tomcat-7.0.70\webapps\manager has finished in 160 ms
Jul 06, 2016 9:29:11 PM
org.apache.catalina.startup.HostConfigdeployDirectory
INFO: Deploying web application directory
C:\apache-tomcat-7.0.70\webapps\ROOT

Deploying Application in AWS, Azure, and Docker

[264]

Jul 06, 2016 9:29:11 PM
org.apache.catalina.startup.HostConfigdeployDirectory
INFO: Deployment of web application directory
C:\apache-tomcat-7.0.70\webapps\ROOT has finished in 79 ms
Jul 06, 2016 9:29:11 PM org.apache.coyote.AbstractProtocol start
INFO: Starting ProtocolHandler [“http-apr-8080”]
Jul 06, 2016 9:29:11 PM org.apache.coyote.AbstractProtocol start
INFO: Starting ProtocolHandler [“ajp-apr-8009”]
Jul 06, 2016 9:29:11 PM org.apache.catalina.startup.Catalina start
INFO: Server startup in 5172 ms

Use IP address and port number combination to navigate to tomcat Home page.13.

Go to Tomcat Installation Directory -> conf -> tomcat-users.xml and uncomment14.
Role and User related line or rewrite. Give manager-gui as a rolename for testing
purpose. We need manager-script for deployment via deploy plugin:

Deploying Application in AWS, Azure, and Docker

[265]

Click on the Manager App link on the Tomcat home page and give user name15.
and password given in the tomcat-users.xml. Now we can access Manager App:

For Jenkins Deploy plgin, change the rolename to manager-script.16.
Restart the tomcat and visit http://<IP Address>:8080/manager/text/list17.

 OK - Listed applications for virtual host localhost
 /:running:0:ROOT
 /petclinic:running:1:petclinic
 /examples:running:0:examples
 /host-manager:running:0:host-manager
 /manager:running:0:manager

Deploying Application in AWS, Azure, and Docker

[266]

 /docs:running:0:docs

Go to Jenkins Build Job and click on Configure. Select the proper JDK18.
configuration for Jenkins agent:

In the Post-build Action, select Deploy war/ear to a container. Provide location19.
of the war file in the Jenkins workspace, Tomcat manager credentials, and
Tomcat URL with port:

Click on Apply and Save. Click on Build now on Jenkins Build specific page.20.

Deploying Application in AWS, Azure, and Docker

[267]

Verify the console output for fresh deployment:

Once build is successful, visit the URL in browser and notice the context. It is21.
similar to name of the Application:

Deploying Application in AWS, Azure, and Docker

[268]

In the Post-build Actions, give Context path and Save. Click on build now again:22.

Verify the Application URL by giving new context path.23.

For deployments, where we can access tomcat-users.xml file in case where
we use Tomcat as application container, we will use the same method for
deployment. If we don't have direct access to tomcat directory or can't
change tomcat-users.xml in such case, another approach can be to ssh the
remote host and copy the file into remote host's webapps file of tomcat
directory. All ssh commands can be used directly from the build job.

Deploying Application in Docker Container
We have already covered how to use Tomcat with Docker container in Chapter 5, Installing
and Configuring Docker. To deploy an application with Deploy plugin of Jenkins, we will
change tomcat-users.xml. Let's take a step-by-step tour:

Change rolename to manager-script in tomcat-users.xml:1.

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users xmlns=”http://tomcat.apache.org/xml”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://tomcat.apache.org/xml tomcat-users.xsd”
version=”1.0″>
<!–

Deploying Application in AWS, Azure, and Docker

[269]

NOTE: The sample user and role entries below are intended for use with
the examples web application. They are wrapped in a comment and thus
are ignored when reading this file. If you wish to configure these users for
use with the examples web application, do not forget to remove the <!….>
that surrounds them. You will also need to set the passwords to something
appropriate.
–>
<role rolename=”manager-script”/>
<user username=”admin” password=”admin@123″ roles=”manager-
script”/>
</tomcat-users>

In Dockerfile, we will copy tomcat-users.xml to /usr/local/tomcat/conf/ directory:2.

FROM tomcat:8.0
MAINTAINER Mitesh<mitesh.soni@outlook.com>
COPY tomcat-users.xml /usr/local/tomcat/conf/tomcat-users.xml

Execute docker build command to create an image:3.

[root@localhostmitesh]#docker build -t devops_tomcat_sc .
Sending build context to Docker daemon 8.192 kB
Sending build context to Docker daemon
Step 0 : FROM tomcat:8.0
—> 5d4577339b14
Step 1 : MAINTAINER Mitesh<mitesh.soni@outlook.com>
—> Using cache
—> c63f90db4c14
Step 2 : COPY tomcat-users.xml /usr/local/tomcat/conf/tomcat-users.xml
—> aebbcf634f64
Removing intermediate container 7a528d1c8e3b
Successfully built aebbcf634f64
You have new mail in /var/spool/mail/root

Verify the newly created image by using docker images command in terminal:4.

[root@localhostmitesh]#docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
devops_tomcat_sc latest aebbcf634f64 2 minutes ago 359.2 MB
devopstomcatnew latest eb50c4ceefb5 5 days ago 359.2 MB
devopstomcat8 latest f3537165ebe7 5 days ago 344.6 MB

Deploying Application in AWS, Azure, and Docker

[270]

tomcat6 latest 400f097677e9 2 weeks ago 658.4 MB
devopstomcat latest 400f097677e9 2 weeks ago 658.4 MB
centos latest 2a332da70fd1 5 weeks ago 196.7 MB
ubuntu latest 686477c12982 9 weeks ago 120.7 MB
hello-world latest f1d956dc5945 10 weeks ago 967 B
You have new mail in /var/spool/mail/root

Execute docker run command to create a container:5.

[root@localhostmitesh]#docker run -p 8180:8080 -d –name
devopstomcatscdevops_tomcat_sc
771bb7cb809dabe9323d65579e98077eaec146db4fc38d2ace1d75577144002d
You have new mail in /var/spool/mail/root

Verified the new container with dockerps command:6.

[root@localhostmitesh]#dockerps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
771bb7cb809ddevops_tomcat_sc “catalina.sh run” 7 seconds ago Up 6
seconds 0.0.0.0:8180->8080/tcpdevopstomcatsc

Use docker inspect 771bb7cb809d (container id) to get an IP address.7.
Stop IP tables for verification or open ports in IP tables:8.

[root@localhostmitesh]# service iptables stop
iptables: Setting chains to policy ACCEPT: nat filter [OK]
iptables: Flushing firewall rules: [OK]
iptables: Unloading modules: [OK]
You have new mail in /var/spool/mail/root

Use the IP address and access the manager app URL. Verify whether it is9.
successful or not:

Deploying Application in AWS, Azure, and Docker

[271]

As we have mapped port, use host's IP address and verify Tomcat installation:10.

Use the IP address of the host and access the manager app URL. Provide11.
Username and Password.

Deploying Application in AWS, Azure, and Docker

[272]

Verify whether it is successful or not:12.

Once everything is working fine, use deploy plugin to deploy an application into13.
Docker container.

Deploying Application in AWS
AWS Elastic Beanstalk is a Platform as a Service (PaaS) offering from Amazon. We will use
AWS Elastic Beanstalk to deploy Petclinic application on the AWS Platform. The good part
is we need not to manage infrastructure or even platform as it is a PaaS offering. We can
configure scaling and other details.

Following are the steps to deploy an application in AWS Elastic Beanstalk:

Deploying Application in AWS, Azure, and Docker

[273]

AWS Elastic Beanstalk supports following Programming languages and platforms:

Let's create a sample application to understand how AWS Elastic Beanstalk works and then
use Jenkins plugin to deploy an application:

Go to AWS Management console and verify whether we have a default VPC or1.
not. If by mistake you have deleted default VPC and subnet, then send request to
AWS Customer support to recreate it:

Deploying Application in AWS, Azure, and Docker

[274]

Click on the Services in AWS Management Console and select AWS Elastic2.
Beanstalk. Create a new application named petclinic. Select Tomcat as a platform
Sample Application:

Deploying Application in AWS, Azure, and Docker

[275]

Verify the sequence of events for the creation of sample application:3.

It will take some time and once Environment is created it will be in green color as4.
shown below:

Click on the petclinic environment and verify the Health and Running Version5.
on the Dashboard:

Deploying Application in AWS, Azure, and Docker

[276]

Verify the Environment ID and URL. Click on the URL and verify the default6.
page:

Install Amazon Web Services Elastic Beanstalk Publisher.7.

For more details, visit
https://wiki.jenkins-ci.org/display/JENKINS/AWS+Beanstalk+Publisher+Pl
ugin.

Deploying Application in AWS, Azure, and Docker

[277]

Open the Jenkins Dashboard and go to the Build job. Click on the Post build8.
action and select Deploy into AWS Elastic Beanstalk.

New section comes up in the Post-build Actions for AWS Elastic Beanstalk:9.

Deploying Application in AWS, Azure, and Docker

[278]

Click on Jenkins Dashboard and select Credentials and Add AWS credentials:10.

Go to Jenkins build and select an AWS credentials which is set in the global11.
configuration:

Select AWS Region from the list and click on the Get Available Applications. As12.
we have created a sample application, it will show up:

Deploying Application in AWS, Azure, and Docker

[279]

In the EnvironmentLookup, provide Environment ID in the Get Environments13.
By Name and click on the Get Available Environments.

Deploying Application in AWS, Azure, and Docker

[280]

Save the configuration and click on Build now.14.

Let's verify the AWS Management Console:

Go to S3 services and verify the available buckets:1.

As WAR file is having large size, it will take some time to upload on the Amazon
S3. Once it is uploaded, it will be available in the Amazon S3 bucket.

Verify the Build job execution status in Jenkins. Some section of output is given2.
below with explanation.

Test case execution and WAR file creation is successful:

Tests run: 59, Failures: 0, Errors: 0, Skipped: 0

[INFO]
[INFO] — maven-war-plugin:2.3:war (default-war) @ spring-petclinic —
[INFO] Packaging webapp
[INFO] Assembling webapp [spring-petclinic] in
[d:\jenkins\workspace\PetClinic-Test\target\spring-petclinic-4.2.5-
SNAPSHOT]
[INFO] Processing war project
[INFO] Copying webapp resources [d:\jenkins\workspace\PetClinic-
Test\src\main\webapp]
[INFO] Webapp assembled in [1539 msecs]
[INFO] Building war: d:\jenkins\workspace\PetClinic-
Test\target\spring-petclinic-4.2.5-SNAPSHOT.war
[INFO] ————————————————————————
[INFO] BUILD SUCCESS
[INFO] ————————————————————————
[INFO] Total time: 30.469 s

Deploying Application in AWS, Azure, and Docker

[281]

[INFO] Finished at: 2016-07-08T00:51:52+05:30
[INFO] Final Memory: 29M/258M
[INFO] ————————————————————————
Execution of AWSEB Deployment Plugin / Post build action is started:
AWSEB Deployment Plugin Version 0.3.10
Root File Object is a file. We assume its a zip file, which is okay.
bucketName not set. Calling createStorageLocation
Using s3 Bucket 'elasticbeanstalk-us-east-1-685239287657'
Uploading file awseb-5081374840514488317.zip as s3://elasticbeanstalk-us-
east-1-685239287657/petclinic-jenkins-PetClinic-Test-39.zip
Deployment activity with new Version Label will start:
Creating application version jenkins-PetClinic-Test-39 for application
petclinic for path s3://elasticbeanstalk-us-east-1-685239287657/petclinic-
jenkins-PetClinic-Test-39.zip
Created version: jenkins-PetClinic-Test-39
Using environmentId 'e-y2fmvwri3n'
No pending Environment Updates. Proceeding.
Checking health/status of environmentId e-y2fmvwri3n attempt 1/30
Environment Status is 'Ready'. Moving on.
Updating environmentId 'e-y2fmvwri3n' with Version Label set to
'jenkins-PetClinic-Test-39'
Environment status is updated and Health status is updated along with
Deployment status:
Fri Jul 08 01:03:10 IST 2016 [INFO] Environment update is starting.
Checking health/status of environmentId e-y2fmvwri3n attempt 1/30
Versions reported: (current=jenkins-PetClinic-Test-39, underDeployment:
jenkins-PetClinic-Test-39). Should I move on? false
Environment Status is 'Ready' and Health is 'Green'. Moving on.
Deployment marked as 'successful'. Starting post-deployment cleanup.
Cleaning up temporary file
C:\Users\Mitesh\AppData\Local\Temp\awseb-5081374840514488317.zi
p
Finished: SUCCESS

Build is successful and now verify the AWS Management console:3.

Deploying Application in AWS, Azure, and Docker

[282]

Go to Services, click on AWS Elastic Beanstalk and verify the Environment.4.
Earlier Running versions was Sample Application, now the version is updated as
given in Version Label Format in Jenkins build job configuration:

Go to Dashboard and verify Health and Running Version again:5.

Deploying Application in AWS, Azure, and Docker

[283]

Click on the Configuration link on AWS Elastic Beanstalk Dashboard and verify6.
Scaling, Instances, Notifications, Software Configuration, Updates and
Deployments, Health and so on.

Click on Logs to download the log files for AWS Elastic Beanstalk application:7.

Deploying Application in AWS, Azure, and Docker

[284]

Verify the Enhanced Health Overview and check the status:8.

Click on the Monitoring for extensive monitoring details in form of CPU9.
Utilization and Health of an application:

Deploying Application in AWS, Azure, and Docker

[285]

Click on Events to get list of all events of AWS Elastic Beanstalk application10.
lifecycle:

Once, all is verified, click on the URL for the environment and our Petclinic11.
Application is live:

Deploying Application in AWS, Azure, and Docker

[286]

Once application deployment is successful then terminate the environment:12.

Thus, we have successful application deployment in AWS Elastic Beanstalk.

Deploying Application in AWS, Azure, and Docker

[287]

Deploying Application in Microsoft Azure
Microsoft Azure App Services is a Platform as a Service. In this section we will introduce
Azure Web App and how we can deploy Petclinic application:

Let's install Publish Over FTP plugin in Jenkins. We will use Azure Web App's1.
FTP details to publish Petclinic war file:

The plugin is installed successfully in the restart the Jenkins:2.

Go to Microsoft Azure Portal at https://portal.azure.com. Click on the App3.
Services and click on the Add. Provide inputs for Name of Azure Web App,

Deploying Application in AWS, Azure, and Docker

[288]

Subscription, Resource Group, and App Service plan/Location. Click on Create:

Once Azure Web App is created, verify it in Azure Portal:4.

Deploying Application in AWS, Azure, and Docker

[289]

Click on the DevOpsPetClinic, get the details related to URL, Status, Location,5.
and so on:

Click on All Settings, go to GENERAL Section and click on Application settings6.
to configure Azure Web App for Java Web Application hosting. Select the Java

Deploying Application in AWS, Azure, and Docker

[290]

version, Java Minor version, Web container, Platform, and click on Always On:

Visit the URL of an Azure Web App in the browser and verify whether it is ready7.
for hosting Sample Spring application that is PetClinic.

Let's go to Jenkins dashboard. Click on New Item and select Freestyle project:8.

Deploying Application in AWS, Azure, and Docker

[291]

Copy general configuration from another build so we need not to repeat the9.
configuration work in newly created job:

Click on All Settings, go to Deployment credentials in PUBLISHING section.10.
Give user name and password. Save it:

Deploying Application in AWS, Azure, and Docker

[292]

In Jenkins, go to Manage Jenkins and click on Configure. Configure FTP11.
settings. Provide Hostname, Username and Password available in Azure Portal.
Go to devopspetclinic.scm.azurewebsites.net and get the Kudu console. Navigate to12.
different options and find the site directory and webapps directory. Click on the
Test Configuration and once you get Success message, we are ready to deploy
our PetClinic application:

In the build job we created, go to Build section and configure Copy artifacts from13.

Deploying Application in AWS, Azure, and Docker

[293]

another project. We will copy war file into specific location on a virtual machine:

In Post-build Actions, click on Send build artifacts over FTP. Select FTP server14.
name configured in Jenkins. Configure Source files and suffix to remove while
deployment of an application in Azure Web App:

Deploying Application in AWS, Azure, and Docker

[294]

Click on the Verbose output in console:15.

Click on build now and see what happens behind the seen:16.

Go to Kudu console, click on Debug console and go to Powershell. Go to site |17.
wwwroot | webapps. Verify whether war file is copied or not:

Deploying Application in AWS, Azure, and Docker

[295]

Visit the Azure Web App URL in the browser with the context of an application:18.

So we have an application deployed on Azure Web Apps.

Deploying Application in AWS, Azure, and Docker

[296]

It is important to note that FTP user name has to be with the domain. In
our case, it can be Sample9888\m1253966. Direct user name without Web
App name won't work.

All this different ways of deployment into AWS IaaS, AWS PaaS, Microsoft Azure PaaS,
and Docker container can be used in final end to end automation:

We have covered four phases till now and now we will discuss about Continuous
Monitoring and in the last Chapter we will manage all end to end automation with pipeline
or orchestration.

Self-Test Questions
State True or False: Role and Users in Tomcat can be created in tomcat-users.xml1.
to access Manager Web App
True2.
False3.
State True or False: To access Tomcat Manager App GUI Manager-script role is4.
required.
True5.
False6.

State True or False: To deploy application in Tomcat container using Deploy1.

Deploying Application in AWS, Azure, and Docker

[297]

Plugin in Jenkins, Manager-script role is required.
True2.
False3.

State True or False: AWS Elastic Beanstalk and Azure App Services are a Platform1.
as a Service (PaaS) offering from Amazon and Microsoft respectively.
True2.
False3.

Which of the following are steps for application deployment in AWS Elastic1.
Beanstalk?
Create an Application (Petclinic)2.
Upload WAR file as an application version3.
Launch an Environment4.
Deploy new version of an application in AWS Elastic Beanstalk5.
All of the above6.

Summary
In this chapter, we have covered how to deploy an application in Tomcat using Tomcat
Manager Application by setting Role and Users in tomcat-users.xml. We can use same
deployment method where we can configure or edit tomcat-users.xml. Same approach was
used for Petclinic application deployment in the Docker container.

It is a suitable approach in Infrastructure as a Service. We have also deployed Petclinic
application in Platform as a Service such as AWS Elastic Beanstalk and Microsoft Azure
Web App.

We have also verified what topics we have covered till now for end to end deployment for
Petclinic application.

In the next chapter, we will discuss about Continuous Monitoring for Infrastructure and
Application.

