

Implementing Modern DevOps

Enabling IT organizations to deliver faster and smarter

David Gonzalez

BIRMINGHAM - MUMBAI

Implementing Modern DevOps
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2017

Production reference: 1290917

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78646-687-7

www.packtpub.com

http://www.packtpub.com

Credits

Author

David Gonzalez

Copy Editor

Stuti Srivastava

Reviewer

Joakim Verona

Project Coordinator

Virginia Dias

Commissioning Editor

Kartikey Pandey

Proofreader

Safis Editing

Acquisition Editor

Divya Poojari

Indexer

Pratik Shirodkar

Content Development Editor

Sharon Raj

Graphics

Kirk D'Penha

Technical Editor

Prashant Chaudhari

Production Coordinator

Deepika Naik

About the Author
David Gonzalez is an enthusiastic engineer and author of a book called Developing
Microservices with Node.js; as microservices don't work without platform
automation, he wrote this book to deliver the best possible deal to the readers of both
books.

He is a Google Developer Expert (a nomination from Google to certain experts in
several areas) in Kubernetes (GKE), who enjoys being pushed out of his comfort
zone in order to sharpen his skills. Java, Node.js, Python, and DevOps--as well as a
holistic approach to security--are part of the skill set that has helped him deliver
value across different start-ups and corporations.

Nowadays, he is a consultant at nearForm, enabling companies to deliver the best
possible solution to their IT problems or proposals, as well as an avid speaker at
conferences, such as RebelCon and Google I/O Extended, among others.

About the Reviewer
Joakim Verona is a consultant with expertise in continuous delivery and DevOps.
He has worked with all aspects of systems development since 1994. He has actively
contributed as the lead implementer of complex multilayered systems, such as web
systems, multimedia systems, and mixed software/hardware systems. His wide-
ranging technical interests led him to the emerging field of DevOps in 2004, where
he has stayed ever since. Joakim completed his master's in computer science at
Linköping Institute of Technology. He has also worked as a consultant in a wide
range of assignments in various industries, such as banking and finance, telecom,
industrial engineering, press and publishing, and game development. He is also
interested in the Agile field and is a certified Scrum master, Scrum product owner,
and Java professional.

He has also technically reviewed Practical DevOps.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at service@packtpub.com for more details. At www.PacktPub.com, you
can also read a collection of free technical articles, sign up for a range of free
newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book's Amazon page at https://www.amazon.com/dp/1786466872.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving
our products!

https://www.amazon.com/dp/1786466872

To my wife, Ester. No matter how many crazy ideas I have, you are always there to
support and push me forward. This book wouldn’t have been possible without you.
To our daughter, Elena. Always remember, we raised you to be happy, not perfect.
No matter what path you follow, we will be there, helping you.

Table of Contents
Preface

What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

1. DevOps in the Real World
What is DevOps?

DevOps origins
DevOps and corporations

Traditional release management
Chain of communication
The cost of fixing a bug
Releasing new versions

Modern release management
Agile development and communication
Releasing new versions

DevOps and microservices
DevOps: Organizational alignment
What to expect from this book
Summary

2. Cloud Data Centers - The New Reality
Amazon Web Services

EC2 - computing service
Launching an instance
Relational Database Service
Networking in AWS and EC2
Storage in AWS and EC2

Amazon S3
Amazon ECR and ECS

Creating a cluster
Other services

Route 53
CloudFront
Amazon ElasticCache
Amazon RDS
DynamoDB

Google Cloud Platform
Google Compute Engine

Standard machine types
High-memory machine types
High-CPU machine types
Shared-core machine types
Custom machines and GPU processing
Launching an instance
Networking

Google Container Engine
Setting up a cluster

Other Google Cloud Platform products
Google App Engine
Machine Learning APIs
Big data

Other cloud providers
Heroku
DigitalOcean
Azure

Summary
3. Docker

Docker architecture
Docker internals

Docker client
Building Docker images

Dockerfile reference
Docker registries

Public registries
Private registries

Docker volumes
Docker networking

User-defined networks
Docker Compose
Summary

4. Continuous Integration
Software development life cycle

Testing types
Traditional CI servers

Bamboo
Jenkins

Secrets Management
Modern CI servers

Drone CI
Installing Drone
Running builds
Executing pipelines
Other features

Summary
5. Infrastructure as Code

Google Cloud Platform SDK - gcloud
Creating resources with Google Cloud SDK

Terraform
Creating resources
Remote state management
Modifying your infrastructure
Terraform variables
Terraform outputs

Summary
6. Server Provisioning

Server provision software
Chef
Puppet
Ansible

Ansible
Ansible configuration
Ansible variables, remote facts and templates

Ansible variables
Ansible remote facts
Ansible templates
Flow control

Roles
Ansible Tower
Summary

7. Docker Swarm and Kubernetes - Clustering Infrastructure
Why clustering ?
Docker Swarm
Kubernetes

Kubernetes logical architecture
Setting up a cluster in GCP
Kubernetes building blocks

Pods
Deploying a pod

Replica Sets
Deployments
Services
Other Building Blocks

Daemon Sets
PetSets
Jobs

Secrets and configuration management
Kubernetes- moving on

Summary
8. Release Management – Continuous Delivery

Playing against the statistics
The test system

ISO date and UTC date services
Aggregator service
Pushing the images to Google Container Registry

Setting up a continuous delivery pipeline for images
Setting up Jenkins
Continuous delivery for your application

Regular release
Blue-green deployment
Canary deployment

Summary
9. Monitoring

Introduction
Types of monitoring

Blackbox monitoring
Whitebox monitoring

Monitoring third-party tools
Pingdom
Logentries
AppDynamics

Stackdriver
Monitoring applications
Monitoring Kubernetes clusters

Summary

What is next?

Preface
DevOps is the newest revolution in deploying software quickly and efficiently. With
a set of automation tools, an orchestration platform, and a few processes, companies
can speed up the release cycle of their IT systems by enabling the engineers to do
more with fewer resources and become more engaged in the business process.

What this book covers
Chapter 1, DevOps in the Real World, shows the place of DevOps in the current
engineering department of IT companies and how to align resources to maximize
delivery potential.

Chapter 2, Cloud Data Centers, compares the different cloud solutions for managing
resources (VMs, networks, disks, and so on) on the cloud and on demand.

Chapter 3, Docker, teaches about Docker and some of its internals in order to better
understand how containerization technologies work.

Chapter 4, Continuous Integration, talks about continuous integration technologies
that can be used to execute tests across your applications as well as many other
actions, as we will see in Chapter 8, Release Management – Continuous Delivery.

Chapter 5, Infrastructure as Code, shows how to describe our infrastructure in a way
that can be managed as code and apply the SDLC best practices to it in order to
ensure its integrity.

Chapter 6, Server Provisioning, shows how to use Ansible to manage the
configuration of remote servers in order to facilitate the maintenance of a large
number of servers that, even though we are going to focus on Kubernetes, are good
to know.

Chapter 7, Docker Swarm and Kubernetes - Clustering Infrastructure, briefly visits
Docker Swarm and then points your attention toward Kubernetes, the most modern
container orchestration technology, which is used across the biggest corporations in
the world, such as Google.

Chapter 8, Release Management – Continuous Delivery, shows how to set up a
continuous delivery pipeline on Google Cloud Platform with Kubernetes and
Jenkins.

Chapter 9, Monitoring, shows how to monitor our software and servers to be the first
ones to know about a potential outage very quickly and fix it (potentially) before
impacting our customers.

What you need for this book
In order to follow this book and its contents, you will need a trial account on Google
Cloud Platform and an editor (I used Atom but any other editor will work) as well as
Node.js installed on your local machine. You will also need to install Docker locally
in order to test the different examples. We will use Google Container Engine
(GKE) for the Kubernetes examples but if you want to play locally with Kubernetes,
Minikube can also be used, although you need a fairly powerful computer.

Who this book is for
This book is for engineers who want to step up in the DevOps ladder, particularly if
they want to master Kubernetes and containers. People of mid-level skills are ideal
readers.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning. Code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown
as follows: "The next lines of code read the link and assign it to the BeautifulSoup
function." A block of code is set as follows:

resource "google_compute_address" "my-first-ip" {
 name = "static-ip-address"
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

resource "google_compute_address" "my-first-ip" {
 name = "static-ip-address"
}

Any command-line input or output is written as follows:

docker commit 329b2f9332d5 my-ubuntu

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "In order
to download new modules, we will go to Files | Settings | Project Name | Project
Interpreter."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book-what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of. To send us general
feedback, simply email feedback@packtpub.com, and mention the book's title in the
subject of your message. If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, see our author guide at www.pac
ktpub.com/authors.

http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://w
ww.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtp
ub.com/support and register to have the files emailed directly to you. You can
download the code files by following these steps:

1. Log in or register to our website using your email address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.

3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublish
ing/Implementing-Modern-DevOps. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/PacktPublishing/. Check them
out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Implementing-Modern-DevOps
https://github.com/PacktPublishing/

Downloading the color images of this
book
We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you better
understand the changes in the output. You can download this file from https://www.pac
ktpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books-maybe a mistake in the text or
the code-we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.com/sub
mit-errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/su
pport and enter the name of the book in the search field. The required information
will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy. Please contact us at copyright@packtpub.com with a link to the
suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

DevOps in the Real World
In the past few years, the software world has evolved at a very high pace. One of my
favorite examples of evolution is FinTech, a new field whose name comes from the
fusion of finance and technology. In this field, companies tend to build financial
products in a disruptive way up to a point that they are threatening the big traditional
banks and putting them in jeopardy.

This happens mainly due to the fact that big companies lose the ability to be cost-
effective in their IT systems and banks are fairly big companies. It is not strange that
banks still run their systems in an IBM mainframe and are reluctant to move to the
cloud, and it is also not strange that the core components of the banks are still
COBOL applications that haven't been renewed since the 90s. This wouldn't be bad
if it wasn't because a small number of talented engineers with an AWS or Google
Cloud Platform account can actually build a service that could virtually replace some
bank products such as currency exchange or even a broker.

This has become a norm in the last few years, and one of the keys for the success of
small companies in FinTech is partially due to DevOps and partially due to its scale.
Usually, big companies commoditize the IT systems over time, outsourcing them to
third parties that work on price, pushing the quality aside. This is a very effective
cost-cutting measure, but it has a downside: you lose the ability to deliver value
quickly.

In this chapter, we are going to put DevOps into perspective and see how it can help
us create cost-effective work units that can deliver a lot of value in a very short
period of time.

What is DevOps?
There is a famous quote by Henry Ford, the creator of Ford (the popular car-maker
brand):

“If I had asked people what they wanted, they would have said faster horses.”

This is what happened with the traditional system administrator role: people were
trying to solve the wrong problem.

By the wrong problem, I mean the lack of proper tools to automate the intervention
in production systems, avoiding the human error (which is more common than you
may think) and leading to a lack of communication continuity in the processes of
your company.

Initially, DevOps was the intersection of development and operations as well as QA.
The DevOps engineer is supposed to do everything and be totally involved in the
SDLC (software development life cycle), solving the communication problems that
are present in the traditional release management. This is ideal and, in my opinion, is
what a full stack engineer should do: end-to-end software development, from
requirement capture to deployments and maintenance.

Nowadays, this definition has been bent up to a point where a DevOps engineer is
basically a systems engineer using a set of tools to automate the infrastructure of any
company. There is nothing wrong with this definition of DevOps, but keep in mind
that we are losing a very competitive advantage: the end-to-end view of the system.
In general, I would not call this actor a DevOps engineer but an Site reliability
engineering (SRE). This was a term introduced by Google few years back, as
sometimes (prominently in big companies), is not possible to provide a single
engineer with the level of access required to execute DevOps. We will talk more
about this role in the next section, SRE model.

In my opinion, DevOps is a philosophy more than a set of tools or a procedure:
having your engineers exposed to the full life cycle of your product requires a lot of
discipline but gives you an enormous amount of control over what is being built. If
the engineers understand the problem, they will solve it; it is what they are good at.

DevOps origins
In the last few years, we have gone through a revolution in IT: it sparkled from pure
IT companies to all the sectors: retail, banking, finance, and so on. This has led to a
number of small companies called start-ups, which are basically a number of
individuals who had an idea, executed it, and went to the market in order to sell the
product or the service to a global market (usually). Companies such as Amazon or
Alibaba, not to mention Google, Apple, Stripe or even Spotify, have gone from the
garage of one of the owners to big companies employing thousands of people.

One thing in common in the initial spark with these companies has always been
corporate inefficiency: the bigger the company, the longer it takes to complete
simple tasks.

Example of corporate inefficiency graph

This phenomenon creates a market on its own, with a demand that cannot be
satisfied with traditional products. In order to provide a more agile service, these
start-ups need to be cost-effective. It is okay for a big bank to spend millions on its
currency exchange platform, but if you are a small company making your way
through, your only possibility against a big bank is to cut costs by automation and
better processes. This is a big drive for small companies to adopt better ways of
doing things, as every day that passes is one day closer to running out of cash, but
there is a bigger drive for adopting DevOps tools: failure.

Failure is a natural factor for the development of any system. No matter how much
effort we put in, failure is always there, and at some point, it is going to happen.

Usually, companies are quite focused on removing failure, but there is a unwritten
rule that is keeping them from succeeding: the 80-20 rule:

It takes 20% of time to achieve 80% of your goals. The remaining 20% will
take 80% of your time.

Spending a huge amount of time on avoiding failure is bound to fail, but luckily,
there is another solution: quick recovery.

Up until now, in my work experience, I have only seen one company asking "what
can we do if this fails at 4 A.M. in the morning?" instead of "what else can we do to
avoid this system from failing?", and believe me, it is a lot easier (especially with the
modern tools) to create a recovery system than to make sure that our systems won't
go down.

All these events (automation and failure management) led to the development of
modern automation tools that enabled our engineers to:

Automate infrastructure and software
Recover from errors quickly

DevOps and corporations
DevOps fits perfectly into the small company world (start-ups): some individuals
that can access everything and execute the commands that they need to make the
changes in the system quickly. Within these ecosystems is where DevOps shines.

This level of access in traditional development models in big companies is a no-go.
It can be an impediment even at a legal level if your system is dealing with highly
confidential data, where you need to get your employees security clearance from the
government in order to grant them access to the data.

It can also be convenient for the company to keep a traditional development team
that delivers products to a group of engineers that runs it but works closely with the
developers so that the communication is not an issue.

SREs also use DevOps tools, but usually, they focus more on building and running a
middleware cluster (Kubernetes, Docker Swarm, and so on) that provides uniformity
and a common language for the developers to be abstracted from the infrastructure:
they don't even need to know in which hardware the cluster is deployed; they just
need to create the descriptors for the applications that they will deploy (the
developers) in the cluster in an access-controlled and automated manner in a way
that the security policies are followed up.

SRE is a discipline on its own, and Google has published a free ebook about it,
which can be found at https://landing.google.com/sre/book.html.

I would recommend that you read it as it is a fairly interesting point of view.

https://landing.google.com/sre/book.html

Traditional release management
Through the years, companies have pushed the development of their IT systems out
of their business core processes: retail shop business was retail and not software but
reality has kicked in very quickly with companies such as Amazon or Alibaba, which
can partially attribute their success to keeping their IT systems in the core of the
business.

A few years ago, companies used to outsource their entire IT systems, trying to push
the complexity aside from the main business in the same way that companies
outsource the maintenance of the offices where they are. This has been successful for
quite a long time as the release cycles of the same applications or systems were long
enough (a couple of times a year) to be able to articulate a complex chain of change
management as a release was a big bang style event where everything was measured
to the millimeter with little to no tolerance for failure.

Usually, the life cycle for such projects is very similar to what is shown in the
following diagram:

This model is traditionally known as waterfall (you can see its shape), and it is
borrowed from traditional industrial pipelines where things happen in very well-
defined order and stages. In the very beginning of the software industry, engineers
tried to retrofit the practices from the traditional industry to software, which, while a
good idea, has some drawbacks:

Old problems are brought to a new field
The advantages of software being intangible are negated

With waterfall, we have a big problem: nothing moves quickly. No matter how much
effort is put into the process, it is designed for enormous software components that
are released few times a year or even once a year. If you try to apply this model to
smaller software components, it is going to fail due to the number of actors involved
in it. It is more than likely that the person who captures the requirements won't be
involved in the development of the application and, for sure, won't know anything
about the deployment.

Chain of communication
I remember that when I was a kid, we used to play a game called the crazy phone.
Someone would make up a story with plenty of details and write it down on paper.
This person read the story to another person, who had to capture as much as possible
and do the same to the next person, up until we reached the end of the number of
people playing this game. After four people, it was almost guaranteed that the story
wouldn't look anywhere close to the initial one, but there was a more worrying
detail: after the first person, the story would never be the same. Details would be
removed and invented, but things would surely be different.

This exact game is what we are trying to replicate in the waterfall model: people who
are working on the requirements are creating a story that is going to be told to
developers, who are creating another story that is going to be told to QA so that they
can test that the software product delivered matches with a story that was in two
hands (at the very least) before reaching them.

As you can see, this is bound to be a disaster but hold on, what can we do to fix it? If
we look at the traditional industry, we'll see that they never get their designs wrong
or, at least, the error rate is very small. The reason for that (in my opinion) is that
they are building tangible things, such as a car or a nuclear reactor, which can easily
be inspected and believe me or not, they are usually simpler than a software project.
If you drive a car, after a few minutes, you will be able to spot problems with the
engine, but if you start using a new version of some software, it might take a few
years to spot security problems or even functional problems.

In software, we tried to ease this problem by creating very concise and complex
diagrams using Unified Modeling Language (UML) so that we capture the single
source of truth and we can always go back to it to solve problems or validate our
artifacts. Even though this is a better approach, it is not exempt from problems:

Some details are hard to capture in diagrams
People in the business stakeholders do not understand UML
Creating diagrams requires time

Particularly, the fact that the business stakeholders do not understand UML is the big
problem here. After the capture of requirements, changing them or even raising
questions on lower levels (development, operations, and so on) requires involving

some people, and at least one of them (the business stakeholder) does not understand
the language of where the requirements were captured. This wouldn't be a problem if
the project requirements were spot on since the first iteration, but in how many
projects have you been involved where the requirements were static? The answer is
none.

The cost of fixing a bug
Once we have made it clear that we have a communication problem, bugs are
expected to arise during our process. Either a misalignment with the requirements or
even the requirements being wrong usually leads to a defect that could prevent us
from deploying the application to production and delay everything.

In waterfall, fixing a bug is increasingly possible in every step we take. For example,
fixing a bug in the requirements phase is very straightforward: just update the
diagrams/documentation, and we are done. If the same bug is captured by a QA
engineer in the verification phase, we need to:

Update the documents/diagrams
Create a new version of the application
Deploy the new version to the QA environment

If the bug is caught in production, you can imagine how many steps are involved in
fixing it, not to mention the stress, particularly if the bug compromises the revenue
of your company.

Releasing new versions
A few years ago, I used to work in a company where the production rollouts steps
were written in a Microsoft Word document command by command along with the
explanation:

Copy this file there: cp a.tar b.tar
Restart the server xyz with the command: sudo service my-server restart

This was in addition to a long list of actions to take to release a new version. This
happened because it was a fairly big company that had commoditized its IT
department, and even though their business was based on an IT product, they did not
embed IT in the core of their business.

As you can see, this is a very risky situation. Even though the developer who created
the version and the deployment document was there, someone was deploying a new
WAR (a Java web application packed in a file) in a production machine, following
the instructions blindly. I remember asking one day: if this guy is executing the
commands without questioning them, why don’t we just write a script that we run in
production? It was too risky, they said.

They were right about it: risk is something that we want to reduce when deploying a
new version of the software that is being used by some hundred thousand people on
a single day. In fairness, risk is what pushed us to do the deployment at 4 A.M.
instead of doing it during business hours.

The problem I see with this is that the way to mitigate the risks (deploy at 4 A.M in
the morning when no one is buying our product) creates what we call, in IT, a single
point of failure: the deployment is some sort of all or nothing event that is massively
constrained by the time, as at 8 A.M., the traffic in the app usually went from two
visits per hour to thousands per minute, around 9 A.M. being the busiest period of
the day.

That said, there were two possible outcomes from the rollout: either the new
software gets deployed or not. This causes stress to the people involved, and the last
thing you want to have is stressed people playing with the systems of a multi-million
business.

Let’s take a look at the maths behind a manual deployment, such as the one from
earlier:

Description Success Rate

Detach server 1 from the cluster 99.5%

Stop Tomcat on server 1 99.5%

Remove the old version of the app (the WAR file) 98%

Copy the new version of the app (the WAR file) 98%

Update properties in configuration files 95%

Start Tomcat 95%

Attach server 1 to the cluster 99.5%

This describes the steps involved in releasing a new version of the software in a
single machine. The full company system had a few machines, so the process would
have to be repeated a number of times, but let's keep it simple; assume that we are
only rolling out to a single server.

Now a simple question: what is the overall failure rate in the process?

We naturally tend to think that the probability of a failure in a chained process such
as the preceding list of instructions is the biggest in any step of the chain: 5%. That is

not true. In fairness, it is a very dangerous, cognitive bias. We usually take very risky
decisions due to the false perception of low risk.

Let's use the math to calculate the probability of failure:

The preceding list is a list of dependent events. We cannot execute step number 6 if
step 4 failed, so the formula that we are going to apply is the following one:

P(T) = P(A1)*P(A2)…*P(An)

This leads to the following calculation:

P(T) = (99.5/100) * (99.5/100) * (98/100) * (98/100) * (95/100) * (95/100) * (99.5/100) = 0.8538

We are going to be successful only 85.38% of the times. This translated to
deployments, which means that we are going to have problems 1 out of 6 times that
we wake up at 4 A.M. to release a new version of our application, but there is a
bigger problem: what if we have a bug that no one noticed during the production
testing that happened just after the release? The answer to this question is simple and
painful: the company would need to take down the full system to roll back to a
previous version, which could lead to loss of revenue and customers.

Modern release management
A few years ago, when I was in the middle of a manual deployment at 4 A.M., I
remember asking myself "there has to be a better way". Tools were not mature
enough, and the majority of the companies did not consider IT the core of their
business. Then, a change happened: DevOps tools started to do well in the open
source community and companies started to create continuous delivery pipelines.
Some of them were successful, but a big majority of them failed for two reasons:

Release management process
Failure in the organizational alignment

We will talk about organizational alignment later on in this chapter. For now, we are
going to focus on the release management process as it needs to be completely
different from the traditional release management in order to facilitate the software
life cycle.

In the preceding section, we talked about different phases:

Requirements
Design
Implementation
Verification
Maintenance

We also explained how it works well with gigantic software where we group features
into big releases that get executed in a big bang style with all or nothing
deployments.

The first try to fit this process into smaller software components was what everyone
calls agile, but no one really knew what it was.

Agile development and communication
In the traditional release management, one of the big problems was the
communication: chains of people passing on messages and information, as we've
seen, never ends well.

Agile encourages shorter communication strings: the stakeholders are supposed to be
involved in the software development management, from the definition of
requirements to the verification (testing) of the same software. This has an enormous
advantage: teams never build features that are not required. If deadlines need to be
met, the engineering team sizes down the final product sacrificing functionality but
not quality.

Deliver early and deliver often is the mantra of agile, which basically means defining
an Minimum Viable Product (MVP) and delivering it as soon as it is ready in order
to deliver value to the customers of your application and then delivering new
features as required. With this method, we are delivering value since the first release
and getting feedback very early on in the product life.

In order to articulate this way of working, a new concept was introduced: the sprint.
A sprint is a period of time (usually 2 weeks) with a set of functionalities that are
supposed to be delivered at the end of it into production so that we achieve different
effects:

Customers are able to get value very often
Feedback reaches the development team every 2 weeks so that corrective
actions can be carried on
The team becomes predictable and savvy with estimates

This last point is very important: if our estimates are off by 10% in a quarter release,
it means that we are off by two weeks, whereas in a two weeks sprint, we are off
only by 1 day, which, over time, with the knowledge gained sprint after sprint,
means the team will be able to adjust due to the fact that the team builds a database
of features and time spent on them so that we are able to compare new features
against the already developed ones.

These features aren't called features. They are called stories. A story is, by definition,
a well-defined functionality with all the info for the development team captured

before the sprint starts, so once we start the development of the sprint, developers
can focus on technical activities instead of focusing on resolving unknowns in these
features.

Not all the stories have the same size, so we need a measurement unit: the story
points. Usually, story points do not relate to a time-frame but to the complexity of it.
This allows the team to calculate how many story points can be delivered at the end
of the sprint, so with time, they get better at the estimates and everybody gets their
expectations satisfied.

At the end of every sprint, the team is supposed to release the features developed,
tested, and integrated into production in order to move to the next sprint.

The content of the sprints are selected from a backlog that the team is also
maintaining and preparing as they go.

The main goal is to meet everyone's expectations by keeping the communication
open and be able to predict what is being delivered and when and what is needed for
it.

There are several ways of implementing the agile methodologies in our software
product. The one explained earlier is called Scrum, but if you look into other
development methodologies, you'll see that they all focus on the same concept:
improving the communication across different actors of the same team.

If you are interested in Scrum, there is more info at https://en.wikipedia.org/wiki/Scrum_(
software_development).

https://en.wikipedia.org/wiki/Scrum_(software_development)

Releasing new versions
As explained earlier, if we follow the Scrum methodology, we are supposed to
deliver a new version every 2 weeks (the duration of a sprint in the majority of the
cases), which has a dramatic impact on the resources consumed. Let's do the maths:
quarter versus bi-weekly releases:

In quarter releases, we release only four times a year in addition to emergency
releases to fix problems found in production.
In bi-weekly releases, we release once every 2 weeks in addition to emergency
releases. This means 26 releases a year (52 weeks roughly) in addition to
emergency releases.

For the sake of simplicity, let's ignore the emergency releases and focus on business
as usual in our application. Let's assume this takes us 10 hours to prepare and release
our software:

Quarter releases: 10 x 4 = 40 hours a year
Bi-weekly releases: 10 x 26 = 260 hours a year

As of now, releasing software is always the same activity, no matter whether we do
it every quarter or every day. The implication is the same (roughly), so we have a big
problem: our bi-weekly release is consuming a lot of time and it gets worse if we
need to release fixes for problems that have been overlooked in QA.

There is only one solution for this: automation. As mentioned earlier, up until 2 years
ago (around 2015) the tools to orchestrate automatic deployments weren't mature
enough. Bash scripts were common but weren't ideal as bash is not designed to alter
the state of production servers.

The first few tools to automate deployments were frameworks to manage the state of
servers: Capistrano or Fabric wrapped ssh access and state management in a set of
commands on Ruby and Python, which allowed the developers to create scripts that,
depending on the state of the servers, were executing different steps to achieve a
goal: deploying a new version.

These frameworks were a good step forward, but there were bigger problems with
them: a solution across different companies usually solves the same problem in

different ways, which implies that DevOps (developers + ops) engineers need to
learn how to handle this in every single company.

The real change came with Docker and orchestration platforms, such as Kubernetes
or Docker Swarm. In this book, we will look at how to use them, particularly
Kubernetes, to reduce the deployment time from 10 hours (or hours in general) to a
simple click, so our 260 hours a year become a few minutes for every release.

This also has a side-effect, which is related to what we explained earlier in this
chapter: from a very risky release (remember, 85.38% of success) with a lot of stress,
we are moving toward a release that can be patched in minutes, so releasing a bug,
even though it is bad, has a reduced impact due to the fact that we can fix it within
minutes or even roll back within seconds. We will look at how to do this in Chapter 8,
Release Management – Continuous Delivery.

Once we are aligned with these practices, we can even release individual items to
production: once a feature is ready, if the deployment is automated and it gets
reduced to a single click, why not just roll out the stories as they are completed?

DevOps and microservices
Microservices are a big trend nowadays: small software components that allow
companies to manage their systems on vertical slices of functionality, deploying
features individually instead of bundling them in a big application, which can be
problematic in big teams as the interaction across functionalities often leads to
collisions and bugs being released into production without anyone noticing.

An example of quite a successful company using microservices is Spotify. Not only
at the technical level but at the business level, they have organized things to be able
to orchestrate a large number of services to provide a top class music streaming
service that pretty much never fails, and if it does, it is a partial failure:

Playlists are managed by a microservice; therefore, if it goes down, only
playlists are unavailable.
If the recommendations are not working, the users usually don't even notice it.

This comes at a huge cost: operational overhead. Splitting an application into many
requires a proportional amount of operations to keep it running, which can be
exponential if it is not handled well. Let's look at an example:

Our system is composed of five applications: A, B, C, D, and E.
Each of them is a microservice that is deployed individually and requires
around 5 hours a month of operations (deployments, capacity planning,
maintenance, and so on)

If we bundle all five applications together into a single big application, our
maintenance cost goes down drastically to pretty much the same as any of the
previously mentioned microservices. The numbers are clear:

25 hours a month for a microservices-based system
5 hours a month for a monolithic application

This leads to a problem: if our system grows up to hundreds (yes, hundreds)
microservices, the situation becomes hard to manage as it consumes all our time.

The only solution to this is automation. There will always be an operational
overhead, but with automation, instead of adding 5 hours a month per service, this

time will decrease with time, as once we have automated our interventions, there is
pretty much no time consumed by new services as everything happens as a chain of
events.

In Chapter 8, Release Management – Continuous Delivery, we are going to set up a
continuous delivery pipeline to demonstrate how this is possible, and even though
we will have some manual steps for sanity, it is possible to fully automate the
operations on a microservices environment running in a cluster such as Kubernetes.

In general, I would not advise any company to start a project based on microservices
without proper automation in place and more specifically, if you are convinced that
the system will grow over time, Kubernetes would be a very interesting option: it
gives you the language that other platforms lack, such as load balancers, routing,
ingress, and more. We will dive deep into Kubernetes in the upcoming chapters.

All these activities are supposed to be part of the DevOps engineer's day-to-day work
(among many others), but first, there is a problem that we need to solve: how to align
our company resources to be able to get the most from the DevOps engineer figure.

DevOps: Organizational alignment
Up until now, we have looked at how the modern and traditional release life cycle
works. We have also defined what a DevOps engineer is and also how they can help
with Microservices, which, as explained, are not viable without the right level of
automation.

Apart from technicalities, there is something that is extremely important for the
DevOps culture to succeed: organizational alignment.

The traditional software development used to divide teams into different roles:

Business analysts
Developers
System administrators
QA engineers

This is what we call horizontal slices: a team of system administrators has a few
contact points with the developers so that they get enough information to deploy and
maintain software.

In the modern release life cycle, this simply does not work. Instead of horizontal
slices of our company, we need to get vertical slices: a team should be composed of
at least one member of every horizontal team. This means having developers,
business analysts, system administrators, and QA engineers together...well, not
100%.

With the DevOps philosophy, some of these roles become irrelevant or need to
evolve. The idea is that a single team is able to build, deploy, and run an application
on its own without anything external: this is called cross-functional autonomous
team.

In my professional experience, cross-functional teams are the best organization for
delivering high-quality reliable products. The product is run by people who build;
therefore, they know it inside out. A combination of analysts (depending on the
nature of the business), developers, and DevOps engineers is all you need to deliver
high-quality software into production. Some teams might as well include a QA
engineer, but in general, automated testing created by DevOps and developers should

be the holy grail: it is impossible to release software in a continuous delivery manner
without having good code coverage. I am a big fan of the analyst being the one that
tests the software as he/she is the person who knows the best the requirements and is,
therefore, the most indicated to validating them.

The DevOps engineer plays a cross-cutting role: they need to know how the
application is built (and possibly be part of its development), but their focus is
related to the operation of the app: security, operational readiness, infrastructure, and
testing should be their day-to-day job.

I have also seen teams built entirely by DevOps engineers and analysts without any
pure developers or QAs. In this variant, the DevOps engineers are responsible for the
infrastructure part as well as the application development, which can be very
challenging depending on the complexity of the system. In general, every case needs
to be studied in isolation as DevOps is not a one size fits all product.

What to expect from this book
Now that we have introduced DevOps, it is time to specify what are we going to
learn in this book. It will be mainly focused on the Google Cloud Platform and the
DevOps tools around it. There are several reasons for this:

The trial period of GCP is more than enough to go through the entire book
It is a very mature product
Kubernetes is a big part of GCP

You will learn the fundamentals of the DevOps tools and practices, which provide
enough detail to allow you to search for extra information when needed but up to a
point where you can use the learnings straight away in your company.

It will be strongly focused on the ops part of DevOps as there is enough literacy in
application development, and that hasn't changed in the DevOps world. Needless to
say, we are not going to show how to write tests for your application, which is a
fundamental activity to ensure the stability of our systems: DevOps does not work
without good code coverage and automated testing.

In general, the examples are simple enough to be followed by people at the entry
level of DevOps, but if you want to go deeper into some aspects of GCP, there is a
good collection of tutorials available at https://cloud.google.com/docs/tutorials.

The book is structured in an incremental way: first, the Docker fundamentals will be
shown just after a walkthrough of the different cloud providers but before going deep
into configuration management tools (specifically, Ansible) and containers'
orchestration platform (mainly Kubernetes).

We will end up setting up a continuous delivery pipeline for a system that manages
timezoned timestamps called Chronos, which I use for talks for several reasons:

It has pretty much no business logic
It is based on microservices
It pretty much covers all the required infrastructure

You can find the code for Chronos on the following GitHub repository at https://github
.com/dgonzalez/chronos.

https://cloud.google.com/docs/tutorials
https://github.com/dgonzalez/chronos

The majority of the examples can be repeated in your local machine using a
virtualization provider such as VirtualBox and MiniKube for the Kubernetes
examples, but I'd encourage you to sign up for the trial on Google Cloud Platform as
it provides you (at the time of writing this) with $300 or 1 year of resources to spend
freely.

Summary
On this chapter we have seen how we should align our resources (engineers) to
deliver low cost and high impact IT systems. We have seen how a poor
communication can lead into a defective release process deadlocking our rollouts
and making the system quite inefficient from the business point of view. Through the
rest of the book, we are going to look at tools that can help us not only to improve
this communication but also enable our engineers to deliver more top quality
functionality with lower costs.

The first of these set of tools are described on the next chapter: the cloud data
centers. These data centers allow us to create resources (VMs, networks, load
balancers...) from their pool of resources in order to satisfy our needs of specific
hardware, at a very reasonable price and flexibility. These type of cloud data centers
are being adopted more and more by the modern (and not so modern) IT companies,
which is leading to the creation of a set of tools to automate pretty much everything
around the infrastructure.

Cloud Data Centers - The New Reality
In the last few years, there has been a shift toward cloud systems, which enable the
companies to scale in an easy and cheap way depending on the needs. They also
enable companies to take advantage of something called Infrastructure as Code
(IAC), which basically allows you to treat your physical resources (servers and
routers) that previously had to be bought according to the needs as code that you can
review, run, and re-run to adapt the infrastructure to your requirements.

In this chapter, we are going to walk through the main cloud providers, taking a look
at their main strengths and weak points in order to form a clear picture of what they
offer and how we can, as engineers, take advantage of it.

Out of all the providers in the market, we are going to focus on these two:

Amazon Web Services (AWS)
Google Cloud Platform

We are also going to talk a bit about these:

Heroku
Azure
DigitalOcean

We should have an open minded attitude, as all of them can offer a different and
valuable set of features, something that should not be overlooked.

We are going to introduce Kubernetes, which is, in my humble opinion, the answer
to many problems in the modern DevOps world.

Amazon Web Services
Amazon is by far the biggest online retailer with an almost worldwide presence.
Everyone has heard about Amazon and the possibilities that this type of store present
to the busy society of the 21st century: they offer home delivery of pretty much
anything that can be bought in a conventional store.

Amazon was founded in 1994 by Jeff Bezos, and since then, it has grown
consistently every year, offering more and more products and services, but at some
point, they got into the cloud computing business. It makes sense that a big company
such as Amazon needs a lot of processing power, is reliable, and is able to adapt to
the necessities of the business quickly.

Initially, the cloud services were an internal solution to satisfy the high availability
needs of the business as well as have the capacity to grow in a uniform way. This
created a lot of expertise within the company in building a top notch Infrastructure
as a Service (IaaS) that, at some point, they realized could be sold to customers.

By 2006, there was nothing in the market to compete with them, so they were in the
sweet spot for a successful start.

I remember I was only in college when the first two services, EC2 and EC3, were
introduced in a conference.

EC2 allowed you to create virtual machines on the cloud with an API that was
manipulated through a command-line interface as well as a web interface that would
act as a monitor of your resources.

S3 was a key value (kind of) storage that allowed you to store immense sets of data
at a very low price manipulated through the command-line interface as well.

It really was a revolution. It was a complete paradigm shift: now you could ask for
more resources as you need. This was as simple as an API call, and there you go:
three new machines ready to be used in 2 minutes. The following screenshot is a list
of services on AWS:

 Catalog of services in AWS at January 2017

In the last few years, Amazon has been adding services very often, up until a point
where it is hard to keep up with the pace. In this chapter, we are going to walk
through the main services (or what I consider the most useful), showing their
features and areas of application.

EC2 - computing service
The first element that a cloud system has to provide to the users is computing power.
EC2 stands for Elastic Compute Cloud, and it allows you to create machines on the
cloud with a few clicks.

This is what the EC2 interface looks like:

 EC2 interface

EC2 was launched on August 25, 2006 (beta version), and it has evolved a lot since
then. It provides the user with different sizes of machines and is available across the
globe (11 different regions as of today). This means that the user can spin up
machines in different parts of the globe for high availability and latency purposes,
enabling the engineers of your company to build multi-zone applications without
coordinating teams across the globe.

They also provide different types of instances optimized for different tasks so that

the users can tailor the infrastructure to their needs. In total, there are 24 different
type of instances, but they are also grouped by type, which we will walk through
later on in this chapter.

Let’s look at an example of how to launch an instance.

Launching an instance
The first thing you need to do is go to the AWS EC2 interface.

1. Now click on the Launch Instance button, which will bring you to the following
screen:

2. This is where you can choose the image to run. As you can see, the image is the
operating system that will run on top of the EC2 Instance. In Amazon jargon,
this image is called Amazon Machine Image (AMI), and you can create your
own ones and save them for later usage, allowing you to ship prebuilt software.
For now, choose Ubuntu Server 16.04 by clicking on Select.

3. The next screen is about the size of the image. AWS offers quite a big variety of
sizes and types of images. This parameter drastically affects the performance of
the application regarding the network, memory, and CPU performance as well

as the I/O of the machine.
4. Let’s look at the different types:

Type Description

Bursting
instances

T2 are general-purpose instances for burst processing. They provide a baseline level of
CPU for peaks of processing power, but these peaks are available on an accumulative
basis: while idle, the CPU accumulates credits that can be used during high demand
periods, but once these credits are used, the performance goes back to the baseline
level.

General
purpose

M3 is a general-purpose instance with dedicated resources (no burst credits). It
provides a good balance between CPU, memory, and network resources, and it is the
minimum instance for production applications that need solid performance.

M4 follows the same philosophy as M3 but with an updated hardware:
Elastic Block Store (Amazon EBS) optimized and a better CPU as well as enhanced
networking are the highlights of this instance type.

 Compute
Optimized

The compute optimized instances in AWS are C3 and C4. In the same way as the M
instances, C4 is a hardware upgrade of the C3. These types of instances are prepared
for intensive CPU work, such as data processing and analysis or demanding servers.
C4 also comes with an enhanced network system, which is very helpful for high
networking traffic applications.

Memory
Optimized

As you can guess, AWS also provides memory optimized instances that can be used
for applications that need high memory usage. Applications based on Apache Spark
(or big data in general), in memory databases and similar, benefit the most from these
type of instances. In this case, the memory optimized instances are divided into two
sub-families:X1: These are large scale enterprise grade instances. X1 can be used for
the most demanding applications in the enterprise ecosystem and it is the flagship of
the memory intensive instances and is only used for very large applications.R3/R4:
Even though are more modest than X1, R instances are well capable of handling the
majority of day-to-day memory intensive applications. Cache systems, in memory
databases, and similar systems are the best use cases for X and R instances.

Accelerated
Computing
Instances

Some applications, such as Artificial Intelligence (AI), have specific computing
requirements, such as Graphical Processing Unit (GPU) processing or reconfigurable
hardware. These instances are divided into three families:P2: GPU compute instances.
These are optimized to carry specific processing tasks, such as breaking passwords
through brute force as well as machine learning applications (they usually rely on GPU
power).G2: Graphical processing instances. Rendering videos as well as ray tracing or
video streaming are the best use cases for these instances.

5. As you can see, there is an instance for every necessity that the user can have.
For now, we are going to choose a small instance first because we are just
testing AWS and second because AWS has a free tier, which enables you to use
the t2.micro instances for up to 1 year without any charge, as shown in the
following screenshot:

6. Now we have two options. Click on Review Instance Launch or Configure
Instance Details. In this case, we are going to click on Review Instance Launch,
but by clicking on Configure Instance Details, we can configure several
elements of the instance, such as networking, storage, and so on.

7. Once you click on Review Instance Launch, the review screen shows up. Click
on Launch and you should get presented with something similar to what is
shown in the following screenshot:

8. Just assign a name to the key-pair name and click on the Download Key
Pair button, which will download a .pem file that we will use later on to access
via ssh to the instance.

9. Once you have specified the key pair, click on Launch Instance, as shown in the
preceding screenshot, and that's all. After a few checks, your image will be
ready for installing the required software (this usually takes a couple of
minutes).

This is the bare minimum needed to create a running instance in AWS. As you can
see, the full process is very well explained on the screen and in general, if you know
the basics of DevOps (ssh, networking, and device management), you don't really
need much help creating instances.

Relational Database Service
What we have shown in the previous section are EC2 machines that can be used to
install the required software. There is another service that allows you to administer
high availability databases (MySQL, PostgreSQL, Maria DB, and Aurora as well as
Oracle and SQL Server) across regions. This service is called RDS and it stands for
Relational Database Service.

One of the big headaches with relational databases is the high availability
configuration: master-master configuration is something that is usually expensive
and out of reach of small companies. AWS has raised the bar with RDS offering
multi-region high availability databases with a few clicks.

Networking in AWS and EC2
AWS provides fine-grain control at the networking level. As with any physical data
center, you can define your own networks, but AWS has a higher-level abstraction
concept: The Virtual Private Cloud.

Amazon Virtual Private Cloud (Amazon VPC) is a segment of the AWS cloud that
allows you to group and segregate your resources in subnetworks to organize and
plan your infrastructure matching your requirements. It also allows you to create a
VPN between AWS and your physical data center to extend the latter one, adding
more resources from AWS. Also, when you create a resource in EC2, you have the
possibility of creating the resource in your custom defined subnet within your VPC.

Before jumping into what a VPC looks like, let's first explain how AWS works
regarding the geographical distribution of resources. AWS provides you with
different data centers in different regions such as Europe, Asia, and the US. As an
example, let's take EU West, which has three different availability zones:

The concept of region in AWS is basically a geographical area where the AWS data
center lives. Knowing this information enables us to build global scale applications
that serve the traffic from the closest data center in order to improve latency.
Another very good reason for this geographical distribution is the data protection
laws in several countries. By being able to choose where our data lives, we can
enforce the compliance with the laws.

Inside of these geographical regions, sometimes, we can find availability zones. One

availability zone is basically a physically separated data center that ensures the high
availability of our system, as in the case of a catastrophe in one of the data centers,
we can always fall back on the other availability zones.

Let's see how the regions and availability zones look:

Now that we understand how AWS works from the geographical perspective, let's
dig deeper into what a VPC is in terms of regions and availability zones.

A VPC is a logically separated segment of the AWS cloud that is private to the user,
can hold resources, and spans across all the availability regions in an AWS zone.
Inside of this VPC, we can define different subnets (public and privates in different
availability zones) and define which machines are reachable from the Internet: AWS
allows you to create routing tables, Internet gateways, and NAT gateways among
other common networking resources that enable the user to build anything that they
can build in a physical data center.

It would take a full book just to talk about the networking in AWS. We will go
deeper into some concepts in the rest of the chapters of this book, but if you really
want to dive deep into the networking side of AWS, you can find more data and
examples at http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html.

AWS also provides a very powerful element: Elastic Load Balancing (ELB). An
ELB is a modern version of the classic hardware load balancer. It enables us to
health-check resources and only get the healthy ones into the pool. Also, AWS
comes in two flavors: classic load balancer and application load balancer. The first
version is, as the name suggests, an application load balancer that distributes the
traffic depending on health checks and does not understand the data being
transmitted, whereas the application load balancer can route the traffic based on
advanced policies dependent on the information of the request. ELBs can also handle
the full HTTPS flow so that we can carry the SSL termination in the load balancer

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html

and allow our applications to offload the encryption/decryption to them.

Storage in AWS and EC2
Up until now, we have exposed how to create machines and networking
infrastructure in AWS. One important thing when building applications is the storage
of the data. By default, when we launch a machine in EC2, there are two types of
storage that can be associated with the machine in the root volume in order to run the
operating system:

Instance storage backed images

Amazon Elastic Block Store (Amazon EBS) storage backed images

The first one, instance storage backed images, relies on the storage associated with
the image to mount and run the root volume. This means that the data stored in the
image will be lost once the machine is terminated (these type of images do not
support the stop action; they just support termination).

The second type of instances are the ones backed by EBS. Elastic Block Store is the
name that AWS gives to its storage capabilities. With EBS, the user can create and
destroy volumes (block devices) as needed as well as snapshots: we can create a
copy of a running image before carrying a risky operation so we can restore it if
something goes wrong.

The type of storage can vary depending on our needs: you can create things from
magnetic block devices to SSD drives as well as general-purpose units that can cover
a lot of the use cases in all the applications.

In general, all the instances are backed by EBS as the fact that the storage is a
logically segregated from compute enables us to do things such as resizing an
instance (for example, creating a more powerful instance) without losing the data.

Several volumes can be mounted into the same EC2 instance that gets exposed to it
as if a physical device were attached to it, so if we are using a Linux-based image
(such as Ubuntu), we can use the mount command to mount the devices into folders.

Amazon S3
Amazon Simple Storage Service (Amazon S3) is, as described by its name, a simple
way of storing a large amount of data on the cloud at a very low cost with a nice set
of features. Unlike EC2 storage based on devices with predefined size, Amazon S3 is
practically a key value storage that enables us to identify data with a key. Unlike
other key value storage technologies, S3 is prepared to store from tiny to very large
objects (up to 5 terabytes) with very low response times and that are accessible
anywhere.

In the same way as EC2, Amazon S3 is a feature that has the concept of regions, but
S3 does not understand availability zones: the S3 service itself manages to get the
objects stored on different devices, so you don't need to worry about it. The data is
stored in an abstraction called buckets that, if we try to compare S3 with a
filesystem, would be the equivalent to a folder but with one catch: the bucket name
has to be unique across all the regions on your AWS account so we can't create one
bucket called Documents in two different regions.

Another advantage of S3 is that AWS provides a REST API to access objects in a
very simple way, which makes it fairly easy to use it as storage for the modern web.

One of the best use cases that I've come across in my professional life for S3 is the
management of a large number of documents in a financial institution. Usually, when
companies are dealing with money, they have to onboard the customers to a process
called Customer Due Diligence (CDD). This process ensures that the customers are
who they claim to be and that the money is coming from a valid source. The
company also has to keep the documents for a minimum of 6 years due to financial
regulations.

In order to carry on this investigation, the users need to send documents to the
company, and Amazon S3 is the perfect match for it: the customer uploads the
documents to the website of the company, which in reality is pushing the documents
to S3 buckets (one per customer) and replicating them across regions with the
Amazon S3 replication feature. Also, S3 provides another interesting feature for this
model: links to objects that expire within a time frame. Basically, this enables you to
create a link that is valid only for a period of time so that if the person reviewing
documents exposes the link to a third party, S3 will reply with an error, making it
really hard to leak documents accidentally (the user could always download it).

Another interesting feature of S3 is the possibility of integrating it with Amazon Key
Management System (Amazon KMS), another feature provided by AWS), so all
our objects in S3 are encrypted by a key stored in KMS that can be transparently
rotated periodically.

Amazon ECR and ECS
Containers are the new norm. Every single company that I've come across in the last
few years is using or considering using containers for their software. This enables us
to build software with the microservices principles in mind (small individual
software components running independently) as it provides a decent level of
abstraction from the configuration and deployment of different apps: basically, the
entire configuration is stored in a container and we only need to worry about how to
run it.

Amazon, as one of the pioneers of the microservices architectures, has created its
own image registry and cluster (service).

As we will see in depth in Chapter 3, Docker, is built around two concepts: images
and containers. An image is a definition of an application (configuration + software),
whereas a container is an instance of the running image. The image is built through a
Dockerfile (a description of the image with a very basic script language) and stored
in a registry, in this case, Amazon EC2 Container Registry (ECR), our private
registry in the AWS infrastructure. We don't need to worry about availability or
managing resources; we just choose the region where our containers are going to run
and push our images into that repository.

Then, from our host running Docker, the image is pulled and the container is
instantiated. This is simple and effective, but there are a few considerations:

What happens when our host does not have enough resources to run as many
containers as we want?
What happens if we want to ensure the high availability of our containers?
How do we ensure that the containers are restarted when they fail (for some
reason)?
How can we add more hardware resources to our system without downtime?

All those questions were trickier a few years ago but are simple now: Amazon EC2
Container Service (Amazon ECS) will take care of it for us. ECS is basically a
cluster of resources (EC2 machines) that work together to provide a runtime for our
containers to be executed.

Within ECS, when creating a new service, we specify parameters such as how many

replicas of our container should be running at the same time as well as what
configuration (image) our container is supposed to use. Let's see how it works.

Creating a cluster
First, we are going to create a cluster in the AWS console and see how it works.

1. Go to the Amazon ECS page and click on Get started button (the only button in
the screen as you haven't created any resources yet):

2. Make sure that the two checkboxes are ticked before continuing. We want to
deploy a sample application to ECS but also we want to store the images in
ECR.

3. The next screen is key: this is where we define the repository of our image,
which will determine the repository URI that will be used for pushing images
from our local machine using Docker.

4. Just use devops-test as the repository name, and our repository URI will look
very similar to the one shown in the preceding screenshot.

5. Step number 2 (out of 6) is a series of commands provided by AWS to log in
into ECR and push the images of our project. In this case, we are going to use a
very simple application in Node.js:

 var express = require('express');
 var app = express();

 app.get('/', function (req, res) {
 res.send('Hello World!');
 });

 app.listen(3000, function () {
 console.log('Example app listening on port 3000!');
 });

6. Save the code from earlier in a file called index.js within a folder called devops-
test on your local machine. As we are using express, we need to install the
required dependency. Just execute the following command:

 npm init

7. After a few questions (just press Enter a few times and it should work), a file
called package.json should be created. Now we need to install express for our
program to run:

 npm install --save express

8. And voila! Our package.json file should have a line describing the required
dependency:

 {
 "name": "code",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo "Error: no test specified"
 && exit 1",
 "start": "node index.js"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "express": "^4.14.1"
 }
 }

9. This file allows us to reinstall the dependencies whenever required without
having to do it manually; it also allows us to specify a command that will be run
when we execute npm start (a standard way of running a Node app using npm).
Add the line and highlight it, as shown in the preceding code, as we will need it
later (don't forget the semicolon from the previous line).

10. Now we need to write our Dockerfile. A Dockerfile, as we will see in Chapter 3,
Docker, is a file that describes what our Docker image looks like. In this case,
we are going to reconstruct the steps needed to run the node application in a
Docker container:

 FROM node:latest

 RUN mkdir -p /usr/src/app
 WORKDIR /usr/src/app

 COPY package.json /usr/src/app/
 RUN npm install

 COPY . /usr/src/app

 EXPOSE 3000
 CMD ["npm", "start"]

11. Don't try to understand the file; we will go deeper into this later on this book.
Just save it with the name Dockerfile in the folder mentioned previously, devops-
test. By now, your devops-test folder should look like this:

12. Now we are ready to follow step 2 in the ECS setup. Be aware that the
following image is regarding my user in AWS; your user will have different
parameters, so use yours instead of copying from the preceding screenshot:

Once you finish it, a new version of the image with your app image
should be installed in your private ECR.

14. The next step (step 3) is creating what AWS calls a task definition, which is
basically the configuration for one instance of our containers: how much
memory we are going to use, which image we are going to run, and what ports

we are going to expose in the container. Just leave the default memory but
change the port to 3000, as it is the port that we used in the preceding example
(the node application). This is typical docker parameter and we will learn more
about it in the next chapter, where we will dive deeper into docker.

15. Once you are ready, click on next and we will be with step 4. This step is where
we are going to configure a service. By service, we mean the number of
instances of our container are we going to keep alive and how are we going to
expose them: using a load balancer or just in the EC2 instances that are part of
the cluster. We will also be able to specify which IAM (AWS credential
system) is going to be used for registering and deregistering running instances:

16. We just leave everything by default except two parameters:
The desired number of tasks: set to 2
In the ELB section, we just select sample-app: 80 (or the option that isn't
No ELB so AWS provisions an ELB for us)

17. Click on the Next step, where we are going to define what our cluster is going
to look like:

The number of nodes
The size of the nodes

18. Once we are ready, just review and launch the instance. After a few minutes,
our cluster should be up and running and ready to work with our deployed task.

You can access the instance of the task that we created in the load balancer
provisioned by the cluster itself on the port 3000. As you can see, ECS makes the task
of setting up a container cluster simple.

In this book, we are going to give special attention to Kubernetes and Docker Swarm
mainly because they are platform agnostic technologies, but I believe that Amazon
ECS is a very valid technology to be considered when building a new container-
based system.

Other services
As you can see, the list of services in AWS is pretty much endless. We have visited
the ones that I consider the most important, and in the following chapters, we will
visit some of them that are also interesting, but unfortunately, we cannot go in deep
through all of them. However, AWS is pretty good in terms of the documentation,
and every service always comes with quite a comprehensive explanation on how to
use it.

In this section, we are going to touch base with some services that, even though are
quite important, are not core to the development of this book.

Route 53
Route 53 is the DNS service in AWS. It is a global and scalable DNS service that
allows you to perform some advanced operations:

Register domain names
Transfer domain names from other registrars
Create traffic routing policies (such as failovers across regions)
Monitor the availability of your applications (and reroute the traffic to healthy
instances).

With Route 53, we can link domain names to AWS resources, such as load
balancers, S3 buckets, and other resources, enabling us to expose a human-readable
name for our resources (mainly VMs) created within our AWS instance.

CloudFront
CloudFront solves one of the biggest problems that low traffic websites experience
when a spike in visits happens: it provides a cache in a way that makes us wonder
whether AWS is the one that serves the data and not our server. Basically,
CloudFront intercepts the request to our host, renders the page, and keeps it for up to
24 hours so our site offloads the traffic to AWS. It is designed for serving static
content, as the second time that the user hits the same URL, the cached version will
be served instead of hitting your server again.

It is highly recommended that you use CloudFront for the brochure site of your
company so that you can serve all the traffic with a very small machine, saving some
money in resources but also being able to improve your uptime when a traffic spike
hits your site.

Amazon ElasticCache
Amazon ElasticCache, as the name suggests, is a distributed and scalable in-memory
cache system that can be used to store cached data within our applications.

It solves one of the biggest problems that we can face when building an application
that relies on a cache for storing and retrieving data: high availability and a
consistent temporary datastore.

Amazon RDS
RDS stands for Relational Database Service. With RDS, you can provision DB
instances with a few clicks that could be used to store data: Oracle, MySQL, and
MariaDB are some of the options that we have for RDS. It leverages the high
availability to the underlying DB system, which might be a problem if we are
looking to rely on AWS for it, but it is usually acceptable as high availability in SQL
databases is a complicated subject.

DynamoDB
DynamoDB is a fine piece of engineering. It is a NoSQL database that is fine-tuned
down to the millisecond of latency at any scale. It stores objects instead of rows
(SQL cannot be used) and is a good candidate for storing a big amount of data in a
schema-less fashion. DynamoDB, in essence, is very similar to MongoDB, but there
is a basic difference: DynamoDB is a service provided by AWS and can run
only within AWS, whereas MongoDB is a software that can be installed anywhere,
including AWS. From the functional point of view, the majority of use cases for
MongoDB are valid for modeling DynamoDB databases.

Google Cloud Platform
Google has always been at the top of the hill when it comes to technology.
Surprisingly, Google didn't have a federated layer of services; instead, it offered
every service separately, which was far from ideal in providing a solid platform for
developers to build applications on top of it. In order to solve that, they released
Google Cloud Platform, which is a collection of services (infrastructure as a service,
platform as a service, containers and big data, as well as many other features) that
enables developers and companies to build highly reliable and scalable systems with
some of the most up-to-date features, such as Kubernetes and a set of unique
machine learning APIs.

The interface is also one of the main points in Google Cloud: it offers you a web
console where you basically have an available ssh Terminal that is connected to all
your services, and you can operate from there without the need for any configuration
on your local machine. Another good point in the interface is the fact that they use
the terminology in the traditional sysadmin world, making the learning curve easy
for the majority of the services.

In the same way as AWS, Google Cloud Platform allows engineers to create
resources across the globe in regions and zones in order to ensure the high
availability of our systems as well as the compliance with local laws.

But the real jewel in the crown is their container engine. I am a big fan of container
orchestration. Nowadays, everyone is gravitating toward microservices-based
systems, and it is not strange to see companies hitting the wall of the operational
reality of a microservices-based system: this is impossible to manage without
orchestration tools. From all the potential choices on the market (Amazon ECS,
Docker Swarm, and DCOS), there is one in particular that has been a game changer
in my life: Kubernetes.

Kubernetes is the answer to the question that I raised during the writing of my first
book (Developling Microservices with Node.js): how can we efficiently automate the
operations in a microservices environment by providing a common ground between
development and operations? Kubernetes has incorporated all the expertise from
working with containers that Google has accumulated through the years in order to
create a product that provides all the necessary components for the efficient
management of deployment pipelines.

In this book, we are going to place a special emphasis on Kubernetes, as in my
opinion, it is the solution to many of the problems that teams have today when
scaling up in members and resources.

In order to start working with GCP, Google offers a trial version of 300 USD credit
or 60 days free of charge test, which is more than enough to get your head around the
majority of the services and, of course, more than enough to follow the examples of
this book and play around with the majority of the concepts that we are going to be
exposing. I would recommend that you activate your trial period and start playing
around: once the credit is used or the 60 days are over, Google requires explicit
confirmation to activate the billing so there is not going to be any extra charge in
your account (this is the case at the time of writing this).

Google Compute Engine
Google Compute Engine is the equivalent of EC2 in Amazon Web Services. It
allows you to manage instances of machines, networks, and storage with a simplicity
that I have never seen before. One of the downsides that I found when ramping up
with AWS is the fact that they have created abstractions with names that are not very
intuitive: Virtual Private Cloud, Elastic Block Storage, and many more. This is not a
big deal as AWS is well known in the market, but Google got the message and has
named its resources in a very intuitive way, facilitating the onboarding of new people
into the platform with little to no effort.

Regarding the machine types, Google Cloud Platform provides a simplified and
limited set of machines when compared to AWS but enough variety to satisfy our
needs. One of the features to keep in mind with Google Cloud Platform is the fact
that the hardware improves with the size of the instance, which means that the 64
cores machines get a better CPU than the two core machines.

Google Cloud Platform also provides a CLI tool to interact with the resources in
GCP from a Terminal. In order to install it, just access this URL: https://cloud.google.co
m/sdk/.

Then, follow the instructions depending on your operating system.

https://cloud.google.com/sdk/

Standard machine types
The standard machines are the most common to be used by any application. They
offer a balance between CPU and memory that suits the majority of the tasks in all
the projects that you can possibly imagine. These types of machines offer 3.75 GB of
RAM for every single virtual CPU. Let's look at a few examples:

Name CPUs Memory

n1-standard-1 1 3.75 GB

n1-standard-2 2 7.50 GB

n1-standard-64 64 240 GB

As you can see, the naming convention is fairly straightforward and is easy in order
to guess the machine RAM and the number of CPUs out of the canonical name.

High-memory machine types
These machines are optimized for memory-intensive applications. They come with
an extra amount of RAM for every virtual CPU that allows you to go the extra mile
regarding memory power.

Every machine of the high-memory type comes with 6.5 GB of RAM for every
single virtual CPU, and here are a few examples:

Name CPUs Memory

n1-highmem-2 2 13

n1-highmem-8 8 52

n1-highmem-64 64 416

These machines come with a massive amount of RAM and are well suited for
distributed caches, databases, and many other types of applications that require a
high memory consumption relative to the CPU power.

High-CPU machine types
As the name states, high-CPU machines are instances that hold a high CPU/memory
ratio with only 0.9 GB of RAM for every virtual CPU, which indicates that they are
well suited for saving some money on high-intensive CPU tasks (as we cut down on
a lot of memory). Here are some examples of these machines:

Name CPUs Memory

n1-highcpu-2 2 1.8 GB

n1-highcpu-8 8 7.2 GB

n1-highcpu-64 64 57.6 GB

As you can see, the only difference between the standard or high memory machines
is that these machines are built with less amount of RAM, which allows us to save
money on a resource that won't be used in some applications that are able to create
machines with more CPUs at the same price. High-CPU machines are well suited for
applications that require high CPU and low memory consumption, such as
mathematical processing or other types of calculations.

Shared-core machine types
Sometimes, we really don't need a dedicated machine for our process, so Google
Cloud offers shared machines that you can use for it. In my opinion, the shared-core
machines are not suited for production usage, but they could well serve a prototype
or experimenting with different resources. Here are the two types of machines:

Name CPUs Memory

f1-micro 0.2 0.6

g1-small 0.5 1.7

As you can see, there are only two options with different RAM and CPU power. I
personally use these machines when I want to experiment with new software or new
products of the Google Cloud Platform.

Don't forget that these are bursting machines that are only suited for short burst of
intensive processing and not for sustained resource consumption as the CPU is
shared across different applications.

Custom machines and GPU processing
Sometimes, we need an extra amount of something on our machines, which is
usually not in the predefined machine instances of other providers, but in this case,
Google Cloud Platform comes to the rescue with an amazing feature: custom
machine types.

With custom machine types in Google Cloud Platform, we can get the benefit of the
upgraded hardware of the large machines in a resource-modest machine or create
specific configurations that suit our needs.

One of the best examples that we can find for custom machines is when we want to
add some GPU processing to our mix. In Google Cloud, GPUs can be attached to
any non-shared (f1 or g1) machine on demand. With the ability to create our custom
machine types, we can define how many GPUs we want to burst our processing
power in.

In general, when I design a system, I try to stick to the standard types as much as
possible in order to simplify my setup, but there is nothing wrong in creating custom
machine types aside from the fact that we can easily fall in the premature
optimization of our system, which is probably one of the biggest problems that you
can find when working in IT.

Launching an instance
In Google Cloud Platform, everything is grouped in projects. In order to create
resources, you need to associate them with projects, so the first step to launch an
instance is to create a project. In order to do that, just select the new project button
when entering the Google Cloud Platform interface the first time or in the drop-down
in the top bar when you have already created one project:

1. For the examples of this book, I am going to create a project called Implementing
Modern DevOps, which I will to be using for running all the examples:

2. Once we have created our project, we proceed to create a new VM instance.
Even though it is possible to create instances with more than 64 cores (with the
custom machine types), we are going to stick to the standard ones in order to
save costs. Proceed to create the instance with the default values (just change
the name):

3. There are two details that I really like from Google Cloud Platform:
How easy they name their resources and make everything clear to
understand
How transparent they are with the pricing

4. While creating a virtual machine in Google Cloud Platform, these two
characteristics are present: the form to create a machine has only a few fields,
and it gives you the cost of the machine per month (so there are no surprises).

5. In the same way as AWS, Google Cloud Platform allows you to select the
region and the zone (remember, a physically separated data center) where your
instance is going to live in order to ensure the high availability of the overall
system.

6. Also, this (not in the preceding figure) allows you a couple of clicks in two
checkboxes in order to allow the http and https traffic into the instance from the
outer world. This is just as simple and effective.

7. You can also configure other things, such as networking, ssh keys, and other
parameters that we are going to skip for now. Just click on the Create button (at
the bottom of the form) and wait until the machine is fully provisioned (it might
take up to few minutes), and you should see something similar to what is shown

in the following screenshot:

8. One of the most appealing features of Google Cloud Platform is how curated
their usability is. In this case, you can see a column in your machine description
called Connect that allows you to connect to the machine in a few different
ways:

 SSH
The gcloud command (a command-line tool from GCP)
Using another ssh client

9. We are going to select SSH (the default one) and click on the SSH button. A
popup should appear on the screen, and after a few seconds, we should see
something similar to an ssh Terminal, which is a Terminal in our machine:

This is a very neat and useful feature that basically enables the engineer to avoid
carrying a set of cryptographic keys that are always a risk as if they get leaked, your
machines are exposed.

Networking
One thing I cannot stress enough about the Google Cloud Platform is how it
simplifies the concepts and make them look similar to the real-world physical data
center concepts. The case of the networking was not an exception: all the concepts
and names can be mapped one to one to real world physical network concepts.

In Google Cloud, we can implement any required design that follows the principles
of the IP networking (the same as AWS) with pretty much a few clicks. Another
interesting feature that Google Cloud offers (along with other providers such as
AWS) is the possibility of extending your data center into the cloud with a VPN
network taking the benefits of the cloud products but achieving the level of security
required by the most sensitive data that you could imagine.

Google Container Engine
The Google Container Engine (GKE) is a proposal from Google for the container
orchestration making use of one of the most powerful container clusters available in
the market: Kubernetes.

As we will discuss further in Chapter 7, Docker Swarm and Kubernetes- Clustering
Infrastructure, Kubernetes is a feature-full cluster used for deploying and scaling
container-based applications in a controlled manner, with a special emphasis on
defining the common language between development and operations: a framework
that blends development and operation concepts into a common ground: a YAML (or
JSON) description of resources.

One of the big problems of Kubernetes is ensuring high availability. When you
deploy a cluster on premises or in a cloud provider, making use of the computing
power (EC2 in AWS or Compute Engine in GCP), you are responsible for upgrading
the cluster version and evolving it with the new releases of Kubernetes. In this case,
Google Cloud Platform, through the container engine, has solved the operational
problem: GCP keeps the master and is responsible for keeping it up to date and the
users upgrade the nodes when a new version of Kubernetes is released, which allows
us to articulate different procedures for upgrading our cluster.

Setting up a cluster
In Chapter 7, Docker Swarm and Kubernetes- Clustering Infrastructure, you are going
to learn how to operate Kubernetes, but it is worth teaching you how to set up a
cluster in the GKE in this chapter in order to show how easy it is before diving
deep into the core concepts of Kubernetes:

1. First, go to Container Engine within Google Cloud Platform:

2. As you can see, there are no clusters set up, so we have two options:
Create a new container cluster
Take the quickstart

3. We are just going to click on Create a container cluster and follow up the
onscreen instructions (a form) in order to set up our cluster:

4. Ensure that Zone is the closest to your geographical area (even though right
now it doesn't really matter) and the size is 3. This parameter, the size, is going
to ask GCP to create 3 instances in the Compute Engine in order to set up the
cluster plus a master that is managed by GCP itself. Regarding the image, we
have two options here, gci or container-vm. In this case, again, it doesn't really
matter as it is just a test cluster, but just note that if you want to use NFS or any
other advanced filesystem, you will need to use container-vm.

5. Click on Create, and after few minutes, you should see two things:
The cluster is created in the Google Container Engine section
Three new VMs are provisioned in the Compute Engine section

6. This is a very smart setup because with some commands using the google cloud
platform command tool (gcloud), we can scale up or down or cluster as well as
change the size of our instances in order to satisfy our needs. If you explore the
cluster (by clicking on its name), you will find a Connect to the cluster
link, which leads to a screen with instructions to connect to the Kubernetes

dashboard.

7. Sometimes, these instructions fail, and that is because gcloud is badly
configured. If you find an error trying to configure the access to the cluster, run
the following command:

 gcloud auth login <your email>

8. Then, follow the instructions. Assuming that you have already configured the
Google Cloud SDK, everything should work fine, and after running the kubectl
proxy command, you should be able to access the Kubernetes dashboard
at http://localhost:8001/ui.

9. In order to test whether everything works as expected, just run a simple image
in Kubernetes (in this case, a busybox image):

 kubectl run -i busybox --image=busybox

10. If we refresh the dashboard (http://localhost:8001/ui) while running the
Kubernetes proxy (as specified earlier), we should see something similar to
what is shown in the following figure in the Deployments section:

This indicates that the deployment (a Kubernetes concept that we will explore in Cha
pter 7, Docker Swarm and Kubernetes- Clustering Infrastructure) was successful.

Other Google Cloud Platform products
Google Cloud platform is not only Compute Engine and Container Engine, but it is
also a collection of services that are very interesting for different purposes. As things
are limited in scope, we won't see the majority of them and will only focus on the
ones that are more relevant to the DevOps world.

Google App Engine
Up until now, we have been working with a side of DevOps called IaaS. Google
Cloud platform also offers something called Platform as a Service (PaaS). In an
IaaS model, we need not worry about the underlying infrastructure: provisioning
machines, installing the software, patching the software. With Google App Engine
(or any other major PaaS), we forget about the ops of our infrastructure and focus on
the development of our application, leveraging the underlying infrastructure to
Google. Instead of launching a machine and installing Java to run our Spring Boot-
based application, we just specify that we want to run a Java application, and GCP
takes care of everything else.

This product, the Google App Engine, fits the necessity of the majority of the small
to mid sized projects, but in this book, we are going to focus on the DevOps that
maintaining an IaaS involves.

Google App Engine also provides us with features such as user management, which
is a recurring problem in all the applications.

Machine Learning APIs
Google has always been famous for its innovation across the technology products
that it has released. It has changed how people use e-mail with Gmail and how
people use phones with Android.

Regarding Machine Learning, they are also shaking up the world with an
innovative set of APIs that people can use to process images (with the vision APIs),
translate documents (with the translations API), and analyze large amounts of text
with the natural language API.

One of the most amazing uses that I have seen of the vision API is a company that
had to do some level of photo ID verification for its customers. There was a huge
problem of people uploading invalid images (random images or even images with
part of the face covered or similar), so we used the vision API to recognize images
that contained a face without facial hair, hat, or any other accessories aside from
glasses.

The result was that the people doing the ID verification focused just on valid images
instead of having to classify them as valid or invalid before proceeding to the
verification.

Big data
Big data is now a big thing. Everybody is trying to take the advantage of big data to
explore new areas of business or unleash their potential in traditional businesses.

Google Cloud Platform offers a set of big data APIs that enable the users to carry on
pretty much any task in large sets of data. With tools such as BigQuery, a data
analyst can run queries on terabytes of information in seconds without setting up a
massive scale infrastructure.

In general, the big data APIs from Google are what is called no-ops tools in the
DevOps world: they don't require maintenance from users as they leverage it into
Google. This means that if a big query requires a lot of processing power, Google
is the one responsible for transparently offering this power to the user.

Other cloud providers
Unfortunately, there is a limit to the number of concepts we can develop in a book,
and in this case, we are going to focus on AWS and GCP, as they are the most
feature-full cloud providers in the market.

I always try to adopt an open mindset regarding technology, and there are three
providers that I think you should know about:

DigitalOcean
Heroku
Azure

They have a lot to offer and they all are up to speed with the new trends of DevOps
and security.

Heroku
Heroku's battle horse is this phrase: build apps, not infrastructure. That is a powerful
message. Basically, Heroku is going full throttle with the PaaS concept Platform as
a Service, allowing you to avoid maintaining the underlying infrastructure: just
specify what you want to run (for example, a Node.js application) and the scale.

With this powerful philosophy, Heroku allows you to easily deploy instances of your
application, databases, or communication buses, such as Kafka, with a few clicks and
without all the hassle of having to provision them with a DevOps tool, such as
Ansible, Chef, or similar.

Heroku is one of the cloud providers preferred by start-ups as you can save a lot of
time as opposed to using AWS or Google Cloud Platform, as you just need to focus
on your applications, not the infrastructure.

DigitalOcean
DigitalOcean is a provider that, even though not as well-known as AWS or GCP,
offers a very interesting alternative to small to mid sized organizations to run their
cloud systems. They have developed a very powerful concept: the droplet.

Basically, a droplet is a component that can run your software and be connected to
different networks (private or public) through some configuration.

In order to assemble a droplet, we just need to define a few things:

The image (the operating system or one-click images)
The size
The region

And once you have chosen your configuration, the droplet starts running. This is
very simple and effective, which is usually what companies look for.

Azure
Azure is the Microsoft push for cloud systems and one of the providers that has
grown the most in the last couple of years. As expected, Azure is a particularly good
platform for running Windows-based applications, but that's not to say we can
overlook its capability of running Linux applications as well.

The catalog of products is as complete as the catalog for AWS or Google Cloud
Platform, and there is absolutely no reason not to choose Azure as a cloud provider
for your systems.

Azure is also one of the newest providers (it became widely available in 2013) in the
market, so it has the advantage of being able to solve problems that other providers
have presented.

Summary
Up until now, we showcased the features of AWS and GCP and introduced some
other providers that are very interesting choices when building our systems. One of
the advantages of having a good number of competitors in the market is the fact that
each one of them has their own strong points and we can combine them by making
use of VPNs, creating a big and extended virtual data center across different
providers.

Through the rest of the book, we are going to give special attention to AWS and
GCP, as they have the most interesting characteristics for a DevOps book (not to
overlook the rest of them, but remember, things are limited in terms of space).

We are also going to take a special interest in container clusters such as Kubernetes
or Docker Swarm as they are, without any kind of doubt, the future.

Docker
For many years, the contact point between development and operations has been
always a source of problems when deploying a new version of an application to
production. Different languages generate different types of artifacts (war or JAR for
Java, the source code for Node.js.), which led to heterogeneity in the procedures
when rolling out new versions.

This heterogeneity led into bespoke solutions to roll out versions, which are pretty
much sorceries with weird habits, such as deploying at 4 a.m. to avoid an outage in
the system and creating error-prone bash scripts that are harder to maintain than the
software itself. The problem, aside from the complexity, is that new hires need to
ramp up into your systems, and this always introduces a level of risk that we are not
aware of for the majority of the time until something goes very wrong.

Docker came to the rescue. With Docker, we can generate a deployable artifact,
which is not only the software that you built but also its runtime. If you are
deploying a Java application, with Docker, you will bundle the application plus the
version of Java that is going to be running your application.

This sounds like a dream: a controlled environment that gets promoted as an artifact
from development to QA and later production (sometimes stopping in preproduction
for a sanity check) that is repeatable and the only thing that changes across
environments is the configuration, usually injected via environment variables. It is
not a dream; it is the reality in 2017, and in this chapter, we are going to accelerate
from 0 to the speed of light on when it comes to running containers in Docker and
building images.

In this chapter, we will cover the following topics:

The Docker architecture
The Docker client
Building docker images
Docker registries
Volumes
Docker networking
Docker Compose

We will also stop at docker-compose, a tool used to run several containers in
combination, so we can compose our system in the development machine, simulating
our production configuration or, at the very least, approaching the interconnection of
components, but before that, we are going to also dive deep into Docker networking:
how can we choose the most appropriate networking for our system and what are the
main differences between the different networks that Docker offers?

Another interesting feature of Docker is how the images get built: basically, we
choose a base image (we will look at how to build one), and with a reduced set of
commands, we can build a Docker file which is basically a script that instructs
Docker on how to build our image with the configuration that we need.

Docker architecture
One of my preferred ways of learning is through experimentation. In order to explain
the Docker architecture, we are going to show an example, but first, we need to
install Docker itself. In this case, I am working with Mac, but at https://docs.docker.com
/engine/installation/, you can find the distribution that suits your needs with a very clear
set of instructions (usually a package that needs to be installed).

Once you have installed Docker, run the following command:

docker run hello-world

Once it finishes, the output should be very similar to the following one:

Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
78445dd45222: Pull complete
Digest: sha256:c5515758d4c5e1e838e9cd307f6c6a0d620b5e07e6f927b07d05f6d12a1ac8d7
Status: Downloaded newer image for hello-world:latest
Hello from Docker!

This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the hello-world image from the Docker Hub.
3. The Docker daemon created a new container from that image, which runs the

executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it to

your Terminal.

To try something more ambitious, you can run an Ubuntu container with the
following:

$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID at https://cloud.do
cker.com/.
For more examples and ideas, visit: https://docs.docker.com/engine/userguide/.

https://docs.docker.com/engine/installation/
https://cloud.docker.com/
https://docs.docker.com/engine/userguide/

As you can see, the hello-world image gives you some insights into what is going on
when running the preceding command.

Some new concepts have been introduced here:

Docker Hub: This is a central repository, which is public and private, where
users can push images that they build locally. A Docker registry is used to carry
the images across different stages of the deployment pipeline (or even between
systems).
Layer: Docker images are composed of layers. A layer is basically an ordered
filesystem difference. A Docker image is a stack of these layers leading into the
final image. When you change a file in an existing image, a new layer is
created, but the rest of the layers of the images are reused so we can save a lot
(believe me, a lot) of space.
Docker daemon: Docker follows a client-server architecture. In this case, the
Docker daemon is the server part that can be operated via a Representational
State Transfer (REST) API.
Docker client: Docker client is a Command-Line Interface (CLI) used to
operate a Docker daemon. It might be a local daemon or a remote one.

The last three concepts are the key for drafting the architecture of Docker. Take a
look at the following figure:

The client/server architecture predominates the software. You might think that this is
an overkill for a system such as Docker, but it actually gives you a lot of flexibility.
For example, in the previous diagram, we can see how the Docker CLI (the client) is
able to manage a local instance of the Docker daemon but is also able to talk to a
remote daemon by setting an environment variable called DOCKER_HOST, in this case, to
the value of 62.112.42.57.

One of the key points of Docker is that it completely leverages the virtualization to
the Linux kernel, making it impossible to run (as of today) Docker on Windows or
even Mac as it uses the capabilities of the Linux kernel. The solution to this is to
create a virtual machine with Linux that runs the Docker daemon, and the CLI will
talk to the virtual machine to run Docker commands.
In Mac, for example, the old versions of Docker use a distribution called Boot2Docker
that runs the Docker daemon, whereas the newer versions of Docker use something
called HyperKit, which is a lightweight virtualization solution for Mac.
Docker for Windows uses a different type of virtualization that is equivalent to the
one in Mac so all the assumptions made for Mac are valid for Windows.

Docker internals
Up until now, we have seen how Docker works regarding the overall architecture,
but what happens at the operating system level in the Docker daemon?

Roughly explained, Docker provides you with only a runtime for your applications:
you can limit the number of cores and the amount of memory to be used by the
container, but at the end of the day, the kernel running your container is going to be
the same as the kernel running your host machine.

The proof of that is in the way Docker organizes images: it calculates filesystem
differences and packs them in layers that can be reused. Let's pull a fairly big image
(not the hello-world from the preceding example):

docker pull ubuntu

This will produce the following output:

Using default tag: latest
latest: Pulling from library/ubuntu
d54efb8db41d: Pull complete
f8b845f45a87: Pull complete
e8db7bf7c39f: Pull complete
9654c40e9079: Pull complete
6d9ef359eaaa: Pull complete
Digest: sha256:dd7808d8792c9841d0b460122f1acf0a2dd1f56404f8d1e56298048885e45535
Status: Downloaded newer image for ubuntu:latest

As you can see, Docker has pulled five layers, which basically tells us that the
Ubuntu image was built in five steps (not quite true, but it is a good approach). Now
we are going to run an instance of Ubuntu. In Docker, an instance of an image is
what we call a container, and the main difference between an image and a container
is the top writable layer (layers in Docker are stacked in the read-only mode to
compose the image, such as the diffs in several patch files). Let's demonstrate this:

docker run -it ubuntu /bin/bash

The preceding command runs /bin/bash in an instance of the Ubuntu image. The i
and t flags allow you to use the container as if it were a virtual machine allocating a
virtual TTY (t flag) and creating the interactive session (i flag). Now, you can see
how your prompt has changed to something like the following:

root@329b2f9332d5:/#

It does not necessarily have to be the same, but it should be similar. Note that your
prompt is now a root prompt, but don't get too excited; it is just inside the container.

Create a file to alter the filesystem:

touch test.txt

Now you can disconnect from the container with the exit command.

As you can see, the prompt is back to your system prompt, and if you run docker ps,
you can see that there are no running containers, but if you run docker ps -a (show all
the containers, not just the running ones), you should see something similar to this:

This is a container that has been created from an image but is not running anymore.
As we said earlier, the only difference between this container and the image is the
top writable layer. In order to prove this, we are going to create a new image out of
the container that we ran a few minutes ago:

docker commit 329b2f9332d5 my-ubuntu

In this case, I am using the reference 329b. because it is the one shown in the
preceding image (the output of docker ps -a), but you need to change the hash to the
one shown in your output. In fairness, you don't need to type it all; just few
characters will do the job. If everything went well, the command should output a
SHA256 checksum and return the control to you. Now run docker images (to list the
images in your Docker) and the output should be similar to the following:

As you can see, there is a new image called my-ubuntu that we just created.

Now we want to check the difference between the ubuntu image and the my-ubuntu
image. In order to do that, we need to inspect the layers for each image and see the
difference. The command we are going to use to accomplish this task is docker
history, with the name of the image as the third parameter.

First, for the ubuntu image:

Then for my-ubuntu: image (just created from ubuntu):

Quite illuminating. The image my-ubuntu ;is the same image as ubuntu except for the
top writable layer that we just created by logging in to the machine and creating a
file. This is very smart because even though both of the two images use around 130
MB of space, the only extra space used for the second image is the top layer that, in
this case, uses only 5 bytes, leading to a usage of 130 MB and 5 bytes for the two
images. This also has a side-effect in line with what we talked earlier: a container is
the exact same thing as an image but with a different top writable layer, so running
an instance of the container uses only 5 bytes of space. As you can see, the engineers
that created Docker thought about everything!

The way in which how Docker stores the images in the hard drive is the
responsibility of the storage driver: Docker can make use of different drivers and
store the images in different ways (and places, such as S3 in AWS), but the most
common use case, the default driver, stores the images on the hard drive, creating
one file per layer with the checksum of the layer as the name of the file.

Docker client
We have made use of the Docker client already in the previous section, but we need
to go a bit deeper into the options that the Docker CLI can offer. My favorite way of
learning is through experimentation, and what we are going to be doing through this
section is building concepts from top to bottom (more decomposing, than building),
so I advise you to read the full section in the order without skipping parts, as the
latter examples will be based on the previous ones.

If you have dug into Docker a bit before, you can see that the commands are quite
verbose and not as intuitive as you might think. The most common use case is the
following combination:

docker run -i -t <docker-image>

This command basically does one simple thing: it runs a container in the interactive
mode and allocates pseudo-tty. This allows us to interact with the container executing
the commands (not on every image, but it is true for all the base images of Linux
distributions). Let's see what that means:

docker run -i -t ubuntu

This should return a prompt similar to the following one:

root@248ff3bcedc3:/#

What just happened? The prompt changed to root with a strange number in the host
section. We are in the container. Basically, now we can run commands that are going
to be run within the container. To exit the container, just type exit and the control
should be returned in the terminal to your host machine, leaving the container
running in the background.

The majority of the time, the preceding command suits our needs, but sometimes, we
want to run the container in the background: imagine that you spin up a Jenkins
server and you don't want to have your Terminal attached to it. In order to do that,
we just need to add the -d option (daemon) and drop -i and -t:

docker run -d jenkins

Once the image is pulled and it starts running, the control is returned to your

Terminal. The last line in the output, and it should be a long string of characters
similar to the following one:

9f6a33eb6bda4c4e050f3a5dd113b717f07cc97e2fdc5e2c73a2d16613bd540b

This is the hash of the running container. If you execute docker ps , the following
output (similar) will be produced:

Note that the value under CONTAINER ID in the screenshot matches the
first few digits of the hash from the preceding command.

Now in theory, we have a running instance of Jenkins that, as you can see in the
preceding image, is listening on port 8080 and port 50000. Let's try to browse
http://localhost:8080 with an internet browser. Nothing. Basically, our browser
cannot open that URL.

This is because we haven't told to Docker to bind the container ports to the local
ports of the host machine. In order to do that, we need to first stop the container and
then start it again with a special parameter.

Time to learn how to stop containers. We have two options here:

Stop the container: With the stop option, we send SIGTERM to the main process
within the container and wait for it to finish (for a grace period). Then, we send
SIGKILL.
Kill the container: With the kill option, we send SIGKILL to the main process in
the container, which forces an immediate exit without being able to save the
state.

In this case, which one you choose is irrelevant, but please be careful. When you are
running in a production environment, make sure it's fine to kill a container before
doing that, as with the stop option, we are giving the running software the option to
save the current transactions and exit gracefully. In this case, I am going to kill the
container:

docker kill 9f6a

Docker is smart. I did not need to specify the full container identifier, as with only a
few characters, Docker is able to identify the container (or the image in other

commands) and kill it.

If you remember from previous examples, when we kill a container, we have a layer
left that leads into a dead container that we can explore, adding the -a option to the
docker ps command. For this example, we are going to remove this layer as well with
the following command:

docker rm 9f6a

That's it. The container never existed in our host.

Now, going back to the Jenkins example, we want to run Jenkins in a way that we
can access the running instance from our browser. Let's modify the preceding
command and explain why:

docker run -p 8080:8080 -p 50000 -d jenkins

After a few seconds, if we go to http://localhost:8080 in a browser, we should see the
initial configuration for Jenkins, which asks for the initial password to be able to
proceed.

Let's explain the previous command first. We can see a new option: -p. As you can
guess, -p comes from the port. In fairness, you could change -p for --port, and
everything will work as expected. With the -p option, we map ports from the host,
your machine, to the container. In this case, we are mapping port 8080 from the host
to port 8080 and port 50000 of the host to port 50000 of the container, but how can we
map a different port in the host? Well, it is fairly simple:

docker run -p 8081:8080 -p 50001:50000 -d jenkins

After running the preceding command, we have two instances of Jenkins running:

The first one is exposed in port 8080 of your machine
The second one is exposed in port 80801 of your machine

Note that even though we don't use port 50000, I have changed it to 50001 as your
machine's port 50000 is already busy with the first instance of Jenkins that we ran
earlier on.

As you can see, Jenkins is asking for a password, and the initial web page in
http://localhost:8080 states that this password is in the logs or in the filesystem.
Focusing on the logs, with Docker, we can fetch the logs for any container registered

by the daemon at any time. Let's try this:

docker logs 11872

In my case, the running instance of Jenkins on port 80801 has an ID that starts with
11872. Executing the previous command should retrieve the starting log of Jenkins
that we can use for troubleshooting or, in this case, to recover the password to
initialize Jenkins.

Another interesting and common option in Docker is passing environment variables
to an application running inside the container. If you think about it, there are only
three ways in which we can configure an application within a Docker container:

Environment variables
A volume with data
Fetching the configuration from the network

Let's take a look at the official MySQL image from the Docker Hub:

https://hub.docker.com/_/mysql/

MySQL is a popular database server that has also been dockerized. If you read a bit
through the documentation, one of the config options is the root password for the
MySQL database. In fairness, the quick start example points to the right direction:

docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql

The new option here is -e. This option allows you to pass an environment variable to
the container with the value that you want to specify after =. After running the
preceding command, we are going to run another command:

docker inspect caa40cc7d45f

In this case, caa40cc7d45f is the ID that results from running MySQL on my machine
(yours should be different). There should be a huge JSON output in the terminal, but
one section in particular, Config, has a subsection called Env , which should look very
similar to the following one:

...
"Env": [
 "MYSQL_ROOT_PASSWORD=my-secret-pw",
 "no_proxy=*.local, 169.254/16",
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
 "GOSU_VERSION=1.7",
 "MYSQL_MAJOR=5.7",

https://hub.docker.com/_/mysql/

 "MYSQL_VERSION=5.7.17-1debian8"
],
...

There it is. The preceding environment variable that we passed, MYSQL_ROOT_PASSWORD,
is now accessible from within the container as the environment variable.

In the docker inspect command, there is a lot of very valuable information. Just have
a read through, as you might be surprised with how familiar you are with the
majority of the info: it is mainly Linux terminology.

So far, we have visited the most common commands as of January 2017. As you
know, the software evolves very quickly, and by the time you are reading this book,
new versions (such as secrets) have already been added to Docker. The best way to
check what is going on is through the documentation on http://www.docker.com, which,
in my opinion, is quite comprehensive. There is also a reference of the commands of
your current Docker installation available under the docker help command.

http://www.docker.com

Building Docker images
In the previous sections, we built an image using the commit command of Docker.
Although it works, I can see a big problem with it: it is not repeatable. There is no
easy way of rebuilding the image once and over again when the software installed in
the image is patched due to new vulnerabilities or versions.

In order to solve this problem, Docker provides a better way of building images:
Dockerfiles.

A Dockerfile is a file that contains a set of ordered commands required to leave the
image, ready to be used. Things such as installing software or upgrading the version
of the kernel as well as adding users are common activities that can be carried in a
Dockerfile. Let's look at an example:

FROM node:latest

RUN mkdir -p /app/
WORKDIR /app/

COPY package.json /app/
RUN npm install

COPY . /app

EXPOSE 8080
CMD ["npm", "start"]

If you have been in the IT field for a few years, you really don't need an explanation
on what it is going on, but let's make sure that we are all on the same page:

We are creating our image based on the latest Node.js image.
A new folder is created in /app. Our application will be installed there.
The working directory is set to this new folder.
Copy package.json and install the Node.js dependencies. Remember that we have
already set up the working directory to /app, so the RUN command will be run
in the /app folder.
Copy the rest of the source code.
Expose port 8080 to the outer world.
Run npm start.

It is very simple once you have done it few times. One thing to keep in mind that

might drive beginners crazy is this: CMD versus RUN.

In the preceding Dockerfile, sometimes, we use RUN, and sometimes, we use CMD, but
both of them seem to do the same thing: run a command. There is one difference:

RUN: This will run the command when building the image
CMD: This will run the command when the container based on the generated
image starts

Also, RUN (generally) creates a new layer, whereas CMD uses the writable layer of the
container.

Now, it's time to test the Dockerfile from earlier. Before building the image, we need
to build a small Node.js application that is going to be used as the software running
in the image. Create a new folder with three files:

package.json

index.js

Dockerfile (the one from before)

The content of package.json will be as follows:

{
 "name": "test",
 "version": "1.0.0",
 "description": "Test",
 "main": "index.js",
 "scripts": {
 "start": "node index.js"
 },
 "author": "Test",
 "license": "MIT"
}

The content of index.js will be as follows:

console.log('Hello world!')

And now, with the preceding files and the Dockerfile described before in the same
folder, run the following command:

docker build . -t my-node-app

After a few seconds, your image would be ready for use. Let's check it. If you list
your images with the docker images command, you should see an image called my-
node-app. Now create a container based on the image:

docker run my-node-app

You should see something similar to the following:

npm info it worked if it ends with ok
npm info using npm@4.1.2
npm info using node@v7.7.4
npm info lifecycle test@1.0.0~prestart: test@1.0.0
npm info lifecycle test@1.0.0~start: test@1.0.0
> test@1.0.0 start /app
> node index.js
hello world!
npm info lifecycle test@1.0.0~poststart: test@1.0.0
npm info ok

As you can see in the highlighted section, the output of running our application is
here.

Dockerfile reference
As you can see in the previous section, Dockerfiles are very simple, and if you have
any queries, the official documentation for the Dockerfile language is very
comprehensive.

In general, the language used for creating Dockerfiles is very similar to the batch
processing language of windows (.bat files) from a few years ago.

Let's look at the most used commands:

FROM

This instruction is used to specify the base image. Every single
Docker image is created starting from a base image (you can create
base images from a running Linux distribution).

COPY

As you can guess, COPY allows you to copy files and folders inside the
image. For example, we could copy our application, a war file, or any
other artifact that will be packed with the image once it is distributed.

ADD

This does the exactly the same thing as COPY but with three
differences:

The origin of the files could be a URL that gets downloaded
before copying
The origin of the files could be a packed file (such as a TAR file)
that will be unpacked in the image filesystem

RUN

This runs a command in the image. For example, it can be used to
install software in the image. It always creates a new layer in the
Docker image, so be careful and keep the RUN commands to a
minimum.

CMD

This is the default command to be run when the image gets
instantiated as a container. As you can see in the preceding example,
we are using CMD to execute npm start, which runs node index.js (refer
to package.json). It does not create a new layer as it uses the top
writable layer to store the changes.

ENTRYPOINT

ENTRYPOINT is similar to CMD, but it overrides the default command on a
docker image that is /bin/sh -c. In order to override an specified entry
point, you need to pass the --entrypoint flag when running an instance
of the image. ENTRYPOINT is ideal for configuring containers as
command-line tools, as you can pack a fairly complex command with
a fairly complex setup in a single container.

MAINTAINER
With MAINTAINER, you can specify who is the maintainer of the image
(also specify the email).

EXPOSE

This exposes the port specified in the first parameter so that the
container can listen to it. It actually does not expose the port in the
docker client host, forcing the user to pass the -p flag in order to access
the given port.

With these commands, you can build pretty much anything that you want, and
particularly with RUN, this allows the user to run any command within the container
that enables us to run scripts (python, bash, and ruby.) or even install software using
package managers.

Aside from the preceding instructions, the Dockerfile language also comes with
support for adding environment variables, volumes, and a few other features that
make it quite powerful.

Docker registries
In the previous section, we created a new image with our application installed and
ready to be used (in this case, a very simple Hello world Node.js application).

Now, we need to distribute the image so it can be installed in all the stages of our
deployment pipeline or even used by other developers. Docker is interesting for
running applications but it is also a very interesting choice to create command-line
tools that other developers can benefit from.

In order to distribute images, we have to rely on exporting/importing the image or
using a registry. A registry is basically a software that allows us to store and
distribute Docker images. There are two types of registries:

Public registries
Private registries

Let's take a look at the different registry types.

Public registries
The most known of the public registries is Docker Hub. It is the official and default
registry that every Docker installation knows of. Also, it offers private repositories,
but the most interesting feature is the fact that all the official images are available on
Docker Hub.

Let's see how can we use it. First, you need to create an account. Once you are
registered, create a new repository:

This repository hosts an image called modern-devops, and we are going to push one
image into it. Once it is created, you can see that Docker Hub suggests that you pull
the image with the following command:

docker pull dagonzadub/modern-devops

In your case, dagonzadub will need to be replaced with your username. Obviously, we
are not going to pull an image that is not there yet, so let's push an image. In the
previous section, we created an image called my-node-app. We are going to use this
image to test Docker Hub. Docker relies on a tag system to know where to push the
image or where to pull from. As we are working with the default registry, we don't
need to specify the URL, but we need to specify the user and the repository name. If

you haven't deleted the image created in the previous section, run the following
command:

docker tag my-node-app dagonzadub/modern-devops

And then, run this command:

docker push dagonzadub/modern-devops

After a few seconds (depending on your upload speed, even minutes), your image is
available on Docker Hub. As we marked it as public, everybody can pull and use
your image.

Private registries
But what happens if we want to store our images in our private registry within our
infrastructure?

Well, we have some options. If we are using cloud providers, such as Google Cloud
Platform or Amazon Web Services, they provide a Docker registry that is only
accessible from within your account, and you can specify the region in which your
images live (remember, the type of data that we are handling might be under strict
compliance rules about where we should store the data).

In AWS, the container registry is called EC2 Container Registry (ECR), and in
GCP, it is called a container registry. If your infrastructure is in one of these private
clouds, I encourage you to use it as you can leverage the access to the access controls
provided by the platforms.

Sometimes, we might find ourselves in a situation where we cannot use a cloud
provider as our system has to be built on premises. This is when we need to use a
private on-premises Docker registry.

Nowadays, there are quite a few options, but it is highly likely that the market
widens in the coming months or years as the companies are using Docker more and
more.

From all the range of registries, there are three that I find particularly interesting:

Quay: This is a complete registry in the current market (at the time of writing this).
It has some interesting features, but the one that is probably the most interesting is
the ability to scan the images searching for security vulnerabilities in the installed
software. It can also build images based on changes in your git repository, so if your
Dockerfile is altered in GitHub, Quay will automatically trigger a build and deploy
the new version of the image. Quay is not free, so a license has to be paid in order to
use it.

Registry: This is the plain name for a plain concept. It is the official implementation
of the registry API and comes packed in a container. It has no interface or access
controls by default, but it does the job. It also provides storage management drivers,
so we can deploy our images to S3 or Google Cloud Storage buckets as well as many

other options. Registry is free and can be pulled from Docker Hub.

Docker Trusted Registry: This is part of the enterprise version of Docker. Like pretty
much any other commercial registry, it provides static container analysis as well as
storage management drivers. Docker Trusted Registry (DTR) is not free, so a
license has to be paid for in order to use it.

Docker volumes
So far, we have seen how to create images, how to store the images in a registry, and
how Docker images work in general (layers and containers versus images).
An important part of any application is the storage. In general, Docker applications
should be stateless, but with the new orchestration software, such as Kubernetes,
Docker Swarm, and similar, every day, more and more engineers are moving toward
containerized databases.
Docker solves this problem in a very elegant way: you can mount a folder from the
local machine into the container as if it were a normal folder.
This is a very powerful abstraction as it leverages the ability to push data out of the
container to be saved into a Network Attached Storage (NAS) or any other storage
technology (it is possible to use a bucket in the Google Cloud Storage or S3 as the
volume mounted in a container).

Let's start with the basics. Just run a MySQL database:

docker run --name my-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:latest

This works. It actually does what is expected: it launches a container with a mysql
instance in it. The problem is that all the data is going to be written to /var/lib/mysql
and this folder is mapped to the top writable layer of the container (remember, in the
previous section, we explained the difference between a container and an image).
The only way to save data is actually committing the changes and create a new
image that is not manageable and, of course, this not the way you want to do it.
Think about it: if you remove a file in Docker, you are doing it in the top layer,
which is the only one writable, so in reality, you are not removing the file; you are
just hiding it. The file is in one of the layers using the space but it is not visible.
Docker records differences and a layer itself is a set of differences from the previous
stacked layers (think about how Git works; it is the same principle).
Instead of committing the changes into a new image, we are going to mount a folder
from our docker host into the container. Let's alter the previous command a bit:

docker run --name my-mysql-2 -v /home/david/docker/data:/var/lib/mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:latest

Now we have a new flag, -v, followed by the data:/var/lib/mysql value. The meaning
of the command is very simple: mount the /home/david/data folder into the
/var/lib/mysql path of my container.

As you can guess, the data folder, in my case, /home/david/data, should be present in
your current directory, so if it wasn't present, create it or modify the path to suit your
setup and launch the container. This use case can only be achieved through the -v
flag: mount a selected folder from the host into the container.
Now, execute ls inside the data folder (in the Docker host):

ls /home/david/data

You can see how mysql has actually written data files corresponding to the databases
created in bootstrap.
Docker volumes are not limited to one per container, so you can replicate the -v flag
as many times as you need in order to match your requirements.

Another way of mounting a shared folder between the container and the host is just
specifying the path inside the container:

docker run --name my-mysql-3 -v /var/lib/myysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:latest

This command will mount a folder from our Docker host into the container, but the
folder in the docker host will be managed by the storage driver and docker itself:

docker inspect my-mysql-3

The output is familiar. We have seen it before in the previous sections, but now we
are looking for different information. We are actually looking for a section called
Mounts, which looks like this (at least similar to it):

"Mounts": [
 {
 "Type": "volume",
 "Name": "572c2303b8417557072d5dc351f25d152e6947c1129f596f08e7e8d15ea2b220",
 "Source": "/var/lib/docker/volumes/572c2303b8417557072d5dc351f25d152e6947c1129f596f08e7e8d15ea2b220/_data",
 "Destination": "/var/lib/mysql",
 "Driver": "local",
 "Mode": "",
 "RW": true,
 "Propagation": ""
 }
]

This is also possible through the VOLUME instruction in a Dockerfile.

The preceding JSON is telling us which local folder is going to be mounted in the
container (the Source value of the JSON) and provides an interesting insight: the
volume has been named by docker (the Name value of the JSON).

This means that Docker tracks the volumes that are (or have been) mounted in any
container and can be listed through an API call:

docker volume ls

This should produce output similar to the following:

DRIVER VOLUME NAME
 local 13b66aa9f9c20c5a82c38563a585c041ea4a832e0b98195c610b4209ebeed444
 local 572c2303b8417557072d5dc351f25d152e6947c1129f596f08e7e8d15ea2b220
 local 695d7cbc47881078f435e466b1dd060be703eda394ccb95bfa7a18f64dc13d41
 local b0f4553586b17b4bd2f888a17ba2334ea0e6cf0776415e20598594feb3e05952

As you can guess, we can also create volumes through an api call:

docker volume create modern-devops

This volume is created in the same way as the previous example: it is up to Docker
to decide which folder on the local machine is going to be mounted in the specified
path in the container, but in this case, first, we are creating the volume and then
mounting it to a container. You can even inspect the volume:

docker volume inspect modern-devops

And this should return you something similar to the following:

[
{
"Driver": "local",
"Labels": {},
"Mountpoint": "/var/lib/docker/volumes/modern-devops/_data",
"Name": "modern-devops",
"Options": {},
"Scope": "local"
}
]

Now we can use this named resource and mount it into our containers, just
referencing the name:

docker run --name my-mysql-4 -v modern-devops:/var/lib/myysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:latest

The last (but not least) interesting use case in volumes helps us share the
configuration across different containers. Just imagine that you have a fairly complex
setup that leads to a gigantic Docker command with several -v. Docker provides us
with a much simpler way of sharing volume configuration across containers:

docker run --name my-mysql-5 --volumes-from my-mysql-4 -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:latest

This is very simple and intuitive: my-mysql-5 will spawn with the volume
configuration of my-mysql-4.

Docker networking
Networking is an important part of Docker. By default, Docker comes with three
networks that we can inspect by executing the following command:

docker network ls

This should produce output similar to the following:

Let's explain the different networks:

bridge: This is the default network. It is an entirely different stack from the host
machine with a different IP range in the bridge mode (the host machine acts as a
router for the containers in this network). The containers created without
specifying the network are attached to the default bridge network.
host: In this network, containers share the network stack with the Docker host.
If you inspect the configuration in the container, you will find that it is the
exactly the same as in the Docker host.
none: This is easy to guess; the container gets attached to no network: just the
loopback interface in the container.

Now it is time to look at some examples. We are going to use busybox, which is the
swiss army knife of the Docker images. It has several Unix tools that we could
benefit from, but in this case, the characteristic that is going to benefit us is the fact
that it is a functional Linux on a reduced space.
Let's run the following command:

docker run -it busybox /bin/sh

If you have followed the previous sections, by now, you can understand the
outcome: we gain root access to a running container.
The next step is to execute ifconfig inside the container. It should give us two
interfaces:

- eth0 - 172.17.0.2
- lo - 127.0.0.1

The IP might change, but you should see these two interfaces. Comparing the IP with
the IP in your Docker host, we can validate the fact that the container is running in
the bridge network as the IP and network are completely different; in my case, the IP
on my Docker host is 10.0.0.12.
Now, let's spawn another container with busybox in a different terminal:

docker run -it busybox /bin/sh

By now, we should have two busybox instances running, and they should have
consecutive IPs, in my case, 172.17.0.2 and 172.17.0.3. If you go back to the terminal
of the first instance of busybox, you can ping the second container by IP. This is
because they both belong (or are connected to) the same network, which is the
default bridge one.
In order to run the containers in the host network, we just need to pass --network=host
flag to the docker run command and that's it; our container is sharing the network
stack with the Docker host, but be careful, if you are on Mac or Windows. The
Docker host is a virtual machine so don't attempt to access it through localhost; you
will need to find the IP of the virtual machine running docker.

User-defined networks
It is also possible to create custom and isolated networks in Docker. This is
interesting from the security point of view, as it enables us to segregate different
containers on the network level so we can enforce a higher level of access control.

In order to create a network, we just need to execute the following command:

docker network create my-network

And that's it. Well, that is a simplistic approach, but it works as expected. As you
know, networking is a complicated subject, so Docker provides options to customize
ranges, masks, and other parameters. The user-defined networks are of the type
bridge.
Once the network is created, you can run new containers in that network, as follows
(on a new terminal):

docker run -it --network=my-network busybox /bin/sh

As expected, these containers will be isolated from the other networks. In this case,
the two containers are launched in the bridge network. In my case, the third container
(the one just launched) has the IP 172.19.0.2, whereas the two launched in the bridge
network are 172.17.0.2 and 172.17.0.3. Issuing a ping command between containers in
different networks results in 100% packet loss.

Docker Compose
The majority of the time, Docker is synonymous to microservices. Running a big
monolithic application in Docker does not make too much sense as the whole Docker
Engine is thought to be running big applications split into different and smaller
services. There is no technical limitation to running a monolithic app on Docker, but
when the orchestration software comes into place (in the following chapters), it
really defeats the purpose of containerization.
When dealing with microservices, it is very common to have several services
running at the same time when developing, as the new services will lean on the
existing ones to execute operations.
In order to achieve this setup, Docker facilitates a tool called docker-compose that, by
creating a YAML file with the definition of our containers, can spawn a full
ecosystem of containers.
Docker compose used to be very popular in the beginning of Docker. Nowadays, it is
still widely used, but its space has been slowly reduced to development stages as the
container orchestration tools in Kubernetes have taken over the production space.
Let's look at how Docker Compose works:

version: '2'
services:
my_app:
build: .
depends_on:
- db
db:
image: postgres

The preceding YAML file is a docker-compose definition. As you can guess, there are
two components:

A web application (the current folder)
A database (postgres)

Save the file to a folder with the name docker-compose.yaml.
This is a typical case of an application connecting to a database. In order to simplify
this, our application is just going to be a dummy application (no database
connection) with the following code:

let dns = require('dns')

dns.lookup('db', (err, result) => {

console.log('The IP of the db is: ', result)
})
{
 "name": "modern-devops",
 "version": "1.0.0",
 "description": "Test",
 "main": "index.js",
 "scripts": {
 "start": "node index.js"
 },
 "author": "",
 "license": "ISC"
 }
package.json

And our Dockerfile is very simple:

FROM node:onbuild

This Dockerfile will install the required dependencies and run npm start in the root of
our app folder.
As you can see, the application is very simple, and it only tries to resolve the name db
instead of connecting to the database (in fairness, we didn't even specify the ports for
connecting to it). We are going to demonstrate how docker-compose wires up the
containers. By now, there should be four files in the work folder:

index.js

package.json

Dockerfile
docker-compose.yaml

Going back to our docker-compose file, we can see that in the my_app definition, we ask
to build the current folder (build the image described by the Dockerfile), and we
specify that the container itself is dependent on another container called db. This
makes Docker take action and connect the two containers, being able to reach db
from my-app by name. In order to achieve this, there is an entry created in /etc/hosts
with the IP of db, so we my-app will be able to resolve it. Docker compose is very easy
to understand: it is nearly self-explanatory, and the fact that it makes use of YAML
makes everything so much more readable. Now we need to run it:

docker-compose up

Once it finishes, there should be a quite a long output, but there are some lines that
indicate our success:

my_app_1 | > my_app@1.0.0 start /usr/src/app
my_app_1 | > node index.js

my_app_1 |
my_app_1 | The IP of the db is 172.20.0.2
my_app_1 | npm info lifecycle my_app@1.0.0~poststart:my_app@1.0.0
web_1 | npm info ok

The highlighted section tells us that my_app is able to reach db by IP as they are on the
same bridge network. Let's see what happened here:

Docker built the image for the current folder (as specified in my_app) from the
Dockerfile
Docker pulled the postgres image from the Docker Hub
Docker started the images in order: first db and second my_app, as specified in the
dependencies

In this book, we are going to give a special emphasis to orchestration technologies,
and then we will come back to Docker Compose in Chapter 5, Infrastructure as Code,
where we will take a deep dive into Docker Swarm, which is where compose
becomes really helpful.

Summary
In this chapter, we walked through Docker from the internals to the command-line
interface to operate a Docker host. Now, we have enough knowledge to understand
the consequences and benefits of running Docker in production. We have not looked
into how to develop Docker plugins as well as different storage drivers, as
unfortunately, we have a limited amount of space in this book to introduce the most
interesting concepts, but we have dived deep enough into Docker to be able to learn
more from the resources (official documentation, videos, and so on) available to us
on the Internet.

In the next chapter, we will have a look on how to automate tasks around our
software: running tests, building images and many other tasks that shouldn't be done
manually. This automation is called continuous integration because allows our
team to integrate new features on a seamless way.

Continuous Integration
When building software, quality assessment is something that usually is pushed
toward the end of the life cycle, just before the release. When the team is working in
a 6-months release cycle, the drawbacks are not as obvious as when the release cycle
is just a few days old (or even hours!), but from my experience, I can tell you that
getting early feedback in your software is crucial in order to raise the quality to a
good level we are comfortable to live with.

There is a misconception in the software that puts the average software project in
danger: the software has to be perfect. This is totally incorrect. Think about some of
these real-world systems: the engine of your car, a nuclear plant, the water
purification system in major cities, and so on; human lives depend upon all of them
and they fail. A fair amount of money is spent on these systems without being able to
ensure the total safety, so what makes you think that the software that your company
writes will be perfect?

Instead of investing resources in making your software perfect, the experience has
taught me (through the hard path) that it is a lot better to invest the resources in
building the software in a way that makes it easy for the engineers to fix the
problems as quickly as possible, being able to shorten the release cycles with enough
level of confidence. In this chapter, we are going to examine the key components of
the continuous integration:

Software development life cycle
Traditional CI servers:

Bamboo
Jenkins

Modern CI servers:
Drone

This has the objective of building an effective continuous integration pipeline to
ensure reliability and enables us to deliver faster.

Software development life cycle
The software development life cycle is the diagram of our day to day activity as
software engineers wait, this book is about DevOps; what are we doing talking about
software engineering? Well, in theory, DevOps is the role of the IT activity that
covers the full life cycle of a software component, from the inception to the release
and further maintenance. Nowadays, many companies are hiring DevOps engineers
on the basis of hiring system administrators on steroids that even though it works, it
completely misses the biggest advantage of the DevOps role: having someone on the
team with exposure to all the aspects of the software so that problems can be solved
quickly without involving people from different teams in the majority of the cases.

Before proceeding further, let's take a look at how the software development life
cycle works:

This is the most classical and studied software development life cycle in IT literacy,
something that everyone has gone through in college and everyone has as a mental
model of even if we have not seen it before. Nowadays, with the agile
methodologies, people tend to think that the model is obsolete. I think it is still a very
valid model, but what it has changed is the scale and the involvement of the different
stakeholders through the previous diagram. Let's take a brief look at the objectives of

every step in a top-to-bottom approach:

Requirement analysis: This is where we are going to encounter the majority of
the problems. We need to find a common language between people outside of
IT (accountants, marketers, farmers, and so on) and people in IT, which often
leads to different problems around terminology and even business flows being
captured incorrectly.
Design: In this phase, we are going to design our flows in a language that the IT
crowd can understand straight away, so they will be able to code efficiently.
Often, this phase overlaps with the requirement analysis (if the stakeholder is
into IT) and that is desirable as diagrams are the perfect middle language that
we are looking for.
Development: As the name suggests, this is where the software is built. This is
what developers do well: build technical artifacts that work and work well--
according to a potentially flawed specification. This is where we need to be
clever: no matter what we do, our software is going to be imperfect, and we
need to plan accordingly. When we are working in agile environments, deliver
early and deliver often is the mantra followed to minimize the impact of a
wrong specification so that the stakeholders can test the product before the
problem is too big to be tackled. I also believe that involving the stakeholders
early enough is a good strategy, but it is not a silver bullet, so no matter what
we do, our software has to be modular so we can plug and play modules in
order to accommodate new requirements. In order to ensure the functionality of
our modules on their own, we write unit tests that can be run quickly in order to
ensure that the code is doing what it is supposed to do.
Testing: This is where continuous integration lives. Our continuous integration
server will run the testing for us when appropriated and inform us about the
potential problems in our application as quickly as possible. Depending on the
complexity of our software, our testing can be very extensive in this phase, but
in general, the continuous integration server focuses on running integration and
acceptance (that said, the integration server usually runs all the tests as the unit
tests should be inexpensive to run).
Release: In this phase, we deliver the software to what we call production;
people start using the software, and no matter how much effort we put in the
previous phases, there will be bugs and that is the reason why we planned our
software to be able to fix the problems quickly. In the release phase, we can
create something that we will see later on in this book, called Continuous
Delivery (CD) pipelines, which enables the developers to execute the build-
test-deploy cycle very quickly (even a few times a day).
Maintenance: There are two types of maintenance: evolutive and corrective.

Evolutive maintenance is where we evolve our software by adding new
functionalities or improving business flows to suit the business needs.
Corrective maintenance is the one where we fix bugs and misconceptions. We
want to minimize the latter but we cannot totally avoid it.

Testing types
In the previous section, we talked about different types of tests:

Unit tests: What we call white box tests are what mock the dependencies and
test the business flow of a particular piece of code.
Integration tests: These are designed to test the integration between different
components of an application and they do not test the business logic
extensively. Sometimes, when the software is not very complex, the integration
tests are used as unit tests (especially in dynamic languages), but this is not the
most common use case.
Acceptance tests: Designed to test business assumptions, these are usually built
on the principle of what we know as user stories describing situations with the
style of being given an assumption.

Every test has a different objective, and they work well together, but keep the
following diagram in your mind:

This is what I call the pyramid of testing, and there are years of experience (not only
mine) behind it: your software should have a whole bunch of unit testing, fewer
integration tests, and some acceptance tests. This ensures that the majority of your
business logic is covered by the unit tests and the integration and acceptance tests are
used for more specific functions. Also, the integration and acceptance tests are
usually more expensive, so minimizing their its usage is usually something that's
recommended (but not at the cost of dropping the test coverage).
When working with a CI server, usually, the developer runs the unit tests on his
computer as they are quick and should spot a big amount of the potential problems,

leaving the integration and acceptance tests to the CI server, which will run while the
developer is working on other tasks.

Traditional CI servers
In this section, we are going to walk through the most traditional CI servers:

Bamboo
Jenkins

They have been around for quite a while and even though they are heavily used in
the enterprise world, they are losing some grasp against the new and more modern
CI servers such as Drone or Travis (although Travis has been around for a while, it
has been reinvented to work on the cloud).

Bamboo
Bamboo is a proprietary CI server that is developed by Atlassian. Atlassian is a
software company that specializes in tools for developers. Products such as JIRA and
Bitbucket are created by Atlassian and they are well known in the IT world. Bamboo
is their proposal for CI activities, and it is quite popular as it integrates fairly well
with their other products.

Let's install it. In order to do that, please visit Bamboo's home page at https://confluenc
e.atlassian.com/bamboo/ and follow the instructions in the quick start guide. As you can
see, the installation is quite simple, and after generating the evaluation license and
some steps (express installation), you should have bamboo running on your local
computer:

https://confluence.atlassian.com/bamboo/

If you click on the button labeled Create your first build plan, you can see how easy
it is to set up jobs in Bamboo. In this case, we can use one of the open source
projects that I created in the past called Visigoth, a load balancer with circuit
breaking capabilities used for interconnecting microservices. The GitHub repository
is located at https://github.com/dgonzalez/visigoth.

Fork it into your GitHub repository if you want to modify it. Visigoth is a single
component that does not interact with others, so only unit tests were created for it.
Enter the clone URL of the repository into the appropriate field, in this case, Git
repository, and submit the form.

If you have the Time-based One-Time Password (TOTP) protection in
your GitHub account, you might need to choose Git repository with no
authentication instead of GitHub repository in the source part of the
form to create a test plan.

Once you finish creating the plan, it will ask you to add tasks to your test plan,
which, at the moment, is only checking out the source code from Git. In this case,
Visigoth is a Node.js application, and as such, the tests are run by executing the npm
test command. In order to run the command, we need to add two tasks of the type
command. The first task will be used to install the dependencies of the application
and the second one to run the tests. Let's add the first one:

https://github.com/dgonzalez/visigoth

As you can see, I have added one executable by clicking on Add new executable by
specifying the path where NPM is, which can be found by executing which npm in the
terminal of the machine where you installed Bamboo.

You will need to install Node.js on the same machine where you
installed Bamboo in order to run the tests. The current LTS version will
work fine with it, but Visigoth was tested with Node 6.x.

Now we are going to add the second command, which will execute npm test in order
to run the tests. This command will only be executed if the two previous steps
(checking out the code [Checkout Default Repository) and installing the
dependencies (NPM install)] are successful:

Once you save the task, we have completed all the actions that we need to execute in
order to run the tests in Visigoth. Now, the only thing left is to run the job:

If everything is correct, you should get a green badge and a message of success. As
you can see, my build failed in previous runs as I was adjusting the CI server to run
Visigoth.

You can check the logs of the job to see how many tests were successful and other
useful information. If you explore this even further, you can see how Bamboo also
offers different types of tasks, such as mocha test runners, which allows Bamboo to
understand the result of the tests. At the moment, with the current configuration, if
any of the tests fails, Bamboo won't be able to understand which one failed. I'd
suggest you to play around with different configurations and even different
applications to get yourself familiar with it. As you can see by yourself, the interface
is very friendly, and usually, it is quite simple to achieve your desired setup by
creating new tasks.

By default, Bamboo creates something called trigger. A trigger is an action that
leads to a test plan being executed. In this case, if we change the GitHub repository
from where the job was created, the test plan will be triggered to verify the changes,
ensuring the continuous integration of new code.

Another interesting type of trigger is the time-based one. This type of trigger allows
us to run the build overnight, so if our tests take several minutes or even hours to
run, we can do it when no one is using the server. This type of trigger has saved me
from bugs derived from the daylight time savings hour adjustment, causing some
tests to fail due to code fragments not handling the change across different time
zones well.

In general, Bamboo can deal with every situation, and it has adapted to the modern
times: we can even build Docker images and push them to remote registries once the

tests have passed in order to be deployed later on. Bamboo is also able to take
actions in the post-build phase, for example, alerting us if the build failed overnight
with an email or other communication channels.

Jenkins
I have worked with Jenkins for quite a while now, and I have to say that I feel really
comfortable working with it as I know it is free, open source, and also highly
customizable. It has a powerful and well-documented API that enables users to
automate pretty much anything related to continuous integration. In Chapter 8,
Release Management – Continuous Delivery, we are going to set up a continuous
delivery pipeline with Jenkins in order to be able to release new versions of an
application in a transparent manner once the test results are satisfactory, enabling our
team to focus on development and automating all the deployment-related activities.

Jenkins is also modular, which enables developers to write plugins to extend
functionalities, for example, sending messages to a Slack channel if the build fails or
running Node.js scripts as a part of a job.

On the scalability side, Jenkins, like Bamboo, can be scaled to hundreds of nodes
through a master/slave configuration so that we can add more power to our CI server
in order to execute some tasks in parallel.

On its own, Jenkins will be enough to provide contents for a couple of books, but we
are going to visit what we need to set up automated jobs for testing our applications.
It is also possible to write plugins for Jenkins, so virtually, there is no limit to what it
can do.

Let's focus on the operational side of Jenkins for now. In order to run Jenkins, we
have two options:

Running it as a Docker container
Installing it as a program in your CI server

For now, we are going to install Jenkins, using its Docker image as it is the simplest
way of running it and it fits our purpose. Let's start. The first thing is running a
simple instance of Jenkins from the command line:

docker run -p 8080:8080 -p 50000:50000 jenkins

This will run Jenkins, but be aware that all the information about configuration and
builds executed will be stored within the container, so if you lose the container, all
the data is lost as well. If you want to use a volume to store the data, the command

that you need to execute is as follows:

docker run --name myjenkins -p 8080:8080 -p 50000:50000 -v /var/jenkins_home jenkins

This will create a volume that you can reuse later on when upgrading to new
versions of Jenkins or even restarting the same container. After running the
command, the logs will show something similar to what is shown in the following
figure:

This is the initial password for Jenkins and it is necessary in order to set up the
instance. After a few seconds, the logs of the container will stop, which means your
Jenkins server is ready to be used. Just open the browser and go to
http://localhost:8080/, and you will see something similar to this:

This is where you can enter Administrator password, which we saved earlier, and
click on the Continue button. The next screen will ask you whether it should install
the suggested plugins or whether you want to select which plugins to install. Choose
the suggested plugins. After a few minutes, it will let you create a user and that's it.
Jenkins is up and running in a container:

Now we are going to create a new job. We are going to use the same repository as
we used with Bamboo so we can compare the two integration servers. Let's click on
Create a new project. You should be presented with the following form:

Just enter a name for the project and choose the first option: Freestyle project.
Jenkins has different types of projects. Freestyle project is a type of project where we
can define the steps, as we did in Bamboo. Another interesting option is the type
Pipeline where we can, through a DSL (known as Domain Specific Language),
define a set of steps and stages, creating a pipeline that can be saved as code.

The following screen is where we configure the project. We are going to use Git with
the repository hosted at https://github.com/dgonzalez/visigoth.git.
You can use your fork if you previously forked it while working with Bamboo. Your
configuration should be similar to the what is shown in the following screenshot:

https://github.com/dgonzalez/visigoth.git

Now we need to install the dependencies of Visigoth with the npm install --
development command and execute the tests with the npm test command, but we are
running Jenkins from a container and this container does not have Node.js installed.
We are going to use our Docker knowledge to install it. Inspecting the Dockerfile of
the Jenkins image in the Docker Hub, we can verify that it is based on Debian Jessie
(it is based on OpenJDK but that is based on Debian Jessie) so we can install the
required software in it. The first thing that needs to be done in order to install
software is gain root access to the container. As you learned in Chapter 2, Cloud Data
Centres - The New Reality, we can execute commands on the running container.
Let's run the following command:

docker exec -u 0 -it eaaef41f221b /bin/bash

This command executes /bin/bash in the container with the ID eaaef41f221b (it will
change in your system as it is unique per container) but with the user that matches
the user ID 0, in this case, root. We need to do this because the Jenkins image defines
and uses a new user called jenkins with a known UID and GID so if the -u 0 flag is
not passed, the /bin/bash command will be executed by the user jenkins.

Once we are root in the container, proceed to install Node.js:

curl -sL https://deb.nodesource.com/setup_7.x | bash -

And once the execution of the previous command is finished, run the following one:

apt-get install -y nodejs build-essentials

And that's it. From now on, our Jenkins container has an installation of Node.js
available to run Node.js scripts. That said, we should avoid installing software in
production containers. Our containers should be immutable artifacts that do not
change through their life cycle, so what we should do is commit the changes in this
image and tag it as a new version in order to release it into our production container.
As we don't have a production container, we are making the changes as we go.

Our containers in production should be immutable artifacts: if we need
to change their status, we create a new version of the image and
redeploy it instead of modifying the running container.

Once Node.js is installed, we can just exit the root shell within the container and go
back to Jenkins to complete our tasks. As we did with Bamboo, here are our tasks in
order to run our tests:

In the very bottom of the job configuration, there is a section called post-build
actions. This section allows you to execute actions once the job is finished. These
actions include sending e-mails, adding commit messages to the Git repository,
among others. As we previously mentioned, Jenkins is extensible and new actions
can be added by installing new plugins.

Jenkins can also parametrize builds with input from the user.

Once you have added these two steps to the build, just click on Save and we are all
set: you now have a fully functional Jenkins job. If we run it, it should successfully
run the tests on Visigoth.

Secrets Management
One of the possibilities of the CI server is the ability to talk to third-party services
that usually rely on some sort of credentials (such as access tokens or similar) to
authenticate the user. Exposing these secrets would be discouraged as they could
potentially cause major harm to our company.

Jenkins handles this in a very simple way: it provides a way to store credentials in a
safe way that can be injected into the build as environment variables so that we can
work with them.

Let's look at some examples. First, we need to create the secrets in Jenkins. In order
to do that, we have to go to Manage Jenkins from the home page.

Once we are there, you should see a screen very similar to this one:

We are using the Global credentials store as we just want to showcase how it works,
but Jenkins allows you to box credentials so you can restrict access across different
usages. In Jenkins, credentials, aside from being injected into the build context, can
be connected to plugins and extensions so that they can authenticate against third-
party systems.

Now, we click on Add Credentials on the left-hand side:

There are some fields that we need to fill before proceeding, but they are very basic:

Kind: This is the type of secret that we want to create. If you open the drop-
down, there are several types, from files to certificates, walking through
usernames and passwords.

Scope: This is the scope of our secret. The documentation is not 100% clear (at
least not in the first read) but it allows us to hide the secret from certain stances.
There are two options: Global and System. With Global, the credentials can be
exposed to any object within Jenkins and its child, whereas with System, the
credentials can be exposed only to Jenkins and its nodes.

The rest of the fields are dependant on the type of secret. For now on, we are going
to create a Username with password secret. Just select it in the dropdown and fill in the

rest of the details. Once it is created, it should show in the list of credentials.

The next step is to create a job that is bound to those credentials so we can use them.
Just create a new freestyle project, as we saw in the beginning of this section, but we
are going to stop on the screen where we can configure the job, precisely in the Build
Environment section:

Now select Username and password (conjoined). Conjoined username and password
means that we get the full secret (the username and the password) in a single
variable, whereas with separated, we get the secret split in two variables: one for the
username and another one for the password.

Once we select it, the form to create the binding is fairly simple:

We get to choose the Variable where we want to store the secret and we also get to
choose which secret. There is a radio button that lets you choose between Parameter
expression or Specific credentials as we can parametrize the job to get input from the

user on the triggering screen. In order to showcase how well thought Jenkins is, we
are going to add a Build step that uses the secret by just echoing it into the logs:

Click on the Save button to save the job and run it. Once the job execution finishes,
go to the result and click on Console Output. If you were expecting to see the secret
in here, Jenkins has a surprise for you:

The secret has been masked in order to prevent exposure to unauthorized users. This
is not bullet proof, as someone could easily dump the secret from a test within an
application checked out by Jenkins, but it adds some level of security in there,
leaving the rest to the code reviews and processes.

Modern CI servers
One thing that is clear in IT is that the market moves very fast, and every few years,
a new trend breaks what was considered the perfect solution for a problem. CI
software is not an exception to this. In the last few years (taking into account that
this book was written in 2017), Infrastructure as Code has drawn a lot of attention to
the DevOps world, but in CI, its equivalent is Pipelines as Code.

Jenkins and Bamboo have added support for declarative pipelines recently, but they
are not built around them.

Drone CI
Drone is probably the newest CI server in the market. I decided to introduce it in this
chapter as it was a big revelation to me when I found out about it working in
nearForm Ltd. By that time, I was well used to Jenkins and it suited every single use
case that I could come across in my professional life, from CI to continuous delivery
and sometimes even as a bastion host using a feature called callback URL, where a
job could be triggered by sending an HTTP request to a specific URL.

Drone is built around the concept of containers. Everything in Drone is a container,
from the server to where the test runs, but the most interesting part is that even the
plugins are containers. This makes it easy to write new plugins for executing custom
actions, as the only requirement is that the containers return 0 as the exit code if it
was successful and a nonzero exit code if it was not successful.

For Jenkins or Bamboo, writing a plugin requires a few hours of testing and reading
documentation. For Drone, we just need to know how to build a Docker image and
what task we want to accomplish.

Be aware that Drone is still in the version 0.5 and moves very quickly, so by the time
you read this book, Drone might have changed significantly, but I wanted to include
it as I think it is a very promising software.

Installing Drone
In order to install Drone, we are going to use docker-compose, and it is going to be
configured to work with GitHub.

Drone, like Docker, follows a client-server architecture, so we can find two
differentiated components, the server and the CLI. The first part we are going to
proceed with is with the server. Take a look at the following docker-compose file:

version: '2'

services:
drone-server:
image: drone/drone:0.5
ports:
- 80:8000
volumes:
- ./drone:/var/lib/drone/
restart: always
environment:
- DRONE_OPEN=true
- DRONE_GITHUB=true
- DRONE_GITHUB_CLIENT=${DRONE_GITHUB_CLIENT}
- DRONE_GITHUB_SECRET=${DRONE_GITHUB_SECRET}
- DRONE_SECRET=${DRONE_SECRET}

drone-agent:
image: drone/drone:0.5
command: agent
restart: always
depends_on: [drone-server]
volumes:
- /var/run/docker.sock:/var/run/docker.sock
environment:
- DRONE_SERVER=ws://drone-server:8000/ws/broker
- DRONE_SECRET=${DRONE_SECRET}

There are two containers running in the preceding Docker Compose file: a server and
an agent. Up until version 0.4, Drone master could execute builds, but after that, an
agent is needed to run builds. There are some secrets that we need to configure
before proceeding that are being passed into compose via environment variables
(with the ${VAR_NAME} notation):

DRONE_GITHUB_CLIENT: As we specified earlier, we are going to use GitHub as the
origin of our source code to be tested. This is provided on GitHub when
registering a new OAuth application needed for Drone. You can create OAuth
applications in the settings section of GitHub. Be careful; one of the parameters

that you need in order to create a GitHub OAuth application is the callback
URL. In this case, we are going to use http://localhost/authorize as we are
working on our local machine.
DRONE_GITHUB_SECRET: In the same way as DRONE_GITHUB_CLIENT, this is provided
when a new OAuth application is created on GitHub.
DRONE_SECRET: This is an arbitrary string shared with the agent and the master.
Just create a simple string, but when running a drone in production, make sure
that the string is long enough so it cannot be guessed.

In order to get Drone working with the GitHub integration, we need to receive
callbacks from GitHub. Once we have all the values, we just need to run the
following command:

DRONE_GITHUB_CLIENT=your-client DRONE_GITHUB_SECRET=your-secret DRONE_SECRET=my-secret docker-compose up

In one line, we are setting the three variables that we need, apart from running
docker-compose up. If everything went as expected, when you browse http://localhost,
you should see a window similar to the following one:

If you click on login, Drone should redirect you to GitHub for authorization and then
GitHub will redirect you to the callback URL specified when creating the OAuth
application, which is your local Drone installation, http://localhost/authorize.
Sometimes, it might require some tweaking, but in general, it is very easy to make it
work. As you can see, Drone leverages the authentication to GitHub so a GitHub
account is required to log in.

Now we are going to proceed with the CLI. It is as easy as visiting http://readme.drone.i
o/0.5/install/cli/ and choosing the right version for your platform, in my case, macOS.
Just place the binary in the path and you are ready to go. In order to configure the

http://readme.drone.io/0.5/install/cli/

location of the Drone server, you need to specify two environment variables:

DRONE_SERVER: This is the URL to your Drone server, in this case, http://localhost

DRONE_TOKEN: Once you are logged into Drone, navigate to Account and click on
Show token. This is the value that you need

Once you have set up the two variables, execute the following command:

drone info

This should show your GitHub username and the e-mail that you used to register.

Running builds
Drone has a different philosophy when it comes to running builds: it reacts to
changes in the code on the remote repository by triggering the pipeline. Let's create a
super simple repository with a very simple Node.js application. I have created it on
my GitHub account in order to make everything easier: https://github.com/dgonzalez/node
-example-drone/. Just fork it into your own account, and you are good to go.

The first thing that we need to do is activate the project in your local Drone
installation. Just go to Account, and in the list of repositories, activate node-example-
drone. Now it should show in the home screen in a manner similar to the following
screenshot:

Now we are facing a small problem: Drone was created to trigger builds using a
webhook delivered from GitHub into our Drone server. As we are working in a
private network, we need to somehow expose our server to the Internet. In this case,
we are going to use a service called Ngrok (http://www.ngrock.com) in order to expose
Drone to the internet, which is not necessary when working in a production
environment as it should be accessible over the internet (or at least through a proxy).
Just follow the instructions, and once you run it in the Terminal, it should look very
similar to what is shown in the following screenshot:

https://github.com/dgonzalez/node-example-drone/
http://www.ngrock.com

This specifies which host is being forwarded to your local address, in my
case, http://852cc48a.ngrok.io. Just open it in your browser and check whether Drone
is accessible from there.

One thing left to do is edit the webhook that Drone installed in our GitHub
repository when we activated it. You will find it in the repository settings on GitHub.
Just edit the webhook to change the URL from http://localhost to your Ngrok URL,
in my case, http://852cc48a.ngrok.io.

Executing pipelines
Now the setup is complete, before doing anything else, take a look at the .drone.yaml
file of the forked repository:

debug: true
pipeline:
 build:
 image: node
 commands:
 - npm install --development
 - npm test

This is our pipeline, and as you can guess, it gets committed alongside our code into
our repository. Drone is going to execute the instructions in this pipeline when
GitHub delivers the webhook into our Drone installation. As Drone works with
containers, the first thing that Drone is going to do is create an image based on the
node (as we specified) and run the following operations:

It installs the dependencies
It runs the tests

If the exit code of the container that executes these commands is 0, our build is
successful and you can test it by pushing some changes to your GitHub repository
and watching how Drone reacts to them.

There is also another way to re-trigger builds (not for the first time) via the CLI
interface. Open the Terminal, and after configuring the environment variables
previously stated (if you haven't done it yet), run the following command:

drone build list dgonzalez/node-example-drone

This will return a list of all the previously executed builds. Just change dgonzalez to
your username, as you can see in the web interface. In order to rerun a previous
build, we can run the following command:

drone build run dgonzalez/node-example-drone 1

This command fires off a build in Drone that was already built. This is particularly
useful when you suspect that the build failed due to external factors.

Sometimes, the webhook fails (particularly with the setup that we have

with Ngrok), but GitHub allows you to debug that in the webhooks
section of your repository.

This is the simplest case of a pipeline. As mentioned earlier, Drone is based on
plugins, and those plugins are also Docker images. The list is quite comprehensive
and can be found at https://github.com/drone-plugins.

Let's assume that we want to push our image to the Google Container Registry in
Google Cloud. We are going to use the plugin called drone-gcr from https://github.com/d
rone-plugins/drone-gcr. Here is our pipeline:

debug: true
pipeline:
 build:
 image: node
 commands:
 - npm install --development
 - npm test
 publish:
 gcr:
 repo: myrepo/node-example-drone
 token: >
 {
 ...
 }

What we have here is a two-stage pipeline: it first executes the tests, and once they
are successful, it deploys the image to Google Cloud Registry. We have different
phases in the pipeline that we can use:

Build: For building the tests and the related commands
Publish: Used to publish the artifact in a remote repository
Deploy: Very useful for continuous integration as it allows us to deploy our
software in a continuous delivery manner
Notify: Used to send notifications via email, slack, or any other channel

For example, if we wanted to send a Slack notification, we would just need to add
the following lines to our pipeline:

 notify:
 image: plugins/slack
 channel: developers
 username: drone

Remember, YAML is sensitive to tabs and spaces so notify needs to be
at the same level as publish or build.

https://github.com/drone-plugins
https://github.com/drone-plugins/drone-gcr

Other features
At the time of writing this, Drone is being actively developed, with new features
being added and along with some major reworks. It also offers other features, such as
secret management and support services.

With secret management, we can inject secrets that get encrypted and stored in a
database and only injected into builds that have been cryptographically signed by our
drone CLI with a valid token from our Drone server.

Drone also offers support services, which are services that run alongside your tests.
This is very helpful when our integration tests depend on a database or when we
need to spin third-party software such as Hashicorp Vault or a service discovery
infrastructure such as Consul or Eureka.

It is expected that in future, Drone will have more features, but at the moment, it is
going through major changes as it is being actively developed (unlike more mature
servers, such as Jenkins, that have been around for a while).

Summary
In this chapter, we walked through three different CI tools:

Bamboo, a commercial tool
Jenkins, an industry standard open source tool
Drone, a cutting-edge technology CI server

We discussed the key features of Jenkins that we are going to use going forward in
this book, but we also showcased how Drone has leveraged the concept of containers
into a very powerful CI system that, even though not mature yet, I expect to become
the norm in the coming years.

The important concepts that we need to be aware of were explained, but to
summarize, we use our integration server to run our tests for us so we can offload
developers from doing that but also run the tests overnight in order to ensure that the
daily build is stable.

In the next chapter, we will visit what the community has called Infrastructure as
Code: basically, a way of dealing with our infrastructure as if code was, managing
resources on a very elegant way.

Infrastructure as Code
In the previous chapters, we demonstrated how the new cloud data centers can help
us create online resources (virtual machines, Docker repositories, cryptographic
keys) in a very easy way, shortening the hardware provisioning cycle from weeks
(buying, shipping, and installing new computers) to seconds. We have also seen that
there are different providers in the market that can offer us very similar features with
different strong points that we can take advantage of when building our systems.

You learned how to create resources through the web interface that they offer, but
how scalable is that? Creating resources manually prevents us from keeping an
automated inventory of resources that can be used for security purposes as well as
manage our infrastructure as if it were software components.
In this chapter, you are going to learn how to build resources in the cloud first,
through the SDK provided by the cloud data center vendor and then by a software
component called Terraform, which is an industry standard for managing online
resources. We are going to focus on Google Cloud Platform for several reasons:
The command-line interface, in my opinion, is easier to use.
The Google Cloud Platform trial covers a good bunch of resources that you can use
to experiment with throughout this book as you can create pretty much any resource
in the full set of products.
At the time of writing this (April 2017), Google Cloud Platform is the best value for
money when it comes to cloud data centers.

That said, AWS, Azure or any other provider also offer a very interesting range of
trial accounts, but unfortunately, we cannot cover everything in a single book.

Google Cloud Platform SDK - gcloud
Google offers us a very comprehensive SDK that can be used for operating Google
Cloud Platform as well as installing software components related to cloud
operations.
The first thing we need to do is install gcloud.
There are installers for Windows but, in general, for Unix-based systems (Linux and
Mac mainly), we have an interactive installer that can be executed from the
command line and the unattended mode (for automatic provisioning).
The different options can be found at https://cloud.google.com/sdk/downloads.
In order to install it (in my case, on Mac), the first thing we need to do is run the
following command:

curl https://sdk.cloud.google.com | bash

This will initiate the interactive installed in the online mode: we will be asked a
number of questions during the installation process.

The first one is the installation directory. By default, this is the home of the user, but
you can change it to the folder of your choice. Once you have selected the folder, it
will start downloading and installing the required base components.

The question is whether you want to help improve the Google Cloud SDK through
the collection of anonymized data. Just answer as per your preferences.

Now, Google Cloud SDK will start installing the core components.

https://cloud.google.com/sdk/downloads

As you can see in the preceding figure, Google SDK installs few packages that will
be used to operate the basic services on Google Cloud Platform. Once it is finished
(no need to do anything), it will ask you whether you want to modify the PATH
variable of your system or not. Just reply Y and press Enter so that the gcloud
command is available from the console. It will ask you in which file you want to
modify the PATH variable. Usually, the default option that the installer provides you
with is good enough. Before changing the file, the Google Cloud SDK installer will
create a backup of the file with the same name with the .backup extension so you can
revert the changes.
And we are done. It will ask you to start a new shell for the changes to take effect.
Close your Terminal and open it again to check whether the gcloud command is
available.
Now that we have installed Google Cloud SDK, it is time to configure the
authentication. Execute the following command:

gcloud init

It will ask you to log in, so reply yes, which will open a browser window asking you
to enter your Google credentials. Enter the ones associated with your trial account (if
you didn't sign for the trial, do it before configuring your credentials). If you had a
project already created in the Google Cloud Platform, it will ask you in the console
to choose which one to use. In my case, I had one configured from Chapter 2, Cloud
Data Centers – The New Reality, so I selected the one called implementing-modern-
devops in my case.
The next topic is configuring the Google Compute Engine. Reply yes and select your
availability zone. In my case, anywhere in Europe will work for me.
After this step, we are done. The prompt will tell us that we have a configuration
called 'default' created. This means that the Google Cloud SDK can work with
multiple credentials but, in this case, we are going to work with just one set of
credentials and a single project.

Creating resources with Google Cloud
SDK
Once we are set up, it is time to start creating resources. As you can guess, the
commands for creating resources can be quite complicated or extremely simple
depending on your requirements. Luckily, Google engineers have thought about it
when creating the interface for Google Cloud Platform.

The first thing you need to do is log in to your Google Cloud Platform account. Once
you are there, go to Compute Engine and fill the form to create a new resource.
Enter the name of the instance, choose your closest region (Europe in my case),
machine type (the default one will do), API access (we don't need that but the default
is OK) and Allow HTTP traffic and Allow HTTPS traffic. Before clicking on create,
take a look at the following screenshot:

If you take a look at the very bottom, below the Create button, there are two links:

REST equivalent
Command line

For now, we are going to focus on the command line link. Click on it and you should
get a window with a few commands. Let's explain them:

gcloud compute --project "implementing-modern-devops" instances create "test-instance" \
 --zone "europe-west1-c" --machine-type "n1-standard-1" --subnet "default" \
 --maintenance-policy "MIGRATE" \
 --service-account "1085359944086-compute@developer.gserviceaccount.com"
 --scopes \
 "https://www.googleapis.com/auth/devstorage.read_only", \
 "https://www.googleapis.com/auth/logging.write", \
 "https://www.googleapis.com/auth/monitoring.write", \
 "https://www.googleapis.com/auth/servicecontrol", \
 "https://www.googleapis.com/auth/service.management.readonly", \

 "https://www.googleapis.com/auth/trace.append" \
 --tags "http-server","https-server" --image "debian-8-jessie-v20170327" \
 --image-project "debian-cloud" --boot-disk-size "10" --boot-disk-type "pd-standard" \
 --boot-disk-device-name "test-instance"

The first command creates the VM. As you can see, no one can expect to learn to
create this command easily, but luckily, Google Cloud Platform provides it to you
for every single resource that will be created for you so you can use the UI to
generate the commands. That said, the preceding command sets every single
potential setting that Google Cloud provides, so in other words, we will be able to
run the preceding command with the same results no matter what settings we change
in our cloud account.

There is a shorter version:

gcloud compute --project "implementing-modern-devops" instances create "test-instance"

This command does exactly the same as the very long command from earlier but
assuming that the settings are the default (remember, you have already chosen some
parameters, such as the default zone).

The other two commands are simpler:

gcloud compute --project "implementing-modern-devops" firewall-rules create "default-allow-http" --allow tcp:80 --network "default" --source-ranges "0.0.0.0/0" --target-tags "http-server"

Take a look at this too:

gcloud compute --project "implementing-modern-devops" firewall-rules create "default-allow-https" --allow tcp:443 --network "default" --source-ranges "0.0.0.0/0" --target-tags "https-server"

As you can guess, these commands allow the HTTP and the HTTPS traffic into our
host as described in the UI form.

These are the basics of infrastructure as code. We could potentially write those
commands on a bash script and off we go; our infrastructure is created automatically
for us. In the same way, if we don't want to depend on Google Cloud SDK, we could
choose the REST option that will show us the list of HTTP requests that we need to
issue to Google Cloud in order to create the same resources. If you are familiar with
languages such as Python, JavaScript (Node.js), and others, you know how easy is to
issue HTTP requests in order to create the resources so you could manage your
infrastructure as if it were code following the same life cycle.

This is a massive step forward in managing resources on the cloud, but it is still
incomplete. Imagine this situation: you work in a company with a fairly complex
setup, say, a few machines across different time zones and a fairly entangled network

setup. How can you know at first glance which machines are running and what are
the firewall rules are?

The answer is simple: it is not possible with what we know today. In the next
section, you are going to learn how to use something called Terraform from
HashiCorp in order to manage not only the creation, but also the complete life cycle
of online resources on different cloud providers.

Terraform
Terraform is a product developed by HashiCorp. HashiCorp is a company with a
strong focus on DevOps tools such as Consul, a highly available distributed key
value storage, or Vagrant, a tool to reproduce development environments using the
same provisioners as production.

Terraform, as the name hints, allows you to create infrastructure in cloud data
centers in a declarative way, keeping track of what was created where, allowing you
to apply changes to the infrastructure from the code perspective: your infrastructure
is described as the code and, as such, it can follow its life cycle.

The first thing we need to do is download and install Terraform. Just open the https://
www.terraform.io/downloads.html URL in a browser and select your platform, in my
case, Mac. Terraform is a single binary compressed in a ZIP file (as far as I am
aware, it is the same for every platform) that I unzip and place somewhere in my
path, in my case, in /usr/local/bin/terraform.

Be careful as some OSX setups do not include /usr/local/bin/ in the
PATH environment variable, so you might need to do it before being
able to execute Terraform from any path.

Once it is installed and the PATH variable includes /usr/local/bin/ as one of the values
separated by semi colons, we can check whether everything works as expected:

terraform version

This should return the following output:

Terraform v0.9.4

This confirms that everything is correct. Also, be aware that DevOps tools move
very quickly nowadays as they are required to do more things day by day. We are
going to use the latest available version, 0.9.4, but by the time you are reading this
book, a newer version might be available with new features and even some breaking
changes. Luckily, Terraform comes with a very powerful documentation embedded
in it. Let's look at all the available commands. Just execute this:

terraform

https://www.terraform.io/downloads.html

This should output something similar to the following:

Now, in order to display the help dialog on any of the commands, we just need to
execute the command with the flag -h. For example, let's display the help for apply:

terraform apply -h

It will output the list of all the options available for the command in the prompt.

Creating resources
Now that we have all the requirements installed, we are going to create our first
resource in order to help us to understand how Terraform works and how powerful it
is. Create a folder called implementing-modern-devops somewhere in your computer and
add a file called resources.tf with the following content:

provider "google" {
 credentials = "${file("xxx.json")}"
 project = "implementing-modern-devops"
 region = "europe-west1-b"
}

resource "google_compute_instance" "my-first-instance" {
}

As you can see, the preceding snipped is very similar to JSON but it is actually
called HCL: HashiCorp Configuration Language. Let's explain what the code is
doing.

The first section is where we configure our credentials. As you can see, Terraform is
expecting a file called xxx.json, which we don't have at the moment. If we check the
official documentation of Terraform for Google Cloud Platform, it specifies that we
need to create a Service account from the API Manager section of the Google Cloud
Platform, as shown in the following screenshot:

Once we create it by choosing JSON as a format, a file will automatically be saved
on our computer, containing the credentials that we need in order to operate Google
Cloud Platform.

Be careful. If you leak these credentials, someone could create or
destroy resources on your behalf, which may lead to significant
charges or data loss.

Copy the file to the previously created folder (implementing-modern-devops) and rename
it to xxx.json so it matches our configuration.

The second section is the description of our virtual machine, the instance to be
created in Google Cloud. In this case, we are creating a resource called my-first-
instance of the type google_compute_instance. We did not specify any configuration on
purpose as I want to show you how to troubleshoot problems with Terraform, which,
due to the high-quality error logs produced, is rather simple.

Let's see what happens. From the root of our project, the implementing-modern-devops
folder, we run the following command:

terraform plan

This command will describe the steps required to create our infrastructure in Google
Cloud. In this case, it is rather simple as we have only one machine, but it is going to
be helpful to learn about Terraform.

Let's look at what happened and and how it has been explained in the output:

Errors:

 * google_compute_instance.my-first-instance: "disk": required field is not set
 * google_compute_instance.my-first-instance: "name": required field is not set
 * google_compute_instance.my-first-instance: "machine_type": required field is not set
 * google_compute_instance.my-first-instance: "zone": required field is not set

The preceding command failed. Basically, our compute instance requires four fields
that we did not specify: machine_type, name, zone, and disk. In this case, we can specify
them, but if you need to check extra parameters, all the documentation for the
resource google_compute_instance can be found at https://www.terraform.io/docs/providers/go
ogle/r/compute_instance.html.

Visit it and read around to get familiar with it.

https://www.terraform.io/docs/providers/google/r/compute_instance.html

We are also going to specify the network interface (basically the network we want to
connect to our machine) as it will fail later on in the apply command if we don't do it
now.

Now, we are going to fix the problems that we found on the first run. Replace the
google_compute_instance block with the following one:

resource "google_compute_instance" "my-first-instance" {
 name = "my-first-instance"
 machine_type = "n1-standard-1"
 zone = "europe-west1-b"
 disk {
 image = "ubuntu-os-cloud/ubuntu-1704-zesty-v20170413"
 }

 network_interface {
 network = "default"
 access_config {
 // Ephemeral IP
 }
 }
}

Go back to the Terminal and execute terraform plan' again. The output will be similar
to this:

+ google_compute_instance.my-first-instance
 can_ip_forward: "false"
 disk.#: "1"
 disk.0.auto_delete: "true"
 disk.0.image: "ubuntu-os-cloud/ubuntu-1704-zesty-v20170413"
 machine_type: "n1-standard-1"
 metadata_fingerprint: "<computed>"
 name: "my-first-instance"
 network_interface.#: "1"
 network_interface.0.access_config.#: "1"
 network_interface.0.access_config.0.assigned_nat_ip: "<computed>"
 network_interface.0.address: "<computed>"
 network_interface.0.name: "<computed>"
 network_interface.0.network: "default"
 self_link: "<computed>"
 tags_fingerprint: "<computed>"
 zone: "europe-west1-b"

Plan: 1 to add, 0 to change, 0 to destroy.

For space reasons, I have omitted an explanatory text that comes before the resource
explanation but basically tells us that we can save this plan in a file in order to pass it
as a parameter to the apply the command that we are going to run next.

This enables us to ensure that what is executed is what we have seen in the plan just
in case someone else has modified the online infrastructure before calculating what

needs to change, Terraform syncs the configuration in the resources files with the
existing infrastructure in Google Cloud. So, it might be the case that we can execute
terraform plan and someone changes our cloud infrastructure (with another
Terraform script or manually) and then our terraform apply command differs from the
plan calculated.

Now once we have verified that our Terraform plan is to create a VM, execute the
following command:

terraform apply

After a few seconds, the script should finish presenting the output of what was
created, changed, or destroyed:

google_compute_instance.my-first-instance: Creating...
 can_ip_forward: "" => "false"
... (lines omitted: they should match the ones in the plan) ...
 zone: "" => "europe-west1-b"
google_compute_instance.my-first-instance: Still creating... (10s elapsed)
google_compute_instance.my-first-instance: Still creating... (20s elapsed)
google_compute_instance.my-first-instance: Still creating... (30s elapsed)
google_compute_instance.my-first-instance: Creation complete

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

The state of your infrastructure has been saved to the path
below. This state is required to modify and destroy your
infrastructure, so keep it safe. To inspect the complete state
use the `terraform show` command.

State path: terraform.tfstate

If everything went as per plan, we should have a file called terraform.tfstate in our
folder which is the state of our virtual infrastructure created in the cloud. We also
have the same file with the extension backup, which is the status of our infrastructure
before running our last apply command.

This file is important. Terraform is able to refresh it with changes made on the cloud,
but it is not able to rebuild it. Some people keep this file alongside the Terraform
scripts and some other people prefer to use a backend to store this file and manage
the Terraform state.

Remote state management
A backend is a system that is going to store our status in a shared environment where
everyone using the same configuration can quickly access it. Let's look at how is this
done using Google Cloud Storage. Just execute the following command:

terraform remote config -backend=gcs -backend-config="bucket=my-terraform" -backend-config="path=terraform/infrastructure"

Here are a few considerations: we need to create a bucket called my-terraform in the
Google Cloud Storage interface and we need to configure Application default
credentials for Google Cloud. The easiest way to do this is by setting an environment
variable called GOOGLE_APPLICATION_CREDENTIALS to the path where the xxx.json file that
we have used to authenticate against GCP when running our infrastructure is. If you
are in the same folder, just run the following command:

export GOOGLE_APPLICATION_CREDENTIALS=./xxx.json

Once this is done and the Terraform command succeeds, if we check our bucket in
Google Cloud Storage, we have a new item with the content of terraform.tfstate that
we had in our local file system.

Now we can test that it works by altering our infrastructure and seeing how this is
reflected in our bucket on Google Cloud Storage. You can do this easily by running
terraform destroy and checking what happens to our remote state in Google Cloud.

Be careful with the state files. They have very valuable information
about your company's infrastructure and can be used as an attack
vector.

This feature is used to share configuration across a team of engineers, and it is fully
managed by Terraform: you don't need to pull or push state files as Terraform will
do it for you.

Modifying your infrastructure
Up until now, we have only created resources and stored the state of or cloud data
center in an online bucket. Now you are going to learn how to modify the existing
infrastructure from a project such as the one we built earlier on.

As you can see, we started from a very simple example: create a single virtual
machine with an ephemeral IP address (the default one assigned by Google, not
fixed).

Now, we are going to create a static IP and assign it to our machine so it always uses
the same IP. The way of doing this through Terraform is creating a resource of the
type google_compute_address, as follows:

resource "google_compute_address" "my-first-ip" {
 name = "static-ip-address"
}

Now, we can execute terraform plan to see what will change if we apply the
infrastructure change. As you can see in your new execution plan, Terraform
identifies that we need to create a new resource of type google_compute_address, but...
how do we attach this IP to our VM? Let's revisit the configuration of our VM:

resource "google_compute_instance" "my-first-instance" {
 name = "my-first-instance"
 machine_type = "n1-standard-1"
 zone = "europe-west1-b"
 disk {
 image = "ubuntu-os-cloud/ubuntu-1704-zesty-v20170413"
 }

 network_interface {
 network = "default"
 access_config {
 nat_ip = "${google_compute_address.my-first-ip.address}"
 }
}

In the highlighted line of the code, you can see how simple it is to associate our VM
with the new address that we are going to create: our created resource, the address,
will have computed attributes (attributes calculated at runtime) that can be used in
other resources. In Terraform, the syntax for interpolating values is ${} with the
value of the attribute to interpolate between the brackets, in this case, the IP address
of the resource called my-first-ip.

If you head to the Google Cloud Console and open the external IP's section, you can
see something similar to what is shown in the following screenshot:

The IP was associated with our VM, as expected.

Terraform variables
One thing we did not mention earlier is the fact that Terraform can work with
variables. Take a look at the following definition:

provider "google" {
 credentials = "${file("xxx.json")}"
 project = "implementing-modern-devops"
 region = "europe-west1"
}

This is the configuration of our provider. There are few strings that, quite likely, are
going to be used in other places, such as the region or the name of the project.
Terraform has the concept of variable, which is a value that is susceptible to change
so we can extract it into a separated file. Up until now, we have created a file called
resources.tf. Let's create a file called vars.tf with the following content:

variable "project_name" {
 type = "string"
 default = "implementing-modern-devops"
}

variable "default_region" {
 type = "string"
 default = "europe-west1"
}

Now, we are going to use these variables in our files. By default, Terraform will look
into all the files with the extension .tf in our current folder, build the knowledge
base of all the facts that have been described, and start creating our infrastructure as
appropriated (internally building a graph of dependencies that can be checked with
the terraform graph command). This means that we don't need to do anything special
for Terraform to pick up our variables file:

provider "google" {
 credentials = "${file("xxx.json")}"
 project = "${var.project_name}"
 region = "${var.default_region}"
}

We can use variables pretty much anywhere to facilitate our infrastructure creation.
As you can see, the syntax is the same as the syntax used for interpolation; in fact, it
is an interpolation.

In the variables file, we have specified the default values for the variables, but it is

possible that we want to change them depending on the environment or even for
tweaking the configuration. Terraform also allows you to override variables in three
ways:

On the command line
With a file called terraform.tfvars
With environment variables

The first way is as easy as passing extra flags to the terraform commands. For
example, if we want to change project_name when applying the changes to our
infrastructure, we just need to pass an extra flag with the value of the variable:

terraform apply -var 'project_name=my-new-name'

And that's it. You can experiment by changing the project name or the zone and see
how terraform plan creates new resources (as they don't exist in a different project).

The second method is using a file with the variable definitions. In order to test it,
create a file called terraform.tfvars in the root of your project with the following
content:

project_name = "my-new-project-name"

Now, if you run terraform plan, you will see how Terraform plans to create new
resources as they don't exist in a project called my-new-project-name. The filename does
not need to be terrafrom.tfvars, but if you create it with a different name, Terraform
won't pick it up by default and you will need to pass the flag -var-file in order to load
it.

Don't forget to remove the terraform.tfvars file before continuing.

The third way of overriding variables is via environment variables. This is
particularly interesting as it easily allows you to manage the configuration of
different environments by external factors. The convention is to define an
environment variable with the same name as the variable in Terraform but prefixing
it with TF_VAR_. For example, for the variable project_name, we would execute the
following command:

export TF_VAR_project_name=my-new-project-name

Terraform outputs
Up until now, we have worked with Terraform to create our infrastructure but we
have little to no insight on what is going on in our cloud, in this case, on Google
Cloud Platform. The engineers from HashiCorp have also thought about this, and
they have created an element called output that allows us to print values of the
resources created by our scripts.

So far, we have two files:

resources.tf

variables.tf

Before proceeding, make sure that your online infrastructure is created by running
terraform apply as we did earlier.

Now, we are going to create another file called outputs.tf. This is not coincidental. In
Terraform, this is the recommended layout for your projects as it facilitates the code
readability as well as segregates responsibilities.

Add the following content to the outputs.tf file:

output "instance_ip" {
 value = "${google_compute_instance.my-first-instance.network_interface.0.access_config
}

We will come back to this command later, but now, we need to rerun the apply
command in order to let Terraform create the output for us. Something has changed:

google_compute_address.my-first-ip: Refreshing state... (ID: static-ip-address)
google_compute_instance.my-first-instance: Refreshing state... (ID: my-first-instance)

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

Outputs:

instance_ip = 23.251.138.171

Terraform apply needs to be run for your outputs for it to become
available even if you did not change the infrastructure.

Now we can see a new section called outputs, which contain the values that we have

defined in the outputs file. If you want to see it again at any time, just run the
following command:

terraform output instance_ip

Alternatively, simply run this command:

terraform output

The first one will show only the IP of the instance (this is particularly handy for
using it as input for other commands). The second one shows all the outputs defined
in your Terraform scripts.

Now, let's explain how the outputs work. In this case, we have used the following
string to identify what we want to output:

google_compute_instance.my-first-instance.network_interface.0.access_config.0.nat_ip

The first two keys (separated by dots) are clear: the type and the name of our
resource. Then, the IP belongs to network_interface in the acccess_config section and
the value is stored in nat_ip, but what are those 0ses in there?

Easy; we can define more than one network interface by repeating the
network_interface block as many times as you need: the first one in the code will be 0,
the second one will be 1, and so on...

This attribute path can be tricky to calculate sometimes, although the majority of the
time is quite obvious from the configuration file. If you experience problems finding
what you want to output, here is a shortcut: When you run terraform apply, in the
output, you will see something similar to this:

This is the list of all the attributes that you can show in your outputs; the key is the
column on the left-hand side. For example, if we want to show the zone where our
VM is created, it is as simple as this:

output "instance_zone" {
 value = "The zone is ${google_compute_instance.my-first-instance.zone}"
}

As you can see, the interpolation also works here, letting you mix strings with values
of the Terraform resources.

Summary
Terraform is the basic tool that every DevOps engineer needs to master in order to
work efficiently with cloud providers such as Google Cloud Platform or AWS as it
allows you to manage the infrastructure as if code was, with a lifecycle the ability to
deploy infrastructure.

In this chapter, we saw the most important aspects of Terraform regarding the
creation of virtual infrastructure. You learned enough to be able to, with the help of
the online documentation, create resources and connect them in order to create much
bigger projects.

Even though the examples that we followed through this chapter were pretty basic, in
the next chapter, we will create a more complex infrastructure and install the
required software to run it in an automated fashion.

We will also use more advanced Terraform capabilities such as modules to create
highly reusable components that can be shared with different teams or even as open
source components.

Server Provisioning
In the previous chapter, you learned how to create the infrastructure that is going to
hold our applications. As we saw, the infrastructure automation is something that's
new, and we used Terraform for it. The problem with Terraform is that it can only be
used to build the infrastructure, but in order to provision the software, we need
something different.

Through this chapter, we are going to dive deep into Ansible as, together with
Puppet and Chef, it is the most predominant server provisioning tool in the market
right now.

Here are the main topics that will be covered in this chapter:

Server provisioning software
Chef
Puppet
Ansible

Ansible
Ansible configuration
Ansible variables

Variables
Remote facts
Templates

Flow control
Ansible roles

Ansible tower

As you can see, it is quite an extensive chapter with many examples that will enable
you to learn the most important features of Ansible.

One thing that you need to be aware while reading through this chapter is the fact
that it is impossible to showcase all the features from Ansible in a single chapter. In
fairness, it would take us over a book to master all the features up to a proficient
level. As you can guess by now, when I need to deal with Ansible, the first thing I do
is open the official documentation and have it side by side with the code so that I can
always refer to it for examples and features that I have either never dealt with or it
has been a long time since I did not work with it.

We will also explore a section Ansible Tower, which is a software used to run
Ansible playbooks on a bastion host mode from within your infrastructure instead of
running it from a workstation.

Server provision software
As mentioned earlier, there are few options for software provisioning. Through this
chapter, you will learn how to use Chef and Ansible, focusing on the latter as it is
widely used across many companies and is easier to master than Chef.

There are also other options in the market that are valid and good solutions, but we
are going to take a special interest in Ansible, which, to me, seems the easiest to
learn and extend out of all of them.

Chef
Chef is a very interesting software that follows the bastion host principle to run
configurations on our servers. A bastion host is a server placed in our private
network that is able to reach our servers directly or via proxy in order to execute the
actions needed to set them up with the desired state. This is an option not to be
overlooked, as one of the biggest challenges that server provisioning presents is the
management of secrets and authorization that, for example, Ansible needs to
improve via third-party software such as Ansible Tower from Red Hat.

Chef uses recipes to configure parts of the server. A recipe is basically a set of
declarative instructions that define what needs to happen in order to get the server to
the desired status. For example, take a look at this:

execute "update-upgrade" do
 command "apt-get update && apt-get upgrade -y"
 action :run
end

package "apache2" do
 action :install
end

The preceding code will upgrade our system and then install the Apache2 web
server.

This recipe, once finished, gets uploaded into the Chef server from a workstation,
and here is the key: in Chef, there are three actors:

Server
Workstation
Nodes

The server is where the recipes and configuration live. It needs to be installed prior
to doing any work, and the instructions can be found at https://docs.chef.io/install_server.
html.

There are three modalities of the Chef server:

Enterprise: This can be installed inside your infrastructure and it is licensed, so
you need to pay depending on the numbers of nodes that it is managing.

https://docs.chef.io/install_server.html

Open source: This can also be installed in your infrastructure but it does not
have any support. It is free and has to be configured and maintained by your
company. It is also a cut-down version of the Enterprise Chef.
Hosted: The Chef server is hosted on third-party hardware and you don't need
to worry about maintaining and upgrading it. It might not be an option
depending on the setup of your company.

The nodes are the target hosts. Every node is registered in the Chef server and has a
run list: a list of recipes that are going to be run on a host when the chef-client
command is executed.

The workstation is the computer used to configure and upload the Chef server. This
computer uses a software called knife that can do everything on the Chef server:

Configuring roles
Looking for VMs depending on the roles and other parameters
Configuring run lists
Managing secrets

Knife uses cryptographic keys to communicate with the Chef server so all the
communication happens in a trusted way.

Now, if we want to picture everything, it looks like that is shown in the following
diagram:

As you can see, even though the setup is quite complex (you need to set up a couple
of software components) there are obvious benefits: our Chef server is behind the

firewall in the demilitarized zone of our infrastructure, but it is managed via a CLI
tool so all our secrets and configuration are safe inside our infrastructure.

Chef has a steep learning curve that, once we have gone through the initial learning
phase, gets very familiar and easy to add new features and extend the DSL with the
power of Ruby and a very well-thought-out interface.

Puppet
Puppet has been around for a while and is widely used in the DevOps world. Puppet
comes in two flavors:

Open source
Enterprise

The open source version comes as is, offering a good set of features that allow you to
fully automate the configuration management of your infrastructure.

The enterprise edition, aside from support, comes with an extended set of features
that make the life of the engineers in your company a lot easier.

In the same way as Chef, Puppet follows the bastion host architecture: the server is
installed within your infrastructure in the demilitarized zone and the nodes (your
servers), via the puppet agent, will execute the specified tasks to reach the desired
status.

The main difference between Chef and Puppet is the fact that puppet is declarative
whereas Chef is more imperative:

In Puppet, you specify which state you want your servers on and Puppet takes
care of keeping them there
In Chef, you declare a number of steps that will get your server to the desired
state

That said, Chef also allows you to declare guards, which are conditions for steps to
be executed.

Through my experience, I've found that people coming from an DevOps background
feel more comfortable with Puppet as it is similar to what they have done through the
years, whereas writing Chef recipes is similar to software development.

Ansible
Ansible is what we are going to be using to develop the contents of the rest of the
book. In my opinion, it is the easiest to learn and extend. It is also easy to understand
and offers a fairly comprehensive open source version that works with all the
features from Ansible. You can also buy a license of Ansible Tower (or similar) to
run Ansible Playbooks in a bastion host configuration as Chef or Puppet.

Ansible is basically a domain-specific language (DSL) for executing operations on
remote hosts that are defined in an inventory.

Ansible works by running playbooks in the desired servers via SSH, so unlike Chef
or Puppet, we don't need to install anything in the remote hosts; we should just be
able to SSH into them. A playbook is basically a Yet Another Markup Language
(YAML) with a set of instructions to get the server into the desired state in the same
way as if we were executing a Bash script. A Playbook looks like this:

- hosts: webservers
 vars:
 http_port: 80
 max_clients: 200
 remote_user: root
 tasks:
 - name: ensure apache is at the latest version
 yum: name=httpd state=latest
 - name: write the apache config file
 template: src=/srv/httpd.j2 dest=/etc/httpd.conf
 notify:
 - restart apache
 - name: ensure apache is running (and enable it at boot)
 service: name=httpd state=started enabled=yes
 handlers:
 - name: restart apache
 service: name=httpd state=restarted

Reading through the file will make you understand how easy and straightforward it
is to understand what the Playbook doing.

As you can see, in the second line, we are specifying that we want to run this
Playbook in the hosts called webservers. This can be defined in the other part of
Ansible: the inventory. The Ansible inventory is basically a file with the list of hosts
in your infrastructure, as follows:

[webservers]

host1
host2

[dbservers]
192.168.0.[1:3]

This file is very straightforward but can get really complicated as well:

The names between brackets are groups
The groups contain hosts that can be defined with generators or they can just be
listed
Groups can have configuration specific to them or even override variables

In the preceding example, we have two groups: webservers and dbservers.

Web servers are only two hosts:

Host1

Host2

Dbservers use a generator and we have three hosts:

192.168.0.1

192.168.0.2

192.168.0.3

As mentioned earlier, we can also define variables in the inventory. These variables
can be scoped on the group and the host. Let's take a look at the following inventory:

[dbservers]
192.168.0.[1:3]

[webservers]
host1 role=master
host2

[dbservers:vars]
timezone=utc

As you can see, we have two variables:

timezone: This is applied to all the hosts of the group dbservers.
role: This is applied to the host host1 of the group webservers.

This variable can be used in playbooks in order to have a specific configuration for
specific hosts, as we will see later on in this chapter.

Groups can also be combined into bigger groups:

[dbservers]
192.168.0.[1:3]

[webservers]
host1
host2

[mongoservers]
10.0.0.1
10.0.0.2

[dataservers:child]
mongoservers
dbservers

In the preceding inventory, we can find the following:

dbservers

mongoservers

webservers

dataservers

all

ungrouped

Even though we did not specify it, Ansible always has two default groups called all
and ungrouped that are self-descriptive: all is all the hosts in the inventory and
ungrouped is all the hosts that are not specified in any group.

As stated earlier, Ansible does not follow the bastion host architecture as Chef or
Puppet, but it follows the client/server architecture: our host needs to be able to reach
the destination hosts (the ones on the inventory) in order to work.

This can be inconvenient depending on your infrastructure architecture, but it can be
worked around using Ansible Tower or Rundeck to execute Ansible playbooks from
inside your demilitarized zone.

In this chapter, we are going to use Ansible to build real production-ready examples
in combination with Terraform so that we get a grasp of the real usage of the tools.

Ansible
In this section, we are going to take our first steps toward a more comprehensive
example in Ansible. For now, we are going to install and configure NGINX, a very
popular web server so we can showcase the main concepts of Ansible.

First, we are going to create a VM in Google Cloud Platform with an associated
static IP so we can target it from our inventory. We are going to use Terraform in
order to do it. First, we'll look at our resources file:

provider "google" {
 credentials = "${file("account.json")}"
 project = "${var.project_name}"
 region = "${var.default_region}"
}

resource "google_compute_instance"
"nginx" {
 name = "nginx"
 machine_type = "n1-standard-1"
 zone = "europe-west1-b"
 disk {
 image = "ubuntu-os-cloud/ubuntu-1704-zesty-v20170413"
 }
 network_interface {
 network = "default"
 access_config {
 nat_ip = "${google_compute_address.nginx-ip.address}"
 }
 }
}

resource "google_compute_address" "nginx-ip" {
 name = "nginx-ip"
}

And now, we'll look at our vars file:

variable "project_name" {
 type = "string"
 default = "implementing-modern-devops"
}

variable "default_region" {
 type = "string"
 default = "europe-west1"
}

In this case, we are reusing the project from the previous chapter as it is convenient
to shut down everything once we are done. Now we run our plan so we can see what

resources are going to be created:

+ google_compute_address.nginx-ip
 address: "<computed>"
 name: "nginx-ip"
 self_link: "<computed>"

+ google_compute_instance.nginx
 can_ip_forward: "false"
 disk.#: "1"
 disk.0.auto_delete: "true"
 disk.0.image: "ubuntu-os-cloud/ubuntu-1704-zesty-v20170413"
 machine_type: "n1-standard-1"
 metadata_fingerprint: "<computed>"
 name: "nginx"
 network_interface.#: "1"
 network_interface.0.access_config.#: "1"
 network_interface.0.access_config.0.assigned_nat_ip: "<computed>"
 network_interface.0.access_config.0.nat_ip: "<computed>"
 network_interface.0.address: "<computed>"
 network_interface.0.name: "<computed>"
 network_interface.0.network: "default"
 self_link: "<computed>"
 tags_fingerprint: "<computed>"
 zone: "europe-west1-b"

Plan: 2 to add, 0 to change, 0 to destroy.

So far, everything looks right. We are creating two resources:

The static IP

The VM

Now, we can apply our infrastructure:

google_compute_address.nginx-ip: Creating...
 address: "" => "<computed>"
 name: "" => "nginx-ip"
 self_link: "" => "<computed>"
google_compute_address.nginx-ip: Still creating... (10s elapsed)
google_compute_address.nginx-ip: Creation complete
google_compute_instance.nginx: Creating...
 can_ip_forward: "" => "false"
 disk.#: "" => "1"
 disk.0.auto_delete: "" => "true"
 disk.0.image: "" => "ubuntu-os-cloud/ubuntu-1704-zesty-v20170413"
 machine_type: "" => "n1-standard-1"
 metadata_fingerprint: "" => "<computed>"
 name: "" => "nginx"
 network_interface.#: "" => "1"
 network_interface.0.access_config.#: "" => "1"
 network_interface.0.access_config.0.assigned_nat_ip: "" => "<computed>"
 network_interface.0.access_config.0.nat_ip: "" => "35.187.81.127"
 network_interface.0.address: "" => "<computed>"

 network_interface.0.name: "" => "<computed>"
 network_interface.0.network: "" => "default"
 self_link: "" => "<computed>"
 tags_fingerprint: "" => "<computed>"
 zone: "" => "europe-west1-b"
google_compute_instance.nginx: Still creating... (10s elapsed)
google_compute_instance.nginx: Still creating... (20s elapsed)
google_compute_instance.nginx: Creation complete

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

And everything works as expected. If we check Google Cloud Platform, we can see
that our VM has been created and has associated a public IP:

In this case, the associated public IP is 35.187.81.127. It is important to verify that we
can reach the server via SSH. In order to do it, just click on the SSH button on the
right-hand side of your instance row and it should open a Cloud Console window
with terminal access.

If SSH access fails, you need to add an ingress allow rule in the
firewall to the port 22. For this example, just allow the traffic from any
IP into any port, but don't do this in your real infrastructure as it is a
security threat.

Once everything is up and running, it is time to start with Ansible. First, we are
going to create our inventory file:

[nginx-servers]
35.187.81.127

This is very simple: a group with our public IP address that is connected to our VM.
Save the file with the name inventory in a new folder named, for example, ansible-
nginx. Once the inventory is created, we need to verify that all the hosts can be
reached. Ansible provides you the tool to do that:

ansible -i inventory all -m ping

If you execute the preceding command, Ansible will ping (actually, it does not use

the ping command but tries to issue a connection to the server) all the hosts in your
inventory specified in the parameter -i. If you change everything for the name of a
group, Ansible will try to reach only the hosts in that group.

Let's take a look at the output of the command:

35.187.81.127 | UNREACHABLE! => {
 "changed": false,
 "msg": "Failed to connect to the host via ssh: Permission denied (publickey).\r\n",
 "unreachable": true
}

We are experiencing problems in connecting to our remote host and the cause is that
we don't have any key that the host can validate to verify our identity. This is
expected as we did not configure it, but now, we are going to solve it by creating a
key pair and installing it on the remote host using the Google Cloud SDK:

gcloud compute ssh nginx

This command will do three things:

Generate a new key pair
Install the key pair in our remote VM
Open a shell in our VM in GCP

The new key generated can be found under ~/.ssh/ with the name
google_compute_engine and google_compute_engine.pub (private and public key).

Once the command finishes, our shell should look like this:

Now we have a terminal connected to our VM and we can execute commands. gcloud
configures a user by default; in my case, davidgonzalez that can use sudo without
password. In this case, we are going to execute the playbook as the root, so we need
to be able to login as root into the VM. Copy the file ~/.ssh/authorized_keys into
/root/.ssh/authorized_keys and we should be able to do it. So, we have copied the
public key that we generated earlier to the set of authorized keys of the root user.

In general, root access should be avoided as much as possible, but in
this case, we will be executing the playbook as the root for
convenience.

In order for Ansible to be able to use the key, we need to add it to the daemon on our
server:

ssh-add ~/.ssh/google_compute_engine

This command should output the success, stating that the identity was added.

Now we can run our pin command again:

ansible -i inventory all -m ping

The output should be very different:

35.187.81.127 | SUCCESS => {

 "changed": false,
 "ping": "pong"
}

This means that now, Ansible is able to reach our server; therefore, it will be able to
execute the playbook against it.

Now it is time to start writing our first ansible playbook. Inside the same folder,
ansible-nginx, create a file called tasks.yml with the following content:

- hosts: all
 user: root
 tasks:
 - name: Update sources
 apt:
 update_cache: yes
 - name: Upgrade all packages
 apt:
 upgrade: dist

This is simple to understand:

Our playbook is going to affect all the hosts
The user running the playbook is going to be root
And then we are going to execute two tasks:

Update the apt cache
Upgrade all the packages

Once we have the two files (inventory and playbook), we can run the following
command:

ansible-playbook -i inventory tasks.yml

We should produce output similar to the following one:

We are going to run few playbooks along the chapter, so I would
recommend that you keep the same VM alive and run all of them
against it in order to save time and resources. The trial account from
Google Cloud Platform will give you enough room to run them across
several days or weeks.

Let's explain the output:

First, it specifies against which group we are going to execute the playbook. In
this case, we specified that the group is all.
Then, we can see three tasks being executed. As you can see, the description
matches the description specified in tasks.yml. This is very helpful in order to
understand the output of your playbooks, especially when they fail.
And then we get a recap:

Three tasks were executed
Two of them produced changes on the server
Zero failed

Simple and effective. This is the closest to executing a script in the server that we
can get: a set of instructions, a target host, and its output.

In Ansible, instead of plain bash instructions, the actions are encapsulated into
modules. A module is a component of the DSL, which allows you to do something
special. In the playbook from earlier, apt is a module included in the core of Ansible.
Documentation for it can be found at http://docs.ansible.com/ansible/apt_module.html.

Let's take another look to one of our usages of the apt module:

- name: Update sources

http://docs.ansible.com/ansible/apt_module.html

 apt:
 update_cache: yes

This, as you can guess, would be the equivalent to the following:

apt-cache update

So, in this case, Ansible provide us with a different module called command, which
allows us to execute commands in the hosts of our inventory. Take a look at the
following yaml:

- name: Update sources
 command: apt-cache update

This is equivalent to the yaml from earlier, and both do the same: update apt-cache.

In general, if there is a module for a given task, it is recommended that you use it as
it will handle (or at least you can expect it to) the errors and the outputs better than
executing the equivalent command.

Now, once our playbook has succeeded, we can expect our system to be up to date.
You can check it by running the playbook again:

Now you can see that only one task has produced changes in the server (updating the
apt sources).

Ansible configuration
One of the features of Ansible is the ability to override the defaults per project. In
order to do it that, we just need to create a file called ansible.cfg in the root of our
project and Ansible will read it and apply the configuration.

There is a big number of parameters that can be configured, and all of them can be
found in the official documentation at http://docs.ansible.com/ansible/intro_configuration.ht
ml.

As you can see, the documentation for Ansible is quite good, and the majority of the
time, it will provide an answer to your problems.

Let's see how the configuration can help us. If you remember from the previous
example, we have specified the flag -i in order to tell Ansible where our inventory
file lives. Ansible has a default for this value, which is /etc/ansible/hosts. In our little
project, our inventory is in the same folder as our code, and in order to specify it to
Ansible, we need to create a configuration file with the following content:

[defaults]
inventory = ./inventory

Now, we run our playbook again with the following command:

ansible-playbook tasks.yml

We did not specify the host list, but Ansible, after reading ansible.cfg knows that the
inventory file can be located at ./inventory.

Ansible has a hierarchy of precedence to find the configuration:

The ANSIBLE_CONFIG environment variable
ansible.cfg

.ansible.cfg

/etc/ansible/ansible.cfg

So, if we define an environment variable called ANSIBLE_CONFIG pointing to a file, the
Ansible configuration will be read from that location and the rest of the options will
be ignored. This is particularly helpful in segregating environments: our CI server
can define its own configuration in the environment file, whereas developers can

http://docs.ansible.com/ansible/intro_configuration.html

have the ansible.cfg file checked in into the source control so that is shared across
everyone.

There are a few sections that can be specified in ansible.cfg. Sections control several
aspects of of Ansible, such as connections. Under certain circumstances, we might
need to add special parameters for ssh to work, and it is as easy as adding the
following lines to your ansible.cfg file:

[ssh_connection]
ssh_args=<your args here>

Ansible variables, remote facts and
templates
Variables and templates are an important part of Ansible. They allow us to override
values in our configuration (servers and playbooks) so that we can write generic
playbooks that can be reused across different configurations with minor tweaks.
With templates, we can render configuration files from our host so we could
potentially use Ansible to manage the configuration of remote servers with little to
no effort. It also can be used to generate and install SSL certificates for different
hosts transparently to the user.

Both of them (variables and templates) use a template engine called Jinja2, which
allows logic and interpolation to be embedded in our configurations.

In general, there are several ways of defining variables, but we are only going to visit
the most common ones (under my criteria), as otherwise, it would take us the size of
several chapters to document them properly. If you want to explore further different
ways of defining variables, the official documentation provides a fairly
comprehensive guide at http://docs.ansible.com/ansible/playbooks_variables.html.

http://docs.ansible.com/ansible/playbooks_variables.html

Ansible variables
Variables are the most simple of the potential customizations. With variables, we can
define values that are going to be replaced in our playbooks. Let's take a look at the
following playbook:

- hosts: all
 user: root
 tasks:
 - debug:
 msg: "Hello {{ myName }}! I am {{ inventory_hostname }}"

Replace the content of tasks.yml with the snippet from earlier. There are two new
symbols in our task. Also, our task is new: debug is used to output values from our
variables into the terminal while executing the playbook. Let's take a look at the
execution (we will use the same configuration as the example from earlier):

ansible-playbook -i inventory tasks.yml

It fails:

The reason for the failure can be seen in in the message: we have a variable defined
called name that does not have a value associated. Ansible will fail if there is a value

that cannot be interpolated, aborting the execution of the task.

There is another interesting piece of information here: Ansible gives you a parameter
to retry the playbook only on the hosts that were not successful. If we wanted to retry
the playbook only on the failed hosts, we could run the following command:

ansible-playbook -i inventory tasks.yml --limit @/Users/dgonzalez/code/ansible-variables/tasks.retry

The new parameter, tasks.retry is a file with a list of hosts that are okay to rerun the
playlist as they failed before.

Going back to our missing variables, we need to define the variable called myName.
There are a few ways of doing that; the first is via the command line:

ansible-playbook -i inventory tasks.yml -e myName=David

And you can see that the output of the playbook is looking better now:

As you can see, the variables got interpolated and we can see the message Hello
David! I am 35.187.81.127.

The second way of defining variables is via inventory, as we have seen earlier:

[nginx-servers]
35.187.81.127 myName=DavidInventory

If we modify our inventory to match the preceding snippet, the value of our variable
will be DavidInventory and we don't need to pass a value in the command line:

ansible-playbook -i inventory tasks.yml

This will produce the message Hello DavidInventory! I am 35.187.81.127.

The third way to define variables in Ansible is by defining them in the playbook
itself. Take a look at the following playbook:

- hosts: all
 vars:
 myName: David
 user: root
 tasks:
 - debug:
 msg: "Hello {{ myName }}! I am {{ inventory_hostname }}"

As simple as it sounds, once you define the variable in the vars section of your
playbook, it becomes available; therefore, there is no need to specify the value
anywhere else.

The fourth way to define variables is via files. Ansible is designed to be a self-
documented component that can be easily understood by someone with not much
experience in it. One of the ways in which Ansible facilitates the task of
understanding playbooks is the possibility of writing every single configuration piece
in a file. Variables are not the exemption, so Ansible will let you define variables in
files or playbooks.

Let's start with the files. Create a file called vars.yml in the same folder in which you
are working (where your playbook and inventory are) with the following content:

myName: DavidFromFile
yourName: ReaderFromFile

Now we can run the following command in order to use the variables file:

ansible-playbook -i inventory playbook.yml -e @vars.yml

And if you check the output, it would be the same as the one from earlier.

In this case, we have defined a new variable that we are not using (yourName), but that
is fine. I just wanted to show you that Ansible won't complain if there are free
variables, but it will raise an error if there are unbound interpolations.

In this case, we have included vars.yml in our playbook via the command line,
referencing your local file with @ in the beginning, but there is another possibility for
using variable files in Ansible: including them from within the playbook. Let's take a
look at how it is done:

- hosts: all

 user: root
 tasks:
 - name: Include vars
 include_vars:
 file: vars.yml
 - debug:
 msg: "Hello {{ myName }}! I am {{ inventory_hostname }}"

In this case, we have used the include_vars module in our playbook. Now execute the
playbook with the following command:

ansible-playbook -i inventory tasks.yml

You will get the following output:

As you can see, there is an extra task that takes a file and injects the variables in the
context.

This module is quite flexible and there are several options to include variable files in
our playbook. We have used the most straightforward one, but you can check out
other options in the official documentation at http://docs.ansible.com/ansible/include_vars_
module.html.

There is another possibility for including a variable file into our playbook, and it is
using the vars_files directive in our playbook:

- hosts: all
 user: root
 vars_files:
 - vars.yml
 tasks:

http://docs.ansible.com/ansible/include_vars_module.html

 - debug:
 msg: "Hello {{ myName }}! I am {{ inventory_hostname }}"

This will take the vars.yml file and inject all the defined variables into the context,
making them available for use.

As you can see, Ansible is quite flexible around the definition of variables.

There is another interesting way of setting up variables in Ansible that helps us
further customize our playbooks: set_fact. Setting facts allows us to set variables
dynamically in our playbooks. Set_fact can be used in combination with another
interesting instruction called register. Let's look at an example:

- hosts: all
 user: root
 tasks:
 - name: list configuration folder
 command: ls /app/config/
 register: contents
 - set_fact:
 is_config_empty: contents.stdout == ""
 - name: check if folder is empty
 debug: msg="config folder is empty"
 when: is_config_empty
 - name: installing configuration
 command: <your command here>
 when: is_config_empty

What we are doing here is basically setting a variable to true if the configuration
folder of our app is empty (hypothetic configuration folder) so that we can
regenerate it only when it is not present. This is done by making use of the
instruction when that allows us to execute instructions conditionally. We will come
back to it during this chapter.

We have visited the most common ways of defining variables, but there is one
question pending: what is the precedence of the different methods for creating
variables?

This is something that I have to query myself whenever I am working in a playbook,
and the truth is that at the end of the day, you will use only a couple of methods to
create variables so that it is not as important as it should be. In my case, I tend to
create a file with variables (when not working with roles), and if I want to override a
value, I do that on the command line (or environment variable), which is the highest
priority in the chain. The complete list of variable precedence can be found at http://d
ocs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-varia
ble.

http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable

Ansible remote facts
Remote facts in Ansible are a way to specify configuration on remote hosts either by
an explicit configuration file or by a script that returns data about the server. In
general, this feature is very useful for operations such as maintenance, setting up
flags that specifically mark the host as out of the pool so that our playbooks have no
effect in the hosts.

Take a look at the following command (assuming the inventory from the previous
example is present in the folder and the VM is running on Google Cloud Platform):

ansible all -m setup -i inventory --user=root

This will output an enormous amount of data (JSON-formatted data). This data is all
the known facts about the remote host, such as the CPU type, machine ID, network
interfaces, kernel version, and so on. They can be used within our playbooks, but
they can also be extended to add more data that is controlled by the remote host
without any local configuration.

In order to set up custom remote facts, we have several options, but at the end of the
day, the custom facts are defined in JSON files by default under
/etc/ansible/facts.d/. It is also possible to create an executable (a script) under the
same folder so that Ansible will execute it and take the output as facts and add them
to the facts scope. Take a look at the following file:

{
 "my_name": "David Gonzalez"
 }

Put into the remote box (the one used in all the examples from earlier) and create a
file in /etc/ansible/facts.d/example.facts with the content from earlier.

Once this is done, run the following command:

ansible all -m setup -i inventory --user=root | grep -B 3 -A 3 my_name

It almost looks magical, but the output of your command should now include the
facts that you created earlier:

 },
 "ansible_local": {

 "example": {
 "my_name": "David Gonzalez"
 }
 },
 "ansible_lsb": {

Now they can be used in your playbook in the ansible_local variable, for example, to
access my_name:

- hosts: all
 user: root
 tasks:
 - name: Gather my_name fact.
 debug: msg="{{ ansible_local.example.my_name }}"

As mentioned earlier, Ansible can also gather facts from a script placed in the facts
path. This script should have the x flag present, which indicates that it can be
executed and have the extension fact. Let's look at a very interesting trick that I find
quite useful. When I try to diagnose a failure in our systems, the first thing I tend to
check is the CPU usage. The majority of the time, our systems are highly observable
(monitored) so it is easy to check the CPU load, but sometimes, monitoring might
not be in place.

First, go to the server that we have been using in the preceding examples and create a
file in /etc/ansible/facts.d/cpuload.fact with the following content:

#!/bin/bash
CPU_LOAD=`grep 'cpu ' /proc/stat | awk '{usage=($2+$4)*100/($2+$4+$5)} END {print usage "%"}'`
echo { \"cpu_load\": \"$CPU_LOAD\"}

This is a simple script that will output JSON with information about the CPU load in
your system. Once the file is created, give it execution permissions:

chmod u+x /etc/ansible/facts.d/cpuload.fact

And we are done. Before disconnecting the SSH session, make sure that the script
works as expected by executing it:

/etc/ansible/facts.d/cpuload.fact

This should output something like the following:

{ "cpu_load": "0.0509883%"}

Now it is time to test our scripted facts. What we are going to do is create a playbook
that gets the CPU load and outputs it to the terminal with a debug message. This is

the content:

- hosts: all
 user: root
 tasks:
 - name: Get CPU load
 debug: msg="The CPU load for {{ ansible_hostname }} is {{ ansible_local.cpuload.cpu_load }}"

Run the preceding playbook:

ansible-playbook -i inventory tasks.yml

You should get an output very similar to the following one:

Now we have a rudimentary tool to check the CPU load on our servers with a simple
command, leveraging the host groups to Ansible.

One thing we have not explained is the first task that Ansible outputs in every
playbook: gathering facts.

This task gets all those facts that we have been talking about in this section and
creates the context for the playbook to run, so in this case, the CPU load that we get
is the CPU load gathered at the execution of that task.

Ansible templates
Templates are another powerful tool from Ansible. They allow us to render
configuration files, application properties, and anything that can be stored in a
human readable file.

Templates rely heavily on variables and a template engine called Jinja2 , which is
used by Ansible to render the templates. First, we are going to install ngnix on our
server with a simple playbook:

- hosts: all
 user: root
 tasks:
 - name: Update sources
 apt:
 update_cache: yes
 - name: Upgrade all packages
 apt:
 upgrade: dist
 - name: Install nginx
 apt:
 name: nginx
 state: present

As you can see, it is very simple:

Update the apt cache
Upgrade the system
Install nginx

Now, just run the preceding playbook using the VM created earlier:

ansible-playbook -i inventory tasks.yaml

And when the playbook is finished, you should have nginx running in your remote
server. In order to verify it, just open the browser and use the IP of your VM as
URL. You should see the nginx welcome screen.

Now, we are going to create a template with the nginx configuration, where we can
add or remove servers with templates in a fairly easy manner. Create a folder called
nginx-servers in your current directory (where the playbook is) and add a file called
nginx.yml with the following content:

- hosts: all
 user: root
 vars_files:
 - vars.yml
 tasks:
 - name: Update sources
 apt:
 update_cache: yes
 - name: Upgrade all packages
 apt:
 upgrade: dist
 - name: Install nginx
 apt:
 name: nginx
 state: present
 - template:
 src: nginx-servers/nginx-one.conf.j2
 dest: /etc/nginx/sites-enabled/default
 owner: root
 - service:
 name: nginx
 state: reloaded

Let's explain the file a bit:

The system is upgraded using apt.
Using apt as well, nginx is installed. Note that Ansible uses a declarative
approach to install packages: you state the name of the package and the state
that the package should be in after the playbook is executed.
The playbook renders the configuration for a virtual server in nginx from a
template called nginx-one.conf.j2. We will come back to this in a second.
The playbook reloads the nginx service so that the new configuration takes
effect.

We have a few blocks missing in the preceding playbook. The first block is the file
called nginx-one.conf.j2. This file is a template that is used to render the nginx
configuration for a virtual host in the server. Let's look at the content of that file:

server {
 listen {{ server_one_port }} default_server;
 index index.html;
}

Create a folder called sites-enabled and add the nginx-one.conf.j2 file to it with the
preceding content. This file is a standard nginx server block but with one
particularity: we have a server_one_port as a placeholder for the port so that we can
control the port where the nginx virtual host is exposed. This is very familiar to us:
we are using the variables to render the templates.

The second block is the file called vars.yml () with the following content:

server_one_port: 3000

This is very simple: it just defines the variables required to render the template from
earlier. One thing that you need to be aware when using templates is that all the
variables in the context can be accessed in it, from the facts gathered from the remote
server to the variables defined everywhere.

Once we have everything in place (the two files from earlier, the playbook from
earlier, and the inventory from the previous example), we can run the playbook as
usual and verify that everything works as expected:

ansible-playbook -i inventory nginx.yml

If everything worked as expected, you should have a fully functional nginx server
(serving the default page) in your VM in Google Cloud Platform on the port 3000.

Google Cloud Platform has a deny by default policy in order to
enhance security, so you might need to adjust the firewall to allow
inbound traffic to certain ports.

Flow control
In Ansible, it is possible to use flow control statements such as loops or conditionals
using variables as input. This can be used to repeat tasks on a certain dataset and
avoid executing some tasks if a few conditions are not met: we might want to use
different commands depending on the underlying system of our server.

We have already seen an example of conditionals using the when clause in our
previous examples, but let's explain it a bit more:

- hosts: all
 user: root
 tasks:
 - command: /bin/false
 register: result
 ignore_errors: True

 - debug: msg="fail!"
 when: result|failed

 - debug: msg="success!"
 when: result|succeeded

The preceding code is very easy to read: a command is executed (ignoring the
potential errors so our playbook continues), and it registers a variable called result.
Then, we have two debug tasks:

The first one will only be executed only if the /bin/false command fails
The second one will be executed only if the /bin/false command succeeds

In this playbook, we are using two new tricks:

ignore_errors: With this clause, if the task fails, the playbook will continue
executing the following tasks. This is very helpful if we want to test for
assumptions in the system, for example, if some files are present or a certain
network interface is configured.
Pipe symbol (|): This symbol is called pipe. It is a Jinja2 expression used to filter
values. In this case, we are using the failed and succeeded filters to return true
or false depending on the outcome of the command. There are many filters that
can be used on Jinja2 to work in a similar way as Unix pipes transforming the
data that goes through them.

Another type of control flow structure are loops. Let's look at how loops work:

- hosts: all
 user: root
 vars:
 names:
 - David
 - Ester
 - Elena
 tasks:
 - name: Greetings
 debug: msg="Greetings {{ item }}! live long and prosper."
 with_items: "{{ names }}"

Here, we are using something new that we did not see at the time of explaining
variables: they can have a structure such as lists and dictionaries. In this case, we are
defining a list with a few names and outputting a message for each of them. Now it is
time to run the playbook. Save the preceding content in a file called loops.yml and
execute the following command:

ansible-playbook -i inventory loops.yml

We will assume that the inventory is the same as the one used in the preceding
examples. After finishing, you should see something similar to the following output
in your Terminal:

It is also possible to define a list using the compact version of the declaration. Take a
look at the following statement:

 names:

 - David
 - Ester
 - Elena

This can be redefined as follows:

names: ['David', 'Ester', 'Elena']

And it is totally equivalent.

It is also possible to define dictionaries in Ansible and use them as variables. They
can also be used as iterable elements, which enable us to give structure to our data:

- hosts: all
 user: root
 vars:
 namesAge:
 - name: David
 age: 33
 - name: Ester
 age: 31
 - name: Elena
 age: 1
 tasks:
 - name: Presentations
 debug: msg="My name is {{ item.name }} and I am {{ item.age }} years old."
 with_items: "{{ namesAge }}"

If you are familiar with software development, the preceding snippet will make
perfect sense to you: a list of structured data (an array of objects) that holds
information to be accessed by the key.

In the rest of the book, we will be using more advanced features of flow control
structures in Ansible, and we will explain them as we go, but if you want to learn
more about it, the following links might be useful for you:

Conditionals (http://docs.ansible.com/ansible/playbooks_conditionals.html)
Loops (http://docs.ansible.com/ansible/playbooks_loops.html)
Jinja2 Templating (http://docs.ansible.com/ansible/playbooks_templating.html)

http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_templating.html

Roles
We have been working on few Ansible playbooks, and as you can imagine, there is a
lot that can be abstracted from them into generic units of work. As of now, with our
current knowledge of Ansible, the best thing we can do is use a naming convention
for playbooks and files so that we don't mix them, but Ansible provides a better
approach to this: roles.

Think of roles as common reusable capabilities as you do with modules in software:
a highly cohesive set of playbooks, variables, and resources that work together for
one purpose. For example, if we are managing nginx, it makes sense to have all the
related resources in a single module (role, in this case) in order to improve the
reusability as well as clarity of the code.

One option would be including playbooks using Ansible features. Although we did
not talk about it, with Ansible, it is possible to include YAML files with tasks to
create dependencies, as shown in the following snippets:

- include: play-include.yml
- hosts: all
 user: root
 tasks:
 - debug: msg="I am the main playbook"
 - include: tasks-include.yml

Let's explain what is going on. We can see two files included:

The first include is what Ansible calls a play include. It is a fully functional
playbook as is, which gets included in another playbook.
The second include is what Ansible calls a task include. It only includes a list of
tasks.

This can be explained easily by looking at the content of the two files. First, look at
the content of play-include.yml:

- hosts: all
 user: root
 tasks:
 - debug: msg="I am a play include"

Second, look at the content of tasks-include.yml:

- debug: msg="I am a task include"
- debug: msg="I am a task include again"

Now we are going to execute the playbooks from earlier and see what the output is.
Save the content of the first playbook on a file called tasks.yml and use the same
inventory as on all the examples from earlier. Now run the following command:

ansible-playbook -i inventory tasks.yml

Once the execution has finished, let's examine the output, which should be very
similar to the following one:

Let's explain this:

1. The play include (play-include.yml) gets executed by outputting the debug
message in there.

2. The debug task in the main playbook gets executed.
3. The task includes (tasks-include.yml) gets executed by executing the two debug

messages included there.

It is not very complicated, but it gets easier if you play around a bit with the
playbooks.

Although the preceding example can lead to a very clean and reusable set of files,
there is a much better way of doing this: using roles. Roles are isolated sets of
functionalities that allow an easy maintenance cycle like any other software
component.

Following the preceding example, we can rewrite it using three roles:

The play include (play-include.yml)
The main tasks (tasks.yml)
The tasks include (tasks-include.yml)

In order to start creating roles, first, create a new folder called ansible-roles and a
folder called roles inside the same one. One thing that was not mentioned earlier is
the fact that it is a good practice to create a set of folders to hold Ansible resources:
tasks folders to hold the tasks, files folder to store all the files that need to be
transferred to the remote hosts, and so on. In general, I agree with this setup, but for
the examples, we just simplified it in order to make everything easier. For roles, this
setup is mandatory. We need to create the folders as appropriated. In this case, as we
are only going to use tasks to demonstrate how roles work; we will create the folder
tasks inside of every role because otherwise, we won't execute the tasks from the
role.

Inside the roles folder, we are going to create another folder called play-include,
which is going to be the equivalent to play-include.yml from the preceding example
but in the form of a role.

Now it is time to create our first role playbook: create a file called main.yml and place
it inside the play-include/tasks/ folder. This is the content of the main.yml file:

- debug: msg="I am a play include"

Now it is time to add a second role called main-tasks by creating a folder in roles and
adding a file called main.yml inside of roles/main-tasks/tasks:

- debug: msg="I am the main playbook"

And our third and last role is called tasks-include. Just create the folder as earlier
(inside the roles folder) and add a file called main.yml to it inside of the tasks folder:

- debug: msg="I am a task include"
- debug: msg="I am a task include again"

And that's it. You have created three roles that can be reused across different Ansible
projects. Now it is time to use them. Create a file called tasks.yml in the root folder of
your project (in my case, ansible-roles) and add the following content:

- hosts: all
 user: root
 roles:
 - main-tasks
 - play-include
 - tasks-include

This is how your project should look after adding all the files from earlier:

The inventory is the same one as the previous examples (remember, the
recommendation was to reuse the same VM). Now it is time to run our playbook:

ansible-playbook -i inventory tasks.yml

This will produce output similar to the following one:

If we compare the output from the previous example, we can see that it is virtually
the same except for the legend of the task, which indicates the role that the task is
coming from.

In roles, we can also define variables and access to the variables defined in the global
scope as well as many other features. As stated earlier, Ansible is big enough to
write an entire book just on it, so we are scratching the surface of the important parts
(under my criteria). As usual, the documentation in Ansible is pretty good, and if you
want to learn more about roles, the information can be found at https://docs.ansible.com/
ansible-container/roles/index.html.

If I can give you some advice regarding Ansible, it would be that you should always
try to use roles. It doesn't matter how big or simple your project is; you will find out
very soon that the isolation and reusability that roles provide at pretty much no cost
are quite beneficial.

https://docs.ansible.com/ansible-container/roles/index.html

Ansible Tower
We have seen an extensive number of features from Ansible that are very useful to
any DevOps engineer wanting to automate tasks in any IT department.

There is one design challenge with Ansible, and it is the fact that the playbooks are
run from your own computer against remote servers, as shown in the following
figure:

This can be a problem because as you are aware by now, Ansible uses secrets
(ansible-vault secrets) and, potentially, some sensible information that can be
intercepted or stolen from a workstation. This is not a problem in Chef or Puppet as
they follow the bastion host approach, but it might be a problem for companies to
choose Ansible.

One of the solutions for it comes from Red Hat with the name Ansible Tower. This
software gets installed in your IT infrastructure (in this case, Google Cloud Platform)
and offers a UI to be operated in the same way as if a CI server was, enabling the
role access control to Ansible playbooks as well as a security layer that is not present
in plain Ansible: the secrets are kept in a server (Ansible Tower) inside your
infrastructure and they never leave it.

Ansible Tower offers all the features present in Ansible so that you don't need to
rewrite any playbook,; just adjust them to the new infrastructure geometry.

Let's take a look at the following figure:

As you can see, now our Ansible host is inside of our infrastructure; therefore, it can
be operated through a web interface enhancing the security of our IT operations.

Ansible Tower also offers an API that can be used to build integration points with
our software or CI server.

Ansible Tower is licensed by Red Hat, so if you want to use it in your company, a
license needs to be purchased. At the time of writing this, there are not that many
alternatives in the market and the ones that are available are not as feature-full as
Ansible Tower. Also, the UI (as shown in the next screenshot) is very sleek, which,
even though not a killer, is always something to be considered.

Summary
In this chapter, you learned about the main Ansible features, but obviously, we have
not covered every single possibility, as it would take us a couple of books to master
them. Also, there is another catch here: DevOps tools are evolving constantly.

When you are working on the DevOps side of the IT world, you always need to be
willing to learn new things on the fly.

Ansible was originally created to fully provision VMs in the cloud (and on
premises), but slowly, it is gravitating toward configuration management as more
modern tools, such as Kubernetes or Docker Swarm, are increasing their market
share, leveraging Docker into the full software development life cycle in a
continuous delivery environment.

In the next chapter, you will learn more about Kubernetes and Docker Swarm as they
are the next big things in DevOps. Kubernetes, particularly, is an orchestration tool
that I think will take over all the others in the next few months or years as it offers all
the resources needed by any IT company leveraging the experience that Google has
accumulated through years of running software in containers.

In my opinion, container engines such as Docker are about to surpass the break-even
and become the norm for all the software components and architectures of the main
software companies around the world.

Docker Swarm and Kubernetes -
Clustering Infrastructure
So far, we have seen how powerful Docker is but we have not unleashed the full
potential of containers. You have learned how to run containers on a single host with
the local resources without the possibility of clustering our hardware resources in a
way that allows us to uniformly use them as one big host. This has a lot of benefits,
but the most obvious one is that we provide a middleware between developers and
ops engineers that acts as a common language so that we don't need to go to the ops
team and ask them for a machine of a given size. we just provide the definition of
our service and the Docker clustering technology will take care of it.

In this chapter, we are going to dive deep into deploying and managing applications
on Kubernetes, but we will also take a look at how Docker Swarm works.

People usually tend to see Kubernetes and Docker Swarm as competitors, but in my
experience, they solve different problems:

Kubernetes is focused on advanced microservices topologies that offer all the
potential of years of experience running containers in Google
Docker Swarm offers the most straightforward clustering capabilities for
running applications in a very simple way

In short, Kubernetes is more suited for advanced applications, whereas Docker
Swarm is a version of Docker on steroids.

This comes at a cost: managing a Kubernetes cluster can be very hard, whereas
managing a Docker Swarm cluster is fairly straightforward.

There are other clustering technologies that are used in the current DevOps
ecosystem, such as DC/OS or Nomad, but unfortunately, we need to focus on the
ones that are, in my opinion, the most suited for DevOps and focus specifically on
Kubernetes that, in my opinion, is eating the DevOps market.

Why clustering ?
In Chapter 1, DevOps in the Real World, you learned about organizational alignment
and why is important to shift roles in a company to accommodate DevOps tools. It is
not okay anymore to just be a developer or a sysadmin; now you need to be a full
stack DevOps engineer in order to get success in any project. Full stack DevOps
means that you need to understand the business and the technology used in the
organisation. Think about it; if you became a civil engineer instead of an IT
engineer, it is mandatory to know the local rules (the business) plus the commercial
names of the tools used to build roads and bridges (the technology) but also be able
to coordinate their building (ops). Maybe not every engineer needs to know
everything but they need to be aware of in the full picture in order to ensure the
success of the project.

Coming back to containers and DevOps, making concepts simple for everyone to
understand is something that's mandatory nowadays. You want to ensure that all the
engineers in your project are able to trace the software from conception
(requirements) to deployment (ops) but also have in mind predictability so that the
business people that barely speak tech are able to plan strategies around the products
that you build.

One of the keys to achieving the flow described here is predictability, and the way to
achieve predictability is making uniform and repeatable use of your resources. As
you learned earlier, cloud data centers such as Amazon Web Services or Google
Cloud Platform provide us with a virtually unlimited pool of resources that can be
used to build our systems in a traditional way:

Define the size of the VMs
Provision VMs
Install the software
Maintain it

Or, if we want to draw a diagram so we can understand it better, it would be similar
to the next one:

Here are a few considerations:

Clear separation between Development and Operations (this may vary
depending on the size of your company
Software components owned by Development and deployments and
configuration owned by Operations
Some servers might be relatively underutilized (Server 1) and on a very low
load

This has been the picture for 40 odd years of software development, and it is still the
picture if we are running Docker containers, but there are few problems in it:

If a problem arises in Component 3 in production, who is responsible for it?
If there is a configuration mismatch, who will fix it if developers are not
supposed to see what is going on in production?
Server 1 is running a software component that might be called only once or
twice a day (imagine an authentication server for workstations); do we need a
full VM just for it?
How do we scale our services in a transparent manner?

These questions can be answered, but usually, they get an answer too late in the
game plus "the hidden requirements" are only seen once the problems arise at the
worst possible time:

Service discovery
Load balancing
Self-healing infrastructure

Circuit breaking

During college years, one of the things in common across all the different subjects
was reusability and extensibility. Your software should be extensible and reusable so
that we can potentially build libraries of components creating the engineering sweet
spot (not just software development): build once, use everywhere.

This has been completely overlooked in the operations part of the software
development until recent years. If you get a job as a Java developer in a company,
there is a set of accepted practices that every single Java developer in the world
knows and makes use of so you can nearly hit the ground running without too many
problems (in theory). Now let's raise a question: if all the Java apps follow the same
practices and set of common patterns, why does every single company deploy them
in a different way?

A continuous delivery pipeline has the same requirements in pretty much every
company in the IT world, but I have seen at least three different ways of organizing
it with a huge amount of custom magic happening that only one or two people within
the company know of.

Clusters are here to save us. Let's reshuffle the image from before:

In this case, we have solved few of our problems:

Now development and ops are connected via a middleware: the cluster.
Components can be replicated (refer to component 1 and component 1') without
provisioning extra hardware.
DevOps engineers are the glue between the two teams (development and ops),
making things happen at a fast pace.
The stability of the full system does not depend on a single server (or
component) as the cluster is built in a way that can accept some level of failure
by just degrading performance or taking down the less critical services: it is
okay to sacrifice e-mailing in order to keep the accounting processes of the
company running.

And about the hidden requirements. Well, this is where we need to make a decision
about which clustering technology we want to use as they approach the service
discovery, load balancing, and auto-scaling from different angles.

Docker Swarm
As we have seen in previous chapters, Docker is a fantastic tool that follows the most
modern architectural principles used for running applications packed as containers.
In this case, Docker Swarm runs only Docker containers, ignoring other technologies
that, at the moment, are not suitable for production, such as Rkt. Even Docker is
quite new to the scene up to a point that some companies hesitate in deploying it in
their production systems, as there is not so much expertise in the market as well as
many doubts about security or how Docker works in general.

Docker Swarm is the clustered version of Docker, and it solves the problem
described in the previous section in a very simple manner: pretty much all the docker
commands that you learned in the Docker chapter works in Docker Swarm so that
we can federate our hardware without actually taking care of the hardware itself. Just
add nodes to the pool of resources and Swarm will take care of them, leveraging the
way we build our systems to purely containers.

Docker Swarm is not something that we need to install aside from the Docker
engine: it comes embedded into it and it is a mode rather than a server itself.

Docker Swarm is evolving quite quickly and it is dragging Docker itself along as
more and more features are being baked into it due to its usage in the Swarm mode.
The most interesting part of this is how we can leverage our Docker knowledge into
it without any extra as the swarm mode of our Docker engine takes care of the
resources.

This is also a problem: we are limited by the Docker API, whereas with Kubernetes
(we will come back to it in a second), we are not only limited by the Docker API, but
we can also extend the Kubernetes API to add new objects to fulfill our needs.

Docker Swarm can be operated through docker-compose (up to a certain extent), which
provides a decent approach to infrastructure as code but is not very comprehensive
when our application is somehow complex.

In the current IT market, Kubernetes seems to be the clear winner of the
orchestration battle, and as such, we are going to focus on it, but if you want to learn
more about Docker Swarm, the official documentation can be found at https://docs.doc
ker.com/engine/swarm/.

https://docs.docker.com/engine/swarm/

Kubernetes
Kubernetes is the jewel of the crown of the containers orchestration. The product
itself was vamped by Google leveraging years of knowledge on how to run
containers in production. Initially, it was an internal system used to run Google
services, but at some point, it became a public project. Nowadays, it is an open
source project maintained by few companies (Red Hat, Google, and so on) and is
used by thousands of companies.

At the time of writing this, the demand for Kubernetes engineers has skyrocketed up
to a point that companies are willing to hire people without expertise in the field but
with a good attitude to learn new technologies.

Kubernetes has become so popular due to, in my opinion, the following factors:

It solves all the deployment problems
It automates micro services' operations
It provides a common language to connect ops and development with a clean
interface
Once it is setup, it is very easy to operate

Nowadays, one of the biggest problems in companies that want to shorten the
delivery life cycle is the red tape that has grown around the delivery process.
Quarter releases are not acceptable anymore in a market where a company of five
skilled engineers can overtake a classic bank due to the fact that they can cut the red
tape and streamline a delivery process that allows them to release multiple times a
day.

One of my professional activities is to speak at conferences (meet-ups in Dublin,
RebelCon in Cork, Google Developer Groups (GDGs) in multiple places, Google
IO Extended) and I always use the same words in all the talks: release management
should stop being a big bang event that stops the world for three hours in order to
release a new version of your company's application and start being a painless
process that can be rolled back at any time so that we remove the majority of the
stress from it by providing the tools to manage a faulty release.

This (not just this, but mainly this) is Kubernetes: a set of tools and virtual objects
that will provide the engineers with a framework that can be used to streamline all

the operations around our apps:

Scale up
Scale down
Zero downtime rollouts
Canary deployments
Rollbacks
Secret management

Kubernetes is built in a technology-agnostic way. Docker is the main container
engine, but all the components were designed with interchangeability in mind: once
Rkt is ready, it will be easy to switch to Rkt from Docker, which gives an interesting
perspective to the users as they don't get tied to a technology in particular so that
avoiding vendor locking becomes easier. This applies to the software defined
network and other Kubernetes components as well.

One of the pain points is the steep learning curve for setting it up as well as for using
it.

Kubernetes is very complex, and being skilled in its API and operations can take any
smart engineer a few weeks, if not months, but once you are proficient in it, the
amount of time that you can save completely pays off all the time spent learning it.

On the same way, setting up a cluster is not easy up to a point that companies have
started selling Kubernetes as a service: they care about maintaining the cluster and
you care about using it.

One of the (once again, in my opinion) most advanced providers for Kubernetes is
the Google Container Engine (GKE), and it is the one that we are going to use for
the examples in this book.

When I was planning the contents of this chapter, I had to make a decision between
two items:

Setting up a cluster
Showing how to build applications around Kubernetes

I was thinking about it for a few days but then I realized something: there is a lot of
information and about half a dozen methods to set up a cluster and none of them are
official. Some of them are supported by the official Kubernetes GitHub repository,
but there is no (at the time of writing this) official and preferred way of setting up a

Kubernetes instance either on premises or in the cloud, so the method chosen to
explain how to deploy the cluster might be obsolete by the time this book hits the
market. The following options are the most common ways of setting up a Kubernetes
cluster currently:

Kops: The name stands for Kubernetes operations and it is a command-line
interface for operating clusters: creating, destroying, and scaling them with a
few commands.
Kubeadm: Kubeadm is alpha at the moment and breaking changes can be
integrated at any time into the source code. It brings the installation of
Kubernetes to the execution of a simple command in every node that we want to
incorporate to the cluster in the same way as we would do if it was Docker
Swarm.
Tectonic: Tectonic is a product from CoreOS to install Kubernetes in a number
of providers (AWS, Open Stack, Azure) pretty much painlessly. It is free for
clusters up to nine nodes and I would highly recommend that, at the very least,
you play around it to learn about the cluster topology itself.
Ansible: Kubernetes' official repository also provides a set of playbooks to
install a Kubernetes cluster on any VM provider as well as on bare metal.

All of these options are very valid to set up a cluster from scratch as they automate
parts of Kubernetes architecture by hiding the details and the full picture. If you
really want to learn about the internals of Kubernetes, I would recommend a guide
written by Kelsey Hightower called Kubernetes the hard way, which basically shows
you how to set up everything around Kubernetes, from the etcd cluster needed to
share information across nodes to the certificates used to communicate with kubectl,
the remote control for Kubernetes. This guide can be found at https://github.com/kelseyh
ightower/kubernetes-the-hard-way.

And it is maintained and up to date with new versions of Kubernetes.

As you can guess from this explanation, in this chapter, you are going to learn about
the architecture of Kubernetes, but mainly, we will focus on how to deploy and
operate applications on Kubernetes so that by the end of this chapter, we have a good
understanding of how we can benefit from an already running cluster.

https://github.com/kelseyhightower/kubernetes-the-hard-way

Kubernetes logical architecture
The first problem that you will find once you start playing with Kubernetes is
creating a mental map on how and where everything runs in Kubernetes as well as
how everything is connected.

In this case, it took me few weeks to fully understand how it all was wiring up, but
once I had the picture in my mind, I drew something similar to what is shown in the
following diagram:

This is Kubernetes on a very high level: a master node that orchestrates the running
of containers grouped in pods across different Nodes (they used to be called minions
but not anymore).

This mental map helps us understand how everything is wired up and brings up a
new concept: the pod. A pod is basically a set of one or more containers running in
orchestration to achieve a single task. For example, think about a cache and a cache
warmer: they can run in different containers but on the same pod so that the cache
warmer can be packed as an individual application. We will come back to this later
on.

With this picture, we are also able to identify different physical components:

Master

Nodes

The master is the node that runs all support services such as DNS (for service
discovery) as well as the API server that allows us to operate the cluster. Ideally,
your cluster should have more than one master, but in my opinion, being able to
recover a master quickly is more important than having a high availability
configuration. After all, if the master goes down, usually, it is possible to keep
everything running until we recover the master that usually is as simple as spawning
a new VM (on the cloud) with the same template as the old master was using.

It is also possible to have a master running with the IP Tables blocking
connections to key ports so that it does not join the cluster and remove
the IP Tables rules once you want the master to become the lead of
your cluster.

The nodes are basically workers: they follow instructions from the master in order to
deploy and keep applications alive as per the specified configuration. They use a
software called Kubelet, which is basically the Kubernetes agent that orchestrates the
communication with the master.

Regarding the networking, there are two layers of network in here:

Hardware network
Software network

The hardware network is what we all know and that is used to interconnect the VMs
on the cluster. It is defined in our cloud provider (AWS, Google Cloud Platform, and
so on), and there is nothing special about it, just bear in mind that ideally, this
network should be a high profile network (Gigabyte Ethernet) as the inter-node
traffic can be quite high.

The software network (or Software Defined Network, SDN) is a network that runs
on top of Kubernetes middleware and is shared between all the nodes via etcd,
which is basically a distributed key value storage that is used by Kubernetes as a
coordination point to share information about several components.

This SDN is used to interconnect the pods: the IPs are virtual IPs that do not really
exist in the external network and only the nodes (and master) know about. They are
used to rout the traffic across different nodes so that if an app on the node 1 needs to
reach a pod living in the Node 3, with this network, the application will be able to
reach it using the standard http/tcp stack. This network would look similar to what is

shown in the following figure:

Let's explain this a bit:

The addresses on the network 192.168.0.0/16 are the physical addresses. They
are used to interconnect the VMs that compound the cluster.
The addresses on the network 10.0.0.0/24 are the software defined network
addresses. They are not reachable from outside the cluster and only the nodes
are able to resolve these addresses and forward the traffic to the right target.

Networking is a fairly important topic in Kubernetes, and currently, the most
common bottleneck in performance is that traffic forwarding is common across
nodes (we will come back to this later on in this chapter), and this causes extra inter-
node traffic that might cause a general slowdown of the applications running in
Kubernetes.

In general and for now, this is all we need to know about the Kubernetes
architecture. The main idea behind Kubernetes is to provide a uniform set of
resources that can be used as a single computing unit with easy zero downtime

operations. As of now, we really don't know how to use it, but the important thing is
that we have a mental model of the big picture in a Kubernetes cluster.

Setting up a cluster in GCP
The first thing we need to start playing with in Kubernetes is a cluster. There are
several options, but we are going to use GKE as we have already signed for the trial
and there should be enough credit in there for going through the full book.

Another option if you did not sign for the trial on GCP is Minikube. Minikube is an
out-of-the-box, easy-to-install local cluster that runs on VMs and is a very good tool
for experimenting with new features without being afraid of breaking something.

The Minikube project can be found at https://github.com/kubernetes/minikube.

Its documentation is fairly comprehensive.

In order to create a cluster in GCP, the first thing we need to do is open the container
engine in the online console in GCP that will show something similar to what is
shown in the following screenshot:

This means that you have no clusters at the moment. Click on the Create a container

https://github.com/kubernetes/minikube

cluster button and fill in the following form:

Just a few considerations here:

Give a comprehensive name to the cluster. In my case, I named it testing-
cluster.
Choose a zone that is close to you geographically, in my case, europe-west1-c.
Regarding the cluster version, choose the default one. This is the version of
Kubernetes that you want your cluster to run. It can be seamlessly upgraded
later. Also, be aware that Kubernetes releases a new version every 2 months
(apporximately), so by the time you are reading this book, it is most likely that
there will be a more modern version available.
The machine type should also be the standard one (1 vCPU 3.75 GB of RAM).
Size is the number of machines that we want to use in our cluster. Three is a
good number for testing and it can also be increased (or decreased later on).

Everything else should be default. Auto-upgrade and auto-repair are beta
functionalities that I would hesitate to use in a production cluster yet. These two
options allow GCP to take actions if there is a new version of Kubernetes available
or one of the nodes breaks for some reason.

Once the form is completed click on Create Cluster, and that is everything. Now
Google is provisioning a cluster for us. In order to check what is going on, open the
tab of the Compute Engine in the GCP and you should see something similar to what
is shown in the following screenshot:

Three machines have been created in the compute engine with the prefix "gke-",
which means that they belong to the GKE, K is for Kubernetes. They are regular
machines, and there's nothing special about them aside from the fact that Google has
provisioned all the software required to set up a Kubernetes Node, but where is the
master?

Here is the interesting thing about running Kubernetes in Google Cloud Platform:
they look after your master so there is no need to worry about the high availability or
upgrading it as it is done automatically.

The master of our cluster is hosting one of the key components of our whole cluster:
the API server. All the operations in Kubernetes are done via the API server with a
component called kubectl. Kubectl stands for Kubernetes Control and is basically a
terminal program that you can install on your local machine (or in a continuous
integration server), add the configuration for a given cluster, and start issuing
commands to our cluster.

First, we are going to install kubectl. In the previous chapters, we already installed

the Google Cloud SDK (gcloud command), which can be used to install kubectl with
the following command:

gcloud components install kubectl

And that's it. Now we can use kubectl in our system as if it was any other command,
but we need to add our cluster configuration. As of now, kubectl is not configured to
operate our cluster, so the first thing we need to do is fetch the required
configuration. Google Cloud Platform makes it very easy. If you open the Google
Container Engine tab, it now should look similar to the following one:

As you can see, there is a button called Connect on the right-hand side of the screen.
By clicking on it, you will be presented with the following form:

The date in the form will be slightly different (as the name of your cluster and
project will be different), but there are two commands presented in there:

A gcloud command to get the configuration of our Kubernetes cluster in our
local machine
A kubectl command to start the proxy into the Kuberentes Dashboard UI

The first command is easy. Just execute it:

gcloud container clusters get-credentials testing-cluster --zone europe-west1-c --project david-on-microservices

And the output will be similar to the following one:

Fetching cluster endpoint and auth data.
kubeconfig entry generated for testing-cluster.

So, what happened here is that gcloud fetched the configuration and installed it
locally for us to operate the cluster. You can try this by running the following
command:

kubectl get nodes

This will output the list of nodes in your cluster. Kubectl is a very extensive
command-line tool. With it, we can do pretty much anything inside the cluster, as we
will learn in the rest of this chapter.

The second command in the preceding screenshot is used to start a proxy in
Kubernetes:

kubectl proxy

This will output the following:

Starting to serve on 127.0.0.1:8001

Let's explain what happened here. Kubernetes makes heavy usage of client
certificates. In order to communicate with the master, our machine needs to proxy
the requests sending the certificate to validate them.

So, if we browse to the URL in the preceding screenshot now,
http://localhost:8001/ui, we get presented with the Kubernetes dashboard:

The dashboard is basically a nice way of presenting all the information of our
running cluster to the end users. It is also possible to operate the cluster up to a
certain extent from the dashboard, but my recommendation will be to master kubectl
as it is way more powerful. On the dashboard, we can see a lot of information, such
as the state of the nodes, the items deployed into the cluster (Pods, Replica Sets,
Daemon Sets, and so on), and the namespaces as well as many other elements.

Explore around a bit and get yourself familiar with the dashboard as it is a nice tool
to actually see things happening in your cluster.

Kubernetes divides the workloads into namespaces. A namespace is a virtual cluster
that allows the engineers to segregate resources (up to a point) across different
teams. It is also used by Kubernetes to run its own internal components. This is
important because Kubernetes spreads the key components across different nodes to
ensure high availability. In this case, we have three components that are running on
every node:

The Kubernetes dashboard
Kubernetes proxy (kube-proxy)

Kubernetes DNS (kube-dns)

The Kubernetes dashboard is what we just have seen: a user interface to represent the
information within the Kubernetes cluster.

Kubernetes proxy is a proxy that the nodes use to resolve IP addresses in the SDN
from Pods addresses to node addresses so that the cluster is able to redirect the traffic
to the right Node.

The Kubernetes DNS is basically a load balancing and service discovery mechanism.
In the next section, you will learn about the building blocks that we can use for
deploying applications to Kubernetes. In particular, Services are strongly coupled
with this DNS service in a way that in order to locate an application within
Kubernetes, we just need to know its name and the configuration of the Service that
groups the Pods compounding the given application.

The fact that we are running these components in every node enables Kubernetes to
enter into an autopilot mode in case of a master going down: applications will
continue working (in the majority of the cases) even without a master, so losing a
master is not a catastrophic event.

Once we have configured kubectl in our machines, it is time to learn about the
building blocks that we can use in Kubernetes in order to build extremely robust
applications.

Kubernetes building blocks
In the preceding section, you learned about the cluster topology, but now we need
the tools to run applications on it. We have already introduced one of the Kubernetes
building blocks: the Pod. In this section, we are going to look at some of the most
important API objects (building blocks) that Kubernetes provide in order to build our
applications.

When I started learning Kubernetes, I was working in the second company that was
deploying applications in a continuous delivery way, and I always had a question in
mind: why are different companies trying to solve the same problem in different
ways?

Then I realized why: The element missing was the domain-specific language for
continuous delivery. The lack of a common standard and well understood way of
rolling out applications was preventing them to work efficiently and deliver value
early in the chain. Everybody knows what a load balancer is or a proxy or many
other elements that are involved in the deployment of a new version of an app, but
the way people uses the in, say, imaginative ways is where the problem lies. If you
hire a new engineer, their previous knowledge of continuous delivery becomes
obsolete as they need to learn your way of doing things.

Kubernetes solves this problem with a set of objects (Pods, ReplicaSets,
DameonSets, and so on) that are described in YAML files (or JSON). Once we finish
this section, we will already have enough knowledge to be able to, from the YAML
or JSON files defining our resources, build a diagram about what the system looks
like. These files, alongside the Docker images, are enough for Kubernetes to run our
system, and we will look at a few examples.

Pods
Pods are the most basic element of the Kubernetes API. A Pod basically is a set of
containers that work together in order to provide a service or part of it. The concept
of Pod is something that can be misleading. The fact that we can run several
containers working together suggests that we should be sticking the frontend and
backend of our application on a single pod as they work together. Even though we
can do this, it is a practice that I would strongly suggest you avoid. The reason for
this is that by bundling together the frontend and the backend, we are losing a lot of
flexibility that Kubernetes is providing us with, such as autoscaling, load balancing,
or canary deployments.

In general, pods contain a single container and it is, by far, the most common use
case, but there are few legitimate use cases for multi-container pods:

Cache and cache warmer
Precalculating and serving HTML pages
File upload and file processing

As you can see, all of these are activities that are strongly coupled together, but if the
feeling is that the containers within a pod are working toward different tasks (such as
backend and frontend), it might be worth placing them in different Pods.

There are two options for communication between containers inside a pod:

Filesystem
Local network interface

As Pods are indivisible elements running on a single machine, volumes mounted in
all the containers of a pod are shared: files created in a container within a pod can be
accessed from other containers mounting the same volume.

The local network interface or loopback is what we commonly know as localhost.
Containers inside a pod share the same network interface; therefore, they can
communicate via localhost (or 127.0.0.1) on the exposed ports.

Deploying a pod
As mentioned earlier, Kubernetes relies heavily on Yet Another Markup Language
(YAML) files to configure API elements. In order to deploy a pod, we need to create
a yaml file, but first, just create a folder called deployments, where we are going to
create all the descriptors that we will be created on this section. Create a file called
pod.yaml (or pod.yml) with the following content:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 name: nginx
spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80
 resources:
 requests:
 memory: "64Mi"
 cpu: "250m"

As you can see, the preceding yaml is fairly descriptive, but some points need
clarification:

apiVersion: This is the version of the Kubernetes API that we are going to use to
define our resource (in this case, pod). Kuberentes is a living project that
evolves very quickly. The version is the mechanism used to avoid deprecating
resources with new releases. In general, Kuberentes works with three branches:
alpha, beta, and stable. In the preceding case, we are using the stable version.
More information can be found at https://kubernetes.io/docs/concepts/overview/kuberne
tes-api/.
metadata: In this section, we are defining one of the most powerful discovery
mechanisms that I have ever seen: the pattern matching. The section label,
specifically, will be used later on to expose pods with certain labels to the outer
world.
spec: This is where we define our container. In this case, we are deploying an
nginx instance so that we can easily see how everything works without focusing
too much on the application itself. As expected, the image and the exposed port
have been specified. We have also defined the CPU and memory limitations for

https://kubernetes.io/docs/concepts/overview/kubernetes-api/

this Pod, so we prevent an outbreak in resource consumption (note that the
YAML file is requesting the resources; they might not be available so the pod
will operate with lower profile resources).

This is the simplest configuration for an item that we can create in Kubernetes. Now
it's time to deploy the resource in our cluster:

kubectl apply -f pod.yml

This will produce an output similar to the following one:

pod "nginx" created.

Disclaimer: there are several ways of creating a resource, but in this book, I will use
apply as much as possible. Another possibility would be to use create:

kubectl create -f pod.yml

The advantage that apply has over create is that apply does a three-way diff between
the previous version, the current version, and the changes that you want to apply and
decides how is best to update the resource. This is letting Kubernetes do what it does
best: automate container orchestration.

With create, Kubernetes does not save the state of the resource, and if we want to run
apply afterward in order to gracefully change the state of a resource, a warning is
produced:

Warning: kubectl apply should be used on resource created by either kubectl create --save-config or kubectl apply
pod "nginx" configured

This means that we can push our system to an unstable state for few seconds, which
might not be acceptable depending on your use case.

Once we have applied our YAML file, we can use kubectl to see what is going on in
Kubernetes. Execute the following command:

kubectl get pods

This will output our pod:

We can do this for other elements of our cluster, such as the nodes:

kubectl get nodes

And this will output the following:

The kubectl get works for all the workflows in Kubernetes and the majority of the
API objects.

Another way of seeing what is going on in Kubernetes is using the dashboard. Now
that we have created a pod, open the dashboard at http://localhost:8001/ui and
navigate to the pods section on the left-hand side.

Remember that in order to access the dashboard, first, you need to
execute kubectl proxy on a Terminal.

There; you will see the list of the current deployed pods, in this case, just nginx.
Click on it and the screen should look very similar to what is shown here:

Here, we get a ton of information, from the memory and CPU that the pod is
consuming to the node where it is running and a few other valuable items, such as
the annotations applied to the pod. We can get this using the 'describe' command of
kubectl, as follows:

kubectl describe pod nginx

Annotations are a new concept and are the data around our API element, in this case,
our pod. If you click on Last applied configuration in the Details section, you can see
the data from the YAML file, as shown in the following screenshot:

And this relates to the three-way diff that was explained earlier and is used by
Kubernetes to decide the best way of upgrading a resource without getting into an
inconsistent state.

As of now, our pod is running in Kubernetes but is not connected to the outer world;
therefore, there is no way to open a browser and navigate to the nginx home page
from outside the cluster. One thing that we can do is open a remote session to a bash
Terminal in the container inside the pod in a manner similar to what we would do
with Docker:

kubectl exec -it nginx bash

And we are in. Effectively, we have gained access to a root terminal inside our
container and we can execute any command. We will use this functionality later on.

Once we have seen how pods work, you might have a few questions abound what
Kubernetes is supposed to do:

How can we scale pods?

How can we roll out new versions of an application?
How can we access our application?

We will answer all these questions, but first, we need to know other 'building blocks'.

Replica Sets
So far, we know how to deploy applications in pods. The sole concept of pod is very
powerful, but it lacks robustness. It is actually impossible to define scaling policies
or even make sure that the pods remain alive if something happens (such as a node
going down). This might be okay in some situations, but here is an interesting
question. If we are biting the bullet on the overhead of maintaining a Kubernetes
cluster, why don't we take the benefits of it?

In order to do that, we need to work with Replica Sets. A Replica Set is like a traffic
cop in a road full of pods: they make sure that the traffic flows and everything works
without crashing and moving the pods around so that we make the best use of the
road (our cluster, in this case).

Replica Sets are actually an update of a much older item: the Replication Controller.
The reason for the upgrade is the labeling and selecting of resources, which we will
see visit when we dive deep into the API item called Service.

Let's take a look at a Replica Set:

apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
 name: nginx-rs
spec:
 replicas: 3
 template:
 metadata:
 labels:
 app: nginx
 tier: frontend
 spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 requests:
 cpu: 256m
 memory: 100Mi
 ports:
 - containerPort: 80

Again, this a YAML file that is basically fairly easy to understand but might require
some explanation:

In this case, we have used the extensions API on the version v1beta1. If you
remember from the pod section (previously), Kubernetes has three branches:
stable, alpha, and beta. The complete reference can be found in the official
documentation, and it is very likely to change often as Kubernetes is a vibrant
and always evolving project.
In the spec section is where the important things happen: we have defined a set
of labels for the Replica Set, but we have also defined a pod (in this case, with a
single container) and specified that we want three instances of it (replicas:
three).

Simple and effective. Now we have defined a resource called Replica Set, which
allows us to deploy a pod and keep it alive as per configuration.

Let's test it:

kubectl apply -f replicaset.yml

Once the command returns, we should see the following message:

replicaset "nginx-rs" created

Let's verify it using kubectl:

kubectl get replicaset nginx-rs

As the output of the preceding command, you should see the Replica Set explaining
that there are three desired pods, three actually deployed, and three ready. Note the
difference between current and ready: a pod might be deployed but still not ready to
process requests.

We have specified that our replicaset should keep three pods alive. Let's verify this:

kubectl get pods

No surprises here: our replicaset has created three pods, as shown in the following
screenshot:

We have four pods:

One created in the preceding section
Three created by the Replica Set

Let's kill one of the pods and see what happens:

kubectl delete pod nginx-rs-0g7nk

And now, query how many pods are running:

Bingo! Our replicaset has created a new pod (you can see which one in the AGE
column). This is immensely powerful. We have gone from a world where a pod (an
application) being killed wakes you up at 4 a.m. in the morning to take action to a
world where when one of our application dies, Kubernetes revives it for us.

Let's take a look at what happened in the dashboard:

As you can expect, the Replica Set has created the pods for you. You can try to kill
them from the interface as well (the period icon to the very right of every pod will
allow you to do that), but the Replica Set will re-spawn them for you.

Now we are going to do something that might look like it's from out of this world:
we are going to scale our application with a single command, but first, edit
replicaset.yml and change the replicas field from three to five.

Save the file and execute this:

kubectl apply -f replicaset.yml

Now take a look at the dashboard again:

As you can see, Kubernetes is creating pods for us following the instructions of the
Replica Set, nginx-rs. In the preceding sreenshot, we can see one pod whose icon is
not green, and that is because its status is Pending, but after a few seconds, the status
becomes Ready, just like any other pod.

This is also very powerful, but there is a catch: who scales the application if the load
spike happens at 4 a.m. in the morning? Well, Kubernetes provides a solution for
this: Horizontal Pod Autoscalers.

Let's execute the following command:

kubectl autoscale replicaset nginx-rs --max=10

With the preceding command, we have specified that Kubernetes should attach a
Horizontal Pod Autoscalers to our Replica Set. If you browse the Replica Set in the
dashboard again, the situation has changed dramatically:

Let's explain what happened here:

We have attached an Horizontal Pod Autoscalers to our Replica Set: minimum 1
pod, maximum 10, and the trigger for creating or destroying pods is the CPU
utilization going over 80% on a given pod.
The Replica Set has scaled down to one pod because there is no load on the
system, but it will scale back to up to 10 nodes if required and stay there for as
long as the burst of requests is going on and scale back to the minimum
required resources.

Now this is actually the dream of any sysadmin: no-hassle autoscaling and self-
healing infrastructure. As you can see, Kubernetes starts making sense altogether,
but there is one thing disturbing in the autoscaler part. It was a command that we ran
in the terminal, but it is captured nowhere. So how can we keep track of our
infrastructure (yes, an Horizontal Pod Autoscaler is part of the infrastructure)?

Well, there is an alternative; we can create a YAML file that describes our
Horizontal Pod Autoscaler:

apiVersion: autoscaling/v1

kind: HorizontalPodAutoscaler
metadata:
 name: nginx-hpa
spec:
 maxReplicas: 10
 minReplicas: 1
 scaleTargetRef:
 kind: ReplicaSet
 name: nginx-rs
 targetCPUUtilizationPercentage: 80

First, from the dashboard, remove HorizontalPodAutoscaler created from the previous
example. Then, write the preceding content into a file called
horizontalpodautoscaler.yml and run the following command:

kubectl apply -f horizontalpodautoscaler.yml

This should have the same effect as the autoscale command but with two obvious
benefits:

We can control more parameters, such as the name of the HPA, or add metadata
to it, such as labels
We keep our infrastructure as code within reach so we know what is going on

The second point is extremely important: we are in the age of the infrastructure as
code and Kubernetes leverages this powerful concept in order to provide traceability
and readability. Later on, in Chapter 8, Release Management – Continuous Delivery,
you will learn how to create a continuous delivery pipeline with Kubernetes in a very
easy way that works on 90% of the software projects.

Once the preceding command returns, we can check on the dashboard and see that
effectively, our Replica Set has attached an Horizontal Pod Autoscaler as per our
configuration.

Deployments
Even though the Replica Set is a very powerful concept, there is one part of it that
we have not talked about: what happens when we apply a new configuration to a
Replica Set in order to upgrade our applications? How does it handle the fact that we
want to keep our application alive 100% of the time without service interruption?

Well, the answer is simple: it doesn't. If you apply a new configuration to a Replica
Set with a new version of the image, the Replica Set will destroy all the Pods and
create newer ones without any guaranteed order or control. In order to ensure that
our application is always up with a guaranteed minimum amount of resources
(Pods), we need to use Deployments.

First, take a look at what a deployment looks like:

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 0
 maxSurge: 1
 replicas: 3
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 requests:
 cpu: 256m
 memory: 100Mi
 ports:
 - containerPort: 80

As you can see, it is very similar to a Replica Set, but there is a new section:
strategy. In strategy, we are defining how our rollout is going to work, and we have
two options:

RollingUpdate

Recreate

RollingUpdate is the default option as it seems the most versatile in modern 24/7
applications: It coordinates two replica sets and starts shutting down pods from the
old replica set at the same time that it is creating them in the new Replica Set. This is
very powerful because it ensures that our application always stays up. Kubernetes
decides what is best to coordinate the pods' rescheduling, but you can influence this
decision with two parameters:

maxUnavailable

maxSurge

The first one defines how many pods we can loose from our Replica Set in order to
perform a rollout. As an example, if our Replica Set has three replicas, a rollout with
the maxUnavailable value of 1 will allow Kubernetes to transition to the new Replica
Set with only two pods in the status Ready at some point. In this example,
maxUnavailable is 0; therefore, Kubernetes will always keep three pods alive.

MaxSurge is similar to maxUnavailable, but it goes the other way around: it defines
how many pods above the replicas can be scheduled by Kubernetes. In the preceding
example, with three replicas with maxSurge set on 1, the maximum amount of pods at a
given time in our rollout will be 4.

Playing with these two parameters as well as the replicas' number, we can achieve
quite interesting effects. For example, by specifying three replicas with maxSurge 1
and maxUnavailable 1, we are forcing Kubernetes to move the pods one by one in a
very conservative way: we might have four pods during the rollout, but we will
never go below three available pods.

Coming back to the strategies, Recreate basically destroys all the pods and creates
them again with the new configuration without taking uptime into account. This
might be indicated in some scenarios, but I would strongly suggest that you use
RollingUpdate when possible (pretty much always) as it leads to smoother
deployments.

It is also possible to attach a Horizontal Pod Autoscaler to a Deployment in the same
way that we would do with a Replica Set.

Let's test our deployment. Create a file called deployment.yml and apply it to our
cluster:

kubectl apply -f deployment.yml --record

Once the command returns, we can go to the Kubernetes dashboard
(localhost:8001/ui with the proxy active) and check what happened in the
Deployments section in the menu on the left-hand side:

We have a new Deployment called nginx-deployment, which has created a Replica Set
that also contains the specified pods. In the preceding command, we have passed a
new parameter: --record. This saves the command in the rollout history of our
deployment so that we can query the rollout history of a given deployment to see the
changes applied to it. In this case, just execute the following:

kubectl rollout history deployment/nginx-deployment

This will show you all the actions that altered the status of a deployment called
nginx-deployment. Now, let's execute some change:

kubectl set image deployment/nginx-deployment nginx=nginx:1.9.1

We have used kubectl to change the version of the nginx container back to version
1.9.1 (kubectl is very versatile; the official documentation offers shortcuts for pretty
much everything), and a few things happened. The first one is that a new Replica Set
has been created and the pods have been moved over to it from the old replica set.
We can verify this in the Replica Sets section of the menu on the left-hand side of
the dashboard:

As you can see, the old replica set has 0 pods, whereas the new one that took over
has three pods. This all happened without you noticing it, but it is a very clever
workflow with a lot of work from the Kubernetes community and the companies
behind it.

The second thing that happened was that we have a new entry in our rollout history.
Let's check it out:

kubectl rollout history deployment/nginx-deployment

Which one should produce an output similar to the following one:

Now we have two entries that describe the changes applied to our deployment.

If you have been into IT for few years, by now, you have reached the conclusion that
a rollback strategy is always necessary because bugs flowing into production are the
reality no matter how good our QA is. I am a big fan of building the systems in a
way that deployments are unimportant events (from a technical point of view), as
shown with Kuberentes, and the engineers always have an easy way out if things
start to fail in production. Deployments offer an easy rollback if something goes
wrong:

kubectl rollout undo deployment/nginx-deployment

Execute the preceding and browse back to the dashboard on the Replica Sets section
again:

That's right. In a matter of seconds, we have gone from instability (a broken build) to
the safety of the old known version without interrupting the service and without
involving half of the IT department: a simple command brings back the stability to
the system. The rollback command has a few configurations, and we can even select
the revision where we want to jump to.

This is how powerful Kubernetes is and this is how simple our life becomes by using
Kubernetes as the middleware of our enterprise: a modern CD pipeline assembled in
a few lines of configuration that works in the same way in all the companies in the
world by facilitating command rollouts and rollbacks. That's it...simple and efficient.

Right now, it feels like we know enough to move our applications to Kubernetes, but
there is one thing missing. So far, up until now, we have just run predefined
containers that are not exposed to the outer world. In short, there is no way to reach
our application from outside the cluster. You are going to learn how to do that in the
next section.

Services
Up until now, we were able to deploy containers into Kubernetes and keep them
alive by making use of pods, Replica Sets, and Horizontal Pods Autoscalers as well
as Deployments, but so far, you have not learned how to expose applications to the
outer world or make use of service discovery and balancing within Kubernetes.

Services are responsible for all of the above. A Service in Kubernetes is not an
element as we are used to it. A Service is an abstract concept used to give entity to a
group of pods through pattern matching and expose them to different channels via
the same interface: a set of labels attached to a Pod that get matched against a
selector (another set of labels and rules) in order to group them.

First, let's create a service on top of the deployment created in the previous section:

kind: Service
apiVersion: v1
metadata:
 name: nginx-service
spec:
 selector:
 app: nginx
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80

Easy and straightforward, but there's one detail: the selector section has a hidden
message for us. The selectors are the mechanisms that Kubernetes uses to connect
components via pattern matching algorithms. Let's explain what pattern matching is.
In the preceding Service, we are specifying that we want to select all the Pods that
have a label with the app key and the nginx value. If you go back to the previous
section, you'll understand our deployment has these labels in the pod specification.
This is a match; therefore, our service will select these pods. We can check this by
browsing in the dashboard in the Services section and clicking on nginx-service, but
first, you need to create the service:

kubectl apply -f service.yml

Then, check out the dashboard:

As you can see, there are three pods selected, and they all belong to the deployment
nginx that we created in the preceding section.

Don't remove the deployment from the previous section; otherwise,
there will be no pods to select by our service.

This screen has a lot of interesting information. The first piece of information is that
the service has an IP: this IP is denominated as clusterIP. Basically, it is an IP within
the cluster that can be reached by our pods and other elements in Kubernetes. There
is also a field called Type, which allows us to chose the service type. There are three
types:

ClusterIP

NodePort

LoadBalancer

ClusterIP is what we just created and explained.

NodePort is another type of service that is rarely used in Cloud but is very common on

premises. It allocates a port on all the nodes to expose our application. This allows
Kubernetes to define the ingress of the traffic into our pods. This is challenging for
two reasons:

It generates extra traffic in our internal network as the nodes need to forward
the traffic across to reach the pods (imagine a cluster of 100 nodes that has an
app with only three pods, it is very unlikely to hit the node that is running one
of them).
The ports are allocated randomly so you need to query the Kubernetes API to
know the allocated port.

LoadBalancer is the jewel in the crown here. When you create a service of type
LoadBalancer, a cloud load balancer is provisioned so that the client applications hit
the load balancer that redirects the traffic into the correct nodes. As you can imagine,
for a cloud environment where infrastructure is created and destroyed in matter of
seconds, this is the ideal situation.

Coming back to the previous screenshot, we can see another piece of interesting
information: the internal endpoints. This is the service discovery mechanism that
Kubernetes is using to locate our applications. What we have done here is connect
the pods of our application to a name: nginx-service. From now on, no matter what
happens, the only thing that our apps need to know in order to reach our nginx pods is
that there is a service called nginx that knows how to locate them.

In order to test this, we are going to run an instance of a container called busybox,
which is basically the Swiss army knife of command-line tools. Run the following
command:

kubectl run -i --tty busybox --image=busybox --restart=Never -- sh

The preceding command will present us with a shell inside the container called
busybox running in a pod so we are inside the Kubernetes cluster and, more
importantly, inside the network so that we can see what is going on. Be aware that
the preceding command runs just a pod: no deployment or replica set is created, so
once you exit the shell, the pod is finalized and resources are destroyed.

Once we get the prompt inside busybox, run the following command:

nslookup nginx-service

This should return something similar to the following:

Server: 10.47.240.10
Address 1: 10.47.240.10 kube-dns.kube-system.svc.cluster.local

Name: nginx-service
Address 1: 10.47.245.73 nginx-service.default.svc.cluster.local

Okay, what happened here? When we created a service, we assigned a name to it:
nginx-service. This name has been used to register it in an internal DNS for service
discovery. As mentioned earlier, the DNS service is running on Kubernetes and is
reachable from all the Pods so that it is a centralised repository of common
knowledge. There is another way that the Kubernetes engineers have created in order
to carry on with the service discovery: the environment variables. In the same
prompt, run the following command:

env

This command outputs all the environment variables, but there are few that are
relevant to our recently defined service:

NGINX_SERVICE_PORT_80_TCP_ADDR=10.47.245.73
NGINX_SERVICE_PORT_80_TCP_PORT=80
NGINX_SERVICE_PORT_80_TCP_PROTO=tcp
NGINX_SERVICE_SERVICE_PORT=80
NGINX_SERVICE_PORT=tcp://10.47.245.73:80
NGINX_SERVICE_PORT_80_TCP=tcp://10.47.245.73:80
NGINX_SERVICE_SERVICE_HOST=10.47.245.73

These variables, injected by Kubernetes at creation time, define where the
applications can find our service. There is one problem with this approach: the
environment variables are injected at creation time, so if our service changes during
the life cycle of our pods, these variables become obsolete and the pod has to be
restarted in order to inject the new values.

All this magic happens through the selector mechanism on Kubernetes. In this case,
we have used the equal selector: a label must match in order for a pod (or an object
in general) to be selected. There are quite a few options, and at the time of writing
this, this is still evolving. If you want to learn more about selectors, here is the
official documentation: https://kubernetes.io/docs/concepts/overview/working-with-objects/labe
ls/.

As you can see, services are used in Kubernetes to glue our applications together.
Connecting applications with services allows us to build systems based on
microservices by coupling REST endpoints in the API with the name of the service
that we want to reach on the DNS.

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

Up until now, you have learned how to expose our applications to the rest of our
cluster, but how do we expose our applications to the outer world? You have also
learned that there is a type of service that can be used for this: LoadBalancer. Let's take
a look at the following definition:

kind: Service
apiVersion: v1
metadata:
 name: nginx-service
spec:
 type: LoadBalancer
 selector:
 app: nginx
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80

There is one change in the preceding definition: the service type is now LoadBalancer.
The best way to explain what this causes is by going to the Services section of the
dashboard:

As you can see, our newly created service got assigned an external endpoint. If you
browse it, bingo! The nginx default page is rendered.

We have created two services, nginx-service and nginx-service-lb, of the type
ClusterIP and LoadBalancer, respectively, which both point to the same pods that
belong to a deployment and are managed through a replica set. This can be a bit
confusing, but the following diagram will explain it better:

The preceding diagram is the perfect explanation of what we've built in this section.
As you can see, the load balancer is outside of Kubernetes, but everything else is
inside our cluster as virtual elements of an API.

Other Building Blocks
In the previous sections, you learned the basics needed to deploy applications into
Kubernetes successfully. The API objects that we visited are as follows:

Pod
ReplicaSet
Deployment
Service

In Kubernetes, there are many other building blocks that can be used to build more
advanced applications; every few months, the Kubernetes engineers add new
elements to improve or add functionality.

One example of these additions is the ReplicaSet that was designed to replace
another item called ReplicationController. The main difference between the
ReplicationController and the ReplicaSet is that the latter one has a more advance
semantics label selection for the Pods that were recently re-engineered in
Kubernetes.

As a new product, Kuberentes is constantly changing (in fact, it is possible that by
the time that you read this book, the core elements might have changed), so the
engineers try to keep the compatibility across different versions so that people are
not urged to upgrade in a short period of time.

Other examples of more advanced building blocks are the following:

DaemonSet
PetSets
Jobs and CronJobs
CronJobs

In order to go in deep to the full stack in Kubernetes, we would need a full book (or
more!). Let's visit some of them.

Daemon Sets
Daemon Sets are an API element used to ensure that a Pod is running in all (or
some) nodes. One of the assumptions in Kubernetes is that the pod should not worry
about which node is being run, but that said, there might be a situation where we
want to ensure that we run at least one pod on each node for a number of reasons:

Collect logs
Check the hardware
Monitoring

In order to do that, Kubernetes provides an API element called Daemon Set.
Through a combination of labels and selectors, we can define something called
affinity, which can be used to run our pods on certain nodes (we might have specific
hardware requirements that only a few nodes are able to provide so that we can use
tags and selectors to provide a hint to the pods to relocate to certain nodes).

Daemon Sets have several ways to be contacted, from the DNS through a headless
service (a service that works as a load balancer instead of having a cluster IP
assigned) to the node IP, but Daemon Sets work best when they are the initiators of
the communication: something happens (an event) and a Daemon Set sends an event
with information about that event (for example, a node is running low on space).

PetSets
PetSets are an interesting concept within Kubernetes: they are strong named
resources whose naming is supposed to stay the same for a long term. As of now, a
pod does not have a strong entity within a Kubernetes cluster: you need to create a
service in order to locate a pod as they are ephemeral. Kubernetes can reschedule
them at any time without prior notice for changing their name, as we have seen
before. If you have a deployment running in Kubernetes and kill one of the pods, its
name changes from (for example) pod-xyz to pod-abc in an unpredictable way. so we
cannot know which names to use in our application to connect to them beforehand.

When working with a Pet Set, this changes completely. A pet set has an ordinal
order, so it is easy to guess the name of the pod. Let's say that we have deployed a
Pet Set called mysql, which defines pods running a MySQL server. If we have three
replicas, the naming will be as follows:

mysql-0

mysql-1

mysql-2

So, we can bake this knowledge in our application to reach them. This is suboptimal
but good enough: we are still coupling services by name (DNS service discovery has
this limitation), but it works in all cases and is a sacrifice that is worth paying for
because in return, we get a lot of flexibility. The ideal situation in service discovery
is where our system does not need to know even the name of the application carrying
the work: just throw the message into the ether (the network) and the appropriated
server will pick it up and respond accordingly.

Pet Sets have been replaced in later versions of Kubernetes with another item called
Stateful Set. The Stateful Set is an improvement over the Pet Set mainly in how
Kubernetes manages the master knowledge to avoid a split brain situation: where
two different elements think that they are in control.

Jobs
A Job in Kubernetes is basically an element that spawns the defined number of pods
and waits for them to finish before completing its life cycle. It is very useful when
there is a need to run a one-off task, such as rotating logs or migrating data across
databases.

Cron jobs have the same concept as Jobs, but they get triggered by time instead of a
one-off process.

Both in combination are very powerful tools to keep any system running. If you
think about how we rotate logs without Kubernetes via ssh, it is quite risky: there is
no control (by default) over who is doing what, and usually, there is no review
process in the ssh operations carried by an individual.

With this approach, it is possible to create a Job and get other engineers to review it
before running it for extra safety.

Secrets and configuration management
On Docker in general, as of today, secrets are being passed into containers via
environment variables. This is very insecure: first, there is no control over who can
access what, and second, environment variables are not designed to act as secrets and
a good amount of commercial software (and open source) outputs them into the
standard output as part of bootstrapping. Needless to say, that's rather inconvenient.

Kubernetes has solved this problem quite gracefully: instead of passing an
environment variable to our container, a volume is mounted with the secret on a file
(or several) ready to be consumed.

By default, Kubernetes injects a few secrets related to the cluster into our containers
so that they can interact with the API and so on, but it is also possible to create your
own secrets.

There are two ways to create secrets:

Using kubectl
Defining an API element of type secret and using kubectl to deploy it

The first way is fairly straightforward. Create a folder called secrets in your current
work folder and execute the following commands inside it:

echo -n "This is a secret" > ./secret1.txt
echo -n "This is another secret" > ./secret2.txt

This creates two files with two strings (simple strings as of now). Now it is time to
create the secret in Kubernetes using kubectl:

kubectl create secret generic my-secrets --from-file=./secret1.txt --from-file=./secret2.txt

And that's it. Once we are done, we can query the secrets using kubectl:

kubectl get secrets

This, in my case, returns two secrets:

A service account token injected by the cluster
My newly created secret (my-secrets)

The second way of creating a secret is by defining it in a yaml file and deploying it
via kubectl. Take a look at the following definition:

apiVersion: v1
kind: Secret
metadata:
 name: my-secret-yaml
type: Opaque
data:
 secret1: VGhpcyBpcyBhIHNlY3JldA==
 secret2: VGhpcyBpcyBhbm90aGVyIHNlY3JldA==

First, the values for secret1 and secret2, seem to be encrypted, but they are not; they
are just encoded in base64:

echo -n "This is a secret" | base64
echo -n "This is another secret" | base64

This will return the values that you can see here. The type of the secret is Opaque,
which is the default type of secret, and the rest seems fairly straightforward. Now
create the secret with kubectl (save the preceding content in a file called secret.yml):

kubectl create -f secret.yml

And that's it. If you query the secrets again, note that there should be a new one
called my-secret-yaml. It is also possible to list and see the secrets in the dashboard on
the Secrets link in the menu on left-hand side.

Now it is time to use them. In order to use the secret, two things need to be done:

Claim the secret as a volume
Mount the volume from the secret

Let's take a look at a Pod using a secret:

{
 "apiVersion": "v1",
 "kind": "Pod",
 "metadata": {
 "name": "test-secrets",
 "namespace": "default"
 },
 "spec": {
 "containers": [{
 "name": "pod-with-secret",
 "image": "nginx",
 "volumeMounts": [{
 "name": "secrets",
 "mountPath": "/secrets",
 "readOnly": true

 }]
 }],
 "volumes": [{
 "name": "secrets",
 "secret": {
 "secretName": "my-secret"
 }
 }]
 }
}

So, you have learned a new thing here: kubectl also understands JSON. If you don't
like YAML, it is possible to write your definitions in JSON without any side-effects.

Now, looking at the JSON file, we can see how first, the secret is declared as a
volume and then how the secret is mounted in the path/secrets.

If you want to verify this, just run a command in your container to check it:

kubectl exec -it test-secrets ls /secrets

This should list the two files that we have created, secret1.txt and secret2.txt,
containing the data that we have also specified.

Kubernetes- moving on
In this chapter, you learned enough to run simple applications in Kubernetes, but
even though we cannot claim ourselves to be experts, we got the head start in
becoming experts. Kubernetes is a project that evolves at the speed of light, and the
best thing that you can do to keep yourself updated is follow the project on GitHub at
https://github.com/kubernetes.

The Kubernetes community is very responsive with issues raised by the users and are
also very keen on getting people to contribute to the source code and documentation.

If you keep working with Kubernetes, some help will be required. The official
documentation is quite complete, and even though it feels like it needs a reshuffle
sometimes, it is usually enough to keep you going.

The best way that I've found to learn Kubernetes is by experimenting in Minikube
(or a test cluster) before jumping into a bigger commitment.

https://github.com/kubernetes

Summary
In this chapter, we looked at a good amount of concepts required to deploy an
application on Kubernetes. As mentioned earlier, it is impossible to cover everything
abound Kubernetes in a single chapter, but with the amount of knowledge from this
chapter, we are going to be able to set up a continuous delivery pipeline in the
following chapter in a way that we automate zero downtime deployments without the
big bang effect (the big deployment that stops the world), enabling our organization
to move faster.

Release Management – Continuous
Delivery
Release management has been always the boring part of software development. It is
the discussion where people from different teams (operations, management,
development, and so on) put all the details together to plan how to deploy a new
version of one of the apps from the company (or various others).

This is usually a big event that happens at 4 a.m. in the morning, and it is a binary
event: we either succeed in releasing the new version or we fail and have to roll
back.

Stress and tension are the common denominators in these type of deployments, and
above everything else, we are playing against the statistics.

In this chapter, you are going to learn how to create a continuous delivery pipeline
and deploy a microservices-based system to update it, keeping all the lights on.

We will specifically cover the following topics:

Playing against the statistics
The test system
Setting up a continuous delivery pipeline for images
Setting up Jenkins
Continuous delivery for your application

Playing against the statistics
We have spoken several times about the Big Bang event that a deployment is. This is
something that I always try to avoid when I set up a new system: releases should be
smooth events that can be done at any time without effort and you should be able to
roll back within minutes with little to no effort.

This might be a gigantic task, but once you provide a solid foundation to your
engineers, marvelous things happen: they start being more efficient. If you provide a
solid base that will give them confidence that within a few clicks (or commands) that
they can return the system to a stable state, you will have removed a big part of the
complexity of any software system.

Let's talk about statistics. When we are creating a deployment plan, we are creating a
system configured in series: it is a finite list of steps that will result in our system
being updated:

Copy a JAR file into a server
Stop the old Spring Boot app
Copy the properties files
Start the new Spring Boot app

If any of the steps fail, the whole system fails. This is what we call a series system:
the failure of any of the components (steps) compromises the full system. Let's
assume that every step has a 1% failure ratio. 1% seems quite an acceptable
number...until we connect them in a series. From the preceding example, let's assume
that we have a deployment with 10 steps. These steps have a 1% of failure rate
which is equals to 99% of success rate or 0.99 reliability. Connecting them in a
series means that the whole reliability of our system can be expressed as follows:

(0.99)^10 = 0.9043

This means that our system has a 90.43 percent success rate or, in other words, 9.57
percent failure rate. Things have changed dramatically: nearly 1 in every 10
deployments is going to fail, which, by any means, is quite far from the 1 percent of
the individual steps that we quoted earlier.

Nearly 10 percent is quite a lot for depending on the systems, and it might be a risk
that we are not willing to take, so why don't we work to reduce this risk to an

acceptable level? Why don't we shift this risk to a previous step that does not
compromise production and we reduce our deployment to a simple switch (on/off)
that we can disconnect at any time?

These are two concepts called canary and blue green deployments, and we are going
to study how to use them in Kubernetes so that we reduce the risk of our
deployments failing, as well as the stress of the big bang event that a deployment
means in traditional software development.

The test system
In order to articulate a continuous delivery pipeline, we need a system to play with,
and after some talks and demos, I have developed one that I tend to use, as it has
pretty much no business logic and leaves a lot of space to think about the underlying
infrastructure.

I call the system Chronos, and as you can guess, its purpose is related to the
management of time zones and formats of dates. The system is very simple:

We have three services:

An API aggregator

A service that translates a timestamp into a date in ISO format

A service that translates a timestamp into a date in UTC format

These services work in coordination to translate a timestamp into a date in different
formats, but it is also open to extensions as we can aggregate more services to add
more capabilities and expose them through the API Aggregator.

Every service will be packed into a different Docker image, deployed as a
Deployment in Kubernetes and exposed via Services (externals and internals) to the
cluster and to the outer world in the case of the API Aggregator.

ISO date and UTC date services
The ISO date service simply takes a timestamp and returns the equivalent date using
the ISO format. Let's take a look at its code:

const Hapi = require('hapi')
const server = new Hapi.Server()
const moment = require('moment')

server.connection({port: 3000})

server.route({
 method: 'GET',
 path: '/isodate/{timestamp}',
 handler: (request, reply) => {
 reply({date: moment.unix(request.params.timestamp).toISOString()})
 }
})

server.start((err) => {
 if (err) {
 throw err
 }
 console.log('isodate-service started on port 3000')
})

This service itself is very simple: it uses a library called moment and a framework
called hapi to provide the ISO Date equivalent to a timestamp passed as a URL
parameter. The language used to write the service is Node.js, but you don't need to
be an expert in the language; you should just be able to read JavaScript. As with
every Node.js application, it comes with a package.json that is used to describe the
project and its dependencies:

{
 "name": "isodate-service",
 "version": "1.0.0",
 "description": "ISO Date Service",
 "main": "index.js",
 "scripts": {
 "start": "node index.js"
 },
 "author": "David Gonzalez",
 "license": "ISC",
 "dependencies": {
 "hapi": "^15.2.0",
 "moment": "^2.15.1"
 }
}

Some fields of the package.json are customized, but the important parts are the

dependencies and the scripts sections.

Now, one important file is left; the Dockerfile:

FROM node:latest

RUN mkdir /app/
WORKDIR /app/

COPY . /app/
RUN npm install
EXPOSE 3000

CMD ["npm", "start"]

In order to test our service, let's build the Docker image:

docker build . -t iso-date-service

After a few seconds (or a bit more), our image is ready to use. Just run it:

docker run -it -p 3000:3000 iso-date-service

And that's it. In order to test it, use curl to get some results:

curl http://localhost:3000/isodate/1491231233

This will return a JSON with the ISO Date representation of the timestamp passed as
a URL parameter, as you can see in your terminal.

The UTC date service is very much the same but with different code and a different
interface:

const Hapi = require('hapi')
const server = new Hapi.Server()
const moment = require('moment')
server.connection({port: 3001})

server.route({
 method: 'GET',
 path: '/utcdate/{timestamp}',
 handler: (request, reply) => {
 let date = moment.unix(request.params.timestamp).utc().toISOString().substring(0, 19)
 reply({date: date})
 }
})

server.start((err) => {
 if (err) {
 throw err
 }
 console.log('isodate-service started on port 3001')
})

As you can see, there are some changes:

The port is 3001
The date returned is the UTC date (which is basically the ISO Date without
timezone information)

We also have a Dockerfile, which is the same as for the ISO Date service, and a
package.json, which is as follows:

{
 "name": "utcdate-service",
 "version": "1.0.0",
 "description": "UTC Date Service",
 "main": "index.js",
 "scripts": {
 "start": "node index.js"
 },
 "author": "David Gonzalez",
 "license": "ISC",
 "dependencies": {
 "hapi": "^15.2.0",
 "moment": "^2.15.1"
 }
}

These are minor changes (just the description and name). In total, you should have
these files in the UTC date service:

Dockerfile (the same as ISO Date Service)
index.js with the code from earlier
package.json

If you want to make your life easier, just clone the repository at
git@github.com:dgonzalez/chronos.git so that you have all the code ready
to be executed.

Now in order to test that everything is correct, build the Docker image:

docker build . -t utc-date-service

And then run it:

docker run -it -p 3001:3001 utc-date-service

Once it is started, we should have our service listening on port 3001. You can check
this by executing curl, as follows:

curl http://localhost:3001/utcdate/853123135

This, in a manner similar to ISO Date Service, should return a JSON with the date
but in a UTC format in this case.

Aggregator service
The aggregator service is the microservice that, as the name indicates, aggregates the
other two (or more) services and provides a front API for consumers so that all the
logic behind the scenes gets encapsulated. Even though it is not perfect, this is a
common pattern because it allows us to play with the idea of circuit breaking as well
as manage the errors on a dedicated layer.

In our case, the service is quite simple. First, let's take a look at the code:

const Hapi = require('hapi')
const server = new Hapi.Server()
let request = require('request')

server.connection({port: 8080})

server.route({
 method: 'GET',
 path: '/dates/{timestamp}',
 handler: (req, reply) => {
 const utcEndpoint = `http://utcdate-service:3001/utcdate/${req.params.timestamp}`
 const isoEndpoint = `http://isodate-service:3000/isodate/${req.params.timestamp}`
 request(utcEndpoint, (err, response, utcBody) => {
 if (err) {
 console.log(err)
 return
 }
 request(isoEndpoint, (err, response, isoBody) => {
 if (err) {
 console.log(err)
 return
 }
 reply({
 utcDate: JSON.parse(utcBody).date,
 isoDate: JSON.parse(isoBody).date
 })
 })
 })
 }
})

server.start((err) => {
 if (err) {
 throw err
 }
 console.log('aggregator started on port 8080')
})

In order to simplify the understanding of the code, we did not use promises or
async/await in it at the cost of having a nested callback (which is quite simple to
read).

Here are a few points to note from the preceding code:

We are calling the services by name (utcdate-service and isodate-service),
leveraging the communication to the Kubernetes DNS
Before returning, aggregator service issues a call to the two services and returns
a JSON object with the aggregated information

In order to test this service, we would need to create DNS entries (or host entries)
pointing to isodate-service and utcdate-service, which is harder than testing it in
Kubernetes, so we will skip the testing for now.

As with any node application, the aggregator service needs a package.json to install the
dependencies and control a few aspects:

{
 "name": "aggregator",
 "version": "1.0.0",
 "description": "Aggregator service",
 "main": "index.js",
 "scripts": {
 "start": "node index.js"
 },
 "author": "David Gonzalez",
 "license": "ISC",
 "dependencies": {
 "hapi": "^15.2.0",
 "request": "^2.75.0"
 }
}

The package.json is very important. The scripts block particularly instruct us on what
to do when the npm start command is executed by the Docker container based on the
image defined in the Dockerfile:

FROM node:latest

RUN mkdir /app/
WORKDIR /app/

COPY . /app/
RUN npm install
EXPOSE 3000

CMD ["npm", "start"]

By now, you should have three files:

index.js

Dockerfile

package.json

Build the docker container with the following command:

docker build . -t aggregator

Check whether it works as expected:

docker run -it -p 8080:8080 aggregator

Even though the server won't be able to resolve requests because it does not know
how to communicate with isodate-service and utcdate-service, it should start.

Pushing the images to Google
Container Registry
So as of now, we have three images in our local repository:

iso-date-service

utc-date-service

aggregator

These three images live in your computer but unfortunately, our Kubernetes cluster
in the GKE won't be able to reach them. The solution for this problem is to push
these images into a Docker registry that will be reachable by our cluster. Google
Cloud provides us with a Docker registry, which is extremely convenient for using
with GKE due to several reasons:

Data containment: The data never leaves the Google network
Integration: Services in GCP can interact with implicit authentication
Automation: This integrates with GitHub and other services so that we can
build our images, automatically creating a pipeline of continuous delivery of
images.

Before setting up a continuous delivery pipeline with Git, we are going to push the
images manually in order to understand how it works. Google Container Registry
(GCR) is replicated across the globe, so the first thing that you need to do is choose
where you want to store your images:

us.gcr.io hosts your images in the United States
eu.gcr.io hosts your images in the European Union
asia.gcr.io hosts your images in Asia

In my case, eu.gcr.io is the perfect match. Then, we need our project ID. This can be
found by clicking on the project name in the top bar of the console:

In my case, the project ID is implementing-modern-devops. Now, the third component is
the name of the image that we already have. With these three components, we can
build the name for our Docker images URL:

eu.gcr.io/isodate-service:1.0

eu.gcr.io/utcdate-service:1.0

eu.gcr.io/aggregator:1.0

The 1.0 part is the version of our image. If not specified, the default is latest but we
are going to version the images for traceability.

Now it is time to tag our images as appropriate. First up is the ISO Date service:

docker tag iso-date-service eu.gcr.io/implementing-modern-devops/isodate-service:1.0

Then, there's the UTC date service:

docker tag utc-date-service eu.gcr.io/implementing-modern-devops/utcdate-service:1.0

And finally, we have the aggregator service:

docker tag aggregator eu.gcr.io/implementing-modern-devops/aggregator-service:1.0

This is the mechanism that Docker uses to identify where to push the images: Docker
reads the name of our image and identifies the URL to which the image is to be
pushed. In this case, as we are using a private registry (Google Container Registry is

private), we need to use credentials, but using the gcloud command, it becomes quite
easy:

gcloud docker -- push eu.gcr.io/implementing-modern-devops/aggregator-service:1.0

Now it's time for the isodate-service:

gcloud docker -- push eu.gcr.io/implementing-modern-devops/isodate-service:1.0

And finally, there's utcdate-service:

gcloud docker -- push eu.gcr.io/implementing-modern-devops/utcdate-service:1.0

Be careful; the project ID will change, so customize the command to fit
your configuration.

After a bit of time (it can take up to a few minutes to push the three images to GCR),
the images should be up in our private instance of the Google Container Registry.

Let's recap what we have done:

We've built the images locally
We've tagged the images with the appropriated name so that we can push them

to GCR
We've pushed the images to GCR using gcloud

This is fairly straightforward, but it can be tricky if you have not done it before. All
our images are sitting in our private container registry, ready to be used.

Setting up a continuous delivery
pipeline for images
Now that we have deployed our images to GCR, we need to automate the process so
that we minimize the manual intervention. In order to do that, we are going to use the
Build Triggers section of our Google Container Registry. In this case, we are going
to use GitHub as it is the industry standard for Git repositories management. Create
an account at https://www.github.com (if you don't have one already) and then create
three repositories:

aggregator

isodate-service

utcdate-service

These can be public but, in the future, if you are working with private code, you
should either create private repositories (which you need to pay for) or select a
different provider, such as the source code repositories in Google Cloud Platform.

The first thing that we need to do is push the code for the three services into the
repositories. Github will give you the instructions to that, but basically, the process is
as follows:

1. Clone the repository
2. Add the code from the preceding section as appropriate
3. Push the code into the remote repository

My GitHub username is dgonzalez and the commands to push the code for the
aggregator are as follows:

git clone git@github.com:dgonzalez/aggregator.git

Now copy the code from the aggregator into the newly created folder with the clone
command and execute (inside the aggregator folder):

git add .

Commit the changes:

git commit -m 'Initial commit'

https://www.github.com

And then push them to the remote repository:

git push origin master

After these commands, your repository should look like what is shown in the
following screenshot:

The commands that we used are quite basic Git commands. You probably know
about Git, but if you don't, I would recommend that you follow some tutorials, such
as https://try.github.io/levels/1/challenges/1.

Now that we have our repository ready, it is time to go back to GCP to set up the
Build triggers for our pipeline. The first thing that we need to do is go to the triggers
section of the Container Registry in Google Cloud Platform:

https://try.github.io/levels/1/challenges/1

This functionality allows us to create triggers that fire off the build of our images
based on events. There are several approaches to triggering strategies. In this case,
we are going to build the image based on the creation of new tags. The most
common way of doing this is by monitoring changes in the master branch, but I am a
big fan of versioning. Think about this: containers are immutable artifacts: Once
created, they should not be altered, but what if there is an issue with the code inside
the container? The strategy is to branch off from the master and then create what is
called a hot-fix build. With tagging, we can do this too but by branching from a tag
instead of from the master, which has the following benefits:

The master can change without firing events
Tags cannot be accidentally created (so no accidental releases)
Version is kept in the source code manager instead of in the code
You can correlate a tag to a build the artifact

That said, it is perfectly valid to use the master as a reference point and other
combinations: the important lesson here is to stick to a procedure and make it clear
to everyone.

Click on Create Trigger and select GitHub. Once you click on Next, it will let you
select the project from a list; then, click on Next again. Now we get presented with a
form and a few options:

We are going to use the Dockerfile instead of cloudbuild.yaml (the latter is GCP-
specific) and set the trigger on the tag; the image name has to match the repositories
created in the preceding section (remember the eu.* name and check the name of the
repository as well).

Once created, nothing happens. Our repository has no tags, so nothing has been built.
Let's create a tag:

git tag -a 1.0 -m "my first tag"

This will create a tag, and now we need to push it to the server:

git push origin 1.0

Now, we go back to GCP Container Registry and check what happened: a new build
has been triggered, pushing version 1.0 to the registry for the aggregator image:

From now on, if we create a new tag in our repository, GCP is going to build an
image for us, which can be correlated to a commit in GitHub so that we can fully
trace what is in every environment of our build. It does not get better than this.

This whole build and push could have been done with Jenkins, as you learned in the
chapter 4 (continous integration), but I am of the opinion that if someone can take
care of your problems for a reasonable price, it's better than solving them yourself
and add more moving parts to your already complex system. In this case, the
registry, the build pipeline, and the automation are taken care of by Google Cloud
Platform.

Setting up Jenkins
In the preceding section, we leveraged the image operations to Google Cloud
Platform, but now, we need to manage Kubernetes in a CI/CD fashion from
somewhere. In this case, we are going to use Jenkins for this purpose. We have
several options here:

Deploy Jenkins in Kubernetes
Install Jenkins in baremetal
Install Jenkins in a container outside of Kubernetes

Lately, Jenkins has become Kubernetes-friendly with a plugin that allows Jenkins to
spawn slaves when required in a containerized fashion so that it leverages the
provisioning and destruction of hardware to Kubernetes. This is a more than
interesting approach when your cluster is big enough (50+ machines), but when your
cluster is small, it may be problematic as it can lead into a noisy neighborhood.

I am a big fan of segregation: CI/CD should be able to talk to your production
infrastructure but should not be running in the same hardware for two reasons:

Resource consumption
Vulnerabilities

Think about it: a CI/CD software is, by default, vulnerable to attackers as it needs to
execute commands through an interface; therefore, you are giving access to the
underlying infrastructure to a potential attacker.

My advice: start simple. If the company is small, I would go for Jenkins in a
container with a volume mounted and evolve the infrastructure up to a point where
your cluster is big enough to accommodate Jenkins without a significant impact;
move it into your cluster in a dedicated namespace.

In the chapter 4 (Continuous Integration), we set up Jenkins in a container without
making use of any volume, which can be problematic as the configuration might be
lost across restarts. Now, we are going to set up Jenkins in bare metal so that we
have another way of managing Jenkins.

The first thing that we need to do is create a machine in GCP.

The preceding screenshot is the configuration of my Jenkins machine. A few
important aspects are as follows:

Ubuntu instead of Debian (I selected the latest LTS version of Ubuntu)
Small instance (we can scale that later on)
Changes might need to be done to the firewall in order to access Jenkins

Everything else is standard. We are not attaching a static IP to Jenkins as this is just a
demo, but you probably want to do that, as you learned earlier, as well as have an
entry in the DNS that can have a static reference point for your CI server.

It also would be a good exercise to do this in Terraform as well so that you can

manage your infrastructure in an Infrastructure as code (IaC) fashion.

Once the machine has spun up, it is time to install Jenkins. We are going to follow
the official guide, which can be found at https://wiki.jenkins.io/display/JENKINS/Installing+
Jenkins+on+Ubuntu.

Using the web SSH Terminal from the Google Cloud platform, open a shell to your
newly created machine and execute the following commands:

wget -q -O - https://pkg.jenkins.io/debian/jenkins-ci.org.key | sudo apt-key add -

Then, add the Jenkins repository:

sudo sh -c 'echo deb http://pkg.jenkins.io/debian-stable binary/ > /etc/apt/sources.list.d/jenkins.list'

Then, update the list of packages:

sudo apt-get update

And finally, install Jenkins:

sudo apt-get install jenkins

That's it. Once the preceding command is finished, Jenkins should be installed and
can be started, stopped, and restarted as a service. To ensure that it is running,
execute the following command:

sudo service jenkins restart

Now if we browse the public IP in our server on port 8080, we get the initial screen
for Jenkins.

You might need to tweak the firewall to allow access to port 8080 on this
machine.

This initial screen is familiar, and we need to get the password to initialize Jenkins.
This password is in the logs:

cat /var/log/jenkins/jenkins.log

Enter the password and initialize Jenkins (suggested plugins). This might take a
while; meanwhile, we also need to set up the Gcloud SDK. First, switch to the user
Jenkins:

https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins+on+Ubuntu

sudo su jenkins

And then just execute the following:

curl https://sdk.cloud.google.com | bash

Once the installation finishes. you need to open a new shell for the changes to take
effect. Do that and install kubectl:

gcloud components install kubectl

Now that we have the Kubectl binary in our system, we need to connect it to a cluster,
but first, it's time to create a cluster. As you learned in previous chapters, just create
a cluster with three machines of a small size. Once it is created, connect to the cluster
from the Jenkins machine, as shown in the previous chapter, but first, run gcloud init
to configure a new auth session (option 2) with your account.

Once you are done, make sure that kubectl can talk to your cluster by executing a test
command, as follows:

kubectl get nodes

You should list the three nodes that compound your cluster. Now we need to make
kubectl accessible to the user jenkins. Just run the following command:

ln -s /root/google-cloud-sdk/bin/kubectl /usr/bin/kubectl

Change the owner to Jenkins:

Now, going back to Jenkins, set up the admin user as shown in the following
screenshot:

Click on Save and Finish, and it's done.

Before we start creating jobs, we need to make the binary kubectl available to the
user jenkins. Login as root and execute:

ln -s /var/lib/jenkins/google-cloud-sdk/bin/kubectl /usr/bin/kubectl

This will make sure that the kubectl command for jenkins points to the SDK installed
by the jenkins user in the preceding steps.

Now, we have everything:

Jenkins
The Google Cloud SDK
A GKE cluster
A connection between Jenkins and GKE

Before proceeding, we are going to make sure that everything works as expected. Go
to Jenkins and create a new free style project and add a build step with the following
command:

kubectl get nodes

Save the project and run it. The output should be very similar to what is shown in the
following screenshot:

This indicates that we are good to go.

In general, Jenkins and other CI systems should never be exposed over
the internet. Never. It only takes a weak password for someone to
destroy your system if it is accessible to the public. In this case, as an
illustrative example, we have not configured the firewall, but in your
company, you should allow access only from the IP of your office.

Continuous delivery for your
application
Up until now, we have set up a few elements:

A GitHub repository with our code (aggregator)
A continuous delivery pipeline in GCP for our Docker image that gets fired
once we tag the code
A Kubernetes cluster
Jenkins connected to the preceding cluster

Now we are going to set up the continuous delivery pipeline for our code and the
Kubernetes infrastructure. This pipeline is going to be actioned by a Jenkins job,
which we will trigger manually.

You might be thinking that all that you have read about Continuous Delivery
(CD) is about transparently shipping code to production without any human
intervention, but here we are, with a few events that need manual steps in order to
action the build. I have worked in some places where continuous delivery is
triggered automatically by changes in the master branch of your repository, and after
few incidents, I really believe that a manual trigger is a fair price to pay for having
an enormous amount of control over the deployments.

For example, when publishing the image, by creating a tag manually in order to build
our image, we are adding a barrier so that no one accidentally commits code to
master and publishes a version that might be unstable or, even worse, insecure. Now
we are going to do something similar, but the job that releases our code is going to
be actioned manually in Jenkins, so by controlling the access to Jenkins, we have an
audit trail of who did what, plus we get role-based access control for free. We can
assign roles to the people of our team, preventing the most inexperienced developers
from creating a mess without supervision but still allowing enough agility to release
code in an automated fashion.

The first thing that we need to do is create a repository that we are going to call
aggregator-kubernetes in GitHub to host all our YAML files with the Kubernetes
resources. We will do this for utcdate-service and isodate-service, but let's do the
aggregator first.

Once we have created our repository, we need to create our Kubernetes objects to
deploy and expose the service. In short, our system is going to look like what is
shown in the following diagram:

On the above picture, we can see the Kubernetes objects (ReplicaSet and Service)
that we need to create for each application (deployments are omitted). In red, we can
see the application itself. For now, we are focusing on the aggregator, so we need to
create a ReplicaSet that is going to be managed by a Deployment and a Service of
the LoadBalancer that is going to expose our API to the rest of the world through a
gcloud load balancer.

The first element that we need is our deployment:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: aggregator
spec:
 replicas: 2
 template:
 metadata:
 labels:
 app: aggregator-service
 spec:
 containers:
 - name: aggregator-service
 image: eu.gcr.io/implementing-modern-devops/aggregator-service:1.0
 ports:
 - containerPort: 8080

This is nothing that we wouldn't expect. It's a simple deployment object with the
image that our automatic build process has created for us (remember, we created a
tag with the version 1.0...also remember to customize it to your project). In our new
repository, aggregator-kubernetes, save this file under a folder called objects with the
name deployment.yaml. Now it is time to create the service that is going to expose our
application:

kind: Service
apiVersion: v1
metadata:
 name: aggregator-service
spec:
 ports:
 - port: 80
 targetPort: 8080
 selector:
 app: aggregator-service
 type: LoadBalancer

Again, it's very straightforward: a service that exposes anything tagged with app:
aggregator-service to the outside world via a load balancer in Google cloud. Save it
inside the objects folder with the name service.yaml. Now it is time to commit the
changes and push them to your GitHub repository:

git add .

And then, execute this:

git commit -m 'Initial commit'

And finally, look at this:

git push origin master

By now, you have all the code for the infrastructure of the aggregator sitting in your
GitHub repository with a layout similar to the following:

Inside the objects folder, you can find the two YAML files: deployment.yaml and
service.yaml. We can run these files locally with kubectl (connecting them to the
cluster first) in order to verify that they are working as expected (and I recommend
that you do this).

Now it is time to set up a Jenkins job to articulate our build. Create a new freestyle
project in Jenkins with the following configuration:

First, look at the GitHub repository. As you can see, it is creating an error, and that's
is only because GitHub needs an SSH key to identify the clients. GitHub explains
how to generate and configure such keys at https://help.github.com/articles/connecting-to-gi

https://help.github.com/articles/connecting-to-github-with-ssh/

thub-with-ssh/.

Once you have added the credentials with the private key that was generated, the
error should be removed (remember, the type of credentials is 'SSH key with
username', and your username has to match the one in GitHub).

Here, we can play a lot with Cit options, such as creating a tag on every build in
order to trace what is going in your system or even building from tags. We are going
to build the master branch: no tags this time.

Now, we are going to add our only build step for this job:

As you learned in previous chapters, with kubectl apply, we can pretty much rule the
world. In this case, we are adding our folder with the yamls as a parameter; therefore,
kubectl is going to action on Kubernetes with the YAML definitions that we are
going to create.

Save the job and run it. Once it finishes, it should be successful with a log similar to
the following one:

This job might fail a few times as there are many moving parts. By now,
you have enough knowledge to troubleshoot the integration of these
parts.

That's it. Our Continuous Delivery (CD) pipeline is working. From now on, if we
want to make changes to our aggregator, we just need to add/modify files to our code
repository, tag them with a new version, modify our aggregator-kubernetes definitions
to point to the new image, and kick off our Jenkins job.

There are two extra steps:

Create a tag
Kick off a job manually

This is the price you pay for having a lot of control in our deployment but with a bit
of a secret sauce: we are set for a great deployment flexibility, as we are going to see
in the next section, but first, you should repeat the same exercise for utcdate-service
and isodate-service so that we have our full system running. If you want to save a lot
of time or check whether you are going in the right direction, check out my
repository at https://github.com/dgonzalez/chronos.

Inside every service, there is a folder called definitions that contains the Kubernetes
objects to make everything work.

Be careful with the name of the services: the aggregator is expecting to
be able to resolve isodate-service and utcdate-service from the DNS, so

https://github.com/dgonzalez/chronos

your Services (Kubernetes objects) should be named accordingly.

Regular release
Now we are all set; if you've completed the deployment of utcdate-service and
isodate-service, a fully working system should be installed on Kubernetes. The way it
works is very simple: When you get the URL of the aggregator in
the /dates/{timestamp} path, replacing timestamp with a valid UNIX timestamp, the
service will contact utcdate-service and isodate-service and get the timestamp
converted into the UTC and ISO formats. In my case, the load balancer provided by
Google Cloud Platform will lead to the URL: http://104.155.35.237/dates/1111111111.

It will have the following response:

{
 utcDate: "2005-03-18T01:58:31",
 isoDate: "2005-03-18T01:58:31.000Z"
}

You can play around with it for a bit, but it is nothing fancy: just a simple demo
system that makes microservices and their automation easy to understand. In this
case, we are not running any test, but for a continuous delivery pipeline, testing is a
must (we will talk about this later).

Now as the title of the section suggests, we are going to create a new version of our
application and release it using our continuous delivery pipeline.

Our new version it is going to be very simple but quite illustrative. On the aggregator,
replace index.js with the following code:

const Hapi = require('hapi')
const server = new Hapi.Server()
let request = require('request')

server.connection({port: 8080})

server.route({
 method: 'GET',
 path: '/dates/{timestamp}',
 handler: (req, reply) => {
 const utcEndpoint = `http://utcdate-service:3001/utcdate/${req.params.timestamp}`
 const isoEndpoint = `http://isodate-service:3000/isodate/${req.params.timestamp}`
 request(utcEndpoint, (err, response, utcBody) => {
 if (err) {
 console.log(err)
 return
 }
 request(isoEndpoint, (err, response, isoBody) => {

 if (err) {
 console.log(err)
 return
 }
 reply({
 utcDate: JSON.parse(utcBody).date,
 isoDate: JSON.parse(isoBody).date,
 raw: req.params.timestamp
 })
 })
 })
 }
})

server.start((err) => {
 if (err) {
 throw err
 }
 console.log('aggregator started on port 8080')
})

In the highlighted part, we have added a new section to the return object that
basically returns the raw timestamp. Now it is time to commit the changes, but first,
let's follow a good practice. Create a branch:

git checkout -b raw-timestap

This is going to create a local branch called raw-timestamp. Now commit the changes
created in the preceding code:

git add . && git commit -m 'added raw timestamp'

And push the branch to GitHub:

git push origin raw-timestamp

If we visit the GitHub interface now, we'll notice that something has changed:

It is suggesting that we create a Pull requests. Basically, a pull request is a request to
add code to a repository. Click on Compare & pull request and then add a description
in the new form and click on Create pull request. This is the outcome:

There are three tabs:

Conversation

Commits
Files changed

The first one is a list of comments by the participants. The second tab is the list of
commits that they pushed into the server, and the third one is the list of changes in
diff style with additions and deletions, where you can drop comments asking for
changes or suggesting better ways of doing things. In big projects, the master branch
is usually blocked, and the only way to push code into it is via pull requests in order
to enforce the review of the code.

Once you are happy, click on Merge pull request and merge the code. This pushes
the changes into the master branch (needs confirmation).

Now we are ready to create a tag. This can be done via the GitHub interface. If you
click on the release link (beside the number of contributors above the list of files), it
brings you to the releases page:

There, you can see the tag that we created earlier from the terminal and a button
called Draft a new release. Click on it, and it will show a new form:

Fill in the details, as shown here, and create the release. This creates a tag that is
connected to our container registry in Google Cloud Platform, and by now (it is very
quick), a new version of our image should be available:

As you can see, there is a good level of control over what is going into our

production buckets (registry and cluster). Now the only step left is to release the new
version into Kubernetes. Go back to the repository called aggregator-kubernetes (we
created it in the preceding section) and change the tag of the image in the
deployment.yaml file from eu.gcr.io/implementing-modern-devops/aggregator-service:1.0
to eu.gcr.io/implementing-modern-devops/aggregator-service:2.0. Be aware that the
project needs to be tailored to your configuration.

Once this is done, commit and push the changes (from aggregator-kubernetes folder):

git add . && git commit -m 'version 2.0 of aggregator' && git push origin master

Now everything is ready. We are at the edge of the cliff. If we click on Run in the
job that we created in Jenkins, the new version of the software is going to be
deployed in Kubernetes with zero downtime (depending on your configuration, as
seen earlier); we have the control. We can decide when is the best time to release,
and we have an easy way to roll back: revert the changes and click on Run again in
Jenkins.

Once you are comfortable with the changes, run the job that we created in Jenkins (in
my case, aggregator-kubernetes).

If you hit the same URL as earlier (http://104.155.35.237/dates/1111111111), the result
should have changed a bit:

{
 utcDate: "2005-03-18T01:58:31",
 isoDate: "2005-03-18T01:58:31.000Z",
 raw: "1111111111"
}

The new version is up. As you can imagine, this is a fairly powerful argument to
adopt DevOps: release software transparently to the users with minimal effort (create
a tag and run a job in Jenkins).

In the next section, we are going to execute the same deployment but using a
technique called blue-green deployment, which consist on release the new version in
a private mode running in the production environment in order for us to test the
features before making them available to the general public.

Blue-green deployment
In order to execute a blue-green deployment, first, we need to roll back to version
1.0. Edit deployment.yaml in aggregator-kubernetes, adjust the image to the tag 1.0, and
push the changes to GitHub. Once that is done, run a job called aggregator-
kubernetes in Jenkins, and there you go; we have rolled back to version 1.0. Leave
version 2.0 of the image in the registry as we are going to use it.

A blue-green deployment is a technique used to release software to production that is
not visible to the general public, so we can test it before making it available to
everyone. Kubernetes makes this extremely simple: the only thing we need to do is
duplicate the resources in aggregator-kubernetes and assign to them different names
and tags. For example, this is our deployment-bluegreen.yaml:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: aggregator-bluegreen
spec:
 replicas: 2
 template:
 metadata:
 labels:
 app: aggregator-service-2.0
 spec:
 containers:
 - name: aggregator-service
 image: eu.gcr.io/implementing-modern-devops/aggregator-service:2.0
 ports:
 - containerPort: 8080

And this is our service-bluegreen.yaml:

kind: Service
apiVersion: v1
metadata:
 name: aggregator-service-bluegreen
spec:
 ports:
 - port: 80
 targetPort: 8080
 selector:
 app: aggregator-service-2.0
 type: LoadBalancer

As you can see, we have created a vertical slice of our app with a different set of
selectors/tags; therefore, our original version is working, but now, we have a new

service called aggregator-service-bluegreen that serves the new version of our
application via a load balancer, which we can check via the Kubernetes interface
(using the kubectl proxy command, as explained earlier):

If you play around the two external endpoints, you can see the difference: the new
one is returning the raw payload as well as the dates in the ISO format and in UTC
timezone (version 2.0), whereas the old one only returns the dates (version 1.0).

We are now in what we call the blue status: we are happy with our release and we
are sure that our software works with our production configuration without affecting
any of our customers. If there was any problem, no customers would have noticed it.
Now it is time to go to the green phase. We have two options here:

Remove the aggregator-bluegreen deployment and all its children (ReplicaSet and
pods as well as the aggregator-service-bluegreen service) and upgrade our base
deployment (aggregator)
Change the labels for the selector in the aggregator service and make it point to
the new Pods

In general, I am a big fan of the first option as it keeps things simple, but it is your
choice; also it's a good time for experimenting. Changing the selector in the service
has an immediate effect, and it is probably the easy route if you are in a hurry.

When working with complex systems, I always try to go over a blue-green
deployment phase to remove stress from the team. Think about it: instead of thinking
that everything is solid, you are actually verifying that everything works as expected
with no surprises, so the psychological factor of the uncertainty is gone at the
moment of release.

In the next section, we are going to visit another type of release, which introduces a
new pod into the running system so we get to expose it to the users but only to a
subset of them, so if something goes wrong, it does not kill the system; it just
produces some errors. Before proceeding, make sure that you return your cluster to
the original status: just a deployment called aggregator with its pods (remove the
blue-green deployment).

Canary deployment
There is a story about the name of this type of deployment, which very interesting.
Before all the gas detectors, miners used to bring a canary (the bird) into the mines,
as they are extremely sensitive to dangerous gases. Everybody was working
normally but keeping an eye on the bird. If, for some reason, the bird died,
everybody would leave the mine in order to avoid getting poisoned or even killed.

This is exactly what we are going to do: introduce a new version of our software,
which will actually produce errors if there is any problem so we only impact a
limited number of customers.

Again, this is done via the YAMl files using the selectors that our service is targeting
but with a new version of our app. Before continuing, make sure that you have only
one deployment called aggregator with two pods running the version 1.0 of our app
(as shown in the Regular Release section).

Now, in aggregator-kubernetes, create a file (inside objects folder) with the following
content:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: aggregator-canary
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: aggregator-service
 spec:
 containers:
 - name: aggregator-service
 image: eu.gcr.io/implementing-modern-devops/aggregator-service:2.0
 ports:
 - containerPort: 8080

Here's an easy explanation: we are creating a new deployment, with only one Pod,
with the same tags that the original deployment pods (aggregator) has; therefore, the
aggregator-service is going to target this pod as well: three in total.

Push the changes to GitHub and run the job aggregator-kubernetes, which will apply
this configuration to our cluster. Now open the endpoint that we used earlier for
testing, in my case, http://104.155.35.237/dates/1111111111, and keep refreshing the

URL a few times. Approximately, one-third of the requests should come back with
the raw timestamp (new version of the app) and two-third should come back without
it (version 1.0).

You can verify that everything went well via the Kubernetes dashboard by checking
the aggregator-service:

Here, you can see the newly created pod being targeted by our service. I usually
leave this status for a few hours/days (depending on the release), and once I am
happy, I remove the canary deployment and apply the configuration to the aggregator
deployment. You can play with the number of replicas as well in order to change the
percentage of the users that get the new version or even gradually increase the
number of canaries and decrease the number of regular pods until the application is
completely rolled out.

This strategy is followed by big companies such as Google to release new features
with a lot of success. I am a big fan of using it as starting point when the system is
big enough (10 + pods running), but I would be reluctant to do that in a small system
as the percentage of affected requests would be too big (33.3% in the preceding
example).

Summary
This chapter was pretty intense: we set up a CD pipeline as well as visited the most
common release strategies, which, using Kubernetes, were within the reach of our
hand. Everything was automated except a couple of checkpoints that were left on
purpose so that we could control what was going in our system (just for peace of
mind). This was the climax of the book: even though the examples were basic, they
provided you with enough tools to set up something similar in your company in
order to get the benefit of working with microservices but padding the operational
overhead that they involve as well as facilitating the release of new versions.

In the next chapter, we will learn an important aspect of continuous delivery:
monitoring. With the right monitoring in place we can remove a lot of stress from the
releases so that our engineers are more confident on being able to catch errors early
leading into smoother rollouts and a lower production bug count.

Monitoring

Introduction
So far, we have seen a large number of tools that we can use as DevOps engineers in
our company to enhance our capabilities. Now we are able to provision servers with
Ansible, create Kubernetes clusters on Google Cloud Platform, and set up a delivery
pipeline for our microservices. We have also dived deep into how Docker works and
how we should organize our company to be a successful delivering software.

In this chapter, we are going to take a look at the missing piece of the puzzle:
monitoring. Usually overlooked, monitoring is, in my opinion, a key component of a
successful DevOps company. Monitoring is the first line of defense against
problems. In Chapter 8, Release Management – Continuous Delivery, we talked about
how we should shift our focus toward being able to fix the arising problems rather
than spending a huge amount of resources in trying to prevent them:

20 percent of your time will create 80 percent of the functionality. The other 20
percent is going to cost you 80 percent of your time.

This non-written rule dominates the world. With monitoring, we can bend this rule to
live comfortably with 20 percent of unknown outcomes as we are able to identify the
problems quite quickly.

We will review some of the tools to monitor software, but our focus will be on
Stackdriver, as it is the monitoring solution from Google Cloud Platform that, out of
the box, provides us with a fairly comprehensive set of tools to deal with the flaws in
our systems.

Types of monitoring
In the SRE book from Google, there are two types of monitoring defined:

BlackBox monitoring
WhiteBox monitoring

This is generally accepted by everyone, leading to a solid amount of tools that are
clearly differentiated around whitebox and blackbox monitoring.

One of the best comparisons I've ever heard on whitebox versus blackbox
monitoring is the diagnosis of a bone fracture. When you first go to the doctor,
he/she only has access to your blackbox metrics:

Does the area have any bump?
Is it painful on movement?

Then, once the initial diagnoses has been pronounced, the next step is getting X-rays
from the area. Now we can confirm whether the bone is broken and, if it is, what is
the impact in the system. The X-rays are the WhiteBox monitoring that the doctor is
using.

Blackbox monitoring
Whitebox monitoring is the type of monitoring that observes a system from outside
without having to look into how the system is built. These metrics are the first ones
that impact the users and the first external symptoms that something is going wrong
in our application or server.

Among the metrics that can be used for blackbox monitoring, we can find the
following ones:

Latency
Throughput

These two metrics are the holy grail of blackbox monitoring.

The latency is, by definition, how long takes our system to respond. If we are
looking at an HTTP server, from the very first time that we sent the request to the
time when the server on the other side of the line replies is what we understand as
latency. This metric is a fairly interesting one because it is the absolute truth about
how the users see our system: the bigger the latency is, the worse the experience they
get.

Throughput is extremely related to the latency. Basically, it is the number of requests
that our software can serve per time unit, usually per second. This measure is a
critical one for capacity planning, and you are discouraged to measure it in real time
in a running system, as it pushes a lot of load through the system, which is surely
going to affect the response time for live users. In general, throughput is measured at
the performance testing stage of our application, which might be tricky:

The hardware for testing has to match production
The dataset for the database has to be similar to production

The performance testing step is usually overlooked by many of the companies as it is
fairly expensive. That is why preproduction is usually used for capacity testing in
order to guess the amount of hardware needed in production. Nowadays, this is less
problematic, as with auto scaling groups in the cloud infrastructure, it becomes less
of a problem as the infrastructure is going to scale on its own when needed.

As you can see, these metrics are fairly simple to understand, and even though they
play a key role in the error response time, they might not be the first indicators of
problems.

Whitebox monitoring
Whitebox monitoring, as the name indicates, is the monitoring that needs to know
about how the system is built in order to raise alerts on certain events happening
inside of our application or infrastructure. These metrics are quite fine-grained
(unlike blackbox monitoring), and once we have been alerted, they are the answer to
the main questions of a postmortem analysis:

Where is the problem?
What is causing the problem?
Which flows are affected?
What can we do to avoid this in future?

Among other metrics, these are a fairly interesting set of examples:

Function execution time
Errors per time unit
Requests per time unit
Memory usage
CPU usage
Hard drive usage
I/O operations per time unit

As you can see, there is an endless number of whitebox metrics to ensure the
stability of our system. There are almost too many, so we usually need to pick the
right ones in order to avoid the noise.

An important detail here is the fact that when a blackbox monitoring metric gives an
abnormal reading, there is always a whitebox metric that can be used to diagnose,
but it is not true the other way around. A server can have a spike in the memory
usage due to an internal problem without impacting the users.

One of the most important artifacts in whitebox monitoring are the logging files.
These files are the ordered chain of events happening in our software, and usually,
they are the first line of attack to diagnose problems related to our software. The
main problem with log files is the fact that they are stored on production servers and
we should not access them on a regular basis just to check the log files as it is a
security threat on its own. It only takes an open terminal to a server forgotten by

someone to give access rights to the wrong person.

Monitoring third-party tools
Monitoring is usually a good candidate to involve third-party companies. It requires
a fair amount of redundancy in the systems in order to keep the monitoring active,
which is primordial in order to ensure that we are not blind to what is happening in
our system.

Another positive aspect of using third-party apps for monitoring is the fact that they
don't live in the same data center, and if they do (usually AWS), their redundancy is
enough to ensure stability.

In this section, we are going to take a look at three tools in particular:

Pingdom
Logentries
AppDynamics

That doesn't mean that they are the best or the only tools in the market. There are
other interesting alternatives (for example, New Relic instead of AppDynamics) that
are worth exploring, but in this case, we are going to focus on Stackdriver, the
monitoring solution for Google Cloud Platform, due to a number of factors:

It integrates very well with Google Cloud Platform
It has a very interesting free tier
The alerting systems are one of the most advanced systems you can find in the
market

Pingdom
Pingdom is a tool used to measure the latency of our servers from different sides of
the world. As you can see, if you have worked in a 24/7 company, latency across the
globe varies a lot depending on where our customers are in relation to our data
centers. As a matter of curiosity, if our server is in Europe, someone from Australia
will have around 2-3 seconds extra on the latency.

Pingdom has servers spread across the globe to monitor how our users see the system
and take adequate measures to solve the problem (for example, spawning a new data
center closer to them).

You can register in Pingdom for free with a 14-days trial, but you need to enter a
credit card (don't worry; they will advise you when your trial is over so you can
cancel the plan if you don't want to continue with it).

Take a look at the following screenshot:

As you can see, after specifying hosts, Pingdom will start issuing requests to the
specified URL and measuring the response time from different parts of the world.

Lately, Pingdom has included fairly interesting capabilities: now it can read custom
metrics through an endpoint in order to monitor an endless amount of data:

Free space on the disks
Used amount of RAM
Stock levels (yes, you can send any number of items you have left in your
warehouse to Pingdom)

In general, I have used Pingdom quite successfully in the past to measure the latency
in my servers and improve the experience of the users by distributing the data centers
strategically across the globe to mitigate this problem. One of the most interesting
insights that Pingdom (and similar tools) can give you is that your site might be
down due to network splits on the internet or failures in some DNS servers (in the
latter case, it is not really down but Pingdom and users won't be able to reach it).

Logentries
Logentries is one of these companies that makes your life much easier when dealing
with a large number of logs. It basically solves one problem that was an impediment
for few years: it aggregates all the logs from your system in a common place with
access controls and a more than decent interface that allows you to quickly search
through big datasets.

Creating an account is free, and it provides 30 days of usage with some limits that
are more than enough for testing and evaluation.

Go to https://logentries.com/ and create an account. Once you are logged in, the first
screen should be similar to what is shown in the following screenshot:

https://logentries.com/

As you can see, there are explanations for how to configure the log aggregation in an
endless number of platforms: you can monitor from systems to libraries going
through a number of platforms (AWS, Docker, and so on).

Agents are usually a good choice for two reasons:

They do not create coupling in your application (the agent reads the log files
and sends them to the Logentries servers)
They push the complexity to a third-party software

But there are also other interesting options, such as manual log aggregation. In this
case, we are going to demonstrate how to use a custom logger to send logs from a
very simple Node.js application to Logentries. Create a folder called logentries and
execute the following command:

npm init

This assumes that Node.js is installed on your system, so if it is not, download any
version of Node.js from https://nodejs.org/en/ and install it.

Now we need to install the Logentries library for Node.js. Logentries provides
support for a number of platforms, but support for Node.js is particularly good.
Execute the following command:

https://nodejs.org/en/

npm install --save le_node

Once it is finished, we should have the required library installed. Now it is time to
create a simple Node.js program to demonstrate how it works, but first, we need to
create a service token. On the following screen, click on Manual and fill in the form,
as follows:

Logentries is able to understand many different types of logs, but it really shines on
JSON logs. We don't need to specify any type of logs for it to catch them, so leave
this option empty and give a name to the log and the set. Once you click on Create
Log Token, the token should be displayed after the button. Save it for later; you are
going to need it.

Now if we go to the main dashboard, we should be able to see our log set called
Testing Set:

Now it is time to send some data:

const Logger = require('le_node')
const logger = new Logger({token: '5bffdd28-fb7d-46b6-857a-c3a7dfed5410'})

logger.info('this is a test message')
logger.err('this is an error message')
logger.log('debug', {message: 'This is a json debug message', json: true})

This script is enough to send data to Logentries. Be aware that the token specified
has to be replaced by the token obtained in the previous step. Save it as index.js and
execute it a few times:

node index.js

Once you have executed it a few times, head back to Logentries and open Test log
inside Testing Set:

Now you can see our logs in Logentries being aggregated. There are some interesting
things in Logentries that have been improving with time:

The UI is quite slick
The search mechanisms are very powerful
Logentries is able to live stream the logs in real time (more or less)

Regarding search mechanisms, Logentries has developed something called LEQL,
which is basically a language designed by Logentries to search for certain events
using JSON fields or just plain text searching. You can find more information about
it at https://docs.logentries.com/v1.0/docs/search/.

The other interesting feature is the live tailing of the logs. Let's test that feature.
Create another file in the project called livetail.js and add the following code:

const Logger = require('le_node')

const logger = new Logger({token: '5bffdd28-fb7d-46b6-857a-b3a7dfed5410'})

setInterval(() => {
 logger.info(`This is my timed log on ${Date.now()}`)
}, 500)

It does not need explanation: a function that gets executed every 500 milliseconds
and sends a log line to Logentries.

https://docs.logentries.com/v1.0/docs/search/

Execute the script:

node livetail.js

It might look like nothing is happening, but things are actually happening. Go back
to Logentries and click on the Start live tail button:

After a couple of seconds (or less), the logs will start flowing. This can be done on
any log file that is stored in Logentries, and it is a fairly interesting mechanism to
debug problems in our servers.

Logentries is also able to send alerts to a certain email. You can configure it to alert
your team on the following:

Exceptions
Patterns
Lack of logs
Increased activity

This alert is usually the first indicator of problems on a system, so if you want an
early response to errors, the best practice is to try to reduce the noise up to a point
where alerts are not missed and the false positives are reduced to a minimum.

AppDynamics
AppDynamics was the king for a while (as it was the only real option on
monitoring). It is a very curated software that allows you to explore what is going on
in your software and servers: exceptions, requests per time unit, and CPU usage are
among many other metrics that AppDynamics can capture for us.

It also captures interactions with the third-party endpoints: if our software is
consuming a third-party API, AppDynamics will know about it and display the calls
in a dashboard similar to the next screenshot:

AppDynamics is quite advanced regarding proactive measures. One of these
measures is automated actions, such as restarting a Tomcat server or reloading a
service running on the server on certain events. For example, if we deploy a new
version of our Java application that is having a problem with the PermGen space
(this is not the case anymore in Java 8+), it is usually very tricky to fix as the
problem comes from many classes loaded by the JVM and only manifests a few
hours after the deployment. In some cases, we can instruct AppDynamics to restart

the application when the usage reaches 80 percent and more of the assigned total so
that instead of crashing badly and not being able to serve to any customers, we only
have a few dropouts every few hour getting an air balloon to act and fix the problem.

AppDynamics works with what is known an agent model. An application needs to be
installed on your server (for example, Tomcat) in order to collect metrics that are
sent to a centralized server to process and create the pertinent dashboards and trigger
the workflows. The interesting part of AppDynamics is that if you don't feel
comfortable sending data to a third-party (which is usually a security requirement for
companies handling high-profile data), they provide an on-premises version of the
dashboard.

Stackdriver
Up until now, we have visited a set of tools from different third-parties but now we
are going to take a look at Stackdriver. Stackdriver was a cloud monitoring solution
acquired by Google and integrated (not fully) into Google Cloud Platform. This is an
important step for GCP, as being able to provide an integrated monitoring solution is
something that's pretty much mandatory nowadays.

With Stackdriver, we are not only able to monitor applications, but also Kubernetes
clusters or even standalone VMs. As we will see, the integration is not yet as
seamless as we would desire (it might be completed by the time you are reading
this), but it is good enough to be considered a big player in the market.

Monitoring applications
Stackdriver can monitor standalone applications by capturing metrics and logs. It has
support for major platforms and libraries, so our technology choices should not be a
concern. In this case, we are going to create a Node.js application for several
reasons:

It is easy to understand
The official examples are well documented for the Node.js version
Node.js is increasingly becoming a big platform for enterprise and startups

The first thing we need to do is write a small Node.js application. Create a new
folder and execute this command:

npm init

Follow the instructions on the screen and you should now have package.json in the
folder that you just created. Now it is time to install the dependencies:

npm install --save @google-cloud/logging-bunyan @google-cloud/trace-agent express bunyan

We are going to use four libraries:

express: To handle the HTTP requests
bunyan: To log our application activity

The two libraries from Google are for interacting with Stackdriver:

logging-bunyan: This will send the logs from bunyan to Stackdriver
trace-agent: This will trace the requests through our application

Now let's create a simple application:

require('@google-cloud/trace-agent').start()
const express = require('express')
const bunyan = require('bunyan')
const LoggingBunyan = require('@google-cloud/logging-bunyan')
const loggingBunyan = LoggingBunyan()

const log = bunyan.createLogger({
 name: "stackdriver",
 streams: [
 {stream: process.stdout},

 loggingBunyan.stream()
],
 level: 'info'
})

const app = express()

app.get('/', (req, res) => {
 log.info(`request from ${req.connection.remoteAddress}`)
 res.send('Hello World!')
})

app.listen(3000, () => {
 console.log('Listening in port 3000')
})

Now it is time to explain what the interesting parts of the code do:

The first line enables the tracing for Stackdriver. It is very important that this
line happen before anything else; otherwise, the tracing won't work. We'll see
how amazing the tracing is.
In order to let Stackdriver collect logs, we need to add a stream to the bunyan
logger, as shown in the code.

Everything else is quite normal: an Express.js Node.js application that has a handler
for the URL/replying with the classic Hello World.

There is one thing missing: there are no credentials to access the remote APIs. This
is done on purpose as Google Cloud Platform has a very sophisticated system for
handling credentials: basically, it will be handled for you.

Now, it is time to deploy our application. First, create a VM in Google Cloud
Platform, as we have seen a few times in the previous chapters. A small one will
suffice, but make sure that you allow HTTP traffic. Debian Stretch is a good choice
as an operating system.

Once the machine is up, install Node.js, as shown in http://nodejs.org.

Now we need to copy the code into our newly created machine. The best solution is
to create a GitHub repository or use mine: https://github.com/dgonzalez/stackdriver.

By cloning it in our VM (don't forget to install Git first via apt), we just need to
install the dependencies with the following command:

npm install

And we are good to go. Just run the application with the following command:

http://nodejs.org.
https://github.com/dgonzalez/stackdriver

node index.js

Now go to the external IP of the machine (shown in Google Compute Engine) on
port 3000. In my case, this is http://35.195.151.10:3000/.

Once we have done it, we should see Hello World in the browser and something
similar to the following in the logs of our app:

Listening in port 3000
{"name":"stackdriver","hostname":"instance-3","pid":4722,"level":30,"msg":"request from ::ffff:46.7.23.229","time":"2017-09-18T01:50:41.483Z","v":0}

If there are no errors, everything worked. In order to verify this, go to http://console.clo
ud.google.com and open the Logging section of Stackdriver.

Stackdriver is a different system from Google Cloud Platform; it might
ask you to log in using a Google account.

Once you are there, you should see something similar to what is shown in the
following screenshot:

Be aware that you have to select the section on the logs, in my case,
GCE VM Instance, Instance-3.

This is exactly the log from your app uploaded to Google Cloud Platform with a
bunch of very interesting information. You can play around by having different
handlers for other URLs and different logging events, but the result is the same: all
your logs will be aggregated here.

Now we can do this with Trace as well. Open the trace section of Google Cloud
Platform under Stackdriver.

http://35.195.151.10:3000/
http://console.cloud.google.com

The screen should look similar to what is shown in the following screenshot (select
the traces list option):

As you can see, there is a lot of useful information:

The call stack
Duration
Start and finish time

You can also play around, issue multiple calls, and get familiar yourself with how it
works. Now we are going to modify our program to call a third-party API and see
how Stackdriver is able to trace it:

require('@google-cloud/trace-agent').start()

const express = require('express')
const bunyan = require('bunyan')
const LoggingBunyan = require('@google-cloud/logging-bunyan')
const request = require('request')

const loggingBunyan = LoggingBunyan()

const URL = "https://www.googleapis.com/discovery/v1/apis"

const log = bunyan.createLogger({
 name: "stackdriver",
 streams: [
 {stream: process.stdout},
 loggingBunyan.stream()
],
 level: 'info'
})

const app = express()

app.get('/', (req, res) => {
 log.info(`request from ${req.connection.remoteAddress}`)
 res.send('Hello World!')
})
app.get('/discovery', (req, res) => {
 request(URL, (error, response, body) => {
 return res.send(body)
 })
})
app.listen(3000, () => {
 console.log('Listening in port 3000')
})

Now we are listing all the available APIs on Google by executing an HTTP GET
into the https://www.googleapis.com/discovery/v1/apis URL. Redeploy it into your VM in
Google Cloud Platform and go to the endpoint/discovery of your VM. A big JSON
payload will be presented on your screen, but the interesting part is happening under
the hood. Go back to Stackdriver in the Trace list section, and you'll see that there is
a new trace being captured:

Here, you can see how our program contacted the remote API and that it took 68
seconds to reply.

Getting this type of information in real time is very powerful--if customers are
getting a very large response time, we can immediately see what is happening inside
of our application pretty much real-time.

https://www.googleapis.com/discovery/v1/apis.

Monitoring Kubernetes clusters
Kubernetes covers 99 percent of the needs for any software company, but one part
where it does not really shine is in embedded monitoring, leaving a space to be filled
by third-parties. The main problem with Kubernetes comes from Docker: containers
are ephemeral, so a common practice is to dump the logs into the standard
output/error and use syslogd to gather them in a centralized location.

With Kubernetes, we have an added problem: the orchestrator on top of Docker
needs to know how to fetch logs in order to make them available via the API or
dashboard, so it is possible for the user to access them when required. But then there
is another problem. Usually, logs are rotated on the basis of time and archived in
order to avoid a log sprawl that can consume all the free space in our servers,
preventing the application (and the OS) from functioning normally.

The best solution is to use an external system to aggregate logs and events inside the
cluster so that we push the complexity to the side, allowing Kubernetes to focus on
what it does best: orchestrate containers.

In this case, in order to integrate our cluster with Stackdriver in Google Cloud
Platform, the only thing that we need to do is mark the two checkboxes in the cluster
creation screen:

This will enable the monitoring across the different nodes in our cluster and improve
the way in which we tackle problems happening in our applications. Click on Create
and allow the cluster to be provisioned (might take a few seconds or even minutes).
It does not need to be a big cluster; just use the small size for the machines, and two
VMs will be enough. In fairness, we will probably need to reduce the size during the
load testing in order to speed up the alerting part.

As we've seen in the previous section, with GKE monitoring active,
Kubernetes also sends the logs to the Logging capabilities of
Stackdriver, so you don't need to connect to the nodes to fetch the logs.

Once it is created, we are going to add monitoring from Stackdriver. The first thing

that we need to do is open Monitoring in the Stackdriver section of Google Cloud
Platform. This will open a new site, the original Stackdriver site, which looks very
similar to what is shown in the following screenshot:

Even though the UI might be a bit confusing in the beginning, after a bit of usage, it
becomes clear that it is really hard to pack the huge amount of functionality that
Stackdriver offers in a better UI. By default, we can see some metrics about our
cluster (the bottom-right section of the image), but they are not very useful: we don't
want to have someone looking at the metrics the full day in order to raise alerts. Let's
automate it. The first thing that we need to do is create a group. A group is basically
a set of resources that work together, in this case, our cluster. Click on Groups and
create a new one:

By default, Stackdriver will suggest groupings to you. In this case, in the suggested
Groups section, we can see that Stackdriver has suggested our cluster. It is possible
to add more sophisticated criteria, but in this case, matching the start of the name of
our machines will work as the GKE names them according to some criteria,
including the name of the cluster in the very beginning.

Create a group (call it GKE, the default suggested name). Once the group is created,
you can navigate to it and see different metrics such as CPU or even configure them,
adding others such as disk I/O and similar. Get yourself familiar with the dashboard:

In my case, I have added a metric for capturing the used memory in the cluster. Even
though this amount of available data is quite interesting, there is an even more
powerful tool: the alerting policies.

The alerting policies are criteria in which we should get alerted: high memory usage,
low disk space, or high CPU utilization, among others, are events that we want to
know about in order to take actions as soon as possible. The beauty of the alerting
policies is that if we configure them as appropriated, we enter a state that I call the
autopilot mode: we don't need to worry about the performance of the system unless
we get alerted, which drastically reduces the number of people required to operate a
system.

Let's create an alerting policy by clicking on the Create Alerting Policy button:

As shown in the preceding screen, we need to select a metric. We are going to use
the type Metric Threshold as it is included in the basic package of Stackdriver, so we
don't need to upgrade to a Premium subscription. Our alert is going to be raised if
any of the members of our cluster has a CPU usage of more than 30 percent for one
minute.

The next step is to configure the notification. In the basic package, only email is
included, but it is sufficient to test how the system works. Stackdriver also allows
you to include text to be sent across with the notification. Just enter something like
Test alert alongside your email and save the alert policy with the name of your
choice.

As you can see, creating alerts is very simple in Stackdriver. This is a very simplistic
example, but once you have set up your cluster, the next step is to set up the
acceptable set of metrics where it should operate normally and get alerted if any of
them is violated.

Now it is time to set off the alarm to see what happens. In order to do that, we need
to overload the cluster with several replicas of the same image, and we are going to
use a tool called Apache benchmark to generate a load on the system:

kubectl run my-nginx --image=nginx --replicas=7 --port=80

And now expose the deployment called my-nginx:

kubectl expose my-nginx --type=LoadBalancer

Be aware that you first need to configure kubectl to point to your cluster, as we've
seen in previous chapters.

Once nginx is deployed, it is time to stress it out:

ab -k -c 350 -n 4000000 http://130.211.65.42/

The ab tool is a very powerful benchmark tool called Apache Benchmark. We are
going to create 350 concurrent consumers, and they will issue 4 million requests in
total. It might be possible that you need to reduce the size of your cluster in order to
stress the CPU: if you reduce the size while the benchmark is running, Kubernetes
will need to reschedule containers to reorganize the resources, adding more load to
the system.

I would recommend that you further explore Apache Benchmark, as it
is very useful for load testing.

Once the CPU has gone beyond the threshold for any of our nodes for over a minute,
we should receive an alert by email, and it should be displayed in the Stackdriver
interface:

In this case, I have received two alerts as two of the nodes went beyond the limits.
These alerts follow a workflow. You can acknowledge them if the rule is still broken
and they will go to resolved once they are acknowledged and the condition has
disappeared. In this case, if you stop Apache Benchmark and acknowledge the raised
alerts, they will go straight into the resolved state.

In the Premium version, there are more advanced policies, such as Slack messages or
SMS, which allows your team to set up a rota for acknowledging incidents and
managing the actions.

Summary
This is the final chapter of the book. Through the entire book, we visited the most
important tools used by DevOps engineers, with a strong focus on the Google Cloud
Platform. In this chapter, we experimented with what, in my opinion, is a very
important aspect of any system: monitoring. I am of the opinion that monitoring is
the best way to tackle problems once they have hit your production systems, which,
no matter how much effort you put in it, will eventually happen.

What is next?
This book did not go particularly in deep into any subject. This is intended. This
book is meant to plant the seed of a big tree: the culture of DevOps, hoping that you
have enough information to keep growing your knowledge of DevOps tools and
processes.

Keeping yourself up to date with the latest tools is a full-time job on its own, but it's
very necessary if you want to be on the top of the wave. My opinion is that we are
very lucky to be able to participate in the rise and shine of the DevOps culture, and
the future is bright. Automation and better languages (Golang, Kotlin, Node.js, and
so on) will allow us to reduce human intervention, improving the overall resilience
of our systems.

If you look five years back and compare it with what it is there in the market today,
can you imagine how our jobs are going to be in 15 years?

If you want to follow up about any question or check what I am working on
nowadays, you can always get in touch with me in LinkedIn:

https://www.linkedin.com/in/david-gonzalez-microservices/

https://www.linkedin.com/in/david-gonzalez-microservices/

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	DevOps in the Real World
	What is DevOps?
	DevOps origins
	DevOps and corporations

	Traditional release management
	Chain of communication
	The cost of fixing a bug
	Releasing new versions

	Modern release management
	Agile development and communication
	Releasing new versions

	DevOps and microservices
	DevOps: Organizational alignment
	What to expect from this book
	Summary

	Cloud Data Centers - The New Reality
	Amazon Web Services
	EC2 - computing service
	Launching an instance
	Relational Database Service
	Networking in AWS and EC2
	Storage in AWS and EC2

	Amazon S3
	Amazon ECR and ECS
	Creating a cluster

	Other services
	Route 53
	CloudFront
	Amazon ElasticCache
	Amazon RDS
	DynamoDB

	Google Cloud Platform
	Google Compute Engine
	Standard machine types
	High-memory machine types
	High-CPU machine types
	Shared-core machine types
	Custom machines and GPU processing
	Launching an instance
	Networking

	Google Container Engine
	Setting up a cluster

	Other Google Cloud Platform products
	Google App Engine
	Machine Learning APIs
	Big data

	Other cloud providers
	Heroku
	DigitalOcean
	Azure

	Summary

	Docker
	Docker architecture
	Docker internals

	Docker client
	Building Docker images
	Dockerfile reference

	Docker registries
	Public registries
	Private registries

	Docker volumes
	Docker networking
	User-defined networks

	Docker Compose
	Summary

	Continuous Integration
	Software development life cycle
	Testing types
	Traditional CI servers
	Bamboo
	Jenkins
	Secrets Management

	Modern CI servers
	Drone CI
	Installing Drone
	Running builds
	Executing pipelines
	Other features

	Summary

	Infrastructure as Code
	Google Cloud Platform SDK - gcloud
	Creating resources with Google Cloud SDK

	Terraform
	Creating resources
	Remote state management
	Modifying your infrastructure
	Terraform variables
	Terraform outputs

	Summary

	Server Provisioning
	Server provision software
	Chef
	Puppet
	Ansible

	Ansible
	Ansible configuration
	Ansible variables, remote facts and templates
	Ansible variables
	Ansible remote facts
	Ansible templates
	Flow control

	Roles

	Ansible Tower
	Summary

	Docker Swarm and Kubernetes - Clustering Infrastructure
	Why clustering ?
	Docker Swarm
	Kubernetes
	Kubernetes logical architecture
	Setting up a cluster in GCP
	Kubernetes building blocks
	Pods
	Deploying a pod

	Replica Sets
	Deployments
	Services
	Other Building Blocks
	Daemon Sets
	PetSets
	Jobs

	Secrets and configuration management
	Kubernetes- moving on

	Summary

	Release Management – Continuous Delivery
	Playing against the statistics
	The test system
	ISO date and UTC date services
	Aggregator service
	Pushing the images to Google Container Registry

	Setting up a continuous delivery pipeline for images
	Setting up Jenkins
	Continuous delivery for your application
	Regular release
	Blue-green deployment
	Canary deployment

	Summary

	Monitoring
	Introduction
	Types of monitoring
	Blackbox monitoring
	Whitebox monitoring

	Monitoring third-party tools
	Pingdom
	Logentries
	AppDynamics

	Stackdriver
	Monitoring applications
	Monitoring Kubernetes clusters

	Summary
	What is next?

