
DevOps on the
Microsoft Stack

—
Wouter de Kort

THE E XPER T ’S VOICE® IN .NE T

 DevOps on the
Microsoft Stack

 Wouter de Kort

DevOps on the Microsoft Stack

Wouter de Kort
Ordina Microsoft Solutions
GRONINGEN, The Netherlands

ISBN-13 (pbk): 978-1-4842-1447-3 ISBN-13 (electronic): 978-1-4842-1446-6
DOI 10.1007/978-1-4842-1446-6

Library of Congress Control Number: 2016939388

Copyright © 2016 by Wouter de Kort

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted
from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: James DeWolf
Development Editor: Douglas Pundick
Technical Reviewer: Josh Garverick and Willy-Peter Schaub
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, James DeWolf, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Melissa Maldonado
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springer.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary material referenced by the author in this text is available to readers at
 www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ .

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

Contents at a Glance

Foreword ... xi

About the Author ... xiii

About the Technical Reviewers ...xv

Acknowledgments ...xvii

Preface ...xix

 ■Part I: Getting Started ... 1

 ■Chapter 1: What Is DevOps? .. 3

 ■Chapter 2: Introducing Azure and Visual Studio Team Services 9

 ■Part II: Plan ... 17

 ■Chapter 3: Agile Project Management: The Importance of Communication 19

 ■Chapter 4: Managing User Feedback: Knowing What to Build 43

 ■Chapter 5: Advanced Agile Project Management .. 55

 ■Chapter 6: Dashboards and Reporting ... 77

 ■Part III: Code and Build ... 97

 ■Chapter 7: Setting Up Version Control ... 99

 ■Chapter 8: Managing Technical Debt ... 137

 ■Chapter 9: Implementing Continuous Integration ... 161

 ■Chapter 10: Creating and Sharing Packages ... 189

iii

 ■ CONTENTS AT A GLANCE

iv

 ■Part IV: Test, Deploy, and Monitor ... 203

 ■Chapter 11: Integrating Testers into DevOps ... 205

 ■Chapter 12: Implementing Continuous Delivery with Release Management 231

 ■Chapter 13: Using Application Insights ... 261

 ■Chapter 14: The Path Forward ... 277

Index ... 283

Contents

Foreword ... xi

About the Author ... xiii

About the Technical Reviewers ...xv

Acknowledgments ...xvii

Preface ...xix

 ■Part I: Getting Started ... 1

 ■Chapter 1: What Is DevOps? .. 3

Why Are We Doing DevOps? ... 3

Assessing Your DevOps Capability ... 6

Summary .. 8

 ■Chapter 2: Introducing Azure and Visual Studio Team Services 9

Understanding the Microsoft Cloud: Azure ... 9

IaaS, PaaS, and SaaS .. 10

Security .. 11

Using Visual Studio Team Services ... 14

Security .. 15

The Need for Training ... 16

Summary .. 16

v

 ■ CONTENTS

vi

 ■Part II: Plan ... 17

 ■Chapter 3: Agile Project Management: The Importance of Communication 19

Agile Project Management ... 19

Agile Tooling ... 22

Sprints .. 22

Product Backlog Items .. 24

Tasks... 27

Impediments ... 28

Bugs.. 30

Capacity .. 32

Team Rooms ... 36

Achieving Traceability with Developers .. 39

Summary .. 41

 ■Chapter 4: Managing User Feedback: Knowing What to Build 43

Why We Need Better Communication ... 43

Creating Storyboards with PowerPoint .. 44

Involving Stakeholders in Feedback Management ... 47

Summary .. 53

 ■Chapter 5: Advanced Agile Project Management .. 55

Kanban and Lean .. 55

Portfolio Management .. 67

Summary .. 75

 ■Chapter 6: Dashboards and Reporting ... 77

Queries ... 77

Using the Search Box ... 77

Work Item Queries .. 79

Charts ... 83

 ■ CONTENTS

vii

Code Search ... 89

Dashboards .. 92

Alerts and Notifi cations .. 93

Summary .. 96

 ■Part III: Code and Build ... 97

 ■Chapter 7: Setting Up Version Control ... 99

Introducing Version Control .. 99

Using Team Foundation Version Control (TFVC) .. 103

Workspace .. 103

Checking in a Changeset .. 106

Get Latest and Merge Confl icts .. 110

History, Annotations, and CodeLens .. 111

Shelvesets and Suspending Your Work... 114

Branches ... 119

Check-In Policies .. 122

Using the Git Version Control System ... 124

Clone ... 124

Commit and Push ... 125

Fetch and Pull ... 127

Branch .. 128

Pull Request .. 130

Choosing a Branching Strategy .. 134

Branch Scenarios ... 134

Feature Toggles .. 135

Summary .. 136

 ■Chapter 8: Managing Technical Debt ... 137

Running Code Analysis ... 138

Code Metrics .. 141

Lines of Code .. 142

 ■ CONTENTS

viii

Cyclomatic Complexity ... 144

Coupling .. 144

Depth of Inheritance ... 146

Calculating Code Metrics .. 146

Finding Duplications ... 147

Validating the Architecture ... 149

Create and Run Unit Tests .. 152

Creating Custom Code Analyzers with Roslyn .. 156

Summary .. 160

 ■Chapter 9: Implementing Continuous Integration ... 161

Confi guring a Continuous Integration Build .. 162

Installing and Confi guring Build Agents ... 173

Creating Custom Tasks ... 175

Using SonarQube .. 181

Summary .. 187

 ■Chapter 10: Creating and Sharing Packages ... 189

What Are Packages? .. 189

Package Management for Visual Studio Team Services .. 195

Summary .. 201

 ■Part IV: Test, Deploy, and Monitor ... 203

 ■Chapter 11: Integrating Testers into DevOps ... 205

Manual Testing Through Web Access ... 205

Microsoft Test Manager .. 216

Automated Testing .. 220

Summary .. 229

 ■Chapter 12: Implementing Continuous Delivery with Release Management 231

Understanding the Deployment Pipeline .. 231

Setting Up Automatic Releases with Release Management ... 232

 ■ CONTENTS

ix

Deploying Web Sites ... 246

Understanding Containers .. 256

Summary .. 259

 ■Chapter 13: Using Application Insights ... 261

What Is Application Insights? ... 261

Confi guring Monitoring for Your Application ... 263

Availability Monitoring .. 269

Usage Monitoring ... 272

Diagnose Failures and Exceptions ... 274

Summary .. 275

 ■Chapter 14: The Path Forward ... 277

The Basics .. 277

Stepping It Up ... 280

Finishing Touches ... 281

Summary .. 282

Index ... 283

 Foreword

 Team Foundation Server (TFS) and Visual Studio Team Services (VSTS) from Microsoft are two incredible
products for enabling DevOps. They both offer everything you need, from planning to continuous delivery.

 Their features and capabilities are available regardless of the language you program in or the platform
you target. From on-premises to the Cloud, PC to Mac, and Android to iOS, nothing is out of reach.

 With built-in web access, you can track your project from any web-enabled device.
 TFS and VSTS can seem intimidating at first because they contain the largest breadth of features in the

industry. However, Wouter gives you a guided tour of the features and capabilities so you can start using
them on your DevOps journey.

 I have had the pleasure to work with Wouter on several ALM Ranger projects and I am very impressed
by his knowledge and experience. I was very pleased to hear that Wouter was writing a book on DevOps
because I trust his abilities in this area implicitly.

 DevOps is the union of people, process, and products to enable the continuous delivery of value to our
end users. DevOps on the Microsoft Stack teaches you the products that will shape your process and enable
your people to build amazing applications.

 —Donovan Brown
 Senior DevOps Program Manager

 Microsoft

xi

 About the Author

 Wouter de Kort started with software development when he was seven years old and his dad brought home
the family’s first computer. It was a 286 monochrome laptop. After discovering Windows, Solitaire, and Paint,
he came across Quick Basic. And then things became interesting. He can still remember one of the first
programs he wrote that helped students practice their multiplication tables. He didn’t know much about
programming at that time and his code looked something like this:

 if (current_table = 1)
 if (current_question = 1) checkifanswer(1 * 1)
 if (current_question = 2) checkifanswer(1 * 2)

 All the way to the table of ten. Of course this was littered with goto statements and labels to keep his
procedural program working. Proud as he was, he asked a friend of his parents—a software developer—to
have a look at his code. He looked at his code, smiled, and then opened up a program where he wrote a
couple of lines and was able to calculate all possible multiplications you could imagine.

 And that’s how it started. Now de Kort works as the Principal Consultant Microsoft at Ordina in the
Netherlands. He helps organizations stay on the cutting edge of software development on the Microsoft
stack and focuses on Application Lifecycle Management and software architecture. He still loves to write code
and solve complex problems, but especially loves helping other developers grow. He has authored a couple
of other books, is a Microsoft Certified Trainer, and an ALM Ranger. You can find him on Twitter at
 @wouterdekort and on his blog at http://wouterdekort.com .

xiii

http://wouterdekort.com/

 About the Technical Reviewers

 Josh Garverick is a Microsoft MVP in Application Lifecycle Management, a Visual Studio ALM
Ranger, a solutions architect, and self-proclaimed cross-platform nerd. When he’s not fulfilling his
duties on the job or with his family, he finds enjoyment in his Frankenbuild lab, making new creations
from old hardware. Follow the Frankenbuild adventure at http://frankenbuild.net , Josh’s blog at
http://joshgarverick.blogspot.com , and his antics on Twitter at @Jgarverick .

 Willy-Peter Schaub started his IT career in the early 1980s during his electrical engineering studies,
focusing on the BTOS/CTOS operating systems, until he moved over primarily to Microsoft technologies in
the early 90s. Since then, his passion has been to investigate, research, and evangelize technology, striving
for simplicity and maintainability in software engineering. Apart from writing books such as .NET Enterprise
Solutions: Best Practices , .NET Enterprise Solutions: Interoperability for the Connoisseur , Software Engineers
on their way to Pluto , and Managing Agile OSS Projects with Microsoft Visual Studio Online , his varied and
extreme interests include scuba diving, cycling, science fiction, astronomy, and most importantly, his family.
You can follow him on Twitter at twitter.com/wpschaub .

xv

http://frankenbuild.net/
http://joshgarverick.blogspot.com/
http://joshgarverick.blogspot.com/

 Acknowledgments

 I would like to thank the following persons for their support and help:

• My wife Elise. Thanks for letting me work on this book!

• The team at Apress who helped me create this book, especially James DeWolf,
Melissa Maldonado, and Douglas Pundick.

• Willy-Peter Schaub. Thank you for making me a part of the ALM Rangers and for all
your advice on this book.

• Josh Garverick. Thanks for your support and all the reviewing work you did.

• Donovan Brown. Your enthusiasm for DevOps is incredible and really contagious.
Thanks for your feedback and encouragement.

• All the members of the Microsoft Product Group who reviewed chapters and
helped me with all the small details only they know. Especially Jean-Marc Prieur,
Rohit Bansal, Jeff Levinson, Ravi Shanker, Gopinath Chigakkagari, Shruti Poddar,
Biju Venugopal, and Vijay Machiraju.

• My colleagues at Ordina who listened to my plans and reviewed the material:
Eelco Koster, Daniel van der Starre, Jeroen Ploeg, Jasper Jak, and Peter de Nijs.

xvii

 Preface

 While learning about Agile and DevOps, I read some great books. I studied the different parts that make up
the Application Lifecycle Management (ALM) toolkit from Microsoft, like Visual Studio Team Services and
Azure, and learned how they worked. I also read books on the issues you face when helping an organization
implement DevOps and Agile.

 However, what I always missed was a book that answered questions like these:

• When should I introduce which part of the Microsoft tooling?

• How do the various parts work together?

• How can I help my people understand the benefits of ALM, Agile, and DevOps?

 And that’s why I wrote this book. This book is here to show you not only how the tooling is used but also
how you can make everything work together and make sure that your team wants to use it. This book focuses
not only on individual tools but also on the collaboration between tools and how to help your whole team
with them.

 So mainly, I wrote this book because this is what I would love to have known when I started with DevOps.

 Who Should Read this Book
 This book focuses on Agile, DevOps, and Application Lifecycle Management techniques on the Microsoft
development stack. It shows you how to use VS Team Services, Visual Studio, and Azure. The book is mainly
targeted at experienced developers who develop applications with .NET using Visual Studio. Prerequisite
knowledge of Team Foundation Server, Azure, and VS Team Services is not required. Knowing the basics of
Scrum is a plus.

 However, developers are not the only audience for this book. The book not only explains the tools, but it
also shows you what DevOps can do for an organization and what is currently possible with state-of-the-art
technology. This means that this book is an interesting read for everyone who’s fascinated by DevOps, be it
on the Microsoft stack or on another development platform. You can choose to read any part of this book
that interests you in any order you want. That’s all up to you.

 Prerequisites
 To follow along with the examples in this book, you will need access to a VS Team Services account or an
on-premises installation of Team Foundation Server 2015 with the latest updates (or newer). You can use
a free account of VS Team Services and enable all the features during the trial. If the trial ends, you can use
a Basic license for most of the examples. Only some advanced examples require an MSDN subscription.
You also need an installation of Visual Studio 2015 with the latest updates (or newer). To learn about
Application Insights and some of the deployment options, you also need an Azure subscription. This can be
a trial, MSDN, or pay-as-you-go subscription.

 Knowledge of C# and the .NET Framework is preferred for the chapters on continuous integration
and technical debt management.

xix

 PART I

 Getting Started

 In this first part, you’ll learn what DevOps is and why it should interest you. You will be
introduced to Microsoft’s tooling in the form of Visual Studio Team Services and
Microsoft Azure.

3© Wouter de Kort 2016
W. de Kort, DevOps on the Microsoft Stack, DOI 10.1007/978-1-4842-1446-6_1

 CHAPTER 1

 What Is DevOps?

 You might lately have heard a lot about the term DevOps. Gartner even stated that 2016 is the year of DevOps
(http://www.gartner.com/newsroom/id/2999017). Is DevOps more than a marketing term? Or is it just
some hype that someone created?

 Why Are We Doing DevOps?
 Software development is still a young industry. As an industry, it’s rapidly evolving and trying to become
better. And growth is really necessary. The software development industry doesn’t have a very good
reputation when it comes to producing software on time and on budget. In what’s now called a waterfall
process, software was developed in a couple of discrete steps. In Figure 1-1 you see the steps a typical project
used to have to develop software. All these phases follow each other and the total timespan could be several
months or even years.

 Other industries use the same kind of distinct steps. For example, consider a city block where all houses
are being built to look alike. It makes sense to have a clear specification of all the steps that go into building a
house and then repeat those steps for all houses until the block is finished. Software is different. Customers
don’t ask developers to build them multiple copies of the same product. Instead, each project is unique.
Development teams are always building something new. The problem with wanting something new is that
you don’t know exactly what you want since you first have to come up with an idea. Software development
organizations thought the solution was to create better specifications. The documents that were created
became bigger and bigger. And of course, creating a detailed upfront specification takes a lot of time. So
customers were asked to sign those documents and then treat them as the absolute truth.

 Figure 1-1. Stages in a waterfall project

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-1446-6_1)
contains supplementary material, which is available to authorized users.

http://www.gartner.com/newsroom/id/2999017
http://dx.doi.org/10.1007/978-1-4842-1446-6_1

CHAPTER 1 ■ WHAT IS DEVOPS?

4

 After the first analysis phase ends with a detailed specification, design, code, and test phases follow.
After the first pass through the steps, a working version is demoed to the customer. The first time a customer
sees a working version of his idea, he gets a better idea of what he actually needs. Maybe the customer
wants some small changes or maybe he decides he wants something completely different. This has plagued
the software industry for a long time and led to the reputation that the software industry builds the wrong
thing, while missing deadlines and costing more than was promised. This is when a big step in the software
industry was made: the beginning of Agile.

 In 2001, the Agile Manifesto was released. The Agile Manifesto can be seen as a response to the state
that software development was in. The Agile Manifesto stated a couple of simple values:

 We are uncovering better ways of developing
software by doing it and helping others do it.

 Through this work we have come to value:
 Individuals and interactions over processes and tools

 Working software over comprehensive documentation
 Customer collaboration over contract negotiation

 Responding to change over following a plan
 That is, while there is value in the items on

the right, we value the items on the left more.

 —The Agile Manifesto

 The Agile Manifesto caused a lot of change in the software industry. Instead of writing thick documents,
development teams started actually working with the customer. The fact that a customer changes his mind
was no longer viewed as something that a team needed to avoid. Instead, teams accepted that customers
change their minds and that it’s their right to do so. Software development teams started working together
with their customers. So instead of working for months or even years on a product and then finally showing
it to the customer, teams started to involve customers in the process by delivering small iterations and
responding to changes.

 The most popular method based on the Agile Manifesto is Scrum . Scrum has a couple of key elements.
A team is self-organizing with all required roles in it. The team works in short iterations called Sprints . The
team is led by a product owner, preferably a customer. The product owner helps the team constantly adjust
to changes by constantly reprioritizing and making sure that the team delivers the most business value.

 Scrum took off. It took off huge. A lot of teams liked the idea and when I ask at a developer conference
who is doing Scrum, I normally see all hands going up! (This doesn’t mean that everyone is doing it right.
Some teams only think they are doing Scrum.)

 The story doesn’t end with the invention of Agile and Scrum. If a team practices Agile well, the team
will pick up speed. The developers, helped by the product owner, will create a steady release of new features.
Agile is part of the solution but we needed more. Successful Agile teams still have barriers.

 Testers often struggle in an Agile organization. They are always trying to keep up with the developers.
The discipline of testers is changing and I see the distinction between testers and developers blurring.
 Testers and developers often pair up or blend into a multi-skilled developer role. While testers struggle to
keep up, the situation is even worse for the operations team. These teams are often in another department.
They are responsible for running the datacenter and are tasked with deploying applications that the
development team creates while making sure that everything keeps running. This leads to silos, which are
different teams in different departments reporting to different managers with different responsibilities. The
operations team is responsible for making sure the software is stable. The development team is responsible
for getting out new features as fast as possible. The testers are caught in between and the business only sees
that the things they need take too long to become available.

CHAPTER 1 ■ WHAT IS DEVOPS?

5

 In the years since the introduction of Agile, the software world has changed even more. Mobile systems
and the cloud were big game changers. Customers have changed the way they interact with companies and
startups take advantage of this. A company like Uber suddenly competes with the regular taxi world. PayPal,
which is a software company, competes with banks. Netflix has revolutionized the way people watch TV.
How have these companies succeeded?

 This is where DevOps come in. DevOps helps Agile to fully realize its potential. The opinions on what
DevOps is differ, but I like the following definition :

 DevOps is the union of people, process, and products to enable continuous delivery of
value to our end users.

 —Donovan Brown, DevOps Senior Program Manager at Microsoft

 The key phrase is continuous delivery of value. Where Agile helped the software industry respond to
customer needs and keep up with changes, DevOps is the key to actually delivering the value to the hands
of the end users. DevOps is more than tooling. DevOps is about the whole organization working together
to deliver value to its customers. This makes DevOps as much about people and processes as it is about
choosing the right tools. DevOps helps you in optimizing what’s called the software delivery pipeline ,
which involves taking software from an idea to the hands of the end user. By putting DevOps patterns into
practice, organizations like Netflix, Facebook, Amazon, Twitter, Google and Microsoft are achieving levels of
performance that were unthinkable while using Agile. These organizations don’t deploy once a year or even
once a week. Instead they deploy multiple times a day while delivering a stable and reliable user experience.

 The word DevOps is a clipped compound of developers and operations . In Agile, you don’t hear anyone
about the operations team. But they are really needed for delivering a successful application. DevOps breaks
down the silos between the development team and operations. Organizations that practice DevOps take the
principles of Agile and extend it to involve all parties—business, development, testers, and operations—into
creating, deploying, and running successful applications.

 Although DevOps is not only about tooling, tooling is important. This tooling must support the Agile
process and optimize the delivery pipeline. Tooling can help with automating the error-prone, time-
consuming tasks like deploying applications and running regression tests. This book helps you with
discovering the tooling that Microsoft offers. You will learn how Microsoft supports both your Agile and your
DevOps processes and makes sure that they blend together into a delivery pipeline that optimizes the value
for your end users. Figure 1-2 shows a visual overview of how Microsoft sees DevOps .

CHAPTER 1 ■ WHAT IS DEVOPS?

6

 A team that implements both Agile methodologies and DevOps processes is a team that can do
incredible things. They can respond to changes so quickly that the build software becomes a business
advantage. Teams and organizations that do this successfully are high-performing organizations.

 And that’s why Agile, DevOps, and the whole process of Application Lifecycle Management is not hype
nor just empty marketing terms. They are real techniques with real value. However, implementing them is
not as easy as it may seem.

 Assessing Your DevOps Capability
 To understand what you need to do to implement DevOps, you first need to know where you are now.
A good way to get started is by looking at the practices a DevOps team typically has (see Figure 1-3).

 A team starts with an Agile schedule and with being a true Agile team. This means they have self-control
and have all the people and roles they need. They follow an Agile schedule, meaning they work in short
iterations and constantly try to adapt to changing customer demands, changing markets, and other
circumstances. They also try to constantly improve everything they do. The second thing you should look
at is the quality of your work. If you create lots of bugs and your code is impossible to maintain, but you
improve your speed, this could mean that you are creating even worse code and releasing more bugs.

 A DevOps team tries to create a continuous flow of value. Flow of value means that you can move swiftly
from an idea all the way to production. To realize this, silos disappear and multidisciplinary teams are created. By
automating deployments, testing, and infrastructure operations, new features can reach production in minutes .

 Figure 1-2. The different parts that make up a DevOps process

CHAPTER 1 ■ WHAT IS DEVOPS?

7

 Agile helps teams create a backlog , which is a prioritized list of features that have real customer value.
The product owner has the difficult task of prioritizing features. Having insight into what customers do helps
the product owner prioritize the right features. By creating a hypothesis (if I change feature X, Y more users
will Z) and then measuring in production if this is actually true, you create a hypothesis-based backlog.
Instead of guessing what the customer wants, you start creating small experiments and run these with real
customers. This can drive the direction your product is going.

 Being able to quickly deploy changes, monitor results, and scale according to real world use is a business
advantage. To achieve this agility, a flexible infrastructure is an enormous advantage. This is why the Cloud
is mentioned as one of the practices of a DevOps team. Microsoft offers you an excellent Cloud solution that
you can use privately, publically, or in a hybrid way, called Microsoft Azure. Microsoft Azure contains a wide
variety of infrastructure services that allow you to utilize quick deployments, monitor results, and then scale
on demand. A flexible infrastructure that delivers these services really helps your company become a DevOps
organization.

 As you can see, DevOps is a huge subject. Knowing which practices you already have and where you can
improve can be difficult. To help you with this, Microsoft has released a self-assessment tool that you can use
to score yourself in the seven key areas of DevOps. You can find this assessment at http://devopsassessment.
azurewebsites.net (see Figure 1-4). I encourage you to take this assessment to get a sense of what DevOps can
do for your organization. This will also place the coming chapters into context.

 Figure 1-3. Practices of a DevOps team

http://devopsassessment.azurewebsites.net/
http://devopsassessment.azurewebsites.net/

CHAPTER 1 ■ WHAT IS DEVOPS?

8

 Summary
 In this chapter, you’ve read a short history of the movement of the software industry, from waterfall to Agile
to DevOps. You’ve learned that organizations that practice DevOps have a huge advantage and deliver end
user value at a much higher rate. You’ve seen that DevOps is not only about tooling but also about breaking
down silos and optimizing the flow of value from the idea to the hands of the end users. You’ve also taken
the DevOps assessment to help you get started.

 Before you dive into DevOps, the next chapter introduces you to two essential tools that you’ll use
throughout the rest of the book: Azure and Visual Studio Team Services.

 Figure 1-4. The Microsoft DevOps self-assessment is a great way to get started

9© Wouter de Kort 2016
W. de Kort, DevOps on the Microsoft Stack, DOI 10.1007/978-1-4842-1446-6_2

 CHAPTER 2

 Introducing Azure and Visual
Studio Team Services

 DevOps is the union of people, process, and products that enables continuous delivery of value to our end
users. As a company, you bring the people and Microsoft helps you define your process and a great set of
products. The foundation of Microsoft’s DevOps tooling is Team Foundation Server (TFS) and Visual Studio
Team Services . These are a complete suite of products that help you with DevOps.

 Team Foundation Server is installed on-premises on your own servers or on virtual machines running
in a Cloud environment. You configure the environment and do the maintenance and you have full control
over the environment. Microsoft has also released a new way using of Team Foundation Server called
VS Team Services. VS Team Services runs on top of the Microsoft Cloud platform, called Microsoft Azure .
In this book, the examples use VS Team Services, but you can also use Team Foundation Server if you have
an on-premises installation.

 In this chapter, you’ll learn what the Cloud, and specifically Microsoft Azure, is. You’ll get started with
using Azure and be able to explain the benefits of using the Cloud. After that, you’ll get started with VS Team
Services. You’ll be able to reason about security when it comes to both Azure and VS Team Services and
you’ll be able to make an informed decision based on your situation.

 Understanding the Microsoft Cloud: Azure
 How is your company hosting its applications? Your company might be running its own infrastructure,
hosted in a datacenter or in a space of its own. Maybe you’re renting servers from a specialized company and
they configure and maintain your environments.

 When a new application needs to be deployed, you work out the number of servers you need and the
specifications you require. You then submit a request to your internal or external hosting party. After some
time, varying from days to weeks or even months, the servers are delivered. You then pay a fixed price for the
servers you buy or lease.

 Most companies I’ve worked with use these types of hosting. While looking at the steps you need to
take, you immediately see some disadvantages. What if you want to scale your capacity based on load? What
if you just want a few servers to run an experiment on? What if you want to pay only for what you actually
use? And why would you want to run a complete server to only host a web application?

 Flexibility, both in pricing and in capacity, has proven to be a huge advantage for companies trying to
implement DevOps. And that’s what the Cloud offers.

CHAPTER 2 ■ INTRODUCING AZURE AND VISUAL STUDIO TEAM SERVICES

10

 IaaS, PaaS, and SaaS
 Microsoft Azure offers you an almost unlimited amount of resources. You can use those resources, like
servers or storage, and pay only for what you use. This means that you can start treating infrastructure as a
service. Requesting a virtual machine takes a couple of minutes. When using storage, you only pay for what
you use. The moment you don’t need a resource, you just stop using it and stop paying for it.

 So what kind of resources does Azure offer you? You can group all the Azure resources in two categories:
 Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) .

 Figure 2-1 shows the differences between IaaS and PaaS. On top of the IaaS and PaaS resources, you have
 Software as a Service (SaaS) . Complete applications that are maintained by the company that built them.

 Figure 2-1. IaaS, PaaS, and SaaS components of Azure

 IaaS is on the level of servers, network, and identity. You don’t have to worry about the underlying
infrastructure. You don’t need to buy servers, route cables, and deal with hardware failures. IaaS looks like
a typical datacenter, with the difference that Azure IaaS offers you complete self-service and lets you pay
per minute.

 PaaS has an even higher level of abstraction. With IaaS you’re still required to run an operating system
(OS), install updates, and deal with actual virtual machines. PaaS doesn’t bother you with those things. Take
for example SQL Azure. Instead of installing one or more servers running SQL Server, configuring accounts,
security, backups, and all the other things, you just use SQL Azure. Azure will automatically create database
servers for you, arrange backups, and make sure that you have certain performance characteristics. This is
way easier than running your own SQL Server instance.

CHAPTER 2 ■ INTRODUCING AZURE AND VISUAL STUDIO TEAM SERVICES

11

 Another example of PaaS is Azure Web apps, a web site hosting platform. Azure completely manages
the underlying machines, updates, and availability for you. The only thing you have to do is create a new
Web App, publish your web site to it, and you’re done. Things like managing Internet Information Services
(IIS), the OS, patches, and updates are all done for you. If a machine crashes, your web site automatically
starts on a new machine. So instead of worrying about infrastructure, Azure allows you to focus on building
your application.

 Security
 An important discussion topic when it comes to the Cloud is security . Where does my data reside? Who is
responsible for it? Who has access to it? Can I move away from the Cloud? These are important questions
that you need to answer for your specific situation. Depending on the type of applications you build and the
data you store, you will have different requirements.

 Microsoft understands that security is a key concern for organizations to move to the Cloud. Because of
this, Microsoft takes a lot of steps to guarantee safety of your data. For example, Microsoft uses the Security
Development Lifecycle. This is a company-wide, mandatory process that embeds security requirements
into the entire software lifecycle. Azure offers strict identity and access control mechanisms. Two factor
authentication, encryption of data both in motion and at rest, network security, and threat management are
all part of Microsofts approach. Another thing that can help with adopting Azure is the global reach of the
datacenters that Azure uses. Microsoft is constantly investing in new datacenters and even offers specialized
versions for government use.

 If you want to know more about security and Azure, you can find more information at http://azure.
microsoft.com/en-us/support/trust-center/ . If you work in a strictly controlled organization, don’t
dismiss Azure from the beginning. Investigate if you can use certain security features or other options to
allow the use of the public Cloud.

 If it turns out this is absolutely not possible, you can also turn to a private Cloud solution. Microsoft
offers Azure Stack for on-premises datacenters that want to install Azure features on-premises. This means
that you get a number of IaaS and PaaS services that you can run in your own datacenter. Microsoft is
making sure that management, configuration, and deployment of applications can be done in a similar way
in both the public and private Cloud.

 This book uses a lot of Azure. An Azure subscription is necessary if you want to take full advantage of
all the examples in this book. You can quickly sign up for your own Azure account. If you own an MSDN
subscription, you get free monthly credits for Azure. Otherwise, you can sign up for a trial or a pay-as-you-go
subscription with a credit card.

 Follow these steps if you own an MSDN subscription :

 1. Go to https://account.windowsazure.com/signup?offer=Azure_MSDN .

 2. Accept the terms.

 3. Click on Buy.

 4. Wait for the signup process to finish.

 Take this step if you want to create a free trial that lasts one month or pay $200:

 1. Go to http://azure.microsoft.com/en-us/pricing/free-trial/ .

 2. Sign up for the free trial.

http://azure.microsoft.com/en-us/support/trust-center/
http://azure.microsoft.com/en-us/support/trust-center/
https://account.windowsazure.com/signup?offer=Azure_MSDN
http://azure.microsoft.com/en-us/pricing/free-trial/

CHAPTER 2 ■ INTRODUCING AZURE AND VISUAL STUDIO TEAM SERVICES

12

 Take this step to create a new pay-as-you-go Azure subscription:

 1. Go to http://azure.microsoft.com/en-us/pricing/purchase-options/ .

 2. Select Buy Now for the Pay-As-You-Go option.

 3. Complete the signup process.

 In addition to these three options, you can also purchase an Azure subscription through your Enterprise
Agreement (EA) . If you are an Enterprise organization that has an EA with Microsoft, you should use it to buy
Azure credits at a discounted price.

 When working with Azure, you will use the Azure Portal that you can find at http://portal.azure.com .
Figure 2-2 shows the Azure Portal. You see the wealth of the different datacenters spread around the world.
You also see a tile that shows how much credit I’ve left on my MSDN subscription credits, a link to the
marketplace, and to Help and support. You can create new resources by clicking on the green plus icon in the
top left. This opens a blade (that’s what the different sections in Azure are called) that lets you pick a category
of resources. For example, a virtual machine is part of the Compute category. Figure 2-3 shows the settings
you need to configure to create a new virtual machine. After entering your settings, all you have to do is click
on Create. The actual process to create your new virtual machine takes a couple of minutes. When it’s finished
you can navigate to the blade of your virtual machine to manage settings and start and stop the machine. You
can also set up a Remote Desktop connection so you can use the user interface of your new machine from your
own PC .

 Figure 2-2. The Azure Portal

http://azure.microsoft.com/en-us/pricing/purchase-options/
http://portal.azure.com/

CHAPTER 2 ■ INTRODUCING AZURE AND VISUAL STUDIO TEAM SERVICES

13

 Figure 2-3. You need to configure a couple of settings when creating a new virtual machine

CHAPTER 2 ■ INTRODUCING AZURE AND VISUAL STUDIO TEAM SERVICES

14

 What’s important to understand is that you pay per minute for the virtual machine you just created.
This means that if you let the machine run, you continue paying for it. By selecting the Shut Down option
(Figure 2-4), you close the machine and you stop paying for the compute resources. You will only pay a small
amount of money for the storage of your virtual machine’s hard disk. This is only a fraction of what you can
do with Azure. Microsoft has also created an automation service that you can use to schedule automatic
resource shutdown. You can create services ranging from storage to machine learning in the portal. You can
deploy complex applications or use Azure as a Dev/Test environment.

 Figure 2-4. You can shut down your machine to save costs

 Using Visual Studio Team Services
 On top of Microsoft Azure, Microsoft has built all kinds of applications. Things like Office 365, Yammer,
Bing, and Skype run on top of Azure and are offered as services to customers. The same is true for VS Team
Services. Team Foundation Server is offered as a SaaS solution running on Azure called VS Team Services.
Instead of installing Team Foundation Server on-premises, meaning that you have to configure servers and
then install SQL Server, application services, build servers, and other components, you just leave all of this to
Microsoft and use VS Team Services.

 VS Team Services started as a preview in June 2013. In November 2013 it was released as a generally
available service. Figure 2-5 shows the timeline and the name changes of VS Team Services. Sometimes you
will see the older names in the documentation. VS Team Services offers you all the tooling you need to move
your organization to a full-fledged DevOps implementation. In this book you will learn about all the different
elements of VS Team Services and how they work.

CHAPTER 2 ■ INTRODUCING AZURE AND VISUAL STUDIO TEAM SERVICES

15

 Security
 Just as with Azure, you need to be aware of the security options you have when using VS Team Services .
Microsoft is working hard on making sure that VS Team Services has the certifications and policies in place
that allow all kinds of organizations to safely use it.

 A big advantage of building on top of Azure is that all the built-in security mechanisms from Azure
automatically apply to VS Team Services. Things like identity management, DDoS protection, and data
replication are all part of the Azure infrastructure and are used by VS Team Services. Microsoft is also
applying to get VS Team Services certified. Early 2015 Microsoft earned the ISO 27001 (information security
management) certification. Microsoft continues to invest in additional certifications.

 Microsoft uses VS Team Services for its own development. The developer division that builds Visual
Studio and VS Team Services has migrated from an on-premises TFS to VS Team Services. Microsoft is
actively tracking and fixing any issues that occur on VS Team Services. You can follow the VS Team Services
 Twitter account (@vsonline) and the Service Blog (http://blogs.msdn.com/b/vsoservice/) for any
issues and updates. You can also install the News for Visual Studio plugin in your Visual Studio IDE
(https://visualstudiogallery.msdn.microsoft.com/ace247af-962d-41a2-b6a3-7b0510690bf6).
This allows you to get news directly in your IDE.

 Microsoft is very open about its quality of services. Whenever a serious incident occurs, Microsoft
always publishes a root cause analysis. This is done by Brian Harry, the vice-president responsible for VS
Team Services. These reports contain details about the issue, such as why it happened and which steps
Microsoft has taken to make sure it can’t happen again. All these things are done to improve the service and
to make sure that you can trust VS Team Services (see http://aka.ms/VSOSecurity for more information) .

 You can create a VS Team Services account by navigating to http://visualstudio.com . Figure 2-6
shows the landing page. Notice in the middle of the page is the option to get started for free. All you need
to do is sign in with a Microsoft account and come up with a name for your account. Your account gets a
URL with the form https://<youraccountname>.visualstudio.com . You need to choose a source control
type (Git or Team Foundation Version Control). For now, just select the default. In Chapter 7 , which covers
version control, you’ll learn the differences and which options to choose. You can also choose a location for
your VS Team Services account. This is the Azure datacenter where your account data will be stored. This
setting defaults to the location that is closest to you.

 Figure 2-5. Visual Studio Team Services’ timeline

http://blogs.msdn.com/b/vsoservice/
https://visualstudiogallery.msdn.microsoft.com/ace247af-962d-41a2-b6a3-7b0510690bf6
http://aka.ms/VSOSecurity
http://visualstudio.com/
http://hyperlink/
http://dx.doi.org/10.1007/978-1-4842-1446-6_7

CHAPTER 2 ■ INTRODUCING AZURE AND VISUAL STUDIO TEAM SERVICES

16

 The Need for Training
 Because of the sheer impact of Agile, DevOps , and ALM implementation, I see a lot of implementations fail.
Companies often don’t see the bigger picture when it comes to DevOps. They only focus on installing some
tools and then forcing their teams to use those tools. Azure and VS Team Services are great tools for helping
your organization implement DevOps. But without the proper training in using those tools and working on
the cultural changes, your DevOps implementation is doomed to fail.

 Don’t expect that having an Azure subscription and a VS Team Services account is enough. Make
sure that every member of your team is trained in using these tools. If you incorporate multidisciplinary
assignments in your training, you will break down silos and work together with your whole team. This will
give you the complete benefit that Azure and VS Team Services can offer you.

 Summary
 This chapter introduced Microsoft Azure and VS Team Services. You now know the differences among IaaS,
PaaS, and SaaS. You’ve seen how easy it is to create a resource such as a virtual machine. You’ve also seen
that VS Team Services is a SaaS offering of Team Foundation Server that Microsoft runs on top of Azure.
Finally, you’ve seen how to create an account.

 This concludes the introduction. In the following chapters, you will dive much deeper into VS Team
Services and Azure and learn how to implement a DevOps process using these tools.

 Figure 2-6. The Visual Studio web site offers access to your VS Team Services account, documentation, and
other resources

 PART II

 Plan

 Every project starts with an idea. Getting from that idea to a working application is the challenge
you face when developing software. Visual Studio Team Services helps you a lot in tracking
requirements, adapting to change, and improving the communication among your team members.
This part details different processes, techniques, and tools you can use for improving the planning
activities of your project.

19© Wouter de Kort 2016
W. de Kort, DevOps on the Microsoft Stack, DOI 10.1007/978-1-4842-1446-6_3

 CHAPTER 3

 Agile Project Management: The
Importance of Communication

 When managing a software project, communication is one of the most, if not the most, important aspect
of software development. In this chapter you’ll learn the excellent features that Visual Studio Team Services
offers you for managing your project. Stimulating communication , keeping track of the work that needs to be
done, and making sure that all team members work together are important aspects.

 You will learn the project management tooling that VS Team Services offers you directly in the Web
Access. You will see how you can use these tools to track work, plan resources, and optimize your team. You
will also look into team rooms, which is a chat environment that you can use to stimulate discussions and
keep track of all the work that’s being done. Finally, you’ll take a first step in Visual Studio by seeing how
developers integrate into these processes.

 Agile Project Management
 When building software there are a lot of parties involved. First, you have the customer with all their different
stakeholders. In a typical project you also have business analysts, user experience designers, architects,
developers, testers, operations, managers, and maybe you can come up with some more roles for your project.

 In what’s now called a waterfall project , the project is divided into distinct phases (see Figure 3-1).
First, the analyst works with the customer in creating a detailed specification of what the customer actually
wants. This is often called a functional design . Sometimes user stories or other types of documentation are
created. This document is discussed with the customer and worked on until the customer agrees that this is
what he wants.

 Figure 3-1. Stages in a waterfall project

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

20

 The next phase is coding . The functional specification is then translated into a technical specification.
The architect is involved in creating the architecture diagrams and doing all kinds of planning for topics like
security, scalability, and modularity. These plans are then passed on to the developers. They try to actually
code all the features while interpreting the functional and technical specifications.

 Hopefully this is also when the testers get involved. Although in some scenarios, you see that the testers
are only involved after the developers are finished. The testers try to map the specifications to the actual
implementation and find any bugs and incorrect implementations. After this phase, you should have a
correct working application that needs to be deployed to a production environment. The operation team is
called in to configure the correct servers, deploy the application, and make sure that everything works.

 Waterfall has the big disadvantage that feedback comes really late in the cycle. What if the developers
came up with something that is insecure when deployed in production? What if the business analyst
interpreted a customer request incorrectly and the customer sees the mistake months later? What if the
testers find a bug in a part of the code and in the meantime the developers have moved to a totally different
part of the code base?

 Shortening the feedback loop is key to improving communication. This is where both processes and
tooling can help. Agile is all about shortening cycles, improving communication, and thereby improving
value for the customers. VS Team Services has built-in support for running general Agile projects or a project
based on the Scrum methodology.

 If you look at Scrum as one of the popular methodologies (if you’re unfamiliar with the Scrum
terminology, read the official Scrum guide at http://www.scrumguides.org and see Figure 3-2 for the most
important terms), you often see teams start without any tooling support. Teams use a whiteboard with
post-its or some other physical medium to run their projects. Daily Scrums are done with all team members
gathered at a single location and other metrics like the burn down are calculated by hand.

 This works. For small, starting teams this can even be a good thing because it allows them to focus on
the process and collaboration instead of getting lost in tooling and all the possibilities they discover. I would
even encourage you, if you’re just getting started with Scrum, to run a couple of sprints manually just to
make sure you focus on the process. After this, you will understand the areas where tooling can help you.
Using VS Team Services for the planning phase will make even more sense.

 Figure 3-2. Scrum is a popular Agile methodology that uses a couple of key principles

http://www.scrumguides.org/

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

21

 Implementing Scrum does not only affect the team. It should affect the whole organization and be
something that’s supported all the way to the top. However, that’s easier said than done. Management
commitment is the area where Scrum implementations often fail. Especially when nearing deadlines, the
pressure from above can become so intense that teams lose the idea behind Scrum and end up in a mix
between Scrum and waterfall: Scrummerfal. This is essentially running a waterfall project with a notion of
short iterations.

 You need to be aware that in no project, especially a Scrum project, can you have fixed time, features,
and resources. But all too often this is what organizations want. The biggest problem with Scrum adoptions
is that organizations adopt Scrum and take all their old baggage with them. Organizations are sometimes
afraid of change. But for Scrum, and in the same line DevOps, management needs to give teams freedom.
The freedom to experiment, try new processes, and iterate on their own process to become better and better.
Try to avoid the ScrumBut: we do Scrum but we’re not doing all of it because < substitute your particular
reason >. Of course Scrum is not the Holy Grail and you shouldn’t adopt it without thinking things through.
Scrum is, however, a complete framework with parts that complement each other.

 ■ Note Willy-Peter Schaub, one of the technical reviewers and the Program Manager for the Microsoft ALM
Rangers, pointed out that he doesn’t like the term ScrumBut . “Scrum is a framework, ‘but’ nowhere does it state
that a user has to implement every aspect of the framework as outlined. As long as we have the key artifacts
as in the previous image; for example, backlog, sprint, events, and a potentially shippable increment, we are
practicing Scrum. Using ScrumBut always gives me the impression that unless I implement everything as
outlined, I am one of the BUT users.” I understand what Willy is saying. The reason I don’t agree is that I’ve often
seen teams before they even tried one sprint already declare that some part of Scrum is not going to work for
them because they are different. And then after a couple of sprints, they abandon Scrum because it doesn’t work.

 Using tooling becomes especially important when a team starts to grow. Having a distributed team
with physical whiteboards with post-its is complex to keep synchronized. Having a digital equivalent of
the whiteboards that can be accessed by all team members all over the world is much easier. And of course
a whiteboard doesn’t track changes. If the post-its fall from the wall (or are nicely stacked by a helpful
cleaner!), you have to recover everything from memory. If you are in a business with auditing requirements,
you probably need a more sophisticated solution than a plain whiteboard.

 These and other reasons are a sign that tooling can be helpful for you. Of course, VS Team Services
won’t make you a perfect Scrum team. But using the tooling the way that it’s meant to be used definitely
helps you in improving your process. VS Team Services and Visual Studio have some great tooling support
when it comes to Agile and Scrum. The whole idea behind VS Team Services as a solution for your
application lifecycle management implementation is that you can achieve full traceability and visibility
throughout your process.

 This is done by storing all your work items in a central location. Everyone can see them; everyone
can work with them (with the necessary permissions, if you require that). All members of your team can
use their favorite tools. Product owners and other stakeholders have easy access through a web interface.
Developers directly manage their tasks from within Visual Studio. Testers have their own tools (see Chapter 11
on testing for more information). All their work integrates in the backend, thus allowing for a full overview
of the process.

 Let’s first have a look at the Agile Tooling Web Access interface.

http://dx.doi.org/10.1007/978-1-4842-1446-6_11

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

22

 Agile Tooling
 When creating a new project, you select a process to base your project on. By default, this can be Scrum,
CMMI, and Agile. The differences in these processes come down to different types of work items you
can create, out of the box queries and reports, and the states that your work goes through. In essence, all
processes are just templates that are built on a shared foundation.

 When running an Agile project, it’s often easiest to start with the Scrum template. The Scrum template
is the most lightweight template and has some small differences from the Agile template. For example,
the Agile template uses terminology like User Story where Scrum uses the more generic Product Backlog
Item. The Agile template has states like Resolved (Code Complete and Unit Tests passes) that encourage
the separation between developers and testers, while the Scrum template just has an In Progress state. I
encourage teams to start with the Scrum template to avoid a team adapting its terminology and process to
the Agile template.

 The Scrum templates gives you the following important items:

• Sprints

• Product backlog items

• Tasks

• Impediments

• Bugs

• Capacity planning (you can use this regardless of the template you use)

 Team Web Access is the portal that you can use to access all those items on VS Team Services. This is the
Work tab in your menu (see Figure 3-3).

 Sprints
 Sprints are the foundation of your Scrum project. You need to decide on the length of your sprint and the day
you start a new sprint. A sprint is nothing more than a start and end day. Within this period, you schedule
work, track progress, and manage the capacity of your team.

 Figure 3-3. Team Web Access showing the Work page

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

23

 The Scrum guide states that a Sprint should be no longer than four weeks. Typical teams that I
encounter run sprints of two or three weeks. This is something that you should decide on as a team and
as an organization. Having one sprint schedule across the entire organization improves communication
and makes it easier to schedule releases across multiple teams. When configuring your sprints in VS Team
Services, you can group them in releases if you want. You can also assign start and end dates to each sprint.
This will be used to automatically create the burn down and do capacity planning (see the “Capacity”
section later in this chapter).

 When you open your Team Project, you start at the Overview page. In the Other Links section, you see a
link titled Configure schedules and iterations (Figure 3-4). If you don’t see the Other Links section, add it to
your dashboard as a widget.

 By default, there are six sprints visible. By using the New and New Child buttons, you can create a
hierarchy of releases and sprints. By default, the iterations are named sprints . This is because you’re using
the Scrum template. If you are using the Agile template, they’re named iterations . For each sprint, you can
set the start and end date. After setting the first sprint, VS Team Services helps you by suggesting equal sprint
lengths for the other sprints. Figure 3-5 shows a configured iteration schedule with two releases and nine
sprints. The selected sprints are the ones that are visible for the team. When time passes, you probably want
to select new sprints and hide older sprints to maintain a clear overview .

 Figure 3-4. The Configure schedules and iterations link in the Other Links section

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

24

 Product Backlog Items
 A Scrum team works off a backlog, which is a prioritized list of work that needs to be done. VS Team Services
helps you to track your product backlog by letting you create product backlog items (PBIs) . As you can
see in Figure 3-6 , a product backlog is a nicely formatted list of items. (In Chapter 5 on Advanced Agile
Tooling you’ll look at the Kanban board) You can configure the columns you want to see, such as title, effort,
business value, and other fields.

 Figure 3-5. A configured sprint schedule

http://dx.doi.org/10.1007/978-1-4842-1446-6_5

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

25

 Product backlog items can contain a lot of details. Figure 3-7 shows the detail view for a PBI.

 Figure 3-6. An overview of the product backlog

 Figure 3-7. Details for a product backlog item

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

26

 You have standard fields like Title and Description. Other important fields are Assigned To, Acceptance
Criteria, Business Value, and Effort. By linking the PBIs to other items, like tasks or storyboards (see Chapter 4 on
managing user feedback for more info on storyboarding), you get traceability through all steps in your process.

 VS Team Services does not force any strict rules in how to use PBIs. You are free to choose how you
name them, which fields you use, and what meaning you assign to them. But there are some best practices
that can help you use PBIs in the most optimal way.

 A very important field is Title. This field is visible in all the reports and queries and on your backlog. A
PBI should be something that an end user can relate to. So having a “Create Shopping Cart” or “Add Error
Logging” field is not the best option. But a PBI called “As a customer I want to see an overview of the items in
my shopping card so I can decide if I want to place an order” has much more information in it.

 The As a <type of user> I <want to> <because> method is one of the ways you can structure your PBIs.
Adhering to a standard naming convention will help you and your team make sure that PBIs contain enough
information and are easy to understand. The Description field is also one you shouldn’t forget. This is a rich
text field that you can use to add information that the team needs to implement the feature.

 One field that I often see teams forgetting is the Acceptance Criteria. The information in this field
should help a developer know when he’s finished coding the feature. A tester can use this information to
test if the feature is actually completed. Acceptance criteria can be a simple bulleted list of items that are
important, like:

• The user can view a paginated list of 10 items per page in the shopping card

• The user can see the price and number of each individual item

• The user can see the total costs of the items, including the correct VAT amounts

• The user can click on Order when there are items in the shopping cart

 This list can be created by both the product owner and the testers since they are usually the most
capable in coming up with these requirements. Having acceptance criteria for all your PBIs is a big step in
improving your process.

 You also shouldn’t forget Effort and Business Value. A product backlog is nothing more than a
prioritized list of work that needs to be done. The product owner is responsible for prioritizing the backlog.
The order of the backlog items represents the amount of value an item gives to the customer. So a PBI that
has a lot of value and is really easy to do should be at the top. Items that don’t offer any value and are hard to
accomplish should be at the bottom. And of course you have combinations of those two values. Recording
Effort and Business Value with your PBIs is key to ordering your backlog correctly.

 Who should determine the Effort field ? Not the product owner. The team is responsible for doing the
work, so they should be the ones stating how difficult the item is going to be. It doesn’t make sense to record
this in hours since a PBI is not broken down into tasks yet and it’s too soon in the process to make such
detailed estimates. Instead, a lot of teams use the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, etc. (each
number is the sum of the previous two numbers). This sequence quickly rises to very large numbers. A team
can pick a PBI, assign it a value, and then use this PBI as a reference to estimate other PBIs. This helps a team
not get lost in details (should this be 21 or 22?) and instead focus on the relative size of items. Is this item
more difficult or riskier than this item? If so, give it a larger value. Do you first need to do some research?
Give it a large number.

 Business value is determined by the product owner. He’s the one representing the customer and is
responsible for making sure the team delivers the high value items first. Business value could also be a
Fibonacci number. I also see teams picking numbers from 1 to a 100. The actual number is not the most
important. The relative size of the numbers is.

 Two resources I want to point out are the excellent free ebook written by the Microsoft ALM Rangers:
Managing Agile Open Source Software Projects with Microsoft Visual Studio Online (http://blogs.msdn.
com/b/microsoft_press/archive/2015/04/09/free-ebook-managing-agile-open-source-software-
projects-with-microsoft-visual-studio-online.aspx) and the Estimate extension available on the

http://dx.doi.org/10.1007/978-1-4842-1446-6_4
http://blogs.msdn.com/b/microsoft_press/archive/2015/04/09/free-ebook-managing-agile-open-source-software-projects-with-microsoft-visual-studio-online.aspx
http://blogs.msdn.com/b/microsoft_press/archive/2015/04/09/free-ebook-managing-agile-open-source-software-projects-with-microsoft-visual-studio-online.aspx
http://blogs.msdn.com/b/microsoft_press/archive/2015/04/09/free-ebook-managing-agile-open-source-software-projects-with-microsoft-visual-studio-online.aspx

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

27

VS Team Services Marketplace (https://marketplace.visualstudio.com/items/ms-devlabs.estimate).
One of the topics the ebook discusses is how the Rangers estimate and how they use normalized estimations.
The Estimate extension enables you to play Planning Poker with your team and estimate items this way.

 Some other useful features that I often see teams not using are the Discussion field and Tags fields.
Team members can use the Discussion field to comment on a PBI and store those comments directly with
it. Other team members can view them and respond to them. Tags can be used to add a collection of labels
to a PBI. Think of the area a PBI falls in (mobile, frontend, Windows 10, etc.) or some other category that you
want to assign. You can add as many tags as you want and you can easily filter PBIs on the tags you assign to
them (see Figure 3-8).

 While viewing the backlog, you can easily add new PBIs by title. At the top of the backlog, you see the
New work item pane. If you change the Type drop-down, you can also create a bug. All you need to do is
enter the title and click Add. This adds the PBI to the top of your backlog. You can then double-click on the
PBI to open the details view. The order of your backlog is very important. You can easily adjust this by using
drag and drop on the PBIs.

 Tasks
 Product backlog items are features that directly provide value to a customer. To implement a PBI, work needs
to be done. This could be things like working out the user experience, writing code, and adding logging and
tracing or other work specific to each PBI. These tasks are picked up by your team and executed during the
sprint.

 The Scrum planning meeting at the beginning of each sprint is used by the product owner to explain the
PBI to the team. The team has already taken some time in the previous sprint to check if the PBI is complete
or if they need more info. This is the time to discuss this with the product owner. The team breaks up the PBI
in tasks and agrees to commit to doing the work. By assigning a PBI to a sprint, the team can manage their
tasks in the sprint backlog and on the sprint board. Figure 3-9 shows an example of a sprint backlog. You see
the parent PBI (with a blue rectangle) and the tasks (with a yellow rectangle) as children beneath it.

 Figure 3-8. Product backlog items with tags

https://marketplace.visualstudio.com/items/ms-devlabs.estimate

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

28

 During a sprint, the team should record any work they do as tasks . Tasks can be added mid-sprint. For
example, if the team discovers they forgot something, they can add a new task for it. PBIs should not be
added to an in-progress sprint. The committed PBIs are fixed (except in very special circumstances where it
doesn’t make sense to implement a PBI) and the team should not be harassed with all kinds of in-progress
changes.

 Just as with PBIs, tasks have a set of default fields that can be used. Title, Description, Assigned To,
and State are the most important ones. A field that can be used to track progress is Remaining Work. This
is a number that the team member who’s working on the tasks updates regularly to show how the task is
progressing. When the task is moved to the done state, the remaining work is set to zero.

 When the team agrees to schedule a PBI, you set the state of the PBI to Committed. After that, you can
use drag and drop or set the iteration field to the sprint you want. By using the green + icon in front of the
PBI, you can add tasks that need to be executed.

 Impediments
 The role of the Scrum Master is to facilitate the team in all the work they need to do. Sometimes a team
member runs into issues that he can’t solve himself. The Scrum Master is there to help. These problems are
called impediments in Scrum and VS Team Services helps you to track them. Impediments can be all kinds of
things, ranging from a broken laptop to not having enough access to the product owner to ask questions.

 Impediments have a description and resolution in addition to default fields like the State, Title, and
Tags. Figure 3-10 shows the details for a new impediment.

 Figure 3-9. A sprint backlog showing a PBI with tasks

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

29

 An impediment does not show on the product backlog or the task list. This is because impediments are
 something that need to be worked on by the Scrum Master and shouldn’t take up space or time on the team’s
backlog. There are two options to create an impediment. The first one lets you create a new impediment
from the Queries tab next to your backlog, as shown in Figure 3-11 . The second option is to use the New
Work Item widget that you can place on your dashboard.

 Figure 3-10. Details for a new impediment

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

30

 To view your impediments, you select the Open Impediments query in the Shared Queries. Once the
impediment is handled, you open the Details view and set the state to Closed. It will then disappear from
the Open Impediments query results. Another way to keep track of your open impediments is to use a
dashboard tile that shows the number of open impediments (see Chapter 6 for more information).

 Bugs
 Every project has bugs. Bugs represent work that needs to be tracked. This means that you can choose to
show bugs on your backlog and prioritize them just as you do with other work. Some bugs need to be fixed
immediately; others are scheduled for a later time. This decision should be made by the product owner.

 Bugs can be introduced in various ways. You can add them manually to the backlog through Team Web
Access or let testers add them through Microsoft Test Manager. Bugs can also be added automatically for
failing automatic builds (see Chapter 9 on builds for more information). When using the Scrum template,
bugs show by default on your backlog and your requirements board. If you want, you can easily configure
this to not show the bugs or show them on the task board. (Chapter 5 goes into the details of customizing
your backlog and Kanban board.)

 Figure 3-11. Creating a new impediment

http://dx.doi.org/10.1007/978-1-4842-1446-6_6
http://dx.doi.org/10.1007/978-1-4842-1446-6_9
http://dx.doi.org/10.1007/978-1-4842-1446-6_5

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

31

 ■ Note There is an Open Source extension available at GitHub (https://github.com/microsoft/mail2bug)
that lets you create bugs from e-mail threads.

 Bugs have their own unique fields (see Figure 3-12), such as:

• Steps to reproduce

• Priority

• Severity

 Figure 3-12. Detail view of a new bug

https://github.com/microsoft/mail2bug

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

32

 If the bug is created through Microsoft Test Manager, additional information about the system where
the bug occurred on, IntelliTrace data, or other data sources is added (see Chapter 11 on testing for more
information). Traceability is achieved by linking bugs to PBIs. This way, you get data on which PBIs are
stable and which have a lot of bugs in them. Bugs go through a workflow where the bug is first approved
(meaning that it’s a real bug that needs to be worked on). A team then commits to fixing the bug (just as with
other work), and finally the bug is done, meaning it has been fixed and tested .

 You can create bugs directly from your backlog by using the New panel and changing the drop-down to
Bug. This creates a new bug that’s not linked to a PBI. To link a bug to a PBI, you open the details of the bug,
select the Link tab, and create a link to an existing item. You then set the parent relationship and select the
PBI as parent (see Figure 3-13).

 Capacity
 Now that you have sprints, PBIs, and tasks, you want to get a sense of how much work your team can commit
to. In Scrum, velocity is the standard way of tracking the amount of work a team can do during each sprint.
The velocity is based on experience of the previous sprints and shows how much PBIs a team typically
delivers in a sprint.

 Figure 3-13. Linking a bug to an existing PBI

http://dx.doi.org/10.1007/978-1-4842-1446-6_11

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

33

 As a product owner, you can do a forecast of the time it’s going to take your team to implement features.
When you’ve assigned effort values to PBIs, you can then use the Velocity feature to calculate which items
can be finished in which sprint. Since velocity is an ever-changing number, it’s wise to do an optimistic and
pessimistic forecast so you get a sense of what’s possible. Figure 3-14 shows a forecast for a backlog with four
 PBIs . The forecasting-based value is a value the product owner can enter. With a velocity of 8, the first item
will take a whole sprint. The second and third item will be done in sprint 2 and the last item in sprint 3. For
sprint 4, there isn’t any work scheduled at the moment .

 Velocity is not the only measure to help you plan a sprint. Some team members work part-time, during
the year you have holidays, and maybe you need to set aside time for other events. Capacity planning helps
you get a quick overview of the hours your team is working and what types of work they can do. For example,
if your team has only one Java developer who happens to be on holiday, you shouldn’t try to schedule any
Java work for the next sprint, no matter what your velocity was the last couple of sprints. Figure 3-15 shows
an example of a capacity planning for a team with two developers and one tester. The development bar is red
because there is more development work than there is capacity available.

 Figure 3-14. Forecasting sprints

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

34

 VS Team Services helps you plan your working days (by default, Monday to Friday) and by assigning
hours and days off to each team member for each sprint. You can also assign a work category, such as
development or testing, to different team members to further help you with planning. This data is then used
to show how much work your team can take on and differentiate this from the different types of activities you
have in your team. Capacity is something that’s uniquely entered for each sprint.

 To see some interesting capacity information, you need multiple team members in your team. If you
open a project, click on the Team Members widget to open the Manage Members dialog box. Add a couple of
users by e-mail address. In Figure 3-16 , you see two fictitious users being added to the team.

 Figure 3-15. Capacity overview of current sprint

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

35

 Now that you have a couple of team members in your team, you can start scheduling their capacity for
the coming sprint. Select Work ➤ Backlogs ➤ Sprint 1. You now the see the sprint backlog and the a Capacity
option (see Figure 3-17). You can now configure activities for your team members, set their working hours,
and schedule days off (see Figure 3-18). As you can see, a team member is not restricted to only one activity.
You can add multiple activities per team member and specify the time they have available for each activity.
You can also configure days off for individual team members and for the whole team.

 Figure 3-16. Managing the members of your team

 Figure 3-17. Capacity planning per sprint

 Figure 3-18. A sample capacity plan

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

36

 Now that you have selected activities for your team members, you also need to configure activities for
the tasks you create. This way, VS Team Services can calculate the hours for each activity and display this
next to the available team members you have. For a task, select an Activity from the drop-down and set
the remaining work to the number of hours required for this task (see Figure 3-19). You can now view the
capacity planning at the right side of your sprint backlog. Red bars signal that there is too much work for a
certain activity.

 Capacity is configured per sprint. When you’re starting a new sprint, you can enter new numbers for
your team’s capacity or you can choose to copy the data from the previous sprint and then adapt it.

 Team Rooms
 Communication is key. To help you with this, VS Team Services offers team rooms, which are online chat
rooms where your team members can leave messages. Team rooms are more than simple chat rooms.
However, team rooms are definitely not the only solution. Some teams I encounter use Slack, a popular
messaging application, or other solutions. Especially when working cross-platform, it’s important to choose
an application that’s easy for your team to use.

 You can configure team rooms to show messages for different events that happen during your project,
such as work item state changes, developers checking in code, testers filing bugs, and other events. This
means that a team room gives you a complete transcription of what’s happening in a project. This makes it
easy to track what your team members are doing, especially if you missed a couple of days. Some teams even
track the notes of their daily standup in a team room. You can create different team rooms with different
events they track. You can also configure which team members you want to see the events for.

 ■ Note Team rooms are troublesome if you are working in multiple teams. You can install the following
extension to get a summary in one place of all the team rooms you’re part of: https://marketplace.

visualstudio.com/items/tfc.TeamRoomSummary .

 Figure 3-19. Assign hours and an activity to a task

https://marketplace.visualstudio.com/items/tfc.TeamRoomSummary
https://marketplace.visualstudio.com/items/tfc.TeamRoomSummary

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

37

 When you open the Overview page of your project, you can add the Team Room widget to display a list
of available team rooms in your project. When you create a new project, a single team room is created for
you automatically. You can click on the name of the room to navigate to it (see Figure 3-20).

 Figure 3-21 shows what the team room looks like. The easiest thing to do is send a simple chat message.
You can use the textbox at the bottom to enter the message and click Send to share it with your team.

 Besides chat, team rooms can also display events. If you click on Manage Events, you can select event
types that you want to be displayed in your team room. You can also add users to the team room so they
can view the events. Be aware, however, that this could mean that team members see events of things they
normally wouldn’t have access to. Figure 3-22 shows how to configure your team room to display an event
for every work item update in the project (both by members of the team room and by other team members).

 Figure 3-20. The Team Room widget on the dashboard

 Figure 3-21. A team room in VS Team Services

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

38

 Now imagine that you change the state of a PBI. This will be picked up by the team room and an
automated message is added. Figure 3-23 shows such an event. You can click the PBI to navigate to the
details directly.

 Figure 3-22. Configuring events for a team room

 Figure 3-23. An automated message showing that a PBI has been updated

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

39

 Achieving Traceability with Developers
 One of the best features of VS Team Services is the way it lets all team members interact and use the tooling
that’s best for them. This is definitely true for developers. Although a developer should be able to use the Web
Access features to participate in team rooms, planning sessions, and other events, Visual Studio is the tool of
choice for Microsoft developers. And for not Microsoft developers, VS Team Services offers integration with
tools like Eclipse and IntelliJ or cross-platform command-line tools that can be used everywhere.

 When a developer works with Visual Studio, she uses the Team Explorer (see Figure 3-24) to connect to
VS Team Services. One of the things you can do with the Team Explorer is show work items that are assigned
to you and work with them.

 The best thing about this is that when a developer makes a code change and sends these changes to
the server, she can directly correlate her changes with the work item she’s working on. This creates full
traceability between code and work done. Later on, the traceability information will be extended to reviews,
tests, builds, and releases.

 A developer can see which work items are available for her and select a work item to work on. Even
better, when a developer gets interrupted, she can save the whole state of her development environment
(being code changes, work items, window layout, breakpoints, and other settings), switch to another task,
and then return to the saved state to continue working on the task at hand. In the Code part, you will also see
how to ask for code reviews directly from Visual Studio. This will create a work item in VS Team Services and
track this until the code review is performed.

 Figure 3-24. The Team Explorer in Visual Studio

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

40

 After Visual Studio is launched, you see the Team Explorer panel (if not, go to View ➤ Team Explorer).
Select the My Work tile to view any tasks that are assigned to you directly in Visual Studio. If you don’t see
anything, this means that no tasks are assigned to you. You can use the Web Access to assign a task to you. If
there is a task you want to start working on, you can use drag and drop to move it from Available Work Items
to In Progress Work (see Figure 3-26). This updates the work item state and makes the new state immediately
visible in Web Access. This way, a developer doesn’t have to leave Visual Studio while still keeping others
updated on her work.

 Figure 3-25. The Visual Studio widget on the Overview dashboard

 Opening a project in Visual Studio is easily done from within Web Access. If you check the Overview
page of your Team Project, you see the Visual Studio Widget (see Figure 3-25) with an option to directly
open the project in Visual Studio.Your browser will show some security questions when you do this.
Since you trust both VS Team Services and Visual Studio, you can accept the security warning to launch
Visual Studio.

CHAPTER 3 ■ AGILE PROJECT MANAGEMENT: THE IMPORTANCE OF COMMUNICATION

41

 During this book you will learn about other tools, like Microsoft Test Manager, that integrate testers into
the traceability chain.

 Summary
 VS Team Services has a lot to offer when it comes to Agile Tooling. The Web Access interface makes it easy
for your whole team to cooperate and work on one single backlog. You can track sprints, product backlog
items, tasks, impediments, and bugs. If you want, you can also let VS Team Services help you with capacity
planning.

 Team rooms are there to facilitate your team in communicating and keeping track of what’s happening
in your project. Especially for distributed teams or for members who want a quick update, team rooms are
the way to go. You also had a first look at how developers integrate into the Agile process. You worked with
the My Work panel in Visual Studio and got a glimpse of how your whole team can cooperate.

 But this is only the tip of the iceberg. In the following chapter, you’ll see how you can cooperate with all
stakeholders by easily getting their feedback and making sure they can follow along with your process.

 Figure 3-26. The My Work panel in Visual Studio

43© Wouter de Kort 2016
W. de Kort, DevOps on the Microsoft Stack, DOI 10.1007/978-1-4842-1446-6_4

 CHAPTER 4

 Managing User Feedback:
Knowing What to Build

 This chapter introduces you to storyboarding and feedback management with Visual Studio Team Services.
Both are important ways of stimulating communication with your stakeholders and making sure that you’re
building the right thing.

 Why We Need Better Communication
 Having a good backlog with product backlog items that have detailed descriptions and acceptance criteria
is a huge step in the right direction. This will help your team know what to build and build it correctly.
That doesn’t mean that things will always go as you hope. Figuring out what the customer really wants
can be a difficult task. Sometimes you end up building the wrong thing. This costs time and money and
damages the relationship with your stakeholders. Helping customers get a clear picture of what they
want is difficult, but this chapter will help you by explaining how you can easily share ideas with your
customers and get their feedback.

 You probably know the saying, “A picture is worth a thousand words”. Seeing a mockup of a user
experience can help a developer or tester get a much better sense of what they need to build and test.
Discussing a mockup with a stakeholder is much faster than spending time building user interfaces

 Decreasing cycle time is key. Discussing a couple of mockups in a rapid timeframe, brainstorming
ideas, and iterating on them is what Agile and DevOps are about. What often goes wrong is the timing of this
process. Teams running a Scrum process schedule their work in sprints. At the start of each sprint, they have
a planning meeting where they discuss the work for the next sprint with the product owner.

 When should the mockups be created? Since the mockups directly relate to the product backlog item,
shouldn’t they be created in the sprint? But how can the team then fully understand what they need to
build? This is something I see going wrong with teams. There is no rule that forbids a team to look at the PBIs
that are coming in the next sprint. To run a successful project, this is essential. The team should spend some
time every day making sure that the PBIs they’re going to work on in the near future are clear enough. This
time can be used by team members to create mockups, define acceptance criteria, and make sure that the
team knows all they need to know to run the planning meeting. Having a user experience expert create the
mockups is definitely a plus, especially since most developers are not specialized in UX.

 Having good mockups and clearly defined PBIs is one part of building software that your users actually want.
After delivering a PBI, you need to validate what you build. The role of a product owner is to constantly interact
with stakeholders and make sure that the team is building the right thing. And the same principle applies: shorter
cycle times are key. Truly immerging stakeholders in the DevOps process is a big win for your flow of value.

 For both scenarios—creating mockups and getting user feedback—there are a lot of tools on the market.
Fortunately, Microsoft has created tools that directly integrate with VS Team Services.

CHAPTER 4 ■ MANAGING USER FEEDBACK: KNOWING WHAT TO BUILD

44

 Creating Storyboards with PowerPoint
 Have you ever used PowerPoint? I think that almost everyone who has been to a meeting has seen
PowerPoint in action. And that’s mostly because PowerPoint is very easy to use. Create a couple of slides,
add some animations and other graphics, and you can easily create something that looks pretty nice.

 Microsoft realizes that most users have PowerPoint and that it is very easy to use. This is why Microsoft
created an extension for PowerPoint that helps you easily create mockups and link them back to work items
in VS Team Services (see Figure 4-1).

 Figure 4-1. Storyboarding plugin for PowerPoint

 The PowerPoint plugin gives you a set of often-used shapes like a web browser, standard controls, and
other elements that you’ll probably use when creating mockups. You can also add your own set of shapes
and share those with your team, such the default layout of your web page, your company’s logo, or some
custom control that you often use. By adding them to your shapes library, you create a consistent look and
feel throughout all your mockups.

 End users can easily view your mockups in PowerPoint even if they don’t have the plugin installed.
And for those who don’t have PowerPoint, they can install a free PowerPoint viewer that allows them to
view your slides.

 The best thing about these storyboards is that you can link them to your product backlog items.
Team members can open the storyboard directly from the PBI information and use it while working on
their tasks.

 To create a storyboard, you start by opening PowerPoint. If you have installed Visual Studio on your
PC, you will already have the Storyboarding plugin installed. Users who don’t want to install Visual Studio
can install the standalone Team Foundation Server Office Integration plugin. This is a free download that
everyone can use (see https://www.microsoft.com/download/details.aspx?id=49992 for the download
details).

https://www.microsoft.com/download/details.aspx?id=49992

CHAPTER 4 ■ MANAGING USER FEEDBACK: KNOWING WHAT TO BUILD

45

 Inside PowerPoint, you’ll now have the Storyboarding tab visible on your ribbon (see Figure 4-1).
If you select this tab, you can start creating storyboards. The Storyboard Shapes panel contains a couple of
standard controls you probably want to use, such as a web browser, text fields, buttons, etc.

 If you want to create some mockup text for your storyboard, add a text field, enter the text = Lorem() ,
and press Enter. This will fill your textbox with a couple of lines of Lorem Ipsum text. You can also extend the
default shapes library. You can add shapes of your own and download sets of shapes from the Visual Studio
Gallery site.

 ■ Note Lorem Ipsum is a pseudo-Latin text that’s often used by printers and designers. You can easily
create a large amount of text but since the text is not actually readable it doesn’t distract your audience from
the overall design.

 Since you are working in PowerPoint you can also easily add animations . One animation that’s
particularly useful is the Click shape that’s available in the Storyboard Shapes gallery. The Click shape uses a
path animation. You configure where the pointer starts, where it should move to, and finally what it clicks on.
This allows you to create animations that show how the storyboard will work once implemented. Figure 4-2
shows the Click shape on a slide.

 Figure 4-2. You can use the animated Click shape in your storyboards

 After finishing your storyboard, you want to share it with your team and with stakeholders. If you look
at the ribbon, you see a button there called Storyboard Links in the Team group (Figure 4-3).

 Figure 4-3. You can link your storyboard to a work item in VS Team Services

 Clicking this button opens a window that allows you to link your storyboard to a work item in your
project. If you look at Figure 4-4 , you see how a predefined query is used to find the product backlog items
in your project. You can then select a PBI and click OK to establish the link (Chapter 6 , on Dashboards and
Reporting, explains more about queries).

http://dx.doi.org/10.1007/978-1-4842-1446-6_6

CHAPTER 4 ■ MANAGING USER FEEDBACK: KNOWING WHAT TO BUILD

46

 If you now open your VS Team Services project in the browser, you can view the link to the storyboard.
If you open the details for a PBI work item, you see the Storyboards tab in the bottom left. Figure 4-5 shows
such an example link. What’s important to notice is that the link contains an actual URI to a network share
or an Internet address. In this case, the storyboard is stored on OneDrive to make it available to the whole
team. The files are therefore not stored inside VS Team Services.

 Figure 4-4. You can choose a work item to link to your storyboard

 Figure 4-5. In the details of the PBI, you can view the storyboard’s link

CHAPTER 4 ■ MANAGING USER FEEDBACK: KNOWING WHAT TO BUILD

47

 Involving Stakeholders in Feedback Management
 Getting feedback from users is extremely important. You want a continuous cycle of build, measure, and
learn. The best way would be to always have your customer available with you in the room. Every time you
want some feedback, they are there to help. In reality, customers won’t always be available. Maybe you give
them a call or send them an e-mail asking them to look at something. You then need to document their
reaction and manually add it to VS Team Services.

 Because this is something that happens frequently, Microsoft added the Feedback Management tool
to VS Team Services. This allows you to create a feedback request from within the Web Access. You add
the required info, like what it is you want the recipient to look at, how they can access your application,
and other information that’s important. You then just click Send and VS Team Services does the rest. The
recipient gets an e-mail detailing your request and a link that starts the feedback session. The first time they
do this, a specialized tool will be installed that will help the user in giving the feedback. This tool opens on
the side of the screen and guides the user through the steps you want him to take. While doing this, users
can easily add feedback such as screenshots or even video or voice. Users can also add comments and give a
simple 1- to 5-star rating.

 All this data is collected and attached to the feedback response. After submitting the feedback, you can
retrieve the data from within VS Team Services. This creates full traceability from request to response and
links this data to the PBIs you want feedback on.

 VS Team Services creates a Feedback Request work item for each item you want the user to look at.
Figure 4-6 shows a request that contains two feedback items.

 Figure 4-6. Requesting feedback on multiple items

CHAPTER 4 ■ MANAGING USER FEEDBACK: KNOWING WHAT TO BUILD

48

 After sending the feedback request, VS Team Services generates two work items for you that contain all
the details. What’s nice is that your feedback request is linked to the work items in VS Team Services. This
means that when you update your feedback request in VS Team Services, users will automatically see these
updates when they start their feedback response.

 Of course, it can happen that a user does not respond to your feedback request. You can view the
feedback requests you send in VS Team Services. As long as the State is Active, you know the user hasn’t
responded. The URL that gets sent with the feedback request stays active and the user can still use the
Feedback Client to respond.

 Sending a feedback request is easy. If you go to the Overview page of your VS Team Services Team
Project, you see a small section named Other links (see Figure 4-7). If you click on Request feedback, the
Request Feedback windows open. If you don’t see the Other Links group, add the widget to your dashboard
(see Chapter 6 , on Dashboards and Reporting, for how to do this).

 Figure 4-7. Starting a feedback request from VS Team Services Web Access

 Figure 4-8 shows the details required for sending out a feedback request. What’s important to notice
is that the users you want to ask for their feedback need to be known to VS Team Services. Fortunately,
you can add your stakeholders with a free Stakeholder license to VS Team Services. You need to give these
stakeholders explicit permission to create, test, and view test runs and to view project-level information.
This allows them to start a review session and send their feedback.

http://dx.doi.org/10.1007/978-1-4842-1446-6_6

CHAPTER 4 ■ MANAGING USER FEEDBACK: KNOWING WHAT TO BUILD

49

 In addition to the stakeholders that you want to send the request to, you of course have to tell them what
to do. In step 2 (see Figure 4-8), you specify how they can reach your application. If it’s a web application,
you can add the URL and you have a free text field where you can specify details such as username and
password or other things they should know when accessing your application. If you have a remote machine,
you can enter the name of the machine. For a client application, you should enter the full path to the
application.

 Figure 4-8. Configuring a feedback request

CHAPTER 4 ■ MANAGING USER FEEDBACK: KNOWING WHAT TO BUILD

50

 In step 3 (see Figure 4-8), you tell the stakeholders what they should review. You give each item a title
and a description. To the reviewer, each item becomes a separate action that needs to be done. When you’re
finished, you can look at a preview of your feedback request. When you’re satisfied, you click Send and an
e-mail will go out to the selected stakeholders.

 The recipient of the feedback request receives an e-mail that looks something like what you see in
Figure 4-9 . In this case, I sent the feedback request to myself so I’m on the To and CC lines.

 If the feedback tool is not installed, the user should first install it. Clicking on the link will download the
feedback tool and launch the installation. Then click on the Start Your Feedback Session link to open the
feedback tool and begin the feedback response.

 You now get an instance of the feedback tool running at the left side of your screen. Figure 4-10 shows
what this tool looks like. The first page of the tool shows information on how to access the application. In this
case, a URL is shown that points to http://visualstudio.com . After the user has opened the application,
click Next to see the first feedback item.

 Figure 4-9. An e-mail requesting feedbac k

http://visualstudio.com/

CHAPTER 4 ■ MANAGING USER FEEDBACK: KNOWING WHAT TO BUILD

51

 While giving their feedback, users can add screenshots , record video of their screen, add audio from
a microphone, add comments, and give a star rating to each item. This information is captured for you
and automatically sent to VS Team Services when the user finishes. Figure 4-11 shows the first step for this
request and all the actions a user can take.

 Figure 4-10. The Feedback Response tool with information on how to access the application

CHAPTER 4 ■ MANAGING USER FEEDBACK: KNOWING WHAT TO BUILD

52

 Figure 4-11. The Feedback Response tool showing a feedback item

 After the user finishes the feedback request, the data is sent to your VS Team Services project. The
Feedback Response work item now contains all the data that the user entered. This includes any video,
audio, screenshots, or other data the user added.

CHAPTER 4 ■ MANAGING USER FEEDBACK: KNOWING WHAT TO BUILD

53

 Figure 4-12. The Feedback query in your team project

 If you open your project and go the Work tab and then to the Queries sub-tab, you see a query named
Feedback in Shared Queries (see Figure 4-12). After selecting the query, you see a list of feedback responses.
You can view each item, inspect the details, and create new work items based on the feedback.

 The feedback client is a great way to involve your stakeholders in the process. In Chapter 11 , you’ll also
see that there is a plugin for the Chrome web browser (and in the future other browsers) that you can use to
do exploratory testing on an application and send the results back to VS Team Services.

 Summary
 Knowing what your customers want and building the right solutions for them is still one of the hardest
aspects of software development. In this chapter, you learned about some easy-to-use tools that can help
you with this.

 You’ve seen how to create mockups with PowerPoint, link these to work items, and share those with
your stakeholders. You’ve also seen how the Feedback tool that’s a part of VS Team Services lets you send
requests for feedback and work with the results as a part of your process.

 In the next chapter, you’ll dive into other parts of Agile tooling, namely Kanban and Portfolio
Management. These tools will help you optimize the value your team delivers and scales out to multiple
teams, all using VS Team Services.

http://dx.doi.org/10.1007/978-1-4842-1446-6_11

55© Wouter de Kort 2016
W. de Kort, DevOps on the Microsoft Stack, DOI 10.1007/978-1-4842-1446-6_5

 CHAPTER 5

 Advanced Agile Project
Management

 In the chapter on Agile project management, you were introduced to the Agile tools that Visual Studio
Team Services offers you. You’ve seen how to plan work with your team and keep track of what’s happening.
These tools are very useful and will be part of your daily routine.

 There is even more to the Agile tools in VS Team Services. To optimize the flow of value through your
project, VS Team Services implements support for Kanban and Lean techniques . And when you’re working
with multiple teams, you can use the portfolio management tools to get an overview of what all your teams
are doing and distribute work across them. This chapter goes into the details of the Kanban and portfolio
management tools and shows you how to apply them effectively.

 Kanban and Lean
 Most teams I see that want to move to DevOps are already doing some form of Agile. Scrum is the most
popular process that I see around. When doing Scrum, work is planned in sprints of equal length. At the
beginning of the sprint, work is planned, and at the end of the sprint you review what you’ve built and try to
improve on your process.

 When effectively applied, Scrum has a lot of benefits for a team. Teams start delivering more regularly,
improve together, and offer more value to stakeholders. However, the strict sprint length can also bring
challenges. Teams face questions like: How much work can we do this sprint? What if all the planned work is
finished before the end of the sprint? How can we further optimize our process ?

 Imagine the following situation where you are Scrum Master in a team. Your team runs sprints of two
weeks. You have a team with five developers, two testers, a designer, and a part-time architect. The team has
worked together for a couple of sprints and they are starting to get familiar with the project and are picking
up speed. In the second week of the last sprint, the developers come to you and happily explain that they
have finished all their development work for this sprint. What do you do?

 You can of course have the developers pick up some more tasks that are scheduled for the next sprint.
Or maybe you have some technical debt in the system and you want them to work on that. Now ask yourself
the question: would having the developers do more work increase the value offered to the customer?

 Well, what is value for the customer? The customer gets value from your work only when they can
actually use it. This means that code needs to be written, tested, and deployed. So yes, you can let the
developers do more work. But when is this work going to end up in the hands of the customer? If you see
your project as a flow of value through the different phases , the customer value is determined by how fast a
single item goes from the beginning of your pipeline to the end. This immediately implies that the speed of

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

56

the pipeline is determined by the slowest factor: the bottleneck. Figure 5-1 demonstrates this concept. No
matter how much you do at the start of your pipeline, the speed after your bottleneck stays equal until you
remove the bottleneck.

 So, should you give your developers more work? If the developers are the bottleneck, giving them more
work will improve flow of value. But what if the testers are the bottleneck? Giving the developers more work
will only increase the amount of work that’s waiting for the testers before it can go the customer. That does
not increase value for the customer. Instead it increases waste. You waste resources on having a queue of
items that only gets bigger. Instead, focus on the bottleneck: the testers have too much work. Having the
developers work on automated testing does help the testers and decreases the bottleneck, thereby increasing
flow of value.

 Eliminating waste is a core principle of both the Kanban and the Lean methodologies. Kanban has the
following principles :

• Eliminate waste

• Focus on lead time (the time it takes for work to go through one’s process from
conception to final delivery, also known as “concept to cash”)

 Lean also has a set of principles:

• Eliminate waste

• Build quality in

• Create knowledge

• Defer commitment

• Deliver fast

• Respect people

• Optimize the whole

 ■ Note This book doesn’t contain a detailed explanation of all the principles. Instead it focuses on using the
tools of VS Team Services and understanding the ideas behind them. If you want more information, you can
start at http://www.lean.org .

 Figure 5-1. The speed of the pipeline is determined by the bottleneck

http://www.lean.org/

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

57

 This may all sound nice in theory, but how do you apply it to something complex as a software
development project? How do you apply these principles and analysis in practice? To optimize the whole
and eliminate waste, you need to find the bottleneck. To find the bottleneck in your situation, you first need
to discover your process. What steps does your team take to go from an idea to production? A possible
sequence of steps can be:

 1. Analyze

 2. Develop

 3. Test

 4. Deploy

 And maybe you have intermediate steps, like a code review or additional forms of testing such as user
acceptance testing or performance testing. Try to make sure that the steps you select are inside your realm
of control. Maybe the process of coming up with the backlog is done by the marketing department and is
not something you can fully measure or influence. If you have your steps you can start with creating what’s
called a Kanban board .

 Kanban is a Japanese word meaning signboard or billboard. A Kanban board looks a lot like a Scrum
board. A typical Scrum board has columns for To do, Doing, and Done. Items move from left to right to
signal their state. The signal part is important. Since Scrum uses only three states, the amount of signals you
can give is limited. If an item is in the Doing state, what does this mean? Is it being analyzed, developed, or
tested? Where is the most time spent? Is the item waiting to picked up by someone else?

 A Kanban board expands the columns to mimic the actual process the team follows. Looking back at the
previous list, this would mean that you have four columns. This particular board can look like Figure 5-2 .

 Figure 5-2. A sample Kanban board with columns that map to the team’s process

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

58

 And now comes a very simple trick that will show you where your bottleneck is: limiting work in
progress. Setting a work in progress limit (WIP limit) limits the amount of work a team member is doing
in parallel. People are not allowed to pull a new task into their column when they are at their WIP limit.
Switching between tasks costs time and leads to tasks not being completely finished. A typical WIP limit is
1-2 tasks per person. Appling WIP limits to a Kanban board can be as simple as putting the number on top of
your column contrasted with the current number of tasks, as shown in Figure 5-3 .

 Now where is the bottleneck? You can find the bottleneck by seeking for the column that’s used to its
maximum capacity. You can make this even clearer by splitting columns in a Doing/Done state. Notice there
is no To do state for a column. Work cannot queue up in a column by being pushed into it. Instead, team
members pull work into their column and set the work item state as Doing. The bottleneck now shows up as
items queuing up in a Done column without being pulled in by the next phase.

 Figure 5-4 shows the same Kanban board, but with the columns split in a Doing and Done state . The
Kanban board now signals when work is ready to be pulled into the next stage. Whenever work items start
queuing up in a Done column, there is a bottleneck in the next stage that needs to be addressed.

 Figure 5-3. A Kanban board with WIT limits at the top of each column

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

59

 Kanban and Lean are about optimizing the flow of value through your process. Eliminate wait times and
other forms of waste that might happen. Kanban is a natural addition to a Scrum process. If you use Scrum,
map your process and apply WIP limits to start improving your flow. You could argue that this is a ScrumBut
because you’re no longer using sprints and are depending on the flow of items. As I see it, ScrumButs are
reasons for a company to ignore certain well established rules for internal reasons. Kanban is not about
ignoring rules and doing something like Scrum in a way you prefer. Instead, Kanban offers you a way to view
your Scrum process in a different way. Lots of things don’t change but it’s true that you do change some things.

 ■ Note This was just a short introduction to Kanban and Lean and there is much more to learn about them.
There are very good books completely dedicated to this subject. Two that I want to recommend are The Phoenix
Project by Kevin Behr, George Spafford, and Gene Kim and Kanban: Successful Evolutionary Change for Your
Technology Business, by David J. Anderson and Donald G. Reinertsen.

 The remainder of this part focuses on how to use VS Team Services to use a Kanban board and
configure it for your team. When you create a new project, you automatically get access to a Kanban board.
If you navigate to the Work hub, you see the link to your board at the top of your backlog (see Figure 5-5).
You can also use the shortcuts that are available in VS Team Services: g w to go to the Work hub and then b to
go to the Kanban board. You can press ? anywhere in VS Team Services to show a popup with the currently
available shortcuts.

 Figure 5-4. A Kanban board with columns split into Doing and Done

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

60

 On your board, you see the default columns for New, Approved, Committed, and Done. Now this
probably doesn’t map to your process. Fortunately, VS Team Services allows you to customize the board
to your liking. But first, let’s add some items. Figure 5-6 shows how easy it is to add items directly to your
Kanban board. Both bugs and PBIs can be created and edited inline.

 Once you have a PBI, you can add tasks to it. By clicking on the ellipses, you open a simple drop-down
that lets you edit the title and add a task (Figure 5-7). Each task’s status can also be changed from the
Kanban board.

 Figure 5-6. Adding items to the Kanban board

 Figure 5-7. Adding tasks to your PBI directly on the Kanban board

 Figure 5-5. Navigating to the Kanban board

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

61

 Having the ability to create a task directly on the Kanban board gives your teams a lot of freedom. I
see teams adopting a hybrid approach where they split PBIs into tasks when the item is complex and keep
simpler items as just a PBI. The same freedom applies to bugs. Moving bugs and tasks across your Kanban
board is easy. You can use drag and drop or you can open the work item and change its state. As you will see
when configuring your columns, a state maps to a particular column.

 If you open the Settings pane for your Kanban board (the gear icon at the top right of the board), you see
a lot of options. You can configure fields shown on your cards, set rules for changing the background color
of cards, and set specific colors for tags. You can also configure the board itself. Columns and swimlanes and
the order of items on the board are all configurable.

 Let’s first look at styling your cards. Adding a field to a PBI (or a bug) is easy. A couple of default fields
can be shown (or hidden) with a checkbox such as ID, Assigned To, Effort, and Tags. Any additional fields
can be added by clicking on the green plus sign before the field. Figure 5-8 shows how to add the Changed
Date field to your card.

 You can also change the card style based on a simple rule system. A styling rule can change the
background color of your task and the style of the title (bold, italic, underlined, and the color). A rule follows
the format Field ➤ Operator ➤ Value. So for example: Effort > 50. This would apply the styling rule to all
work items with an effort larger than 50. Figure 5-9 shows the configuration for this rule. I chose to change
the card color to yellow and do nothing to the title. You can choose any style combination that is clear to
your team .

 Figure 5-8. Adding fields to the cards on your Kanban board

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

62

 The final style element for your Kanban cards has to do with tags. Maybe you want to highlight certain
tasks on your board to make sure they’re not missed. You can do this easily by adding the tags to the Tag
colors pane. Just set a color and enable the rule, as shown in Figure 5-10 .

 Figure 5-9. Adding a style rule for the cards on your Kanban board

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

63

 Now if you take the Changed Date field, the Effort rule, and the tag colors and you have a PBI with an
Effort of 51 and a Backend Tag , you get what’s shown in Figure 5-11 .

 Cards are not the only configurable thing on your board. You can also configure the board itself, namely
the columns, swimlanes, and card ordering. To map the columns of your Kanban board to your process, you
can add, remove, and reorder columns in the settings pane. For each column (except the columns that map
to done and new), you can also choose to split the column in Doing and Done. And of course you can set a
WIP limit. This limit is not strictly enforced. Instead, the WIP limit turns red the moment you have to many
items in a column. Figure 5-12 shows the Development column with a WIP limit of 2 and the option to split
into Doing and Done.

 Figure 5-10. Configuring tag colors for the cards on your Kanban board

 Figure 5-11. A styled Kanban card

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

64

 Finally, there is one more important step for each column: the Definition of Done (DoD) . A DoD is an
agreement between all members of your development team that states when an item is allowed to move
to the next column. For the Analysis column, this could mean things like having a title and description, a
storyboard, and acceptance criteria. For development, the DoD can contain information on code quality,
unit tests, review requirements, or anything else that matters to your team. Having a good DoD is important
to streamline your process. You can enter the DoD at the bottom of each column configuration. The field
supports markdown so you can also add some style (like a bulleted list or highlighting certain words).
Figure 5-13 shows this. You can see the i icon showing up next to the column title. Clicking it shows the DoD.

 Swimlanes are another important aspect of your Kanban board. Your Kanban board currently has only
one swimlane. This means that there is one single path from left to right. Items in each column are equally
important and move one by one through the lane. This is the default behavior and it’s what you want most of
the time. In some cases, however, you want specific items to move with a higher priority such as a hotfix. To
allow this, you can add swimlanes to your Kanban board.

 Figure 5-13. A Definition of Done for the Analysis column

 Figure 5-12. Configuring a column on the Kanban board

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

65

 A swimlane on your board is nothing more than a name. Figure 5-14 shows how you can add an Expedite
swimlane to your Kanban board. This is a swimlane that I find is often being added by teams. They use this
swimlane for bugs and other hotfixes that have a high priority. Of course you should try to use an Expedite
swimlane as little as possible. You want to keep a nice and steady flow of items. Putting items through your
Expedite swimlane will cause regular items to be placed on hold. This decreases predictability of your flow and
will impact stakeholder satisfaction.

 Having an extra swimlane gives you something like Figure 5-15 . You can collapse a swimlane when you
don’t need it. The lanes are stacked on top of each other. They do have a shared WIP limit. If you want to
rush a bug fix, this doesn’t mean your team suddenly has more capacity.

 Figure 5-14. Adding extra swimlanes to your Kanban board

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

66

 One final option that you can configure for your board is the order of cards. If you use both the Kanban
board and the regular backlog to create and order items, you probably don’t want the Kanban board messing
with your backlog order. In the Card reordering settings, you can configure if cards can be freely reordered
on the board or if you want them to follow your backlog order. There is even a cool animation that you can
play directly in VS Team Services to show the differences! Figure 5-16 shows a screenshot of the animation.

 Figure 5-15. A Kanban board with an extra swimlane

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

67

 Portfolio Management
 The Agile tools that you looked at until now work great for a single team. You order a backlog, plan sprints,
and run your team. The team then uses the Kanban board for their particular processes . Scrum states that
the best team size is between six and nine people. But what if a single team is not enough? What if you want
to run multiple teams and need a way to manage all those teams from a single location?

 That’s where the portfolio management capabilities of VS Team Services help you. Portfolio
management allows you to create multiple teams that all have their own backlog, Kanban board, and
capacity planning per sprint. All these teams roll up into other teams. This allows you to create a hierarchical
backlog at different levels of granularity.

 For example, the board of directors wants a new mobile strategy . The program managers split this into a
cross-platform mobile app and a supporting backend. The individual teams then deal with the work at their
level, such as building a universal Windows app. In the end, this will lead to a large amount of tasks linked to
product backlog items. The product backlog items are grouped into features and the features are linked to an
epic. Figure 5-17 shows the hierarchy you’ll create.

 Figure 5-16. Configuring the reordering of cards on the Kanban board

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

68

 Portfolio management starts with having more than one team. A team project is the container in VS
Team Services for your teams. By default, each team project has one team. This team has a product backlog,
Kanban board, and several sprints. This team is mapped to the root of the team project. When scaling to
multiple teams, you create sub-teams beneath your team project and then promote the existing team to an
overview team.

 Teams all control an area . Areas are the containers for the work that a team does. Multiple teams mean
having multiple areas. You create a hierarchy of areas with teams functioning at the epic or feature level
and on the level of product backlog items. This way, you can roll up the individual teams’ work into the
management teams.

 Before you start adding teams, you should enable support for epics on your backlogs. In the Settings
window that you used for your Kanban board, you can also configure the backlog levels you want to use.
Figure 5-18 shows the Settings window with all navigation levels enabled.

 Figure 5-17. PBIs are grouped into features, which are grouped into epics

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

69

 If you navigate back to your backlogs, you will see that you have three levels enabled: epics, features,
and “regular” product backlog items (see Figure 5-19). Adding teams to your team project is done in the
Project Settings of VS Team Services. You open these settings by selecting the gear icon at the top right of
VS Team Services. (Or you navigate to https://<youraccount>.visualstudio.com/defaultcollection/
<yourteamproject>/_admin) .

 Figure 5-18. Enabling backlog navigation levels in the Settings window

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

70

 On the Overview page , you see a button for adding a New team. Selecting this option shows the window
from Figure 5-20 . Let’s say you want to create a hierarchy with one epic team, two feature teams, and a
couple of implementation teams. You first create all the teams as a flat list. Make sure that you enable the
option to automatically create an area for each team so you can separate the backlogs for the teams.

 Now you want to configure the hierarchy for the teams. You do this in the Area section of your team
project’s configuration screen. An area can have one parent and zero or more children. This allows you to set
up a hierarchy. Figure 5-21 shows a hierarchy of areas. You have one top area, two management level areas,
and six implementation teams.

 Figure 5-19. All three backlog navigation levels are enabled

 Figure 5-20. Adding a new team

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

71

 By default, each area is configured to exclude sub-areas. This is good for the individual teams, but the
management teams want to see everything that’s beneath their level. You can toggle this behavior by
right-clicking an area and selecting Include Sub-Areas . This will show all work items from the child areas in
the PortfolioManagementDemo project (see Figure 5-22). You can do the same for your management level
teams. The implementation teams don’t have children in this example, so it’s not required for them.

 You want to make sure that all your teams follow the same sprint cadence, meaning they use sprints of
the same length that start and end on similar dates. This allows you to align your efforts with multiple teams.
You create one list of sprints and then link these sprints to your individual teams. By default, the top project
has six sprints defined. Of course you can change the number of sprints, their start and end dates, and their
name. What’s important is that you navigate to each team and select the sprints that they can see in their
work hub. Figure 5-23 shows how this looks for the Build team.

 Figure 5-21. A hierarchical area configuration

 Figure 5-22. You can configure an area to include sub-areas

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

72

 Now that you’ve created your teams, you can assign team members to each team just as you previously
did when you only had one team. Be aware that when navigating to the teams through the VS Team Services
interface, the teams are shown as a flat, alphabetically sorted list. The hierarchy is only visible when working
with work items.

 The epic and feature are work item types, just as task, bug, and product backlog item were. Epics and
features can be assigned to someone who is responsible for them. They have states, priorities, and efforts,
just like regular work items. A field that’s new for epics and features is the Value Area field. This field can
have a value of Business or Architectural.

 These terms come from the Scaled Agile Framework (SAFe) . SAFe is a framework for applying Lean
and Agile practices not only at the team level but also at the Enterprise level. SAFe allows you to define work
items that target the business or architectural side of things. In an Agile project it’s only natural that the
architecture of the system evolves and that sometimes work needs to be done on the architecture to support
further business epics. In addition to these fields, you also have a new Target Date and Time Criticality field.
Especially in larger projects with more moving parts, it’s essential to have some idea of when a portfolio item
needs to be finished. Understanding how to use the portfolio management tools that VS Team Services offers
is essential if you want to use SAFe or another scaling Agile framework.

 ■ Note SAFe is outside the scope of this book. You can find more information at the official SAFe site:
 http://scaledagileframework.com/ . You can also have a look at https://msdn.microsoft.com/Library/
vs/alm/work/scale/scaled-agile-framework to see how SAFe is implemented in VS Team Services.

 Creating an epic or a feature is the same as creating a product backlog item. You navigate to the backlog
of your choice and use the Quick Add panel to add an item. Figure 5-24 shows the details of an epic. An
important field is the Area field, since this allows you to assign work to a particular team.

 Figure 5-23. You can configure the visible iterations per team

http://scaledagileframework.com/
https://msdn.microsoft.com/Library/vs/alm/work/scale/scaled-agile-framework
https://msdn.microsoft.com/Library/vs/alm/work/scale/scaled-agile-framework

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

73

 Figure 5-24. The Details view of an epic work item

 Using this process, you can create a couple of features and product backlog items. These items aren’t
linked yet. You can use the Details tab of each work item to establish parent and child links, but there is an
easier way. If you turn the Mapping pane on, you can then easily use drag and drop to establish relationships
(see Figure 5-25).

 Figure 5-25. Using the mapping panel to establish parent/child relations

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

74

 After establishing the hierarchy, you can view the parent and child items. If you’re in the top-level team,
you can expand items by clicking on the arrow all the way down to the implementation teams, as shown in
Figure 5-26 .

 One final thing that’s important to notice is that the backlog shows who owns an item and who can
manipulate it. In Figure 5-26 , you view the work items starting at the top level. The rectangles in front of the
work items are a solid color. In Figure 5-27 , you see the same view from one of the child teams. As you can
see, the epic and feature rectangles are only outlines. This means that they are owned by another team.

 Figure 5-26. You can view the hierarchy of items, from epic to feature to product backlog item

 Figure 5-27. The backlog shows which work items are owned by the current team

 If you also want to separate the locations that your team uses in source control, you can do so easily by
creating multiple folders according to the teams’ names (when using Git for version control, you can also
create multiple repositories). The same is true for the Test and Release features.

CHAPTER 5 ■ ADVANCED AGILE PROJECT MANAGEMENT

75

 Summary
 In this chapter you first looked at the Kanban tools in VS Team Services. By using the Kanban board and
configuring it with columns and work-in-progress limits, you can create a continuous flow of value to your
stakeholders. By customizing cards and adding swimlanes, styles, and other board settings, you can make
sure that your team can use these tools hassle free.

 You also looked at the portfolio management tools that VS Team Services has. By using multiple
teams and specialized work items such as epics and features, you can distribute work and track progress
in a single location. Especially for organizations that are scaling their Agile implementation, these tools
are a must-have.

 Now that you had a good introduction to the Agile tools, it’s time to continue learning about the
dashboards and reporting tools that VS Team Services offers in the next chapter.

77© Wouter de Kort 2016
W. de Kort, DevOps on the Microsoft Stack, DOI 10.1007/978-1-4842-1446-6_6

 CHAPTER 6

 Dashboards and Reporting

 When running your project, you will generate a lot of data. Data from the Agile tools—such as Scrum,
Kanban, and portfolio management—and other data such as code, test, and release data. Fortunately, Visual
Studio Team Services has a querying system built-in and the ability to create dashboards for an up-to-date
overview of your project. This chapter discusses the dashboard, query, and notification functionality of VS
Team Services. You will also look at how to search through your code.

 You start with looking at queries. These queries are the foundation of the data you show on your
dashboard and the notifications you send.

 Queries
 Queries are an important part of VS Team Services. Being able to find work items in all kinds of ways is an
important part of your daily work. This can range from picking a work item to start working on to deciding if
the current sprint has too many bugs to be released .

 Using the Search Box
 When you open your VS Team Services project, the search box is at the top right. When you are at the
overview page or on the work page, this search box lets you search through your work items. (When you
navigate to other tabs, you can use this box to search through your code. You will look at this at the end of
this chapter.)

 Imagine you have the work items shown in Figure 6-1 in your project. This backlog defines four product
backlog items. One is assigned to someone and one contains a couple of tags.

 Figure 6-1. An example backlog that you can search through

CHAPTER 6 ■ DASHBOARDS AND REPORTING

78

 Opening a product backlog item shows the ID of the work item in the upper-left corner (see Figure 6-2).
This is a unique number that identifies your work item throughout your VS Team Services account. This
means that work items in different team projects within your account will have unique IDs. You can also
change the column options to show the ID for each row. Enter the ID in the search box to immediately open
the Work Item Detail page. Entering a non-existing work item ID or the ID of a work item that you don’t have
access to shows an error message stating 'TF401232: Work item xxx does not exist, or you do not
have permissions to read it.'

 Figure 6-2. The work item ID is shown on the Work Item Detail page

 Figure 6-3. The search filters for work items

 You probably can’t be expected to remember the ID number of every work item in your project.
Fortunately, there are other ways you can search for work items. If you look at Figure 6-3 , you see how VS
Team Services has a couple of predefined filters that you can use (click on the arrow at the right side or place
your cursor in the textbox and click the down arrow to show this popup).

 The Assigned To filter places the text a:"@Me" in the search box. If you then start the search (by
pressing Enter or clicking on the magnifying glass), you launch a search for all work items that are assigned
to you. Instead of @Me you can also enter the (partial) name of someone in your team. The Created By filter
works in the same way, except you will now find all work items that were originally created by the person
you search for.

CHAPTER 6 ■ DASHBOARDS AND REPORTING

79

 The State filter lets you search for work items that are in a particular state. For example, a product
backlog item can be in the New, Approved, Committed, Done, or Removed state (see Figure 6-4). These
states are different per work item type.

 Figure 6-4. The States drop-down shows the possible states of a product backlog item

 Finally, you can directly search by work item type from the search box. You can enter the full or partial
name of the work items you’re looking for. So searching for product or for product backlog item will give you
the same results.

 You can combine these filters in one search by placing a space between them. So the search text S:New
T:"product" searches for all product backlog items that are in the New state. Placing a : (colon) between
your filter and the value allows you to run partial searches. Placing an = (equals sign) searches only for these
values that exactly match what you specified. A third operator you can use is - (minus sign), which specifies
a not operation. So searching for S-New finds any work items that are not in the New state.

 Instead of using the predefined filters, you can also run a keyword search . VS Team Services then looks
for work items that contain your keywords in the Title, Description, or Repro Steps (unique to the bug work
item) fields. If you want to search for a (partial) sentence, you need to put quotation marks around your
words like this: "certain keywords" .

 If you want to search for specific field values, you can enter the name of the field followed by a :
(colon) or = (equals sign) and then the value you want to look for. So searching for T=Bug System.Reason=
Duplicate will search for all bugs that are duplicates. When you want to query against fields containing a
date, such as Changed Date and Created Date, you can use the @Today macro to specify the current date. You
can then subtract a number from it to move back in time. So searching for ChangedDate=@Today-7 gives you
the work items that were modified seven days ago.

 Work Item Queries
 The search box that you used until now is a quick way of defining a query. Queries are items that you create
in VS Team Services (or Visual Studio) that you can share with others and that you can use as the basis of
charts and dashboard widgets. Take the example search text -A:@!Me (searches for all work items that are not
assigned to me). If you run this on some sample data, you get a result shown in Figure 6-5 .

CHAPTER 6 ■ DASHBOARDS AND REPORTING

80

 What you see here is the Queries tab in the Work section of VS Team Services. You are immediately taken
to a query called Search Results and shown the results. If you click on the Editor tab, you see the actual query
that VS Team Services defined for your search. Figure 6-6 shows this query. In this case, there is only one
clause in the query, namely a filter that makes sure that the Assigned To field does not contain your name.

 Figure 6-5. The query results for a search

 Figure 6-6. The query created by VS Team Services for a simple search

 Expanding this query is easy. You can add a new clause by clicking on the green plus icon. You then
select a field or an operator and enter a value. If you scroll through the Field drop-down, you will see a whole
lot of values. These fields are defined on all the different types of work items. One of these fields is the Work
Item Type itself. You can use this field to limit your query to only certain types of work items.

 The Operator drop-down lets you select operators that work with numbers (larger than, less than, etc.)
and text and that let you compare one field to another. The Value field is a text field or a drop-down when
you compare one field to another.

 Clauses built upon fields, operators, and values are the basis of your queries. When you add multiple
clauses, by default VS Team Services will search for items that match all your clauses. You can change the
And/Or drop down to or if you want to return result if one of the two clauses is true or if both are true. If you
want to compare groups of clauses, select clauses by checking the checkbox at the start of each clause and
then clicking on the group icon at the top.

CHAPTER 6 ■ DASHBOARDS AND REPORTING

81

 When searching for work items, you sometimes want to search for relationships between items. Maybe
you want to find product backlog items that don’t have a storyboard. Or you want to see if there are tasks
created for certain bugs. You can search for work items and their direct links or for a whole tree of work
items. Figure 6-7 shows a query that searches for all the product backlog items that are linked to an item that
is assigned to you.

 Figure 6-7. A query for work items and their direct links

 A link in VS Team Services can mean a lot of different things. You have things like the parent or child of
a work item but you also have links like Affected By or Referenced By. The previous query will find product
backlog items with tasks that are assigned to you and product backlog items that are linked to a feature
that is assigned to you. Product backlog items that are not linked to any item that is assigned to you won’t
be shown. If you want to change the type of link, you can do so by selecting the different link types (one or
more) shown in the bottom-right corner of Figure 6-7 . For example, selecting the Child link type will no
longer return product backlog items linked to a feature that is assigned to you.

 The Filter Options drop-down (Figure 6-8) is also interesting. When the option Only Return Items That
Have Matching Links is selected, you won’t get any results that match the top part of your query and not the
bottom part. So, returning to the previous query as an example, you won’t find all product backlog items
even if they have no linked items that are assigned to you. If you select the second option, Return All Top
Level Items, you will find all product backlog items. Items that have linked items that are assigned to you will
be returned in the results. The final option, Only Return Items That Do Not Have Matching Links, negates
the query. In the example, you will then find the product backlog items that do not have linked items that are
assigned to you .

CHAPTER 6 ■ DASHBOARDS AND REPORTING

82

 Figure 6-9. The Query Explorer in VS Team Services

 Figure 6-8. The different filter options when querying for work items and direct links

 Where the work item and direct links query type searches for dependencies (specified by the link type
you select), you can also use the tree type query to search for a whole hierarchy of work item types. This
automatically uses the parent/child relationship to query for items. For example, use this query if you want
to find product backlog items and their tasks or bugs .

 Finally, you can use the Query Across Projects option to search through all the projects that you have
permissions to. By default, this option is not enabled, limiting your search to the current project.

 If you look at the left side of the Queries page, you see a tree of groups of queries that you can use. By
default, a couple of queries are created for you when you start a new project. These are shown in Figure 6-9 .
The top two queries are there by default. The Assigned To Me query returns the same results as running a
search for A="@Me" . The queries beneath Shared Queries are visible to all members of your team. Adding
queries here or modifying them requires you to be a team administrator. When saving your query, you select
a folder to add it to. You can also drag and drop queries to move them around.

CHAPTER 6 ■ DASHBOARDS AND REPORTING

83

 Figure 6-10. A pie chart showing the work items assigned to you, grouped by state

 Charts
 Charts are graphical representations of your query. They can range from snapshots showing the state of
bugs assigned to you to trend charts showing how your query is changing over time. Imagine you want to
see in one glance how many items are assigned to you and what the state of those items is. Creating a chart
for this is fairly easy. Figure 6-10 shows such a chart. The chart is based on the Assigned to Me query that’s
available out-of-the-box. The data is grouped by the State field and rendered as a Pie chart. In this case,
there are two items committed—one is new and one is done. If you want to remove the Done work item
from the chart, you need to edit the underlying query (or not, if you want to feel really good about yourself
after a couple of sprints!).

CHAPTER 6 ■ DASHBOARDS AND REPORTING

84

 Figure 6-11. An area chart showing the total number of assigned work items over time

 As a prelude to the part about dashboards later in this chapter, it’s good to know how easy it is to add
charts to a dashboard. The only thing to remember is that only shared queries can be added to a dashboard.
Your own personal queries cannot be placed on a dashboard. Figure 6-12 shows how you can add a shared
query to the dashboard. In this case, the Work in Progress query shows how the work for this sprint is
distributed over the three team members.

 As you can see in Figure 6-10 , there are a couple of charts you can use from. The snapshot charts look at
the current state of your project. If you look at the pie chart example, you see that at this moment there are
four items assigned to you. If you want to know when items were assigned to you during the last week, you
can use a trend chart. Figure 6-11 shows an area chart, which is a type of trend chart, of the four items that
are currently assigned to you. As you can see, all of them where created somewhere in the last two days.

CHAPTER 6 ■ DASHBOARDS AND REPORTING

85

 Figure 6-12. Adding a chart based on a shared query to a dashboard

 ■ Note Remember that only shared queries can be added to a dashboard. Your own personal queries
cannot be placed on a dashboard .

 Figures 6-13 through 6-19 show the different types of charts that you can create.

CHAPTER 6 ■ DASHBOARDS AND REPORTING

86

 Figure 6-13. Select the bar chart to view the different states as horizontal bars

 Figure 6-14. Select the column chart to view the different states as vertical columns

CHAPTER 6 ■ DASHBOARDS AND REPORTING

87

 Figure 6-15. A stacked bar graph showing the distribution of work across your team members

 Figure 6-16. A pivot table displays the different states set against work item types

CHAPTER 6 ■ DASHBOARDS AND REPORTING

88

 Figure 6-17. A stacked area chart shows a trend of the state changes

 Figure 6-18. A stacked area chart shows the total count of work items as a trend

CHAPTER 6 ■ DASHBOARDS AND REPORTING

89

 Figure 6-19. A line chart shows a line for each state versus time

 Code Search
 Do you search through your code? When inside Visual Studio, you’ve probably searched through files,
projects, and solutions. You can use complex regex expressions or simple keyword searches. But what if you
wanted to search through code in multiple team projects? That’s where Code Search comes in.

 Code Search is a feature of VS Team Services that allows you to search through multiple projects in
multiple repositories in different languages. Why would you want to search through code? There are lots of
scenarios when it would be helpful to do so. Imagine that your company has an extensive set of projects and
you are tasked to build a new feature for your project. You want to know if someone else built something
similar in the past. Running a search through your current project on your local drive is easy. But Code
Search allows you to search through all the projects. The same is true when you’re looking for examples of a
particular API or library. Or what about searching for error messages that a customer reports in a bug? Doing
a quick search will show you the error message not only in your project but also in projects you depend on.

 I use Code Search quite often. I have a Samples Team Project in my VS Team Services account and it
contains all kinds of projects that I use as references. This ranges from Roslyn (the C# and VB compiler) and
 ASP.NET MVC code to code snippets that I found useful. If I ever want to view the internals of a particular
method or just find a certain snippet, I can use Code Search to go through both TFVC and Git repositories.
And Code Search is not just a plain keyword search—it parses your files and understands the actual code.
This allows you to filter your query to only include classes, methods, arguments, and other language types.
This is what makes Code Search so powerful.

 Microsoft implemented Code Search as an extension that you can freely install from the marketplace
(see https://marketplace.visualstudio.com/items/ms.vss-code-search). After you have installed the
extension, you can use the search box at the top of the VS Team Services page to search for code (except
when you’re on the Home or Work tab; then you search for work items).

https://marketplace.visualstudio.com/items/ms.vss-code-search

CHAPTER 6 ■ DASHBOARDS AND REPORTING

90

 Figure 6-20 shows a sample search for the keyword analyzer through the Roslyn code base that I
imported in a project named QueriesAndDashboard . The search results are grouped per file. On the result
page you can immediately inspect the file and see where the keyword is used. On the left side, the Roslyn
repository is selected. Apparently, the MVC repository also has one result. If you want to know who changed
a file , you can view annotations directly in your search results.

 Figure 6-20. The results of a basic keyword search

 Although a keyword search can be helpful, the real power of Code Search is shown when you start using
built-in filters. Figure 6-21 shows which filters you can use. For example, searching for class:Analyzer
limits the results to all places in the Roslyn code that a class called Analyzer is defined. Filtering the search
with: method:analyze* limits your search to all methods that can be found that start with the word Analyze .
The wildcard character * matches all characters, while ? matches only one character. So method:analyze*
matches methods like AnalyzerForLanguage and AnalyzeControlFlow . A search for arg:x? matches
arguments like x1 , x2 , or xx (all found in the Roslyn project!).

CHAPTER 6 ■ DASHBOARDS AND REPORTING

91

 Figure 6-21. Available filters when searching through code

 In addition to filtering on code elements , you can also limit your search to a specific project or a file
path. For example, searching for basetype:IDisposable path:*Test* finds all uses of the IDisposable
interface limited to files that have Test somewhere in the path. You can also combine multiple statements
by using the AND , OR , and NOT operators. Searching for basetype:IDisposable NOT path:*Test* excludes all
results where the word Test is somewhere in the path. Instead of entering the filters in the textbox yourself,
you can also use the checkboxes at the left side of your Code Search to gradually filter down to the results
you want. For examples of all the different filter clauses, you can navigate to the help page shown at the
bottom of Figure 6-21 . You can also find a link to a Channel9 video that demonstrates Code Search use cases.

 Code Search allows you to search through all repositories where you have read permissions. To make
effective use of Code Search, you should have read permissions on as large a code base as possible. This is
something you need to adapt to your company’s regulatory rules.

CHAPTER 6 ■ DASHBOARDS AND REPORTING

92

 Dashboards
 Dashboards offer an easy way to create a view of the data in your project. By using the standard widgets
and creating your own queries to fill widgets with data, you can quickly create a dashboard that fulfills
your needs.

 When you create a new team project, VS Team Services creates a standard Overview dashboard for you.
This dashboard consists of widgets such as:

• Information on how to get started

• Data on work in progress

• How to create work items

• How to access different areas of the product

• How to manage team members

 Figure 6-22 shows this default dashboard.

 Figure 6-22. The default Overview dashboard helps you get started and gives you a quick overview of your project

 Widgets on the dashboard can be rearranged by entering edit mode and dragging widgets to the desired
location. Configurable widgets have an ellipsis at the top right that lets you edit them. Certain widgets, such
as the Welcome and New Work Item widgets, don’t have any settings. You can only add and remove these
widgets from your dashboards. Other widgets can also be configured. For example, clicking on the Team
Members widget opens a window where you can add and remove team members. The Query Results widget
that’s added by default is backed by a query that you can change from the configuration blade or by opening
the query in the work hub (see Figure 6-23).

CHAPTER 6 ■ DASHBOARDS AND REPORTING

93

 Figure 6-23. Configuring a query widget on your dashboard

 What’s nice about dashboards is that they can be made available to your team as well as to stakeholders
who have access to VS Team Services. Since you can configure multiple dashboards, you can create
dashboards targeting specific stakeholders and team members. By default, there is a selection of widgets
provided; however, you can increase the selection by adding extensions or creating your own. Some of these
widgets are pretty simple, like the Visual Studio widget that allows you to open your project in Visual Studio.
The Welcome widget is a getting started guide for your team project that links to different parts of your
projects. Other widgets offer more complex functionality like the Pull requests widget that shows active pull
requests per Git repository.

 Alerts and Notifications
 Another feature of VS Team Services is the support for alerts and notifications . Imagine that you want to
know when a build fails, a code review is assigned to you, or someone assigns a work item to you. Of course
you can find all these in the VS Team Services Web Access interface, but having a system in place that
notifies you by e-mail can speed things up.

 This is all done by creating alerts for the team projects your interested in. An alert uses a filter that looks
a lot like the queries that you already looked at in the beginning of this chapter. You manage your alerts in
the Team Project settings. Figure 6-24 shows the Alerts tab in Web Access . As you can see, you set your own
alerts and set alerts for the whole team.

CHAPTER 6 ■ DASHBOARDS AND REPORTING

94

 Figure 6-24. You can manage alerts for your project in the Team Project settings

 Creating a new alert is simple. Let’s say you want to get an e-mail whenever a code review is assigned
to you. If you look in the Create New Alert When section, you see there is already a predefined alert for code
reviews. If you select this alert, you can configure it as shown in Figure 6-25 . As you can see, the Alert filter
uses the same approach as regular queries.

 Figure 6-25. Configuring an alert

CHAPTER 6 ■ DASHBOARDS AND REPORTING

95

 Aside from the query, you can also change the subscriber (if you’re an admin) and the format of the
message. When using HTML or plain text, you specify an e-mail address as the recipient. You can also
choose SOAP . This allows you to specify an endpoint that’s called whenever the alert triggers. So if you want
to automate things, such as use a build monitor that changes color whenever a build fails, you can use a
SOAP call for this.

 You can view, remove, and edit your alerts. You can also find alerts for a specific user. This can be
handy, especially when you are administering the VS Team Services environment. If a particular user
complains that he gets to many e-mail alerts, you can quickly search for his name and see which alerts are
configured.

 If you want to create an alert that’s not out-of-the-box available, you select the Other option in the
Create An Alert When section. This shows a window where you can select an alert template. You have four
categories of alerts: work item, code review, checkin, and build. This gives you a lot of freedom to set up your
alerts and covers a broad spectrum of events.

 There is one other type of event that will send an alert to your mailbox: mentions. A mention allows you
to specify a team member by name, which will immediately send an e-mail to him. One place you can use
this is in the discussion part of a work item, as shown in Figure 6-26 . Other places, like adding reviewers to a
Git pull request, also allow you to send mentions. Just type an @ and the first three characters of someone’s
name and see if the mention window pops up. The e-mail that the mentioned person receives looks like
Figure 6-27 .

 Figure 6-26. Using mentions in a work item discussion

CHAPTER 6 ■ DASHBOARDS AND REPORTING

96

 Summary
 In this chapter you looked at queries, Code Search, dashboards, and finally alerts and notifications. You
learned how to use the search box to run a quick work item search. You’ve also seen how you can use the
query editor to create more complex queries. You can save these as personal or shared queries. You can then
create charts from these queries and pin them to a dashboard. Dashboards are composed of widgets that
you can add, remove, and configure. You can create as many dashboards as required and share those with
your team. You also looked at Code Search, which is a feature in VS Team Services that allows you to search
through multiple repositories for shared code, comments, examples, or any other use cases you can think of.
Finally, this chapter discussed alerts and notifications. You can easily set alerts that send an e-mail or trigger
a SOAP endpoint. You’ve also seen how to mention team members to make sure they notice a discussion or
something else that’s important for them in VS Team Services.

 This was the final chapter of the “Plan” part. The next chapter is about Version Control in VS Team
Services. You’ll learn about Git and Team Foundation Version Control and see how you can use them in your
projects.

 Figure 6-27. A mention sends out an e-mail to your target

 PART III

 Code and Build

 Code is essential to your application. Without code there is nothing to test, deploy, and use.
Developers write code and are good at writing it. They can crank out as many lines as they want.
However, writing code itself will not get you to a DevOps process. This part goes into the details of
how to work together as a team by sharing code in an effective way. You will also learn what Visual
Studio can offer you to fight bad quality code and how to set up a continuous integration process to
monitor the state of your code.

99© Wouter de Kort 2016
W. de Kort, DevOps on the Microsoft Stack, DOI 10.1007/978-1-4842-1446-6_7

 CHAPTER 7

 Setting Up Version Control

 In this chapter you’re going to learn what Visual Studio Team Services can do for you when it comes to
storing your code in version control . You will learn what version control is and the two different flavors that
VS Team Services offers: Team Foundation Version Control and Git. You will also learn some best practices
for structuring your code through branches and how to take things a step further with feature toggles.

 Introducing Version Control
 Before I got into professional software development I did not know what version control was. I stored my
code on my hard drive and made copies that I time stamped to take backups. This process quickly breaks
down when working in a team. Sharing code and merging all the work that everyone does is a requirement
for building software together. When I started working as an ALM consultant, I was extremely surprised to
still find a company that used a shared network folder to share code within the team. As you can understand,
this gave them quite some problems. They overwrote each other’s changes, forgot to merge files, and
sometimes completely missed changes. All this resulted in bugs and loss of time.

 Version control is a basic need for development teams. Version control offers you a way of storing your
code in such a way that you can easily share it with other team members. Changes are automatically tracked
so that history is kept. Individual developers can get the latest changes downloaded to their computer and
merged with their own changes. If you are in the unfortunate situation that your developers are not yet using
version control, this is absolutely the very first thing you should adopt.

 Two main flavors of version control are popular:

• Distributed Version Control

• Centralized Version Control

 Centralized version control uses a centralized server that stores all the files and the history of the whole
development team. Clients connect to the central server when they want to view the history of a file or
want to undo their local changes (see Figure 7-1). The centralized server knows the state of each file and is
capable of supporting operations like merging changes, rolling back to previous versions, and figuring out
who made which change. Things go wrong when developers work on the same files for a long time and then
try to merge those changes. This will always cost you time since you have to figure out which lines to keep
and in which order.

CHAPTER 7 ■ SETTING UP VERSION CONTROL

100

 Distributed version control does not require a centralized server. Instead, each client not only has a
snapshot of the latest version of the files but also the complete history of them. This means that many tasks,
like undoing changes or viewing history, can be done locally. This is more than just putting code on a file
share. Git, the distributed version control system supported by VS Team Services, keeps track of everything
that’s happening in your repository. Each committed step is added to the history of the project, allowing you
to switch very fast between versions, undo changes, and compare files. Whenever developers want to share
some code with someone else, they share the whole repository, including all history (see Figure 7-2).
Of course, these processes are supported by VS Team Services and this doesn’t mean you have to manually
copy folders between machines. The same issues as with centralized version control happen when
developers work on the same files for a long time without merging their changes. Manually merging those
changes takes time and is error prone.

 Figure 7-1. Centralized version control

CHAPTER 7 ■ SETTING UP VERSION CONTROL

101

 One area where these two types of version control differ greatly is branching. Imagine that you want
to work in parallel on different versions of your code. You have your application running in production
and bugs come in. In the meantime, your team is working on a new version of your product. You can fix a
bug in the current codebase your team is working on, but what do you ship? Do you ship a new version of
your application with features that are not finished yet but that has the bug fixed? That’s probably going to
introduce some new bugs and unhappy customers. Preferably, you want to fix the bug in the codebase that
is running in production. You could create a copy of your codebase each time you do a release and store it
somewhere, but that is the scenario you are trying to avoid.

 Instead, you can use a technique called branching . To understand branches, think about a tree. A
tree has a trunk, which is the main code line. A branch is a fork of the trunk. This means that you create
a separate path of code that diverges from the trunk. Now the difference with code is that you can merge
the changes from a branch back into the trunk. If you take the previous example of having a version in
production and doing new development, you would have your new development on the trunk. When
you do your release, you create a branch at that point. Any bug fixes can be done on the branch and when
successful, merged back into the trunk.

 Figure 7-3 shows an example of a branching strategy . You have a main branch and then the servicing,
hotfix, and release branches.

 Figure 7-2. Distributed version control

CHAPTER 7 ■ SETTING UP VERSION CONTROL

102

 As you see, branching scenarios can be very complex. You should try to avoid making things too
complex since branching takes time. Merging changes between branches and keeping track of which
branches contain which changes is hard. This can be especially hard when development has gone in a
different direction and there are many conflicts. A conflict happens whenever two people change the same
line of code in the same file. As long as it’s on different lines, VS Team Services can do an automated merge.
But when the same line is changed, you need to manually do the merge between these two files. This comes
down to selecting which changes you want and in which order.

 Distributed version control systems , however, are very good at branching. You have the entire history
local, so you can create new branches and merge between branches without contacting the server. Although
you don’t contact the server, you still need to be aware of what your team is doing. Working on the same files
can still create merge conflicts when you try to merge your repositories. Git, the distributed version control
system that you’ll work with when using VS Team Services, can determine the exact changes between two
branches and make it even easier to branch. You can even create branches that you only have locally and
never share them with anyone. It is not uncommon for developers used to distributed version control to
create a new local branch for every feature they start working on. This does not mean they push all those
branches to the server but locally it keeps things organized. Once done, they do a local merge (or a rebase
when you’re working with Git) and send the final result to a shared server.

 With centralized version control , branching is a more complex operation. To create a branch, the server
is contacted. The new branch is then created at the server and you get a local copy of it. This makes the
branch visible to everyone on your team. Creating a quick branch and destroying it when you’re done while
keeping things locally is not supported in centralized version control. When submitting your changes to the
branch located on the server, you can still get merge conflicts if someone else has submitted changes in the
mean time.

 Choosing your type of version control influences the way your team works. Because of the ease of
branching, teams using distributed version control will create short-lived branches more easily, thus
allowing them to quickly experiment and work in parallel. Centralized version control also supports
branching but since it is a little more difficult, teams tend to use other ways of organizing their version
control.

 In addition to branching, a new method is gaining popularity that fits nicely with a DevOps strategy:
 feature toggling . Since branching has its shortcomings (time consuming, merge conflicts, etc.), wouldn’t
it be best to avoid branching? However, how then would you work on different parts of your project
simultaneously without shipping unfinished features to your customer? The section called “Choosing a
Branching Strategy,” later in this chapter looks at feature toggling in more detail.

 Figure 7-3. A sample branching strategy

CHAPTER 7 ■ SETTING UP VERSION CONTROL

103

 DISTRIBUTED VERSION CONTROL AND LARGE FILES

 Since distributed version control systems share all history with all clients, storing large files becomes
an issue. When I started a new application with a distributed version control system, in the first week
a developer thought it would be nice to store a large video file in version control. The other developers
tried to get the latest version of the code but all had a timeout because the file was too large to
download. The original developer then removed the file, thinking this would solve the issue. However,
since distributed systems share all history with all clients, the large file was still a part of the history and
still needed to be downloaded by all team members. Fortunately, when you know what you’re doing,
you can rewrite history, effectively removing the large file completely. This is not an easy operation
however and requires all the team members to synchronize and run some commands locally. Absolutely
something you want to avoid! There is one solution, using Git-LFS (Large File Storage). This is an
extension to Git that allows you to place large files on a shared server and only put a pointer to the file in
your history. Although this works, it’s still a best practice to avoid checking in large files when using Git.

 VS Team Services has support for both distributed version control in the form of Git and centralized
version control in Team Foundation Version Control (TFVC). Both can be used from within Visual Studio
and through Web Access. If you want, you can also mix both types of version control in one team project.
This allows you to have TFVC and Git repos side by side without having to create additional team projects.
Feature toggling is something that is independent of your source control strategy because you implement it
in your code. The following part discusses how to work with Git and TFVC. After that, you’ll look at different
branching strategies and how feature toggling can be implemented.

 Using Team Foundation Version Control (TFVC)
 Team Foundation Version Control (TFVC) has been a part of TFS since the very first version. Microsoft
developed TFVC to help deal with the extremely large projects they were running internally. TFVC is a
centralized version control system. TFVC can easily manage projects with more than 100,000 files. All those
files are stored on the central server and clients only download the latest snapshot.

 TFVC has a couple of key concepts that you need to know to work effectively with it:

• Workspace

• Get Latest and merge conflicts

• Checking in a changeset

• History and annotations

• Shelvesets and suspending your work

• Branches

• Check-in policies

 Workspace
 All files are stored on the server. When you want to work with the code on your own PC, you create what’s
called a workspace . A workspace is a mapping between a location on the server and a location on your hard
drive. Each PC that you work on will have a unique workspace name that consists of your computer name
and the path where you store the data locally.

CHAPTER 7 ■ SETTING UP VERSION CONTROL

104

 ■ Note I have seen this gone wrong with a team that used a virtual machine with the same machine name
that they all worked on. TFVC got confused and this led to all kinds of errors.

 Workspaces come in two flavors:

• Local workspaces

• Server workspaces

 Figure 7-4 shows the configuration options for a workspace. The workspace has a name and a location
on your hard drive. The Location option configures if your workspace is local or server.

 Figure 7-4. Configuring workspaces in TFVC

CHAPTER 7 ■ SETTING UP VERSION CONTROL

105

 Until Team Foundation Server 2012, only server workspaces where supported. A server workspace
has an active connection to the TFVC server. Every time you change a file, Visual Studio contacts the server
and signals that you are changing the file. This process is called check-out . Because of the connection to the
server, you can always see which files are being edited by any of your team members. This also allows you to
lock files and prevent others from checking out those files.

 Having a permanent server connection, locking files and explicitly checking them out is a hindrance for
many teams. You can’t work offline and you slow down work because team members have to wait on each
other. This is why Microsoft developed local workspaces, which is the current standard. In a local workspace,
you can freely work on all files without having a server connection and you don’t lock files anymore. This is
the preferred option and you should only look at server workspaces when your project gets very big (more
than 100,000 files).

 With big projects there is another option. A workspace mapping is recursive. This means that if you
map the root folder of your version control repository, you download all child folders and files to your
computer. This can be a huge amount of data, possibly containing data that you won’t need to do your
work. To help you with this, you can cloak folders . This means that these folders and their children won’t be
downloaded to your PC. Figure 7-5 shows an example of a working folder that’s cloaked. In this scenario, the
 BuildProcessTemplates folder won’t be downloaded to my PC.

 Figure 7-5. Cloaking a folder in a workspace

 You choose the type of version control you want to use when starting a new team project. However,
since you can combine TFVC and Git in a single team project, you can always add extra repositories. Once
you’ve created a team project based on TFVC you are directed to the Overview dashboard. The easiest way
to create a workspace mapping is to find the widget shown in Figure 7-6 and select Open in Visual Studio.

 Figure 7-6. The Visual Studio widget lets you open your project in Visual Studio

 After launching Visual Studio, you can use Team Explorer (View ➤ Team Explorer) to map your workspace.
Visual Studio is clever enough to know that you don’t have a mapping yet and shows you an example mapping
that you can change or accept. Figure 7-7 shows what this looks like. When you click Map & Get, the workspace
mapping is created and the current versions of the files on VS Team Services are downloaded to your PC. Since
this is an empty project, there are no files to download but the mapping is created.

CHAPTER 7 ■ SETTING UP VERSION CONTROL

106

 Figure 7-7. Configuring a workspace mapping in Visual Studio

 Checking in a Changeset
 Now that you have a local workspace, you can start adding files to it. Uploading the changes you made
locally to the server is called a check-in in TFVC. When you change multiple files, those changes are grouped
in a changeset . A check-in sends the changeset to the server. If there are merge conflicts, VS Team Services
will try to solve those automatically. If this doesn’t work, you get an error and you need to run a manual
merge. It’s a best practice to always run a Get Latest command before you do a check-in so you can be sure
you’ve fixed all merge conflicts and validated that the code still works before checking in.

 When checking in files, you can add a comment. This makes it easy for your teammates (and for you
somewhere in the future!) to understand which changes are in this check-in. You can even make a comment
required (see “Check-In Policies” later in this chapter). In Part II of this book, you’ve seen how you can pick
up a work item through the My Work panel. When you’ve selected a work item and set it to in progress, your
changeset will be automatically linked to the work item.

 And that’s where your traceability starts. By linking changesets and work items, you can easily see which
code changes were made to implement a certain feature. Storyboards, code reviews, test cases, and finally
deployments are all linked this way.

 When you have an empty workspace, you probably want some code in it. After mapping your
workspace, Team Explorer looks like the one shown in Figure 7-8 . At the bottom, you see the option to create
a new solution. You can use this option to create a new project and add it to your local workspace. This is
nothing more than creating the solution in the folder on your local drive that’s mapped to VS Team Services.

CHAPTER 7 ■ SETTING UP VERSION CONTROL

107

 While creating your project, you need to make sure the Add to Source Control button is checked, as
shown in the bottom-right corner of Figure 7-9 .

 Figure 7-8. Team Explorer helps you create a new solution in your local workspace

CHAPTER 7 ■ SETTING UP VERSION CONTROL

108

 After the project is created, you can view the changes that are ready to be checked in through the Team
Explorer ➤ Pending Changes. In Figure 7-10 , you see how a check-in consists of a comment and one or
more included files. Excluded changes are those changes you have locally but that you don’t want to send
to the server.

 Figure 7-9. Adding a newly created project to source control

CHAPTER 7 ■ SETTING UP VERSION CONTROL

109

 After checking in your local changes, you can view the result in the Web Access of VS Team Services
by navigating to the Code hub . As you can see in Figure 7-11 , the Code hub allows you to explore your
repository within your browser. You can also view the changesets and shelvesets (more on shelvesets later in
this chapter).

 Figure 7-10. Check-in pending changes

 Figure 7-11. Exploring your repository through Web Access

CHAPTER 7 ■ SETTING UP VERSION CONTROL

110

 Get Latest and Merge Conflicts
 When you’re working in a team, you won’t be the only one who checks in changes. To get the latest changes,
you run a Get Latest command locally. Get Latest goes to the server and checks which files where added,
deleted, or changed compared to your version. Visual Studio then downloads these changes and applies
them to your local workspace.

 You should run a Get Latest quite regularly. Developing your code locally without synchronizing with
your teammates will lead to problems. You start editing the same files—adding, deleting, or moving files
around—which then leads to merge conflicts and before you know it synchronizing all the changes takes
a lot of time. You can execute a Get Latest version from a couple locations in Visual Studio. One is in the
Source Control Explorer, as shown in Figure 7-12 . The Source Control Explorer can be opened from the
Team Explorer. The Source Control Explorer shows you which folders you have mapped locally, which
files are downloaded, or which files are out of date. When you are working on an opened solution in Visual
Studio, you can also right-click on any file or project or on the solution itself and run a Get Latest from the
Solution Explorer. This is a recursive operation, so running Get Latest on your solution downloads all the
changes in your project. Running it on a single file only downloads the latest version of that file.

 Figure 7-12. Executing a Get Latest version from the Source Control Explorer

CHAPTER 7 ■ SETTING UP VERSION CONTROL

111

 A merge conflict happens when you and someone else on your team change the same line in a file. As
long as your changes don’t overlap, Visual Studio is smart enough to sort out the changes and merge them
automatically for you. But whenever you change the same line, manual intervention is needed to sort things
out. Merge conflicts can cost you a lot of time. Doing a regular Get Latest and communicating clearly on
which part of the code you and your team members work helps avoid conflicts.

 Figure 7-13 shows a merge conflict. Locally you’ve edited line 9, which is no problem. You’ve also edited
line 13, which has been edited by another developer and already checked in. Visual Studio automatically
merges line 9, but line 13 (14 locally) gives an error. You need to tell Visual Studio what you want it to do. Do
you want to incorporate your local changes? The changes already on the server? Or a mix of both? You can
use the checkboxes on the left and right to select the parts of your code to include. The result shows at the
bottom. You can then manually edit the bottom part and save the result. After resolving the merge conflict,
you can test your code locally and then check in your changes to share them with your team.

 Figure 7-13. Solving a merge conflict in Visual Studio

 History, Annotations, and CodeLens
 When a developer checks in a changeset in TFVC, the latest version of the codebase is updated. The details
of the changeset are also stored. This means that TFVC stores a detailed history of all the changes that ever
happened to your codebase. This allows you to go back in time. You can view previous versions of your code
and compare the changes that where made between two changesets. This can be handy when a new bug is
introduced and you want to investigate the changes that were made to a file or when you want to know what
changed on a project since you last worked on it.

CHAPTER 7 ■ SETTING UP VERSION CONTROL

112

 History can be viewed at the file, folder, project, and solution level. When viewing a specific file, you
can activate the Annotation feature. This allows you to see in one overview which changes were made and
by whom. Of course, you need to avoid a culture where you start using this feature to blame people. Finding
out who created a bug can be useful, but don’t start using it as a weapon. Another way to keep track of what’s
happening with your code is CodeLens. CodeLens is an indicator that is shown directly in your code editor
in Visual Studio and gives you information on your code. When connected to TFVC you will see if you have
the latest version locally, who made changes, and what they did.

 To view the history of a file, you can use the context menu and choose Source Control ➤ View History,
as shown in Figure 7-14 . This opens the History window, where you see a list of all changes that affected
this file. You can open the individual changes to view the content of the file at that moment in time. You can
also select two different changesets and choose Compare. This will open the window that you can see in
Figure 7-15 and show both files side by side. When you select the Annotate option for a file, you see which
person modified which lines. This way, it’s easy to find out who made a particular change. In Figure 7-16
you see that I worked alone on this simple program. I did, however, first create a revision 21 and later
23 that added a single line. Finally, Figure 7-17 shows what this looks like in CodeLens . You can see that
CodeLens is visible in your code editor at the top of each member. You can view who made the last change
and you have direct access to a list of changes. If your version of the code is out of date, CodeLens also
signals this.

 Figure 7-14. You can view the history of a file, project, or solution

CHAPTER 7 ■ SETTING UP VERSION CONTROL

113

 Figure 7-15. Comparing two versions of a file

 Figure 7-16. The Annotate feature shows which changes were made, when they were made, and who made them

CHAPTER 7 ■ SETTING UP VERSION CONTROL

114

 Shelvesets and Suspending Your Work
 When do you check in code? When you’re ready to go home? When it compiles? When it runs? When you
have tested it thoroughly? I hope that you don’t check in code without compiling, running, and testing it.
Remember that the moment you check in code, your team members have access to it. Therefore, when you
check in some non-compiling code and others do a Get Latest, their local version is suddenly broken. That’s
not going to make your team members particularly happy with you (in Chapter 9 , you will learn how you can
avoid this scenario).

 But what if your code isn’t finished yet and you want to go home for the day? As long as your code is
not checked in, a crash of your computer or some other incident could mean lost code. Moreover, as long as
the code is local on your hard drive, you can’t share it with a team member. Fortunately, VS Team Services
supports a concept called shelvesets to help you with these particular problems. A shelveset allows you to
store a changeset on the server without adding it to the current codebase and sharing it with team members
directly. Each team member has his own “shelf,” where he can store as many shelvesets as he wants. You can
share a shelveset with a particular team member, allowing you to share code without hindering the other
team members. Figure 7-18 shows how to create a shelveset.

 Figure 7-17. CodeLens shows history information in a hub in your editor

http://dx.doi.org/10.1007/978-1-4842-1446-6_9

CHAPTER 7 ■ SETTING UP VERSION CONTROL

115

 You navigate to the Pending Changes window and choose for Shelve instead of Check-in. You then need
to name the shelveset. You also select if you want to keep the changes you shelve locally. If you don’t select
this option, your changes will be rolled back and you need to restore your shelveset to continue working with
your changes. Sometimes, this is exactly what you want because something else comes up and you want to
put your changes away for a moment.

 To restore a shelveset, you go to Pending Changes ➤ Actions ➤ Find Shelvesets (see Figure 7-19). This
opens a window showing all your shelvesets. You can then simply select a shelveset and restore it. If you
want to open a shelveset from someone else in your team, you need to search for their name.

 Figure 7-18. Shelving pending changes

CHAPTER 7 ■ SETTING UP VERSION CONTROL

116

 Shelvesets are also the basis of other VS Team Services features, namely Suspend and Code Review.
Suspend lets you store the current state of your code and the whole state of Visual Studio (which files you
have open, breakpoints you’ve set, and even the layout of windows) on the server. You can then perform
some other work (like the bug that your manager suddenly raises), then resume from your suspended work
and continue as if nothing happened. This allows you to quickly switch contexts and still keep your work.
You suspend your work from the My Work window in Team Explorer, as shown in Figure 7-20 . This location
also shows you the work you’ve previously suspended and allows you to resume work. Resume will restore
your code changes and other work like breakpoints and dialogs.

 Figure 7-19. You can find a shelveset from the Pending Changes window

CHAPTER 7 ■ SETTING UP VERSION CONTROL

117

 Code reviews are also based on shelvesets. A code review allows you to ask a fellow team member
(or a group of users) to look at your code. They can add comments and then send the review back to you.
Code is shared through a shelveset, allowing the other users to see your code changes without having to
check them in. You can request a code review in the My Work panel, as shown in Figure 7-21 .

 Figure 7-21. You can request a code review from the My Work panel

 Figure 7-20. You can suspend and resume work from the My Work panel

CHAPTER 7 ■ SETTING UP VERSION CONTROL

118

 To start a code review, you need to add one or more people who you want to do the review. You also
add a title and description. Optionally, you can add links to the work items that describe the feature you’re
working on. Once you have done this, you submit the request. Figure 7-22 shows a code review request.

 The reviewer sees the request in the My Work panel. A reviewer can add an overall comment to a review
request. She can also add comments to the individual changes. When the reviewer is done, the review is
submitted. Figure 7-23 shows a code review response .

 Figure 7-22. Requesting a code review

CHAPTER 7 ■ SETTING UP VERSION CONTROL

119

 Branches
 As discussed in the introduction, branching comes into play when working in parallel on different versions
of the same codebase. Branching can be a powerful feature but it can also be dangerous (see the “Choosing
a Branching Strategy” section later in this chapter). TFVC supports branching directly from Visual Studio.
You can view visualizations of your structure and branch and merge from the Source Control Explorer. A best
practice when starting a TFVC project is to add a single Main folder and add all your artifacts beneath that
folder. If you ever need branches in the future, you can easily convert your Main folder to a branch and then
create new branches based on Main .

 If you view the context menu in Figure 7-24 , you see the Branching and Merging submenu . You choose
Branch to create a new branch and Merge to merge the changes of one branch into another.

 Figure 7-23. Responding to a code review

CHAPTER 7 ■ SETTING UP VERSION CONTROL

120

 When creating a branch, you first select the source of your new branch. You then enter a target name for
your branch. Figure 7-25 shows an example where you branch the Main branch to a Dev branch. The Branch
from Version drop-down is interesting. By default, the latest version is selected. But if you want to, you can
also branch from a specific changeset or a label. This allows you to create a branch from a point somewhere
in the past. Finally, you select if you want to enable branch visualization and if you want to download the
branch to your workspace. This means that when you’re working with multiple branches in TFVC, you have
several folders in your local workspace that contain these branches (as you’ll see, this is different with Git).
When working with branches, it’s important to always make sure that you’re in the correct branch before
making a change.

 Figure 7-24. You can branch and merge from the Source Control Explorer

CHAPTER 7 ■ SETTING UP VERSION CONTROL

121

 Now imagine that you have done some work in the Dev branch and you want to merge those changes
to the Main branch. Figure 7-26 shows the Merge window. You select a source and a target branch. By
default, you merge all changesets from the source to the target branch. You can also pick and choose which
changesets to merge but that’s something that goes wrong more often than right. Remember that it’s easy to
merge between Dev and Main because they have a direct link: you branched Dev from Main . If there is no direct
link between two branches you can do what’s called a baseless merge . Baseless merges are hard to execute.
Since Visual Studio has no knowledge about the relationship between these branches, you need to do a lot of
manual merges. It’s best to avoid the baseless merge, but if you really need it, it’s a powerful feature.

 Figure 7-25. Creating a new branch

CHAPTER 7 ■ SETTING UP VERSION CONTROL

122

 Check-In Policies
 Do you have a minimum quality gate for your code? For example, are developers allowed to check in code
 that doesn’t compile? Are they required to add a comment to their check-ins? Ensuring that developers
compile their code and run certain tests before they check it in to the server will help you improve quality
throughout your whole process. Visual Studio and TFVC support this with check-in policies. A check-in
policy runs each time the developers want to check in code. The policy can check certain things (Does the
code compile? Is there a work item associated with this check-in?) and can deny the check-in if the policy
fails. You can even create your own policies, distribute these among your team, and implement quality
checks that are important to you.

 You can configure a check-in policy from within Visual Studio. If you navigate to Team Project Settings
➤ Source Control ➤ Check-in Policy and then select Add, you see the window shown in Figure 7-27 . These
four check-in policies are available out of the box. The Builds policy makes sure that a developer runs a
successful build of his code before checking-in. Changeset Comments Policy forces developers to add

 Figure 7-26. Merging to branches

CHAPTER 7 ■ SETTING UP VERSION CONTROL

123

comments to their check-ins. The Code Analysis policy makes sure that developers run Code Analysis locally
before a check-in. And finally, the Work Items policy makes sure that developers associate a work item with
a check-in.

 Now imagine that you’ve selected the Changesets Comments Policy. If a developer now tries to check in
some code without entering a comment, the warning in Figure 7-28 is shown. As you can see, there is an option
to override the warning. You can set up an alert (see Chapter 6 for more info) to inform you whenever someone
overrides the policy. Unfortunately, there is no option to disable overrides when using VS Team Services.

 Figure 7-27. Add a check-in policy for a team project

 Figure 7-28. A policy warning is shown when checking in changes

http://dx.doi.org/10.1007/978-1-4842-1446-6_6

CHAPTER 7 ■ SETTING UP VERSION CONTROL

124

 Using the Git Version Control System
 Git is a distributed version control system that’s very popular. Git was created by Linus Torvalds for
development on the Linux kernel. Git, which is British slang for “unpleasant person,” is by some taken as a
description of how Git works. That doesn’t mean you should stay away from Git. It’s just that if you come from a
centralized version control background such as TFVC it can be difficult to get accustomed to Git. But it’s worth
it. The pure speed of Git and the flexibility it gives you are enough reason to give Git a serious look. I know
of some ALM experts who even say that a team can’t be really Agile and DevOps without using a distributed
version control system like Git. Personally, I think that opinion is too strong. I’ve seen teams be successful with
TFVC and I have seen them fail with Git. But it does give a clear signal as to how interesting Git is.

 When creating a new team project in VS Team Services, there are a couple of important configuration
options you set. First of all, you select the process you want to use (Agile, CMMI, or Scrum) and then you
select the version control system you want to use: Git or TFVC. Fortunately, it’s also possible to mix Git and
TFVC in one team project.

 Git is based on a couple of key actions :

• Clone

• Commit and Push

• Fetch and Pull

• Branch

• Fetch

• Pull Request

 The following sections discuss each of these actions.

 Clone
 Working with a Git repository starts with a clone. You enter the URL of the external repository and then clone
its content to your development machine. A clone gets you all the history of the repository and copies that
to your machine. After the clone, you are completely self-sufficient. A clone can be compared to setting up
your workspace mapping in TFVC. The significant difference is that in TFVC you download only the latest
snapshot of the code, while Git gives you the whole history.

 Since Visual Studio supports the standard Git protocol, you can use Visual Studio to not only work with
a Git repository in VS Team Services but also on GitHub or other hosted Git repositories. This makes it very
easy to use Visual Studio to work with Open Source projects hosted on GitHub. You can even create a local
Git repository and never share it with anyone.

 You clone a Git repository from within your Team Explorer. If you look at Figure 7-29 , you see that
my Team Explorer is connected to a VS Team Services account with both a Git and a TFVC project. If you
select the Git project and choose Clone, you’re asked for the location on your computer where you want to
store the project. If you then click Clone, the project is downloaded to your local machine. After cloning the
project, you can start working with it.

CHAPTER 7 ■ SETTING UP VERSION CONTROL

125

 Commit and Push
 I find commits one of the best features of Git. With TFVC, you make your changes locally, which forms
a changeset, and you then upload this changeset as a whole to TFVC. Undoing local changes undoes all
changes that you’ve made since your last check-in. If you want to work in small batches, you have to upload
your code each time to TFVC. But what if your code isn’t completely finished yet? You can’t upload it to
TFVC yet and you also lose the small batches that you can undo. Using shelvesets for this also isn’t optimal
since shelvesets don’t contain history.

 A local Git repository is truly local in the sense that you can commit changes to your local repository
without uploading them to the server just yet. This means that while working you can commit your changes
in small batches. These commits are stored locally and when you’re done, you take your commits and push
them to the server. You can undo local commits (before you pushed them) and so create a very flexible way
of working. When you have multiple local commits, you can even squash them into one commit and send
that to the server. This way, you can work very fine-grained on your development PC without flooding your
team members with commits.

 The most important change from a TFVC perspective is that you don’t directly check in your changes.
First you commit them locally, and then you push your local commits to the server.

 Figure 7-29. Cloning a Git repository

CHAPTER 7 ■ SETTING UP VERSION CONTROL

126

 ■ Note At the time of writing, the Git tooling support in Visual Studio is still being worked on. Many of the
Git commands are already supported from within the IDE. However, some commands, such as squash and
 amend , are not and you need to use the command line to execute those commands. For more info, see
 https://msdn.microsoft.com/en-us/library/dd286572.aspx .

 Figure 7-30 shows the Changes panel that you can open while working with a Git repository. Here you
see the changes that were made and if these changes are included or not. You are required to enter a commit
message. You then choose Commit to add these changes to your local repository. This is not yet available on
the server and others won’t see your changes yet.

 To share your changes with others, you run a Push command. Push takes your local repository and
sends the changes to a remote Git repository. This two-phase commit and push is typical for Git. Committing
is only locally, pushing is what sends your changes to the server. As long as changes are not pushed, you
can undo them locally. You can even merge multiple commits together and push them as one to the server.
Pushing is done from within the Synchronization panel in Team Explorer. If you look at Figure 7-31 , you
see one outgoing commit. This list contains all the commits you did locally since your last push (incoming
commits are discussed in the next section). To send your commits to the server, you click Push.

 Figure 7-30. You first commit your changes locally

https://msdn.microsoft.com/en-us/library/dd286572.aspx

CHAPTER 7 ■ SETTING UP VERSION CONTROL

127

 Fetch and Pull
 When you want to update your local repository with changes made by your team members, it’s time do a
pull. Pull gets all the changes that where made since you got your latest version and downloads these to your
PC. If there are conflicts, Pull will immediately start trying to merge them. Fetch, on the other hand, lets you
first get a list of all the commits that you missed so you can inspect them before starting the merge. Figure 7-32
shows what happens when there are changes and you select Fetch. In this case, one remote change is not yet
merged with your local repository.

 Figure 7-31. You can push local commits to a remote server

CHAPTER 7 ■ SETTING UP VERSION CONTROL

128

 You also see an option called Sync. Sync runs first a pull and then automatically a push if there are no
conflicts. I wouldn’t recommend using this option. Sync sometimes has problems merging your changes.
This will add an additional commit and mess up your history.

 Branch
 Branches are where Git really excels. In TFVC, you contact the server to create a branch. The branch is
immediately visible to the whole team and the server controls merges between the different branches. Since
Git has the concept of a local repository, you can also create branches locally. Say for example that there is a
master branch at the server that all developers use to share code with each other. You work locally on a new
feature and you want to keep this feature isolated from the other developers. Git allows you to create a local
branch that exists only on your development PC. You make your changes in that branch and when you’re
done you merge the branches locally and push your changes. You can also choose to push the local branch,
making it a public branch that others can see. It’s not uncommon for experienced Git users to create and
delete multiple branches during a day.

 Git branches in Visual Studio are managed from the Team Explorer ➤ Branches panel. If you look at
Figure 7-33 you see the branching structure of a newly cloned project. The remotes/origin point to your
project on VS Team Services. The local branch is bold and is currently active.

 Figure 7-32. You can fetch and pull changes from a remote repository to your local repository

CHAPTER 7 ■ SETTING UP VERSION CONTROL

129

 To create a new local branch, right-click the branch from which you want to branch and select New
Local Branch From from the context menu, as shown in Figure 7-34 . You then enter a name for your branch
and run the create branch process locally.

 Git stores branches differently than TFVC on your hard drive. Where TFVC creates a new folder for
each branch, Git only needs one folder for your whole repository. When switching branches, Git applies the
correct snapshot to your folder. One thing to remember is that uncommitted changes are not a part of the
branch history. Merging a branch is also done from within Team Explorer. As you can see in Figure 7-35 , you
select a source and a target branch. Git will then execute the merge and ask for your help if there are any
merge conflicts that you need to solve manually.

 Figure 7-33. You can view the branches for your Git repositor y in Visual Studio

 Figure 7-34. Creating a new local branch

CHAPTER 7 ■ SETTING UP VERSION CONTROL

130

 Merging adds a new commit on top of your target branch that points to both the previous commit on
that branch and to the last commit on the source branch. If you’ve created a branch locally and run a local
merge before pushing your changes, you can avoid this merge conflict by running a rebase. Rebase takes
the commits from your source branch and applies them to the target branch. You can then safely delete the
source branch; it is as if that branch never existed.

 Pull Request
 Git has native code review built-in in the form of pull requests. Conceptually you can think of pull requests
as someone e-mailing you a small part of the codebase that they want to change. They show you their new
code and if you approve it, you copy and paste their code into your version of the code. They send you a
request to pull some changes they made.

 In the previous section, you created a local branch and merged it locally. If you want to create a pull
request, you push your local branch to the server and then ask for a pull request. Others review your branch
and comment on any changes you made. If the changes are accepted, the branch is merged into the main
branch. Pull requests are a very nice feature of Git that you should definitely be familiar with.

 To publish a branch, you navigate to the Branches panel in Team Explorer, right-click your local branch,
and choose Publish. After finishing the publish, you see a result like Figure 7-36 . Here, I published a local Dev
branch to VS Team Services. You then see that you have both a local Dev branch and a remote Dev branch.

 Figure 7-35. Merging two Git branches

CHAPTER 7 ■ SETTING UP VERSION CONTROL

131

 What’s nice about Git is that there is a lot of support for operations in the Web Access. If you navigate
to the Code hub of your project, you can switch branches as shown in Figure 7-37 . You can then view the
content of this branch directly in Web Access .

 After switching branches, you can select the option to create a pull request, as shown in Figure 7-38 . You
can then enter a name for your pull request (by default Merge <source branch> to <target branch>), include
a description, and add reviewers (by default, your whole team). Instead of publishing the branch and then
creating a pull request in two steps, you can also create a pull request directly from the Branches panel in
Visual Studio. This will publish your branch and create a pull request in one step .

 Figure 7-36. A published local branch shows as a remote

 Figure 7-37. Select a branch from the Code hub in Web Access

CHAPTER 7 ■ SETTING UP VERSION CONTROL

132

 Now your team members can view the pull request in the Web Access. They can see the description
and the commits that you want to pull (see Figure 7-39). They can enter comments and start a discussion on
certain changes (see Figure 7-40). Once you’re finished, the pull request can be accepted to be merged with
the target branch.

 Figure 7-38. Create a pull request from within Web Access

CHAPTER 7 ■ SETTING UP VERSION CONTROL

133

 Figure 7-39. In Web Access you can inspect the changes that a pull request introduces

 Figure 7-40. You can comment on the changes of a pull request

CHAPTER 7 ■ SETTING UP VERSION CONTROL

134

 Choosing a Branching Strategy
 I’ve seen teams adopt such complex branching schemes that they completely lose track of which changes
were in which branches. This resulted in bugs being fixed in only a subset of their branches, introducing
randomly recurring bugs for customers. Having an overly complicated branching scheme also costs a lot of
time when it comes to merging.

 When using centralized version control, the best branching strategy is having only a single branch. This
saves time because you don’t have to merge. Your code is always integrated, making deployment and testing
easier. Always start with a single branch. Only consider creating other branches when you have a real need
for them. When using distributed version control, things are different. Developers often branch locally to
feature branches and then publish their branch and create a pull request to merge with the main branch.
What other scenarios are there where branching can help?

 Branch Scenarios
 One reason for branching is when you are stabilizing your code for a new release while other teams continue
working on new features. Mixing stabilization and new development in the same branch is probably not a
good idea. To help with this, you can create a new branch where the new development takes place while you
keep your main branch for stabilization and release. As soon as the features in the development branch are
finished, they are merged to the main branch so they can be released.

 Feature branches are sometimes used when a team works on multiple new features in parallel. If you
start with a main and development branch scenario, you can only merge the development branch back
to main when all features in the development branch are finished. Especially when you work on multiple
features in parallel, this will mean that some features have to wait on others to be finished. Having feature
branches beneath your development branch where you isolate work on different features will help you with
this. When a feature is finished, the code is merged back into the development branch to be integrated with
other new features. When that’s done, the code can then be merged to main and released. Especially with
Git, this is a common scenario. Having local feature branches (also called topic branches) that are sometimes
never published are very easy to create and work with when using distributed version control. GitFlow, a
popular branching model for Git, promotes the use of topic branches to aid in parallel development and let
developers work together on a feature by using a published topic branch.

 There is a third scenario that I regularly encounter: issues in production. If you have main,
development, and feature branches, you have all new development nicely isolated. But if an issue occurs in
production, you want to fix the issue in the production codebase and deploy that codebase to production.
This is where release branches can be used. When a bug needs to be fixed in production, you create a new
branch from the point in time you released the code. You then fix the bug, deploy the code, and merge the
bug fix to the newest version of your code. You then have to make sure that your development and feature
branches get this fix to prevent any conflicts. As you can see, the number of merge steps increases rapidly,
making it hard to manage all those branches. And there are even more complex scenarios possible. Imagine
you have to deal with hotfixes, service packs, and multiple versions in production.

 ■ Note The ALM Rangers have provided great guidance detailing all those scenarios. They can help you
choose the best branching strategy for your situation. See https://vsarbranchingguide.codeplex.com/
for more information.

https://vsarbranchingguide.codeplex.com/

CHAPTER 7 ■ SETTING UP VERSION CONTROL

135

 Feature Toggles
 What if you want to stick to as few branches as possible while still working on new features? How do you
combine bug fixes, new development, and overall stability in your product? You already learned about
feature toggles, but how do you actually implement them?

 The basic idea behind feature toggles is extremely simple. You develop a new feature and hide the code
that accesses it behind a simple if statement. If the feature toggle is true, the feature is shown. If it’s false, it
stays hidden. When the feature is finished, the toggle is removed to keep the code clean. You can create the
toggle system as simple or as complex as you want. You can store the toggles in a database or in a simple
configuration file. A toggle can be a simple true or false. But what about basing your toggle on a specific
timestamp? If the date and time passes, the feature toggle is activated. This way, you can do timed releases of
your new features. The feature is already in the production code. You can test it extensively and then release
it to the world.

 You can activate a toggle for only specific users or groups of users. This way, you can have beta testers
or other early adopter programs. You can also use this to do A/B testing. A/B testing is all about running
multiple versions of your product at the same time in production and measuring how users respond. So if
you have two versions of a new feature, you can easily activate them for a part of your user base. By then
measuring how they use your app, you suddenly have a way of steering your development process in the
right direction.

 There are a couple of Open Source feature toggle libraries that you can use. Of course you could build
your own but it’s always a good idea to see if there is something that’s widely supported by the community.
A popular feature toggle framework is Feature Toggle from Jason Roberts. You can find it at GitHub
(https://github.com/jason-roberts/FeatureToggle) and install it through NuGet (https://www.nuget.org/
packages/FeatureToggle/).

 A simple example uses the following code to define a feature toggle:

 class ShowMessageToggle : SimpleFeatureToggle { }

 You can check if the toggle is enabled with the following code:

 var toggle = new ShowMessageToggle();
 if (toggle.FeatureEnabled)
 {
 Console.WriteLine("This feature is enabled");
 }

 You configure the state of the toggle by adding a setting to your appSettings in the configuration file:

 <appSettings>
 <add key="FeatureToggle.ShowMessageToggle" value="true"/>
 </appSettings>

 What’s nice about this framework is that the toggles are implemented as typed classes. Removing a
toggle is as simple as removing the class definition and then fixing all compile errors where the toggle is still
referenced.

 Feature toggles can be used in Greenfield and Brownfield projects. It just means that when you start
building a new feature you hide it behind a toggle. This can be as easy as hiding a new option in your
menu or another part of your user interface. It takes somewhat more planning when you want to replace
an existing part of your code with a newer version. The easiest strategy is to add a feature toggle at a high
enough level in your code that you can completely switch out the old feature for the new one. If you want to
implement a true DevOps process, think of feature toggles before you start creating branches .

https://github.com/jason-roberts/FeatureToggle
https://www.nuget.org/packages/FeatureToggle/
https://www.nuget.org/packages/FeatureToggle/

CHAPTER 7 ■ SETTING UP VERSION CONTROL

136

 ■ Note Martin Fowler has published an excellent article on feature toggles written by Pete Hodgson that you
can find at http://martinfowler.com/articles/feature-toggles.htm l . If you want more information on
feature toggles, that’s a good article to start with.

 Summary
 This chapter introduced you to version control and you learned about the two flavors that VS Team Services
offers: TFVC and Git.

 TFVC is a form of centralized version control. You create a mapping between your development
environment and a central server. You then download only a snapshot of the code and work with it locally.
You check in your changes and update your local repository by doing a Get Latest. You can use shelvesets,
suspend your work, and ask for code reviews. You can also create branches and use check-in policies.

 Git is a form of distributed version control. You start by cloning a repository that downloads not only
the latest code but also the whole history. You can view the history locally without contacting a server.
You can also create branches and switch between them. You update your repository by running a pull and
you share code by pushing to a remote such as VS Team Services. You can create pull requests as a form of
code review.

 You also looked at a couple of branching strategies. One branch is absolutely the simplest solution if you
can get away with it. Multiple branches are often used for feature isolation, stabilization, and bug fixes. Using
feature toggles, you can avoid a lot of branching complexities while opening up new possibilities.

 The following chapter discusses how to manage technical debt to make sure that your project is in a
perfect state.

http://blog.thepete.net/
http://martinfowler.com/articles/feature-toggles.html#ManagingDifferentCategoriesOfToggles

137© Wouter de Kort 2016
W. de Kort, DevOps on the Microsoft Stack, DOI 10.1007/978-1-4842-1446-6_8

 CHAPTER 8

 Managing Technical Debt

 If you have worked long enough as a software developer, you have definitely wished that you could start a
project totally from scratch. Throw away all the messy code and build it from scratch with all the knowledge
you have now. But why is it that code becomes messy? We even have specific terms to describe it—code rot,
big ball of mud, spaghetti code. These terms all describe that code will become a mess when not carefully
controlled and monitored. But what’s the definition of “a mess”? Can you monitor the quality of code and
actively manage it? This chapter discusses technical debt and shows you how you can use Visual Studio to
track and manage it.

 Debt is a common term in finance. Whenever you take a loan, you need to pay it back with interest. The
same is true for code. If you want to quickly create some code, you take a loan on quality. When you want
to pay back your loan, you pay interest in the form of extra maintenance costs. But when technical debt
skyrockets, the interest becomes so large that it can strangle your project. That’s the point where developers
want to start from scratch and rewrite everything. Taking a loan can sometimes be a good decision, for
example, for a mortgage when you buy a new house. The same is true for technical debt. Sometimes you
willingly acquire it. Maybe time-to-market is essential and you want to skip on code quality to be able to
launch quickly. It stays important that you know where the technical debt is and how much it is. As long as
this is an explicit decision and not something that you unknowingly do, having some amount of technical
debt can be a good idea.

 How can you measure technical debt? That’s a difficult subject. A lot of scientific research has been
done and all kinds of models have been developed. If your code quality is low and it would take someone
three months to fix it, you have a technical debt of three months. You only know exactly how much technical
debt there is after you’ve fixed it. So measuring the exact amount of debt you have based on time is hard. But
what you can measure is the quality (or rather, the lack of quality) of your code. This gives you an indication
of what you would need to do to fix it.

 Solutions like SonarQube (discussed in the next chapter) follow a rule-based system to correlate code
quality and the amount of time it would take to fix it. So, you can measure the quality of your code. There
are standard metrics that are often used and that give you a clear indication of the state of your code. These
metrics are also used by Visual Studio to measure code quality.

 The following parts detail a number of strategies you can follow to manage your technical debt. You will
also have a look at another proven technique: unit testing. This chapter ends with a look at Roslyn analyzers
and what they can do for your code and your team.

 Don't underestimate how important code quality is. When it comes to changing the culture in your
organization toward DevOps, building trust is a fundamental step. Quality of code is something that you
can influence yourself as a developer. Increasing quality will give you social credit with your upstream and
downstream colleagues or customers. So take this chapter to heart and see it as a big step to your DevOps
implementation. Because, if you get faster at shipping code but not at improving quality, are you not just
shipping bugs more often?

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

138

 Running Code Analysis
 The first tool I want to look at is Code Analysis . Code Analysis is used to check the style of your code. Style
is a broad concept. The rules that Code Analysis uses are based on the Microsoft .NET Framework Design
Guidelines. These guidelines specify a multitude of helpful rules, ranging from how to name properties to
implementing security and performance-critical pieces of your code.

 Code Analysis is available for both C# and Visual Basic. The following code listing shows an example in C#:

 namespace CodeAnalysis
 {
 public class MysampleClass
 {
 public int calculate(int x)
 {
 int y = x;

 return x * 2;
 }
 }
 }

 As an example, this code is hopefully exaggerated over what you normally encounter in the field. How
many errors do you spot? Code Analysis gives eight warnings . You can see them in Figure 8-1 .

 Figure 8-1. Code Analysis warnings

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

139

 In this case, there are some class-level warnings about naming conventions, marking your method
as static , an unused variable, and potential overflow issues. For the whole assembly, Visual Studio
recommends signing your assembly and marking it as CLS compliant. Of course you can find these errors
manually. But having an automatic mechanism in place that detects these problems and suggests a way to
fix them takes things a level further then running manual checks.

 You can run Code Analysis from the Analyze ➤ Run Code Analysis menu or through the context menu
of your solution or project. You can also configure Code Analysis in the properties of your project. If you look
at Figure 8-2 , you see the Code Analysis properties page. If you activate the first option, Enable Code Analysis
on Build, and then build your project or solution, Code Analysis will automatically run. Especially while
fixing Code Analysis warnings, having this quick feedback loop is easy. When your project becomes bigger,
you maybe want to disable running Code Analysis when running a local build and instead run it manually.
The second option, Suppress Results from Generated Code, is activated by default. Code that's automatically
generated by Visual Studio doesn't follow the Code Analysis rules most of the time. This is not because the
code is bad but because it's optimized for being automatically generated and updated, not for readability
and style.

 Figure 8-2. You can configure Code Analysis on a per-project basis

 The third option, Rule Set, is an important one. As you can see from Figure 8-2 , there are a couple of
default rule sets that you can choose from. The Microsoft All Rules rule set is the biggest. The Microsoft
Managed Recommended rule set is the default. When working on a project, you should experiment with the
different sets and choose one that's best for your situation. Especially on an existing project, it doesn't make
much sense to start with a very strict rule set because the amount of warnings can be overwhelming. Instead,
you can start with a smaller rule set and gradually increase the rules as the project quality improves.

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

140

 Not all of the warnings that are generated will be useful for you. You can decide to turn warnings off for
your whole project or just ignore certain specific cases. You tell Code Analysis to ignore specific pieces of
your code by adding the SuppressMessage attribute like this:

 [System.Diagnosis.CodeAnalysis.SuppressMessage("Microsoft.Design",
"CA1039:ListsAreStrongTyped")]
 Public class MyClass
 {
 // code
 }

 One thing you probably want to configure for Code Analysis is the use of a dictionary file. Code Analysis
performs a spell check on your code. If you use unknown words, like your company name or a product
name, Code Analysis will report this as a violation. To help Code Analysis, you add a custom XML file that
tells Code Analysis which additional words you want to allow, disallow, or mark as deprecated. Figure 8-3
shows an example of a spelling error where the word Apress is not recognized.

 To extend the built-in dictionary , you add an XML file to your project. The following XML adds the word
 Apress to the list of recognized words.

 <Dictionary>
 <Words>
 <Recognized>
 <Word>Apress</Word>
 </Recognized>
 </Words>
 </Dictionary>

 You then set the Build Action in the file properties of your XML file to CodeAnalysisDictionary .
If you then run Code Analysis, this file will be picked up and used in the spell check. Figure 8-4 shows
this configuration for a file called CustomDictonary.xml . You can further extend a dictionary by adding
unrecognized and deprecated words. You can also add compound words and acronyms that you want to use.

 Figure 8-3. Code Analysis performs a spell check on your code and reports any errors

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

141

 The techniques behind Code Analysis are changing. Have a look at the last part of this chapter for more
information on how Roslyn can help you analyze your code and how Microsoft is using Roslyn to modernize
Code Analysis.

 Code Metrics
 As developers, we develop a feeling for when code is good or bad. Consider an extremely long method, a
class that seems to use all other classes in your project, or a method that has so many nested if statements
that it almost looks like art. But as developers we are subjective. Making these observations in an objective
way is what code metrics is all about.

 Where Code Analysis touches topics like design, performance, and security and is somewhat subjective,
code metrics are objectively calculated values based on your code.

 Code metrics are based on the following concepts:

• Lines of code

• Cyclomatic Complexity

• Coupling

• Inheritance

 Let’s look into these values so that you understand what’s behind them. This will help you interpret the
results that the code metric calculations in Visual Studio give you.

 Figure 8-4. Setting the build action to CodeAnalysisDictionary

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

142

 Lines of Code
 Lines of code is the easiest metric. This is just a number that describes how long a class or method is.
Opening and closing brackets are not counted. So the following code would have two lines of code:

 public int MyMethod()
 {
 return 42;
 }

 What do you think is an acceptable length for a method? 10 lines? 100 lines? There is a lot of research
going on in topics like these and people use different values. I like to keep my methods under 20 lines of
code. But I know of companies that use an even lower threshold, even as low as seven lines of code for a
single method. Deciding what's good is something that you and your team should do. Start with a value like
20 and evaluate regularly if this is reasonable. Of course, don't become too soft by increasing the value each
time you find a difficult method.

 What would be an acceptable length for a class? This is a somewhat trickier subject. A class consists of
constructors, fields, properties, methods, and maybe even events and operators. When it comes to designing
classes, there are good design principles that guide you. These principles are not hard rules. One such
principle is SOLID, which is an acronym for:

• Single Responsibility Pattern : A class should have only one reason to change.
Meaning that a class should have no more than one responsibility.

• Open/Closed Principle : Software entities should be open for extension but closed for
modification

• Liskov Substitution Principle : Derived classes can be used everywhere a base class is
expected

• Interface Segregation Principle : A client shouldn’t be forced to depend on methods
he doesn’t use

• Dependency Inversion Principle : Depend upon abstractions, not implementations

 If this is the first time you heard about SOLID, I can understand this makes your head spin. When code
quality is a problem in your project, SOLID is a very good place to start your research. First focus on writing
short methods, then start applying Single Responsibility Pattern (SRP) to break classes into smaller parts.
After that, you can take on Open/Closed Principle (OCP) and finally the other three methods. Discussing
SOLID in more detail is outside the scope of this book but there are some very good books written on this
subject.

 So how do you make a method shorter? By breaking the method in multiple, smaller parts. Take the
following code :

 public decimal Calculate(int id, Order order)
 {
 Customer customer = _customerRepository.GetCustomerById(id);

 decimal shippingCosts = 0;
 if (customer.PostalArea != DefaultPostalArea)
 {
 shippingCosts = 10;
 }

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

143

 decimal totalOrderCosts = 0;
 foreach(OrderLine o in order.OrderLines)
 {

 totalOrderCosts += o.Cost;
 }

 decimal totalCost = totalOrderCosts + shippingCosts;
 return totalCost;
 }

 If you look through this method, you see several distinct parts. You can refactor the code to several
smaller methods like this:

 public decimal Calculate(int id, Order order)
 {
 Customer customer = _customerRepository.GetCustomerById(id);

 decimal shippingCosts = CalculateShippingCosts(customer);
 decimal totalOrderCosts = CalculateOrderCosts(order);

 decimal totalCost = CalculateTotalCost(shippingCosts, totalOrderCosts);

 return totalCost;
 }

 A personal rule of thumb that I try to stick to is that whenever I feel the need to add comments to my
code, I try to extract that piece of code and use a descriptive method name. This brakes the code in smaller
parts and makes it easier to read.

 When you start calculating code metrics through Visual Studio, you will see discrepancies between the
lines of code on your screen and the number of lines reported by code metrics. This is because code metrics
operates on the Intermediate Language (IL) that's generated by the compiler and not on the source code that
you see on your screen. Take the following code:

 interface IMyPointyInterface
 {
 int X { get; set; }
 int Y { get; set; }
 }

 Since this interface doesn't result in any executable IL code, the code metrics calculation reports this
interface as having zero lines. This won't result in any problems when you look at the statistics for a whole
project but if you see any strange numbers, remember that it has to do with the compilation of source
code to IL.

 ■ Note SonarQube (discussed in Chapter 9) also calculates code metrics. SonarQube uses its own parsers
and as a result gives different metrics than the code metrics implementation in Visual Studio.

http://dx.doi.org/10.1007/978-1-4842-1446-6_9

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

144

 Cyclomatic Complexity
 Having short methods and classes will do a lot for the quality of your code. The following method is less than
20 lines. Do you find it easy to understand?

 public int HighComplexity(int x, int y)
 {
 if (x < 0 && y < 0)

 if (x < y)
 return y;
 else if (x > y)
 return x + y;
 else
 return x;
 else
 if (x * y > 100)
 if (x < y)
 return x;
 return y;
 }

 Cyclomatic complexity describes the number of paths that go through your code and correlates to the
number of unit tests you have to write. A simple method that goes from top to bottom has a complexity of
one. If you add an if statement, you get a cyclomatic complexity of two. Adding an else branch or a nested
 if increases the cyclomatic complexity even more. And not to mention switch statements with many
options.

 Cyclomatic complexity is required for our programs to work and it’s no problem to use if or switch
statements, but you have to think about how you use them. Nesting too many statements makes your code
harder to understand and thus harder to extend and maintain. As a rule of thumb I try to stay within a range
of 1-5 for cyclomatic complexity. With values between 6-10, I investigate the method and see if I can simplify
it. With values above 10, the method is an absolute candidate for refactoring.

 Coupling
 What do you think is wrong with the class diagram shown in Figure 8-5 ?

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

145

 Besides the fact that this particular example probably doesn't make sense to build, there are a lot of
lines in this diagram! Each line between two classes means that the class uses the other class directly in
code. This also means that if you change a class, all classes that depend on it probably have to change too.
Code with too many dependencies between classes is often referred to as spaghetti code. There is no clear
structure and maintaining and extending the code becomes very difficult. Coupling is a numeric value that
describes the number of relationships between classes. Take the following class:

 public class Customer
 {
 public Address Address { get; private set; }
 }

 This class has a coupling of one, since it depends on one other class in your project. A coupling of zero
or one probably doesn't make for a very interesting application. It's normal that classes depend on each
other. So having some coupling is no problem. Having too much coupling will lead to problems. As a rule of
thumb, try to keep coupling less than nine.

 Figure 8-5. A class diagram with high coupling

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

146

 Depth of Inheritance
 Another code metric has to do with inheritance. Inheritance is used in .NET languages like C# and VB.NET
and the .NET Framework uses a lot of inheritance. Just like with the other metrics, inheritance is useful but
you shouldn't overuse it. The following code listing shows a simple inheritance example:

 public class A { }
 public class B : A { }
 public class C : B { }

 This means that A has an inheritance level of one, B of two, and C of three. Why does A start with one?
Because all classes in C# inherit from the base class object. Why could inheritance be a problem? Classes
that have more inheritance levels become more complex. They inherit methods, properties, and other
members from their base classes. It becomes more difficult to find out what a class exactly does and where
everything is declared. Changes in one of the classes in the hierarchy can propagate to changes in the other
classes.

 Inheritance also allows you to reuse code, which is a good thing. As with all code metrics there is a
certain maximum level you should try to stay beneath. I try to set my maximum inheritance level to six.
This is based on empirical data, not on real scientific study. I only count class inheritance, not interface
inheritance. Classes containing the implementation and overridden methods make it harder to find out
which implementation of a method is used at runtime. Interfaces don’t contain the implementation so I
choose to not count those for depth of inheritance.

 Calculating Code Metrics
 You calculate code metrics through Analyze ➤ Calculate Code Metrics for solution or for project
(see Figure 8-6). This is available for C# and VB .

 Figure 8-6. Calculate code metrics for a project or for the whole solution

 The code metrics results are then displayed in a grid, as shown in Figure 8-7 . You see a hierarchical
tree of your project on the left. On the right you see the cyclomatic complexity, depth of inheritance,
class coupling, and lines of code. The first value, Maintainability Index, is calculated based on the other
four values. There are however strong objections in the community against the Maintainability Index.
For example, the Maintainability Index turns yellow when the index drops below 20 and turns red when
it’s below 10. There is no clear explanation for these thresholds. Also, the formula that calculates the

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

147

Maintainability Index is based on research done on projects written in C and Pascal, which have different
characteristics than an object-oriented language such as C#. So, take the Maintainability Index with a pinch
of salt and pay attention to the individual metrics when reviewing code.

 Figure 8-7. Code Metrics Results window

 The Code Metrics Results window has an option to export the result to Excel. I often use this because
of the easy sorting and filtering that Excels offers over tabular data. Within Excel, for example, it's easy to
find the largest method in your project, while in the Code Metrics Results window you have to expand each
node and manually search for it. Excel also allows you to do other computations (such as the average of a
metric) and visualizations (such as pivot tables and graphs) .

 Finding Duplications
 Duplicate code is evil. Duplications cause your projects to become bigger (making it more difficult to
find something) and make your code harder to maintain because you have to fix bugs in multiple places.
Forgetting one location could introduce other subtle bugs that are hard to find. Visual Studio helps you
find duplicate code with a very sophisticated algorithm. Code that is the same yet has renamed identifiers,
rearranged statements, or small statements added or removed will still be detected.

 The Code Clone Analysis tools in Visual Studio will report duplication in three groups:

• Exact

• Strong

• Medium

 You can inspect the findings and compare the different locations. You start the analysis by choosing the
Analyze ➤ Analyze Solution for Code Clones menu option. Figure 8-8 shows an example result of an exact
match between two files.

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

148

 If you want to inspect the files to make sure that you really have duplication, you can select both files
and choose Compare from the context menu (see Figure 8-9). This opens the Diff viewer in Visual Studio
showing you both files side by side.

 You can configure Code Clone Analysis by using a XML file with a codeclonessettings extension. This
file lets you exclude certain parts of your code, such as generated code, from the analysis. For example, the
following XML excludes a file named MyClass.cs from the duplication analysis. You can exclude files, types,
methods, and namespaces. You can even use patterns (wildcards like *) to exclude files (see https://msdn.
microsoft.com/en-us/library/hh205279.aspx for more information).

 <CodeCloneSettings>
 <Exclusions>
 <File>MyClass.cs</File>
 </Exclusions>
 </CodeCloneSettings>

 Figure 8-8. Code Clone Analysis Results window

 Figure 8-9. You can compare two files to inspect the duplication

https://msdn.microsoft.com/en-us/library/hh205279.aspx
https://msdn.microsoft.com/en-us/library/hh205279.aspx

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

149

 Validating the Architecture
 The metrics we've looked at until now focus on projects, classes, and methods. Visual Studio also helps
you validate the relationships between different parts of your application as described in your architecture.
This feature is called layer validation . Typically, your application consists of several projects all containing
specific parts of your application. You may have user interface, business, and data layers in an architecture.
As an architect, you want to disallow certain interactions between these layers. For example, your user
interface should never directly contact the database. Instead this should go through the business layer.

 You implement these kinds of rules with an architecture project in Visual Studio. This project allows you
to create a graphical representation of your project and then validate your project against the architecture
model. Whenever a developer on your team violates the architecture rules you get an error. Figure 8-10
shows the Modeling Project project type. Once you have such a project , you can add modeling items to it, as
shown in Figure 8-11 . This scenario concentrates on the layer diagram .

 Figure 8-10. You can add a modeling project to your solution

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

150

 Now imagine that you have three projects in your solution: UI, Business, and Data. You can add these
projects as layers to your layer diagram by dragging and dropping them, as shown in Figure 8-12 .

 Figure 8-11. In a modeling project, you can add a layer diagram

 Figure 8-12. A layer diagram of an architecture

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

151

 You can then manually run the architecture validation from the context menu of the modeling project,
as Figure 8-13 shows.

 Figure 8-13. You can validate the architecture with a layer diagram

 Now if your UI layer tries to use a class that's defined in the data layer, you get two errors , as shown in
Figure 8-14 .

 Figure 8-14. Validation errors from the Architecture Validation

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

152

 You can configure the architecture validation to run automatically by editing the proper properties and
setting Validate Architecture to true. When this option is true, Architecture Validation runs as a part of your
build (see Figure 8-15).

 Figure 8-15. Setting Validate Architecture to true will run the validation on every build

 Create and Run Unit Tests
 Unit testing is a broad topic. Personally, I'm a big proponent of using unit tests. I would go as far to say
that trying to move to a continuous delivery model without good unit tests is doomed to fail. Discussing
unit testing is a book of its own. Fortunately, a couple of good books are already written on this subject. I
particularly like these three books:

• The Art Of Unit Testing, written by Roy Osherove

• xUnit Test Patterns, written by Gerard Meszaros

• Working effectively with legacy code, written by Michael Feathers

 Despite all the good information out there, I still see teams struggle with unit testing. Whenever I have
an interview with a potential new developer, I get the answer that they see value in unit testing and that they
don't do it. But if we all think there is value, why don't we do it?

 I think this oversight has to do with what a unit test actually is. The word unit refers to a small,
contained piece of your application. All too often, I see developers create so-called unit tests that touch the
database, hard drive, web services, or other external resources. That's not a unit test! A unit test should test
a method in complete isolation. I find that a simple sketch of the testing pyramid always explains it in a nice
way. Figure 8-16 shows the three different types of test you can use.

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

153

 Compare this to creating and testing a new car. A car consists of a lot of parts like a motor, battery, and
gear box. After you have fully assembled the car, you try to start it but it doesn't work. Any idea what's wrong?
There could be a lot of different problems and without further examination it's pretty hard to fix. But what if
you tested the different parts in isolation? You test the battery by attaching some measuring equipment. You
could even place the battery in a fridge to check if it works under low temperatures. That's easier to do than
place the whole car in the fridge. After having tested all the parts in isolation, you can start attaching them to
each other. For example, if the dynamo runs, does it power the battery? After these integration tests, you start
running scenario tests: you start the car and take it for a drive.

 Unit tests are the broad bottom of the pyramid. You have a lot of them. Integration tests are less
common. They test if parts work together. Scenario tests take the whole application and run specific user
scenarios and are often done by actual testers. Unit and integration tests are created by developers and can
easily be run automatically.

 Creating integration tests and calling them unit tests often causes teams to totally abandon unit testing.
Creating integration tests takes longer. They fail more often and are harder to maintain. Having lots of them
makes your project more fragile. There is no hard rule for the ratio between unit, integration, and scenario
tests. But be cautious that you keep your unit tests as actual unit tests. Use techniques like dependency
injection to separate all parts of your application and make sure that you can run them in total isolation.

 Another thing that goes wrong often is the coupling between test code and application code. Creating
instances of a class in hundreds of test methods and then changing the constructor signature of the class
leads to hundreds of compile errors. Sometimes teams see this as a reason to stop unit testing because the
maintenance burden is too great. But writing unit tests in such a way is just a matter of bad coding practices.
Why not refactor the creation of your class to a helper method? This way, you only have one point of change
when you change the constructor signature of your class.

 A lot of frameworks have been created that help you with writing good, maintainable unit tests. Some
frameworks I personally like are xUnit, FluentAssertions, Moq, and AutoFixture. Invest time in solving the
impediments that keep your team from unit testing. Train your team, search for or build frameworks that
help your team, and understand that good unit tests are the basis of the quality of your system.

 Microsoft understands that unit testing is difficult for many teams. This is why they introduced a tool
to help you get started with a complete set of unit tests for your application: IntelliTest. These automatically
generated unit tests won't find any bugs for you. They just test what you created. What they do however
is give you a safety net for your application. Whenever someone makes a change that breaks one of your
tests you're immediately informed of this. Having a good safety net in place allows you to start refactoring
your code and adding new features without having to worry about breaking something somewhere in your
application.

 Figure 8-16. The testing pyramid

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

154

 IntelliTest is an extremely useful feature in Visual Studio to create this safety net. IntelliTest analyzes
your code and creates unit tests that will give you 100 percent code coverage. You can configure IntelliTest
in how it analyzes your code. The generated unit tests can also be modified.

 Take the following code listing:

 public int Run(int x, int y)
 {
 if (x > 0)
 {
 return x * y;
 }
 else
 {
 try
 {
 return x / y;
 }
 catch (DivideByZeroException)
 {
 return 0;
 }
 }
 }

 To get 100 percent code coverage, you need to create two unit tests for the if statement: one that has an
 x value of less than 50 and one with x more than 50 . You also need to trigger the catch clause by creating a
 DivideByZero exception. IntelliTest will automatically find these scenarios and create the correct unit tests
for you. Of course your code will often be more difficult than this. IntelliTest will try to create instances of
all objects it finds in your code. After the unit tests are generated you can modify this code, for example, to
mock certain objects.

 You run IntelliTest by right-clicking inside a method and choosing IntelliTest. If you run IntelliTest
on the previous code, you get the results shown in Figure 8-17 . IntelliTest is smart enough to calculate the
boundary values required to reach 100 percent code coverage. It uses values of 0 and 1 for x and y . It also
uses a int.MinValue for x , resulting in an OverflowException that's not handled by the code.

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

155

 You can select the different tests in the IntelliTest window and let Visual Studio generate these tests as
actual code. You then get something like Figure 8-18 .

 Figure 8-17. IntelliTest results

 Figure 8-18. Automatically created unit tests from IntelliTest

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

156

 If you run the unit tests in your project (Test ➤ Run ➤ All Tests), you see that three tests succeed and
that one test causes an OverflowException (see Figure 8-19). You can fix this test by catching the overflow
exception or by disabling it with the unchecked { ... } statement.

 Figure 8-19. The automatically generated tests can be run as regular unit tests

 IntelliTest is a very powerful tool. As you’ve probably noticed, the generated code is littered with
attributes. I encourage you to use the MSDN documentation to study up on how IntelliTest works behind
the scenes (see https://msdn.microsoft.com/en-us/library/dn823749.aspx). If you understand this
powerful tool, it will help you quickly create a regression test suite for your application.

 Creating Custom Code Analyzers with Roslyn
 Roslyn is the new C# and VB compiler. It’s completely written in managed code and it’s a big step forward
compared to the previous compiler. The old compiler was written in C++ and functioned more or less like
a black box. Some code went in and compiled code came out. You had no way of knowing what happened
inside the compiler. This meant that when you wanted to run analysis on source code, you had to start
with building tools to parse the source code. You almost had to build your own compiler. That made it very
difficult to create analytical tools for your code.

 With Roslyn, this has become much easier. Roslyn offers you a whole set of APIs that you can plug in
to. This means that you can very easily extend Visual Studio with new plugins that implement your specific
rules for your code. A very good example of this is what the Azure team has done. They created a set of
Roslyn analyzers that help users use the Azure API the correct way .

https://msdn.microsoft.com/en-us/library/dn823749.aspx

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

157

 Take the following code:

 SharedAccessBlobPolicy newBlobPolicy = new SharedAccessBlobPolicy
 {
 Permissions = SharedAccessBlobPermissions.Write,
 SharedAccessStartTime = DateTime.UtcNow,
 SharedAccessExpiryTime = DateTimeOffset.UtcNow + TimeSpan.FromDays(1)
 };

 Do you see anything wrong with this code? Probably not if you're not familiar with the Azure APIs.
But if you install the Azure Roslyn analyzers, you get a warning directly inside Visual Studio helping
you with the correct use of this API. For this code, the Analyzer tells you that you can avoid setting
 SharedAccessStartTime since its default value is UtcNow .

 What would you create if building these analyzers is extremely simple? Let's say you want to adhere to a
specific naming convention for your namespaces. Every namespace should start with your company name
and then the application name. Normally, you would just do some manual code reviews and make sure the
namespace properties of your projects are configured correctly. With Roslyn, creating an analyzer for such a
simple rule is very easy.

 To create a Roslyn Analyzer, you first have to install a couple of prerequisites. You can find these in the
Open Source GitHub repository of Roslyn at https://github.com/dotnet/roslyn/wiki/Getting-Started-
on-Visual-Studio-2015 . After you've installed these components, you can create a new code fix project, as
shown in Figure 8-20 .

 Figure 8-20. Create a new code fix project

https://github.com/dotnet/roslyn/wiki/Getting-Started-on-Visual-Studio-2015
https://github.com/dotnet/roslyn/wiki/Getting-Started-on-Visual-Studio-2015

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

158

 If you run the project without changing anything, an experimental instance of Visual Studio is
launched. In this instance you can test your extension. If you create a new console application, you can see
the out-of-the-box quick fix at work in Figure 8-21 . You see a green squiggly beneath the program class and a
lightbulb icon in front of it. This is added by the code fix project you're running. The added quick fix lets you
uppercase the class name. A nice preview is shown in the popup.

 Figure 8-21. A Roslyn quick fix that lets you uppercase class names

 The quick fix is implemented in two files:

• DiagnosticAnalyzer

• CodeFixProvider

 DiagnosticAnalyzer registers your code fix. You subscribe to certain symbols (SymbolKind.Namespace
in this scenario) and then verify if the diagnostic should be reported. The following code checks if the
namespace is correctly prefixed:

 private static void AnalyzeSymbol(SymbolAnalysisContext context)
 {
 var namespaceSymbol = (INamespaceSymbol)context.Symbol;
 if (!namespaceSymbol.ToDisplayString().StartsWith("Apress"))
 {
 var diagnostic = Diagnostic.Create(Rule, namespaceSymbol.Locations[0],

namespaceSymbol.Name);
 context.ReportDiagnostic(diagnostic);
 }
 }

 The CodeFixProvider file contains the actual logic to add a prefix to a non-prefixed namespace. The
following code registers the code fix at the location of the namespace in the code:

 public sealed override async Task RegisterCodeFixesAsync(CodeFixContext context)
 {
 var root = await context.Document.GetSyntaxRootAsync(
 context.CancellationToken).ConfigureAwait(false);

 var diagnostic = context.Diagnostics.First();
 var diagnosticSpan = diagnostic.Location.SourceSpan;

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

159

 var declaration = root.FindToken(diagnosticSpan.Start).Parent
 .AncestorsAndSelf().OfType<NamespaceDeclarationSyntax>().First();

 context.RegisterCodeFix(
 CodeAction.Create("Prefix namespace",
 c => PrefixNamespaceAsync(context.Document, declaration, c)),
 diagnostic);
 }

 And finally, here’s the code that runs when the user executes the code fix:

 private async Task<Solution> PrefixNamespaceAsync(Document document,
 NamespaceDeclarationSyntax typeDecl, CancellationToken cancellationToken)
 {
 var identifierToken = typeDecl.Name;

 var semanticModel = await document.GetSemanticModelAsync(cancellationToken);
 var typeSymbol = semanticModel.GetDeclaredSymbol(typeDecl, cancellationToken);

 var originalSolution = document.Project.Solution;
 var optionSet = originalSolution.Workspace.Options;
 var newSolution = await Renamer.RenameSymbolAsync(
 document.Project.Solution,
 typeSymbol,
 "Apress" + identifierToken.ToString(),
 optionSet,
 cancellationToken).ConfigureAwait(false);

 return newSolution;
 }

 Now when you run this code fix, you get the result shown in Figure 8-22 . The full code is available as a
download but the essence is what you read above. As you can see, a code fix isn't that hard to create. So next
time you find yourself discussing coding guidelines with your team, think of a code fix and how you can help
everyone on your team follow the same guidelines automatically.

 Figure 8-22. The Prefix Namespace code fix at work

CHAPTER 8 ■ MANAGING TECHNICAL DEBT

160

 Summary
 This chapter showed you quite a lot of ways to improve the quality of your code. You've seen how you can
use the Code Analysis tool to find all kinds of errors in your code, ranging from spelling mistakes to security
and performance flaws. You've also worked with code metrics to objectively calculate grades for your code.
Combining these two features will help you find a lot of problems in your code. Visual Studio has even more
to offer. Analyzing your code for duplicates helps you increase maintainability. You can even strengthen
your code at a higher level by using the architecture validation built in to the modeling projects. This way
you validate your architectural constraints automatically on every build. Unit tests are another important
aspect of increasing code quality. You've seen how you can run unit tests in Visual Studio and how IntelliTest
helps you create a robust test harness. Finally, you've seen how Roslyn opens up a whole new world of code-
analyzing tools.

 In the next chapter you'll dive into the features of Visual Studio Team Services that help you automate
all these code quality checks and more on each check-in by implementing continuous integration.

161© Wouter de Kort 2016
W. de Kort, DevOps on the Microsoft Stack, DOI 10.1007/978-1-4842-1446-6_9

 CHAPTER 9

 Implementing Continuous
Integration

 If you’ve followed along until now, you have already accomplished quite a lot. You learned how to use
the Agile Project Management tools, looked into increasing the quality of your code, and learned how
Visual Studio and Visual Studio Team Services support you in these endeavors. On your road to DevOps
and continuous delivery, the next step to take is setting up continuous integration. What is continuous
integration and why do you need it? This chapter will show you what continuous integration is and how you
can configure it for your projects. You will also learn about SonarQube, a specialized tool for measuring the
quality of your code on a continuous basis.

 Why do we talk about continuous integration ? Well, you hope that developers check the quality of their
code locally before sending changes to the central repository. But you can’t guarantee this. If a developer is
late to go home, he could decide to quickly check in his changes and leave. And what about deployments?
Do you ask one of the developers to run a deployment from her local workstation? If these things sound
familiar, you need a continuous integration build. Imagine that every time a developer uploads a change to
version control, a process gets triggered that compiles the latest version of the code, runs unit tests, performs
code analysis, and then delivers a package in a specified location ready to be released. That is continuous
integration.

 This means that whenever a developer checks in some malfunctioning code, the central continuous
integration build fails. This increases the feedback loop for your developers. A failing build means that one
of the checks failed and that the current version is not working correctly. Continuous integration is a process
where you encourage developers to integrate as often as possible and where you continuously validate the
integrated version of the code.

 Implementing a continuous integration build is not hard. VS Team Services gives you some great tools
and you can be up and running in minutes. The difficult part is making your team feel responsible for the
build. When the build fails and team members keep checking in code without anyone fixing the broken
build, having a continuous integration build adds absolutely no value. You need to work on making your
team feel responsible for the build. One way to achieve this is to make the quality of the build easily visible
to anyone. A simple monitor in your team room that shows the status of the latest build does wonders. Some
teams even take this a step further. I once found a video showing a team that had built a rotating machine
gun that fired tennis balls at the person who broke the build. Another company uses a giant teddy bear that
gets placed on the desk of the person who broke the build and only moves on when someone else breaks
the build. This is a process that has to grow but remember that instilling the importance of always fixing a
broken build on your team is crucial.

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

162

 Configuring a Continuous Integration Build
 VS Team Services offers built-in capabilities for a continuous integration build. You create what’s called a
 build definition in the web portal of VS Team Services. You then configure this build definition to trigger
on every check-in, on a specific schedule, or manually. VS Team Services takes care of the rest. Of course,
the builds that are triggered need to run somewhere. On your local environment, you have installed Visual
Studio and probably a bunch of other tools and SDKs that are required to build your application.

 When running a build in VS Team Services, these same tools need to be available. To help you with
this, Microsoft runs what’s called a hosted build agent . This is a preconfigured machine that has the most
common tools already installed and is available on demand for your builds. Figure 9-1 shows the capabilities
of the hosted agent. You can view these capabilities on your own VS Team Services account by navigating to
the settings of your account and then choosing Agent Pools ➤ Hosted.

 Figure 9-1. Capabilities of the hosted build agent

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

163

 In the following section, you will look at installing a build server of your own if the hosted build agent
doesn’t meet your requirements. Whenever possible, I recommend that you use the hosted build agent since
Microsoft keeps these servers up to date for you and does any other required maintenance work. This saves
you a lot of time and energy.

 A build server won’t start running builds on itself. You need some kind of instruction set to tell the build
server what to do. Figure 9-2 shows a default build template that ships out of the box with VS Team Services.
This build template builds your code, runs unit tests, and then stores the build output in VS Team Services.
These steps are executed on the build server.

 Figure 9-2. A build definition in VS Team Services

 The build definition consists of a list of tasks that you want to execute. You can easily add build steps
to your build and configure each step. For example, the Visual Studio Build step that’s selected in Figure 9-2
lets you configure the solution you want to build, arguments you want to pass to MSBuild, the platform and
configuration for your build, whether to start with a clean workspace on every new build, if NuGet packages
need to be restored on build, and which version of Visual Studio you want to use to run the build.

 The infrastructure behind the build system is cross-platform and easily extensible. The build steps are
a combination of JavaScript and a platform-specific script that does the actual work. The build agent is a
JavaScript, cross-platform application built in NodeJS that executes the build steps and keeps track of things
like errors and logging. This means that the build system is not only capable of building .NET applications on
Windows. It can also build and test cross-platform apps, like an iOS Xamarin-based mobile app on a Mac, a Core
CLR-based ASP.NET application, or a Java application on Linux. These are all available out of the box. If you
want, you can add your own tasks or use the default tasks that run a script of your own. In addition to the set of
build steps, which forms the main part of your build definition, there are other options that you can configure.

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

164

 You create a build through the Web Access portal of VS Team Services. Each team project has its own set
of builds. If you open a team project, you see the Build hub in the top navigation bar. You can then select the
green + icon to create a new build definition (see Figure 9-3).

 Figure 9-3. The Build hub is a part of Web Access

 You can choose from a couple of templates when you create a new build definition. Figure 9-4 shows
the standard list of templates. The Universal Windows Platform requires an agent that has both Visual Studio
and the tools for creating Universal App installed. The Visual Studio template creates a build definition that
requires only an installation of Visual Studio to compile and test your project. The Xamarin templates can
be used when you are creating cross-platform mobile apps with Xamarin. These templates can compile
an Android or iOS app. The Xcode template can build code on a Mac. You need to install your own Mac
with a build agent to use this template. Finally, you can also start with an empty template that you can then
configure by adding tasks. All templates are customizable and you don’t limit yourself to anything by starting
with a template.

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

165

 After clicking next, you get the window shown in Figure 9-5 . In this case, I’ve selected the Visual Studio
Build Definition. You can then configure the repository source, the agent to run on, and whether or not this
is a continuous integration build: a build that runs on every check-in. The Repository type lets you choose
between Git and TFVC. You can also build externally hosted applications from GitHub (or another Git
repository) or Subversion. Finally, you click the Create button to create your new build definition.

 ■ Note For more information on building GitHub projects, see
 https://msdn.microsoft.com/en-us/Library/vs/alm/Build/github/index .

 Figure 9-4. Default definition templates for a build definition

https://msdn.microsoft.com/en-us/Library/vs/alm/Build/github/index

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

166

 The Build tab of your new build definition lists the steps that compose your build, as you’ve seen in
Figure 9-2 . Here you can add new steps and configure each step to perform your build. The Options tab lets
you run your build under one or more configurations (for example, you want to create both a Debug and
a Release configuration). You can also choose to create a work item on failure. This makes sure that every
broken build shows up as a work item assigned to the person who executed the build. You can choose what
type of work item you want to create and whom to assign it to and then set any additional fields that are
important to you. Finally, you can select if build scripts can interact with other parts of VS Team Services by
using an authorization token.

 You can see the Repository tab in Figure 9-4 . Here you define how the build agent receives the sources
of your project from version control. For TFVC, you can map and cloak folders just as you do on your own
development PC. The Clean option lets you configure if the build agent should get all sources every time and
start with a clean slate or if it can only get the updates that where made since the previous build. With large

 Figure 9-5. Additional configuration options when creating a new build definition

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

167

projects, cleaning your repository each time and downloading all the code takes sometimes too much time.
In such scenarios, you can choose to disable the clean. Labeling sources means that each build gets assigned
a label that you can later use to retrieve the exact set of files that were used in that build.

 When you’re working with a Git repository, you don’t get the Mappings part of Figure 9-6 . You do get
the option to select which branch you want to build. You also get an option to check out submodules. A
submodule in Git is a way to reuse code from another project without copying the code. Instead, a subfolder
of your project points to another Git repository. As you can see, the build system is quite powerful.

 Figure 9-6. Repository configuration for a build

 Figure 9-7. Configuring variables for your build definition

 The fourth tab, Variables (see Figure 9-7), lets you define name value pairs of properties that you can
then use in your build definition. By default, you get properties that specify for what configuration and
platform to build. You can use these variables with a $(VARIABLE_NAME) syntax. So, $(BuildPlatform) will
be substituted with the value of that variable by the build agent. This a handy feature to avoid spreading all
kinds of configuration options throughout your build template. Instead, you specify them and then use them
in multiple places.

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

168

 The Triggers tab (Figure 9-8) allows you to specify when your build should run. If you don’t configure
any triggers, you can always start the build manually. You can also configure automated builds that run on
a specific schedule or that run on every check-in. The option to batch changes can be important when you
have a busy repository. Imagine that multiple users check in code while a build is still running. Without this
option, every check-in would queue a build, thus creating a long waiting list. If you batch changes, all the
check-ins that happen while a build is running are scheduled for the next build. If the build fails (which is
hopefully rare), the builds are run separately so you know exactly which check-in caused the failure.

 Figure 9-8. You can configure multiple triggers for your build definition

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

169

 Figure 9-9. General options for a build definition

 The General tab lets you configure a couple of options, as you can see in Figure 9-9 , such as a
description, build number format, and timeout. The agent queue determines where your build is going to
run. You’ll dive into this in the next part when you see how to configure your own agents. The Badge option
lets you show the status of your build on an external web site. This is nice if you have an overview page or
something where you want to have a simple image that shows your builds status. Beneath these options you
see a list of demands. Demands are used by VS Team Services to figure out on which agent your build can
run. Agents have capabilities and VS Team Services matches those to the demands of your build definition.
In the example in Figure 9-9 , the machine needs to have Visual Studio installed. This will automatically
install MSBuild and VSTest so that all capabilities are matched.

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

170

 Figure 9-10. Retention options configure how long your build is stored in Team Services

 The Retention tab (Figure 9-10) determines how long your builds are kept once they’re finished.
When you have a busy team project, you will create a lot of builds. Keeping all those builds around clutters
your environment and takes up a lot of space in VS Team Services. By default, there is a rule that deletes
everything after 30 days. You can add rules and remove this default rule if you want. Finally, the History tab
allows you to inspect previous versions of your build definition and roll back to them if you want to undo
certain changes.

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

171

 Now that you have a build definition, you can use it to queue a new build. You can queue a new build
directly from Web Access. When your build enters the queue, VS Team Services will launch a hosted build
agent for you and start the build. While the build is running, you get a real-time log of the build output. This
way, you can track progress and monitor for errors. After the build is finished, you can view the log files in
your browser, or if they’re too big, download them to your local machine to view them. Figure 9-11 shows
how to queue a build.

 Figure 9-11. Queue a new build

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

172

 When you’re running on the hosted agent pool, you have to wait until an agent is available to start your
build. You get one free build agent in the hosted queue. You can have more (for example, to run builds in
parallel), but then you have to pay for the additional agents. If the wait time for an available agent is slowing
your team down, that could be a reason to switch to a dedicated build machine.

 The build log that gets created is very detailed. It shows a real-time output of what the individual tasks
in your build definition are doing. You can use these especially when you’re trying to fix a broken build. The
build details show you a timeline of the individual steps (Figure 9-13) and let you download any artifacts that
were created during the build. The timeline is especially useful when you are trying to speed up a build. By
checking the duration, you can easily see which step takes the most time and focus on speeding up the steps.

 Figure 9-13. The Timeline shows how long each individual step took in your build

 Figure 9-12. Configuring a build to be queued

 When queuing a build manually, you configure the options shown in Figure 9-12 . You select a queue
and configure the variables and demands that are required. You can also select a shelveset if you want to run
a build that uses the specific code in that shelveset.

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

173

 Installing and Configuring Build Agents
 In the previous section, you looked at the default hosted build agent to run your builds. Microsoft maintains
these hosted agents and they decide which software is available on the server. If you have specific
requirements for the build server, be it security, installed software, or performance, you can run your own
build servers and connect them to VS Team Services.

 Build agents are grouped in pools . These pools are defined at the account level of your VS Team Services
account. This means that the pools are available to all projects within your account. You can create as
many pools as you want and each pool can contain a set of agents. An agent can exist in only one pool. The
pools are linked to queues, which are defined at the collection level. A queue is what you select when you
create a new build definition. This means that a new build is put in a queue . The queue is linked to a pool of
agents and one of these agents will pick up your build. This allows you to put certain boundaries in place.
By limiting the queues a project can use and placing your agents in separate pools, you control which build
accesses which agent. Figure 9-14 visualizes this configuration.

 Figure 9-14. The build infrastructure uses queues, pools, and agents

 In addition to the pools and queues, an agent is also selected based on his capabilities. System
capabilities—such as environment variables and specific settings like the .NET Framework version or the
installed editions of Visual Studio—are detected automatically. These capabilities are used to find the
correct agent to run your build on. Capabilities are requested by the build definition based on the tasks you
add. For example, adding the Visual Studio Build task requests a capability that Visual Studio is installed on
the build machine. You can also add your own capabilities that are simple key/value pairs. This way, you can
specify custom software that’s installed on your build machine or other specific settings. By requesting those
capabilities in your build definition, you make sure that your build runs on the correct agent.

 If you want to install your own agent, you can navigate to the Account settings shown in Figure 9-15 .
Here you see the default pools that are available . You also see an option to download the agent.

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

174

 Once you download the agent, you can copy the ZIP file to the machine you want to install the agent on.
After extracting the files from the ZIP archive, you can run a PowerShell file named ConfigureAgent.ps1 .
When running this file, you’re asked for the URL of your account (be it on-premises or in VS Team Services),
the pool you want to add the agent to, a work folder, and the authentication details. One other option is if you
want to run the agent as a Windows Service. If you want to use the agent to run CodedUI tests (see Chapter 11 on
testing for more information), you need to choose no. This will install the agent as a regular desktop program
capable of launching and working with other programs. Figure 9-16 shows the configuration process when
installing a new agent. Now that your agent is configured, it shows up under the pool you specified during
configuration in VS Team Services. You can then start using this agent to run builds.

 Figure 9-15. Configuring agent pools

 Figure 9-16. Installing a new build agent

http://dx.doi.org/10.1007/978-1-4842-1446-6_11

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

175

 Creating Custom Tasks
 Out of the box, the build system ships with quite a lot of tasks. However, there will always be a time where
you miss something. A simple extensibility point that you can use to run custom tasks is the task that
executes a PowerShell script. You control the PowerShell script and you can let it do whatever you want.
Figure 9-17 shows the PowerShell task and the configuration options. You can specify the script location and
any arguments that you want to pass to the script. This allows for easy extensibility of your build system.

 Figure 9-17. A PowerShell task

 When passing arguments to your build task, be it PowerShell or another task, you have access to a
number of variables inside the PowerShell script. These variables are created by the build system and
contain information ranging from the current working directory to the account you’re working on. You
can find the complete list of variables at https://msdn.microsoft.com/en-us/Library/vs/alm/Build/
scripts/variables .

 If you find yourself using the same PowerShell script repeatedly, you can choose to encapsulate this
script in a custom task. That way, you can just add your custom task with its own configuration options and
you’re done. All the build tasks are Open Source and you can inspect them to find out how they work. The
basis of a task is the task.json file.

 ■ Note You can find all the tasks at GitHub: https://github.com/Microsoft/vso-agent-tasks .

 The following listing shows the task.json file for the PowerShell task from Figure 9-17 .

 {
 "id": "E213FF0F-5D5C-4791-802D-52EA3E7BE1F1",
 "name": "PowerShell",
 "friendlyName": "PowerShell",
 "description": "Run a PowerShell script",
 "helpMarkDown": "[More Information](http://go.microsoft.com/fwlink/?LinkID=613736)",
 "category": "Utility",

https://msdn.microsoft.com/en-us/Library/vs/alm/Build/scripts/variables
https://msdn.microsoft.com/en-us/Library/vs/alm/Build/scripts/variables
https://github.com/Microsoft/vso-agent-tasks

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

176

 "visibility": [
 "Build",
 "Release"
],
 "author": "Microsoft Corporation",
 "version": {
 "Major": 1,
 "Minor": 0,
 "Patch": 5
 },
 "demands": [
 "DotNetFramework"
],
 "groups": [
 {
 "name":"advanced",
 "displayName":"Advanced",
 "isExpanded":false
 }
],
 "inputs": [
 {
 "name": "scriptName",
 "type": "filePath",
 "label": "Script filename",
 "defaultValue":"",
 "required":true,
 "helpMarkDown": "Path of the script to execute. Should be fully qualified path

or relative to the default working directory."
 },
 {
 "name": "arguments",
 "type": "string",
 "label": "Arguments",
 "defaultValue":"",
 "required":false,
 "helpMarkDown": "Arguments passed to the PowerShell script. Either ordinal

parameters or named parameters"
 },
 {
 "name": "workingFolder",
 "type": "filePath",
 "label": "Working folder",
 "defaultValue":"",
 "required":false,
 "helpMarkDown": "Current working directory when script is run. Defaults to the

folder where the script is located.",
 "groupName":"advanced"
 }
],

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

177

 "instanceNameFormat": "Powershell: $(scriptName)",
 "execution": {
 "PowerShellExe": {
 "target": "$(scriptName)",
 "argumentFormat": "$(arguments)",
 "workingDirectory": "$(workingFolder)"
 }
 }
 }

 This JSON file starts with metadata on the task such as the name, description, author, and version. The
demands section requests the capabilities that need to be present on an agent. This allows the build system
to match agents to build definitions and thus to individual tasks. The file then specifies the input parameters
that users can supply through the interface. You see the script name, arguments, and working folder. The
last part is execution. This node specifies what the task does when it runs on an agent. As you can see, the
PowerShell task just executes PowerShell.exe and passes the input arguments to it.

 More complex tasks use a similar JSON file but in the execution node call a PowerShell (or other type of
script) that’s included with the task. This script then does the actual work. For example, the VSBuild task has
the following execution node:

 "execution": {
 "PowerShell": {
 "target": "$(currentDirectory)\\VSBuild.ps1",
 "argumentFormat": "",
 "workingDirectory": "$(currentDirectory)"
 }
 }

 All it does is call VSBuild.ps1 and pass it the working directory. The VSBuild.ps1 script performs
the actual work like NuGet restore, getting the sources, and running the build. The build system is cross-
platform and JavaScript-based. You use gulp to compile the tasks and produce the output files. The gulp
build step creates a tasks.loc.json file and an English strings file. You can use this to create localized
versions of your task. You then package the output of the build and upload the package to VS Team Services.

 ■ Note Learning gulp is not required for creating build tasks. However, gulp is very powerful so learning it is
definitely something you should look at. For more information on gulp, see http://gulpjs.com/ .

 To create a custom build task, you need a couple of tools. First, you need to have Node.js installed.
This will install the Node Package Manager (npm) that you can then use to install the tools needed to create
a build task: tfx-cli . As you can see in Figure 9-18 , installing tfx-cli through npm downloads all the
dependencies and makes sure you can run the package locally.

http://gulpjs.com/

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

178

 Figure 9-18. You can use npm to install tfx- cli

 ■ Note Visual Studio looks at different places for your Node.js installation. If you get an error that states that
you’re not using the latest Node.js version, go to Options ➤ External Web Tools settings and make sure that
your PATH environment variable is at the top.

 Now that you have the tools, you can use the tfx command to create a skeleton of your new task. When
running this command, you need to enter a value for the short task name, friendly name, description, and
author, as shown in Figure 9-19 . You execute the task by running:

 tfx build tasks create

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

179

 Figure 9-19. Create a skeleton build task by running tfx build tasks create

 ■ Note If you run into errors while creating the files for your task, make sure that you are running the correct
version of Node.js . At the time of writing, the newest version of Node.js is not yet supported. Changing back
to an older Node.js version fixes the problems. You can use a tool like nvm-windows (https://github.com/
coreybutler/nvm-windows) to run multiple Node.js versions simultaneously.

 This command creates a couple of files for you:

• icon.png : A sample icon for your extension

• sample.js : The JavaScript version of your task that can run cross platform

• sample.ps1 : The PowerShell version of your task that can run on Windows

• task.json : The manifest file of your task that describes its settings and how to run it

 You can the modify these files and create your task. Once finished, you need to upload the task to
VS Team Services. To do this, you need a special token that you can use to authenticate from the command
line. You can get such an access token by using the Web Access and navigating to your own profile
properties. Figure 9-20 shows the Security tab of your profile. Here you can choose to create a new personal
access token. You need to specify a name, a duration period, and the scope of your token. After creating the
token, you see it only once. It’s not stored in VS Team Services so you need to copy it and keep it safe.

https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

180

 After you have the token, you can run the following command to upload your task:

 Tfx build tasks upload –task-path <path>

 You need to enter the URL of your collection (https://youraccount.visualstudio.com/
defaultcollection) and the personal access token you just received. (You won’t see the characters appear.
Just paste the token in and press Enter.) Figure 9-21 shows a successful upload. After this, you can verify your
upload by navigating to your list of tasks. Figure 9-22 shows the Hello DevOps task I created and uploaded. If
you want to remove a task you can run the following command. You can get this ID from the task.json file
in your task directory .

 tfx build tasks delete --id <id>

 Figure 9-21. Upload your build task to VS Team Services

 Figure 9-20. You can create a personal access token for uploading your new build task

https://youraccount.visualstudio.com/defaultcollection
https://youraccount.visualstudio.com/defaultcollection

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

181

 Using SonarQube
 As you’ve seen in the chapter on code quality, managing technical debt is important. Visual Studio offers
some great features for this, such as Code Metrics, Code Analysis, and Unit Testing. These tools run on a
developer’s computer. When working on your continuous integration pipeline, an important step is to run
these same quality checks at the central build server. This way, you start tracking your code quality on every
check-in. You can then analyze trends and set minimum quality gates for allowing code to be checked in.

 SonarQube is a product from SonarSource that helps you with this. Microsoft has partnered with
SonarSource to make sure that VS Team Services and SonarQube work great together. There is now support
for installing SonarQube on a Windows Server, analyzing C# code with the new Roslyn analyzers, and
integrating this fully into the VS Team Services build system. To get a feeling of what SonarQube offers you,
you can go to a free demo environment running at http://nemo.sonarsource.org/ . Figure 9-23 shows you
the dashboard of SonarQube Nemo.

 Figure 9-22. A newly uploaded task is visible in VS Team Services

http://nemo.sonarsource.org/

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

182

 To see more of what SonarQube can do, you can navigate to the analysis of the Roslyn compiler project
by clicking on the icon in the top-right area of the Microsoft Roslyn .NET tile in the All Projects panel. See
Figure 9-24 .

 Figure 9-23. The SonarQube dashboard gives you a quick overview of the status of your projects

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

183

 If you look at the resulting dashboard, you see something called a SQALE Rating. The SQALE method is
implemented by SonarQube to evaluate the amount of technical debt you have in a project in an objective
way. The result of this analysis is the amount of time it will take to fix all the technical debt in a project. These
timing estimates are based on rules where each rule has a time attached to it that’s based on the SQALE
analysis model.

 Figure 9-24. The Roslyn project is also analyzed in this demo environment

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

184

 Figure 9-25. The SonarQube dashboard for the Roslyn project shows a wealth of information

 An SonarQube analysis of your project gives you a wealth of information. Not only do you see where the
problem areas are, you also get immediate information on how much time it’s going to cost you to fix your
technical debt. This is a huge advantage to making decision on when to incur or pay technical debt. If you
look further at the dashboard (shown in Figure 9-25), you see information on the size of your project (lines of
code, number of files, classes, and functions). You also see information on code duplication, issues found in
your code, and the amount of technical debt over time .

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

185

 The Issues list is what’s most important. This is a complete list of issues detected by validating all the
rules that SonarQube has installed. Issues have a severity and a full description of what the violation is
all about and how to fix it. In every big project, there will be false positives so you can also mark items as
something you won’t fix. Figure 9-26 shows the Issues page for Roslyn.

 Figure 9-26. The Issues page in SonarQube shows you all the technical debt in your code

 SonarQube integrates with .NET, Java, Objective-C, and Swift builds. Additional plugins are available
from SonarSource. There is a free edition of SonarQube but it doesn’t contain the SQALE rating. You can
easily install SonarQube on a virtual machine that you create in Azure or that you host somewhere else. The
ALM Rangers have a detailed installation guide that you can find on http://aka.ms/vsartdsq . After you
have installed the server, you can start using it from within your builds.

 When integrating with .NET builds, you use the SonarQube Runner for MSBuild. This runner needs to
be started at the beginning of your build and stopped at the end. The Begin step contacts your SonarQube
server and requests information on how you want to run your analyses (specifically, the quality profile and
rulesets). When stopping the SonarQube runner, the results are published to SonarQube and you can view
them in your dashboard.

 The Begin step needs a couple of parameters :

• SonarQube endpoint: A configured service endpoint for your SonarQube server

• SonarQube project properties: The unique identifiers for the SonarQube project
where you want to store the analysis results

http://aka.ms/vsartdsq

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

186

 The hosted agent can then run your build while communicating with your SonarQube installation for
the analysis. The communication is done through a service that you define in VS Team Services, as shown in
Figure 9-27 . You create a new generic service with a name, endpoint, and credentials.

 Figure 9-27. Create a new generic service to link SonarQube to VS Team Services

 Figure 9-28. The SonarQube steps for your build are available out of the box

 Now that the service is defined, you can add the SonarQube Begin and End steps to your build
definition, as shown in Figure 9-28 . To configure the Begin task, you need to select the generic endpoint you
create for the SonarQube endpoint value. Then enter a key and name for your project so you can find the
results in SonarQube. After configuring these options, you can start your build and the analysis details will
be available in SonarQube.

CHAPTER 9 ■ IMPLEMENTING CONTINUOUS INTEGRATION

187

 Summary
 This chapter introduced you to the benefits of continuous integration. You learned how to create a
continuous integration build running on VS Team Services. You’ve seen how easy it is to add your own build
agents and create custom tasks that you can use in all your builds. You’ve also configured a SonarQube
server and a build to use it. You’ve seen how easy it is to set up a build on VS Team Services that integrate
with SonarQube. By using the correct plugins, you can now easily analyze your code. This helps you manage
the quality of your code and avoid technical debt.

 In the next chapter you’re going to look at another exiting feature of VS Team Services: package
management. You will see how you can use VS Team Services as a centralized repository to share code with
others within your organization and how to keep track of the packages that are used.

189© Wouter de Kort 2016
W. de Kort, DevOps on the Microsoft Stack, DOI 10.1007/978-1-4842-1446-6_10

 CHAPTER 10

 Creating and Sharing Packages

 How many third-party packages do you regularly use in your projects? Packages like jQuery, Twitter
Bootstrap, AngularJS, and NHibernate are very popular and come from a variety of third-party developers
and companies. Microsoft is using more and more Open Source for its own projects. ASP.NET MVC, Web
API, Roslyn, Entity Framework, and various extensions and utilities for Visual Studio Team Services are some
of the projects that Microsoft hosts on GitHub. And of course you probably have some projects of your own
that you reuse or share with other projects inside your organization. But how do you keep track of all these
shared components? And what’s the best way to be able to share code and use third-party components but
still have an effective way of managing which packages you use? That’s what this chapter is about. You will
learn about the Package Management feature that VS Team Services offers. You’ll create your own package
and share it with your team using these features.

 What Are Packages?
 To get started, it’s important to discuss what a package is and how packages are currently distributed. Take
for example jQuery , a very popular library for web developers. If you go to http://jquery.com , you’ll see a
big Download jQuery button where you can apparently download two different versions (see Figure 10-1).
If you then look at the list of packages you can download, you get to choose between a compressed,
uncompressed, and map file for jQuery 1.x and 2.x. Do you know which one you need? If you have some
experience using JavaScript libraries, you probably want all three! The compressed version is for production,
the uncompressed version is for development, and the map file is used to map the compressed version to
the uncompressed version.

 Figure 10-1. You can download jQuery from the jQuery web site

http://jquery.com/

CHAPTER 10 ■ CREATING AND SHARING PACKAGES

190

 If you download the uncompressed version , you get a single file named jquery-1-11.3 (for this version
at least). Now if you want to use this JavaScript file, you’ll probably copy it to the scripts folder of your
web application and reference it from your HTML file to load it at runtime. An advantage of jQuery is that
it doesn’t have any dependencies. This makes it easy to download and include this single file. But imagine
you want to use a package that does have dependencies. For example, bootstrap depends on jQuery being
available. Downloading all these files separately and placing them in the correct location is doable, but you
can see it breaking down quickly when your project becomes larger.

 Fortunately, there is an easier way to work with packages. Package Manager allows you to install
packages and their dependencies without manually going to their web site to download the files and put
them in your project. This is best explained with an example. NuGet is a Package Manager that is frequently
used in .NET projects to distribute packages. Say you want to add EntityFramework to a new project.
If you open your empty project in Visual Studio, you can view the NuGet Package Manager by going to
Tools ➤ NuGet Package Manager ➤ Manage NuGet Packages for Solution. This opens up the page shown in
Figure 10-2 .

 Figure 10-2. The NuGet Package Manager in Visual Studio

CHAPTER 10 ■ CREATING AND SHARING PACKAGES

191

 As you can see, the top package is EntityFramework . If you select your project and click on Install, the
binaries for the EntityFramework are downloaded to your project and a configuration change is made. If
you view this in Solution Explorer, you’ll see that an App.config file (or Web.config if you’re building a Web
Project) is added with the following content:

 <?xml version="1.0" encoding="utf-8"?>
 <configuration>
 <configSections>
 <!-- For more information on Entity Framework configuration, visit http://go.microsoft.

com/fwlink/?LinkID=237468 -->
 <section name="entityFramework" type="System.Data.Entity.Internal.ConfigFile.

EntityFrameworkSection, EntityFramework, Version=6.0.0.0, Culture=neutral, PublicKeyToke
n=b77a5c561934e089" requirePermission="false" />

 </configSections>
 <entityFramework>
 <defaultConnectionFactory type="System.Data.Entity.Infrastructure.

LocalDbConnectionFactory, EntityFramework">
 <parameters>
 <parameter value="mssqllocaldb" />
 </parameters>
 </defaultConnectionFactory>
 <providers>
 <provider invariantName="System.Data.SqlClient" type="System.Data.Entity.SqlServer.

SqlProviderServices, EntityFramework.SqlServer" />
 </providers>
 </entityFramework>
 </configuration>

 A new configSection is added that configures EntityFramework to use your localdb (a development
version of SQL Server that comes installed with Visual Studio). Since the starting project was empty, the
configuration file is added with the new content. If you already have a config file, NuGet is smart enough
to append the new changes without completely overwriting your settings. In addition to the configuration
settings, two references are also added: EntityFramework and EntityFramework.SqlServer . If you inspect
the properties for these two references, you’ll see that they point to a packages folder stored in your
 Solution folder. Figure 10-3 shows the file tree of the EntityFramework package that you installed. In the
root, there is one file with a nupkg extension. This is the actual NuGet package that is copied to your solution.
If you change the extension to .zip, you can open the file as a normal ZIP file. It contains the content , lib ,
and tools folders and the metadata files that describe the content and how the package can be installed.
The content folder contains two transform files. These files contain the logic to update or create your app or
 web config file. The lib folder contains the required DLLs if you’re targeting .NET 4.0 or .NET 4.5. Finally, the
 tools folder contains a set of scripts and executables that are used to first install EntityFramework and later
work with it .

CHAPTER 10 ■ CREATING AND SHARING PACKAGES

192

 As you can see, a NuGet package is way more than just some DLLs that you downloaded manually. It’s a
set of instructions on how to add the files to your project and even configure it. But where does this package
come from?

 If you look back at Figure 10-2 , you see a drop-down called Package Source in the upper-right corner.
By default, you can select nuget.org or Microsoft and .NET. These package sources point to a URL. For
example, nuget.org points to https://api.nuget.org/v3/index.json . If you open this URL in your
browser, you’ll get a JSON object that defines other URLs that can be used to query NuGet and that offer
to autocomplete the search when you’re searching for a package by name. Accessing https://api-
v3search-0.nuget.org/query returns a large JSON object that contains information on the available
packages. This is the data that’s nicely displayed when you use the NuGet Package Manager in Visual Studio.
How did these packages end up on NuGet? Somebody took the time to build the nupkg file that you saw in
the EntityFramework example and then uploaded this package to NuGet. NuGet is public for everyone. You
can freely create an account and then use your credentials to upload your own packages. These packages
will then be available to you and others to consume.

 Figure 10-3. The files copied to your solution when you install the EntityFramework package

https://api.nuget.org/v3/index.json
https://api-v3search-0.nuget.org/query
https://api-v3search-0.nuget.org/query

CHAPTER 10 ■ CREATING AND SHARING PACKAGES

193

 If you don’t want your packages to be freely available to everyone, you can use the Package
Management features for VS Team Services to host your own feed. You can then add packages to this feed
and only people with the correct URL and credentials will be able to connect to this feed and download the
packages. This means that you can use Package Management to distribute shared components within your
organization. You no longer have to store these on a network share or in a version control system. Instead,
VS Team Services offers you a secure centralized location to manage packages.

 This can also be used if you want to restrict the use of certain packages. Take for example software that’s
published with a so-called copyleft license . A strong copyleft license allows you to freely use some software
and then requires that your product uses the same licensing and is published as Open Source. If you
unknowingly use a component with a copyleft license, you are still required to Open Source your product.
There are situations where that’s no problem but if you would rather not Open Source your intellectual
property, paying attention to which packages you use is pertinent. The same is true for security concerns.
Open Source packages are not free of risk. Some packages have vulnerabilities that are sometimes fixed in
later versions or that haven’t been fixed yet. Restricting the use of packages to a good, known set eliminates
these problems. Instead of using public package feeds like NuGet, you restrict your developers to use only an
internal, managed feed. If a developer requires a new package that’s not available on the internal feed, they
can request this package to be added which allows you to validate the licensing structure and security of the
new package.

 Until now, we’ve looked at NuGet as a popular example of a Package Manager. But NuGet is not the
only source of packages. For example, while creating a custom Build task in Chapter 9 , you used something
called npm : Node Package Manager. Node.js is a JavaScript runtime that can run your server-side JavaScript
code. The Node.js package ecosystem allows you to install hundreds of thousands of packages. Where npm
focuses on server-side frameworks, Bower is another Package Manager that focuses on client-side libraries.
Bower, NPM, and NuGet are all used as Package Managers in ASP.NET MVC 5 applications. If you create a
new ASP.NET MVC 5 application based on the Web Application template, you get a series of files, as shown
in Figure 10-4 (make sure to select Show All Files). The references folder no longer contains references
to individual DLLs but instead has references to NuGet packages . The bower.json file contains a list of all
Bower packages you want to use, while package.json references all npm packages. These other Package
Managers have similar capabilities as NuGet; they just have a different usage scenario.

 Now that you know what a package is and which Package Managers are used in the .NET ecosystem,
you can dive into the Package Management features that VS Team Services offers you.

 ■ Note Creating NuGet packages is outside the scope of this book. If you want to know how to create your
own packages, you can look at http://docs.nuget.org/create for more information

http://dx.doi.org/10.1007/978-1-4842-1446-6_9
http://docs.nuget.org/create

CHAPTER 10 ■ CREATING AND SHARING PACKAGES

194

 Figure 10-4. An ASP.NET MVC application uses Package Management for all its references

CHAPTER 10 ■ CREATING AND SHARING PACKAGES

195

 Package Management for Visual Studio Team Services
 Microsoft delivers Package Management as an extension that you can install into your account. If you
navigate to the marketplace at https://marketplace.visualstudio.com/#VSTS , you see the list of
extensions available for VS Team Services. You can then navigate to Package Management (see Figure 10-5)
and choose install to add the extension to your account.

 Figure 10-5. You can find the Package Management extension at the marketplace

 Package Management is an extension that’s installed at a global level for your whole account. You
can access it by navigating to one of your team projects and selecting the Packages hub. As you can see in
Figure 10-6 , Package Management is based on feeds . A feed is a collection of packages that you can share
with teams in your organization. You can set security permissions on the feed to allow people to read and
contribute packages. To create a feed, just click on the green + icon shown in Figure 10-6 . To create your
feed, you enter a name, description, and permission settings.

https://marketplace.visualstudio.com/#VSTS

CHAPTER 10 ■ CREATING AND SHARING PACKAGES

196

 A feed has three access levels. As an Owner, you can rename and remove your feed. A Contributor is
allowed to add packages to a feed and Readers can consume your feeds’ packages. By default, your Team
Build account is also added as a contributor. This allows you to automatically add packages created during
your automatic builds and distribute these to your teams.

 When you create a new feed, Package Management shows you a list of important steps for getting
started using your new feed (see Figure 10-7). As an example, you can get the jQuery package from nuget.
org and add it to a new feed named AllowedExternalPackages . When you switch the tool shown at the top
of the page to NuGet 3.x, you see step-by-step instructions. First, you need to download nuget.exe from
 http://nuget.org and open a command line that points to the location of your nuget.exe file . Then click
on Generate NuGet Credentials. This gives you a command that you can copy/paste into your command
line. This command looks something like this:

 nuget sources add -name "AllowedExternalPackages" -source https://<youraccount>.pkgs.
visualstudio.com/DefaultCollection/_packaging/AllowedExternalPackages/nuget/v3/index.json
-username "...." -password "..."

 After running this command, the AllowedExternalPackages feed is added as package source to your
global NuGet configuration. You can now test this by first downloading a package from NuGet.org and then
uploading it to your own internal by running:

 nuget install jQuery
 nuget push jQuery.2.1.4\jQuery.2.1.4.nupkg -Source https://<youraccount>.pkgs.visualstudio.
com/DefaultCollection/_packaging/AllowedExternalPackages/nuget/v3/index.json -ApiKey VSTS

 The first command downloads the jQuery package from NuGet.org . The jQuery package is installed in
a subfolder of your current path. You then take the nupkg package of jQuery and add that to your own feed
with the second command.

 Figure 10-6. Package Management is added as a hub to your account

http://nuget.org/

CHAPTER 10 ■ CREATING AND SHARING PACKAGES

197

 If you now navigate to Package Management in VS Team Services, you see your new feed with the
jQuery package, as shown in Figure 10-8 . As you can see, not only the name of the package is listed but also
a description and instructions on how to install the package. This information is contained in the jQuery
 nupkg package that you just pushed to your feed .

 Figure 10-8. The jQuery package is now added to your AllowedExternalPackages feed

 Figure 10-7. You can start by adding packages to your new, empty feed

CHAPTER 10 ■ CREATING AND SHARING PACKAGES

198

 Most of the time you don’t want to work with NuGet from the command line. Instead, you want to work
with your feed from within Visual Studio. If you open Visual Studio and navigate to Tools ➤ Options ➤ NuGet
Package Manager ➤ Package Sources, you can add new package sources, as shown in Figure 10-9 . If you used
the previous command-line command to add the package source, your new feed already shows up in the
Package Sources window. If not, you can add it from this window by choosing the green + icon and entering
the name and URL of your package source.

 Figure 10-9. You can configure package sources in Visual Studio

 You can also disable package sources by unchecking them. This allows you to disable NuGet.
org as a package source and only use your own internal feeds as package sources. Configuring this for
every developer on your team can be problematic. If someone forgets to disable the NuGet.org package
source, they can easily install packages that are not validated by your organization. If you want to force all
developers to use this configuration, there is a NuGet package that helps you to configure your solution one
time and then have this automatically apply to all developers who work with the solution.

 If you open up a PowerShell session and point that to the root of your project, you can run the following
commands to initialize your NuGet configuration:

 Invoke-WebRequest https://dist.nuget.org/win-x86-commandline/latest/nuget.exe -OutFile nuget.exe
 .\nuget.exe install -OutputDirectory packages Microsoft.VisualStudio.Services.NuGet.Bootstrap
 .\packages\Microsoft.VisualStudio.Services.NuGet.Bootstrap.*\tools\Bootstrap.ps1
 rm .\NuGet.exe

CHAPTER 10 ■ CREATING AND SHARING PACKAGES

199

 The first command is an easy way to download NuGet.exe and store it in your working folder. The
second command downloads the Microsoft.VisualStudio.Services.NuGet.Bootstrap package and
stores this in the packages folder beneath your current location. As a part of this package, you get a bootstrap
PowerShell script that initializes your environment. After running this file, you get a nuget.config file and
an init PowerShell file. To initialize a developer’s environment, you need to run the init PowerShell file.
This downloads the latest NuGet tools and configures authentication. The nuget.config file contains the
package sources you want to use in your project:

 <?xml version="1.0" encoding="utf-8"?>
 <configuration>
 <config>
 <clear />
 <add key="repositoryPath" value="packages" />
 </config>
 <packageSources>
 <!-- When <clear /> is present, previously defined sources are ignored -->
 <!-- Remove this tag or un-comment the nuget.org source below to restore packages from

nuget.org -->
 <!-- For more info, see https://docs.nuget.org/consume/nuget-config-file -->
 <clear />
 <!-- Intentionally v2, as v3 doesn't yet support list which is used by Update-

Environment.ps1 -->
 <add key="vss-package-management" value="https://www.myget.org/F/vss-package-management/

api/v2" />
 <!-- <add key="nuget.org" value="https://api.nuget.org/v3/index.json" /> -->
 </packageSources>
 <activePackageSource>
 <add key="All" value="(Aggregate source)" />
 </activePackageSource>
 </configuration>

 You can add your own feeds hosted on VS Team Services (or at other locations) to this file by copying
the line <add key="..." value="..." /> and setting the key to the name of your feed and value to the
URL that you copy from Web Access. When running a VS Team Services build for a project that’s configured
this way, it’s important that you add the NuGet Installer task (see Figure 10-10) to your build definition.
You configure this task with the path to your nuget.config file. The NuGet Installer task then takes care of
downloading your packages from the correct package sources.

CHAPTER 10 ■ CREATING AND SHARING PACKAGES

200

 An oft-used way to add packages to your feeds is from Team Build. This allows you to compile your
project and automatically add packages to a feed. To help you with this, there are two packages available out
of the box: NuGet Packager and NuGet Publisher (see Figure 10-11).

 Figure 10-10. The NuGet Installer task makes sure that your build knows where to find your packages

 Figure 10-11. Use the NuGet Packager and NuGet Publisher tasks to publish your packages

 The Packager task searches for all nuspec files in your repository and creates NuGet packages for these
files. When you point the Publish task to an internal feed, you can just enter the URL of your feed to publish
the packages to.

 Currently Package Management only supports NuGet packages. In coming releases, Package
Management will also support NPM and Maven. The overall idea will stay the same; you’ll just be able to add
feeds for other package types and use these in your projects.

CHAPTER 10 ■ CREATING AND SHARING PACKAGES

201

 Summary
 Having an easy way to share third-party and internal components is an important step toward DevOps.
VS Team Services Package Management helps you host your own feeds and use them in your projects.
You can easily add existing NuGet packages or add your own packages to your feed. You can then bootstrap
the developer environment to make sure that all your developers use these feeds. You can also integrate
Package Management with your builds. You can install packages when running a build and create and
publish packages to your feeds.

 In the next chapter, you look at the extensive testing capabilities that are a part of VS Team Services.

 PART IV

 Test, Deploy, and Monitor

 This part shows you how to integrate testers into your DevOps process. You’ll learn the test features
of Visual Studio Team Services and Microsoft Test Manager. You will also look at the possibilities
of test automation. After this, you move on to Release Management to learn how you can set up
automatic deployments. Finally, you'll learn about Application Insights and how that can help you
monitor your application.

205© Wouter de Kort 2016
W. de Kort, DevOps on the Microsoft Stack, DOI 10.1007/978-1-4842-1446-6_11

 CHAPTER 11

 Integrating Testers into DevOps

 Testing is a crucial part of DevOps. When moving to continuous delivery, you don’t want to optimize your
process to ship bugs faster. You want to ship quality features as fast as possible. This means that in a DevOps
process, there is no place for long stabilization phases where all development is halted. Instead testers work
together with developers. This chapter details how testers can be the most effective by using the specific
testing features of Visual Studio Team Services. You’ll first look into manual testing and then explore the
topic of automated tests .

 Manual Testing Through Web Access
 In addition to developers and other stakeholders, testers have a dedicated place in Web Access. The Test hub
is the place where testers spend most of their time. In the Test hub, testers can create and run tests and track
their overall progress. Figure 11-1 shows the Test hub for an empty project.

 Figure 11-1. The Test hub is a part of VS Team Services Web Access

 Tests are organized in a hierarchical structure. On the highest level, you work with a test plan. I often
see teams creating a new test plan for every sprint they have (if they use Scrum). When going from sprint to
sprint, they clone their test plan and then modify it to the needs of the new sprint. Other teams map their test
plans to releases or another schema that makes sense for their project. Inside a test plan you have test suites.
A test suite is a container for test cases. The individual test cases are where you specify what you want to test
and what you expect. You can group these test cases in static suites, requirement-based suites, and query-
based suites.

 A static suite is just what the name says: a static collection of test cases that only changes when
you change it. A requirement-based suite links your test cases to a specific item on your backlog. This
relationship allows you to see which test cases are grouped under a product backlog item and use the results
of the test cases to determine the state of the PBI. A query-based suite automatically contains all test cases
that fulfill the query.

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

206

 Figure 11-2 shows the three types of suites grouped under a single plan. The first suite is a requirement-
based suite pointing to a PBI with ID 261. The second one is a query-based suite that filters to test cases with
a priority of 1 and the regression tests is a static suite. Static suites can also be used to group other suites.

 Figure 11-2. A test plan groups test suites and a static test suite can group other suites

 ■ Note The Test Case Explorer extension (https://marketplace.visualstudio.com/items?itemName=ms-
devlabs.TestCaseExplorer) makes it easier to manage your test cases when you have a lot of them.

 Creating this structure is easy. You use the green + icon to create new items. You first have to start with
a test plan. You can then add child items and even create further nested items if you want. You then start
adding test cases to the requirement-based or static test suites. Figure 11-3 shows a test case. Just as with
other work items, you can set a title and state. The Assigned To field points to the person responsible for
maintaining the test case. The tester assigned to execute the test case is assigned from within the suite that
contains the test case. This separation allows you to make one person responsible for maintaining tests and
others for actually running them. You can also add tags and have a discussion section. Unique for a test case
are steps and tabs like Associated Automation.

https://marketplace.visualstudio.com/items?itemName=ms-devlabs.TestCaseExplorer
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.TestCaseExplorer

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

207

 The test steps are the heart of your test case. This is where you describe what a tester should do and
which result to expect. For example, Figure 11-3 shows a list of steps that let users navigate to the Test hub,
create a test plan and a static test suite and then check if the green + icon is available for the static suite to
create test cases. If one of these steps fails or if the expected result fails, the tester marks the test case failed
and files a bug. Running a test case can also be done through Web Access. Once you’ve designed a test case
and set its status to Ready, you can choose the Run button from the toolbar in the Test hub, as shown in
Figure 11-4 .

 Figure 11-3. A test case in VS Team Services Web Access

 Figure 11-4. The toolbar lets you run a test and change the test outcome

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

208

 When you run a test case from Web Access (later in this chapter you’ll look at the dedicated Microsoft
Test Manager client), you see the Test Runner shown in Figure 11-5 . This Test Runner is a separate popup
that you can position somewhere on your screen while executing the shown steps. Of course, the application
that you’re testing doesn’t have to run on your own PC. If you use a separate device, such as a tablet or
phone, you can still track test progress and file any potential bugs. If you click on the button to create a new
bug, you are navigated to the details of a new bug. The steps you took that resulted to the bug are copied
from the Test Runner and the test case and this particular test result are attached to the new bug. This makes
it easier for developers to reproduce the bug .

 Figure 11-5. The Test Runner window

 Another feature of test cases is the ability to add parameters. Let’s say you’re testing a registration form
for your web application. Users need to enter their names and contact details and you want to make sure
that your validation correctly reports invalid e-mail addresses or missing fields. You could create separate
test cases that repeat the same series of steps but with different values for the specific fields but that’s not
very maintenance friendly. Instead you can add one single test case and then specify different rows of
values that you want to run the test with. You create a parameter by using the @ sign in your test step. So the
line Enter @firstname adds a new parameter named firstname . The parameters are listed as a grid at the
bottom of your steps. Figure 11-6 shows an example of this.

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

209

 Figure 11-6. You can use parameters to create multiple data sets for your test case

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

210

 When you run your test case, the Test Runner knows how many rows you created and shows the values
for each individual field. As you can see in Figure 11-7 , the Test Runner lets you go through the first row of
test data. The iteration field at the top shows the test row you’re currently using. You can navigate to other
iterations by using the previous and next buttons. When you file a bug, the parameters for the row you were
testing are added to the bug.

 Figure 11-7. You can run test cases with multiple sets of data

 As you can probably predict, when you have multiple test cases, some steps will be the same for each
test case. For example, opening the browser, navigating to your application, and signing in are the required
steps that every test case has to take. To help you with this, you can create shared steps. Shared steps are a
named group of steps that you can then insert into other test cases. If you then make a change to your Shared
step, it changes in all test cases that use the shared step. You can create and insert shared steps by using the
toolbar above the steps area in a test case details, as shown in Figure 11-8 . In addition to shared steps, you
can also create shared parameters (see the bottom part of Figure 11-6). These parameter sets can then be
edited through Web Access and shared between different test cases.

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

211

 You now know how to create and run test cases. You can file bugs linked to a test case and structure
your cases in suites. If you take a step back, you might wonder if creating a bunch of test cases at the start of
each new feature is the way to go. In a DevOps process where things are moving fast, you can’t spend much
time on creating test cases for every part of your application. Instead, you want to work with the application
and pinpoint the areas that need to be covered with manual (or automated) tests. This is where exploratory
testing comes in. When you’re doing an exploratory testing session, you don’t start with predefined test
cases. Instead, you just go through the application while keeping track of the steps you’ve taken. If you find a
problem, you can create a new bug and even create a test case so you make sure this defect doesn’t return.

 Exploratory testing sessions can be started from the Microsoft Test Manager client or from within your
browser. For this to work, you install a special extension. The starting point for this is the Exploratory Testing
extension in the Visual Studio Marketplace: https://marketplace.visualstudio.com/items/ms.vss-
exploratorytesting-web . Clicking install takes you to the Chrome Web Store (other browser access is to
come). After installing the extension, you can launch it in your browser (see Figure 11-9). You first need to
decide if you want to connect to a VS Team Services account (or an on-premises Team Foundation Server) or
run in standalone mode. Connected mode allows you to use the full capabilities of this extension.

 Figure 11-8. The Steps toolbar allows you to create and insert shared steps

https://marketplace.visualstudio.com/items/ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items/ms.vss-exploratorytesting-web

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

212

 Once connected, you start a new session. While the session is running, you add notes and screenshots.
The timeline shows the steps you’ve taken (see Figure 11-10). You can then file a bug (or create a task) and
the notes and screenshots are automatically added to the bug together with information on the system
you’re running, such as your browser, language, dimensions, operating system, and hardware capabilities.
You can also select a product backlog item that you want to do some exploratory testing for. If you have a PBI
selected, any items you create will be automatically linked to the PBI .

 Figure 11-9. You can do exploratory testing with the extension for Chrome

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

213

 Figure 11-10. The timeline keeps track of the notes and screenshots you make during your session

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

214

 If you want to test your web application on other devices, you can use the services offered by Perfecto.
Perfecto offers solutions for running your tests on a multitude of devices. For this, they offer their own
collection of devices but you can also attach your own devices. You can manually run tests on a device
or automate the steps and let them run on a number of devices. The Exploratory Testing plugin can be
connected to Perfecto, thereby allowing you to select the device you want to test on and report any bugs
directly in VS Team Services (see Figure 11-11).

 Figure 11-11. You can connect to Perfecto if you want to test on multiple devices

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

215

 While running your tests, you of course want to track the progress of your different test suites and test
cases. To help you with this, you can create charts. You can view these charts from the Test hub or you can
pin them to your team’s dashboard. By default, you get a pie chart that shows the outcome of the different
test cases in your plan (see Figure 11-12). You can create charts that show you the status of your test cases
(Design, Ready, or Closed), the number of cases assigned to individual testers, the status of tests in each
of your suites, and numerous other scenarios (you can find more information on how to create charts in
Chapter 6 , which covers dashboards and reporting). You can also view a history of your test runs by going
to the Runs tab in the Test hub. This allows you to easily see which tests need attention or have completed
successfully.

 Figure 11-12. You can create charts to track your test’s status

http://dx.doi.org/10.1007/978-1-4842-1446-6_6

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

216

 That concludes the Test hub in Web Access with regard to manual testing. In the part on automation,
you’ll return to the Web Access but first you’re going to learn about Microsoft Test Manager.

 ■ Note The Microsoft ALM Rangers have released great testing guidance that you can find at
 https://vsartestreleaseguide.codeplex.com/ . This guidance will help you plan and run your tests.

 Microsoft Test Manager
 Just as developers use their favorite IDE such as Visual Studio or Eclipse, testers have their own software
too. The complement to manual testing in the Test hub is Microsoft Test Manager. If you’re running Visual
Studio Enterprise, you’ll already have access to MTM. For testers, there is a separate MSDN subscription—
Test Professional—and it gives them access to MTM. The first time you launch MTM, you are asked to log
on to your VS Team Services account and select the project you’re working on. If you look at Figure 11-13 , a
lot of things will look familiar to what you’ve seen in the Test hub in Web Access. You see your current test
plan and the three test suites. You also see the high-priority test case in the query-based suite. Microsoft
is working hard on expanding Web Access to make it equivalent to Microsoft Test Manager. A feature like
shared parameters is only available in Web Access. But there are other features that are unique to MTM and
that’s what you’re going to explore in this section .

 Figure 11-13. Microsoft Test Manager is the standalone client for testers

https://vsartestreleaseguide.codeplex.com/

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

217

 The biggest difference comes from the fact that you are using an actual desktop application that can
interact with every program on your computer. This means that when you’re running a test case, MTM can
track what you’re doing and record all your mouse clicks and keyboard keys. When running a test from
Web Access, you get a browser popup that doesn’t have this intricate relation with your operating system.
This is ideal for running cross-platform tests or testing on devices like tablets and phones. When working
with Windows, the MTM Test Runner has a lot more capabilities. If you look at Figure 11-14 , you see the
MTM Test Runner when it’s first loaded. The Test Runner docks to the side of your screen and automatically
positions other applications next to it. If you click Start Test, you see the test steps from your test case.
Just as with the Web Test Runner, you can mark each test as passed (using Win+Ctrl+Q) or failed (using
Win+Ctrl+W). You can add screenshots and create bugs just as you’ve seen with the Web Test Runner .

 Figure 11-14. The Test Runner launched from MTM

 Something that’s not (yet) available in the Web Test Runner is the Create Action Recording checkbox
shown in Figure 11-14 . While you’re running a test case, MTM keeps track of your actions. If you launch a
program, type some text, or click somewhere with your mouse, this is all recorded. Once the action recording
is finished, you can let MTM replay the actions for you. For example, you have a registration form with lots of
fields. You have a test case with multiple rows of parameters. Running this test case manually means that you
have to enter each parameter in the correct field and then validate the result.

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

218

 With an action recording, you record the steps to open the registration page and you record one row of
data being entered into the correct fields. MTM keeps track of all this and on your next run you can fast-
forward steps. This is something you have to see in action to see how great this feature is. I want to encourage
you to fire up MTM, create a simple test case that includes steps to navigate to http://visualstudio.com ,
enter a value in the search box, and then close the browser. After recording your actions, you see something
like Figure 11-15 .

 Figure 11-15. A test case with an action recording can automate manual steps

 You now have a Play button that you can use to automatically replay the recorded actions. On step 3,
there is some manual validation required so that step will always pause and ask for your confirmation. This
is something I sometimes see go wrong. Testers are often trained to have an expected result for every action
they take. If they apply the same process to MTM test cases, you can’t fast-forward because MTM will pause
on every step to ask if the result is valid. Having expected results only on the steps that offer real value for
your test allows you to make better use of action recordings. If steps 1 and 2 are used in multiple test cases,
you can create a shared step for them and even a shared action recording. That way, you can always fast-
forward the initial steps to get to the situation you actually want to work on. Using action recordings is still
far away from actual automated tests, but it can help testers do their work more efficiently.

 This recording technique can also be used when you’re running exploratory testing sessions from
MTM. If you go to the Test menu in MTM, you see the Do Exploratory Testing option. Figure 11-16 shows
the repro steps for a bug created in an exploratory session. As you can see, MTM tracks all your steps. Mouse
clicks even have a small screenshot attached! This makes it way easier to reproduce bugs. The tester doesn’t
have to worry about keeping track of how he ended up in a particular state. This is automatically recorded.
When your exploratory testing session takes some time, you can edit the steps to make sure that you include
only relevant ones by selecting Change Steps at the top of your Repro Steps list.

http://visualstudio.com/

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

219

 Figure 11-16. The repro steps recorded for a new bug

 After you’ve finished configuring your new bug, you can create the bug or you can create a bug and a
new test case so you can keep track of this bug and make sure it doesn’t return. When you create a test case,
you can use the Verify Bugs option in MTM to check if an open bug can be closed.

 While running a test, data is collected. You’ve already seen how actions are recorded and how your
system’s information is added to a bug. You can record even more information using MTM. If you look at
Figure 11-17 , you see the Run Settings for your test plan. For manual and automated tests, there is a default
plan. This plan captures action recordings and system information. You can also log code coverage, the
systems event log, IntelliTrace, screen and voice recordings, test impact, and ASP.NET client proxy data.

 Test Impact and IntelliTrace are my personal favorites. Using Test Impact, MTM can help you track what
has changed between different versions of your application. MTM also tracks which test cases touch which
part of your code base. If some code changes, MTM suggest that you run the test cases that touch that part
of the code. This doesn’t dismiss you of running a good set of regression tests but it definitely helps you run
the highest priority tests first. IntelliTrace is like TiVo for your code. When collecting IntelliTrace data, MTM
records exactly what happens in your code—which methods are called, which parameters are used, and
what is returned from external calls (SQL queries, for example). You can then use the IntelliTrace log file to
debug an issue after the fact. If you’re running an application with multiple tiers (such as a client, database,
and web server), it makes sense to track event log and IntelliTrace data on these additional machines.

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

220

 In the bottom-right corner of Figure 11-17 , you also see a setting for configurations. Configurations is a
simple pick list that you can edit through the Organize hub in MTM. Configurations can be combinations of
settings like OS and browser version. When you select multiple configurations for your test cases, MTM will
automatically let you run the test case for each configuration.

 I like Microsoft Test Manager a lot. However, I also know that a lot of organizations aren’t aware of
the possibilities of MTM. If you’re in such an organization, try to experiment with MTM, especially the
data recording and action recording features. See if these add value and then be an evangelist in your own
organization! In the next part, you will look at different forms of test automation.

 Automated Testing
 Automated testing is the key to a successful DevOps implementation. Having operations worry about all the
changes coming down from developers is natural. Doing something about those feelings is mandatory. And
not only operations will be happy, your stakeholders will be too. Automated testing comes in many flavors.
In Chapter 8 on managing technical debt, you looked at unit testing and the differences among unit tests,
integration tests, and scenario testing. Unit and integration tests are written in code and exercise parts of
your application but don’t touch the user interface. Scenario tests do touch the user interface and that’s what
you’re going to focus on next.

 Visual Studio offers a framework for creating UI tests called Coded UI. Coded UI allows you to test
client and web applications. You can create a Coded UI test by recording the steps you want to take and
then generating code that performs these steps. You can also add assertions that check the UI and validate
the result. For example, you can have a simple calculator that adds two numbers. You want to enter the two
numbers, click on the Add button, and then verify the result of the addition is correct.

 To use Coded UI tests, you need to have Visual Studio Enterprise. You can then create a Coded UI test
project and use that to record and modify tests. When creating a new project, you’re asked if you want to
start by recording a new test or if you want to use an existing action recording (see Figure 11-18). Here you
see the link between manual and automated testing. If a tester has a good action recording of a manual test,
he can sit down with a developer and then fully automate the test.

 Figure 11-17. Through run settings, you can configure data to collect while running your test

http://dx.doi.org/10.1007/978-1-4842-1446-6_8

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

221

 Figure 11-18. You can create new Coded UI tests by recording your steps or by using an action recording that
was made earlier

 Figure 11-19. The Coded UI Test Builder helps you record your tests

 If you choose to create a new test from a new recording, the Coded UI Test Builder is loaded (see
Figure 11-19). This toolbar allows you to start and pause recording, inspect your steps, and generate code
for your test. You can also add a control to the UI map. The UI map is the structure that Coded UI uses to
organize the controls you interact with during your test. For example, text fields, buttons, checkboxes, and
other controls are added to the UI map. If you want, you can manually add controls to verify values or other
settings.

 Figure 11-20 shows the UI map for a simple Coded UI test recording. The UI map contains steps to open
a browser, go to http://visualstudio.com , click on the Marketplace link, and then open the GitHub for
Visual Studio Extension. These steps are listed in the left panel.

 In the right panel, you see the UI control map. These are the controls that I interacted with while
recording this test. The properties of the last control, UIGitHubExtensionforViImage , are shown. Coded UI
identifies controls by looking for their IDs and a combination of search properties and window titles. For
example, the window title collection contains the Visual Studio Marketplace value since that’s the title of
the browser when searching for the GitHub logo. Search properties states that Coded UI should look for an
image. You can add properties and other search values if those are required to successfully find your control.

http://visualstudio.com/

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

222

 The generated code for this test is located in the code -behind file of your UI map. The code that starts
your test is very simple:

 [TestMethod]
 public void CodedUITestMethod1()
 {
 this.UIMap.GoToGitHubExtension();
 }

 If you want to modify the GoToGitHubExtension method , you can right-click it in the UI map shown in
Figure 11-19 and choose to move the code to a file named UIMap.cs . You can then freely modify the code but
you can’t update it anymore by using the Coded UI Test Builder. The code that’s generated looks like this:

 public void GoToGitHubExtension()
 {
 #region Variable Declarations
 BrowserWindow bing = this.Bing;
 HtmlHyperlink uIMarketplaceHyperlink = this.Bing.UIVisualStudioMicrosofDocument
 .UIFragment_HeaderTocPane.UIMarketplaceHyperlink;
 HtmlImage uIGitHubExtensionforViImage = this.Bing.UIVisualStudioMarketplDocument
 .UIItem8Pane.UIGitHubExtensionforViImage;
 #endregion

 // Go to web page 'http://visualstudio.com/'
 bing.NavigateToUrl(new System.Uri(this.GoToGitHubExtensionParams.BingUrl));

 Figure 11-20. The UI map shows the structure of the controls that are used in your test

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

223

 // Click 'Marketplace' link
 Mouse.Click(uIMarketplaceHyperlink, new Point(65, 32));

 // Click 'GitHub Extension for Visual Studio' image
 Mouse.Click(uIGitHubExtensionforViImage, new Point(57, 105));
 }

 You can see how in the first region the UI map is used to access the required controls. Then the browser
is pointed to the correct URL and mouse clicks are simulated to navigate to the correct locations. Coded UI
tests are not meant for use in the parts of your application where the UI is still drastically changing. As you
can understand, this code can become quite brittle and hard to maintain. That doesn’t mean however, you
can’t use more maintainable code for your Coded UI tests. If you look at http://visualstudio.com , what do
you see? Do you see div s, hyperlinks, paragraphs, and input controls? Or do you see an option to sign in, a
menu with navigation choices, and blocks of information with other options? Building your Coded UI test on
the level of individual HTML (or WPF) elements is bound to fail. If you have multiple tests that first need to
sign in, you can have something like this:

 browser.NavigateToUrl(new Uri(Params.VisualStudioUrl));
 Mouse.Click(signinLink, new Point(65, 32));
 // Enter username
 // Enter password
 // Click on Sign In

 But what if the Sign In button moves to another location? What if you decide to use two-factor
authentication? Do you have these couple of lines spread through all your tests or have you encapsulated
them in a simple Signin method? The quality of your test code should be as good as your production code.
After recording, refactor your Coded UI tests to a level where you abstract the individual controls and make
sure that your tests can be well maintained. A lot of teams fail at test automation because they don’t pay
enough attention to their test code. When used correctly, automated testing can be very powerful.

 ■ Note When testing web applications, you can also use Selenium (http://www.seleniumhq.org/) instead
of Coded UI. Selenium is a very powerful tool for testing browser applications and something you should look
into when you’re building complex web applications.

 Another important part of automated testing is performance and load testing. Performance testing
has to do with how fast your application is. Load testing helps you determine how many users can use your
application simultaneously. You can get started very easily by navigating to the root of your VS Team Services
project and going to the Load Test hub (Figure 11-21).

http://visualstudio.com/
http://www.seleniumhq.org/

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

224

 A simple load test requires you to configure the options that you see in Figure 11-22 . First, you specify
the URL of your application being tested. Then you enter a name and select a location. Location is one of the
Azure datacenters that is going to be used to simulate the user load on your URL. If you want to make sure
that your application is performing well, you probably want to select a datacenter near your users. If you
have a worldwide service, you can create multiple load tests and let them run from different datacenters.

 In the bottom part of the window, you configure what your load test is going to do. You select the
number of users and the time your test should run. These two values form your virtual user minutes and
that’s what you get charged for when using load testing on VS Team Services . Fortunately, you get 20,000
virtual user minutes for free to get you started. You also configure the think time. When you have 100 users
looking at your web application, they won’t be constantly active. A user reads something, moves her mouse,
and types something while working with your web page. This takes some time and you can configure the
delay between certain actions by specifying a think time. You can also choose if your users use Google
Chrome or Internet Explorer and the percentages of each by configuring the browser distribution.

 Figure 11-21. You can run load tests directly from VS Team Services

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

225

 While running your load test, you see a nice graph displaying your results. Figure 11-23 shows an
example graph that uses the settings from Figure 11-22 . You see that while running for the first 1:45 minutes,
no errors were reported. The user load is constant at 100 users and the average request time went to 0 while
the requests per second went up to 40. When the test finishes, you see a summary of your average response
time, the total requests you made, and the number of errors .

 Figure 11-22. A simple load test can be created in VS Team Services

 Figure 11-23. While running your load test, you see a real- time graph with the results

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

226

 You might wonder how realistic this is. You’re now only hitting the root URL of your web application.
Things like caching are influencing the results, especially since you are using only one agent and one
IP address to run the tests from. A more realistic scenario would hit multiple pages of your web site and
simulate a real user. But if you don’t have any load testing in place, this is a good place to start. To create
more complex load tests, you use Visual Studio Enterprise to create cloud-based load tests. Without using
the cloud, this would require you to set up machines that can generate the load with something like Visual
Studio Lab Management.

 With cloud-based load testing, all this setup is done by VS Team Services. All you have to do is record a
web test and send it to the cloud. To get started, you need to create a web performance and load test project.
A performance test is different from a Coded UI test. Where a Coded UI test actually opens the browser
and interacts with different elements, a load test only captures the web traffic between your client and the
web application. This traffic is then scaled to multiple concurrent users and executed against your web
application to test its performance.

 You start with creating a web performance and load test project. By default, a single empty web test is
added. If you look at Figure 11-24 you see a sample web test. The web test lists a series of request to a sample
web site that I host on Azure. This is a simple MVC 5 web app without any modifications. The first request
is to the homepage. This results in three additional requests that load three fonts. Then a request to the
About page and finally to the Contact page. Then I navigated back to the home page, resulting in the last four
 requests .

 Figure 11-24. A web test is a recording of several HTTP requests

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

227

 It’s easiest to create a web test by using the Add Recording button in the toolbar. This launches
Internet Explorer with the Microsoft Web Test Recorder Helper plugin. This recorder tracks all the
HTTP traffic from your browser. In Figure 11-25 , you see the Web Test Recorder active. Navigating to
 http://visualstudio.com generates the first request. The other requests run when loading the
 visualstudio.com home page. You can pause the recording if you want to exclude certain steps from your
recording. You can also add comments that show up in your recording and of course you can stop the
recording. Once it’s finished, Visual Studio parses your requests and looks for any dynamic parameters.
Dynamic parameters are parameters that are regenerated each time a user runs your application. This can
be a session ID, values stored in cookies, hidden fields such as ASP.NET view state for ASP.NET Web Forms
applications, and query string or post parameters. All this information is extracted by Visual Studio and
added as an extraction rule to your web test. This rule configures how Visual Studio gets the value of the
parameter and what you want to do with it. You can also create plugins to interact with your test. You could
for example filter out all image requests, modify requests and response data, etc. You can easily run the web
test locally and see if it executes the correct requests .

 Figure 11-25. The Web Test Recorder is an Internet Explorer add-on

 Once you have a functioning web test, you can create a load test. A load test takes one or multiple
web tests and uses your local PC or VS Team Services to run a load test. Figure 11-26 shows the wizard for
creating a new load test. When using VS Team Services, you first need to specify your VS Team Services
account. This account is then used for the load test and billed for the virtual user minutes you generate. You
then enter the location where you want to run the load test. For example, if I’m testing a Dutch web site for
the Netherlands, I would use the West Europe location since that’s located in Amsterdam, the Netherlands.
Run settings specify how long your test should run and if there should be a warm up period. It could be that
the first requests to a web site take longer because the application needs to launch and the cache needs to
be built. You can exclude these results from your load test by choosing a warm up period. Scenario specifies
what type of test you want to run. Do you want a constant user load (stress testing) or do you want to
increase the user count every number of seconds?

http://visualstudio.com/

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

228

 Test Mix is about the distribution of your individual web tests. If you only have one web test, this option
isn’t very exciting. If you have multiple tests and you want to run tests in a certain order, based on the
amount or speed of users or each test proportional to each other, you can specify that with a Test Mix model.
Of course you also need to add the individual web tests that you want to use in your load test. Finally, the
Browser Mix states which browser you want to use for your load test.

 Once finished, you can start your load test. You can use your own PC to generate the load but of course
this has its limits. It is however a useful way to validate your load test settings. Once you have a correct
load test in place, you can run it with VS Team Services. This gives you a result like the one in Figure 11-27 .
Here you see a graph of the performance of your application. You can also view detailed data on errors or
validation violations that happened during your load test. You can also specify in your load test configuration
which properties you want to track—for example, the number of pages/second your application returns or
the CPU load that your agents have while generating the load. All this data can be used to create validation
rules and monitor the output of your load test.

 Figure 11-26. You can create a load test in Visual Studio

CHAPTER 11 ■ INTEGRATING TESTERS INTO DEVOPS

229

 Summary
 Testing is a huge subject. The goal of this chapter was not to introduce you to every little detail of testing
that’s possible. Instead, I hope you’ve seen things you didn’t yet know existed and that sparked your interest.
You’ve seen how you can start with manual testing by using VS Team Services Web Access. You can create
test plans, suites, and cases. You can insert steps and results and use parameters and shared steps to create
a maintainable set of tests. You’ve seen how exploratory testing can help you when finding weaknesses in an
application without much upfront work.

 You also explored the possibilities of Microsoft Test Manager: the desktop client for testers. This client
lets you collect multiple data sources ranging from audio/video to IntelliTrace data while running your tests.
You’ve also seen how the exploratory testing features of MTM help you track your steps and generate new
test cases and bug reports.

 Finally, you looked at automated testing. You’ve seen how Coded UI tests help you create system tests
that go through your application’s user interface. You’ve also seen how you can test the performance of web
applications by using web and load tests together with VS Team Services.

 One thing that this chapter didn’t cover is how to run all these tests as an automated step in your release
process. The next chapter is all about creating such an automated release pipeline based on VS Release
Management. You’ll learn how to set up continuous deployment and run the automated tests that you
created as a part of your process.

 Figure 11-27. A graph displaying the results of a load test

231© Wouter de Kort 2016
W. de Kort, DevOps on the Microsoft Stack, DOI 10.1007/978-1-4842-1446-6_12

 CHAPTER 12

 Implementing Continuous Delivery
with Release Management

 Automating deployments is often one of the first steps teams work on when moving to a DevOps process.
And that’s not without reason. Automating deployments is a huge step. An automated deployment process
helps your team reduce errors and lets your team work on important stuff. This chapter shows you how to
implement automatic deployments by using Release Management. You’ll see what Release Management is
and how it works and look at the possibilities for deploying different application types.

 Understanding the Deployment Pipeline
 I’ve seen companies deploy in all kinds of ways. Just as there still are companies that don’t use version
control, there are companies that do their deployments fully manually. The prerequisites for good
deployments are version control and a continuous integration build. The build is the start of what’s called
your delivery pipeline. The delivery pipeline is an automated set of steps that takes your code from version
control all the way to production. Some of these steps are about the actual deployment but also about
running automated tests and making sure that the deployed code is working.

 All too often, a developer starts a release by compiling the code locally on her development machine
and then copying the output to a server. Your deployment pipeline shouldn’t start at the developer’s PC.
Instead, you want to start at your continuous integration server. That’s a location you can control and
manage. If you can create a predictable output from your build server, you can then use that output as the
start of your deployments. This takes away any uncertainty of a developer following manual steps on her
machine to create your deployment package.

 After the build server has produced a package, you can take this package through additional steps.
This can be deployments to different environments, running automated and manual tests, data migration,
and any other step that’s required to ensure the quality of your release and for you to be confident to
release it to stakeholders.

 One of the most important things to understand about a delivery pipeline: built once and only once.
The build server outputs the artifacts that you want to deploy. These form the start of your pipeline. Every
stage in your pipeline takes these artifacts, configures them, and deploys them to your environment. This
guarantees that your artifacts are consistent throughout all stages. This also means that whenever you
want to deploy a change, you go through all the stages of your delivery pipeline. You never skip steps; you
never deploy directly to production. This means that your deployment is tested several times before it hits
production.

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

232

 In addition to the steps in your delivery pipeline, you also want orchestration around your process.
You need to establish who’s responsible for each stage, which steps are automated, and which require
manual approval. You also need configuration management to store the different configuration options for
each environment, such as connection strings or other settings, and make sure that the correct settings are
applied during each stage.

 To build an effective deployment pipeline, you need collaboration between development and
operations : DevOps. This is a huge cultural shift. Traditionally, these departments have been silos with very
different objectives. Operations is responsible for keeping the applications stable. Each change is a risk.
Developers on the other hand are paid to release new features. They are constantly under pressure to keep
deadlines. Often operation doesn’t trust development because they deliver unstable code that’s hard to
install and monitor. Developers find that operations is slow and only hinders them in doing all the real work.

 Now try getting these two groups to work together. This is a hard problem to solve. Tooling is not
the Holy Grail. However, getting both operations and development interested in a single tool is a huge
win. DevOps is about breaking down the silos between different departments. Try to get someone from
operations interested with keywords like auditability, traceability, and—above all—stability. You need to
understand each other’s problems and start working as a team.

 Having operations fix live production issues in the middle of the night while you tell them “it works
on my machine” is not going to make you popular. Work as a team. If you need to get management on
board, tell them the advantages of continuous delivery. Customer satisfaction is always a huge argument.
Having more frequent, stable, and predictable releases is important. Another important possibility of a good
delivery process is hypothesis-driven design. Instead of having a product owner create a backlog based on
some customer interviews and intuition, you use your newly found ability to deploy quickly to run small
experiments. By measuring how your application is used in production (more on that in Chapter 14), you
can quickly deploy small (or larger) changes and measure their effects.

 This is what Release Management offers. Cross-platform, web-based orchestration and deployment
tooling. Release Management integrates seamlessly with the Visual Studio Team Services build system
and offers full traceability from work items, through the code change, build, test, and deploy stages. The
following sections go into detail on how to use Release Management in VS Team Services.

 Setting Up Automatic Releases with Release Management
 Release Management is a very nice, integrated solution in VS Team Services that orchestrates deploying your
applications to different environments, be it on (virtual) machines running on-premises or in Azure or to
Platform as a Service environments such as Azure apps. Release Management is a cross-platform solution
that uses the same agents that the build system uses. Release Management executes a variety of tasks, some
out of the box, others created by you, and deploys your application this way. In addition to the task details
that do the actual work, Release Management orchestrates the deployment across different environments.
It makes sure that the appropriate permissions are followed and that configuration settings are safely stored
and applied during deployment.

 Just as with Team Build, you get a hosted agent that’s completely managed for you by VS Team Services.
You can queue a release and it will be picked up by an agent. The hosted pool allows you to connect to
Azure. Using the hosted agent to deploy to on-premises environments is typically not possible because of
firewall restrictions. In that case, you can deploy an agent on-premises and connect that agent to VS Team
Services to run on-premises deployments.

http://dx.doi.org/10.1007/978-1-4842-1446-6_14

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

233

 You start your configuration by creating a Release Definition . Within your Release Definition you
define the environments you want to deploy to such as integration, testing, staging, and production. This is
completely up to you. You can create as many or as few environments as you need. For each environment,
you configure the tasks you want to run. In addition to the tasks, you configure variables and permissions. Of
course the Release Definition needs to get your application from somewhere. This is where artifacts come in.
By linking your Release Definition to a build definition, you can configure artifacts that are taken from your
build output. This allows you to create a complete delivery pipeline where version-controlled code is built
and released all without manual work. Figure 12-1 shows a very basic Release Definition called Web App
Release. There is one environment with only one task: Azure File Copy.

 Figure 12-1. A Release Definition with one environment and one task

 Azure File Copy allows you to copy an artifact to a virtual machine or a storage account in Azure. If you
look at Figure 12-2 you see the configuration of the File Copy task. The task is configured to copy a source
(more on that in the following paragraph) to an Azure VM. That VM is stored in a storage account with the
name rmtarget5002 . The virtual machine is also part of a Resource Group. Resource Groups can contain
multiple items that logically belong together. The VM is selected by name and the login credentials are
specified together with a destination folder.

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

234

 ■ Note The Azure subscription is a property that’s configured as a service for each team project. If you click
on Manage in the properties of your deployment task, VS Team Services navigates to the Service section of
your project. You can then add Azure subscriptions using a name/password, certificate, or service principal.
If you want to deploy to a Resource Group, you need to establish the connection with a service principal. For the
classic model, it’s best to use a certificate. For a detailed description of the required steps, see https://msdn.
microsoft.com/Library/vs/alm/Release/getting-started/deploy-to-azure#prerequ .

 Having the credentials displayed as plain text is probably not what you want. To help you store and
secure variables, Release Management has the ability to store variables accessible to your whole Release
Definition and per environment. If you select the ellipses next to your environment name, you see an option
to configure variables. This displays the window shown in Figure 12-3 . Here I’ve added one variable named
 AdministratorLogin . You can then enter the value and select the lock icon to securely store the value. This
not only hides the value from view but also makes sure that it doesn’t end up somewhere in a log file. You
can then replace the value for password with $(AdministratorLogin) . The $(...) syntax can be used for all
variables that you define, globally or per environment.

 Figure 12-2. Configuring the Azure File Copy task

https://msdn.microsoft.com/Library/vs/alm/Release/getting-started/deploy-to-azure#prerequ
https://msdn.microsoft.com/Library/vs/alm/Release/getting-started/deploy-to-azure#prerequ

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

235

 The source data from this task starts with $(System.DefaultWorkingDirectory) \CI Build. This data is
retrieved from a configured artifact. Artifacts are the data packages that you can use throughout your deployment.
Figure 12-4 shows an artifact that gets its data from a VS Team Services Build. Release Management can load
artifacts from Team Build and from Jenkins or from an on-premises Team Foundation Server. This allows you to
use Release Management in the cloud while the rest of your TFS data is on-premises. At the start of the release
to an environment, the agent downloads your artifacts and stores them locally. Other tasks can then access the
artifacts and deploy them. The number of supported artifact sources is still growing. If you miss a specific artifact
source, you can always skip the linking of artifacts and add tasks that manually download the artifact.

 Figure 12-3. Configuring variables used by an environment

 Figure 12-4. A VS Team Services Build output can function as an artifact for your release

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

236

 ■ Note The variable $(System.DefaultWorkingDirectory) is predefined by Release Management . You can
find a complete list of all predefined variables in the documentation by navigating to the Configuration tab of
your Release Definition and selecting the Predefined Variables link.

 After you’ve configured an environment, the deployment task and the required artifacts you can start a
new release to test if everything is working correctly. Figure 12-5 shows the new release window. By giving
your release a description, you can easily find it later in the logs. You also select the artifact version you
want to use. In this case, I selected a recent version of my team build that was successful. Finally, you select
the target environment. Selecting an environment here doesn’t mean that you only execute the steps for
the selected environment. It means that your Release Definition will deploy to all environments up to the
environment you selected.

 Figure 12-5. You can start a new release by selecting the version of your artifacts and the target environment

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

237

 The first step, Pre-Deployment Approval, is part of the orchestration workflow that you can configure.
Before and after each environment you have an approval step. You can configure these steps to be
automated or have manual approval. If you select the manual option, you also need to select one or more
users or groups that are responsible for approving the step. You can also enable to notify these persons by
e-mail. They will then receive an e-mail whenever an approval is waiting for them. Figure 12-7 shows the
window for assigning approvers.

 Figure 12-6. A realtime log file shows the status of your release

 While your release is executing, you can see a log similar to the Team Build log. Figure 12-6 shows the
log file of an in-progress release. You can see the current environment and the different steps.

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

238

 The Triggers section allows you to set up continuous deployment. This means that a successful team
build triggers a new release. Figure 12-8 shows how to configure this. You can select a build definition from
the drop-down. This lists all the build definitions available in your team project. You then select a target
environment where you want your release to end. Maybe you want to deploy every check-in to an integration
environment and you want to deploy a nightly build all the way to production.

 Figure 12-7. You can assign manual approval or automate the approvals for an environment

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

239

 While creating your Release Definition, you can choose from a number of predefined tasks. You can see
the default list of deployment tasks in Figure 12-9 . In the same way as you add tasks to team build, you can
add release tasks if you miss something (see Chapter 9 for more information). You can also choose to use the
PowerShell tasks to run your own scripts.

 Figure 12-8. Configuring continuous deployment for your Release Definition

http://dx.doi.org/10.1007/978-1-4842-1446-6_9

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

240

 Release Management also helps you when it comes to traceability. You’ve already seen the detailed log
of a particular release. You can also get a nice overview of your Release Definition, as seen in Figure 12-10 .
My first release contained only one environment and has succeeded. The second release deploys to three
environments. The first one is finished. Currently the second release is running and the third one comes
after that. When you assign manual approval steps, you will see an icon of person with a stopwatch. This
means that the next stage is waiting for approval. An approver can select this and then enter a comment and
reject or accept the approval. If a release fails, you can choose to abandon the release or restart it, as you can
see in the toolbar in Figure 12-10 .

 Figure 12-9. Available deployment tasks

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

241

 You’ve seen what Release Management is capable of. You can create a Release Definition based on
environments, tasks, approvers, and variables and then run the release. Another important step in your
deployment pipeline is testing. In Chapter 11 , you looked at automated testing. The value of your delivery
pipeline increases highly when you add automated tests to it.

 Imagine that every check-in by a developer is compiled, run, and then automatically deployed on a
testing environment, where a set of Coded UI and other automated tests run. A tester can take one of these
releases and then approve it be deployed to the manual testing environment. The tester already knows
that the basis quality of the release is okay. Additional manual tests are then performed and when stability
matures, these tests are also automated.

 To run your tests, you will need machines that can perform them. For example, you deploy your web
application to Azure Web Apps and want to test it from different client operating systems with different
browsers. You need to create these test clients yourself and add them to VS Team Services. This is done in
the Test hub under the Machines option, as shown in Figure 12-11 .

 Figure 12-10. Release Management gives you an overview of your releases

 Figure 12-11. Machine groups can be used to deploy to

http://dx.doi.org/10.1007/978-1-4842-1446-6_11

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

242

 You first create a machine group and then add machines to this group. You need to enter the credentials
for an administrator account on this machine and then enter the fully qualified domain name (FQDN) or
IP address of each machine. The machines need to support PowerShell remoting over HTTPs with a signed
certificate. The absolute easiest way to create a machine with that configuration is to use a template that
you can find at https://github.com/Azure/azure-quickstart-templates/tree/master/201-vm-winrm-
windows . There is a Deploy To Azure button on this page that you can use to create your machine. After
you’ve created it, add it to your machine group in VS Team Services.

 Figure 12-12 shows what the machine group looks like after configuring it with a machine that I
created based on the previously mentioned template. VS Team Services connects over remote PowerShell
with your machine group. Since I’m using a self-signed certificate, I’ve disabled the CA (Certificate
Authority) check. The machine in my group is determined by its FQDN. You can find this name in
the Azure portal. I’ve also tagged the machine. Tags are in the format key:value . You can enter any
combination you want.

 Later you use this to filter to specific machines when you want to run your test or deploy content. For
example, if you have multiple client machines that all need the agent, you could add a tag Type:Client and
use that as a filter to get all the client machines.

 After creating your machine group, you can set up automated tests . The first step is copying the
assemblies that contain your tests from your Team Build output to the target machine. You can do this with
the Azure File Copy task. You then deploy a test agent to the machine and finally use the Visual Studio Test
using the test agent to run your tests. Figure 12-13 shows the tasks you need. The Azure File Copy task is
configured with values from the Azure portal such as a resource group and storage account. You also specify
the destination folder on the VM where you want to copy your files to. The Test Agent Deployment requires a
Machine group and the machines to target. You also specify the credentials that the agent will run with. The
final task runs the actual tests. Here you also select a machine group and then specify which tests you want
to run. This could be all tests found in assemblies that end with test.dll , for example. After this, you can
start and run the test.

 Figure 12-12. The machine group after configuration

https://github.com/Azure/azure-quickstart-templates/tree/master/201-vm-winrm-windows
https://github.com/Azure/azure-quickstart-templates/tree/master/201-vm-winrm-windows

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

243

 Figure 12-13. Required tasks to run tests using a test agent

 Figure 12-14. Summary of a release that failed because a test failed

 Your release will now run tests as a part of it. If you look at Figure 12-14 you see the output of a release
that ran some tests. The release failed with the message that some tests didn’t pass. If you look at the Test
Results section, you see that one of the two tests passed.

 By selecting the Test Result name, you’re redirected to the Test Hub ➤ Runs page. Here you can see a
history of all test runs that you executed. If you look at the current run in Figure 12-15 , you see the summary
of your test run. On the right side you can find a number of charts that show the outcome of your tests in
various formats.

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

244

 You can go to the Test Results menu to find details about the individual tests. Here you can also update
an analysis of each failure, as shown in Figure 12-16 . For failed tests, you can also create a bug and associate
it with the test details for further investigation.

 Figure 12-15. The Test hub contains the details of all the individual test runs

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

245

 Securing your Release Definition is also possible. You can configure who’s allowed to make changes to
each environment in your Release Definition. The permissions you can set are:

• Administer release permissions

• Delete release environment

• Edit release environment

• Manage release approvers

 By default, project collection administrators, project administrators, and release administrators have
all these permissions. Contributors can delete, edit, and manage an environment and readers have none of
these permissions. If you need more fine-grained permissions, you can edit these from the window shown
in Figure 12-17 .

 Figure 12-16. You can update an analysis for a failed test

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

246

 Figure 12-17. You can configure permissions for each environment

 That concludes the introduction to Release Management. In the next section you’ll look at deploying an
application consisting of a web application and a database.

 Deploying Web Sites
 A web application with a backend database is one of the most common types of applications I encounter
as a consultant. When you want to deploy a web site, you need to deploy HTML, JavaScript, and CSS files
for the frontend. For the backend you deploy a set of assemblies and configuration files. Some of these
configuration settings need to be changed depending on the environment. For example, you have a different
database connection string for a test environment than for production. The easiest way to deploy web
applications is using Web Deploy. Web Deploy is a complete framework for packaging and deploying your
application. You install Web Deploy by using the Web Platform Installer (https://www.microsoft.com/web/
downloads/platform.aspx).

 When you have a web application open in Visual Studio, you can select Build ➤ Publish. The Publish
Web window opens and you can create a new custom profile by clicking the Custom button and then
entering a name for your profile, as shown in Figure 12-18 .

https://www.microsoft.com/web/downloads/platform.aspx
https://www.microsoft.com/web/downloads/platform.aspx

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

247

 Figure 12-18. You create a new custom publish profile to use in Web Deploy

 In the Connection step you see a Web Deploy option that allows you specify a server and immediately
publish your application from Visual Studio to your server. This is nice for testing your configuration, but it’s
not a solution that fits nicely in a delivery pipeline. Instead, you can select the Web Deploy package, as shown
in Figure 12-19 . I’ve set the package location to a relative path beneath the current project. If you finish the
wizard with these settings, you will find a couple of files in the DeployOutput folder beneath your project:

• MyWebApplication.deploy.cmd

• MyWebApplication.deploy-readme.txt

• MyWebApplication.SetParameters.xml

• MyWebApplication.SourceManifest.xml

• MyWebApplication.zip

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

248

 Figure 12-19. Publish lets you create a Web Deploy package

 The ZIP file is the Web Deploy package. The SetParameters.xml file is used at deployment time to
configure your application. The deploy.cmd file contains a batch script that you can run on a IIS web server
to deploy the application. To test that this actually works, you can run the batch file locally. Make sure that
you’ve installed IIS and Web Deploy. You can edit the SetParameters file to specify the web application
name you want to use in IIS. If you don’t want to publish to Azure, you can expand the SetParameters file
and add parameters of your own, such as a connection string. In this case, I want to show you how to deploy
to an Azure Web App and how you can use the web app to configure settings.

 The start of the delivery pipeline is team build. After adding your project to version control, you can set
up a new team build that not only compiles the code but also creates the Web Deploy package. To do this,
you need to pass two arguments to MSBuild :

 msbuild /p:DeployOnBuild=true;PublishProfile=<TheNameOfYourProfile>

 The Publish Profile points to the profile that you created in the wizard shown in Figure 12-19 . You can
pass these parameters to MSBuild by configuring your Build Definition, as shown in Figure 12-20 . This makes
sure that your Web Deploy package is created.

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

249

 Figure 12-20. Configure MSBuild to create the Web Deploy package

 Figure 12-21. You can add the DeployOutput folder to your build artifacts

 To copy your package to the output of your build, you need to add the DeployOutput folder to the
contents property of the Copy and Publish Build Artifacts task. Figure 12-21 shows this. By including
 DeployOutput like this, it will be a subfolder of your web project. If you want to separate things into different
top-level folders, you can add multiple Copy and Publish Build Artifacts tasks. This is the first step of your
delivery pipeline. You create an output package and store that in VS Team Services. The next step is to use
Release Management to deploy your web application.

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

250

 Figure 12-22. Configure the Azure Web App deployment task to publish your Web Deploy package

 Release Management has a task named Azure Web App deployment that you can use to publish a Web
Deploy package to an existing Azure Web App. To use this task, you need an Azure service endpoint based
on a certificate. You can download the publish settings file from https://manage.windowsazure.com/
PublishSettings . This file contains a property called ManagementCertificate that you can use to link your
Azure subscription to VS Team Services. You can then configure the Azure Web App deployment task, as
shown in Figure 12-22 . The Web Deploy package is retrieved from the build artifacts. You need to link your
Build Definition that creates the output and then put the path to your ZIP file there.

 If you now enable continuous integration for your team build and continuous deployment for your
Release Definition, you have configured automatic deployments. Every check-in triggers a build and a
successful build triggers a release. By adding multiple environments and, if required, manual approval steps,
you can orchestrate your deployment from code to production.

 What about configuration values? As an example, let’s say you have an ASP.NET MVC application. You
have added the following key in appSettings of your web. config :

 <appSettings>
 ...
 <add key="Environment" value="Development"/>
 ...
 </appSettings>

 And the following method on your home controller class :

 public ActionResult WhatsTheEnvironment()
 {
 string environment = ConfigurationManager.AppSettings["Environment"];
 return Content(environment);
 }

https://manage.windowsazure.com/PublishSettings
https://manage.windowsazure.com/PublishSettings

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

251

 Figure 12-23. Configuring settings for your Web App in the Azure portal

 If you ruin the application on your localhost, you can navigate to http://localhost:PORT/Home/
WhatsTheEnvironment . This returns the string Development from your web.config file. When running
in production on your Azure Web App, you want the value to be Production . To enable this, you can go
to the settings blade of your web app and select App Settings, as shown in Figure 12-23 . Here I’ve added
an app setting named Environment with a value of Production . If you navigate to http://yourwebapp.
azurewebsites.net/Home/WhatsTheEnvironment , you get a value of Production . So overriding app
settings and connection strings is possible without any code changes. Azure makes sure that if a value is
present in the Application settings of your web app, that value is used over anything that’s stored in the
 web.config file.

 ■ Note If you want to store your configuration values in version control and not configure them through
the Azure Portal, you can add a script that copies the correct web.config to the root of your application or
that uses a script to parse the web.config and change values based on parameters configured in Release
Management. This is a little more work but also works on an on-premises IIS web server. You can find a
couple of tasks that help you with this in the Marketplace at https://marketplace.visualstudio.com/
items?itemName=colinsalmcorner.colinsalmcorner-buildtasks and a good blog article at
 http://bit.ly/webrmwebdeploy that discusses these tasks in detail.

 You’ve now seen how to deploy your project to web app in Azure. You can also use Azure Resource
Management templates. If you create an Azure Resource Group project (you can find this template in the
Cloud category), you can then select the ARM template you want to start with, as shown in Figure 12-24 .

http://yourwebapp.azurewebsites.net/Home/WhatsTheEnvironment
http://yourwebapp.azurewebsites.net/Home/WhatsTheEnvironment
https://marketplace.visualstudio.com/items?itemName=colinsalmcorner.colinsalmcorner-buildtasksand
https://marketplace.visualstudio.com/items?itemName=colinsalmcorner.colinsalmcorner-buildtasksand
http://bit.ly/webrmwebdeploy

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

252

 Figure 12-24. Creating an ARM template in Visual Studio

 Your newly created project contains a couple of files:

• AzCopy.exe : An executable file that’s used to copy data to the Azure storage accounts

• Deploy-AzureResourceGroup.ps1 : A PowerShell file that starts the deployment of
your ARM template

• Website.json : The actual ARM template

• Website.parameters.json : The parameters your ARM template needs for
deployment

 To start a deployment, you can right-click your Azure Resource Group project and then choose Deploy.
Figure 12-25 shows the Deploy to Resource Group window. There you choose the subscription you want to
deploy to and then create a resource group or select an existing one. You also need to enter a web app plan
(such as free, for example) in the Parameters section. After that you can start your deploy and you’ll see how
the web app gets created on Azure.

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

253

 Figure 12-25. Deploy an ARM template from Visual Studio to a resource group

 ■ Note If you get an error during deployment, make sure you have installed the latest PowerShell tools. You
can find instructions and downloads at https://azure.microsoft.com/nl-nl/documentation/articles/
powershell-install-configure/ . Also don’t forget to reboot after installing.

 To extend the ARM template, you need to open the WebSite.json file. You can then open the JSON
outline (View ➤ Other Windows ➤ JSON Outline) to inspect the template. Figure 12-26 shows the outline.
The parameters are values that your ARM template needs to be deployed. Both skuName and skuCapacity
have a default value so you’re not required to enter those. The hostingPlanName value is required and you
can enter a value like Free .

 The Variables section defines calculated values in your ARM template that you can later reuse.
For example, webSiteName :

 "webSiteName": "[concat('webSite', uniqueString(resourceGroup().id))]"

 The final section, Resources, contains the actual resources you’re creating with this ARM template. As
you can see in Figure 12-26 , it’s more than a simple web app. You also configure your hosting plan, auto-scale
settings, and use Application Insights (see Chapter 13 for more information on Application Insights).

https://azure.microsoft.com/nl-nl/documentation/articles/powershell-install-configure/
https://azure.microsoft.com/nl-nl/documentation/articles/powershell-install-configure/
http://dx.doi.org/10.1007/978-1-4842-1446-6_13

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

254

 Figure 12-26. The JSON outline lets you work with your ARM template

 Currently, the template only creates a new web site but doesn’t upload your Web Deploy package to
it. You can extend your ARM template by clicking on the cube with a green + in the top left, as shown in
Figure 12-26 . In Figure 12-27 you see how to add the Web Deploy for Web Apps part to your ARM template.
This adds MSDeploy as a child node of the web site. One property that’s important to note is PackageUri :

 "packageUri": "[concat(parameters('_artifactsLocation'), '/',
parameters('WebDeployPackageFolder'), '/',
parameters('WebDeployPackageFileName'),
parameters('_artifactsLocationSasToken'))]"

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

255

 Figure 12-27. Add Web Deploy for Web Apps to your ARM template

 This property contains the location of your artifact and an access token. You can’t store the Web Deploy
package on your local machine and then reference it from an ARM template running in Azure. Instead, the
PowerShell template takes care of uploading your Web Deploy package to Azure storage and then passes
the correct URL and token to the ARM template. To deploy the package, you can copy it to the folder of your
Resource Group project and then include it as a project file in Visual Studio. This makes sure that the file gets
uploaded to storage.

 You can then enter the relative path and name of the ZIP file in the parameters section of your
deployment. If you want to verify that your content is uploaded to Azure storage, you can open the Cloud
Explorer (View ➤ Cloud Explorer) in Visual Studio and navigate to Storage Accounts ➤ Blobs. Look there
for your content uploads. To use ARM templates in Release Managements, you can use a PowerShell task to
execute a deployment script or use the Azure Resource Group deployment task. You can use the Azure File
Copy task to move your Web Deploy package to Azure storage and then run the ARM template.

 Almost all web applications that I see at customers use databases, yet almost all teams are having
problems with automatically deploying databases. Renaming columns, changing stored procedures, and
having a basic set of test data are only some of the problems teams face when it comes to automatic database
deployments. Unfortunately, there is almost no project that doesn’t use a database. Bear in mind that I’m
talking about relational databases like SQL Server. NoSQL databases like document databases have other
challenges and advantages that are outside the scope of this book.

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

256

 Fortunately, Microsoft realized that databases are hard to deploy. This is why they created the SQL
Server Data Tools (SSDT) to help you. SSDT adds a new project type to Visual Studio: the database project.
This project allows you to bring your database schema under version control. Schema is not only about
tables and columns; stored procedures, views, and permissions can also be stored in a database project.
When you compile a database project you get a dacpac file. This file is a complete representation of your
database and it can be deployed. You deploy a dacpac by giving it a target database to bring up to date. The
system figures out which changes need to be made and then applies these updates automatically. Of course
you can check what the dacpac deployment is going to do and you can apply rules around data loss. While
working with your database project, you keep it up to date by synchronizing it with your local development
database or by making changes directly to the database project from within Visual Studio.

 Your database project can also contain scripts that you want to run before or after a deployment. This
allows you add some manual steps to your deployment. One of the things you probably want to do is add a
default set of data to your database. This can be some test data that you want to have available or a base set
of data that is needed to run your application.

 As part of SSDT you get an executable called sqlpackage.exe that performs the actual deployments for
you. You can use sqlpackage.exe from the command line to update a database. This can be a regular SQL
Server database or SQL Azure.

 Understanding Containers
 You are probably familiar with the concept of virtual machines (VMs) . They emulate computers. On one
single physical computer you can deploy multiple virtual machines. Azure is an example of a platform that
hosts multiple virtual machines. You can request a VM through the portal and later access it. This doesn’t
mean that new physical hardware is put in the datacenter and that you get the credentials of a freshly
installed server. It’s just a virtual machine that runs on a host with enough capacity. Your VM is assigned
a number of CPUs and memory. Those resources come from the host machine and the number of VMs is
limited by the capacity of the host. Even if a VM doesn’t use all its assigned memory or CPU power, the host
can’t assign it to another VM. And since a VM is a complete, albeit virtual, machine, starting up a new VM
takes time. This limits the speed with which you can scale your application and provision new resources.

 A concept that’s gaining a lot of popularity are containers. A container looks a lot like a VM but is much
lighter. Instead of having dedicated CPU and memory, a container uses these resources dynamically. If a
container needs 2GB of RAM, it will use 2GB of RAM. If it needs less, it uses only what it needs. Containers
boot very quickly. You still get an isolated environment with an external IP address, but you don’t have the
disadvantages of VMs.

 A very popular container platform is Docker . Docker containers run on Linux. Since Microsoft
understands the importance of containers, Windows Server 2016 will also be able to host containers. A
container is built out of images. These images are layered on top of each other to form an application.
Images are also shared between different containers on the same host. This saves memory and disk space.
Sharing these resources doesn’t mean that there are security risks for your application since the container
host makes sure that each container runs in its own process. A container has a configuration file that
specifies which layers you want to put on top of each other. A layer can be a web server or an ASP.NET stack.
Layers have a version number and are immutable once created. These images are stored in a central registry.
There is a public version of a Docker registry that you can find at https://hub.docker.com/ . If you do a
search for ASP.NET, you can find a Microsoft ASP.NET image at https://hub.docker.com/r/microsoft/
aspnet/ . This is the cross-platform version of ASP.NET that lets you run your web applications written in
.NET on Linux.

 Since containers are a stack of components in the form of images, you can easily move containers
around. This allows you to redefine the idea of a delivery pipeline where an application goes through
multiple environments. The environment for a Docker container doesn’t change. You just push the complete
environment to another location with another set of configuration parameters.

https://hub.docker.com/
https://hub.docker.com/r/microsoft/aspnet/
https://hub.docker.com/r/microsoft/aspnet/

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

257

 Figure 12-28. ASP.NET 6 applications can be deployed to Docker

 As an example of how you can to deploy to Docker, you can create a new ASP.NET 6 application. If you
create a standard application from the installed templates and then open the Publish Web wizard, you see
the options in Figure 12-28 .

 After selecting the Docker option, you’re asked to select a host machine or create a new one.
Figure 12-29 shows the settings for a new Linux host. This creates a new ARM file that’s stored in your
project. Visual Studio then deploys this ARM file to Azure to create your host. After the host is created,
you can deploy your application to it. This is nothing more than selecting your created Docker host
as the target. Visual Studio makes sure that the correct ASP.NET image is loaded and then puts your
application in an image on top of it.

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

258

 ■ Note This is only a short introduction to the concept of containers and they are becoming more and
more important. For a deep dive into containers, I recommend Docker: Up & Running, by Karl Matthias and
Sean P. Kane.

 Figure 12-29. You can create a new container host running Linux

CHAPTER 12 ■ IMPLEMENTING CONTINUOUS DELIVERY WITH RELEASE MANAGEMENT

259

 Summary
 This chapter introduced you to the concept of a delivery pipeline, which is a series of steps that takes
your application from code to deployment. You’ve seen how you can use Release Management for the
orchestration of your deployments. You can create a Release Definition with multiple environments and
tasks that perform the actual steps required for your deployment. You’ve also seen how you can integrate
automated tests into your deployment pipeline.

 Then you looked at the different options for deploying a web application. You’ve seen how you can
create a Web Deploy package and how you can deploy the package to an Azure Web App. You also saw
how you can leverage Azure Resource Manager templates to automate the creation and configuration of
resources. Finally, you looked at an introduction of containers and learned why they are so popular.

 In the next chapter, you learn about Application Insights. You’ll see how AI lets you monitor your
applications to understand what your users are doing and how your application is working.

261© Wouter de Kort 2016
W. de Kort, DevOps on the Microsoft Stack, DOI 10.1007/978-1-4842-1446-6_13

 CHAPTER 13

 Using Application Insights

 A key idea of DevOps is the build-measure-learn cycle that you go through. Throughout this book you’ve
seen how the planning, build, test, and release management tools that Visual Studio Team Services offers
help you with building and releasing your app. This sets you up for the DevOps cycle that you can now run
in an automated, efficient way. This chapter introduces you to the measure step and how you can use that to
learn things about your application and your users. You will learn what Application Insights is and how you
can you use it to monitor your applications.

 What Is Application Insights?
 Application Insights is a service offered by Microsoft as a part of Microsoft Azure. Microsoft develops and
runs the service for you and you can use it to monitor web, client, and mobile applications. Monitoring
compasses different areas such as:

• Availability: Is our web application running and accessible to our users?

• Performance: Can we handle the load on our application?

• Usage: What are users doing with our application? Which features are popular and
which aren’t?

• Failures: Do users run into errors or is there something else wrong with our
application?

• Dependencies: What’s the performance and availability of applications
we depend upon?

 Application Insights tracks all those metrics and you can expand it with your own metrics. For example,
by adding a couple of lines of code, you can start following the path that users take through application. You
can see where they run into errors or where they leave your application. This can help you to prioritize new
work and see where investments should be made. Figure 13-1 shows an example of the Application Insights
dashboard that monitors my public blog (http://wouterdekort.com). You see things like server response
time, server request count, and page view duration metrics. At the bottom you see some tiles which we’ll
look into later in this chapter .

http://wouterdekort.com/

CHAPTER 13 ■ USING APPLICATION INSIGHTS

262

 Figure 13-1. Application Insights helps you with understanding the usage and performance of your
application

CHAPTER 13 ■ USING APPLICATION INSIGHTS

263

 You can add your own charts and pin these to your dashboard or mark them as favorite for you and
your team. This allows you to easily set up a dashboard that you can display in your team room or at other
places where people want a quick overview of how your application is doing. The dashboard also allows you
to zoom in for further detail. You can go down to the level of individual requests to inspect them for further
details. Since Application Insights is offered as a service, the payment is based on data volume. Fortunately,
there is a free plan that you can use to monitor small- to medium-sized applications. When you reach your
quota, you can choose to start paying for additional monitoring or do nothing and only monitor session
data. At the start of each month, your quota is reset.

 Another important aspect of using Application Insights is privacy and data retention . In most countries
you will get into trouble if you start collecting private user data. It’s good to know which data Application
Insights collects and how it’s stored. At the time of writing, all data is stored in servers in the United States.
The data is encrypted when in transit but not when residing in the servers. Recall that Chapter 2 covered
how Azure protects your data and how only a select group of people can access data with your explicit
permission. The same is true for Application Insights. The Application Insights Software Development Kit
(SDK) collects out-of-the-box data from your application. This doesn’t contain sensitive data but instead
data for load, performance, usage, and diagnostic metrics. You can also add your own data collection and
since you control what’s monitored, you could send sensitive data to Application Insights. When adding
custom monitoring, make sure that you understand which data is considered sensitive and make sure that
your code reviews check for these types of issues.

 Configuring Monitoring for Your Application
 Getting started with Application Insights is made very easy by the integration between Application Insights
and Visual Studio. If you create a new web application, you get the option to configure Application Insights,
as shown in Figure 13-2 . (If you’ve already created your application, you can add Application Insights by
opening the context menu of your solution and choosing Add Application Insights.) Your project now
contains an extra ApplicationInsights.config file. This file specifies which metrics you want to monitor.
A references to the Application Insights SDK is also added. None of your code is modified; having the
 configuration file and a reference to the SDK is enough.

http://dx.doi.org/10.1007/978-1-4842-1446-6_2

CHAPTER 13 ■ USING APPLICATION INSIGHTS

264

 After sending a couple of events, you can navigate to the Azure portal to see the collected metrics on
the dashboard. Figure 13-4 shows the dashboard blade. The metrics show server response time, page view
duration, server requests, and failed requests. The first peak was while I was navigating the web site. The flat
line after that was while the application wasn’t running.

 If you now run your application locally in Debug mode, you will send your first Application Insights
telemetry data to Azure. In the taskbar, you can find a new button named Application Insights (see Figure 13-3).
Between the brackets you can see how many events have been sent to Application Insights. When you open
a couple of pages in the web application running on your local host, you will see the number of events
increasing .

 Figure 13-3. While running your application, Visual Studio tracks the events sent to Application Insights

 Figure 13-2. Add Application Insights while creating a project

CHAPTER 13 ■ USING APPLICATION INSIGHTS

265

 Figure 13-4. Application Insights shows the events that you send from your local development machine

 If you select one of these charts, a second blade opens showing the details for that particular metric.
For example, if you select Page View Duration, you see the details, as shown in Figure 13-5 . Here you see the
details as viewed from the user’s browser. You can see how long it took to render a page, how long it took
to request individual pages, and even dependencies like AJAX calls are tracked. It’s worth it to explore the
blades. While doing this, look at the time range and filters options. Time range is the last 24 hours by default
but you can change this to any period you are interested in. Filters allows you to choose from a wide range of
properties such as country, IP address, or even device type and filter your data down to that. For example, in
Figure 13-5 you see that a filter for browser is applied.

CHAPTER 13 ■ USING APPLICATION INSIGHTS

266

 You can also set alerts for all the available metrics. Figure 13-6 shows how to configure a new alert. An
alert becomes true whenever a certain condition for a selected metric becomes true over the period of time
that you select. So a single peak value won’t trigger an alert but peaking over a period of five minutes, for
example, will trigger the alert. Having alerts for things like CPU usage, memory usage, or request count can
help you track the health of an application.

 Figure 13-5. Application Insight automatically tracks page view details

CHAPTER 13 ■ USING APPLICATION INSIGHTS

267

 Figure 13-6. You can configure alerts for the different metrics in Application Insights

CHAPTER 13 ■ USING APPLICATION INSIGHTS

268

 Another useful way to inspect the telemetry data, is by using the search blade. This blade shows you a
list of all the different events that Application Insights tracks for your application. For example, the search
blade shows you individual AJAX requests and server responses but also things like exceptions and other
diagnostic data. Figure 13-7 shows the search blade.

 Figure 13-7. The search blade allows you to inspect individual events

CHAPTER 13 ■ USING APPLICATION INSIGHTS

269

 Now that you’ve seen how you can set up Application Insights and some of the charts and dashboards it
gives you, it’s time to further inspect the different Application Insight features that you can use.

 Availability Monitoring
 Making sure that your web application or web service is available and responsive is an important part of
delivering a great user experience. If users can’t reach your application or the application is slow, you will
start getting complaints and maybe even start losing users. This is where Application Insights availability
monitoring can help you. You can set up a web test that will check the availability of your web site on regular
intervals from multiple locations around the world. Figure 13-8 shows the configuration for a new web test.

 Figure 13-8. You can configure a URL ping test for availability monitoring of your application

 You can configure a URL ping test or a multi-step test. A URL ping test checks the URL that you enter
and confirms that it’s available by checking the resulting HTTP status code. You can also check for certain
content being available, like a sentence or other phrase that lets you know the web site loaded correctly. By
default, parse dependent requests is checked. This means that Application Insights parses the response it
gets from your URL and then also tries to load any links or images that you have in your HTML. This makes
sure that your page not only loads but also that the dependencies of your page are available. By default, a
failure is recorded when a retry fails three times. This makes sure that you don’t get too many false positives.
You also configure how often and from which locations the test should run.

CHAPTER 13 ■ USING APPLICATION INSIGHTS

270

 Figure 13-9. The results of a URL ping test

 Location corresponds with Azure data centers all around the world. This allows you to check if your
application loads for users in different countries and also avoids failing the test if there is a network issue in
one of the locations. By default, when three of the five configured locations fail, the test fails.

 Figure 13-9 shows the results from the URL ping test that I have running for my blog. The data shows
the availability in different time ranges. In this case, there are no failed request and the availability is 100
percent. If there were failures, you would see red dots in the chart for the tests that failed. You can inspect
individual failures and drill down into the response to diagnose the issue.

CHAPTER 13 ■ USING APPLICATION INSIGHTS

271

 When it comes to responsiveness, it’s important to know what the performance of your application is. In
Chapter 12 you saw how you can use VS Team Services to set up load and performance testing. Application
Insights automatically records performance data for your application. Figure 13-10 shows the performance
blade for my blog. What immediately stands out is the top request, which is on average quite a lot slower than
other requests. By selecting this specific URL, you can then drill down into individual requests and responses
and see why this particular page is slow. In this case, there were some uncompressed images that made the page
load slower. It’s also important to check if there is a relationship between server requests and server response
time. If the number of requests goes up (meaning your web site is more popular) and the server response time
also goes up, this could mean that you have too few resources allocated for your web application.

 Figure 13-10. The performance blade of Application Insights helps you monitor the responsiveness of your
application

http://dx.doi.org/10.1007/978-1-4842-1446-6_12

CHAPTER 13 ■ USING APPLICATION INSIGHTS

272

 Usage Monitoring
 Measuring how your users use your application and learning from it is a critical part of DevOps. Out of
the box, Application Insights already tracks usage statistics for you. Figure 13-11 shows the usage blade of
Application Insights. You see the number of users, sessions, and page views. There is a filter that excludes
synthetic traffic. This means that the web tests you set up or traffic you get from search engine bots is not
added to these metrics. You can further drill down into these statistics and find information as how long your
users stay with your application, which pages they visit, and how long they look at them. You can also find
from which country your users visit and what types of devices they are using.

 Figure 13-11. Application Insights can track usage telemetry

CHAPTER 13 ■ USING APPLICATION INSIGHTS

273

 Some of these metrics are tracked server side, but you can also add some JavaScript to your HTML
pages to track metrics from the browser. This allows you to see how long a user visits a page, which
dependencies load successfully, and what the responsiveness from the client side is. If you’ve created your
web application with Application Insights enabled, the JavaScript code is automatically added. You can also
get the JavaScript you need from the Application Insights portal. Figure 13-12 shows what this looks like.
The client-side telemetry pane contains the JavaScript code that you need to insert into your pages. The
instrumentation key is unique for your Application Insight instance on Azure. By specifying this in the client,
your application can send data to your Application Insights instance.

 Figure 13-12. By inserting some JavaScript , you can monitor the client side of your application

CHAPTER 13 ■ USING APPLICATION INSIGHTS

274

 In Figure 13-12 , the bottom option shows that you can also enrich your telemetry with custom metrics
and events. This is a very cool option since it allows you to monitor how users are using your application.
Adding custom events does require changes to your code. The following C# code snippet shows how to add
custom telemetry:

 var tc = new TelemetryClient();
 // Set up some properties:
 var properties = new Dictionary<string, string>{{"Game","GameName" }, { "Difficulty", "Hard"}};
 var measurements = new Dictionary<string, double>{{"GameScore", 20 }, { "Opponents", 1}};
 tc.TrackEvent("WinGame", properties, measurements);
 tc.TrackMetric("GameScore", 20, properties);

 TrackEvent is used to monitor specific events in your application. This can be anything that makes
sense for your application: starting a new game, adding a product to a shopping card, creating a new
client, etc. TrackMetric tracks metrics that are not attached to a specific event. All these values are sent to
Application Insights for further inspection. You can use the Metric Explorer to get an overall view of your
custom events and the search blade allows you to inspect individual occurrences of your events. Using
this data allows you to see what your users are doing and which parts of your application are popular or
need work.

 This is a very powerful feature. If you start a new feature by thinking about how you can measure
the success of the new functionality and which things you would like to know about the usage of your
application, you can let this data influence the direction of your product.

 Diagnose Failures and Exceptions
 As you’ve seen in the previous sections, Application Insights tracks failed requests for your application. You
can also capture exceptions that occur in your code by adding the following C# code:

 var telemetry = new TelemetryClient();
 ...
 try
 { ...
 }
 catch (Exception ex)
 {
 // Set up some properties:
 var properties = new Dictionary <string, string>
 {{"Game", currentGame.Name}};

 var measurements = new Dictionary <string, double>
 {{"Users", currentGame.Users.Count}};

 // Send the exception telemetry:
 telemetry.TrackException(ex, properties, measurements);
 }

 The TrackException method sends the exception data combined with the properties and measurements
you specify to Application Insights. You can then inspect this data and combine it with the other events you
track to diagnose and fix problems in your application even before a customer reports them.

CHAPTER 13 ■ USING APPLICATION INSIGHTS

275

 Another important metric to track is when you deploy a new version of your application. If exception
counts start rising after an update, you can immediately correlate this with the code changes you made. To
allow Application Insights to show when a new deployment happens, you need to install an extension into
your VS Team Services account. You can find the extension at https://marketplace.visualstudio.com/
items/ms-appinsights.appinsightsreleaseannotations . After installing the extension, you have a new
task for Release Management. Figure 13-13 shows this task and its configuration.

 Figure 13-13. You can add the Release Annotation task to your release definition

 You need the ID of your Application Insights resource and an API key. You can create the API key
through the API blade in the Azure portal. After configuring this, a deployment annotation is automatically
added to all your charts in Application Insights.

 Summary
 Application Insights is a powerful tool that you can use to monitor your application. It helps you track the
availability and responsiveness of your application. You can also monitor the usage of your application and
even extend it with custom events that give you insight into how your application is being used. You can also
track exceptions and view these in Application Insights to quickly discover the cause of errors. By adding
release annotations, you know when an error was introduced and determine the root cause of the problem.

 The next chapter is the final chapter of this book. You will look back at everything you’ve learned and
come up with a plan to introduce all these possibilities into your organization.

https://marketplace.visualstudio.com/items/ms-appinsights.appinsightsreleaseannotations
https://marketplace.visualstudio.com/items/ms-appinsights.appinsightsreleaseannotations

277© Wouter de Kort 2016
W. de Kort, DevOps on the Microsoft Stack, DOI 10.1007/978-1-4842-1446-6_14

 CHAPTER 14

 The Path Forward

 This is the final chapter of DevOps on the Microsoft stack. In this chapter you’ll look back at what you’ve
learned. The chapter also covers the order in which I normally try to introduce all the different components
of DevOps to a company. This chapter will help you come up with a plan that fits your situation.

 The Basics
 Introducing change to an organization is difficult. If you are in the situation where you’ve read this book
and want to start implementing some of the steps, you will face challenges when working in a team. I think
the best way to introduce Agile, DevOps, and Application Lifecycle Management to an organization is
by example. You can show what can be achieved and then deliver a proof of concept that shows that the
principles can be applied to the types of projects your organization works on. If there is a Greenfield project
coming up, that’s often a good fit for introducing DevOps. But Greenfield projects don’t happen that often.
If you’re on a Brownfield project, the challenges are harder but not insurmountable. You need to find the
biggest painpoints that you and your colleagues have to deal with every day.

 Some of the issues you can look at are:

• Are there many recurring bugs?

• Are the specifications clear and does everyone know what to build?

• Are deployments done manually? Does this often lead to frustration and errors?

• What is the quality of your codebase? Do you have a lot of technical debt?

• Can developers work together on an application? Are there sometimes problems
to find the right version of the code when a bug is filed? Is time lost due to merging
being difficult?

• Do you share code? Is there a lot of duplication between projects? How is code
shared?

• When do your testers start working on a project—once the first version is released or
before that? Do they have their own professional tools or are they mostly using things
like Excel and manual testing?

• Do you know when your production environment is having problems? Can you
easily diagnose and triage failures?

 You know your situation best and you can probably come up with more questions and problems that
are specific to your situation. I’ve noticed that using these types of questions often brings the problem areas
to the surface.

CHAPTER 14 ■ THE PATH FORWARD

278

 As a general approach , I try to implement the following components first:

• Version control

• Technical debt management

• Continuous integration

 Why these three? Because as developers, we can implement these features without needing the help
of other teams in the project. This is all technical and deals with code. Version control is an absolute must.
If you’re still using shared folders and copy/paste merges, start with version control. If it’s hard to convince
your fellow developers of the benefits of version control , start with using it yourself (or look for another job).
Git’s distributed architecture makes it very easy to install it locally on your machine and use it only as a local
repository. This allows you to have a history of your own changes and easily rollback to a previous version
or create a feature branch to do some experimentation without having to deal with copying folders and
restoring backups.

 The key to getting others enthusiastic about your ideas is to show them that they work. Lead with your
example and not with your words. Ending up in a discussion about whether certain features are good for the
team is often a discussion you’re going to lose as long as your colleagues haven’t seen the benefits in action.
Try to make them enthusiastic by showing what’s possible. A local Git repository is a good way to get started.

 The same is true for technical debt management . Running the analysis tools that are a part of Visual
Studio just to inspect the overall quality of your code is something you can easily do. Maybe you don’t have
the time to start fixing some of this code. If this is true, at least run the analysis for the new code you are
working on and make sure that you don’t introduce any new technical debt. You can even install a local
version of SonarQube on your development machine and run the analysis on your project.

 The best way to get others enthusiastic is to open the dashboard on your PC at the moment a visually
oriented colleague or even a manager drops by. Show them what’s possible and how easy it is to implement.
Adding unit tests for the new code you’re writing is also a good step. You can even use IntelliTest to create a
test harness that allows you to safely refactor code without worrying about breaking anything.

 Continuous integration is a little more difficult because you need to have version control in place and
have access to a build server. If you can motivate your team to move to Visual Studio Team Services, you
have all the required resources in place. If going to the cloud is (not yet) an option, you can also install Team
Foundation Server on-premises. Your MSDN subscription already gives you access to the required licenses,
making the whole process a lot cheaper. Continuous integration is the start of your delivery pipeline. If
setting up a complete Team Foundation Server environment is too hard, you can install the agent on your
local machine. Of course this isn’t the best solution when it comes to performance and scalability, but it at
least will get you started.

 The moment you have a version control system and a continuous integration platform, you can start
improving the life of your fellow developers. Set up SonarQube to have a nice visual display so that others
can see what your team is doing. If you can find a spare monitor, attach a simple device such as a Raspberry
Pi to it and display it somewhere in your team area.

 These are often the first steps I try to take with a team. Most teams already have version control.
Sometimes they are on older platforms like Visual SourceSafe, which means you need to help them
migrate to Git or TFVC. Continuous integration is something that a lot of teams still don’t have. If you have
continuous integration in place, you can centralize your technical debt management and show others which
improvements you’re making. This also requires a change in behavior. Checking in broken code and failing
the CI build is not an option anymore (technically, it’s still an option but a bad one). Making the current
build status visible to the team is a good way to improve culture. Table 14-1 shows a checklist that you can
use when starting with the basics.

CHAPTER 14 ■ THE PATH FORWARD

279

 Table 14-1. Checklist for DevOps Basics

 Area Feature Description

 Overall Tooling Decide on using Visual Studio, VS Team Services, or Team
Foundation Server and Microsoft Azure. Enable access for all team
members.

 Version
 Control

 Type You need to choose between Git and TFVC for your project. You
can find some great information to help you decide at https://
msdn.microsoft.com/en-us/Library/vs/alm/code/overview .

 Branching You need to decide on a branching scheme. This depends on
the type of version control you choose. For TFVC, the simplest
branching structure is the best. For Git, you will create more
branches but still need naming conventions and retention policies.

 Policies Decide on check-in policies such as requiring comments,
requiring a linked work item, building and testing locally, etc.

 Code Reviews Decide if and how you are going to do code reviews. TFVC has
support for code reviews in Visual Studio. Git has pull requests that
function as a review mechanism.

 Feature Toggles Decide if you are going to use feature toggles. Choose a framework
and create policies around the retention of toggles.

 Technical Debt
Management

 Unit Tests Unit tests are a must for DevOps projects. Decide on a unit test
framework and other helper libraries at the start of your project.
Set a goal for code coverage.

 Code Metrics Set thresholds for the different code metrics and validate these
during the project.

 Duplication Set a threshold for the amount of duplicated code that’s allowed.
Fix all the strong and medium duplicate findings.

 Architecture
Validation

 Decide if architecture validation is beneficial for your project.
Implement the architecture in a modeling project.

 Custom Code
Analyzers

 Decide on the usage of custom Roslyn-based code analyzers.
Build and distribute your analyzers in the team.

 Continuous
Integration

 Build Definition Define one or more build definitions at the start of your project.
Configure the triggers for continuous integration and scheduled
builds. Make agreements with your team as to the penalty for
failing a build.

 Agents and Pools Decide if you can use the hosted agents or that you need to add
your own build agents.

 Custom Build Tasks Decide if you need custom build tasks to simplify your build
definitions.

 SonarQube Install and configure SonarQube to continuously measure your
technical debt.

 Visibility Make sure that all the stats on your project are visible on a monitor
or TV in the team room. Enable all stakeholders to monitor the
project’s statistics.

https://msdn.microsoft.com/en-us/Library/vs/alm/code/overview
https://msdn.microsoft.com/en-us/Library/vs/alm/code/overview

CHAPTER 14 ■ THE PATH FORWARD

280

 Stepping It Up
 After having the basics of version control , technical debt management, and continuous integration in place,
I start looking at continuous delivery. Speeding up the release process, even if it’s only to a test environment,
allows you to increase the feedback cycle. You can deploy agents to your on-premises infrastructure or use
Azure and spin up virtual environments or Platform as a Service (PaaS) resources to deploy your application
to. If some of your configuration settings are hard to manage automatically or if the setup of an environment
isn’t automated, that’s not a reason to wait to build a delivery pipeline. If some of the steps aren’t optimal,
that’s not a problem. As soon as the feedback cycle starts rolling, you can start improving on the steps and
immediately see the benefits of your actions.

 In the meantime, teams can start looking at what they build. Introducing the Agile Project Management
tool is something that will take time. The same principle applies: lead by example. Why not have your own
small Kanban board on a piece of paper with some post-its? You can then start monitoring your own flow
of work. Are you finishing items before picking up new work? Do you have enough information to process
a new work item from start to finish? Showing the Kanban board to colleagues makes the idea visible.
Introducing concepts from Scrum such as the daily standup and the continuous improvements is important.

 If your team or management isn’t open to these ideas, you could distribute a few copies of books
like The Phoenix Project (http://www.amazon.com/Phoenix-Project-DevOps-Helping-Business/
dp/0988262509/) or Software in 30 days (http://www.amazon.com/Software-30-Days-Customers-
Competitors/dp/1118206665/). Invest in this area if it’s a painpoint for your team. If you’re not clear on
certain functionality, why not use PowerPoint storyboarding to sketch an idea and discuss it with others?
Why not send a feedback request to someone to validate that you’ve build the right thing?

 Test management is another area where you can probably make some improvements. In my experience,
a demo showing the data collection options of Microsoft Test Manager is enough to get testers enthusiastic.
Combine this with action recordings and exploratory testing and testers are often ready to get started with
MTM. When you have automated releases in place, testers can push a new version to their test environment
whenever they’re ready and without having to ask a developer for a new deployment. If you use the Agile
Project Management tool, you can also start filing bugs from within MTM and add these to the team’s
backlog.

 If you have version control, technical debt management, continuous integration, continuous
deployment, Agile planning, and test management in place, you are a professional team that can make huge
improvements. Table 14-2 shows an overview of the different steps.

 Table 14-2. Checklist for DevOps Next Steps

 Area Feature Description

 Continuous
Delivery

 Configuration
Management

 Bring all your artifacts under version control. This applies to source
code, the database schema, configuration settings, and all the
other data that’s needed for a deployment.

 Environments Decide if your dev/test environments are running on-premises or
in Azure.

 Release
Management

 Configure Release Management for automatic deployment.
Configure the stages, approvers, and configuration variables.

 Feedback Cycle Don’t wait with CD until everything is perfect. That will never
happen. Start the feedback cycle and improve on it to grow your
team and its processes.

(continued)

http://www.amazon.com/Phoenix-Project-DevOps-Helping-Business/dp/0988262509/
http://www.amazon.com/Phoenix-Project-DevOps-Helping-Business/dp/0988262509/
http://www.amazon.com/Software-30-Days-Customers-Competitors/dp/1118206665/
http://www.amazon.com/Software-30-Days-Customers-Competitors/dp/1118206665/

CHAPTER 14 ■ THE PATH FORWARD

281

 Finishing Touches
 For the finishing touches, there are just a couple of areas left:

• Automated testing

• Monitor and learn

• Performance and load testing

 Automated testing saves the testers a lot of time and gives you the ability to speed up your deployments
because you have a safety net in place that runs on every new deployment. Asking the testers which tests
they have to run over and over to make sure that an application is ready for production will show which
tests are prime candidates for automation. If it’s hard to write unit tests for your application because of
the architecture, you can start with creating Coded UI tests that run your application through the UI. This
gives you the ability to refactor pieces of your code while still being sure that the application isn’t broken to
introduce a better testable design.

 Another area that’s easy to automate is performance and load testing . You can set up a simple load test
through VS Team Services in a couple of minutes. Expanding it to have real web tests that affect multiple
parts of your application is the next step. Combine this with Application Insights and you can start to monitor
the availability and performance of your application in production. This allows you to be proactive when
problems occur and fix them, hopefully before the first customer reports the problem. Application Insights
can also be used to monitor the usage of your application. Which features are popular? How are users using
your product? These questions can then help you define the direction of your investments.

 Area Feature Description

 Agile Project
Management

 Agile Make sure that your team is well educated in the aspects of the
Scrum process. Choose a Scrum Master and make sure that you
have a product owner. Start working with a backlog and follow the
Scrum meetings.

 Kanban Map your process to a Kanban board. Define work in progress
limits. Create the required swimlanes. Start looking for bottlenecks
and keep optimizing your flow of value.

 Portfolio
Management

 If you have multiple teams that use VS Team Services, map these
teams to teams in VS Team Services. Use epics and features to
schedule work and divide it across the different teams.

 Dashboards Set up dashboards with the information that your team needs to
focus and improve.

 Storyboarding Use Microsoft PowerPoint (or another storyboarding tool) to create
storyboards for your product backlog items. Attach the storyboards
to the PBIs to create traceability.

 Feedback
Management

 Involve stakeholders by asking them for feedback.

 Testing Manual Testing Involve testers by helping them to use VS Team Services. Give
Microsoft Test Manager to your testers and help them set up test
suites, plans, and cases.

 Exploratory Testing Start using exploratory testing to help speed up the testing process.

Table 14-2. (continued)

CHAPTER 14 ■ THE PATH FORWARD

282

 Summary
 DevOps is a huge subject. Hopefully this chapter gave you an idea of the features you can introduce to your
team and organization. Start with version control, continuous integration, and technical debt management.
Then move on to continuous delivery, Agile Project Management, and test management. Finally, you can
apply the finishing touches with test automation, performance and load testing, and monitoring.

 I hope your DevOps journey is a success!

 —Wouter de Kort

 All these features are a lot to implement. I’ve seen that showing what’s possible and making people
enthusiastic is often the best way to go. Of course the road doesn’t end here. The tools that Microsoft offers
through VS Team Services are evolving rapidly. Staying up to date and learning how new tools can help your
organization is important and will only become more important when more organizations, including your
competitors, apply DevOps principles.

 You can find a features timeline at https://www.visualstudio.com/en-us/news/release-archive-vso .
Microsoft uses this page to lay out their roadmap for VS Team Services. You can see which features are being
worked on and often there are links to blog posts discussing these new features. Most of these blogs can be
found at http://blogs.msdn.com/b/visualstudioalm/ . Adding these blogs to your favorite RSS reader will
help you stay up to date.

 There are also some great conferences organized by Microsoft where new features are released and
discussed. The yearly Build conference, Ignite, and Visual Studio Connect all contain sessions that will help
you. Fortunately, you can find most of these sessions online at https://channel9.msdn.com/ . Table 14-3
summarizes these last points.

 Table 14-3. Checklist for the Finishing Touches

 Area Feature Description

 Testing Automated UI tests Start speeding up your testing work by automating
stable regression tests.

 Performance and load testing Set up performance and load tests. A ping test can be
set up in a couple of minutes. Web tests require more
attention and can be added during the project.

 Monitoring Application Insights Configure Application Insights for your application
and start monitoring the key metrics.

 Add events Add custom events to Application Insights from your
code to start learning what your users do with your
application and how you can improve it.

 Staying up to date Features Timeline Regularly look at the Features Timeline on
 visualstudio.com to make sure you don’t miss any
new features and you know what’s coming.

 Blogs Start following popular blogs to stay up to date with
all the new features coming out.

 Conferences Visit conferences or use Channel9 to inform you of all
the new possibilities and how to apply them to your
team’s projects.

https://www.visualstudio.com/en-us/news/release-archive-vso
http://blogs.msdn.com/b/visualstudioalm/
https://channel9.msdn.com/

283
© Wouter de Kort 2016
W. de Kort, DevOps on the Microsoft Stack, DOI 10.1007/978-1-4842-1446-6

 A
 Agile Manifesto

 methodologies , 6
 phrases , 5
 Scrum , 4
 software development , 4
 Sprints , 4
 testers and developers , 4

 Agile project management . See also Kanban and
Lean techniques

 basics checklist , 281
 coding , 20
 developers

 overview dashboard , 40
 team explorer (Visual Studio) , 39
 work panel , 41

 feedback loop , 20
 functional design , 19
 methodologies , 20
 scrum , 20
 ScrumBut , 21
 team rooms

 automated message , 38
 communication , 36
 confi guration events , 37–38
 VS Team Services , 37
 widget dashboard , 37

 tooling
 bugs , 30–32
 capacity , 32–36
 impediments , 28–29
 product backlog items , 24–27
 Scrum template , 22
 sprints , 22–24
 tasks , 27–28
 team web access , 22

 waterfall project , 19
 Alerts and notifi cations

 confi guration , 94
 features , 93

 mention , 96
 mentions , 95
 SOAP , 95
 web access , 93

 Application Insights
 confi guration fi le

 creation , 263
 events, increase in , 264
 local development machine , 265
 metrics , 267
 search blade , 268
 page view details tracking , 266

 diagnose failures and exceptions
 C# code , 274
 release annotation task , 275
 TrackException method , 274

 diff erences , 261
 monitoring application

 performance blade , 271
 results of , 270
 URL ping test , 269

 privacy and data retention , 263
 usage and performance , 261–262
 usage of monitoring

 C# code , 274
 JavaScript inserted , 273
 TrackEvent , 274
 track usage telemetry , 272

 Automated testing , 281
 checklist , 282
 Coded UI , 220
 features , 282
 graph displays , 228–229
 HTML elements , 223
 HTTP requests , 226
 load test , 228
 load test hub , 223–224
 performance , 281
 recording UI test , 221
 source code , 222
 structure , 222

 Index

■ INDEX

284

 time graph , 225
 VS team services , 224–225
 web test recorder , 227

 Azure , 9
 IaaS, PaaS, and SaaS , 10
 MSDN subscription , 11
 portal , 12
 security , 11
 shut down , 14
 virtual machine , 12–13

 B
 Backlog , 7
 Baseless merges , 121
 Branching strategies , 134

 feature toggle , 135
 scenarios , 134

 C
 Centralized version control systems , 99, 102
 Code search

 ASP.NET MVC code , 89
 code elements , 91
 feature , 89
 fi lters , 90–91
 keyword search , 90
 repositories/projects , 89

 Coding , 20
 Communication , 19, 43
 Containers

 ASP.NET 6 applications , 257
 concept of , 256
 docker , 256
 Linux , 258
 VMs , 256

 Continuous integration , 161, 279
 build agents confi guration

 control panel , 173
 installation , 174
 pools , 173
 queue and agent , 173

 build defi nition , 162
 confi guration options , 165–166, 172
 custom tasks creation

 command creation , 179
 JSON fi le , 177
 personal access token , 179–180
 PowerShell task , 175
 task directories , 180
 task.json fi le , 175–176
 task upload , 180–181
 tfx-cli installation , 178
 tfx command , 178–179

 default build template , 163
 general tab , 169
 hosted build agent , 162
 infrastructure , 163
 queue , 171
 repository confi guration , 167
 retention tab , 170
 SonarQube

 begin and end steps , 186
 dashboard , 181–182
 demo environment , 182–183
 generic service , 186
 issues page , 185
 parameters , 185
 Roslyn project , 184

 templates , 164–165
 timeline , 172
 triggers tab , 168
 variables confi guration , 167
 Web Access portal , 164

 D
 Dashboards

 default overview , 92
 widgets confi guration , 92–93

 Defi nition of Done (DoD) , 64
 Dependency Inversion Principle , 142
 Deployment pipeline

 delivery pipeline , 231–232
 development and operations , 232
 operations fi x , 232

 DevOps
 Agile Manifesto , 4
 backlog , 7
 capabilities , 6–8
 defi nition , 5
 developers and operations , 5
 key phrase , 5
 need for training , 16
 phases , 4
 practices , 6–7
 process , 5–6
 Scrum , 4
 self-assessment , 8
 sprints , 4
 waterfall project , 3

 Distributed version control
systems , 100–103

 Git (see Git version control system)
 Docker , 256

 E
 E-mail requesting feedback , 50
 Enterprise Agreement (EA) , 12

Automated testing (cont.)

■ INDEX

285

 F
 Feedback management

 communication , 43
 confi guration , 49
 e-mail requesting feedback , 50
 overview page (other links) , 48
 queries , 53
 request work , 47
 response tool , 50–52
 screenshots , 51
 Storyboards , 44–46

 Functional design , 19

 G, H
 Git version control system

 branches
 creation , 129
 merges , 129–130
 structure , 128–129

 clone , 124–125
 commit and push

 commit changes , 125–126
 remote server , 127

 distributed control system , 124
 fetch and pull , 127
 key points , 124
 pull request

 branches panel , 130–131
 code hub , 131
 comments , 133
 creation , 131–132
 web access , 133

 GoToGitHubExtension method , 222

 I, J
 Infrastructure as a Service (IaaS) , 10
 Interface Segregation Principle , 142

 K
 Kanban and Lean techniques

 diff erent phases , 55
 Kanban board , 57

 analysis column , 64
 backend tag , 63
 backlog items , 60
 column confi guration , 63–64
 Defi nition of Done (DoD) , 64
 Doing and Done state , 58
 extra swimlanes , 65–66
 fi elds adding , 61
 navigation , 60
 reordering cards confi guration , 66–67

 ScrumBut , 59
 style rule , 61–62
 tag colors confi guration , 62–63
 task directories creation , 60–61
 team’s process , 57
 work in progress limit (WIP limit) , 58

 pipeline speed , 56
 principles , 56
 process , 55
 Scrum , 55
 steps of , 57

 L
 Linux , 258
 Liskov Substitution Principle , 142
 Load testing , 281

 M, N
 Manual testing

 charts , 215
 exploratory testing sessions , 211–212
 insert shared steps and creation , 211
 notes and screenshots , 212–213
 parameters-multiple data sets , 209
 Perfecto , 214
 program running , 210
 query-based suite , 206
 runner window , 208
 test hub , 205
 test suite and cases , 205, 207
 toolbar , 207
 Web Access , 205

 Microsoft Azure . See Azure
 Microsoft Test Manager (MTM)

 automation of manual steps , 218
 repro steps , 219
 standalone client , 216
 Test Impact and IntelliTrace , 219
 Web Test Runner , 217

 O
 Open/Closed Principle (OCP) , 142

 P
 Package management , 189

 App.confi g fi le , 191
 ASP.NET MVC application , 193–194
 confi gSection , 191
 copyleft license , 193
 EntityFramework package , 191–192
 jQuery web site , 189
 npm , 193

■ INDEX

286

 NuGet package manager , 190
 NuGet packages , 193
 Package Source , 192
 uncompressed version , 190
 VS team services

 AllowedExternalPackages feed , 196–197
 confi gure package sources , 198
 extension , 195
 feeds , 195
 nuget.confi g fi le , 199
 nuget.exe fi le , 196
 NuGet.org , 196
 NuGet Packager and NuGet

Publisher , 200
 PowerShell session , 198

 Path forward
 basics

 approach , 278
 checklist , 278–279
 continuous integration platform , 278
 issues , 277
 technical debt management , 278
 version control , 278

 Platform as a Service (PaaS) , 10, 280
 Portfolio management

 areas , 68
 backlog items , 74
 backlog navigation levels , 68–70
 capabilities , 67
 details view , 72–73
 epic and features , 72
 features , 67
 hierarchical area confi guration , 71
 mapping panel , 73
 mobile strategies , 67
 overview page , 70
 processes , 67
 product backlog item , 74
 SAFe , 72
 sub-areas , 71
 team project , 68
 visible iterations , 71–72

 PowerPoint
 animations , 45
 links , 45
 Lorem() , 45
 product backlog items , 45
 Storyboarding plugin , 44
 VS Team Services project , 46

 Product backlog items (PBIs)
 business value , 26
 criteria , 26
 details , 25

 eff ort fi eld , 26
 overview , 24–25
 tags , 27

 Q
 Queries

 bugs , 77
 charts

 area chart , 84
 column chart , 86
 dashboard , 85
 horizontal bars , 86
 line chart , 89
 pie chart , 83
 pivot table displays , 87
 snapshot , 84
 stacked area chart , 88
 stacked bar graph , 87

 search box
 backlog items , 77
 detail page , 78
 fi lters , 79
 keyword search , 79
 product / product backlog item , 79
 search fi lters , 78
 states drop-down , 79

 work item query
 clauses , 80
 defi nition , 79
 direct links , 81
 explorer , 82
 fi lter options , 81
 operator , 80
 results , 80
 tab creation , 80
 tasks/bugs , 82

 R
 Release management , 232

 automated tests , 242
 Azure File Copy task , 234
 confi guration , 242
 confi gure permissions , 246
 defi nition , 233
 deployment tasks , 240
 key points , 245
 machines option , 241
 manual/automated approvals , 238
 overview , 241
 realtime log fi le , 237
 summary , 243
 target environment , 236

Package management (cont.)

■ INDEX

287

 test agent , 243
 test hub details , 244
 triggers section , 238
 update , 245
 variable confi guration , 235
 VS Team Services Build output , 235

 Roslyn
 code fi x project creation , 157
 CodeFixProvider , 158
 DiagnosticAnalyzer , 158
 execution , 159
 namespace , 159
 source code , 156
 uppercase class names , 158

 S
 Scaled Agile Framework (SAFe) , 72
 Scrum , 4

 Kanban and Lean techniques , 55
 ScrumBut , 21
 Scrum templates

 bugs , 30
 detail view , 31
 links , 32
 unique fi elds , 31

 capacity
 assign hours , 36
 forecasting sprints , 32–33
 members management , 34–35
 overview , 33–34
 sample capacity plan , 35

 impediments
 creation , 29–30
 defi nition , 28
 details , 28–29

 items , 22
 PBIs (see Product backlog items (PBIs))
 sprints

 Confi gure Schedules and Iterations
link , 22–23

 iterations , 23
 schedule , 23–24

 tasks
 default fi elds , 28
 sprint backlog , 27–28

 team web access , 22
 Single Responsibility Pattern (SRP) , 142
 Software as a Service (SaaS) , 10
 SonarQube

 dashboard , 181–182
 demo environment , 182–183
 generic service , 186
 issues page , 185

 parameters , 185
 Roslyn project , 184

 SQL Server Data Tools (SSDT) , 256
 Storyboards . See PowerPoint

 T
 Team Foundation Server (TFS) , 9
 Team Foundation Version Control (TFVC)

 annotate option , 112–113
 branches

 baseless merges , 121–122
 creation , 121
 merging submenu , 119–120

 changeset , 106
 check-in pending

changes , 108–109
 code hub , 109
 source control , 107–108
 team explorer , 107

 check-in-policies
 policy warning , 123
 team project , 122–123

 CodeLens , 112, 114
 comparation , 113
 Get Latest command , 110
 history , 112
 key concepts , 104
 merge confl ict , 111
 shelvesets , 114

 code review request , 117–118
 pending changes windows , 115
 response request , 118–119
 suspend and resume work , 117

 workspace , 104
 check-out , 105
 cloak folders , 105–106
 confi guration options , 104–105
 mapping confi guration , 106
 Visual Studio widget , 105

 Technical debt , 149
 architecture validation

 context menu , 151
 errors , 151
 layer diagram , 149–150
 modeling project , 149
 properties , 152

 basics checklist , 279
 code analysis

 built-in dictionary , 140
 code , 138
 confi guration , 139
 errors , 140
 fi le properties , 140

■ INDEX

288

 SuppressMessage attribute , 140
 warnings , 138

 code metrics
 calculation , 146–147
 concepts , 141
 coupling , 144
 cyclomatic complexity , 144
 depth of inheritance , 146
 lines of code , 142–143

 custom code analyzers (see Roslyn)
 duplications cause

 code clone analysis results window ,
147–148

 comparison , 148
 groups , 147

 overview , 137
 SonarQube , 137
 unittesting (see Unit testing)

 Testing process , 281

 U
 Unit testing

 continuous delivery model , 152
 coupling , 153
 creation , 155
 integration tests , 153
 IntelliTest , 154
 overfl ow exception , 156
 testing pyramid , 152–153

 V
 Version control systems . See also Git version

control system
 basics checklist , 279
 centralized server , 99–100

 distributed server
 branching , 101
 design , 100–101

 feature toggling , 102
 Git and TFVC , 103
 PaaS , 280
 steps , 99
 strategies , 101–102

 Virtual machines (VMs) , 256
 VS Team Services , 9

 advantage , 15
 security options , 15
 timeline , 14–15
 Twitter account , 15
 web site , 15–16

 W, X, Y, Z
 Waterfall project , 3

 disadvantage , 20
 stages , 19

 Web deploy package
 application , 246
 ARM template creation , 252
 Azure Web App deployment task , 250
 confi guration , 251
 creation , 248
 custom publish profi le , 247
 DeployOutput folder , 247, 249
 home controller class , 250
 JSON outline , 254
 MSBuild , 249
 project fi les , 252
 resource group , 253
 SSDT tool , 256
 Web Apps , 255
 web.confi g fi le , 250
 ZIP fi le , 248

Technical debt (cont.)

	Contents at a Glance
	Contents
	Foreword
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Preface
	Part I: Getting Started
	Chapter 1: What Is DevOps?
	Why Are We Doing DevOps?
	Assessing Your DevOps Capability
	Summary

	Chapter 2: Introducing Azure and Visual Studio Team Services
	Understanding the Microsoft Cloud: Azure
	IaaS, PaaS, and SaaS
	Security

	Using Visual Studio Team Services
	Security

	The Need for Training
	Summary

	Part II: Plan
	Chapter 3: Agile Project Management: The Importance of Communication
	Agile Project Management
	Agile Tooling
	Sprints
	Product Backlog Items
	Tasks
	Impediments
	Bugs
	Capacity

	Team Rooms
	Achieving Traceability with Developers
	Summary

	Chapter 4: Managing User Feedback: Knowing What to Build
	Why We Need Better Communication
	Creating Storyboards with PowerPoint
	Involving Stakeholders in Feedback Management
	Summary

	Chapter 5: Advanced Agile Project Management
	Kanban and Lean
	Portfolio Management
	Summary

	Chapter 6: Dashboards and Reporting
	Queries
	Using the Search Box
	Work Item Queries
	Charts

	Code Search
	Dashboards
	Alerts and Notifications
	Summary

	Part III: Code and Build
	Chapter 7: Setting Up Version Control
	Introducing Version Control
	Using Team Foundation Version Control (TFVC)
	Workspace
	Checking in a Changeset
	Get Latest and Merge Conflicts
	History, Annotations, and CodeLens
	Shelvesets and Suspending Your Work
	Branches
	Check-In Policies

	Using the Git Version Control System
	Clone
	Commit and Push
	Fetch and Pull
	Branch
	Pull Request

	Choosing a Branching Strategy
	Branch Scenarios
	Feature Toggles

	Summary

	Chapter 8: Managing Technical Debt
	Running Code Analysis
	Code Metrics
	Lines of Code
	Cyclomatic Complexity
	Coupling
	Depth of Inheritance
	Calculating Code Metrics

	Finding Duplications
	Validating the Architecture
	Create and Run Unit Tests
	Creating Custom Code Analyzers with Roslyn
	Summary

	Chapter 9: Implementing Continuous Integration
	Configuring a Continuous Integration Build
	Installing and Configuring Build Agents
	Creating Custom Tasks
	Using SonarQube
	Summary

	Chapter 10: Creating and Sharing Packages
	What Are Packages?
	Package Management for Visual Studio Team Services
	Summary

	Part IV: Test, Deploy, and Monitor
	Chapter 11: Integrating Testers into DevOps
	Manual Testing Through Web Access
	Microsoft Test Manager
	Automated Testing
	Summary

	Chapter 12: Implementing Continuous Delivery with Release Management
	Understanding the Deployment Pipeline
	Setting Up Automatic Releases with Release Management
	Deploying Web Sites
	Understanding Containers
	Summary

	Chapter 13: Using Application Insights
	What Is Application Insights?
	Configuring Monitoring for Your Application
	Availability Monitoring
	Usage Monitoring
	Diagnose Failures and Exceptions
	Summary

	Chapter 14: The Path Forward
	The Basics
	Stepping It Up
	Finishing Touches
	Summary

	Index

