

Learning DevOps: Continuously
Deliver Better Software

Learn to use some of the most exciting and powerful
tools to deliver world-class quality software with

continuous delivery and DevOps

A course in three modules

BIRMINGHAM - MUMBAI

Learning DevOps: Continuously Deliver Better Software

Copyright © 2016 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course
is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Published on: September 2016

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78712-661-9

www.packtpub.com

Credits

Authors
Joakim Verona

Michael Duffy

Paul Swartout

Reviewers
Per Hedman

Max Manders

Jon Auman

Tom Geudens

Sami Rönkä

Diego Woitasen

Adam Strawson

Content Development Editor
Aishwarya Pandere

Production Coordinator
Nilesh Mohite

[i]

Preface
The Learning DevOps: Continuously Deliver Better Software, is a course that will
harness the power of DevOps to boost your skill set and make your IT organization
perform better. It will aid developers, systems administrators who are keen to
employ DevOps techniques to help with the day-to-day complications of managing
complex infrastructures.

What this learning path covers
Module 1, Practical DevOps, describes how DevOps can assist us in the emerging
field of the Internet of Things.

Module 2, DevOps Automation Cookbook, covers recipes that allow you to automate
the build and configuration of the most basic building block in your infrastructure
servers..

Module 3, Continuous Delivery and DevOps – A Quickstart Guide - Second Edition,
provides some insight into how you can take CD and DevOps techniques and
experience beyond the traditional software delivery process.

What you need for this learning path
Module 1: This module contains many practical examples. To work through the
examples, you need a machine preferably with a GNU/Linux-based operating
system,

such as Fedora.

Module 2: For this book, you will require the following software:

A server running Ubuntu 14.04 or greater.

Preface

[ii]

A desktop PC running a modern Web Browser

A good Text editor or IDE.

Module 3: There are many tools mentioned within the book that will help you no
end. These include technical tools such as Jenkins, GIT, Docker, Vagrant, IRC, Sonar,
and Graphite, and nontechnical tools and techniques such as Scrum, Kanban, agile,
and TDD.

You might have some of these (or similar) tools in place, or you might be looking at
implementing them, which will help. However, the only thing you’ll really need to
enjoy and appreciate this book is the ability to read and an open mind.

Who this learning path is for
This course is for developers who wish to take on larger responsibilities and
understand how the infrastructure that builds today’s enterprises works. It is also
for operations personnel who would like to better support their developers. Anyone
who wants to understand how to painlessly and regularly ship quality software can
take up this course.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this course—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the course’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt course, we have a number of things to
help you to get the most from your purchase.

Preface

[iii]

Downloading the example code
You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the course in the Search box.
5. Select the course for which you’re looking to download the code files.
6. Choose from the drop-down menu where you purchased this course from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
course’s webpage at the Packt Publishing website. This page can be accessed by
entering the course’s name in the Search box. Please note that you need to be logged
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at https://github.com/
PacktPublishing/Learning-DevOps-Continuously-Deliver-Better-Software.
We also have other code bundles from our rich catalog of books, videos, and courses
available at https://github.com/PacktPublishing/. Check them out!

Preface

[iv]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our courses—maybe a mistake in the text
or the code—we would be grateful if you could report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this course. If you find any errata, please report them by visiting http://www.
packtpub.com/submit-errata, selecting your course, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the course in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this course, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[i]

Module 1 1
Chapter 1: Introduction to DevOps and Continuous Delivery 3

Introducing DevOps 3
How fast is fast? 5
The Agile wheel of wheels 7
Beware the cargo cult Agile fallacy 8
DevOps and ITIL 9
Summary 10

Chapter 2: A View from Orbit 11
The DevOps process and Continuous Delivery – an overview 11
Release management 19
Scrum, Kanban, and the delivery pipeline 19
Wrapping up – a complete example 20
Identifying bottlenecks 21
Summary 22

Chapter 3: How DevOps Affects Architecture 23
Introducing software architecture 23
The monolithic scenario 24
Architecture rules of thumb 25
The separation of concerns 25
The principle of cohesion 26
Coupling 26
Back to the monolithic scenario 26
A practical example 27
Three-tier systems 27
The presentation tier 28
The logic tier 28

Table of Contents

[ii]

The data tier 28
Handling database migrations 29
Rolling upgrades 30
Hello world in Liquibase 31
The changelog file 31
The pom.xml file 32
Manual installation 33
Microservices 34
Interlude – Conway's Law 35
How to keep service interfaces forward compatible 36
Microservices and the data tier 37
DevOps, architecture, and resilience 37
Summary 39

Chapter 4: Everything is Code 41
The need for source code control 42
The history of source code management 42
Roles and code 43
Which source code management system? 44
A word about source code management system migrations 45
Choosing a branching strategy 45
Branching problem areas 47
Artifact version naming 48
Choosing a client 49
Setting up a basic Git server 50
Shared authentication 52
Hosted Git servers 52
Large binary files 53
Trying out different Git server implementations 54
Docker intermission 54
Gerrit 55
The pull request model 59
GitLab 59
Summary 61

Chapter 5: Building the Code 63
Why do we build code? 63
The many faces of build systems 64
The Jenkins build server 65
Managing build dependencies 68
The final artifact 69
Cheating with FPM 70

Table of Contents

[iii]

Continuous Integration 71
Continuous Delivery 72
Jenkins plugins 72
The host server 74
Build slaves 74
Software on the host 75
Triggers 76
Job chaining and build pipelines 76
A look at the Jenkins filesystem layout 77
Build servers and infrastructure as code 78
Build phases 79
Alternative build servers 80
Collating quality measures 80
About build status visualization 81
Taking build errors seriously 82
Robustness 82
Summary 83

Chapter 6: Testing the Code 85
Manual testing 85
Pros and cons with test automation 86
Unit testing 88
JUnit in general and JUnit in particular 89
Mocking 91
Test Coverage 91
Automated integration testing 92
Performance testing 94
Automated acceptance testing 95
Automated GUI testing 97
Integrating Selenium tests in Jenkins 98
JavaScript testing 99
Testing backend integration points 100
Test-driven development 102
REPL-driven development 102
A complete test automation scenario 103
Summary 112

Chapter 7: Deploying the Code 113
Why are there so many deployment systems? 113
Virtualization stacks 118
Executing code on the client 120
The Puppet master and Puppet agents 121

Table of Contents

[iv]

Ansible 122
PalletOps 125
Deploying with Chef 126
Deploying with SaltStack 127
Salt versus Ansible versus Puppet versus PalletOps execution models 129
Vagrant 130
Deploying with Docker 132
Comparison tables 133
Cloud solutions 133
AWS 134
Azure 134
Summary 135

Chapter 8: Monitoring the Code 137
Nagios 137
Munin 143
Ganglia 147
Graphite 152
Log handling 154
Summary 160

Chapter 9: Issue Tracking 161
What are issue trackers used for? 161
Some examples of workflows and issues 163
What do we need from an issue tracker? 165
Problems with issue tracker proliferation 168
All the trackers 169
Summary 196

Chapter 10: The Internet of Things and DevOps 197
Introducing the IoT and DevOps 197
The future of the IoT according to the market 201
Machine-to-machine communication 203
IoT deployment affects software architecture 204
IoT deployment security 204
Okay, but what about DevOps and the IoT again? 205
A hands-on lab with an IoT device for DevOps 207
Summary 213

Table of Contents

[v]

Module 2 215
Chapter 1: Basic Command Line Tools 217

Introduction 218
Controlling network interfaces 218
Monitoring network details with the IP command 221
Monitoring connections using the ss command 223
Gathering basic OS statistics 224
Viewing historical resource usage with SAR 228
Installing and configuring a Git client 231
Creating an SSH key for Git 231
Using ssh-copy-id to copy keys 233
Creating a new Git repository 234
Cloning an existing Git repository 235
Checking changes into a Git repository 236
Pushing changes to a Git remote 237
Creating a Git branch 239

Chapter 2: Ad Hoc Tasks with Ansible 241
Introduction 241
Installing an Ansible control node on Ubuntu 243
Installing an Ansible control node on CentOS 244
Creating an Ansible inventory 245
Using the raw module to install python-simplejson 247
Installing packages with Ansible 248
Restarting services using Ansible 250
Executing freeform commands with Ansible 250
Managing users with Ansible 251
Managing SSH keys with Ansible 252

Chapter 3: Automatic Host builds 255
Introduction 255
Creating an Apt mirror using aptly 257
Automated installation using PXE boot and a Preseed file 262
Automating post-installation tasks 270

Chapter 4: Virtualization with VMware ESXi 273
Introduction 273
Installing ESXi 275
Installing and using the vSphere Client 279
Allowing SSH access to ESXi 282
Creating a new guest 285
Allocating resources to a guest 288

Table of Contents

[vi]

Using the ESXi command line to start, stop, and destroy guests 289
Managing command-line snapshots 290
Tuning the host for guest performance 293

Chapter 5: Automation with Ansible 295
Introduction 295
Installing Ansible 296
Creating a scaffold Playbook 297
Creating a common role 299
Creating a webserver using Ansible and Nginx 305
Creating an application server role using Tomcat and Ansible 312
Installing MySQL using Ansible 319
Installing and managing HAProxy with Ansible 324
Using ServerSpec to test your Playbook 328

Chapter 6: Containerization with Docker 333
Introduction 333
Installing Docker 335
Pulling an image from the public Docker registry 336
Performing basic Docker operations 338
Running a container interactively 339
Creating a Dockerfile 340
Running a container in detached mode 345
Saving and restoring a container 347
Using the host only network 348
Running a private Docker registry 349
Managing images with a private registry 352

Chapter 7: Using Jenkins for Continuous Deployment 355
Introduction 355
Installing Jenkins 357
Installing the Git plugin 362
Installing a Jenkins slave 366
Creating your first Jenkins job 369
Building Docker containers using Jenkins 375
Deploying a Java application to Tomcat with zero downtime
using Ansible 379

Chapter 8: Metric Collection with InfluxDB 391
Introduction 391
Installing InfluxDB 392
Creating a new InfluxDB database 394
Logging events with the InfluxDB REST API 396
Gathering host statistics with Telegraf 398

Table of Contents

[vii]

Exploring data with the InfluxDB data explorer 400
Installing Grafana 404
Creating dashboards with Grafana 407

Chapter 9: Log Management 413
Introduction 413
Centralizing logs with Syslog 414
Using syslog templates 417
Managing log rotation with the Logrotate utility 418
Installing ElasticSearch, Logstash, and Kibana 420
Importing logs into Elasticsearch with Logstash 424
Using Kibana queries to explore data 427
Using Kibana queries to examine data 435

Chapter 10: Monitoring with Sensu 439
Introduction 439
Installing a Sensu server 441
Installing a Sensu client 446
Installing check prerequisites 449
Finding community checks 449
Adding a DNS check 450
Adding a disk check 453
Adding a RAM check 454
Adding a process check 456
Adding a CPU check 458
Creating e-mail alerts 459
Creating SMS alerts 462
Using Ansible to install Sensu 465

Chapter 11: IAAS with Amazon AWS 469
Introduction 469
Signing up for AWS 470
Setting up IAM 471
Creating your first security group 477
Creating your first EC2 host 480
Using Elastic Load Balancers 486
Managing DNS with route53 490
Using Ansible to create EC2 hosts 494

Chapter 12: Application Performance Monitoring with New Relic 497
Introduction 497
Signing up for a New Relic account 498
Installing the New Relic Java agent 500
Using the performance overview 502

Table of Contents

[viii]

Locating performance bottlenecks with Transaction Traces 507
Observing database performance with New Relic 512
Release performance monitoring with New Relic 515
Server Monitoring with New Relic 518

Module 3 521
Chapter 1: Evolution of a Software House 523

A brief history of ACME systems 523
ACME systems version 1.0 524
ACME systems version 2.0 528
ACME systems version 3.0 534
ACME systems version 4.0 536
The evolution in a nutshell 538
Summary 538

Chapter 2: No Pain, No Gain 539
Elephant in the room 541
Defining the rules 542
Including (almost) everyone 544
Openness, transparency, and honesty 546
The great elephant disclosure 550
Summary 553

Chapter 3: Plan of Attack 555
Setting and communicating the goal and vision 556
Standardizing vocabulary and language 559
A business change project in its own right 561
The merits of a dedicated team 563
The importance of evangelism 566
Courage and determination 568
Understanding the cost 569
Seeking advice from others 570
Summary 571

Chapter 4: Culture and Behaviors 573
All roads lead to culture 574
An open, honest, and safe environment 576
Encouraging and embracing collaboration 581
Fostering innovation and accountability at grass roots 583
The blame culture 585
Building trust-based relationships across organizational boundaries 588
Rewarding good behaviors and success 589
Recognizing dev and ops teams are incentivized can have an impact 590

Table of Contents

[ix]

Embracing change and reducing risk 592
Being transparent 593
Summary 595

Chapter 5: Approaches, Tools, and Techniques 597
Engineering best practice 598
How many environments are enough? 606
Developing against a production-like environment 607
CD tooling 608
The cloud 612
Monitoring 613
When a simple manual process is also an effective tool 614
Summary 616

Chapter 6: Hurdles Along the Way 617
What are the potential issues you need to look out for? 617
Summary 633

Chapter 7: Vital Measurements 635
Measuring effective engineering best practice 636
Measuring the real world 641
Summary 650

Chapter 8: Are We There Yet? 651
Reflect on where you are now 652
Streaming 653
A victim of your own success 654
[P]lan, [D]o, [C]heck, [A]djust 656
Exit stage left 658
Rest on your laurels (not) 659
Summary 659

Chapter 9: The Future is Bright 661
Expanding your horizon 661
Expanding beyond software delivery 670
What about me? 671
What have you learned? 672
Summary 673

Appendix A: Some Useful Information 675
Tools 675
People 677
Recommended reading 678

Table of Contents

[x]

Appendix B: Where Am I on the Evolutionary Scale? 681
Appendix C: Retrospective Games 683

The timeline game 684
StoStaKee 684

Appendix D: Vital Measurements Expanded 687
Code complexity – some science 687
Code versus comments 688
Embedding monitoring into your software 689

Bibliography 691

[1]

Module 1

Practical DevOps

Harness the power of DevOps to boost your skill set and make your
IT organization perform better

[3]

Introduction to DevOps and
Continuous Delivery

Welcome to Practical DevOps!

The first chapter of this book will deal with the background of DevOps and setting
the scene for how DevOps fits into the wider world of Agile systems development.

An important part of DevOps is being able to explain to coworkers in your
organization what DevOps is and what it isn't.

The faster you can get everyone aboard the DevOps train, the faster you can get to
the part where you perform the actual technical implementation!

In this chapter, we will cover the following topics:

• Introducing DevOps
• How fast is fast?
• The Agile wheel of wheels
• The cargo cult Agile fallacy
• DevOps and ITIL

Introducing DevOps
DevOps is, by definition, a field that spans several disciplines. It is a field that is
very practical and hands-on, but at the same time, you must understand both the
technical background and the nontechnical cultural aspects. This book covers both
the practical and soft skills required for a best-of-breed DevOps implementation in
your organization.

Introduction to DevOps and Continuous Delivery

[4]

The word "DevOps" is a combination of the words "development" and "operation".
This wordplay already serves to give us a hint of the basic nature of the idea behind
DevOps. It is a practice where collaboration between different disciplines of software
development is encouraged.

The origin of the word DevOps and the early days of the DevOps movement can
be tracked rather precisely: Patrick Debois is a software developer and consultant
with experience in many fields within IT. He was frustrated with the divide between
developers and operations personnel. He tried getting people interested in the
problem at conferences, but there wasn't much interest initially.

In 2009, there was a well-received talk at the O'Reilly Velocity Conference: "10+
Deploys per Day: Dev and Ops Cooperation at Flickr." Patrick then decided to
organize an event in Ghent, Belgium, called DevOpsDays. This time, there was much
interest, and the conference was a success. The name "DevOpsDays" struck a chord,
and the conference has become a recurring event. DevOpsDays was abbreviated to
"DevOps" in conversations on Twitter and various Internet forums.

The DevOps movement has its roots in Agile software development principles.
The Agile Manifesto was written in 2001 by a number of individuals wanting to
improve the then current status quo of system development and find new ways
of working in the software development industry. The following is an excerpt
from the Agile Manifesto, the now classic text, which is available on the Web at
http://agilemanifesto.org/:

"Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left
more."

In light of this, DevOps can be said to relate to the first principle, "Individuals and
interactions over processes and tools."

This might be seen as a fairly obviously beneficial way to work—why do we
even have to state this obvious fact? Well, if you have ever worked in any large
organization, you will know that the opposite principle seems to be in operation
instead. Walls between different parts of an organization tend to form easily, even in
smaller organizations, where at first it would appear to be impossible for such walls
to form.

http://agilemanifesto.org/

Chapter 1

[5]

DevOps, then, tends to emphasize that interactions between individuals are
very important, and that technology might possibly assist in making these
interactions happen and tear down the walls inside organizations. This might seem
counterintuitive, given that the first principle favors interaction between people
over tools, but my opinion is that any tool can have several effects when used.
If we use the tools properly, they can facilitate all of the desired properties of an
Agile workplace.

A very simple example might be the choice of systems used to report bugs. Quite
often, development teams and quality assurance teams use different systems to
handle tasks and bugs. This creates unnecessary friction between the teams and
further separates them when they should really focus on working together instead.
The operations team might, in turn, use a third system to handle requests for
deployment to the organization's servers.

An engineer with a DevOps mindset, on the other hand, will immediately recognize
all three systems as being workflow systems with similar properties. It should be
possible for everyone in the three different teams to use the same system, perhaps
tweaked to generate different views for the different roles. A further benefit would
be smaller maintenance costs, since three systems are replaced by one.

Another core goal of DevOps is automation and Continuous Delivery. Simply put,
automating repetitive and tedious tasks leaves more time for human interaction,
where true value can be created.

How fast is fast?
The turnaround for DevOps processes must be fast. We need to consider time to
market in the larger perspective, and simply stay focused on our tasks in the smaller
perspective. This line of thought is also held by the Continuous Delivery movement.

As with many things Agile, many of the ideas in DevOps and Continuous Delivery
are in fact different names of the same basic concepts. There really isn't any
contention between the two concepts; they are two sides of the same coin.

DevOps engineers work on making enterprise processes faster, more efficient, and
more reliable. Repetitive manual labor, which is error prone, is removed whenever
possible.

It's easy, however, to lose track of the goal when working with DevOps
implementations. Doing nothing faster is of no use to anyone. Instead, we
must keep track of delivering increased business value.

Introduction to DevOps and Continuous Delivery

[6]

For instance, increased communication between roles in the organization has
clear value. Your product owners might be wondering how the development
process is going and are eager to have a look. In this situation, it is useful to be able
to deliver incremental improvements of code to the test environments quickly and
efficiently. In the test environments, the involved stake holders, such as product
owners and, of course, the quality assurance teams, can follow the progress of the
development process.

Another way to look at it is this: If you ever feel yourself losing focus because of
needless waiting, something is wrong with your processes or your tooling. If you
find yourself watching videos of robots shooting balloons during compile time,
your compile times are too long!

The same is true for teams idling while waiting for deploys and so on. This idling is,
of course, even more expensive than that of a single individual.

While robot shooting practice videos are fun, software development is inspiring too!
We should help focus creative potential by eliminating unnecessary overhead.

A death ray laser robot versus your team's productivity

Chapter 1

[7]

The Agile wheel of wheels
There are several different cycles in Agile development, from the Portfolio level
through to the Scrum and Kanban cycles and down to the Continuous Integration
cycle. The emphasis on which cadence work happens in is a bit different depending
on which Agile framework you are working with. Kanban emphasizes the 24-hour
cycle and is popular in operations teams. Scrum cycles can be between two to four
weeks and are often used by development teams using the Scrum Agile process.
Longer cycles are also common and are called Program Increments, which span
several Scrum Sprint cycles, in Scaled Agile Framework.

edit/compile/debug

Portfolio
Scrum

kanban

The Agile wheel of wheels

DevOps must be able to support all these cycles. This is quite natural given the
central theme of DevOps: cooperation between disciplines in an Agile organization.

The most obvious and measurably concrete benefits of DevOps occur in the shorter
cycles, which in turn make the longer cycles more efficient. Take care of the pennies,
and the pounds will take care of themselves, as the old adage goes.

Here are some examples of when DevOps can benefit Agile cycles:

• Deployment systems, maintained by DevOps engineers, make the deliveries
at the end of Scrum cycles faster and more efficient. These can take place
with a periodicity of two to four weeks.
In organizations where deployments are done mostly by hand, the time
to deploy can be several days. Organizations that have these inefficient
deployment processes will benefit greatly from a DevOps mindset.

• The Kanban cycle is 24 hours, and it's therefore obvious that the deployment
cycle needs to be much faster than that if we are to succeed with Kanban.

A well-designed DevOps Continuous Delivery pipeline can deploy code
from being committed to the code repository to production in the order of
minutes, depending on the size of the change.

Introduction to DevOps and Continuous Delivery

[8]

Beware the cargo cult Agile fallacy
Richard Feynman was awarded the Nobel Prize for his work in the field of quantum
physics in 1965. He noticed a common behavior among scientists, in which they
went though all the motions of science but missed some central, vital ingredient
of the scientific process. He called this behavior "cargo cult science," since it was
reminiscent of the cargo cults in the Melanesian South Sea islands. These cargo cults
where formed during the Second World War when the islanders watched great
planes land with useful cargo. After the war stopped, the cargo also stopped coming.
The islanders started simulating landing strips, doing everything just as they had
observed the American military do, in order for the planes to land.

A cargo cult Agile aeroplane

We are not working in an Agile or DevOps-oriented manner simply because we have
a morning stand-up where we drink coffee and chat about the weather. We don't
have a DevOps pipeline just because we have a Puppet implementation that only
the operations team knows anything about.

Chapter 1

[9]

It is very important that we keep track of our goals and continuously question
whether we are doing the right thing and are still on the right track. This is central
to all Agile thinking. It is, however, something that is manifestly very hard to do in
practice. It is easy to wind up as followers of the cargo cults.

When constructing deployment pipelines, for example, keep in mind why we are
building them in the first place. The goal is to allow people to interact with new
systems faster and with less work. This, in turn, helps people with different roles
interact with each other more efficiently and with less turnaround.

If, on the other hand, we build a pipeline that only helps one group of people
achieve their goals, for instance, the operations personnel, we have failed to
achieve our basic goal.

While this is not an exact science, it pays to bear in mind that Agile cycles, such as
the sprint cycle in the Scrum Agile method, normally have a method to deal with
this situation. In Scrum, this is called the sprint retrospective, where the team gets
together and discusses what went well and what could have gone better during the
sprint. Spend some time here to make sure you are doing the right thing in your
daily work.

A common problem here is that the output from the sprint retrospective isn't really
acted upon. This, in turn, may be caused by the unfortunate fact that the identified
problems were really caused by some other part of the organization that you don't
communicate well with. Therefore, these problems come up again and again in the
retrospectives and are never remedied.

If you recognize that your team is in this situation, you will benefit from the DevOps
approach since it emphasizes cooperation between roles in the organization.

To summarize, try to use the mechanisms provided in the Agile methods in your
methods themselves. If you are using Scrum, use the sprint retrospective mechanism
to capture potential improvements. This being said, don't take the methods as
gospel. Find out what works for you.

DevOps and ITIL
This section explains how DevOps and other ways of working coexist and fit
together in a larger whole.

DevOps fits well together with many frameworks for Agile or Lean enterprises.
Scaled Agile Framework, or SAFe® , specifically mentions DevOps. There is
nearly never any disagreement between proponents of different Agile practices
and DevOps since DevOps originated in the Agile environments. The story is a bit
different with ITIL, though.

Introduction to DevOps and Continuous Delivery

[10]

ITIL, which was formerly known as Information Technology Infrastructure Library,
is a practice used by many large and mature organizations.

ITIL is a large framework that formalizes many aspects of the software life cycle.
While DevOps and Continuous Delivery hold the view that the changesets we
deliver to production should be small and happen often, at first glance, ITIL would
appear to hold the opposite view. It should be noted that this isn't really true. Legacy
systems are quite often monolithic, and in these cases, you need a process such as
ITIL to manage the complex changes often associated with large monolithic systems.

If you are working in a large organization, the likelihood that you are working with
such large monolithic legacy systems is very high.

In any case, many of the practices described in ITIL translate directly into
corresponding DevOps practices. ITIL prescribes a configuration management
system and a configuration management database. These types of systems are also
integral to DevOps, and several of them will be described in this book.

Summary
This chapter presented a brief overview of the background of the DevOps
movement. We discussed the history of DevOps and its roots in development
and operations, as well as in the Agile movement. We also took a look at how ITIL
and DevOps might coexist in larger organizations. The cargo cult anti-pattern
was explored, and we discussed how to avoid it. You should now be able to
answer where DevOps fits into a larger Agile context and the different cycles
of Agile development.

We will gradually move toward more technical and hands-on subjects. The next
chapter will present an overview of what the technical systems we tend to focus on
in DevOps look like.

[11]

A View from Orbit
The DevOps process and Continuous Delivery pipelines can be very complex. You
need to have a grasp of the intended final results before starting the implementation.

This chapter will help you understand how the various systems of a Continuous
Delivery pipeline fit together, forming a larger whole.

In this chapter, we will read about:

• An overview of the DevOps process, a Continuous Delivery pipeline
implementation, and the participants in the process

• Release management
• Scrum, Kanban, and the delivery pipeline
• Bottlenecks

The DevOps process and Continuous
Delivery – an overview
There is a lot of detail in the following overview image of the Continuous Delivery
pipeline, and you most likely won't be able to read all the text. Don't worry about
this just now; we are going to delve deeper into the details as we go along.

A View from Orbit

[12]

For the time being, it is enough to understand that when we work with DevOps,
we work with large and complex processes in a large and complex context.

An example of a Continuous Delivery pipeline in a large organization is introduced
in the following image:

While the basic outline of this image holds true surprisingly often, regardless of
the organization. There are, of course, differences, depending on the size of the
organization and the complexity of the products that are being developed.

The early parts of the chain, that is, the developer environments and the Continuous
Integration environment, are normally very similar.

The number and types of testing environments vary greatly. The production
environments also vary greatly.

In the following sections, we will discuss the different parts of the Continuous
Delivery pipeline.

Chapter 2

[13]

The developers
The developers (on the far left in the figure) work on their workstations.
They develop code and need many tools to be efficient.

The following detail from the previous larger Continuous Delivery pipeline
overview illustrates the development team.

Ideally, they would each have production-like environments available to work with
locally on their workstations or laptops. Depending on the type of software that is
being developed, this might actually be possible, but it's more common to simulate,
or rather, mock, the parts of the production environments that are hard to replicate.
This might, for example, be the case for dependencies such as external payment
systems or phone hardware.

A View from Orbit

[14]

When you work with DevOps, you might, depending on which of its two
constituents you emphasized on in your original background, pay more or less
attention to this part of the Continuous Delivery pipeline. If you have a strong
developer background, you appreciate the convenience of a prepackaged developer
environment, for example, and work a lot with those. This is a sound practice,
since otherwise developers might spend a lot of time creating their development
environments. Such a prepackaged environment might, for instance, include
a specific version of the Java Development Kit and an integrated development
environment, such as Eclipse. If you work with Python, you might package a
specific Python version, and so on.

Keep in mind that we essentially need two or more separately maintained
environments. The preceding developer environment consists of all the development
tools we need. These will not be installed on the test or production systems. Further,
the developers also need some way to deploy their code in a production-like way.
This can be a virtual machine provisioned with Vagrant running on the developer's
machine, a cloud instance running on AWS, or a Docker container: there are many
ways to solve this problem.

My personal preference is to use a development environment
that is similar to the production environment. If the production
servers run Red Hat Linux, for instance, the development
machine might run CentOS Linux or Fedora Linux. This is
convenient because you can use much of the same software
that you run in production locally and with less hassle. The
compromise of using CentOS or Fedora can be motivated by
the license costs of Red Hat and also by the fact that enterprise
distributions usually lag behind a bit with software versions.
If you are running Windows servers in production, it might also
be more convenient to use a Windows development machine.

The revision control system
The revision control system is often the heart of the development environment.
The code that forms the organization's software products is stored here. It is also
common to store the configurations that form the infrastructure here. If you are
working with hardware development, the designs might also be stored in the
revision control system.

The following image shows the systems dealing with code, Continuous Integration,
and artifact storage in the Continuous Delivery pipeline in greater detail:

Chapter 2

[15]

For such a vital part of the organization's infrastructure, there is surprisingly little
variation in the choice of product. These days, many use Git or are switching to it,
especially those using proprietary systems reaching end-of-life.

Regardless of the revision control system you use in your organization, the choice of
product is only one aspect of the larger picture.

You need to decide on directory structure conventions and which branching strategy
to use.

If you have a great deal of independent components, you might decide to use a
separate repository for each of them.

Since the revision control system is the heart of the development chain, many of its
details will be covered in Chapter 5, Building the Code.

The build server
The build server is conceptually simple. It might be seen as a glorified egg timer that
builds your source code at regular intervals or on different triggers.

A View from Orbit

[16]

The most common usage pattern is to have the build server listen to changes in the
revision control system. When a change is noticed, the build server updates its local
copy of the source from the revision control system. Then, it builds the source and
performs optional tests to verify the quality of the changes. This process is called
Continuous Integration. It will be explored in more detail in Chapter 5, Building
the Code.

Unlike the situation for code repositories, there hasn't yet emerged a clear winner in
the build server field.

In this book, we will discuss Jenkins, which is a widely used open source solution
for build servers. Jenkins works right out of the box, giving you a simple and robust
experience. It is also fairly easy to install.

The artifact repository
When the build server has verified the quality of the code and compiled it into
deliverables, it is useful to store the compiled binary artifacts in a repository.
This is normally not the same as the revision control system.

In essence, these binary code repositories are filesystems that are accessible over the
HTTP protocol. Normally, they provide features for searching and indexing as well
as storing metadata, such as various type identifiers and version information about
the artifacts.

In the Java world, a pretty common choice is Sonatype Nexus. Nexus is not limited to
Java artifacts, such as Jars or Ears, but can also store artifacts of the operating system
type, such as RPMs, artifacts suitable for JavaScript development, and so on.

Amazon S3 is a key-value datastore that can be used to store binary artifacts. Some
build systems, such as Atlassian Bamboo, can use Amazon S3 to store artifacts. The
S3 protocol is open, and there are open source implementations that can be deployed
inside your own network. One such possibility is the Ceph distributed filesystem,
which provides an S3-compatible object store.

Package managers, which we will look at next, are also artifact repositories at
their core.

Package managers
Linux servers usually employ systems for deployment that are similar in principle
but have some differences in practice.

Chapter 2

[17]

Red Hat-like systems use a package format called RPM. Debian-like systems use
the .deb format, which is a different package format with similar abilities. The
deliverables can then be installed on servers with a command that fetches them
from a binary repository. These commands are called package managers.

On Red Hat systems, the command is called yum, or, more recently, dnf.
On Debian-like systems, it is called aptitude/dpkg.

The great benefit of these package management systems is that it is easy to install
and upgrade a package; dependencies are installed automatically.

If you don't have a more advanced system in place, it would be feasible to log in to
each server remotely and then type yum upgrade on each one. The newest packages
would then be fetched from the binary repository and installed. Of course, as we will
see, we do indeed have more advanced systems of deployment available; therefore,
we won't need to perform manual upgrades.

Test environments
After the build server has stored the artifacts in the binary repository, they can be
installed from there into test environments.

The following figure shows the test systems in greater detail:

A View from Orbit

[18]

Test environments should normally attempt to be as production-like as is feasible.
Therefore, it is desirable that the they be installed and configured with the same
methods as production servers.

Staging/production
Staging environments are the last line of test environments. They are interchangeable
with production environments. You install your new releases on the staging servers,
check that everything works, and then swap out your old production servers and
replace them with the staging servers, which will then become the new production
servers. This is sometimes called the blue-green deployment strategy.

The exact details of how to perform this style of deployment depend on the product
being deployed. Sometimes, it is not possible to have several production systems
running in parallel, usually because production systems are very expensive.

At the other end of the spectrum, we might have many hundreds of production
systems in a pool. We can then gradually roll out new releases in the pool. Logged-in
users stay with the version running on the server they are logged in to. New users
log in to servers running new versions of the software.

The following detail from the larger Continuous Delivery image shows the final
systems and roles involved:

Not all organizations have the resources to maintain production-quality staging
servers, but when it's possible, it is a nice and safe way to handle upgrades.

Chapter 2

[19]

Release management
We have so far assumed that the release process is mostly automatic. This is the
dream scenario for people working with DevOps.

This dream scenario is a challenge to achieve in the real world. One reason for this
is that it is usually hard to reach the level of test automation needed in order to
have complete confidence in automated deploys. Another reason is simply that the
cadence of business development doesn't always the match cadence of technical
development. Therefore, it is necessary to enable human intervention in the
release process.

A faucet is used in the following figure to symbolize human interaction—in this case,
by a dedicated release manager.

How this is done in practice varies, but deployment systems usually have a way to
support how to describe which software versions to use in different environments.

The integration test environments can then be set to use the latest versions that have
been deployed to the binary artifact repository. The staging and production servers
have particular versions that have been tested by the quality assurance team.

Scrum, Kanban, and the delivery pipeline
How does the Continuous Delivery pipeline that we have described in this chapter
support Agile processes such as Scrum and Kanban?

Scrum focuses on sprint cycles, which can occur biweekly or monthly. Kanban can be
said to focus more on shorter cycles, which can occur daily.

The philosophical differences between Scrum and Kanban are a bit deeper, although
not mutually exclusive. Many organizations use both Kanban and Scrum together.

A View from Orbit

[20]

From a software-deployment viewpoint, both Scrum and Kanban are similar. Both
require frequent hassle-free deployments. From a DevOps perspective, a change
starts propagating through the Continuous Delivery pipeline toward test systems
and beyond when it is deemed ready enough to start that journey. This might be
judged on subjective measurements or objective ones, such as "all unit tests
are green."

Our pipeline can manage both the following types of scenarios:

• The build server supports the generation of the objective code quality metrics
that we need in order to make decisions. These decisions can either be made
automatically or be the basis for manual decisions.

• The deployment pipeline can also be directed manually. This can be handled
with an issue management system, via configuration code commits, or both.

So, again, from a DevOps perspective, it doesn't really matter if we use Scrum,
Scaled Agile Framework, Kanban, or another method within the lean or Agile
frameworks. Even a traditional Waterfall process can be successfully managed—
DevOps serves all!

Wrapping up – a complete example
So far, we have covered a lot of information at a cursory level.

To make it more clear, let's have a look at what happens to a concrete change as it
propagates through the systems, using an example:

• The development team has been given the responsibility to develop a change
to the organization's system. The change revolves around adding new roles
to the authentication system. This seemingly simple task is hard in reality
because many different systems will be affected by the change.

• To make life easier, it is decided that the change will be broken down into
several smaller changes, which will be tested independently and mostly
automatically by automated regression tests.

• The first change, the addition of a new role to the authentication system,
is developed locally on developer machines and given best-effort local
testing. To really know if it works, the developer needs access to systems
not available in his or her local environment; in this case, an LDAP server
containing user information and roles.

• If test-driven development is used, a failing test is written even before any
actual code is written. After the failing test is written, new code that makes
the test pass is written.

Chapter 2

[21]

• The developer checks in the change to the organization's revision control
system, a Git repository.

• The build server picks up the change and initiates the build process. After
unit testing, the change is deemed fit enough to be deployed to the binary
repository, which is a Nexus installation.

• The configuration management system, Puppet, notices that there is a new
version of the authentication component available. The integration test server
is described as requiring the latest version to be installed, so Puppet goes
ahead and installs the new component.

• The installation of the new component now triggers automated regression
tests. When these have been finished successfully, manual tests by the quality
assurance team commence.

• The quality assurance team gives the change its seal of approval. The change
moves on to the staging server, where final acceptance testing commences.

• After the acceptance test phase is completed, the staging server is swapped
into production, and the production server becomes the new staging server.
This last step is managed by the organization's load-balancing server.

The process is then repeated as needed. As you can see, there is a lot going on!

Identifying bottlenecks
As is apparent from the previous example, there is a lot going on for any change that
propagates through the pipeline from development to production. It is important for
this process to be efficient.

As with all Agile work, keep track of what you are doing, and try to identify
problem areas.

When everything is working as it should, a commit to the code repository should
result in the change being deployed to integration test servers within a 15-minute
time span.

When things are not working well, a deploy can take days of unexpected hassles.
Here are some possible causes:

• Database schema changes.
• Test data doesn't match expectations.
• Deploys are person dependent, and the person wasn't available.

A View from Orbit

[22]

• There is unnecessary red tape associated with propagating changes.
• Your changes aren't small and therefore require a lot of work to deploy

safely. This might be because your architecture is basically a monolith.

We will examine these challenges further in the chapters ahead.

Summary
In this chapter, we delved further into the different types of systems and processes
you normally work with when doing DevOps work. We gained a deeper, detailed
understanding of the Continuous Delivery process, which is at the core of DevOps.

Next, we will look into how the DevOps mindset affects software architecture in
order to help us achieve faster and more precise deliveries.

[23]

How DevOps Affects
Architecture

Software architecture is a vast subject, and in this book, we will focus on the aspects
of architecture that have the largest effects on Continuous Delivery and DevOps and
vice versa.

In this chapter, we will see:

• Aspects of software architecture and what it means to us while working with
our DevOps glasses on

• Basic terminology and goals
• Anti-patterns, such as the monolith
• The fundamental principle of the separation of concerns
• Three-tier systems and microservices

We finally conclude with some practical issues regarding database migration.

It's quite a handful, so let's get started!

Introducing software architecture
We will discuss how DevOps affects the architecture of our applications rather than
the architecture of software deployment systems, which we discuss elsewhere in
the book.

Often while discussing software architecture, we think of the non-functional
requirements of our software. By non-functional requirements, we mean different
characteristics of the software rather than the requirements on particular behaviors.

How DevOps Affects Architecture

[24]

A functional requirement could be that our system should be able to deal with credit
card transactions. A non-functional requirement could be that the system should be
able to manage several such credit cards transactions per second.

Here are two of the non-functional requirements that DevOps and Continuous
Delivery place on software architecture:

• We need to be able to deploy small changes often
• We need to be able to have great confidence in the quality of our changes

The normal case should be that we are able to deploy small changes all the way from
developers' machines to production in a small amount of time. Rolling back a change
because of unexpected problems caused by it should be a rare occurrence.

So, if we take out the deployment systems from the equation for a while, how will
the architecture of the software systems we deploy be affected?

The monolithic scenario
One way to understand the issues that a problematic architecture can cause for
Continuous Delivery is to consider a counterexample for a while.

Let's suppose we have a large web application with many different functions.
We also have a static website inside the application. The entire web application is
deployed as a single Java EE application archive. So, when we need to fix a spelling
mistake in the static website, we need to rebuild the entire web application archive
and deploy it again.

While this might be seen as a silly example, and the enlightened reader would never
do such a thing, I have seen this anti-pattern live in the real world. As DevOps
engineers, this could be an actual situation that we might be asked to solve.

Let's break down the consequences of this tangling of concerns. What happens when
we want to correct a spelling mistake? Let's take a look:

1. We know which spelling mistake we want to correct, but in which code base
do we need to do it? Since we have a monolith, we need to make a branch in
our code base's revision control system. This new branch corresponds to the
code that we have running in production.

2. Make the branch and correct the spelling mistake.
3. Build a new artifact with the correction. Give it a new version.
4. Deploy the new artifact to production.

Chapter 3

[25]

Okay, this doesn't seem altogether too bad at first glance. But consider the
following too:

• We made a change in the monolith that our entire business critical system
comprises. If something breaks while we are deploying the new version,
we lose revenue by the minute. Are we really sure that the change affects
nothing else?

• It turns out that we didn't really just limit the change to correcting a spelling
mistake. We also changed a number of version strings when we produced
the new artifact. But changing a version string should be safe too, right? Are
we sure?

The point here is that we have already spent considerable mental energy in making
sure that the change is really safe. The system is so complex that it becomes difficult
to think about the effects of changes, even though they might be trivial.

Now, a change is usually more complex than a simple spelling correction. Thus, we
need to exercise all aspects of the deployment chain, including manual verification,
for all changes to a monolith.

We are now in a place that we would rather not be.

Architecture rules of thumb
There are a number of architecture rules that might help us understand how to deal
with the previous undesirable situation.

The separation of concerns
The renowned Dutch computer scientist Edsger Dijkstra first mentioned his
idea of how to organize thought efficiently in his paper from 1974, On the role of
scientific thought.

He called this idea "the separation of concerns". To this date, it is arguably the single
most important rule in software design. There are many other well-known rules, but
many of them follow from the idea of the separation of concerns. The fundamental
principle is simply that we should consider different aspects of a system separately.

How DevOps Affects Architecture

[26]

The principle of cohesion
In computer science, cohesion refers to the degree to which the elements of a
software module belong together.

Cohesion can be used as a measure of how strongly related the functions in a
module are.

It is desirable to have strong cohesion in a module.

We can see that strong cohesion is another aspect of the principle of the separation
of concerns.

Coupling
Coupling refers to the degree of dependency between two modules. We always want
low coupling between modules.

Again, we can see coupling as another aspect of the principle of the separation
of concerns.

Systems with high cohesion and low coupling would automatically have separation
of concerns, and vice versa.

Back to the monolithic scenario
In the previous scenario with the spelling correction, it is clear that we failed with
respect to the separation of concerns. We didn't have any modularization at all, at
least from a deployment point of view. The system appears to have the undesirable
features of low cohesion and high coupling.

If we had a set of separate deployment modules instead, our spelling correction
would most likely have affected only a single module. It would have been more
apparent that deploying the change was safe.

How this should be accomplished in practice varies, of course. In this particular
example, the spelling corrections probably belong to a frontend web component. At
the very least, this frontend component can be deployed separately from the backend
components and have their own life cycle.

In the real world though, we might not be lucky enough to always be able to
influence the different technologies used by the organization where we work.
The frontend might, for instance, be implemented using a proprietary content
management system with quirks of its own. Where you experience such
circumstances, it would be wise to keep track of the cost such a system causes.

Chapter 3

[27]

A practical example
Let's now take a look at the concrete example we will be working on for the
remainder of the book. In our example, we work for an organization called Matangle.
This organization is a software as a service (SaaS) provider that sells access to
educational games for schoolchildren.

As with any such provider, we will, with all likelihood, have a database containing
customer information. It is this database that we will start out with.

The organization's other systems will be fleshed out as we go along, but this initial
system serves well for our purposes.

Three-tier systems
The Matangle customer database is a very typical three-tier, CRUD (create, read,
update, and delete) type of system. This software architecture pattern has been
in use for decades and continues to be popular. These types of systems are very
common, and it is quite likely that you will encounter them, either as legacy
systems or as new designs.

In this figure, we can see the separation of concerns idea in action:

Clients

Presentation layer

Application server

Database layer

How DevOps Affects Architecture

[28]

The three tiers listed as follows show examples of how our organization has chosen
to build its system.

The presentation tier
The presentation tier will be a web frontend implemented using the React web
framework. It will be deployed as a set of JavaScript and static HTML files. The React
framework is fairly recent. Your organization might not use React but perhaps some
other framework such as Angular instead. In any case, from a deployment and build
point of view, most JavaScript frameworks are similar.

The logic tier
The logic tier is a backend implemented using the Clojure language on the Java
platform. The Java platform is very common in large organizations, while smaller
organizations might prefer other platforms based on Ruby or Python. Our example,
based on Clojure, contains a little bit of both worlds.

The data tier
In our case, the database is implemented with the PostgreSQL database system.
PostgreSQL is a relational database management system. While arguably not as
common as MySQL installations, larger enterprises might prefer Oracle databases.
PostgreSQL is, in any case, a robust system, and our example organization has
chosen PostgreSQL for this reason.

From a DevOps point of view, the three-tier pattern looks compelling, at least
superficially. It should be possible to deploy changes to each of the three layers
separately, which would make it simple to propagate small changes through
the servers.

In practice, though, the data tier and logic tier are often tightly
coupled. The same might also be true for the presentation tier and
logic tier. To avoid this, care must be taken to keep the interfaces
between the tiers lean. Using well-known patterns isn't necessarily
a panacea. If we don't take care while designing our system, we can
still wind up with an undesirable monolithic system.

Chapter 3

[29]

Handling database migrations
Handling changes in a relational database requires special consideration.

A relational database stores both data and the structure of the data. Upgrading a
database schema offers other challenges then the ones present when upgrading
program binaries. Usually, when we upgrade an application binary, we stop the
application, upgrade it, and then start it again. We don't really bother about the
application state. That is handled outside of the application.

When upgrading databases, we do need to consider state, because a database
contains comparatively little logic and structure, but contains much state.

In order to describe a database structure change, we issue a command to change
the structure.

The database structures before and after a change is applied should be seen as
different versions of the database. How do we keep track of database versions?

Liquibase is a database migration system that, at its core, uses a tried and
tested method. There are many systems like this, usually at least one for
every programming language. Liquibase is well-known in the Java world,
and even in the Java world, there are several alternatives that work in a
similar manner. Flyway is another example for the Java platform.

Generally, database migration systems employ some variant of the following method:

• Add a table to the database where a database version is stored.
• Keep track of database change commands and bunch them together in

versioned changesets. In the case of Liquibase, these changes are stored in
XML files. Flyway employs a slightly different method where the changesets
are handled as separate SQL files or occasionally as separate Java classes for
more complex transitions.

• When Liquibase is being asked to upgrade a database, it looks at the
metadata table and determines which changesets to run in order to
make the database up-to-date with the latest version.

As previously stated, many database version management systems work like this.
They differ mostly in the way the changesets are stored and how they determine
which changesets to run. They might be stored in an XML file, like in the case of
Liquibase, or as a set of separate SQL files, as with Flyway. This later method is more
common with homegrown systems and has some advantages. The Clojure ecosystem
also has at least one similar database migration system of its own, called Migratus.

How DevOps Affects Architecture

[30]

Rolling upgrades
Another thing to consider when doing database migrations is what can be referred to
as rolling upgrades. These kinds of deployments are common when you don't want
your end user to experience any downtime, or at least very little downtime.

Here is an example of a rolling upgrade for our organization's customer database.

When we start, we have a running system with one database and two servers. We
have a load balancer in front of the two servers.

We are going to roll out a change to the database schema, which also affects the
servers. We are going to split the customer name field in the database into two
separate fields, first name and surname.

This is an incompatible change. How do we minimize downtime? Let's look at
the solution:

1. We start out by doing a database migration that creates the two new name
fields and then fills these new fields by taking the old name field and
splitting the field into two halves by finding a space character in the name.
This was the initial chosen encoding for names, which wasn't stellar. This is
why we want to change it.
This change is so far backward compatible, because we didn't remove the
name field; we just created two new fields that are, so far, unused.

2. Next, we change the load balancer configuration so that the second of our
two servers is no longer accessible from the outside world. The first server
chugs along happily, because the old name field is still accessible to the old
server code.

3. Now we are free to upgrade server two, since nobody uses it.
After the upgrade, we start it, and it is also happy because it uses the two
new database fields.

4. At this point, we can again switch the load balancer configuration such that
server one is not available, and server two is brought online instead. We do
the same kind of upgrade on server one while it is offline. We start it and
now make both servers accessible again by reinstating our original load
balancer configuration.

Now, the change is deployed almost completely. The only thing remaining is
removing the old name field, since no server code uses it anymore.

Chapter 3

[31]

As we can see, rolling upgrades require a lot of work in advance to function
properly. It is far easier to schedule upgrades during natural downtimes, if your
organization has any. International organizations might not have any suitable
natural windows to perform upgrades, and then rolling upgrades might be the
only option.

Hello world in Liquibase
This is a simple "hello world" style example for the Liquibase relational database
changeset handler.

To try the example out, unpack the source code bundle and run Maven, the Java
build tool.

cd ch3-liquibase-helloworld

mvn liquibase:update

The changelog file
The following is an example of what a Liquibase changelog file can look like.

It defines two changesets, or migrations, with the numerical identifiers 1 and 2:

• Changeset 1 creates a table called customer, with a column called name
• Changeset 2 adds a column called address to the table called customer

<?xml version="1.0" encoding="utf-8"?>
<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/
dbchangelog"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.0.xsd">

 <changeSet id="1" author="jave">

 <createTable tableName="customer">
 <column name="id" type="int"/>
 <column name="name" type="varchar(50)"/>
 </createTable>
 </changeSet>

How DevOps Affects Architecture

[32]

 <changeSet id="2" author="jave">
 <addColumn tableName="customer">
 <column name="address" type="varchar(255)"/>
 </addColumn>
 </changeSet>

</databaseChangeLog>

The pom.xml file
The pom.xml file, which is a standard Maven project model file, defines things such
as the JDBC URL we need so that we can connect to the database we wish to work
with as well as the version of the Liquibase plugin.

An H2 database file, /tmp/liquidhello.h2.db, will be created. H2 is a convenient
in-memory database suitable for testing.

This is the pom.xml file for the "liquibase hello world" example:

<?xml version="1.0" encoding="utf-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>se.verona.liquibasehello</groupId>
 <artifactId>liquibasehello</artifactId>
 <version>1.0-SNAPSHOT</version>
 <build>
 <plugins>
 <plugin>
 <groupId>org.liquibase</groupId>
 <artifactId>liquibase-maven-plugin</artifactId>
 <version>3.0.0-rc1</version>
 <configuration>
 <changeLogFile>src/main/resources/db-changelog.xml
 </changeLogFile>
 <driver>org.h2.Driver</driver>
 <url>jdbc:h2:liquidhello</url>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.3.171</version>
 </dependency>

Chapter 3

[33]

 </dependencies>
 </plugin>
 </plugins>
 </build>
</project>

If you run the code and everything works correctly, the result will be an H2 database
file. H2 has a simple web interface, where you can verify that the database structure
is indeed what you expect.

Manual installation
Before we can automate something, we need to understand the corresponding
manual process.

Throughout this book, it is assumed that we are using a Red Hat based Linux
distribution, such as Fedora or CentOS. Most Linux distributions are similar in
principle, except that the command set used for package operations will perhaps
differ a bit.

For the exercises, you can either use a physical server or a virtual machine installed
in VirtualBox.

First we need the PostgreSQL relational database. Use this command:

dnf install postgresql

This will check whether there is a PostgreSQL server installed already. Otherwise,
it will fetch the PostgreSQL packages from a remote yum repository and install
it. So, on reflection, many of the potentially manual steps involved are already
automated. We don't need to compile the software, check software versions, install
dependencies, and so on. All of this is already done in advance on the Fedora
project's build servers, which is very convenient.

For our own organization's software though, we will need to eventually emulate this
behavior ourselves.

We will similarly also need a web server, in this case, NGINX. To install it, use the
following command:

dnf install nginx

The dnf command replaces yum in Red Hat derived distributions. It is a compatible
rewrite of yum that keeps the same command line interface.

How DevOps Affects Architecture

[34]

The software that we are deploying, the Matangle customer relationship database,
doesn't technically need a separate database and web server as such. A web server
called HTTP Kit is already included within the Clojure layer of the software.

Often, a dedicated web server is used in front of servers built on Java, Python, and
so on. The primary reason for this is, again, an issue with the separation of concerns;
this time, it is not for the separation of logic but for non-functional requirements
such as performance, load balancing, and security. A Java based web server might
be perfectly capable of serving static content these days, but a native C-based web
server such as Apache httpd or NGINX still has superior performance and more
modest memory requirements. It is also common to use a frontend web server for
SSL acceleration or load balancing, for instance.

Now, we have a database and a web server. At this point, we need to build and
deploy our organization's application.

On your development machine, perform the following steps in the book's unpacked
source archive directory:

cd ch3/crm1

lein build

We have now produced a Java archive that can be used to deploy and run the
application.

Try out the application:

lein run

Point a browser to the URL presented in the console to see the web user interface.

How do we deploy the application properly on our servers? It would be nice if we
could use the same commands and mechanisms as when we installed our databases
and webservers. We will see how we do that in Chapter 7, Deploying the Code. For
now, just running the application from a shell will have to suffice.

Microservices
Microservices is a recent term used to describe systems where the logic tier of the
three-tier pattern is composed of several smaller services that communicate with
language-agnostic protocols.

Typically, the language-agnostic protocol is HTTP based, commonly JSON REST,
but this is not mandatory. There are several possibilities for the protocol layer.

Chapter 3

[35]

This architectural design pattern lends itself well to a Continuous Delivery approach
since, as we have seen, it's easier to deploy a set of smaller standalone services than
a monolith.

Here is an illustration of what a microservices deployment might look like:

Presentation layer

Application server

Database layer

Presentation layer

Application server

Database layer

Clients

Presentation layer

Application server

Database layer

We will evolve our example towards the microservices architecture as we go along.

Interlude – Conway's Law
In 1968, Melvin Conway introduced the idea that the structure of an organization
that designs software winds up copied in the organization of the software. This is
called Conway's Law.

The three-tier pattern, for instance, mirrors the way many organizations'
IT departments are structured:

• The database administrator team, or DBA team for short
• The backend developer team
• The frontend developer team
• The operations team

Well, that makes four teams, but we can see the resemblance clearly between the
architectural pattern and the organization.

How DevOps Affects Architecture

[36]

The primary goal of DevOps is to bring different roles together, preferably in cross-
functional teams. If Conway's Law holds true, the organization of such teams would
be mirrored in their designs.

The microservice pattern happens to mirror a cross-functional team quite closely.

How to keep service interfaces forward
compatible
Service interfaces must be allowed to evolve over time. This is natural, since the
organization's needs change over time, and service interfaces reflect that to a degree.

How can we accomplish this? One way is to use a pattern that is sometimes called
Tolerant Reader. This simply means that the consumer of a service should ignore
data that it doesn't recognize.

This is a method that lends itself well to REST implementations.

SOAP, which is an XML schema-based method to define services,
is more rigorous. With SOAP, you normally don't change existing
interfaces. Interfaces are seen as contracts that should be constant.
Instead of changing the interface, you define a new schema version.
Existing consumers either have to implement the new protocol and then
be deployed again, or the producer needs to provide several versioned
endpoints in parallel. This is cumbersome and creates undesirable tighter
coupling between providers and consumers.

While the DevOps and Continuous Delivery ideas don't actually do much in
the way of mandating how things should be done, the most efficient method is
usually favored.

In our example, it can be argued that the least expensive method is to spread
the burden of implementing changes over both the producer and consumer. The
producer needs to be changed in any case, and the consumer needs to accept a
onetime cost of implementing the Tolerant Reader pattern. It is possible to do this
with SOAP and XML, but it is less natural than with a REST implementation. This
is one of the reasons why REST implementations are more popular in organizations
where DevOps and Continuous Delivery have been embraced.

Chapter 3

[37]

How to implement the Tolerant Reader pattern in practice varies with the platform
used. For JsonRest, it's usually sufficient to parse the JSON structure into the
equivalent language-specific structure. Then, you pick the parts you need for your
application. All other parts, both old and new, are ignored. The limitation of this
method is that the producer can't remove the parts of the structure that the consumer
relies on. Adding new parts is okay, because they will be ignored.

This again puts a burden on the producer to keep track of the consumer's wishes.

Inside the walls of an organization, this isn't necessarily a big problem. The producer
can keep track of copies of the consumer's latest reader code and test that they still
work during the producer's build phase.

For services that are exposed to the Internet at large, this method isn't really usable,
in which case the more rigorous approach of SOAP is preferable.

Microservices and the data tier
One way of viewing microservices is that each microservice is potentially a separate
three-tier system. We don't normally implement each tier for each microservice
though. With this in mind, we see that each microservice can implement its own data
layer. The benefit would be a potential increase of separation between services.

It is more common in my experience, though, to put all of the
organization's data into a single database or at least a single database
type. This is more common, but not necessarily better.

There are pros and cons to both scenarios. It is easier to deploy changes when the
systems are clearly separate from each other. On the other hand, data modeling is
easier when everything is stored in the same database.

DevOps, architecture, and resilience
We have seen that the microservice architecture has many desirable properties from
a DevOps point of view. An important goal of DevOps is to place new features
in the hands of our user faster. This is a consequence of the greater amount of
modularization that microservices provide.

Those who fear that microservices could make life uninteresting by offering a perfect
solution without drawbacks can take a sigh of relief, though. Microservices do offer
challenges of their own.

How DevOps Affects Architecture

[38]

We want to be able to deploy new code quickly, but we also want our software to
be reliable.

Microservices have more integration points between systems and suffer from a
higher possibility of failure than monolithic systems.

Automated testing is very important with DevOps so that the changes we deploy
are of good quality and can be relied upon. This is, however, not a solution to the
problem of services that suddenly stop working for other reasons. Since we have
more running services with the microservice pattern, it is statistically more likely for
a service to fail.

We can partially mitigate this problem by making an effort to monitor the
services and take appropriate action when something fails. This should preferably
be automated.

In our customer database example, we can employ the following strategy:

• We use two application servers that both run our application
• The application offers a special monitoring interface via JsonRest
• A monitoring daemon periodically polls this monitoring interface
• If a server stops working, the load balancer is reconfigured such that the

offending server is taken out of the server pool

This is obviously a simple example, but it serves to illustrate the challenges we face
when designing resilient systems that comprise many moving parts and how they
might affect architectural decisions.

Why do we offer our own application-specific monitoring interface though? Since
the purpose of monitoring is to give us a thorough understanding of the current
health of the system, we normally monitor many aspects of the application stack.
We monitor that the server CPU isn't overloaded, that there is sufficient disk and
memory space available, and that the base application server is running. This
might not be sufficient to determine whether a service is running properly, though.
For instance, the service might for some reason have a broken database access
configuration. A service-specific health probing interface would attempt to contact
the database and return the status of the connection in the return structure.

It is, of course, best if your organization can agree on a common format for the
probing return structure. The structure will also depend on the type of monitoring
software used.

Chapter 3

[39]

Summary
In this chapter, we took a look at the vast subject of software architecture from the
viewpoint of DevOps and Continuous Delivery.

We learned about the many different faces that the rule of the separation of concerns
can take. We also started working on the deployment strategy for one component
within our organization, the Matangle customer database.

We delved into details, such as how to install software from repositories and how to
manage database changes. We also had a look at high level subjects such as classic
three-tier systems and the more recent microservices concept.

Our next stop will deal with how to manage source code and set up a source code
revision control system.

[41]

Everything is Code
Everything is code, and you need somewhere to store it. The organization's source
code management system is that place.

Developers and operations personnel share the same central storage for their
different types of code.

There are many ways of hosting the central code repository:

• You can use a software as a service solution, such as GitHub, Bitbucket,
or GitLab. This can be cost-effective and provide good availability.

• You can use a cloud provider, such as AWS or Rackspace, to host
your repositories.

Some types of organization simply can't let their code leave the building. For them,
a private in-house setup is the best choice.

In this chapter, we will explore different options, such as Git, and web-based
frontends to Git, such as Gerrit and GitLab.

This exploration will serve to help you find a Git hosting solution that covers your
organization's needs.

In this chapter, we will start to experience one of the challenges in the field
of DevOps—there are so many solutions to choose from and explore! This is
particularly true for the world of source code management, which is central to
the DevOps world.

Therefore, we will also introduce the software virtualization tool Docker from a
user's perspective so that we can use the tool in our exploration.

Everything is Code

[42]

The need for source code control
Terence McKenna, an American author, once said that everything is code.

While one might not agree with McKenna about whether everything in the universe
can be represented as code, for DevOps purposes, indeed nearly everything can be
expressed in codified form, including the following:

• The applications that we build
• The infrastructure that hosts our applications
• The documentation that documents our products

Even the hardware that runs our applications can be expressed in the form
of software.

Given the importance of code, it is only natural that the location that we place
code, the source code repository, is central to our organization. Nearly everything
we produce travels through the code repository at some point in its life cycle.

The history of source code management
In order to understand the central need for source code control, it can be illuminating
to have a brief look at the development history of source code management. This
gives us an insight into the features that we ourselves might need. Some examples
are as follows:

• Storing historical versions of source in separate archives.
This is the simplest form, and it still lives on to some degree, with many free
software projects offering tar archives of older releases to download.

• Centralized source code management with check in and check out.
In some systems, a developer can lock files for exclusive use. Every file is
managed separately. Tools like this include RCS and SCCS.

Normally, you don't encounter this class of tool anymore,
except the occasional file header indicating that a file was
once managed by RCS.

• A centralized store where you merge before you commit. Examples include
Concurrent Versions System (CVS) and Subversion.

Chapter 4

[43]

Subversion in particular is still in heavy use. Many organizations have
centralized workflows, and Subversion implements such workflows well
enough for them.

• A decentralized store.

On each step of the evolutionary ladder, we are offered more flexibility and
concurrency as well as faster and more efficient workflows. We are also
offered more advanced and powerful guns to shoot ourselves in the foot
with, which we need to keep in mind!

Currently, Git is the most popular tool in this class, but there are many other similar
tools in use, such as Bazaar and Mercurial.

Time will tell whether Git and its underlying data model will fend off the contenders
to the throne of source code management, who will undoubtedly manifest
themselves in the coming years.

Roles and code
From a DevOps point of view, it is important to leverage the natural meeting point
that a source code management tool is. Many different roles have a use for source
code management in its wider meaning. It is easier to do so for technically-minded
roles but harder for other roles, such as project management.

Developers live and breathe source code management. It's their bread and butter.

Operations personnel also favor managing the descriptions of infrastructure in
the form of code, scripts, and other artifacts, as we will see in the coming chapters.
Such infrastructural descriptors include network topology, versions of software that
should be installed on particular servers, and so on.

Quality assurance personnel can store their automated tests in codified form in
the source code repository. This is true for software testing frameworks such as
Selenium and Junit, among others.

There is a problem with the documentation of the manual steps needed to perform
various tasks, though. This is more of a psychological or cultural problem than
a technical one.

While many organizations employ a wiki solution such as the wiki engine powering
Wikipedia, there is still a lot of documentation floating around in the Word format
on shared drives and in e-mails.

Everything is Code

[44]

This makes documentation hard to find and use for some roles and easy for others.
From a DevOps viewpoint, this is regrettable, and an effort should be made so that
all roles can have good and useful access to the documentation in the organization.

It is possible to store all documentation in the wiki format in the central source code
repository, depending on the wiki engine used.

Which source code management
system?
There are many source code management (SCM) systems out there, and since SCM
is such an important part of development, the development of these systems will
continue to happen.

Currently, there is a dominant system, however, and that system is Git.

Git has an interesting story: it was initiated by Linus Torvalds to move Linux kernel
development from BitKeeper, which was a proprietary system used at the time. The
license of BitKeeper changed, so it wasn't practical to use it for the kernel anymore.

Git therefore supports the fairly complicated workflow of Linux kernel development
and is, at the base technical level, good enough for most organizations.

The primary benefit of Git versus older systems is that it is a distributed version
control system (DVCS). There are many other distributed version control systems,
but Git is the most pervasive one.

Distributed version control systems have several advantages, including, but not
limited to, the following:

• It is possible to use a DVCS efficiently even when not connected to a
network. You can take your work with you when traveling on a train
or an intercontinental flight.

• Since you don't need to connect to a server for every operation, a DVCS can
be faster than the alternatives in most scenarios.

• You can work privately until you feel your work is ready enough to
be shared.

• It is possible to work with several remote logins simultaneously, which
avoids a single point of failure.

Chapter 4

[45]

Other distributed version control systems apart from Git include the following:

• Bazaar: This is abbreviated as bzr. Bazaar is endorsed and supported by
Canonical, which is the company behind Ubuntu. Launchpad, which is
Canonical's code hosting service, supports Bazaar.

• Mercurial: Notable open source projects such as Firefox and OpenJDK use
Mercurial. It originated around the same time as Git.

Git can be complex, but it makes up for this by being fast and efficient. It can be hard
to understand, but that can be made easier by using frontends that support
different tasks.

A word about source code management
system migrations
I have worked with many source code management systems and experienced many
transitions from one type of system to another.

Sometimes, much time is spent on keeping all the history intact while performing a
migration. For some systems, this effort is well spent, such as for venerable free or
open source projects.

For many organizations, keeping the history is not worth the significant expenditure
in time and effort. If an older version is needed at some point, the old source code
management system can be kept online and referenced. This includes migrations
from Visual SourceSafe and ClearCase.

Some migrations are trivial though, such as moving from Subversion to Git. In these
cases, historic accuracy need not be sacrificed.

Choosing a branching strategy
When working with code that deploys to servers, it is important to agree on a
branching strategy across the organization.

A branching strategy is a convention, or a set of rules, that describes when branches
are created, how they are to be named, what use branches should have, and so on.

Branching strategies are important when working together with other people and
are, to a degree, less important when you are working on your own, but they still
have a purpose.

Everything is Code

[46]

Most source code management systems do not prescribe a particular branching
strategy and neither does Git. The SCM simply gives you the base mechanics to
perform branching.

With Git and other distributed version control systems, it is usually pretty cheap
to work locally with feature branches. A feature, or topic, branch is a branch that
is used to keep track of ongoing development regarding a particular feature,
bug, and so on. This way, all changes in the code regarding the feature can be
handled together.

There are many well-known branching strategies. Vincent Driessen formalized a
branching strategy called Git flow, which has many good features. For some, Git
flow is too complex, and in those cases, it can be scaled down. There are many such
scaled-down models available. This is what Git flow looks like:

feature
branches

develop release
branches hotfixes master

Tag
0.1

Tag
0.2

Tag
1.0

Severe bug
fixed for

production:
hotfix 0.2

Incorporate
bugfix in
develop

Major
feature for

next release

Feature
for future
release

Ti
m

e

Start of
release

branch for
1.0

Only
bugfixes!

From this point on,
''next release''

means the release
1.0after

Bugfixes from

may be
continuously
merged back
into

rel. branch

develop

Chapter 4

[47]

Git flow looks complex, so let's have a brief look at what the branches are for:

• The master branch only contains finished work. All commits are tagged,
since they represent releases. All releases happen from master.

• The develop branch is where work on the next release happens. When work
is finished here, develop is merged to master.

• We use separate feature branches for all new features. Feature branches are
merged to develop.

• When a devastating bug is revealed in production, a hotfix branch is made
where a bug fix is created. The hotfix branch is then merged to master, and a
new release for production is made.

Git flow is a centralized pattern, and as such, it's reminiscent of the workflows used
with Subversion, CVS, and so on. The main difference is that using Git has some
technical and efficiency-related advantages.

Another strategy, called the forking pattern, where every developer has a central
repository, is rarely used in practice within organizations, except when, for instance,
external parties such as subcontractors are being employed.

Branching problem areas
There is a source of contention between Continuous Delivery practices and
branching strategies. Some Continuous Delivery methods advocate a single
master branch and all releases being made from the master branch. Git flow
is one such model.

This simplifies some aspects of deployment, primarily because the branching graph
becomes simpler. This in turn leads to simplified testing, because there is only one
branch that leads to the production servers.

On the other hand, what if we need to perform a bug fix on released code, and
the master has new features we don't want to release yet? This happens when
the installation cadence in production is slower than the release cadence of the
development teams. It is an undesirable state of affairs, but not uncommon.

There are two basic methods of handling this issue:

• Make a bug fix branch and deploy to production from it: This is simpler
in the sense that we don't disrupt the development flow. On the other hand,
this method might require duplication of testing resources. They might need
to mirror the branching strategy.

Everything is Code

[48]

• Feature toggling: Another method that places harder requirements on
the developers is feature toggling. In this workflow, you turn off features
that are not yet ready for production. This way you can release the latest
development version, including the bug fix, together with new features,
which will be disabled and inactive.

There are no hard rules, and dogmatism is not helpful in this case.

It is better to prepare for both scenarios and use the method that serves you best in
the given circumstances.

Here are some observations to guide you in your choice:
Feature toggling is good when you have changes that are mostly
backward compatible or are entirely new. Otherwise, the feature toggling
code might become overly complex, catering to many different cases.
This, in turn, complicates testing.
Bug fix branches complicate deployment and testing. While it is
straightforward to branch and make the bug fix, what should the new
version be called, and where do we test it? The testing resources are likely
to already be occupied by ongoing development branches.

Some products are simple enough for us to create testing environments on the fly
as needed, but this is rarely the case with more complex applications. Sometimes,
testing resources are very scarce, such as third party web services that are difficult to
copy or even hardware resources.

Artifact version naming
Version numbers become important when you have larger installations.

The following list shows the basic principles of version naming:

• Version numbers should grow monotonically, that is, become larger
• They should be comparable to each other, and it should be easy to see which

version is newer
• Use the same scheme for all your artifacts

Chapter 4

[49]

This usually translates to a version number with three or four parts:

 ° The first is major—changes here signal major changes in the code
 ° The second is for minor changes, which are backward API compatible
 ° The third is for bug fixes
 ° The fourth can be a build number

While this might seem simple, it is a sufficiently complex area to have created a
standardization effort in the form of SemVer, or Semantic Versioning. The full
specification can be read at http://semver.org.

It is convenient that all installable artifacts have a proper release number and a
corresponding tag in the source code management system.

Some tools don't work this way. Maven, the Java build tool, supports a snapshot
release number. A snapshot can be seen as a version with a fuzzy last part. Snapshots
have a couple of drawbacks, though; for instance, you can't immediately see
which source code tag the artifact corresponds to. This makes debugging broken
installations harder.

The snapshot artifact strategy further violates a basic testing tenet: the exact same
binary artifact that was tested should be the one that is deployed to production.

When you are working with snapshots, you instead test the snapshot until you
are done testing, then you release the artifact with a real version number, and that
artifact is then deployed. It is no longer the same artifact.

While the basic idea of snapshots is, of course, that changing a
version number has no practical consequences, Murphy's law
states that there are, of course, consequences. It is my experience
that Murphy is correct in this case, and snapshot versioning
creates more harm than good. Instead, use build numbers.

Choosing a client
One of the nice aspects of Git is that it doesn't mandate the use of a particular client.
There are several to choose from, and they are all compatible with each other. Most
of the clients use one of several core Git implementations, which is good for stability
and quality.

Most current development environments have good support for using Git.

http://semver.org

Everything is Code

[50]

In this sense, choosing a client is not something we actually need to do. Most clients
work well enough, and the choice can be left to the preferences of those using the
client. Many developers use the client integrated in their development environments,
or the command-line Git client. When working with operations tasks, the command-
line Git client is often preferred because it is convenient to use when working
remotely through an SSH shell.

The one exception where we actually have to make a choice is when we assist
people in the organization who are new to source code management in general
and Git in particular.

In these cases, it is useful to maintain instructions on how to install and use a simple
Git client and configure it for our organization's servers.

A simple instruction manual in the organization's wiki normally solves this
issue nicely.

Setting up a basic Git server
It's pretty easy to set up a basic Git server. While this is rarely enough in a large
organization, it is a good exercise before moving on to more advanced solutions.

Let's first of all specify an overview of the steps we will take and the bits and pieces
we will need to complete them:

1. A client machine with two user accounts. The git and ssh packages should
be installed.
The SSH protocol features prominently as a base transport for other
protocols, which is also is the case for Git.
You need your SSH public keys handy. If you don't have the keys for some
reason, use ssh-keygen to create them.

We need two users, because we will simulate two users talking
to a central server. Make keys for both test users.

2. A server where the SSH daemon is running.
This can be the same machine as the one where you simulate the two
different client users, or it can be another machine.

Chapter 4

[51]

3. A Git server user.
We need a separate Git user who will handle the Git server functionality.
Now, you need to append the public keys for your two users to the
authorized_keys file, which is located in the respective user's .ssh
directory. Copy the keys to this account .

Are you starting to get the feeling that all of this is a lot of
hassle? This is why we will have a look at solutions that
simplify this process later.

4. A bare Git repository.
Bare Git repositories are a Git peculiarity. They are just Git repositories,
except there is no working copy, so they save a bit of space. Here's how to
create one:

cd /opt/git
mkdir project.git
cd project.git
git init --bare

5. Now, try cloning, making changes, and pushing to the server.

Let's review the solution:

 ° This solution doesn't really scale very well.
If you have just a couple of people requiring access, the overhead of
creating new projects and adding new keys isn't too bad. It's just a
onetime cost. If you have a lot of people in your organization who
need access, this solution requires too much work.

 ° Solving security issues involve even more hassle.

While I am of the perhaps somewhat controversial opinion that too
much work is spent within organizations limiting employee access to
systems, there is no denying that you need this ability in your setup.
In this solution, you would need to set up separate Git server
accounts for each role, and that would be a lot of duplication of
effort. Git doesn't have fine-grained user access control out of the box.

Everything is Code

[52]

Shared authentication
In most organizations, there is some form of a central server for handling
authentication. An LDAP server is a fairly common choice. While it is assumed that
your organization has already dealt with this core issue one way or the other and is
already running an LDAP server of some sort, it is comparatively easy to set up an
LDAP server for testing purposes.

One possibility is using 389 Server, named after the port commonly used for the
LDAP server, together with the phpLDAPadmin web application for administration
of the LDAP server.

Having this test LDAP server setup is useful for the purposes of this book, since
we can then use the same LDAP server for all the different servers we are going
to investigate.

Hosted Git servers
Many organizations can't use services hosted within another organization's walls
at all.

These might be government organizations or organizations dealing with money,
such as bank, insurance, and gaming organizations.

The causes might be legal or, simply nervousness about letting critical code leave the
organization's doors, so to speak.

If you have no such qualms, it is quite reasonable to use a hosted service, such as
GitHub or GitLab, that offers private accounts.

Using GitHub or GitLab is, at any rate, a convenient way to get to learn to use Git
and explore its possibilities.

Both vendors are easy to evaluate, given that they offer free accounts where you can
get to know the services and what they offer. See if you really need all the services or
if you can make do with something simpler.

Some of the features offered by both GitLab and GitHub over plain Git are
as follows:

• Web interfaces
• A documentation facility with an inbuilt wiki
• Issue trackers
• Commit visualization

Chapter 4

[53]

• Branch visualization
• The pull request workflow

While these are all useful features, it's not always the case that you can use the
facilities provided. For instance, you might already have a wiki, a documentation
system, an issue tracker, and so on that you need to integrate with.

The most important features we are looking for, then, are those most closely related
to managing and visualizing code.

Large binary files
GitHub and GitLab are pretty similar but do have some differences. One of them
springs from the fact that source code systems like Git traditionally didn't cater much
for the storage of large binary files. There have always been other ways, such as
storing file paths to a file server in plain text files.

But what if you actually have files that are, in a sense, equivalent to source files
except that they are binary, and you still want to version them? Such file types
might include image files, video files, audio files, and so on. Modern websites
make increasing use of media files, and this area has typically been the domain of
content management systems (CMSes). CMSes, however nice they might be, have
disadvantages compared to DevOps flows, so the allure of storing media files in
your ordinary source handling system is strong. Disadvantages of CMSes include
the fact that they often have quirky or nonexistent scripting capabilities. Automation,
another word that should have really been included in the "DevOps" portmanteau,
is therefore often difficult with a CMS.

You can, of course, just check in your binary to Git, and it will be handled like any
other file. What happens then is that Git operations involving server operations
suddenly become sluggish. And then, some of the main advantages of Git—
efficiency and speed—vanish out the window.

Solutions to this problem have evolved over time, but there are no clear winners yet.
The contenders are as follows:

• Git LFS, supported by GitHub
• Git Annex, supported by GitLab but only in the enterprise edition

Git Annex is the more mature of these. Both solutions are open source and are
implemented as extensions to Git via its plugin mechanism.

Everything is Code

[54]

There are several other systems, which indicates that this is an unresolved pain point
in the current state of Git. The Git Annex has a comparison between the different
breeds at http://git-annex.branchable.com/not/.

If you need to perform version control of your media files, you should
start by exploring Git Annex. It is written in Haskell and is available
through the package system of many distributions.
It should also be noted that the primary benefit of this type of solution is
the ability to version media files together with the corresponding code.
When working with code, you can examine the differences between
versions of code conveniently. Examining differences between media files
is harder and less useful.
In a nutshell, Git Annex uses a tried and tested solution to data logical
problems: adding a layer of indirection. It does this by storing symlinks
to files in the repository. The binary files are then stored in the filesystem
and fetched by local workspaces using other means, such as rsync. This
involves more work to set up the solution, of course.

Trying out different Git server
implementations
The distributed nature of Git makes it possible to try out different Git
implementations for various purposes. The client-side setup will be similar
regardless of how the server is set up.

You can also have several solutions running in parallel. The client side is not unduly
complicated by this, since Git is designed to handle several remotes if need be.

Docker intermission
In Chapter 7, Deploying the Code, we will have a look at a new and exciting way to
package our applications, called Docker.

In this chapter, we have a similar challenge to solve. We need to be able to try
out a couple of different Git server implementations to see which one suits our
organization best.

We can use Docker for this, so we will take this opportunity to peek at the
possibilities of simplified deployments that Docker offers us.

http://git-annex.branchable.com/not/

Chapter 4

[55]

Since we are going to delve deeper into Docker further along, we will cheat a bit in
this chapter and claim that Docker is used to download and run software. While this
description isn't entirely untrue, Docker is much more than that. To get started with
Docker, follow these steps:

1. To begin with, install Docker according to the particular instructions for
your operating system. For Red Hat derivatives, it's a simple dnf install
docker-io command.

The io suffix might seem a bit mysterious, but there was
already a Docker package that implemented desktop
functionality, so docker-io was chosen instead.

2. Then, the docker service needs to be running:
systemctl enable docker

systemctl start docker

3. We need another tool, Docker Compose, which, at the time of writing,
isn't packaged for Fedora. If you don't have it available in your package
repositories, follow the instructions on this page https://docs.docker.
com/compose/install/

Docker Compose is used to automatically start several Docker-
packaged applications, such as a database server and a web
server, together, which we need for the GitLab example.

Gerrit
A basic Git server is good enough for many purposes.

Sometimes, you need precise control over the workflow, though.

One concrete example is merging changes into configuration code for critical parts
of the infrastructure. While my opinion is that it's core to DevOps to not place
unnecessary red tape around infrastructure code, there is no denying that it's
sometimes necessary. If nothing else, developers might feel nervous committing
changes to the infrastructure and would like for someone more experienced to
review the code changes.

https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/

Everything is Code

[56]

Gerrit is a Git-based code review tool that can offer a solution in these situations. In
brief, Gerrit allows you to set up rules to allow developers to review and approve
changes made to a codebase by other developers. These might be senior developers
reviewing changes made by inexperienced developers or the more common case,
which is simply that more eyeballs on the code is good for quality
in general.

Gerrit is Java-based and uses a Java-based Git implementation under the hood.

Gerrit can be downloaded as a Java WAR file and has an integrated setup method.
It needs a relational database as a dependency, but you can opt to use an integrated
Java-based H2 database that is good enough for evaluating Gerrit.

An even simpler method is using Docker to try out Gerrit. There are several Gerrit
images on the Docker registry hub to choose from. The following one was selected
for this evaluation exercise: https://hub.docker.com/r/openfrontier/gerrit/

To run a Gerrit instance with Docker, follow these steps:

1. Initialize and start Gerrit:
docker run -d -p 8080:8080 -p 29418:29418 openfrontier/gerrit

2. Open your browser to http://<docker host url>:8080

Now, we can try out the code review feature we would like to have.

Installing the git-review package
Install git-review on your local installation:

sudo dnf install git-review

This will install a helper application for Git to communicate with Gerrit. It adds a
new command, git-review, that is used instead of git push to push changes to the
Gerrit Git server.

https://hub.docker.com/r/openfrontier/gerrit/

Chapter 4

[57]

The value of history revisionism
When we work with code together with other people in a team, the code's history
becomes more important than when we work on our own. The history of changes
to files becomes a way to communicate. This is especially important when working
with code review and code review tools such as Gerrit .

The code changes also need to be easy to understand. Therefore, it is useful, although
perhaps counterintuitive, to edit the history of the changes in order to make the
resulting history clearer.

As an example, consider a case where you made a number of changes and later
changed your mind and removed them. It is not useful information for someone else
that you made a set of edits and then removed them. Another case is when you have
a set of commits that are easier to understand if they are a single commit. Adding
commits together in this way is called squashing in the Git documentation.

Another case that complicates history is when you merge from the upstream central
repository several times, and merge commits are added to the history. In this case,
we want to simplify the changes by first removing our local changes, then fetching
and applying changes from the upstream repository, and then finally reapplying our
local changes. This process is called rebasing.

Both squashing and rebasing apply to Gerrit.

The changes should be clean, preferably one commit. This isn't something that is
particular to Gerrit; it's easier for a reviewer to understand your changes if they are
packaged nicely. The review will be based on this commit.

1. To begin with, we need to have the latest changes from the Git/Gerrit server
side. We rebase our changes on top of the server-side changes:
git pull --rebase origin master

2. Then, we polish our local commits by squashing them:

git rebase -i origin/master

Everything is Code

[58]

Now, let's have a look at the Gerrit web interface:

We can now approve the change, and it is merged to the master branch.

There is much to explore in Gerrit, but these are the basic principles and should be
enough to base an evaluation on.

Are the results worth the hassle, though? These are my observations:

• Gerrit allows fine-grained access to sensitive codebases. Changes can go in
after being reviewed by authorized personnel.
This is the primary benefit of Gerrit. If you just want to have mandatory code
reviews for unclear reasons, don't. The benefit has to be clear for everyone
involved. It's better to agree on other more informal methods of code review
than an authoritative system.

• If the alternative to Gerrit is to not allow access to code bases at all, even
read-only access, then implement Gerrit.

Chapter 4

[59]

Some parts of an organization might be too nervous to allow access to things
such as infrastructure configuration. This is usually for the wrong reasons.
The problem you usually face isn't people taking an interest in your code;
it's the opposite.
Sometimes, sensitive passwords are checked in to code, and this is taken as a
reason to disallow access to the source. Well, if it hurts, don't do it. Solve the
problem that leads to there being passwords in the repositories instead.

The pull request model
There is another solution to the problem of creating workflows around code reviews:
the pull request model, which has been made popular by GitHub.

In this model, pushing to repositories can be disallowed except for the repository
owners. Other developers are allowed to fork the repository, though, and make
changes in their fork. When they are done making changes, they can submit a pull
request. The repository owners can then review the request and opt to pull the
changes into the master repository.

This model has the advantage of being easy to understand, and many developers
have experience in it from the many open source projects on GitHub.

Setting up a system capable of handling a pull request model locally will require
something like GitHub or GitLab, which we will look at next.

GitLab
GitLab supports many convenient features on top of Git. It's a large and complex
software system based on Ruby. As such, it can be difficult to install, what with
getting all the dependencies right and so on.

There is a nice Docker Compose file for GitLab available at https://registry.hub.
docker.com/u/sameersbn/gitlab/. If you followed the instructions for Docker
shown previously, including the installation of docker-compose, it's now pretty
simple to start a local GitLab instance:

mkdir gitlab
cd gitlab
wget https://raw.githubusercontent.com/sameersbn/docker-gitlab/master/
docker-compose.yml
docker-compose up

The docker-compose command will read the .yml file and start all the required
services in a default demonstration configuration.

https://registry.hub.docker.com/u/sameersbn/gitlab/
https://registry.hub.docker.com/u/sameersbn/gitlab/

Everything is Code

[60]

If you read the startup log in the console window, you will notice that three separate
application containers have been started: gitlab postgresql1, gitlab redis1,
and gitlab gitlab1.

The GitLab container includes the Ruby base web application and Git backend
functionality. Redis is distributed key-value store, and PostgreSQL is a relational
database.

If you are used to setting up complicated server functionality, you will appreciate
that we have saved a great deal of time with docker-compose.

The docker-compose.yml file sets up data volumes at /srv/docker/gitlab.

To log in to the web user interface, use the administrator password given with the
installation instructions for the GitLab Docker image. They have been replicated
here, but beware that they might change as the Docker image author sees fit:

• Username: root
• Password: 5iveL!fe

Here is a screenshot of the GitLab web user interface login screen:

Chapter 4

[61]

Try importing a project to your GitLab server from, for instance, GitHub or a local
private project.

Have a look at how GitLab visualizes the commit history and branches.

While investigating GitLab, you will perhaps come to agree that it offers a great
deal of interesting functionality.

When evaluating features, it's important to keep in mind whether it's likely that they
will be used after all. What core problem would GitLab, or similar software, solve
for you?

It turns out that the primary value added by GitLab, as exemplified by the following
two features, is the elimination of bottlenecks in DevOps workflows:

• The management of user ssh keys
• The creation of new repositories

These features are usually deemed to be the most useful.

Visualization features are also useful, but the client-side visualization available with
Git clients is more useful to developers.

Summary
In this chapter, we explored some of the options available to us for managing our
organization's source code. We also investigated areas where decisions need to be
made within DevOps, version numbering, and branching strategies.

After having dealt with source code in its pure form, we will next work on building
the code into useful binary artifacts.

[63]

Building the Code
You need a system to build your code, and you need somewhere to build it.

Jenkins is a flexible open source build server that grows with your needs.
Some alternatives to Jenkins will be explored as well.

We will also explore the different build systems and how they affect our
DevOps work.

Why do we build code?
Most developers are familiar with the process of building code. When we work in
the field of DevOps, however, we might face issues that developers who specialize
in programming a particular component type won't necessarily experience.

For the purposes of this book, we define software building as the process of molding
code from one form to another. During this process, several things might happen:

• The compilation of source code to native code or virtual machine bytecode,
depending on our production platform.

• Linting of the code: checking the code for errors and generating code quality
measures by means of static code analysis. The term "Linting" originated
with a program called Lint, which started shipping with early versions of
the Unix operating system. The purpose of the program was to find bugs
in programs that were syntactically correct, but contained suspicious code
patterns that could be identified with a different process than compiling.

• Unit testing, by running the code in a controlled manner.
• The generation of artifacts suitable for deployment.

It's a tall order!

Building the Code

[64]

Not all code goes through each and every one of these phases. Interpreted languages,
for example, might not need compilation, but they might benefit from quality checks.

The many faces of build systems
There are many build systems that have evolved over the history of software
development. Sometimes, it might feel as if there are more build systems than
there are programming languages.

Here is a brief list, just to get a feeling for how many there are:

• For Java, there is Maven, Gradle, and Ant
• For C and C++, there is Make in many different flavors
• For Clojure, a language on the JVM, there is Leiningen and Boot apart

from Maven
• For JavaScript, there is Grunt
• For Scala, there is sbt
• For Ruby, we have Rake
• Finally, of course, we have shell scripts of all kinds

Depending on the size of your organization and the type of product you are
building, you might encounter any number of these tools. To make life even more
interesting, it's not uncommon for organizations to invent their own build tools.

As a reaction to the complexity of the many build tools, there is also often the idea of
standardizing a particular tool. If you are building complex heterogeneous systems,
this is rarely efficient. For example, building JavaScript software is just easier with
Grunt than it is with Maven or Make, building C code is not very efficient with
Maven, and so on. Often, the tool exists for a reason.

Normally, organizations standardize on a single ecosystem, such as Java and
Maven or Ruby and Rake. Other build systems besides those that are used for
the primary code base are encountered mainly for native components and
third-party components.

At any rate, we cannot assume that we will encounter only one build system within
our organization's code base, nor can we assume only one programming language.

I have found this rule useful in practice: it should be possible for a developer to check out
the code and build it with minimal surprises on his or her local developer machine.

This implies that we should standardize the revision control system and have a
single interface to start builds locally.

Chapter 5

[65]

If you have more than one build system to support, this basically means that you
need to wrap one build system in another. The complexities of the build are thus
hidden and more than one build system at the same time are allowed. Developers
not familiar with a particular build can still expect to check it out and build it with
reasonable ease.

Maven, for example, is good for declarative Java builds. Maven is also capable of
starting other builds from within Maven builds.

This way, the developer in a Java-centric organization can expect the following
command line to always build one of the organization's components:

mvn clean install

One concrete example is creating a Java desktop application installer with the
Nullsoft NSIS Windows installation system. The Java components are built with
Maven. When the Java artifacts are ready, Maven calls the NSIS installer script to
produce a self-contained executable that will install the application on Windows.

While Java desktop applications are not fashionable these days, they continue to be
popular in some domains.

The Jenkins build server
A build server is, in essence, a system that builds software based on various triggers.
There are several to choose from. In this book, we will have a look at Jenkins, which
is a popular build server written in Java.

Jenkins is a fork of the Hudson build server. Kohsuke Kawaguchi was Hudson's
principal contributor, and in 2010, after Oracle acquired Hudson, he continued work
on the Jenkins fork. Jenkins is clearly the more successful of the two strains today.

Jenkins has special support for building Java code but is in no way limited to just
building Java.

Setting up a basic Jenkins server is not particularly hard at the outset. In Fedora,
you can just install it via dnf:

dnf install jenkins

Jenkins is handled as a service via systemd:

systemctl start jenkins

Building the Code

[66]

You can now have a look at the web interface at http://localhost:8080:

The Jenkins instance in the screenshot has a couple of jobs already defined. The
fundamental entity in Jenkins is the job definition, and there are several types to
choose from. Let's create a simple job in the web interface. To keep it simple, this job
will just print a classic Unix fortune quote:

1. Create a job of the type Freestyle project:

Chapter 5

[67]

2. Add a shell build step.
3. In the shell entry (Command), type fortune:

I

Whenever you run the job, a fortune quote will be printed in the job log.

Building the Code

[68]

Jobs can be started manually, and you will find a history of job executions and can
examine each job log. This keeps a history of previous executions, which is very
handy when you are trying to figure out which change broke a build and how
to fix it.

If you don't have the fortune command, install it with dnf install fortune-mod,
or you might opt to simply run the date command instead. This will just output the
date in the build log instead of classic quotes and witticisms.

Managing build dependencies
In the previous, simple example, we printed a fortune cookie to the build log.

While this exercise can't be compared in complexity with managing real builds,
we at least learned to install and start Jenkins, and if you had issues installing the
fortune utility, you got a glimpse of the dark underbelly of managing a Continuous
Integration server: managing the build dependencies.

Some build systems, such as the Maven tool, are nice in the way that the Maven
POM file contains descriptions of which build dependencies are needed, and they
are fetched automatically by Maven if they aren't already present on the build server.
Grunt works in a similar way for JavaScript builds. There is a build description
file that contains the dependencies required for the build. Golang builds can even
contain links to GitHub repositories required for completing the build.

C and C++ builds present challenges in a different way. Many projects use GNU
Autotools; among them is Autoconf, which adapts itself to the dependencies that are
available on the host rather than describing which dependencies they need. So, to
build Emacs, a text editor, you first run a configuration script that determines which
of the many potential dependencies are available on the build system.

If an optional dependency is missing, such as image libraries for
image support, the optional feature will not be available in the
final executable. You can still build the program, but you won't get
features that your build machine isn't prepared for.

While this is a useful feature if you want your software to work in many different
configurations depending on which system it should run on, it's not often the way
we would like our builds to behave in an enterprise setting. In this case, we need to
be perfectly sure which features will be available in the end. We certainly don't want
bad surprises in the form of missing functionality on our production servers.

Chapter 5

[69]

The RPM (short for Red Hat Package Manager) system, which is used on systems
derived from Red Hat, offers a solution to this problem. At the core of the RPM
system is a build descriptor file called a spec file, short for specification file. It lists,
among other things, the build dependencies required for a successful build and the
build commands and configuration options used. Since a spec file is essentially a
macro-based shell script, you can use it to build many types of software. The RPM
system also has the idea that build sources should be pristine. The spec file can adapt
the source code by patching the source before building it.

The final artifact
After finishing the build using the RPM system, you get an RPM file, which is a very
convenient type of deployment artifact for operating systems based on Red Hat.
For Debian-based distributions, you get a .deb file.

The final output from a Maven build is usually an enterprise archive, or EAR file for
short. This contains Java Enterprise applications.

It is final deployment artifacts such as these that we will later deploy to our
production servers.

In this chapter, we concern ourselves with building the artifacts required for
deployment, and in Chapter 7, Deploying the Code, we talk about the final deployment
of our artifacts.

However, even when building our artifacts, we need to understand how to deploy
them. At the moment, we will use the following rule of thumb: OS-level packaging
is preferable to specialized packaging. This is my personal preference, and others
might disagree.

Let's briefly discuss the background for this rule of thumb as well as the alternatives.

As a concrete example, let's consider the deployment of a Java EAR. Normally,
we can do this in several ways. Here are some examples:

• Deploy the EAR file as an RPM package through the mechanisms and
channels available in the base operating system

• Deploy the EAR through the mechanisms available with the Java application
server, such as JBoss, WildFly, and Glassfish

Building the Code

[70]

It might superficially look like it would be better to use the mechanism specific to the
Java application server to deploy the EAR file, since it is specific to the application
server anyway. If Java development is all you ever do, this might be a reasonable
supposition. However, since you need to manage your base operating system
anyway, you already have methods of deployment available to you that are
possible to reuse.

Also, since it is quite likely that you are not just doing Java development but also
need to deploy and manage HTML and JavaScript at the very least, it starts to make
sense to use a more versatile method of deployment.

Nearly all the organizations I have experience of have had complicated architectures
comprising many different technologies, and this rule of thumb has served well in
most scenarios.

The only real exception is in mixed environments where Unix servers coexist with
Windows servers. In these cases, the Unix servers usually get to use their preferred
package distribution method, and the Windows servers have to limp along with
some kind of home-brewed solution. This is just an observation and not a condoning
of the situation.

Cheating with FPM
Building operating system deliverables such as RPMs with a spec file is very useful
knowledge. However, sometimes you don't need the rigor of a real spec file. The spec
file is, after all, optimized for the scenario where you are not yourself the originator
of the code base.

There is a Ruby-based tool called FPM, which can generate source RPMs suitable for
building, directly from the command line.

The tool is available on GitHub at https://github.com/jordansissel/fpm.

On Fedora, you can install FPM like this:

yum install rubygems

yum install ruby

yum install ruby-devel gcc

gem install fpm

This will install a shell script that wraps the FPM Ruby program.

One of the interesting aspects of FPM is that it can generate different types of
package; among the supported types are RPM and Debian.

https://github.com/jordansissel/fpm

Chapter 5

[71]

Here is a simple example to make a "hello world" shell script:

#!/bin/sh

echo 'Hello World!'

We would like the shell script to be installed in /usr/local/bin, so create a
directory in your home directory with the following structure:

$HOME/hello/usr/local/bin/hello.sh

Make the script executable, and then package it:

chmod a+x usr/local/bin/hello.sh

fpm -s dir -t rpm -n hello-world -v 1 -C installdir usr

This will result in an RPM with the name hello-world and version 1.

To test the package, we can first list the contents and then install it:

rpm -qivp hello-world.rpm

rpm -ivh hello-world.rpm

The shell script should now be nicely installed in /usr/local/bin.

FPM is a very convenient method for creating RPM, Debian, and other package
types. It's a little bit like cheating!

Continuous Integration
The principal benefit of using a build server is achieving Continuous Integration.
Each time a change in the code base is detected, a build that tests the quality of the
newly submitted code is started.

Since there might be many developers working on the code base, each with slightly
different versions, it's important to see whether all the different changes work
together properly. This is called integration testing. If integration tests are too far
apart, there is a growing risk of the different code branches diverging too much,
and merging is no longer easy. The result is often referred to as "merge hell". It's no
longer clear how a developer's local changes should be merged to the master branch,
because of divergence between the branches. This situation is very undesirable. The
root cause of merge hell is often, perhaps surprisingly, psychological. There is a
mental barrier to overcome in order to merge your changes to the mainline. Part of
working with DevOps is making things easier and thus reducing the perceived costs
associated with doing important work like submitting changes.

Building the Code

[72]

Continuous Integration builds are usually performed in a more stringent manner
than what developers do locally. These builds take a longer time to perform, but
since performant hardware is not so expensive these days, our build server is beefy
enough to cope with these builds.

If the builds are fast enough to not be seen as tedious, developers will be enthused to
check in often, and integration problems will be found early.

Continuous Delivery
After the Continuous Integration steps have completed successfully, you have
shiny new artifacts that are ready to be deployed to servers. Usually, these are
test environments set up to behave like production servers.

We will discuss deployment system alternatives later in the book.

Often, the last thing a build server does is to deploy the final artifacts from the
successful build to an artifact repository. From there, the deployment servers take
over the responsibility of deploying them to the application servers. In the Java
world, the Nexus repository manager is fairly common. It has support for other
formats besides the Java formats, such as JavaScript artifacts and Yum channels for
RPMs. Nexus also supports the Docker Registry API now.

Using Nexus for RPM distributions is just one option. You can build Yum channels
with a shell script fairly easily.

Jenkins plugins
Jenkins has a plugin system to add functionality to the build server. There are
many different plugins available, and they can be installed from within the Jenkins
web interface. Many of them can be installed without even restarting Jenkins. This
screenshot shows a list of some of the available plugins:

Chapter 5

[73]

Among others, we need the Git plugin to poll our source code repositories.

Our sample organization has opted for Clojure for their build, so we will install the
Leingingen plugin.

Building the Code

[74]

The host server
The build server is usually a pretty important machine for the organization. Building
software is processor as well as memory and disk intensive. Builds shouldn't take too
long, so you will need a server with good specifications for the build server—with
lots of disk space, processor cores, and RAM.

The build server also has a kind of social aspect: it is here that the code of many
different people and roles integrates properly for the first time. This aspect grows in
importance if the servers are fast enough. Machines are cheaper than people, so don't
let this particular machine be the area you save money on.

Build slaves
To reduce build queues, you can add build slaves. The master server will send
builds to the slaves based on a round-robin scheme or tie specific builds to specific
build slaves.

The reason for this is usually that some builds have certain requirements on the host
operating system.

Build slaves can be used to increase the efficiency of parallel builds. They can also be
used to build software on different operating systems. For instance, you can have a
Linux Jenkins master server and Windows slaves for components that use Windows
build tools. To build software for the Apple Mac, it's useful to have a Mac build
slave, especially since Apple has quirky rules regarding the deployment of their
operating system on virtual servers.

There are several methods to add build slaves to a Jenkins master; see
https://wiki.jenkins-ci.org/display/JENKINS/Distributed+builds.

In essence, there must be a way for the Jenkins master to issue commands to the
build slave. This command channel can be the classic SSH method, and Jenkins has a
built-in SSH facility. You can also start a Jenkins slave by downloading a Java JNLP
client from the master to the slave. This is useful if the build slave doesn't have an
SSH server.

https://wiki.jenkins-ci.org/display/JENKINS/Distributed+builds

Chapter 5

[75]

A note on cross-compiling
While it's possible to use Windows build slaves, sometimes it's actually
easier to use Linux to build Windows software. C compilers such as
GCC can be configured to perform cross-compilation using the MinGW
package.
Whether or not this is easier very much depends on the software
being built.
A big system usually comprises many different parts, and some of the
parts might contain native code for different platforms.
Here are some examples:

• Native android components
• Native server components coded in C for efficiency
• Native client components, also coded in C or C++ for efficiency

The prevalence of native code depends a bit on the nature of the
organization you are working with. Telecom products often have a lot
of native code, such as codecs and hardware interface code. Banking
systems might have high-speed messaging systems in native code.
An aspect of this is that it is important to be able to build all the code
that's in use conveniently on the build server. Otherwise, there's a
tendency for some code to be only buildable on some machine collecting
dust under somebody's desk. This is a risk that needs to be avoided.
What your organization's systems need, only you can tell.

Software on the host
Depending on the complexity of your builds, you might need to install many
different types of build tool on your build server. Remember that Jenkins is mostly
used to trigger builds, not perform the builds themselves. That job is delegated to the
build system used, such as Maven or Make.

In my experience, it's most convenient to have a Linux-based host operating system.
Most of the build systems are available in the distribution repositories, so it's very
convenient to install them from there.

To keep your build server up to date, you can use the same deployment servers that
you use to keep your application servers up to date.

Building the Code

[76]

Triggers
You can either use a timer to trigger builds, or you can poll the code repository for
changes and build if there were changes.

It can be useful to use both methods at the same time:

• Git repository polling can be used most of the time so that every check in
triggers a build.

• Nightly builds can be triggered, which are more stringent than continuous
builds, and thus take a longer time. Since these builds happen at night when
nobody is supposed to work, it doesn't matter if they are slow.

• An upstream build can trigger a downstream build.

You can also let the successful build of one job trigger another job.

Job chaining and build pipelines
It's often useful to be able to chain jobs together. In its simplest form, this works by
triggering a second job in the event that the first job finishes successfully. Several jobs
can be cascaded this way in a chain. Such a build chain is quite often good enough
for many purposes. Sometimes, a nicer visualization of the build steps as well as
greater control over the details of the chain is desired.

In Jenkins terminology, the first build in a chain is called the upstream build, and the
second one is called the downstream build.

While this way of chaining builds is often sufficient, there will most likely be a need
for greater control of the build chain eventually. Such a build chain is often called a
pipeline or workflow.

There are many plugins that create improved pipelines for Jenkins, and the fact
that there are several shows that there is indeed a great desire for improvements
in this area.

Two examples are the multijob plugin and the workflow plugin.

The workflow plugin is the more advanced and also has the advantage that it can be
described in a Groovy DSL rather than fiddling about in a web UI.

The workflow plugin is promoted by CloudBees, who are the principal contributors
to Jenkins today.

Chapter 5

[77]

An example workflow is illustrated here:

When you have a look at the Groovy build script that the workflow plugin uses, you
might get the idea that Jenkins is basically a build tool with a web interface, and you
would be more or less correct.

A look at the Jenkins filesystem layout
It is often useful to know where builds wind up in the filesystem.

In the case of the Fedora package, the Jenkins jobs are stored here:

/var/lib/jenkins/jobs

Each job gets its own directory, and the job description XML is stored in this
directory as well as a directory for the build called workspace. The job's XML files
can be backed up to another server in order to be able to rebuild the Jenkins server
in the event of a catastrophic failure. There are dedicated backup plugins for this
purpose as well.

Building the Code

[78]

Builds can consume a lot of space, so it may sometimes happen that you need to
clean out this space manually.

This shouldn't be the normal case, of course. You should configure Jenkins to
only leave the number of builds you have space for. You can also configure your
configuration management tool to clear out space if needed.

Another reason you might need to delve into the filesystem is when a build
mysteriously fails, and you need to debug the cause of the failure. A common cause
of this is when the build server state does not meet expectations. For a Maven build,
broken dependencies could be polluting the local repository on the build server,
for example.

Build servers and infrastructure as code
While we are discussing the Jenkins file structure, it is useful to note an impedance
mismatch that often occurs between GUI-based tools such as Jenkins and the
DevOps axiom that infrastructure should be described as code.

One way to understand this problem is that while Jenkins job descriptors are text
file-based, these text files are not the primary interface for changing the job descriptors.
The web interface is the primary interface. This is both a strength and weakness.

It is easy to create ad-hoc solutions on top of existing builds with Jenkins. You don't
need to be intimately familiar with Jenkins to do useful work.

On the other hand, the out-of-the-box experience of Jenkins lacks many features that
we are used to from the world of programming. Basic features like inheritance and
even function definitions take some effort to provide in Jenkins.

The build server feature in GitLab, for example, takes a different approach. Build
descriptors are just code right from the start. It is worth checking out this feature in
GitLab if you don't need all the possibilities that Jenkins offers.

Building by dependency order
Many build tools have the concept of a build tree where dependencies are built in the
order required for the build to complete, since parts of the build might depend on
other parts.

In Make-like tools, this is described explicitly; for instance, like this:

a.out : b.o c.o
b.o : b.c
c.o : c.c

Chapter 5

[79]

So, in order to build a.out, b.o and c.o must be built first.

In tools such as Maven, the build graph is derived from the dependencies we set for
an artifact. Gradle, another Java build tool, also creates a build graph before building.

Jenkins has support for visualizing the build order for Maven builds, which is called
the reactor in Maven parlance, in the web user interface.

This view is not available for Make-style builds, however.

Build phases
One of the principal benefits of the Maven build tool is that it standardizes builds.

This is very useful for a large organization, since it won't need to invent its own build
standards. Other build tools are usually much more lax regarding how to implement
various build phases. The rigidity of Maven has its pros and cons. Sometimes, people
who get started with Maven reminisce about the freedom that could be had with
tools such as Ant.

You can implement these build phases with any tool, but it's harder to keep the habit
going when the tool itself doesn't enforce the standard order: building, testing,
and deploying.

Building the Code

[80]

We will examine testing in more detail in a later chapter, but we should note here
that the testing phase is very important. The Continuous Integration server needs
to be very good at catching errors, and automated testing is very important for
achieving that goal.

Alternative build servers
While Jenkins appears to be pretty dominant in the build server scene in my
experience, it is by no means alone. Travis CI is a hosted solution that is popular
among open source projects. Buildbot is a buildserver that is written in, and
configurable with, Python. The Go server is another one, from ThoughtWorks.
Bamboo is an offering from Atlassian. GitLab also supports build server
functionality now.

Do shop around before deciding on which build server works best for you.

When evaluating different solutions, be aware of attempts at vendor lock-in. Also
keep in mind that the build server does not in any way replace the need for builds
that are well behaved locally on a developer's machine.

Also, as a common rule of thumb, see if the tool is configurable via configuration
files. While management tends to be impressed by graphical configuration,
developers and operations personnel rarely like being forced to use a tool that
can only be configured via a graphical user interface.

Collating quality measures
A useful thing that a build server can do is the collation of software quality metrics.
Jenkins has some support for this out of the box. Java unit tests are executed and can
be visualized directly on the job page.

Another more advanced option is using the Sonar code quality visualizer, which is
shown in the following screenshot. Sonar tests are run during the build phase and
propagated to the Sonar server, where they are stored and visualized.

A Sonar server can be a great way for a development team to see the fruits of their
efforts at improving the code base.

The drawback of implementing a Sonar server is that it sometimes slows down the
builds. The recommendation is to perform the Sonar builds in your nightly builds,
once a day.

Chapter 5

[81]

About build status visualization
The build server produces a lot of data that is amenable to visualization on a shared
display. It is useful to be immediately aware that a build has failed, for instance.

The easiest thing is to just hook up a monitor in a kiosk-like configuration with a web
browser pointing to your build server web interface. Jenkins has many plugins that
provide a simplified job overview suitable for kiosk displays. These are sometimes
called information radiators.

It is also common to hook up other types of hardware to the build status, such as
lava lamps or colorful LED lamps.

In my experience, this kind of display can make people enthusiastic about the build
server. Succeeding with having a useful display in the long run is more tricky than
it would first appear, though. The screen can be distracting. If you put the screen
where it's not easily seen in order to circumvent the distraction, the purpose of the
display is defeated.

Building the Code

[82]

A lava lamp in combination with a screen placed discreetly could be a useful
combination. The lava lamp is not normally lit, and thus not distracting. When a
build error occurs, it lights up, and then you know that you should have a look at the
build information radiator. The lava lamp even conveys a form of historical record
of the build quality. As the lava lamp lights up, it grows warm, and after a while,
the lava moves around inside the lamp. When the error is corrected, the lamp cools
down, but the heat remains for a while, so the lava will move around for a time
proportional to how long it took to fix the build error.

Taking build errors seriously
The build server can signal errors and code quality problems as much as it wants;
if developer teams don't care about the problems, then the investment in the
notifications and visualization is all for nought.

This isn't something that can be solved by technical means alone. There has to be a
process that everybody agrees on, and the easiest way for a consensus to be achieved
is for the process to be of obvious benefit to everyone involved.

Part of the problem is organizations where everything is on fire all the time. Is
a build error more important than a production error? If code quality measures
estimate that it will take years to improve a code base's quality, is it worthwhile to
even get started with fixing the issues?

How do we solve these kinds of problems?

Here are some ideas:

• Don't overdo your code quality metrics. Reduce testing until reports show
levels that are fixable. You can add tests again after the initial set of problems
is taken care of.

• Define a priority for problems. Fix production issues first. Then fix build
errors. Do not submit new code on top of broken code until the issues
are resolved.

Robustness
While it is desirable that the build server becomes one of the focal points in your
Continuous Delivery pipeline, also consider that the process of building and
deployment should not come to a standstill in the event of a breakdown of the build
server. For this reason, the builds themselves should be as robust as possible and
repeatable on any host.

Chapter 5

[83]

This is fairly easy for some builds, such as Maven builds. Even so, a Maven build can
exhibit any number of flaws that makes it non-portable.

A C-based build can be pretty hard to make portable if one is not so fortunate as
to have all build dependencies available in the operating system repositories. Still,
robustness is usually worth the effort.

Summary
In this chapter, we took a whirlwind tour through the systems that build our code.
We had a look at constructing a Continuous Integration server with Jenkins. We
also examined a number of problems that might arise, because the life of a DevOps
engineer is always interesting but not always easy.

In the next chapter, we will continue our efforts to produce code of the highest
quality by studying how we can integrate testing in our workflow.

[85]

Testing the Code
If we are going to release our code early and often, we ought to be confident of its
quality. Therefore, we need automated regression testing.

In this chapter, some frameworks for software testing are explored, such as JUnit for
unit testing and Selenium for web frontend testing. We will also find out how these
tests are run in our Continuous Integration server, Jenkins, thus forming the first part
of our Continuous Delivery pipeline.

Testing is very important for software quality, and it's a very large subject in itself.

We will concern ourselves with these topics in this chapter:

• How to make manual testing easier and less error prone
• Various types of testing, such as unit testing, and how to perform them

in practice
• Automated system integration testing

We already had a look at how to accumulate test data with Sonar and Jenkins in the
previous chapter, and we will continue to delve deeper into this subject.

Manual testing
Even if test automation has larger potential benefits for DevOps than manual
testing, manual testing will always be an important part of software development.
If nothing else, we will need to perform our tests manually at least once in order to
automate them.

Testing the Code

[86]

Acceptance testing in particular is hard to replace, even though there have been
attempts to do so. Software requirement specifications can be terse and hard to
understand even for the people developing the features that implement those
requirements. In these cases, quality assurance people with their eyes on the
ball are invaluable and irreplaceable.

The things that make manual testing easier are the same things that make automated
integration testing easier as well, so there is a synergy to achieve between the
different testing strategies.

In order to have happy quality assurance personnel, you need to:

• Manage test data, primarily the contents of backend databases, so that tests
give the same results when you run them repeatedly

• Be able to make rapid deployments of new code in order to verify bug fixes

Obvious as this may seem, it can be hard in practice. Maybe you have large
production databases that can't just be copied to test environments. Maybe they
contain end-user data that needs to be protected under law. In these cases, you
need to de-identify the data and wash it of any personal details before deploying
it to test environments.

Each organization is different, so it is not possible to give generally useful advice in
this area other than the KISS rule: "Keep it simple, stupid."

Pros and cons with test automation
When you talk with people, most are enthusiastic about the prospect of test
automation. Imagine all the benefits that await us with it:

• Higher software quality
• Higher confidence that the software releases we make will work as intended
• Less of the monotonous tedium of laborious manual testing.

All very good and desirable things!

In practice, though, if you spend time with different organizations with complex
multi-tiered products, you will notice people talking about test automation, but you
will also notice a suspicious absence of test automation in practice. Why is that?

Chapter 6

[87]

If you just compile programs and deploy them once they pass compilation, you
will likely be in for a bad experience. Software testing is completely necessary for
a program to work reliably in the real world. Manual testing is too slow to achieve
Continuous Delivery. So, we need test automation to succeed with Continuous
Delivery. Therefore, let's further investigate the problem areas surrounding test
automation and see if we can figure out what to do to improve the situation:

• Cheap tests have lower value.
One problem is that the type of test automation that is fairly cheap to
produce, unit testing, typically has lower perceived value than other types
of testing. Unit testing is still a good type of testing, but manual testing
might be perceived as exposing more bugs in practice. It might then feel
unnecessary to write unit tests.

• It is difficult to create test cradles that are relevant to automated
integration testing.
While it is not very difficult to write test cradles or test fixtures for unit tests,
it tends to get harder as the test cradle becomes more production-like. This
can be because of a lack of hardware resources, licensing, manpower, and
so on.

• The functionality of programs vary over time and tests must be adjusted
accordingly, which takes time and effort.
This makes it seem as though test automation just makes it harder to write
software without providing a perceived benefit.
This is especially true in organizations where developers don't have a close
relationship with the people working with operations, that is, a non DevOps
oriented organization. If someone else will have to deal with your crappy
code that doesn't really work as intended, there is no real cost involved for
the developers. This isn't a healthy relationship. This is the central problem
DevOps aims to solve. The DevOps approach bears this repeating rule: help
people with different roles work closer together. In organizations like Netflix,
an Agile team is entirely responsible for the success, maintenance, and
outages of their service.

• It is difficult to write robust tests that work reliably in many different
build scenarios.
A consequence of this is that developers tend to disable tests in their local
builds so that they can work undisturbed with the feature they have been
assigned. Since people don't work with the tests, changes that affect the test
outcomes creep in, and eventually, the tests fail.

Testing the Code

[88]

The build server will pick up the build error, but nobody remembers how the
test works now, and it might take several days to fix the test error. While the
test is broken, the build displays will show red, and eventually, people will
stop caring about build issues. Someone else will fix the problem eventually.

• It is just hard to write good automated tests, period.

It can indeed be hard to create good automated integration tests. It can
also be rewarding, because you get to learn all the aspects of the system
you are testing.
These are all difficult problems, especially since they mostly stem from
people's perceptions and relationships.

There is no panacea, but I suggest adopting the following strategy:

• Leverage people's enthusiasm regarding test automation
• Don't set unrealistic goals
• Work incrementally

Unit testing
Unit testing is the sort of testing that is normally close at heart for developers.
The primary reason is that, by definition, unit testing tests well-defined parts
of the system in isolation from other parts. Thus, they are comparatively easy to
write and use.

Many build systems have built-in support for unit tests, which can be leveraged
without undue difficulty.

With Maven, for example, there is a convention that describes how to write tests
such that the build system can find them, execute them, and finally prepare a report
of the outcome. Writing tests basically boils down to writing test methods, which are
tagged with source code annotations to mark the methods as being tests. Since they
are ordinary methods, they can do anything, but by convention, the tests should be
written so that they don't require considerable effort to run. If the test code starts to
require complicated setup and runtime dependencies, we are no longer dealing with
unit tests.

Here, the difference between unit testing and functional testing can be a source of
confusion. Often, the same underlying technologies and libraries are reused between
unit and functional testing.

Chapter 6

[89]

This is a good thing as reuse is good in general and lets you benefit from your
expertise in one area as you work on another. Still, it can be confusing at times,
and it pays to raise your eyes now and then to see that you are doing the right thing.

JUnit in general and JUnit in particular
You need something that runs your tests. JUnit is a framework that lets you define
unit tests in your Java code and run them.

JUnit belongs to a family of testing frameworks collectively called xUnit. The SUnit
is the grandfather of this family and was designed by Kent Beck in 1998 for the
Smalltalk language.

While JUnit is specific to Java, the ideas are sufficiently generic for ports to have
been made in, for instance, C#. The corresponding test framework for C# is called,
somewhat unimaginatively, NUnit. The N is derived from .NET, the name of the
Microsoft software platform.

We need some of the following nomenclature before carrying on. The nomenclature
is not specific to JUnit, but we will use JUnit as an example to make it easier to relate
to the definitions.

• Test runner: A test runner runs tests that are defined by an xUnit framework.
JUnit has a way to run unit tests from the command line, and Maven
employs a test runner called Surefire. A test runner also collects and reports
test results. In the case of Surefire, the reports are in XML format, and these
reports can be further processed by other tools, particularly for visualization.

• Test case: A test case is the most fundamental type of test definition.
How you create test cases differs a little bit among JUnit versions. In earlier
versions, you inherited from a JUnit base class; in recent versions, you just
need to annotate the test methods. This is better since Java doesn't support
multiple inheritance and you might want to use your own inheritance
hierarchies rather than the JUnit ones. By convention, Surefire also locates
test classes that have the Test suffix in the class name.

• Test fixtures: A test fixture is a known state that the test cases can rely
on so that the tests can have well-defined behavior. It is the responsibility
of the developer to create these. A test fixture is also sometimes known as a
test context.

Testing the Code

[90]

With JUnit, you usually use the @Before and @After annotations to define
test fixtures. @Before is, unsurprisingly, run before a test case and is used
to bring up the environment. @After likewise restores the state if there is a
need to.
Sometimes, @Before and @After are more descriptively named Setup and
Teardown. Since annotations are used, the method can have the names that
are the most intuitive in that context.

• Test suites: You can group test cases together in test suites. A test suite is
usually a set of test cases that share the same test fixture.

• Test execution: A test execution runs the tests suites and test cases.
Here, all the previous aspects are combined. The test suites and test cases
are located, the appropriate test fixtures are created, and the test cases run.
Lastly, the test results are collected and collated.

• Test result formatter: A test result formatter formats test result output for
human consumption. The format employed by JUnit is versatile enough to
be used by other testing frameworks and formatters not directly associated
with JUnit. So, if you have some tests that don't really use any of the xUnit
frameworks, you can still benefit by presenting the test results in Jenkins
by providing a test result XML file. Since the file format is XML, you can
produce it from your own tool, if need be.

• Assertions: An assertion is a construct in the xUnit framework that makes
sure that a condition is met. If it is not met, it is considered an error, and
a test error is reported. The test case is also usually terminated when the
assertion fails.

JUnit has a number of assertion methods available. Here is a sample of the available
assertion methods:

• To check whether two objects are equal:
assertEquals(str1, str2);

• To check whether a condition is true:
assertTrue (val1 < val2);

• To check whether a condition is false:

assertFalse(val1 > val2);

Chapter 6

[91]

A JUnit example
JUnit is well supported by Java build tools. It will serve well as an example of JUnit
testing frameworks in general.

If we use Maven, by convention, it will expect to find test cases in the
following directory:

/src/test/java

Mocking
Mocking refers to the practice of writing simulated resources to enable unit testing.
Sometimes, the words "fake" or "stub" are used. For example, a middleware system
that responds with JSON structures from a database would "mock" the database
backend for its unit tests. Otherwise, the unit tests would require the database
backend to be online, probably also requiring exclusive access. This wouldn't
be convenient.

Mockito is a mocking framework for Java that has also been ported to Python.

Test Coverage
When you hear people talk about unit testing, they often talk about test coverage.
Test coverage is the percentage of the application code base that is actually executed
by the test cases.

In order to measure unit test code coverage, you need to execute the tests and keep
track of the code that has or hasn't been executed.

Cobertura is a test coverage measurement utility for Java that does this. Other such
utilities include jcoverage and Clover.

Cobertura works by instrumenting the Java bytecode, inserting code fragments
of its own into already compiled code. These code fragments are executed while
measuring code coverage during execution of test cases

Its usually assumed that a hundred percent test coverage is the ideal. This might not
always be the case, and one should be aware of the cost/benefit trade-offs.

Testing the Code

[92]

A simple counterexample is a simple getter method in Java:

private int positiveValue;
void setPositiveValue(int x){
 this.positiveValue=x;
}

int getPositiveValue(){
 return positiveValue;
}

If we write a test case for this method, we will achieve a higher test coverage. On the
other hand, we haven't achieved much of anything, in practice. The only thing we
are really testing is that our Java implementation doesn't have bugs.

If, on the other hand, the setter is changed to include validation to check that the
value is not a negative number, the situation changes. As soon as a method includes
logic of some kind, unit testing is useful.

Automated integration testing
Automated integration testing is similar in many ways to unit testing with respect
to the basic techniques that are used. You can use the same test runners and build
system support. The primary difference with unit testing is that less mocking
is involved.

Where a unit test would simply mock the data returned from a backend database,
an integration test would use a real database for its tests. A database is a decent
example of the kind of testing resources you need and what types of problems
they could present.

Automated integration testing can be quite tricky, and you need to be careful with
your choices.

If you are testing, say, a read-only middleware adapter, such as a SOAP adapter for
a database, it might be possible to use a production database copy for your testing.
You need the database contents to be predictable and repeatable; otherwise, it will be
hard to write and run your tests.

Chapter 6

[93]

The added value here is that we are using a production data copy. It might
contain data that is hard to predict if you were to create test data from scratch. The
requirements are the same as for manual testing. With automated integration testing,
you need, well, more automation than with manual testing. For databases, this
doesn't have to be very complicated. Automated database backup and restore are
well-known operations.

Docker in automated testing
Docker can be quite convenient when building automated test rigs. It adds some of
the features of unit testing but at a functional level. If your application consists of
several server components in a cluster, you can simulate the entire cluster with a set
of containers. Docker provides a virtual network for the cluster that makes clear how
the containers interact at the network level.

Docker also makes it easy to restore a container to a known state. If you have your
test database in a Docker container, you can easily restore the database to the same
state as before the tests taking place. This is similar to restoring the environment in
the After method in unit tests.

The Jenkins Continuous Integration server has support for the starting and stopping
of containers, which can be useful when working with Docker test automation.

Using Docker Compose to run the containers you need is also a useful option.

Docker is still young, and some aspects of using Docker for test automation can
require glue code that is less than elegant.

A simple example could be firing up a database container and an application
server container that communicate with each other. The basic process of starting
the containers is simple and can be done with a shell script or Docker Compose.
But, since we want to run tests on the application server container that has been
started, how do we know whether it was properly started? In the case of the WildFly
container, there is no obvious way to determine the running state apart from
watching the log output for occurrences of strings or maybe polling a web socket. In
any case, these types of hacks are not very elegant and are time consuming to write.
The end result can be well worth the effort, though.

Testing the Code

[94]

Arquillian
Arquillian is an example of a test tool that allows a level of testing closer to
integration testing than unit testing together with mocking allows. Arquillian is
specific to Java application servers such as WildFly. Arquillian is interesting because
it illustrates the struggle of reaching a closer approximation of production systems
during testing. You can reach such approximations in any number of ways, and the
road to there is filled with trade-offs.

There is a "hello world" style demonstration of Arquillian in the book's source
code archive.

Performance testing
Performance testing is an essential part of the development of, for instance, large
public web sites.

Performance testing presents similar challenges as integration testing. We need a
testing system that is similar to a production system in order for the performance test
data to be useful to make a forecast about real production system performance.

The most commonly used performance test is load testing. With load testing, we
measure, among other things, the response time of a server while the performance
testing software generates synthetic requests for the server.

Apache JMeter is an example of a an open source application for measuring
performance. While it's simpler than its proprietary counterparts, such as
LoadRunner, JMeter is quite useful, and simplicity is not really a bad thing.

JMeter can generate simulated load and measure response times for a number of
protocols, such as HT, LDAP, SOAP, and JDBC.

There is a JMeter Maven plugin, so you can run JMeter as part of your build.

JMeter can also be used in a Continuous Integration server. There is a plugin for
Jenkins, called the performance plugin, that can execute JMeter test scenarios.

Ideally, the Continuous Integration server will deploy code that has been built to a
test environment that is production-like. After deployment, the performance tests
will be executed and test data collected, as shown in this screenshot:

Chapter 6

[95]

Automated acceptance testing
Automated acceptance testing is a method of ensuring that your testing is valid from
the end user's point of view.

Cucumber is a framework where test cases are written in plaintext and associated
with test code. This is called behavior-driven development. The original
implementation of Cucumber was written in Ruby, but ports now exist for many
different languages.

The appeal of Cucumber from a DevOps point of view is that it is intended to bring
different roles together. Cucumber feature definitions are written in a conversational
style that can be achieved without programming skills. The hard data required for
test runs is then extracted from the descriptions and used for the tests.

Testing the Code

[96]

While the intentions are good, there are difficulties in implementing Cucumber
that might not immediately be apparent. While the language of the behavior
specifications is basically free text, they still need to be somewhat spartan and
formalized; otherwise, it becomes difficult to write matching code that extracts the
test data from the descriptions. This makes writing the specifications less attractive
to the roles that were supposed to write them in the first place. What then happens
is that programmers write the specifications, and they often dislike the verbosity and
resort to writing ordinary unit tests.

As with many things, cooperation is of the essence here. Cucumber can work great
when developers and product owners work together on writing the specifications in
a way that works for everyone concerned.

Now, let's look at a small "hello world" style example for Cucumber.

Cucumber works with plaintext files called feature files, which look like this:

Feature: Addition
 I would like to add numbers with my pocket calculator

 Scenario: Integer numbers
 * I have entered 4 into the calculator
 * I press add
 * I have entered 2 into the calculator
 * I press equal
 * The result should be 6 on the screen

The feature description is implementation-language neutral. Describing the
Cucumber test code is done in a vocabulary called Gherkin.

If you use the Java 8 lambda version of Cucumber, a test step could look somewhat
like this:

Calculator calc;
public MyStepdefs() {
 Given("I have entered (\\d+) into the calculator", (Integer i) -> {
 System.out.format("Number entered: %n\n", i);
 calc.push(i);
 });

Chapter 6

[97]

 When("I press (\\w+)", (String op) -> {
 System.out.format("operator entered: %n\n", op);
 calc.op(op);
 });
 Then("The result should be (\\d+)", (Integer i) -> {
 System.out.format("result : %n\n", i);
 assertThat(calc.result(),i);
 });

The complete code can, as usual, be found in the book's source archive.

This is a simple example, but it should immediately be apparent both what the
strengths and weaknesses with Cucumber are. The feature descriptions have a
nice human-readable flair. However, you have to match the strings with regular
expressions in your test code. If your feature description changes even slightly in
wording, you will have to adjust the test code.

Automated GUI testing
Automating GUI testing has many desirable properties, but it is also difficult.
One reason is that user interfaces tend to change a lot during the development
phase, and buttons and controls move around in the GUI.

Older generations of GUI testing tools often worked by synthesizing mouse events
and sending them to the GUI. When a button moved, the simulated mouse click
went nowhere, and the test failed. It then became expensive to keep the tests
updated with changes in the GUI.

Selenium is a web UI testing toolkit that uses a different, more effective, approach.
The controllers are instrumented with identifiers so that Selenium can find the
controllers by examining the document object model (DOM) rather than blindly
generating mouse clicks.

Selenium works pretty well in practice and has evolved over the years.

Another method is employed by the Sikuli test framework. It uses a computer
vision framework, OpenCV, to help identify controllers even if they move or
change appearances. This is useful for testing native applications, such as games.

Testing the Code

[98]

The screenshot included below is from the Selenium IDE.

Integrating Selenium tests in Jenkins
Selenium works by invoking a browser, pointing it to a web server running your
application, and then remotely controlling the browser by integrating itself in the
JavaScript and DOM layers.

When you develop the tests, you can use two basic methods:

• Record user interactions in the browser and later save the resulting test code
for reuse

• Write the tests from scratch using Selenium's test API

Chapter 6

[99]

Many developers prefer to write tests as code using the Selenium API at the outset,
which can be combined with a test-driven development approach.

Regardless of how the tests are developed, they need to run in the integration
build server.

This means that you need browsers installed somewhere in your test environment.
This can be a bit problematic since build servers are usually headless, that is, they
are servers that don't run user interfaces.

It's possible to wrap a browser in a simulated desktop environment on the
build server.

A more advanced solution is using Selenium Grid. As the name implies, Selenium
Grid provides a server that gives a number of browser instances that can be used
by the tests. This makes it possible to run a number of tests in parallel as well as to
provide a set of different browser configurations.

You can start out with the single browser solution and later migrate to the Selenium
Grid solution when you need it.

There is also a convenient Docker container that implements Selenium Grid.

JavaScript testing
Since there usually are web UI implementations of nearly every product these days,
the JavaScript testing frameworks deserve special mention:

• Karma is a test runner for unit tests in the JavaScript language
• Jasmine is a Cucumber-like behavior testing framework
• Protractor is used for AngularJS

Protractor is a different testing framework, similar to Selenium in scope but
optimized for AngularJS, a popular JavaScript user interface framework. While it
would appear that new web development frameworks come and go everyday, it's
interesting to note why a test framework like Protractor exists when Selenium is
available and is general enough to test AngularJS applications too.

First of all, Protractor actually uses the Selenium web driver implementation under
the hood.

You can write Protractor tests in JavaScript, but you can use JavaScript for writing
test cases for Selenium as well if you don't like writing them in a language like Java.

Testing the Code

[100]

The main benefit turns out to be that Protractor has internalized knowledge about
the Angular framework, which a general framework like Selenium can't really have.

AngularJS has a model/view setup that is particular to it. Other frameworks use
other setups, since the model/view setup isn't something that is intrinsic to the
JavaScript language—not yet, anyway.

Protractor knows about the peculiarities of Angular, so it's easier to locate controllers
in the testing code with special constructs.

Testing backend integration points
Automated testing of backend functionality such as SOAP and REST endpoints
is normally quite cost effective. Backend interfaces tend to be fairly stable, so the
corresponding tests will also require less maintenance effort than GUI tests,
for instance.

The tests can also be fairly easy to write with tools such as soapUI, which can be used
to write and execute tests. These tests can also be run from the command line and
with Maven, which is great for Continuous Integration on a build server.

The soapUI is a good example of a tool that appeals to several different roles. Testers
who build test cases get a fairly well-structured environment for writing tests and
running them interactively. Tests can be built incrementally.

Developers can integrate test cases in their builds without necessarily using the GUI.
There are Maven plugins and command-line runners.

The command line and Maven integration are useful for people maintaining the
build server too.

Furthermore, the licensing is open source with some added features in a separate,
proprietary version. The open source nature makes the builds more reliable. It is very
stress-inducing when a build fails because a license has unexpectedly reached its end
or a floating license has run out.

The soapUI tool has its share of flaws, but in general, it is flexible and works well.
Here's what the user interface looks like:

Chapter 6

[101]

The soapUI user interface is fairly straightforward. There is a tree view listing test
cases on the left. It is possible to select single tests or entire test suites and run them.
The results are presented in the area on the right.

It is also worth noting that the test cases are defined in XML. This makes it possible
to manage them as code in the source code repository. This also makes it possible to
edit them in a text editor on occasion, for instance, when we need to perform a global
search and replace on an identifier that has changed names—just the way we like it
in DevOps!

Testing the Code

[102]

Test-driven development
Test-driven development (TDD) has an added focus on test automation. It was
made popular by the Extreme programming movement of the nineties.

TDD is usually described as a sequence of events, as follows:

• Implement the test: As the name implies, you start out by writing the test
and write the code afterwards. One way to see it is that you implement the
interface specifications of the code to be developed and then progress by
writing the code. To be able to write the test, the developer must find all
relevant requirement specifications, use cases, and user stories.
The shift in focus from coding to understanding the requirements can be
beneficial for implementing them correctly.

• Verify that the new test fails: The newly added test should fail because
there is nothing to implement the behavior properly yet, only the stubs and
interfaces needed to write the test. Run the test and verify that it fails.

• Write code that implements the tested feature: The code we write doesn't
yet have to be particularly elegant or efficient. Initially, we just want to make
the new test pass.

• Verify that the new test passes together with the old tests: When the new
test passes, we know that we have implemented the new feature correctly.
Since the old tests also pass, we haven't broken existing functionality.

• Refactor the code: The word "refactor" has mathematical roots. In
programming, it means cleaning up the code and, among other things,
making it easier to understand and maintain. We need to refactor since
we cheated a bit earlier in the development.

TDD is a style of development that fits well with DevOps, but it's not necessarily
the only one. The primary benefit is that you get good test suites that can be used in
Continuous Integration tests.

REPL-driven development
While REPL-driven development isn't a widely recognized term, it is my favored
style of development and has a particular bearing on testing. This style of
development is very common when working with interpreted languages,
such as Lisp, Python, Ruby, and JavaScript.

Chapter 6

[103]

When you work with a Read Eval Print Loop (REPL), you write small functions that
are independent and also not dependent on a global state.

The functions are tested even as you write them.

This style of development differs a bit from TDD. The focus is on writing small
functions with no or very few side effects. This makes the code easy to comprehend
rather than when writing test cases before functioning code is written, as in TDD.

You can combine this style of development with unit testing. Since you can use
REPL-driven development to develop your tests as well, this combination is a very
effective strategy.

A complete test automation scenario
We have looked at a number of different ways of working with test automation.
Assembling the pieces into a cohesive whole can be daunting.

In this section, we will have a look at a complete test automation example,
continuing from the user database web application for our organization, Matangle.

You can find the source code in the accompanying source code bundle for the book.

The application consists of the following layers:

• A web frontend
• A JSON/REST service interface
• An application backend layer
• A database layer

The test code will work through the following phases during execution:

• Unit testing of the backend code
• Functional testing of the web frontend, performed with the Selenium web

testing framework
• Functional testing of the JSON/REST interface, executed with soapUI

All the tests are run in sequence, and when all of them succeed, the result
can be used as the basis for a decision to see whether the application stack is
deemed healthy enough to deploy to a test environment, where manual testing
can commence.

Testing the Code

[104]

Manually testing our web application
Before we can automate something usefully, we need to understand the details of
what we will be automating. We need some form of a test plan.

Below, we have a test plan for our web application. It details the steps that a human
tester needs to perform by hand if no test automation is available. It is similar to
what a real test plan would look like, except a real plan would normally have many
more formalities surrounding it. In our case, we will go directly to the details of the
test in question:

1. Start a fresh test. This resets the database backend to a known state and
sets up the testing scenario so that manual testing can proceed from a
known state.
The tester points a browser to the application's starting URL:

Chapter 6

[105]

2. Click on the Add User link.
3. Add a user:

Enter a username—Alan Turing, in our test case.

4. Save the new user. A success page will be shown.

Testing the Code

[106]

5. Verify that the user was added properly by performing a search:

Click on the Search User link. Search for Alan Turing. Verify that Alan is
present in the result list.

While the reader is probably less than impressed with the application's complexity at
this point, this is the level of detail we need to work with if we are going to be able to
automate the scenario, and it is this complexity that we are studying here.

Chapter 6

[107]

Running the automated test
The test is available in a number of flavors in the source bundle.

To run the first one, you need a Firefox installation.

Choose the one called autotest_v1, and run it from the command line:

autotest_v1/bin/autotest.sh

If all goes well, you will see a Firefox window open, and the test you previously
performed by hand will be done automatically. The values you filled in and the
links you clicked on by hand will all be automated.

This isn't foolproof yet, because maybe the Firefox version you installed isn't
compatible, or something else is amiss with the dependencies. The natural reaction
to problems like these is dependency management, and we will look at a variant of
dependency management using Docker shortly.

Finding a bug
Now we will introduce a bug and let the test automation system find it.

As an exercise, find the string "Turing" in the test sources. Change one of the
occurrences to "Tring" or some other typographical error. Just change one; otherwise,
the verification code will believe there is no error and that everything is alright!

Run the tests again, and notice that the error is found by the automatic test system.

Test walkthrough
Now we have run the tests and verified that they work. We have also verified that
they are able to discover the bug we created.

What does the implementation look like? There is a lot of code, and it would not be
useful to reprint it in the book. It is useful, though, to give an overview of the code
and have a look at some snippets of the code.

Open the autotest_v1/test/pom.xml file. It's a Maven project object model file,
and it's here that all the plugins used by the tests are set up. Maven POM files are
declarative XML files and the test steps are step-by-step imperative instructions,
so in the latter case, Java is used.

Testing the Code

[108]

There's a property block at the top, where dependency versions are kept. There is no
real need to break out the versions; it has been used in this case to make the rest of
the POM file less version-dependent:

<properties>
 <junit.version>XXX</junit.version>
 <selenium.version>XXX</selenium.version>
 <cucumber.version>XXX</cucumber.version>
 ...
</properties>

Here are the dependencies for JUnit, Selenium and Cucumber:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>${junit.version}</version>
</dependency>

<dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-java</artifactId>
 <version>${selenium.version}</version>
</dependency>

<dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-core</artifactId>
 <version>${cucumber.version}</version>
</dependency>

<dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-java</artifactId>
 <version>${cucumber.version}</version>
</dependency>

<dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-junit</artifactId>
 <version>${cucumber.version}</version>
</dependency>

Chapter 6

[109]

To define the tests according to the Cucumber method, we need a feature file that
describes the test steps in a human-readable language. This feature file corresponds
to our previous test plan for manual tests:

Feature: Manage users
 As an Administrator
 I want to be able to
 - Create a user
 - Search for the user
 - Delete the user

 Scenario: Create a named user
 Given a user with the name 'Alan'
 And the surname 'Turing'
 When the administrator clicks 'Add User'
 Then the user should be added

 Scenario: Search for a named user
 Given a user with the name 'Alan'
 And the surname 'Turing'
 When the administrator clicks 'Search for User'
 Then the user 'Alan Turing' should be shown

 Scenario: Delete a named user
 Given a user with the name 'Alan'
 And the surname 'Turing'
 When the administrator clicks 'Delete User'
 Then the user should be deleted

The feature file is mostly plaintext with small elements of machine-readable
markup. It's up to the corresponding test code to parse the plaintext of the
scenarios with regexes.

It is also possible to localize the feature files to the language used within your own
team. This can be useful since the feature files might be written by people who are
not accustomed to English.

The feature needs actual concrete code to execute, so you need some way to bind the
feature to the code.

Testing the Code

[110]

You need a test class with some annotations to make Cucumber and JUnit
work together:

@RunWith(Cucumber.class)
@Cucumber.Options(
 glue = "matangle.glue.manageUser",
 features = "features/manageUser.feature",
 format = {"pretty", "html:target/Cucumber"}
)

In this example, the names of the Cucumber test classes have, by convention,
a Step suffix.

Now, you need to bind the test methods to the feature scenarios and need some way
to pick out the arguments to the test methods from the feature description. With the
Java Cucumber implementation, this is mostly done with Java annotations. These
annotations correspond to the keywords used in the feature file:

@Given(".+a user with the name '(.+)'")
 public void addUser(String name) {

In this case, the different inputs are stored in member variables until the entire user
interface transaction is ready to go. The sequence of operations is determined by the
order in which they appear in the feature file.

To illustrate that Cucumber can have different implementations, there is also a
Clojure example in the book's source code bundle.

So far, we have seen that we need a couple of libraries for Selenium and Cucumber
to run the tests and how the Cucumber feature descriptor is bound to methods in our
test code classes.

The next step is to examine how Cucumber tests execute Selenium test code.

Cucumber test steps mostly call classes with Selenium implementation details in
classes with a View suffix. This isn't a technical necessity, but it makes the test step
classes more readable, since the particulars of the Selenium framework are kept in a
separate class.

The Selenium framework takes care of the communication between the test code and
the browser. View classes are an abstraction of the web page that we are automating.
There are member variables in the view code that correspond to HTML controllers.
You can describe the binding between test code member variables and HTML
elements with annotations from the Selenium framework, as follows:

@FindBy(id = "name") private WebElement nameInput;
@FindBy(id = "surname") private WebElement surnameInput;

Chapter 6

[111]

The member variable is then used by the test code to automate the same steps that
the human tester followed using the test plan. The partitioning of classes into view
and step classes also makes the similarity of the step classes to a test plan more
apparent. This separation of concerns is useful when people involved with testing
and quality assurance work with the code.

To send a string, you use a method to simulate a user typing on a keyboard:

nameInput.clear();
nameInput.sendKeys(value);

There are a number of useful methods, such as click(), which will simulate a user
clicking on the control.

Handling tricky dependencies with Docker
Because we used Maven in our test code example, it handled all code dependencies
except the browser. While you could clearly deploy a browser such as Firefox to
a Maven-compatible repository and handle the test dependency that way if you
put your mind to it, this is normally not the way this issue is handled in the case
of browsers. Browsers are finicky creatures and show wildly differing behavior in
different versions. We need a mechanism to run many different browsers of many
different versions.

Luckily, there is such a mechanism, called Selenium Grid. Since Selenium has a
pluggable driver architecture, you can essentially layer the browser backend in a
client server architecture.

To use Selenium Grid, you must first determine how you want the server part to run.
While the easiest option would be to use an online provider, for didactic reasons, it is
not the option we will explore here.

There is an autotest_seleniumgrid directory, which contains a wrapper to run the
test using Docker in order to start a local Selenium Grid. You can try out the example
by running the wrapper.

The latest information regarding how to run Selenium Grid is available on the
project's GitHub page.

Selenium Grid has a layered architecture, and to set it up, you need three parts:

• A RemoteWebDriver instance in your testing code. This will be the interface
to Selenium Grid.

• Selenium Hub, which can be seen as a proxy for browser instances.

Testing the Code

[112]

• Firefox or Chrome grid nodes. These are the browser instances that will be
proxied by Hub.

The code to set up the RemoteWebDriver could look like this:

DesiredCapabilities capabilities = new DesiredCapabilities();
capabilities.setPlatform(Platform.LINUX);
capabilities.setBrowserName("Firefox");
 capabilities.setVersion("35");
 driver = new RemoteWebDriver(
 new URL("http://localhost:4444"),
 capabilities);

The code asks for a browser instance with a particular set of capabilities. The system
will do its best to oblige.

The code can only work if there is a Selenium Grid Hub running with a Firefox
node attached.

Here is how you start Selenium Hub using its Docker packaging:

docker run -d -p 4444:4444 --name selenium-hub selenium/hub

And here is how you can start a Firefox node and attach it to Hub:

docker run -d --link selenium-hub:hub selenium/node-firefox

Summary
This concludes the test code walkthrough. When you read the code, you might want
to use only a subset of the ideas that are illustrated. Maybe the Cucumber method
isn't really a good fit for you, or you value concise and succinct code over the layered
abstractions used in the example. That is a natural and sound reaction. Adopt the
ideas so they work for your team. Also, have a look at the other flavors of the testing
code available in the source bundle when deciding on what works for you!

Software testing is a vast subject that can fill volumes. In this chapter, we surveyed
some of the many different types of testing available. We also looked at concrete
ways of working with automated software testing in a Continuous Integration
server. We used Jenkins and Maven as well as JUnit and JMeter. Although these
tools are Java oriented, the concepts translate readily to other environments.

Now that we have built and tested our code, we will start working with deploying
our code in the next chapter.

[113]

Deploying the Code
Now that the code has been built and tested, we need to deploy it to our servers so
that our customers can use the newly developed features!

There are many competing tools and options in this space, and the one that is right
for you and your organization will depend on your needs.

We will explore Puppet, Ansible, Salt, PalletOps, and others, by showing how to
deploy sample applications in different scenarios. Any one of these tools has a
vast ecosystem of complementing services and tools, so it is no easy subject to
get a grip on.

Throughout the book, we have encountered aspects of some of the different
deployment systems that already exist. We had a look at RPMs and .deb files and
how to build them with the fpm command. We had a look at various Java artifacts
and how Maven uses the idea of a binary repository where you can deploy your
versioned artifacts.

In this chapter, we will focus on installing binary packages and their configuration
with a configuration management system.

Why are there so many deployment
systems?
There is a bewildering abundance of options regarding the installation of packages
and configuring them on actual servers, not to mention all the ways to deploy
client-side code.

Let's first examine the basics of the problem we are trying to solve.

Deploying the Code

[114]

We have a typical enterprise application, with a number of different high-level
components. We don't need to make the scenario overly complex in order to start
reasoning about the challenges that exist in this space.

In our scenario, we have:

• A web server
• An application server
• A database server

If we only have a single physical server and these few components to worry about
that get released once a year or so, we can install the software manually and be done
with the task. It will be the most cost-effective way of dealing with the situation,
even though manual work is boring and error prone.

It's not reasonable to expect a conformity to this simplified release cycle in reality
though. It is more likely that a large organization has hundreds of servers and
applications and that they are all deployed differently, with different requirements.

Managing all the complexity that the real world displays is hard, so it starts to make
sense that there are a lot of different solutions that do basically the same thing in
different ways.

Whatever the fundamental unit that executes our code is, be it a physical server,
a virtual machine, some form of container technology, or a combination of these,
we have several challenges to deal with. We will look at them now.

Configuring the base OS
The configuration of the base operating system must be dealt with somehow.

Often, our application stack has subtle, or not so subtle, requirements on the base
operating system. Some application stacks, such as Java, Python, or Ruby, make
these operating system requirements less apparent, because these technologies go
to a great length to offer cross-platform functionality. At other times, the operating
system requirements are apparent to a greater degree, such as when you work
with low-level mixed hardware and software integrations, which is common
in the telecom industry.

Chapter 7

[115]

There are many existing solutions that deal with this fundamental issue. Some
systems work with a bare metal (or bare virtual machine) approach, where they
install the desired operating system from scratch and then install all the base
dependencies that the organization needs for their servers. Such systems include,
for example, Red Hat Satellite and Cobbler, which works in a similar way but is
more lightweight.

Cobbler allows you to boot a physical or virtual machine over the network using
dhcpd. The DHCP server can then allow you to provide a netboot-compliant image.
When the netboot image is started, it contacts Cobbler to retrieve the packages that
will be installed in order to create the new operating system. Which packages are
installed can be decided on the server from the target machine's network MAC
address for instance.

Another method that is very popular today is to provide base operating system
images that can be reused between machines. Cloud systems such as AWS, Azure,
or OpenStack work this way. When you ask the cloud system for a new virtual
machine, it is created using an existing image as a base. Container systems such as
Docker also work in a similar way, where you declare your base container image
and then describe the changes you want to formulate for your own image.

Describing clusters
There must be a way to describe clusters.

If your organization only has a single machine with a single application, then you
might not need to describe how a cluster deployment of your application would
look like. Unfortunately (or fortunately, depending on your outlook), the reality is
normally that your applications are spread out over a set of machines, virtual
or physical.

All the systems we work with in this chapter support this idea in different ways.
Puppet has an extensive system that allows machines to have different roles that in
turn imply a set of packages and configurations. Ansible and Salt have these systems
as well. The container-based Docker system has an emerging infrastructure for
describing sets of containers connected together and Docker hosts that can accept
and deploy such cluster descriptors.

Cloud systems such as AWS also have methods and descriptors for
cluster deployments.

Cluster descriptors are normally also used to describe the application layer.

Deploying the Code

[116]

Delivering packages to a system
There must be a way to deliver packages to a system.

Much of an application can be installed as packages, which are installed unmodified
on the target system by the configuration management system. Package systems
such as RPM and deb have useful features, such as verifying that the files provided
by a package are not tampered with on a target system, by providing checksums
for all files in the package. This is useful for security reasons as well as debugging
purposes. Package delivery is usually done with operating system facilities such as
yum package channels on Red Hat based systems, but sometimes, the configuration
management system can also deliver packages and files with its own facilities. These
facilities are often used in tandem with the operating system's package channels.

There must be a way to manage configurations that is independent of
installed packages.

The configuration management system should, obviously, be able to manage our
applications' configurations. This is complex because configuration methods vary
wildly between applications, regardless of the many efforts that have been made to
unify the field.

The most common and flexible system to configure applications relies on text-based
configuration files. There are several other methods, such as using an application
that provides an API to handle configuration (such as a command-line interface) or
sometimes handling configuration via database settings.

In my experience, configuration systems based on text files create the least amount
of hassle and should be preferred for in-house code at least. There are many ways to
manage text-based configurations. You can manage them in source code handling
systems such as Git. There's a host of tools that can ease the debugging of broken
configuration, such as diff. If you are in a tight spot, you can edit configurations
directly on the servers using a remote text editor such as Emacs or Vi.

Handling configurations via databases is much less flexible. This is arguably
an anti-pattern that usually occurs in organizations where the psychological rift
between developer teams and operations teams are too wide, which is something
we aim to solve with DevOps. Handling configurations in databases makes the
application stack harder to get running. You need a working database to even start
the application.

Chapter 7

[117]

Managing configuration settings via imperative command-line APIs is also a dubious
practice for similar reasons but can sometimes be helpful, especially if the API is
used to manage an underlying text-based configuration. Many of the configuration
management systems, such as Puppet, depend on being able to manage declarative
configurations. If we manage the configuration state via other mechanisms, such as
command-line imperative API, Puppet loses many of its benefits.

Even managing text-based configuration files can be a hassle. There are many ways
for applications to invent their own configuration file formats, but there are a set of
base file formats that are popular. Such file formats include XML, YML, JSON,
and INI.

Usually, configuration files are not static, because if they were, you could just deploy
them with your package system like any piece of binary artifact.

Normally, the application configuration files need to be based on some kind of
template file that is later instantiated into a form suitable for the machine where
the application is being deployed.

An example might be an application's database connector descriptor. If you are
deploying your application to a test environment, you want the connector descriptor
to point to a test database server. Vice versa, if you are deploying to a production
server, you want your connector to point to a production database server.

As an aside, some organizations try to handle this situation by managing their DNS
servers, such that an example database DNS alias database.yourorg.com resolves
to different servers depending on the environment. The domain yourorg.com should
be replaced with your organization's details of course, and the database server
as well.

Being able to use different DNS resolvers depending on the environment is a
useful strategy. It can be difficult for a developer, however, to use the equivalent
mechanism on his or her own development machine. Running a private DNS
server on a development machine can be difficult, and managing a local host file can
also prove cumbersome. In these cases, it might be simpler to make the application
have configurable settings for database hosts and other backend systems at the
application level.

Many times, it is possible to ignore the details of the actual configuration file format
altogether and just rely on the configuration system's template managing system.
These usually work by having a special syntax for placeholders that will be replaced
by the configuration management system when creating the concrete configuration
file for a concrete server, where the application will be deployed. You can use the
exact same basic idea for all text-based configuration files, and sometimes even for
binary files, even though such hacks should be avoided if at all possible.

Deploying the Code

[118]

The XML format has tools and infrastructure that can be useful in managing
configurations, and XML is indeed a popular format for configuration files. For
instance, there is a special language, XSLT, to transform XML from one structural
form to another. This is very helpful in some cases but used less in practice than
one might expect. The simple template macro substitution approach gets you
surprisingly far and has the added benefit of being applicable on nearly all text-based
configuration formats. XML is also fairly verbose, which also makes it unpopular in
some circles. YML can be seen as a reaction to XML's verbosity and can accomplish
much of the same things as XML, with less typing.

Another useful feature of some text configuration systems that deserves mention
is the idea that a base configuration file can include other configuration files. An
example of this is the standard Unix sudo tool, which has its base configuration in
the /etc/sudoers file, but which allows for local customization by including all the
files that have been installed in the directory /etc/sudoers.d.

This is very convenient, because you can provide a new sudoer file without
worrying too much about the existing configuration. This allows for a greater degree
of modularization, and it is a convenient pattern when the application allows it.

Virtualization stacks
Organizations that have their own internal server farms tend to use virtualization a
lot in order to encapsulate the different components of their applications.

There are many different solutions depending on your requirements.

Virtualization solutions provide virtual machines that have virtual hardware, such
as network cards and CPUs. Virtualization and container techniques are sometimes
confused because they share some similarities.

You can use virtualization techniques to simulate entirely different hardware
than the one you have physically. This is commonly referred to as emulation.
If you want to emulate mobile phone hardware on your developer machine so that
you can test your mobile application, you use virtualization in order to emulate a
device. The closer the underlying hardware is to the target platform, the greater the
efficiency the emulator can have during emulation. As an example, you can use the
QEMU emulator to emulate an Android device. If you emulate an Android x86_64
device on an x86_64-based developer machine, the emulation will be much more
efficient than if you emulate an ARM-based Android device on an x86_64-based
developer machine.

Chapter 7

[119]

With server virtualization, you are usually not really interested in the possibility
of emulation. You are interested instead in encapsulating your application's server
components. For instance, if a server application component starts to run amok and
consume unreasonable amounts of CPU time or other resources, you don't want the
entire physical machine to stop working altogether.

This can be achieved by creating a virtual machine with, perhaps, two cores
on a machine with 64 cores. Only two cores would be affected by the runaway
application. The same goes for memory allocation.

Container-based techniques provide similar degrees of encapsulation and control
over resource allocation as virtualization techniques do. Containers do not normally
provide the emulation features of virtualization, though. This is not an issue since we
rarely need emulation for server applications.

The component that abstracts the underlying hardware and arbitrates hardware
resources between different competing virtual machines is called a hypervisor.
The hypervisor can run directly on the hardware, in which case it is called a bare
metal hypervisor. Otherwise, it runs inside an operating system with the help of the
operating system kernel.

VMware is a proprietary virtualization solution, and exists in desktop and server
hypervisor variants. It is well supported and used in many organizations. The server
variant changes names sometimes; currently, it's called VMware ESX, which is a bare
metal hypervisor.

KVM is a virtualization solution for Linux. It runs inside a Linux host operating
system. Since it is an open source solution, it is usually much cheaper than
proprietary solutions since there are no licensing costs per instance and is therefore
popular with organizations that have massive amounts of virtualization.

Xen is another type of virtualization which, amongst other features, has
paravirtualization. Paravirtualization is built upon the idea that that if the guest
operating system can be made to use a modified kernel, it can execute with greater
efficiency. In this way, it sits somewhere between full CPU emulation, where a fully
independent kernel version is used, and container-based virtualization, where the
host kernel is used.

VirtualBox is an open source virtualization solution from Oracle. It is pretty popular
with developers and sometimes used with server installations as well but rarely on
a larger scale. Developers who use Microsoft Windows on their developer machines
but want to emulate Linux server environments locally often find VirtualBox handy.
Likewise, developers who use Linux on their workstations find it useful to emulate
Windows machines.

Deploying the Code

[120]

What the different types of virtualization technologies have in common is that they
provide APIs in order to allow the automation of virtual machine management. The
libvirt API is one such API that can be used with several different underlying
hypervisors, such as KVM, QEMU, Xen, and LXC

Executing code on the client
Several of the configuration management systems described here allow you to
reuse the node descriptors to execute code on matching nodes. This is sometimes
convenient. For example, maybe you want to run a directory listing command on
all HTTP servers facing the public Internet, perhaps for debugging purposes.

In the Puppet ecosystem, this command execution system is called Marionette
Collective, or MCollective for short.

A note about the exercises
It is pretty easy to try out the various deployment systems using Docker to manage
the base operating system, where we will do our experiments. It is a time-saving
method that can be used when developing and debugging the deployment
code specific to a particular deployment system. This code will then be used for
deployments on physical or virtual machines.

We will first try each of the different deployment systems that are usually possible in
the local deployment modes. Further down the line, we will see how we can simulate
the complete deployment of a system with several containers that together form a
virtual cluster.

We will try to use the official Docker images if possible, but sometimes there are
none, and sometimes the official image vanishes, as happened with the official
Ansible image. Such is life in the fast-moving world of DevOps, for better or
for worse.

It should be noted, however, that Docker has some limitations when it comes to
emulating a full operating system. Sometimes, a container must run in elevated
privilege modes. We will deal with those issues when they arise.

It should also be noted that many people prefer Vagrant for these types of tests.
I prefer to use Docker when possible, because it's lightweight, fast, and sufficient
most of the time.

Chapter 7

[121]

Keep in mind that actually deploying systems in production will require
more attention to security and other details than we provide here.

The Puppet master and Puppet agents
Puppet is a deployment solution that is very popular in larger organizations and is
one of the first systems of its kind.

Puppet consists of a client/server solution, where the client nodes check in
regularly with the Puppet server to see if anything needs to be updated in the
local configuration.

The Puppet server is called a Puppet master, and there is a lot of similar wordplay in
the names chosen for the various Puppet components.

Puppet provides a lot of flexibility in handling the complexity of a server farm,
and as such, the tool itself is pretty complex.

This is an example scenario of a dialogue between a Puppet client and a
Puppet master:

1. The Puppet client decides that it's time to check in with the Puppet master
to discover any new configuration changes. This can be due to a timer or
manual intervention by an operator at the client. The dialogue between the
Puppet client and master is normally encrypted using SSL.

2. The Puppet client presents its credentials so that the Puppet master can
know exactly which client is calling. Managing the client credentials is a
separate issue.

3. The Puppet master figures out which configuration the client should have
by compiling the Puppet catalogue and sending it to the client. This involves
a number of mechanisms, and a particular setup doesn't need to utilize
all possibilities.
It is pretty common to have both a role-based and concrete configuration for
a Puppet client. Role-based configurations can be inherited.

4. The Puppet master runs the necessary code on the client side such that the
configuration matches the one decided on by the Puppet master.

In this sense, a Puppet configuration is declarative. You declare what configuration
a machine should have, and Puppet figures out how to get from the current to the
desired client state.

Deploying the Code

[122]

There are both pros and cons of the Puppet ecosystem:

• Puppet has a large community, and there are a lot of resources on the
Internet for Puppet. There are a lot of different modules, and if you don't
have a really strange component to deploy, there already is, with all
likelihood, an existing module written for your component that you can
modify according to your needs.

• Puppet requires a number of dependencies on the Puppet client machines.
Sometimes, this gives rise to problems. The Puppet agent will require a Ruby
runtime that sometimes needs to be ahead of the Ruby version available in
your distribution's repositories. Enterprise distributions often lag behind
in versions.

• Puppet configurations can be complex to write and test.

Ansible
Ansible is a deployment solution that favors simplicity.

The Ansible architecture is agentless; it doesn't need a running daemon on the client
side like Puppet does. Instead, the Ansible server logs in to the Ansible node and
issues commands over SSH in order to install the required configuration.

While Ansible's agentless architecture does make things simpler, you need a Python
interpreter installed on the Ansible nodes. Ansible is somewhat more lenient about
the Python version required for its code to run than Puppet is for its Ruby code to
run, so this dependence on Python being available is not a great hassle in practice.

Like Puppet and others, Ansible focuses on configuration descriptors that are
idempotent. This basically means that the descriptors are declarative and the
Ansible system figures out how to bring the server to the desired state. You can
rerun the configuration run, and it will be safe, which is not necessarily the case
for an imperative system.

Let's try out Ansible with the Docker method we discussed earlier.

We will use the williamyeh/ansible image, which has been developed for the
purpose, but it should be possible to use any Ansible Docker image or different
ones altogether, to which we just add Ansible later.

1. Create a Dockerfile with this statement:
FROM williamyeh/ansible:centos7

2. Build the Docker container with the following command:
docker build .

Chapter 7

[123]

This will download the image and create an empty Docker container that we
can use.
Normally, you would, of course, have a more complex Dockerfile that can
add the things we need, but in this case, we are going to use the image
interactively, so we will instead mount the directory with Ansible files from
the host so that we can change them on the host and rerun them easily.

3. Run the container.
The following command can be used to run the container. You will need the
hash from the previous build command:
docker run -v `pwd`/ansible:/ansible -it <hash> bash

Now we have a prompt, and we have Ansible available. The -v trick is to
make parts of the host filesystem visible to the Docker guest container.
The files will be visible in the /ansible directory in the container.

The playbook.yml file is as follows:

- hosts: localhost
 vars:
 http_port: 80
 max_clients: 200
 remote_user: root
 tasks:
 - name: ensure apache is at the latest version
 yum: name=httpd state=latest

This playbook doesn't do very much, but it demonstrates some concepts of
Ansible playbooks.

Now, we can try to run our Ansible playbook:

cd /ansible

ansible-playbook -i inventory playbook.yml --connection=local --sudo

The output will look like this:

PLAY [localhost] **

GATHERING FACTS ***

ok: [localhost]

Deploying the Code

[124]

TASK: [ensure apache is at the latest version] **************************

ok: [localhost]

PLAY RECAP **

localhost : ok=2 changed=0 unreachable=0
failed=0

Tasks are run to ensure the state we want. In this case, we want to install Apache's
httpd using yum, and we want httpd to be the latest version.

To proceed further with our exploration, we might like to do more things, such as
starting services automatically. However, here we run into a limitation with the
approach of using Docker to emulate physical or virtual hosts. Docker is a container
technology, after all, and not a full-blown virtualization system. In Docker's
normal use case scenarios, this doesn't matter, but in our case, we need make some
workarounds in order to proceed. The main problem is that the systemd init
system requires special care to run in a container. Developers at Red Hat have
worked out methods of doing this. The following is a slightly modified version
of a Docker image by Vaclav Pavlin, who works with Red Hat:

FROM fedora
RUN yum -y update; yum clean all
RUN yum install ansible sudo
RUN systemctl mask systemd-remount-fs.service dev-hugepages.mount sys-
fs-fuse-connections.mount systemd-logind.service getty.target console-
getty.service
RUN cp /usr/lib/systemd/system/dbus.service /etc/systemd/system/; sed
-i 's/OOMScoreAdjust=-900//' /etc/systemd/system/dbus.service

VOLUME ["/sys/fs/cgroup", "/run", "/tmp"]
ENV container=docker

CMD ["/usr/sbin/init"]

The environment variable container is used to tell the systemd init system that it
runs inside a container and to behave accordingly.

We need some more arguments for docker run in order to enable systemd to work
in the container:

docker run -it --rm -v /sys/fs/cgroup:/sys/fs/cgroup:ro -v `pwd`/
ansible:/ansible <hash>

Chapter 7

[125]

The container boots with systemd, and now we need to connect to the running
container from a different shell:

docker exec -it <hash> bash

Phew! That was quite a lot of work just to get the container more lifelike! On the
other hand, working with virtual machines, such as VirtualBox, is even more
cumbersome in my opinion. The reader might, of course, decide differently.

Now, we can run a slightly more advanced Ansible playbook inside the container,
as follows:

- hosts: localhost
 vars:
 http_port: 80
 max_clients: 200
 remote_user: root
 tasks:
 - name: ensure apache is at the latest version
 yum: name=httpd state=latest
 - name: write the apache config file
 template: src=/srv/httpd.j2 dest=/etc/httpd.conf
 notify:
 - restart apache
 - name: ensure apache is running (and enable it at boot)
 service: name=httpd state=started enabled=yes
 handlers:
 - name: restart apache
 service: name=httpd state=restarted

This example builds on the previous one, and shows you how to:

• Install a package
• Write a template file
• Handle the running state of a service

The format is in a pretty simple YML syntax.

PalletOps
PalletOps is an advanced deployment system, which combines the declarative power
of Lisp with a very lightweight server configuration.

Deploying the Code

[126]

PalletOps takes Ansible's agentless idea one step further. Rather than needing a
Ruby or Python interpreter installed on the node that is to be configured, you only
need ssh and a bash installation. These are pretty simple requirements.

PalletOps compiles its Lisp-defined DSL to Bash code that is executed on the slave
node. These are such simple requirements that you can use it on very small and
simple servers—even phones!

On the other hand, while there are a number of support modules for Pallet called
crates, there are fewer of them than there are for Puppet or Ansible.

Deploying with Chef
Chef is a Ruby-based deployment system from Opscode.

It is pretty easy to try out Chef; for fun, we can do it in a Docker container so we
don't pollute our host environment with our experiments:

docker run -it ubuntu

We need the curl command to proceed with downloading the chef installer:

apt-get -y install curl

curl -L https://www.opscode.com/chef/install.sh | bash

The Chef installer is built with a tool from the Chef team called omnibus. Our aim
here is to try out a Chef tool called chef-solo. Verify that the tool is installed:

chef-solo -v

This will give output as:

Chef: 12.5.1

The point of chef-solo is to be able to run configuration scripts without the full
infrastructure of the configuration system, such as the client/server setup. This type
of testing environment is often useful when working with configuration systems,
since it can be hard to get all the bits and pieces in working order while developing
the configuration that you are going to deploy.

Chef prefers a file structure for its files, and a pre-rolled structure can be retrieved
from GitHub. You can download and extract it with the following commands:

curl -L http://github.com/opscode/chef-repo/tarball/master -o master.tgz
tar -zxf master.tgz
mv chef-chef-repo* chef-repo
rm master.tgz

Chapter 7

[127]

You will now have a suitable file structure prepared for Chef cookbooks, which looks
like the following:

./cookbooks

./cookbooks/README.md

./data_bags

./data_bags/README.md

./environments

./environments/README.md

./README.md

./LICENSE

./roles

./roles/README.md

./chefignore

You will need to perform a further step to make everything work properly,
telling chef where to find its cookbooks as:

mkdir .chef

echo "cookbook_path ['/root/chef-repo/cookbooks']" > .chef/knife.rb

Now we can use the knife tool to create a template for a configuration, as follows:

knife cookbook create phpapp

Deploying with SaltStack
SaltStack is a Python-based deployment solution.

There is a convenient dockerized test environment for Salt, by Jackson Cage. You can
start it with the following:

docker run -i -t --name=saltdocker_master_1 -h master -p 4505 -p 4506 \

 -p 8080 -p 8081 -e SALT_NAME=master -e SALT_USE=master \

 -v `pwd`/srv/salt:/srv/salt:rw jacksoncage/salt

This will create a single container with both a Salt master and a Salt minion.

We can create a shell inside the container for our further explorations:

docker exec -i -t saltdocker_master_1 bash

We need a configuration to apply to our server. Salt calls configurations "states",
or Salt states.

Deploying the Code

[128]

In our case, we want to install an Apache server with this simple Salt state:

top.sls:

base:

 '*':

 - webserver

webserver.sls:

apache2: # ID declaration

 pkg: # state declaration

 - installed # function declaration

Salt uses .yml files for its configuration files, similar to what Ansible does.

The file top.sls declares that all matching nodes should be of the type webserver.
The webserver state declares that an apache2 package should be installed, and that's
basically it. Please note that this will be distribution dependent. The Salt Docker test
image we are using is based on Ubuntu, where the Apache web server package is
called apache2. On Fedora for instance, the Apache web server package is instead
simply called httpd.

Run the command once to see Salt in action, by making Salt read the Salt state and
apply it locally:

salt-call --local state.highstate -l debug

The first run will be very verbose, especially since we enabled the debug flag!

Now, let's run the command again:

salt-call --local state.highstate -l debug

This will also be pretty verbose, and the output will end with this:

local:

 ID: apache2

 Function: pkg.installed

 Result: True

 Comment: Package apache2 is already installed.

 Started: 22:55:36.937634

 Duration: 2267.167 ms

Chapter 7

[129]

 Changes:

Summary

Succeeded: 1

Failed: 0

Total states run: 1

Now, you can quit the container and restart it. This will clean the container from the
Apache instance installed during the previous run.

This time, we will apply the same state but use the message queue method rather
than applying the state locally:

salt-call state.highstate

This is the same command as used previously, except we omitted the –local flag.
You could also try running the command again and verify that the state remains
the same.

Salt versus Ansible versus Puppet
versus PalletOps execution models
While the configuration systems we explore in this chapter share a fair number of
similarities, they differ a lot in the way code is executed on the client nodes:

• With Puppet, a Puppet agent registers with the Puppet master and opens
a communication channel to retrieve commands. This process is repeated
periodically, normally every thirty minutes.

Thirty minutes isn't fast. You can, of course, configure
a lower value for the time interval required for the next
run. At any rate, Puppet essentially uses a pull model.
Clients must check in to know whether changes are
available.

• Ansible pushes changes over SSH when desired. This is a push model.
• Salt uses a push model, but with a different implementation. It employs

a ZeroMQ messaging server that the clients connect to and listen for
notifications about changes. This works a bit like Puppet, but faster.

Deploying the Code

[130]

Which method is best is an area of contention between developer communities.
Proponents of the message queue architecture believe that it is faster and that speed
matters. Proponents of the plain SSH method claim that it is fast enough and that
simplicity matters. I lean toward the latter stance. Things tend to break, and the
likelihood of breakage increases with complexity.

Vagrant
Vagrant is a configuration system for virtual machines. It is geared towards creating
virtual machines for developers, but it can be used for other purposes as well.

Vagrant supports several virtualization providers, and VirtualBox is a popular
provider for developers.

First, some preparation. Install vagrant according to the instructions for your
distribution. For Fedora, the command is this:

yum install 'vagrant*'

This will install a number of packages. However, as we are installing this on Fedora,
we will experience some problems. The Fedora Vagrant packages use libvirt as a
virtual machine provider rather than VirtualBox. That is useful in many cases, but in
this case, we would like to use VirtualBox as a provider, which requires some extra
steps on Fedora. If you use some other distribution, the case might be different.

First, add the VirtualBox repository to your Fedora installation. Then we can install
VirtualBox with the dnf command, as follows:

dnf install VirtualBox

VirtualBox is not quite ready to be used yet, though. It needs special kernel modules
to work, since it needs to arbitrate access to low-level resources. The VirtualBox
kernel driver is not distributed with the Linux kernel. Managing Linux kernel
drivers outside of the Linux source tree has always been somewhat inconvenient
compared to the ease of using kernel drivers that are always installed by default.
The VirtualBox kernel driver can be installed as a source module that needs to be
compiled. This process can be automated to a degree with the dkms command, which
will recompile the driver as needed when there is a new kernel installed. The other
method, which is easier and less error-prone, is to use a kernel module compiled for
your kernel by your distribution. If your distribution provides a kernel module, it
should be loaded automatically. Otherwise, you could try modprobe vboxdrv. For
some distributions, you can compile the driver by calling an init.d script as follows:

sudo /etc/init.d/vboxdrv setup

Chapter 7

[131]

Now that the Vagrant dependencies are installed, we can bring up a Vagrant
virtual machine.

The following command will create a Vagrant configuration file from a template. We
will be able to change this file later. The base image will be hashicorp/precise32,
which in turn is based on Ubuntu.

vagrant init hashicorp/precise32

Now, we can start the machine:

vagrant up

If all went well, we should have a vagrant virtual machine instance running now,
but since it is headless, we won't see anything.

Vagrant shares some similarities with Docker. Docker uses base images that can be
extended. Vagrant also allows this. In the Vagrant vocabulary, a base image is called
a box.

To connect to the headless vagrant instance we started previously, we can use
this command:

vagrant ssh

Now we have an ssh session, where we can work with the virtual machine. For this
to work, Vagrant has taken care of a couple of tasks, such as setting up keys for the
SSH communication channel for us.

Vagrant also provides a configuration system so that Vagrant machine descriptors
can be used to recreate a virtual machine that is completely configured from
source code.

Here is the Vagrantfile we got from the earlier stage. Comments are removed
for brevity.

Vagrant.configure(2) do |config|

 config.vm.box = "hashicorp/precise32"

end

Add a line to the Vagrantfile that will call the bash script that we will provide:

Vagrant.configure("2") do |config|

 config.vm.box = "hashicorp/precise32"

 config.vm.provision :shell, path: "bootstrap.sh"

end

Deploying the Code

[132]

The bootstrap.sh script will look like this:

#!/usr/bin/env bash

apt-get update

apt-get install -y apache2

This will install an Apache web server in the Vagrant-managed virtual machine.

Now we know enough about Vagrant to be able to reason about it from a
DevOps perspective:

• Vagrant is a convenient way of managing configurations primarily for virtual
machines based on VirtualBox. It's great for testing.

• The configuration method doesn't really scale up to clusters, and it's not the
intended use case, either.

• On the other hand, several configuration systems such as Ansible support
Vagrant, so Vagrant can be very useful while testing our configuration code.

Deploying with Docker
A recent alternative for deployment is Docker, which has several very interesting
traits. We have already used Docker several times in this book.

You can make use of Docker's features for test automation purposes even if you use,
for instance, Puppet or Ansible to deploy your products.

Docker's model of creating reusable containers that can be used on development
machines, testing environments, and production environments is very appealing.

At the time of writing, Docker is beginning to have an impact on larger enterprises,
but solutions such as Puppet are dominant.

While it is well known how to build large Puppet or Ansible server farms, it's not yet
equally well known how to build large Docker-based server clusters.

There are several emerging solutions, such as these:

• Docker Swarm: Docker Swarm is compatible with Docker Compose, which
is appealing. Docker Swarm is maintained by the Docker community.

• Kubernetes: Kubernetes is modeled after Google's Borg cluster software,
which is appealing since it's a well-tested model used in-house in Google's
vast data centers. Kubernetes is not the same as Borg though, which must be
kept in mind. It's not clear whether Kubernetes offers scaling the same way
Borg does.

Chapter 7

[133]

Comparison tables
Everyone likes coming up with new words for old concepts. While the different
concepts in various products don't always match, it's tempting to make a dictionary
that maps the configuration systems' different terminology with each other.

Here is such a terminology comparison chart:

System Puppet Ansible Pallet Salt
Client Agent Node Node Minion
Server Master Server Server Master
Configuration Catalog Playbook Crate Salt State

Also, here is a technology comparison chart:

System Puppet Ansible Pallet Chef Salt
Agentless No Yes Yes Yes Both
Client
dependencies

Ruby Python, sshd,
bash

sshd, bash Ruby, sshd,
bash

Python

Language Ruby Python Clojure Ruby Python

Cloud solutions
First, we must take a step back and have a look at the landscape. We can either
use a cloud provider, such as AWS or Azure, or we can use our own internal cloud
solution, such as VMware or OpenStack. There are valid arguments for both external
and internal cloud providers or even both, depending on your organization.

Some types of organizations, such as government agencies, must store all data
regarding citizens within their own walls. Such organizations can't use external
cloud providers and services and must instead build their own internal
cloud equivalents.

Smaller private organizations might benefit from using an external cloud provider
but can't perhaps afford having all their resources with such a provider. They might
opt to have in-house servers for normal loads and scale out to an external cloud
provider during peak loads.

Many of the configuration systems we have described here support the management
of cloud nodes as well as local nodes. PalletOps supports AWS and Puppet supports
Azure, for instance. Ansible supports a host of different cloud services.

Deploying the Code

[134]

AWS
Amazon Web Services allows us to deploy virtual machine images on Amazon's
clusters. You can also deploy Docker images. Follow these steps to set up AWS:

1. Sign up for an account with AWS. Registration is free of charge, but a credit
card number is required even for the free of charge tier

2. Some identity verification will need to happen, which can be done via an
automated challenge-response phone call.

3. When the user verification process is complete, you will be able to log in to
AWS and use the web console.

In my opinion, the AWS web console does not represent the
epitome of web interface usability, but it gets the job done.
There are a host of options, and in our case, we are interested in
the virtual machine and Docker container options.

4. Go to EC2 network and security. Here you can create management keys that
will be required later.
As a first example, let's create the default container example provided by
AWS, console-sample-app-static. To log in to the generated server, you
need first to create an SSH key pair and upload your public key to AWS.
Click through all the steps and you will get a small sample cluster. The final
resource creation step can be slow, so it's the perfect opportunity to grab a
cup of coffee!

5. Now, we can view the details of the cluster and choose the web server
container. You can see the IP address. Try opening it in a web browser.

Now that we have a working account on AWS, we can manage it with the
configuration management system of our choosing.

Azure
Azure is a cloud platform from Microsoft. It can host both Linux and Microsoft
virtual machines. While AWS is the service people often default to, at least in the
Linux space, it never hurts to explore the options. Azure is one such option that is
gaining market share at the moment.

Creating a virtual machine on Azure for evaluation purposes is comparable to
creating a virtual machine on AWS. The process is fairly smooth.

Chapter 7

[135]

Summary
In this chapter, we explored some of the many options available to us when
deploying the code we built. There are a lot many options, and that is for a reason.
Deployment is a difficult subject, and you will likely spend a lot of time figuring out
which option suits you best.

In the next chapter, we will explore the topic of monitoring our running code.

[137]

Monitoring the Code
In the previous chapter, we explored methods of deploying our code.

Now that the code has been safely deployed to your servers with the deployment
solution of your choice, you need to watch over it to make sure it's running properly.
You can spend a lot of time preparing for the many modes of failure that you may
envision during development. In the end, your software will probably break for
other reasons altogether than those you prepared for. If your system breaks, it can
be very expensive for your organization, either in lost revenue or in terms of lost
credibility, which, in the end, might amount to the same thing. You need to know
as quickly as possible what has gone wrong in order to deal with the situation.

Given the potential negative impact of service downtime, there are many alternative
solutions that approach the problem domain of watching over your deployed code
from different angles and viewpoints.

In this chapter, we will have a look at several of the options that are available to us.

Nagios
In this section, we will explore the Nagios monitoring solution for overall
server health.

Nagios has been around since 1999 and has a large community that provides plugins
and extensions for various needs. There are extensive resources available for Nagios
on the web, and commercial support if your organization requires it.

Since it has been around so long and many organizations use it, Nagios is
the standard in network monitoring against which other solutions compare
themselves. As such, it is the natural starting point for our journey through the
monitoring landscape.

Monitoring the Code

[138]

The name Nagios is a recursive acronym, which is a tradition in hacker circles. It
stands for "Nagios Ain't Gonna Insist On Sainthood". Originally, the product was
called NetSaint, but the name was rejected in favor of the Nagios acronym during a
trademark dispute. The word agios also means angel in Greek, so it is a pretty clever
acronym overall.

Here are some screenshots from a small demo Nagios installation. Nagios provides
many views, and here we see two of them:

• Service Overview For All Host Groups:

Chapter 8

[139]

• Service Status Details For All Hosts:

The views indicate some example problems, as follows:

 ° A host is unreachable
 ° A disk in one of the hosts is getting full

Monitoring the Code

[140]

A host has pending updates available. Let's now examine the basics of Nagios in
particular and monitoring in general with a simple scenario:

• We have a Nagios host that monitors the well-being of a number of other
physical and virtual hosts.

• One of the hosts being monitored, a web server, suddenly vanishes from
the network altogether. Nagios knows this, since it is set up to ping the web
server every five minutes and take action in the event that the server does not
respond to the pings in a timely fashion.

• Nagios determines what to do when this server is down, which in this case
is to send an e-mail to everyone in a predetermined group (in this case, the
administrators of the organization).

• Joakim, who happens to be around the Matangle office, is the first to respond
to the e-mail, and goes down to the quite unprofessional server room in the
cellar. The web server has stopped working because its power supply unit
is full of dust, which accumulated there while renovations were being done
in a nearby room—sawing plaster generates a lot of dust. Joakim curses
and vows that he would move the servers to better hosting, if he only had
the resources.

You likely take better care of your servers than Joakim did in this scenario, but the
point is that unforeseen things happen, and Nagios was helpful in resolving the
situation. Also, while employing a proper data center for your servers might prevent
things such as dust in your equipment and people tripping over network cables,
there are still any number of weird and unforeseen modes of failure present in the
unforgiving world of complex server deployments.

Nagios can monitor services as well as hosts and can utilize different methods to
do so. The simplest methods work on the Nagios server and query a service on a
remote host.

Nagios differentiates between two basic classes of checks:

• Active checks: These are initiated by Nagios. Nagios can execute code in
plugins regularly. The outcome of the code execution determines whether
the check fails or not. Active checks are the most common and are useful
and easy to set up with many types of services, such as HTTP, SSH, and
databases.

• Passive checks: These originate from a system other than Nagios, and the
system notifies Nagios rather than Nagios polling it. These are useful in
special situations, for instance, if the service being monitored is behind
a firewall or if the service is asynchronous and it would be inefficient to
monitor it with polling.

Chapter 8

[141]

Configuring Nagios is relatively straightforward if you are used to file-based
configuration, but there is a lot of configuring to do in order to get basic
functionality.

We are going to explore Nagios with the Docker Hub image cpuguy83/nagios.
The image uses Nagios version 3.5, which is the same version available in the Fedora
repositories at the time of writing. There are later versions of Nagios available,
but many still seem to prefer the version 3 series. The cpuguy83 image takes the
approach of downloading Nagios tarballs from SourceForge and installing them
inside the image. If you prefer, you can use this same approach to install the Nagios
version of your choosing. There is an alternative Docker file in the book sources,
and in case you use it, you will need to build the image locally.

This statement starts a Nagios server container:

docker run -e NAGIOSADMIN_USER=nagiosadmin -e NAGIOSAMDIN_PASS=nagios
-p 80:30000 cpuguy83/nagios

Verify that the Nagios web interface is available on port 30000; enter the username
and password defined above to log in.

The out-of-the-box configuration of the Nagios user interface allows you to browse,
amongst other things, hosts and services, but the only host defined at the outset is
the localhost, which in this case is the container running Nagios itself. We will now
configure another host to monitor, in the form of a separate Docker container. This
will allow us to bring the monitored container down by force and verify that the
Nagios container notices the outage.

This command will start a second container running nginx in the default
configuration:

docker run -p 30001:80 nginx

Verify that the container is running by going to port 30001. You will see a simple
message, Welcome to nginx!. This is more or less all that this container does out of
the box, which is good enough for our test. You can, of course, use a physical host
instead if you prefer.

To run the containers together, we can either link them on the command line or use
a Docker compose file. Here is a Docker compose file for this scenario, which is also
available in the book sources:

nagios:
 image: mt-nagios
 build:
 - mt-nagios

Monitoring the Code

[142]

 ports:
 - 80:30000
 environment:
 - NAGIOSADMIN_USER=nagiosadmin
 - NAGIOSAMDIN_PASS=nagios
 volumes:
 ./nagios:/etc/nagios
nginx:
 image: nginx

The Nagios configuration is mounted in the ./nagios directory as a Docker volume.

The configuration required for Nagios to monitor the nginx container is available in
the sources and is also included here:

define host {
 name regular-host
 use linux-server
 register 0
 max_check_attempts 5
}

define host{
 use regular-host
 host_name client1
 address 192.168.200.15
 contact_groups admins
 notes test client1
}
hostgroups.cfg
define hostgroup {
 hostgroup_name test-group
 alias Test Servers
 members client1
}

services.cfg
#+BEGIN_SRC sh
define service {
 use generic-service
 hostgroup_name test-group
 service_description PING
 check_command check_ping!200.0,20%!600.0,60%
}

Let's see what happens when we bring the nginx container down.

Find out the hash of the nginx container with docker ps. Then kill it with docker
kill. Verify that the container is really gone with docker ps again.

Chapter 8

[143]

Now, wait a while and reload the Nagios web user interface. You should see that
Nagios has alerted you of the situation.

This will look similar to the earlier screenshots that showed faulty services.

Now, you would like to have an e-mail when NGINX goes down. It is, however,
not straightforward to make an example that works in a foolproof way, simply since
e-mail is more complicated these days due to spam. You need to know your mail
server details, such as the SMTP server details. Here is a skeleton you need to fill
out with your particular details:

You can create a file contacts.cfg for handling e-mail, with the following contents:

define contact{
 contact_name matangle-admin
 use generic-contact
 alias Nagios Admin
 email pd-admin@matangle.com
}

define contactgroup{
 contactgroup_name admins
 alias Nagios Administrators
 members matange-admin
}

If you don't change this configuration, the mail will wind up at
pd-admin@matangle.com, which will be ignored.

Munin
Munin is used to graph server statistics such as memory usage, which is useful in
order to understand overall server health. Since Munin graphs statistics over time,
you can see resource allocation trends, which can help you find problems before
they get serious. There are several other applications like Munin that create graphs;
however, like Nagios, Munin is a good starting point.

It is designed to be easy to use and set up. The out-of-the-box experience gives you
many graphs with little work.

In the legends of the Norse, Hugin and Munin were two pitch-black ravens. They
tirelessly flew around the world of Midgard and collected information. After their
journeys far and wide, they returned to the god king Odin to sit on his shoulders
and tell him all about their experiences. The name Hugin derives from the word for
thought and Munin from the word for memory.

pd-admin@matangle.com

Monitoring the Code

[144]

While Nagios focuses on the high-level traits of the health of a service (whether the
service or host is alive or not in binary terms), Munin keeps track of statistics that it
periodically samples, and draws graphs of them.

Munin can sample a lot of different types of statistics, from CPU and memory load to
the number of active users in your children's Minecraft server. It is also easy to make
plugins that get you the statistics you want from your own services.

An image can say a lot and convey lots of information at a glance, so graphing
the memory and processor load of your servers can give you an early warning if
something is about to go wrong.

Here is an example screenshot of Munin, displaying metrics for a firewall installation
at the Matangle headquarters:

Chapter 8

[145]

And here are some metrics for the organization's smtpd, a Postfix installation:

Like any of the monitoring systems we are exploring in this chapter, Munin also has
a network-oriented architecture, as explained here. It is similar in design to Nagios.
The main components of Munin are as follows:

• There is a central server, the Munin master, which is responsible for
gathering data from the Munin nodes. The Munin data is stored in a database
system called RRD, which is an acronym for Round-robin Database. The
RRD also does the graphing of the gathered data.

• The Munin node is a component that is installed on the servers that will be
monitored. The Munin master connects to all the Munin nodes and runs
plugins which return data to the master.

Monitoring the Code

[146]

To try it out, we will again use a Docker container running the service we are
exploring, Munin:

docker run -p 30005:80 lrivallain/munin:latest

Munin will take a while to run the first time, so wait a while before checking the web
interface. If you don't like to wait, you can run the munin-update command by hand
in the container, as shown here. It polls all the Munin nodes for statistics explicitly.

docker run exec -it <hash> bash

su - munin --shell=/bin/bash

/usr/share/munin/munin-update

Now you should be able to see the graphs created during the first update. If you let
the stack run for a while, you can see how the graphs develop.

It is not very hard to write a Munin plugin that monitors a statistic specific to your
application stack. You can make a shell script that Munin calls in order to get the
statistics you want to track.

Munin itself is written in Perl, but you can write Munin plugins in most languages as
long as you conform to the very simple interface.

The program should return some metadata when called with a config argument.
This is so that Munin can put proper labels on the graphs.

Here is an example graph configuration:

graph_title Load average
graph_vlabel load
load.label load

To emit data you simply print it to stdout.

printf "load.value "
cut -d' ' -f2 /proc/loadavg

Chapter 8

[147]

Here is an example script that will graph the machine's load average:

#!/bin/sh

case $1 in
 config)
 cat <<'EOM'
graph_title Load average
graph_vlabel load
load.label load
EOM
 exit 0;;
esac

printf "load.value "
cut -d' ' -f2 /proc/loadavg

This system is pretty simple and reliable, and you can probably easily implement it
for your application. All you need to do is be able to print your statistics to stdout.

Ganglia
Ganglia is a graphing and monitoring solution for large clusters. It can aggregate
information in convenient overview displays.

The word "ganglia" is the plural form of ganglion, which is a nerve cell cluster in
anatomy. The analogy implies that Ganglia can be the sensory nerve cell network
in your cluster.

Like Munin, Ganglia also uses RRDs for database storage and graphing, so the
graphs will look similar to the previous Munin graphs. Code reuse is a good thing!

Ganglia has an interesting online demonstration at http://ganglia.wikimedia.
org/latest/.

http://ganglia.wikimedia.org/latest/
http://ganglia.wikimedia.org/latest/

Monitoring the Code

[148]

Wikimedia serves media content for Wikipedia, which is pretty busy. The
demonstration thus gives us a good overview of Ganglia's capabilities, which
would be hard to get in any easy way in your own network.

The first page shows an overview of the available data in graph format. You can drill
down in the graphs to get other perspectives.

Chapter 8

[149]

If you drill down one of the application cluster graphs for CPU load, for example,
you get a detailed view of the individual servers in the cluster. You can click on a
server node to drill down further.

If you have the kind of cluster scale that Wikimedia has, you can clearly see the
attraction of Ganglia overviews and drill-down views. You have both a view from
orbit and the details easily accessible together.

Ganglia consists of the following components:

• Gmond: This is an acronym for Ganglia monitoring daemon. Gmond is
a service that collects information about a node. Gmond will need to be
installed on each server that you want Ganglia to monitor.

• Gmetad: This stands for Ganglia meta daemon. Gmetad is a daemon which
runs on the master node, collecting the information that all the Gmond nodes
gather. Gmetad daemons can also work together to spread the load across
the network. If you have a large enough cluster, the topology does indeed
start to look like a nerve cell network!

• RRD: A round-robin database, the same tool Munin uses on the master node
to store data and visualizations for Ganglia in time series that are suitable
for graphing.

• A PHP-based web frontend: This displays the data that the master node has
collected and RRD has graphed for us.

Compared to Munin, Ganglia has an extra layer, the meta daemon. This extra layer
allows Ganglia to scale by distributing the network load between nodes.

Ganglia has a grid concept, where you group clusters with a similar purpose
together. You can, for example, put all your database servers together in a grid. The
database servers don't need to have any other relationship; they can serve different
applications. The grid concept allows you to view the performance metrics of all
your database servers together.

You can define grids in any manner you like: it can be convenient to view servers by
location, by application, or any other logical grouping you need.

You can try Ganglia out locally as well, again, using a Docker image.

Monitoring the Code

[150]

The wookietreiber/ganglia Docker image from Docker Hub offers some
inbuilt help:

docker run wookietreiber/ganglia --help

Usage: docker run wookietreiber/ganglia [opts]

Run a ganglia-web container.

 -? | -h | -help | --help print this help
 --with-gmond also run gmond inside the
container
 --without-gmond do not run gmond inside the
container
 --timezone arg set timezone within the
container,
 must be path below /usr/share/
zoneinfo,
 e.g. Europe/Berlin

In our case, we will run the image with the following command-line arguments:

docker run -p 30010:80 wookietreiber/ganglia

This image runs Gmond as well as Gmetad. This means that it will monitor itself out
of the box. We will add a separate container running Gmetad in a moment.

Now that the Ganglia container is running, you can check out the web interface
served by the container:

http://localhost:30010/ganglia/

Chapter 8

[151]

The browser should show a view similar to the following screenshot:

Ganglia Gmond nodes communicate between themselves on a multicast IP channel.
This offers redundancy and ease of configuration in large clusters, and the multicast
configuration is default. You can also configure Ganglia in unicast mode.

Monitoring the Code

[152]

Since we will only run with two communicating containers, we will not actually
benefit from the multicast configuration in this case.

Again, we will use Docker Compose to start the containers together so that the
separate Gmond and Gmetad instances can communicate. We can start three
containers that all run gmond. The Gmetad daemon will in the default configuration
discover them and list them together under My Cluster:

gmetad:
 image: wookietreiber/ganglia
 ports:
 - "30010:80"
gmond:
 image: wookietreiber/ganglia
gmond2:
 image: wookietreiber/ganglia

When you access http://localhost:30010/ganglia/, you should find the new
gmond instance being monitored.

Graphite
While Munin is nice because it is robust and fairly easy to start using, the graphs
it provides are only updated once in a while, normally every fifth minute. There is
therefore a niche for a tool that does graphing that is closer to real time. Graphite is
such a tool.

The Graphite stack consists of the following three major parts. It is similar to both
Ganglia and Munin but uses its own component implementations.

• The Graphite Web component, which is a web application that renders a user
interface consisting of graphs and dashboards organized within a tree-like
browser widget

• The Carbon metric processing daemon, which gathers the metrics
• The Whisper time series database library

Chapter 8

[153]

As such, the Graphite stack is similar in utility to both Munin and Ganglia. Unlike
Munin and Ganglia though, it uses its own time series library, Whisper, rather than
an RRD.

There are several prepackaged Docker images for trying out Graphite. We can use
the sitespeedio/graphite image from the Docker Hub, as follows:

docker run -it \ -p 30020:80 \ -p 2003:2003 \ sitespeedio/graphite

This starts a Docker container running Graphite with HTTP Basic authentication.

You can now view the user interface of Graphite. Enter "guest" for both the username
and password. You can change the username and password by providing a
.htpasswd file for the image.

If you don't change the port in the Docker statement above, this URL should work:

http://localhost:30020/

The browser window should display a view similar to the following screenshot:

Monitoring the Code

[154]

Graphite has a customizable user interface, where you can organize the graphs in
which you are interested together in dashboards. There is also a completion widget
that lets you find named graphs by typing the first few characters of a graph name.

Log handling
Log handling is a very important concept, and we will explore some of the many
options, such as the ELK (Elasticsearch, Logstash and Kibana) stack.

Traditionally, logging just consisted of using simple print statements in code to trace
events in the code. This is sometimes called printf-style debugging, because you use
traces to see how your code behaves rather than using a regular debugger.

Here is a simple example in C syntax. The idea is that we want to know when we
enter the function fn(x) and what value the argument x has:

void fn(char *x){
 printf("DEBUG entering fn, x is %s\n", x);
 ...
}

From the debug traces in the console, you can determine whether the program being
developed is behaving as expected.

You would, of course, also like to see whether something serious is wrong with your
program and report that with a higher priority:

printf("ERROR x cant be an empty string\n");

There are several problems with this style of debugging. They are useful when you
want to know how the program behaves, but they are not so useful when you have
finished developing and want to deploy your code.

Today, there are a great number of frameworks that support logging in many
different ways, based on the time-proven pattern above.

The logging frameworks add value to printf-style logging primarily by defining
standards and offering improved functionality such as these:

• Different log priorities, such as Debug, Warning, Trace, and Error.
• Filtering log messages of different priorities. You might not always be

interested in debug traces, but you are probably always interested in
error messages.

Chapter 8

[155]

• Logging to different destinations, such as files, databases, or network
daemons. This includes the ELK stack that we will visit later.

• The rotating and archiving of log files. Old log files can be archived.

Every now and then, a new logging framework pops up, so the logging problem
domain seems far from exhausted even to this day. This tendency is understandable,
since properly done logs can help you determine the exact cause of the failure of a
network service that is no longer running or, of course, any complicated service that
you are not constantly supervising. Logging is also hard to do right, since excessive
logging can kill the performance of your service, and too little doesn't help you
determine the cause of failures. Therefore, logging systems go to great lengths to
strike a balance between the various traits of logging.

Client-side logging libraries
Log4j is a popular logging framework for Java. There are several ports for other
languages, such as:

• Log4c for the C language
• Log4js for the JavaScript language
• Apache log4net, a port to the Microsoft .NET framework

Several other ports exist, with many different logging frameworks that share many
of their concepts.

Since there are many logging frameworks for the Java platform alone, there are also
some wrapper logging frameworks, such as Apache Commons Logging or Simple
Logging Facade for Java (SLF4J). These are intended to allow you to use a single
interface and swap out the underlying logging framework implementation if needed.

Logback is meant to be the successor of log4j and is compatible with the ELK stack.

Log4j is the first of the Java logging frameworks, and essentially gives you
the equivalent of the previous printf statements but with many more bells
and whistles.

Log4j works with three primary constructs:

• Loggers
• Appenders
• Layouts

Monitoring the Code

[156]

The logger is the class you use to access logging methods. There's a logging method
to call for each log severity. Loggers are also hierarchical.

These concepts are easiest to explain with some example code:

Logger logger = Logger.getLogger("se.matangle");

This gets us a logger specific to our organization. In this way, we can make out our
own logger messages from messages that originate with other organizations' code
that we might be using. This becomes very useful in a Java enterprise environment,
where you might have dozens of libraries that all use log4j for their logging and you
want to be able to configure different log levels for each library.

We can use several loggers at the same time for greater granularity of our logs.
Different software components can have different loggers.

Here is an example from a video recording application:

Logger videologger = Logger.getLogger("se.matangle.video");
logger.warn("disk is dangerously low")

We can use several different log levels, adding greater specificity to our logs:

videologger.error("video encoding source running out prematurely")

The place where the log message winds up in the end is called an appender in log4j
terminology. There are a number of appenders available, such as the console, files,
network destinations, and logger daemons.

Layouts control how our log messages will be formatted. They allow for escape
sequences with printf-like formatting.

For example, the class PatternLayout configured to use the conversion pattern %r
[%t] %-5p %c - %m%n will create the following example output:

176 [main] INFO se.matangle - User found

Here's what the fields in the pattern stand for:

• The first field is the number of milliseconds elapsed since the start of
the program

• The second field is the thread making the log request
• The third field is the level of the log statement
• The fourth field is the name of the logger associated with the log request
• The text after the - is the message of the statement

Chapter 8

[157]

Log4j endeavors to make the configuration of the logging external to the application.
By externalizing the logging configuration, a developer can make the logging
work locally by configuring logs to go to a file or to the console. Later on, when the
application is deployed to a production server, the administrator can configure the
log appender to be something else, such as the ELK stack we are going to discuss
later. This way, the code doesn't need to be changed, and we can modify the
behavior and destination of the logging at deployment time.

An application server such as WildFly offers its own configuration system that plugs
in to the log4j system.

If you don't use an application server, newer versions of log4j support many
different configuration formats. Here is an XML-style file, which will look for
log4j2-test.xml in the classpath:

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN">
 <Appenders>
 <Console name="Console" target="SYSTEM_OUT">
 <PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level
%logger{36} - %msg%n"/>
 </Console>
 </Appenders>
 <Loggers>
 <Root level="error">
 <AppenderRef ref="Console"/>
 </Root>
 </Loggers>
</Configuration>

The ELK stack
The ELK stack consists of the following components:

• Logstash: This is an open source logging framework similar to log4j.
The server component of Logstash processes incoming logs.

• Elasticsearch: This stores all of the logs and indexes them, as the name
implies, for searching.

• Kibana: This is the web interface for the searching and visualization of logs.

Monitoring the Code

[158]

To see how it works, we will follow a log message all the way from where it
originates inside the code, through the intermediary network layers, to the end
destination at the network operator's screen:

1. Deep down in the code, a Java exception occurs. The application
unexpectedly can't map a user ID present in an import file to the
user IDs in the database. The following error is logged with log4j:
logger.error("cant find imported user id in database")

2. The log4j system is configured to log errors to a Logstash backend,
as follows:
log4j.appender.applog=org.apache.log4j.net.SocketAppender
log4j.appender.applog.port=5000
log4j.appender.applog.remoteHost=master
log4j.appender.applog.DatePattern='.'yyyy-MM-dd
log4j.appender.applog.layout=org.apache.log4j.PatternLayout
log4j.appender.applog.layout.ConversionPattern=%d %-5p [%t] %c %M
- %m%n
log4j.rootLogger=warn, applog
log4j.logger.nl=debug

3. The Logstash system is configured as follows to listen to the ports described
by the log4j system. The Logstash daemon must be started separately from
your application as shown:
input {
 log4j {
 mode => server
 host => "0.0.0.0"
 port => 5000
 type => "log4j"
 }
}
output {
stdout { codec => rubydebug }
stdout { }
 elasticsearch {
 cluster => "elasticsearch"
 }
}

4. The Elasticsearch engine receives the log output and makes it searchable.
5. The administrator can open the Kibana GUI application and watch the log

appear in real time or also search for historical data.

Chapter 8

[159]

You might think that this is a lot of complexity, and you would be correct. But it's
interesting to note that log4j can be configured to support this complex scenario as
well as much simpler scenarios, so you can't really go wrong using log4j or one of its
compatible competitors.

You can start out with not using any network logging and just use plain log files.
This is good enough for many situations. If and when you need the extra power of
the ELK stack, you can add it later. It is useful to keep the log files around as well. If
the advanced logging facilities fail for some reason, you can always resort to using
the traditional Unix grep utility on the log files.

Kibana has many features to help you analyze your log data. You can graph the data
and filter log data for the particular patterns that you are looking for.

To try all of this out in practice, we can use the official Kibana and Elasticsearch
Docker images available on Docker Hub:

docker run -d elasticsearch &&
docker run --link some-elasticsearch:elasticsearch -d kibana

If all goes well, we will be able to access the Kibana user interface, which looks
like this:

Monitoring the Code

[160]

Summary
In this chapter, we had a look at some of the many options available for monitoring
our deployed code: Nagios to monitor the states of hosts and services; Munin,
Ganglia, and Graphite to graph statistics from our hosts; and log4j and the ELK
stack to keep track of log information.

In the next chapter, we will look at tools that help with workflows within the
development organization, such as issue trackers.

[161]

Issue Tracking
In the previous chapter, we looked at how we can keep an eye on our deployed code
with monitoring and log handling solutions.

In this chapter, we will look at systems that handle development workflows within
an organization, such as issue tracking software. Such systems are an important aid
while implementing Agile processes.

What are issue trackers used for?
From an Agile process standpoint, issue trackers are used to help with the minutiae
and details of the Agile process. The entities handled by the issue tracker might
represent work items, bugs, and issues. Most Agile processes include an idea of how
to manage tasks that an Agile team are to perform, in the form of Post-it notes on a
board or an electronic equivalent.

When working in an Agile setting, it is common to have a board with issues
on handwritten Post-it notes. This is a central concept in the Kanban method,
since Kanban actually means signboard in Japanese. The board gives a nice overview
of the work in progress and is pretty easy to manage because you just move the
Post-it notes around on the board to represent state changes in the workflow.

Issue Tracking

[162]

It is also pretty easy to change your Kanban board by just rewriting the various
markers, such as lanes, that you have written on your board:

Physical boards are also common with Scrum teams.

On the other hand, computerized issue trackers, which are mostly web-based,
offer much better detail and can be used when working remotely. These issue
trackers also help you remember steps in your process, among other benefits.

Ideally, one would like both a physical board and an issue tracker, but it is a lot of
work to keep them synchronized. There is no easy way to solve this basic contention.
Some people use a projector to show the issue tracker as if it was a board, but it
does not have the same tactile feel to it, and gathering around a projected image or
monitor is not the same thing as gathering around a physical board. Boards also have
the advantage of being always available and convenient for reference when team
members want to discuss tasks.

Chapter 9

[163]

Technically, issue trackers are usually implemented as databases of objects
representing state machines, with various degrees of sophistication. You create an
issue with a web interface or by other means, such as e-mail or automation; then, the
issue goes through various states due to human interaction, and in the end, the issue
is archived in a closed state for future reference. Sometimes, the flow progresses due
to an interaction from another system. A simple example might be that a task is no
longer deemed valid because it is overdue and is automatically closed.

Some examples of workflows and issues
Although the term "issue" is used throughout this chapter, some systems use the
terms "ticket" or "bug". Technically, they are the same thing. An issue might also
represent a to-do item, enhancement request, or any other type of work item. It
might feel slightly counterintuitive that, technically, an enhancement is basically the
same thing as a bug, but if you see the enhancement as a missing feature, it starts to
make sense.

An issue has various metadata associated with it, depending on what it represents
and what the issue tracker supports. The most basic type of issue is very simple,
yet useful. It has the following basic attributes:

• Description: This is a free-form textual description of the issue
• Reporter: This represents the person who opened the issue
• Assigned: This is the person who should work on the item.

Also, it has two states: open and closed.

This is usually the minimum that an issue tracker provides. If you compare this
with a Post-it note, the only extra metadata is the reporter, and you could probably
remove that as well and the tracker would still be functional. With a Post-it note,
you handle open and closed states simply by putting the Post-it on the board or
removing it.

When project managers first encounter an electronic issue tracker, there is often a
tendency to go completely overboard with adding complexity to the state machines
and attribute storage of the tracker. That said, there is clearly a lot of useful
information that can be added to an issue tracker without overdoing it.

Issue Tracking

[164]

Apart from the previously mentioned basic information, these additional attributes
are usually quite useful:

• Due date: The date on which the issue is expected to be resolved.
• Milestone: A milestone is a way to group issues together in useful work

packages that are larger than a single issue. A milestone can represent the
output from a Scrum sprint, for example. A milestone usually also has a due
date, and if you use the milestone feature, the due dates on individual issues
are normally not used.

• Attachments: It might be convenient to be able to attach screenshots and
documents to an issue, which might be useful for the developer working on
the issue or the tester verifying it.

• Work estimates: It can be useful to have an estimate of the expected work
expenditure required to resolve the issue. This can be used for planning
purposes. Likewise, a field with the actual time spent on the issue can also
be useful for various calculations. On the other hand, it is always tricky to
do estimates, and in the end, it might be more trouble than it's worth. Many
teams do quite well without this type of information in their issue tracker.

The following are also some useful states that can be used to model an Agile
workflow better than the plain open and closed states. The open and closed
states are repeated here for clarity:

• Open: The issue is reported, and no one is working on it as of yet
• In progress: Somebody is assigned to the issue and working on resolving it
• Ready for test: The issue is completed and is now ready for verification. It is

unassigned again
• Testing: Someone is assigned to work on testing the implementation

of the issue
• Done: The task is marked as ready and unassigned once more. The done

state is used to mark issues to keep track of them until the end of a sprint,
for example, if the team is working with the Scrum method

• Closed: The issue is no longer monitored, but it is still kept around
for reference

In the best case scenario, issues progress from one state to the next in an orderly
fashion. In a more realistic scenario, there is a likelihood that a task goes from
testing to open instead of done, since testing might reveal that the issue wasn't
really properly fixed.

Chapter 9

[165]

What do we need from an issue tracker?
What do we need from an issue tracker apart from it supporting the basic workflows
described previously? There are many concerns, some of them not immediately
apparent. Some things to consider are listed as follows:

• What scale do we need?
Most tools work well on scales of up to about 20 people, but beyond that, we
need to consider performance and licensing requirements. How many issues
do we need to be able to track? How many users need access to the issue
tracker? These are some of the questions we might have.

• How many licenses do we need?
In this regard, free software gains the upper hand, because proprietary
software can have unintuitive pricing. Free software can be free of charge,
with optional support licensing.
Most of the issue trackers mentioned in this chapter are free software, with
the exception of Jira.

• Are there performance limitations?
Performance is not usually a limiting factor, since most trackers use a
production-ready database such as PostgreSQL or MariaDB as the backend
database. Most issue trackers described in this chapter behave well at the
scales usually associated with an organization's in-house issue tracker.
Bugzilla has been proven in installations that handle a large number of
issues and face the public Internet.
Nevertheless, it is good practice to evaluate the performance of the systems
you intend to deploy. Perhaps some peculiarity of your intended use triggers
some performance issue. An example might be that most issue trackers use a
relational database as a backend, and relational databases are not the best for
representing hierarchical tree structures if one needs to do recursive queries.
In normal use cases, this is not a problem, but if you intend to use deeply
nested trees of issues on a large scale, problems might surface.

Issue Tracking

[166]

• What support options are available, and what quality are they?
It is hard to determine the quality of support before actually using it,
but here are some ideas to help with evaluation:

 ° For open source projects, support is dependent on the size of
the user community. Also, there often are commercial support
providers available.

 ° Commercial issue trackers can have both paid and
community support.

• Can we use an issue tracker hosted off-site or not?
There are many companies that host issue trackers. These include
Atlassian's Jira tracker, which can both be installed on customer premises
or hosted by Atlassian. Another example of a hosted issue tracker is
Trello from Trello, Inc.
Deploying issue trackers in your own network is usually not very hard. They
are among the simpler of the systems described in this book with regard to
installation complexity. Normally, you need a database backend and a web
application backend layer. Usually, the hardest part is getting integration
with authentication servers and mail servers to work. Nevertheless, even
if hosting your own issue tracker installation isn't really hard, there is no
denying that using a hosted tracker is easier.
Some organizations can't leak data about their work outside their own
networks for legal or other reasons. For these organizations, hosted issue
trackers are not an option. They must deploy issue trackers inside their
own networks.

• Does the issue workflow system adapt to our needs?
Some systems, such as Jira, allow highly flexible state machines to define the
flow and integrated editors to edit it. Others have more minimalistic flows.
The right solution for you depends on your needs. Some people start out
with wanting a very complex flow and wind up realizing they only need the
open and closed states. Others realize they need complex flows to support
the complexities of their process.
A configurable flow is useful in large organizations, because it can
encapsulate knowledge about processes that might not be readily
apparent. For instance, when a bug has been squashed, Mike in the quality
assurance department should verify the fix. This is not so useful in a small
organization, because everyone knows what to do anyway. However, in a
large organization, the opposite is often true. It is useful to get some help in
deciding who should take care of a task next and what to do.

Chapter 9

[167]

• Does the issue tracker support our choice of the Agile method?
Most issue trackers mentioned in this chapter have underlying data models
flexible enough to represent any sort of Agile process. All you really need, in
a sense, is a configurable state machine. Issue trackers might, of course, add
additional features to provide better support for particular Agile methods
and workflows.
These extra features that support Agile methods usually boil down to two
primary classes: visualization and reporting. While these are nice to have,
my opinion is that too much focus is placed on these features, especially by
inexperienced team leaders. Visualization and reporting do add value, but
not as much as one might believe at the outset.

Keep this in mind when selecting features for your issue tracker.
Make sure that you will actually use that impressive report you
have been wanting.

• Does the system integrate easily with other systems in our organization?
Examples of systems that an issue tracker might integrate with include code
repositories, single sign on, e-mail systems, and so on. A broken build might
cause the build server to automatically generate a ticket in the issue tracker
and assign it to the developer that broke the build, for example.
Since we are primarily concerned with development workflows here, the
main integration we need is with the code repository system. Most of the
issue trackers we explore here have some form of integration with a code
repository system.

• Is the tracker extendable?
It is often useful for an issue tracker to have some form of API as an
extension point. APIs can be used to integrate to other systems and also
customize the tracker so that it fits our organization's processes.
Perhaps you need an HTML-formatted display of currently open issues
to show on a publicly viewable monitor. This can be accomplished with
a good API. Perhaps you want the issue tracker to trigger deploys in your
deployment system. This can also be accomplished with a good issue
tracker API.
A good API opens up many possibilities that would otherwise be closed
for us.

Issue Tracking

[168]

• Does the tracker offer multi-project support?
If you have many teams and projects, it might be useful to have separate
issue trackers for each project. Thus, a useful feature of an issue tracker is
to be able to partition itself into several subprojects, each having an isolated
issue tracker inside the system.
As usual, trade-offs are involved. If you have many separate issue trackers,
how do you move an issue from one tracker to another? This is needed
when you have several teams working on different sets of tasks; for
instance, development teams and quality assurance teams. From a DevOps
perspective, it is not good if the tools pull the teams further apart rather than
bringing them closer together.
So, while it is good for each team to have its own issue tracker within the
main system, there should also be good support for handling all the tasks
of several teams together as a whole.

• Does the issue tracker support multiple clients?

While not usually a feature deemed as a critical acceptance requirement for
choosing an issue tracker, it can be convenient to access the issue tracker via
multiple clients and interfaces. It is very convenient for developers to be able
to access the issue tracker while working inside their integrated development
environment, for instance.
Some organizations that work with free software prefer a completely e-mail
based workflow, such as Debian's debugs. Such requirements are rare in an
enterprise setting, though.

Problems with issue tracker proliferation
As it is technically very easy to set up an issue tracker these days, it often happens
that teams set up their own issue trackers to handle their own issues and tasks.
It happens for many other types of tools such as editors, but editors are among
the personal tools of a developer, and their primary use case isn't the sharing of
collaboration surfaces with other people. Issue tracker proliferation is therefore a
problem, while editor proliferation isn't.

Chapter 9

[169]

A contributing cause of the issue tracker proliferation problem is that a large
organization might standardize a type of tracker that few actually like to use.
A typical reason is that only the needs of one type of team, such as the quality
assurance team or the operations team, is being considered while deciding on an
issue tracker. Another reason is that only a limited amount of licenses were bought
for the issue tracker, and the rest of the team will have to make do on their own.

It is also quite common that the developers use one kind of tracker, the quality
assurance team another, and the operations team yet another completely different
and incompatible system.

So, while it is suboptimal for the organization as a whole to have many different
issue tracker systems that do the same thing, it might be perceived as a win for a
team that gets to choose its own tools in this area.

Again, one of the central ideas in DevOps is to bring different teams and roles closer
together. Proliferation of mutually incompatible collaboration tools is not helpful
in this regard. This mostly happens in large organizations, and there is usually no
simple solution to the problem.

If you use a free software tracker, you at least get rid of the limited license problem.
Finding a system that pleases everyone in every regard is, of course, much harder. It
might help to limit the scope of selection criteria so that rather than the management,
the issue tracker tool pleases the people who will actually be using it all day long.
This usually also means putting less focus on reporting spiffy burn down charts
and more on actually getting things done.

All the trackers
Next, we will explore a selection of different issue tracker systems. They are all
easy to try out before you commit to an actual deployment. Most are free, but
some proprietary alternatives are also mentioned.

All the trackers mentioned here are present on the comparison page on Wikipedia at
https://en.wikipedia.org/wiki/Comparison_of_issue-tracking_systems.

https://en.wikipedia.org/wiki/Comparison_of_issue-tracking_systems

Issue Tracking

[170]

Since we can only explore a selection of issue trackers, the following were
chosen because they exhibit differences due to different design choices. Bugzilla
was designed for large-scale public-facing trackers. Trac was designed for simplicity
and tool integration. Redmine as a fully featured project management tool with an
issue tracker. The GitLab tracker was chosen for simplicity, and Git integration and
Jira for usability.

We begin our issue tracker exploration with Bugzilla, since it is one of the earliest
issue trackers and is still popular. This means that its flows are pretty mature since
they have proven themselves over a long period of time.

Bugzilla
Bugzilla can be said to be the grandfather of all the issue tracker systems described in
this chapter. Bugzilla has been around since 1998 and is in use by many high-profile
organizations, such as Red Hat, the Linux kernel project, and the Mozilla project.
If you have ever reported a bug for one of these products, you have likely already
encountered Bugzilla.

Bugzilla is free software maintained by the Mozilla project, which also produces the
well-known Firefox browser. Bugzilla is written in Perl.

Bugzilla focuses, unsurprisingly, on tracking bugs rather than handling other
issue types. Handling other types of tasks, such as providing a wiki, needs to
be done separately.

Many organizations use Bugzilla as a public-facing tool where issues can be
reported. As a result, Bugzilla has good security features.

There is a demonstration installation where one can test the latest features of the
development version of Bugzilla at https://landfill.bugzilla.org/bugzilla-
tip/.

Bugzilla supports customizations. It is possible to add custom fields to issues and
customize the workflow.

Bugzilla has both the XML-RPC and JSON REST APIs.

Since Bugzilla has been around for a long time, there are many extensions and
plugins available, including alternative clients.

https://landfill.bugzilla.org/bugzilla-tip/
https://landfill.bugzilla.org/bugzilla-tip/

Chapter 9

[171]

The following figure shows the Bugzilla bug state machine, or workflow:

Bug is filed by a non-empowered
user in a product where the
UNCONFIRMED state is enabled

Bug determined
to be present

Developer is working
on the bug

UNCONFIRMED

CONFIRMED

IN_PROGRESS

RESOLVED

VERIFIED

Developer stops
work on bug

Fix checked in

QA not satisfied
with the solution

Fix turns out to be wrong

QA verifies that
the solution works

Bug is reopened,
was never confirmed

Bug is not fixable
(For example,
because it is invalid)

Possible resolution
FIXED
DUPLICATE
WONTFIX
WORKSFORME
INVALID

This workflow is configurable, but the default states are as follows:

• Unconfirmed: A new bug by a non-powered user begins in the
unconfirmed state

• Confirmed: If the bug is confirmed to be worthy of investigation, it is put in
the confirmed state

• In progress: When a developer starts working on resolving the bug, the in
progress state is used

• Resolved: When developers believe that they have finished fixing the bug,
they put it in the resolved state

• Verified: When the quality assurance team agrees that the bug is fixed, it is
put in the verified state

Issue Tracking

[172]

Let's try out Bugzilla now.

There are several Docker hub images available for Bugzilla, and it is most likely also
available in the repositories of your Linux distribution.

This starts Bugzilla in a separate container, complete with a suitable MySQL
configuration. The port is arbitrarily chosen:

docker run -p 6050:80 dklawren/docker-bugzilla

Try accessing the interface now, at http://localhost:6050.

You will be greeted by this view:

Chapter 9

[173]

Bugzilla requires you to have an account in order to submit bugs. You can either use
the administrator account or make a new one.

You can log in using the administrator username admin@bugzilla.org, and the
password is initially password. Now see the following steps to create and resolve
a bug:

1. Choose Open a New Account. This will prompt you for your e-mail address.
A confirmation mail with a link will be sent to the address. Ensure the port
number is correct in the link; otherwise, create it. Your account should be
created now.

2. Try creating a new bug with the File a Bug option. Bugzilla needs you to
provide the product and component for the bug. There is a TestProduct and
TestComponent option available; we can use them to report our bug:

Issue Tracking

[174]

3. Now that the bug is open, we can comment on it. Every time we comment on
a bug, we can also move it to a new state, depending on our access level. Try
adding some comments as shown in the following screenshot:

Chapter 9

[175]

4. Try searching for the bug. There is a simple search page and an advanced
one. The advanced page is depicted in the following screenshot. It lets you
search for most field combinations:

5. Eventually, when you are done, mark the bug as resolved.

Issue Tracking

[176]

As you can see, Bugzilla has all the features that can be expected from an issue
tracker. It is geared towards a workflow that is optimized for working on a large
number of bugs in a number of products and components. It is fairly easy to
get started with Bugzilla if you are content with how it works out of the box.
Customization requires some additional effort.

Trac
Trac is an issue tracker that is fairly easy to set up and test. The main attraction of
Trac is that it is small and integrates a number of systems together in one concise
model. Trac was one of the earliest issue trackers that showed that an issue tracker,
a wiki, and a repository viewer could be beneficially integrated together.

Trac is written in Python and published under a free software license by Edgewall.
It was originally licensed under the GPL, but since 2005, it has been licensed under
a BSD-style license.

Trac is highly configurable through the use of a plugin architecture. There are many
plugins available, a number of which are listed on https://trac-hacks.org.

Trac develops at a conservative pace, which many users are quite happy with.
Trac also has an XML-RPC API, which can be used to read and modify issues.

Trac traditionally used to integrate only with Subversion, but now features
Git support.

Trac also has an integrated wiki feature, which makes it a fairly complete system.

There are several Docker hub Trac images available, and Trac is also usually
available in the repositories of Linux distributions.

There is a Dockerfile for Trac available in this book's code bundle, which we can also
use. Take a look at the following command:

docker run -d -p 6051:8080 barogi/trac:1.0.2

This will make a Trac instance available on port 6051. Let's try it out:

• Accessing http://localhost:6051/ shows a list of available projects.
At the outset, only the default project is available.

https://trac-hacks.org

Chapter 9

[177]

• The menu row at the right shows the basic features available by default,
as can be seen in this screenshot:

Issue Tracking

[178]

• Wiki is a traditional wiki, where you can write documents useful for
development, for instance.

• Timeline will show events that have occurred in Trac:

Chapter 9

[179]

• Roadmap will show tickets organized into milestones:

Issue Tracking

[180]

• View Tickets, as the name implies, shows tickets. There are several possible
reports, and you can create new ones. This is a very useful feature that lets
different teams and roles see the information that is relevant to them:

Chapter 9

[181]

Now, try logging in with both the username and password as admin.

You now get a new menu bar entry called New Ticket. Try creating a ticket. As you
type, a live preview will be updated in the lower part of the window:

Issue Tracking

[182]

The ticket is now in the "new" state. We can change the state with the Modify button.
Try resolving the ticket and commenting on it. The next state will be "closed".

Since one of the main selling points of Trac is the tight integration of a Wiki, issue
tracker, and repository, let's try the integration out. Edit the main Wiki page. Trac
uses a simple wiki syntax. Create a new heading, using an equals sign to mark it as
shown in the following screenshot:

Chapter 9

[183]

When we submit the changes, the issue identifier becomes clickable, and we can
visit the issue.

If you mention a bug in the commit message of a code change, Trac will make it
clickable as well in its changeset browser. This is a simple and convenient feature
inspired by wikis.

The Admin interface allows customization of the Trac instance. You can manage
many of the entities in Trac directly in the interface, but it's not possible to manage
every aspect of Trac from here. You need to configure some of the following aspects
in the filesystem:

• Users
• Components
• Milestones
• Priorities
• Resolutions
• Severity
• Ticket types

Trac has a configurable state machine. By default, new installations get a state
machine only slightly more complex than the minimal open/closed state machine.
The state machine is as follows:

• New
• Assigned
• Accepted

Issue Tracking

[184]

• Closed
• Reopened

ac
ce

pt

accept
accept

accept

leave

resolve

resolve

re
so

lve

resolve

reassign

reassign

reopen

new

closed

assigned reopened

accepted

reassign

rea
ss

ign *

The Trac distribution comes with a set of example workflow configurations in the
form of .ini files that describe workflow states and transitions. It's not possible to
edit the workflow in the GUI at present.

This concludes our look at the Trac issue tracker. It is attractive, if you like the
simplicity and tool integration.

Redmine
Redmine is a popular issue tracker written in Ruby on Rails. Its design shares many
similarities with Trac.

Redmine has two forks as well: ChiliProject and OpenProject. While ChiliProject's
development has stalled, OpenProject continues to be developed.

Redmine is free software. It is similar to Trac in the sense that it integrates several
tools together into a coherent whole. It is also web based, like the other issue trackers
we explore here.

Redmine has a number of additional features when compared with the out-of-the-
box experience of Trac. Some of them are as follows:

• Multiple projects can be managed from within the web interface
• Gantt charts and calendars can be used

Chapter 9

[185]

There is a Dockerfile for Redmine available in this book's code bundle, and there
is also an official Redmine image available at the Docker hub. Take a look at
this command:

docker run -d -p 6052:3000 redmine

This will start a Redmine instance available on the host port 6052. This instance will
use a SQLite database, so it will not scale to production usage. You can configure the
Redmine container to use a Postgres or MariaDB container as a database if and when
you decide to do a production installation.

You can log in with the default username and password, both admin.

You need to initialize the database manually before proceeding. Use the
Administration link at the top of the page. Follow the instructions on the page:

Issue Tracking

[186]

You can create a new project from within the user interface. If you don't follow the
previous database initialization step first, the new project will not have the necessary
configuration, and you won't be able to create issues. Redmine's New project view is
included in the screenshot below:

Chapter 9

[187]

Now that we have created a project, we can now create an issue. With Redmine,
you choose a class for your issue: by default, Bug, Feature, and Support. Let's make
a new feature issue:

Issue Tracking

[188]

There is also a Gantt view and a Calendar view, among many other features.

Here is the Gantt view:

Chapter 9

[189]

And here is the Calendar view:

Issue Tracking

[190]

A Redmine issue has the following default state machine:

• New
• In Progress
• Resolved
• Feedback
• Closed
• Rejected

In conclusion, Redmine is a nice tracker that has many nice features and builds on
the experience from Trac.

The GitLab issue tracker
GitLab's issue tracker is, as one might expect, very well integrated with the Git
repository management system. GitLab's issue tracker is nice looking but is not, at
the time of writing, very flexible. It might be deemed good enough for teams that
prefer simplicity in their tools.

GitLab has a quick development pace, so the feature set might be expected to
change. The GitLab issue tracker tracks issues per repository, so if you have many
repositories, it might be difficult to get an overview of all the issues at the same time.

The suggested solution for this concern is creating a separate project where issues
concerning several repositories are gathered.

While the GitLab issue tracker lacks many of the features seen in competing systems,
it does have a nice, flexible API, and there is a command-line client for the API, so
you can try it out from the convenience of your shell.

Testing the GitLab API is quite easy:

First, install the GitLab CLI

Then, set the following two environment variables that describe the endpoint of the
GitLab API and the authorization token:

• GITLAB_API_PRIVATE_TOKEN = <token from your project>
• GITLAB_API_ENDPOINT = http://gitlab.matangle.com:50003/api/v3

Chapter 9

[191]

Now you can list issues and so on. There is an inbuilt help system:

 gitlab help Issues

+--------------+

| Issues |

+--------------+

| close_issue |

+--------------+

| create_issue |

+--------------+

| edit_issue |

+--------------+

| issue |

+--------------+

| issues |

+--------------+

| reopen_issue |

+--------------+

GitLab issues only have two conventional states: open and closed. This is pretty
spartan, but the idea is to instead use other types of metadata, such as labels, to
describe issues. A GitLab issue tracker label is made up of text and a background
color that can be associated with an issue. More than one label can be associated.

There is also the possibility of embedding a to-do list in the Markdown format in the
issue description. While labels and to-do lists can together be used to create flexible
views, this does not really allow for the traditional use case of issue tracker state
machines. You have to remember what you need to do yourself: the GitLab issue
tracker does not help you remember process flows. Small teams might find the lack
of ceremony in the GitLab tracker refreshing, and it's certainly easy to set up once
you have already set up GitLab—you get it installed already.

Issue Tracking

[192]

The user interface is quite intuitive. Here is the Create Issue view:

Chapter 9

[193]

Here are some of the features of the interface:

• Assign to: People who can be assigned as members of the project.
• Labels: You can have a default set of labels, create your own, or mix.

Here are the default labels:

 ° Bug
 ° Confirmed
 ° Critical
 ° Discussion
 ° Documentation
 ° Enhancement
 ° Suggestion
 ° Support

Here are some of the attributes that can be used for an issue:

• Milestones: You can group issues together in milestones. The milestones
describe when issues are to be closed in a timeline fashion.

• GitLab Flavored Markdown support: GitLab supports Markdown and some
extra markup that makes linking together different entities in GitLab easier.

• Attach files

After the complexity of the Bugzilla, Trac, and Redmine interfaces, the no-nonsense
approach of the GitLab issue tracker can feel quite refreshing!

Issue Tracking

[194]

Jira
Jira is a flexible bug tracker by Atlassian, written in Java. It is the only proprietary
issue tracker reviewed here.

While I prefers FLOSS (Free/Libre/Open Source Software), Jira is very adaptable
and free of charge for small teams of up to 15 people. Unlike Trac and GitLab, the
different modules such as the wiki and repository viewer are separate products. If
you need a Wiki, you deploy one separately, and Atlassian's own Confluence Wiki
is the one that integrates with the least amount of friction. Atlassian also provides a
code browser called Fisheye for code repository integration and browsing.

For small teams, Jira licensing is cheap, but it quickly becomes more expensive.

By default, Jira's workflow is much like the Bugzilla workflow:

• Open
• In Progress
• Resolved
• Closed
• Reopened

There are several Docker Hub images available; one is cptactionhank/atlassian-
jira—but please remember, Jira is not free software.

Let's try Jira now:

docker run -p 6053:8080 cptactionhank/atlassian-jira:latest

You can access the interface on port 6053. Jira is somewhat more convoluted to
try out, because you need to create an Atlassian account before starting. Log in with
your account when you are done.

Jira starts out with a simple tutorial, where you create a project and an issue in the
project. If you follow along, the resulting view will look like this:

Chapter 9

[195]

Jira has many features, many of them available through plugins available in an
inbuilt app store. If you can live with Jira not being free software, it is probably the
issue tracker with the glossiest look of those reviewed here. It is also fairly complex
to configure and administer.

Issue Tracking

[196]

Summary
In this chapter, we looked at various systems that can implement issue tracking
workflow support in our organization. As usual, there are many solutions to choose
from, especially in this area, where the tools are of the type that are used every day.

The next chapter will deal with something slightly more esoteric: DevOps and the
Internet of Things.

[197]

The Internet of Things
and DevOps

In the previous chapter, we explored some of the many different tool options,
such as issue trackers, available to us to help us manage workflows.

This chapter will be forward looking: how can DevOps assist us in the emerging
field of the Internet of Things?

The Internet of Things, or IoT for short, presents challenges for DevOps. We will
explore what these challenges are.

Since IoT is not a clearly defined term, we will begin with some background.

Introducing the IoT and DevOps
The phrase Internet of Things was coined in the late 1990s, allegedly by the British
entrepreneur Kevin Ashton, while he was working with RFID technology. Kevin
became interested in using RFID to manage supply chains while working at Proctor
and Gamble.

RFID, or Radio Frequency ID, is the technology behind the little tags you wear on
your key chain and use to open doors, for instance. RFID tags are an example of
interesting things that can, indirectly in this case, be connected to the Internet. RFID
tags are not limited to opening doors, of course, and the form factor does not have to
be limited to a tag on a key chain.

The Internet of Things and DevOps

[198]

An RFID tag contains a small chip, about 2 millimeters squared, and a coil. When
placed near a reader, the coil is charged with electricity by induction, and the chip
is given power long enough for it to transmit a unique identifier to the reader's
hardware. The reader, in turn, sends the tag's identification string to a server that
decides, for example, whether it is going to open the lock associated with the reader
or not. The server is likely connected to the Internet so that the identifiers associated
with the RFID tags can be added or deleted remotely depending on changing
circumstances regarding who has access to the locked door. Several different
systems work in symbiosis to achieve the desired outcome.

Other interesting IoT technologies include passive QR codes that can be scanned
by a camera and provide information to a system. The newer Bluetooth low energy
technology provides intelligent active sensors. Such sensors can operate up to a year
on a lithium cell.

Below, two RFID tags for operating locks are depicted:

Chapter 10

[199]

The term "Internet of Things" is pretty vague. When is it a "thing" and when is it a
computer? Or is it a little bit of both?

Let's take a small computer, such as the Raspberry Pi; it is a System on a
Chip (SoC), mounted on a board the size of a credit card. It's small, but is still
a full computer and powerful enough to run Java application servers, web servers,
and Puppet agents.

Compared to traditional computers, IoT devices are constrained in various ways.
Often, they are embedded devices that are placed in difficult-to-access, constrained
locations. This, then, would seem to be the defining characteristic of the IoT from
a DevOps point of view: the devices might be constrained in different regards.
We cannot use every technique that we use on servers or desktop machines. The
constraints could be limited memory, processing power, or access, to name a few.

Here are some example types of IoT devices, which you have probably either
encountered already or soon will:

• Smartwatches: Today, a smartwatch can have a Bluetooth and Wi-Fi
connection and automatically detect available upgrades. It can download
new firmware and upgrade itself on user interaction. There are many
smartwatches available today, from the robust Pebble to Android Wear
and Apple Watch. There already are smartwatches with mobile network
connections as well, and eventually, they will become commonplace.

• Keyboards: A keyboard can have upgradeable firmware. A keyboard is
actually a good example of an IoT device, in a sense. It provides many sensors.
It can run software that provides sensor readouts to more powerful machines
that in the end are Internet-connected. There are fully programmable
keyboards with open firmware, such as the Ergodox, which interfaces an
Arduino-style board to a keyboard matrix (http://ergodox.org/).

• Home automation systems: These are Internet-connected and can be
controlled with smartphones or desktop computers. The Telldus TellStick is
an example of such a device that lets you control remote power relays via an
Internet-connected device. There are many other similar systems.

• Wireless surveillance cameras: These can be monitored with a smartphone
interface. There are many providers for different market segments, such as
Axis Communications.

http://ergodox.org/

The Internet of Things and DevOps

[200]

• Biometric sensors: Such sensors include fitness sensors, for example, pulse
meters, body scales, and accelerometers placed on the body. The Withings
body scale measures biometrics and uploads it to a server and allows you to
read statistics through a website. There are accelerometers in smartwatches
and phones as well that keep track of your movements.

• Bluetooth-based key finders: You can activate these from your smartphone
if you lose your keys.

• Car computers: These do everything from handling media and navigation to
management of physical control systems in the car, such as locks, windows,
and doors.

• Audio and video systems: These include entertainment systems, such as
networked audio players, and video streaming hardware, such as Google
Chromecast and Apple TV.

• Smartphones: The ubiquitous smartphones are really small computers with
3G or 4G modems and Wi-Fi that connects them to the wider Internet.

• Wi-Fi capable computers embedded in memory cards: These make it
possible to convert an existing DSLR camera into a Wi-Fi capable camera
that can automatically upload images to a server.

• Network routers in homes or offices: These are in fact, small servers that
often can be upgraded remotely from the ISP side.

• Networked printers: These are pretty intelligent these days and can interact
with cloud services for easier printing from many different devices.

The list can, of course, go on, and all of these devices are readily available and used
in many households today.

It is interesting to note that many of the devices mentioned are very similar from a
technical viewpoint, even if they are used for completely different purposes. Most
smartphones use variants of the ARM CPU architecture, which can be licensed across
manufacturers together with a few variants of peripheral chips. MIPS processors
are popular among router hardware vendors and Atmel RISC processors among
embedded hardware implementers, for example.

The basic ARM chips are available to developers and hobbyists alike for easy
prototyping. The Raspberry Pi is ARM-based and can be used as a prototyping
device for professional use. Arduino similarly makes Atmel-architecture devices
available for easy prototyping of hardware.

Chapter 10

[201]

This makes a perfect storm of IoT innovation possible:

• The devices are cheap and easy to acquire even in small runs.
• The devices are simple to develop for and get prototyping platforms
• The development environments are similar, which makes them easier to

learn. A lot of the time, the GNU Compiler Collection, or GCC, is used.
• There is a lot of support available in forums, mailing lists, documentation,

and so on.

For powerful devices such as the Raspberry Pi, we can use the same methods and
practices that we use for servers. Pi devices can be servers, just less powerful than a
traditional server. For IoT devices, agentless deployment systems are a better fit than
systems that require an agent.

Tinier devices, such as the Atmel embedded CPUs used in Arduinos, are more
constrained. Typically, you compile new firmware and deploy them to the device
during reboot, when special bootstrap loader code runs. The device then connects to
the host via USB.

During development, one can automate the upload of firmware by connecting a
separate device that resets the original device and puts it into loader mode. This
might work during development, but it's not cost-effective in a real deployment
scenario since it affects costs. These are the types of problems that might affect
DevOps when working with the IoT. In the development environment, we might
be able to use, more or less, the methods that we are used to from developing
server applications, perhaps with some extra hardware. From a quality assurance
perspective, though, there is a risk involved in deploying on hardware that is
different to that used in testing.

The future of the IoT according to the
market
According to the research group Gartner, there will be approximately 6.4 billion
things connected to the Internet at the end of 2016: a 30 percent increase since 2015.
Further away, at the end of the year 2020, there will be an estimated 21 billion
Internet-connected devices. The consumer market will be responsible for the
greatest number of devices, and enterprises for the greatest spending.

The Internet of Things and DevOps

[202]

The next generation of wireless networks, which are tentatively called 5G mobile
networks, is expected to reach the market in 2020, which isn't too far away at the
time of writing. The upcoming mobile networks will have capabilities suitable for
IoT devices and even be way ahead of today's 4G networks.

Some of the projected abilities of the new mobile network standards include:

• The ability to connect many more devices than what is possible with today's
networks. This will enable the deployment of massive sensor networks with
hundreds of thousands of sensors.

• Data rates of several tens of megabits per second for tens of thousand of
users. In an office environment, every node will be offered a capacity of one
gigabit per second.

• Very low latencies, enabling real-time interactive applications.

Regardless of how the 5G initiatives turn out in practice, it is safe to assume that
mobile networks will evolve quickly, and many more devices will be connected
directly to the Internet.

Let's look at what some industry giants have to say:

• We begin with Ericsson, a leading Swedish provider of mobile network
hardware. The following is a quote from Ericsson's IoT website:

"Ericsson and the Internet of Things

More than 40 percent of global mobile traffic runs on Ericsson
networks. We are one of the industry's most innovative companies
with over 35,000 granted patents, and we are driving the evolution
of the IoT by lowering thresholds for businesses to create new
solutions powered by modern communications technology; by
breaking barriers between industries; and by connecting
companies, people and society. Going forward, we see two
major opportunity areas:

Transforming industries: The IoT is becoming a key factor in one
sector after another, enabling new types of services and applications,
altering business models and creating new marketplaces.

Evolving operator roles: In the new IoT paradigm, we see three
different viable roles that operators can take. An operator's choice
on which roles to pursue will depend on factors like history,
ambition, market preconditions and their future outlook."

Chapter 10

[203]

Ericsson also contributed to a nice visual dictionary of IoT concepts, which
they refer to as the "comic book":
http://www.alexandra.dk/uk/services/Publications/Documents/
IoT_Comic_Book.pdf

• The networking giant Cisco estimates that the Internet of Things will consist
of 50 billion devices connected to the Internet by 2020.
Cisco prefer to use the term "Internet of Everything" rather than Internet of
Things. The company envisions many interesting applications not previously
mentioned here. Some of these are:

 ° Smart trash bins, where embedded sensors allow the remote sensing
of how full a bin is. The logistics of waste management can then
be improved.

 ° Parking meters that change rates based on the demand.
 ° Clothes that notify the user if he or she gets sick.

All of these systems can be connected and managed together.

• IBM estimate, somewhat more conservatively perhaps, 26 billion devices
connected to the Internet by 2020. They provide some examples of
applications that are already deployed or in the works:

 ° Improved logistics at car manufacturers' using wide sensor
net deployments

 ° Smarter logistics in health care situations in hospitals
 ° Again, smarter logistics and more accurate predictions regarding

train travel

Different market players have slightly different predictions for the coming years.
At any rate, it seems clear that the Internet of Things will grow nearly exponentially
in the coming years. Many new and exciting applications and opportunities will
present themselves. It's clear that many fields will be affected by this growth,
including, naturally, the field of DevOps.

Machine-to-machine communication
Many of the IoT devices will primarily connect to other machines. As a scale
comparison, let's assume every human has a smartphone. That's about 5 billion
devices. The IoT will eventually contain at least 10 times more devices—50 billion
devices. When this will happen differs a bit among the predictions, but we will get
there in the end.

http://www.alexandra.dk/uk/services/Publications/Documents/IoT_Comic_Book.pdf
http://www.alexandra.dk/uk/services/Publications/Documents/IoT_Comic_Book.pdf

The Internet of Things and DevOps

[204]

One of the driving forces of this growth is machine-to-machine communication.

Factories are already moving to a greater degree of automation, and this tendency
will only grow as more and more options become available. Logistics inside factories
can increase greatly with wide sensor net deployments and big data analytics for
continuously improving processes.

Modern cars use processors for nearly every possible function, from lights and
dashboard functions to window lifts. The next step will be connecting cars to the
Internet and, eventually, self-driving cars that will communicate all sensor data to
centralized coordinating servers.

Many forms of travel can benefit from the IoT.

IoT deployment affects software
architecture
An IoT network consists of many devices, which might not be at the same firmware
revision. Upgrades might be spread out in time because the hardware might
not be physically available and so on. This makes compatibility at the interface
level important. Since small networked sensors might be memory and processor
constrained, versioned binary protocols or simple REST protocols may be preferred.
Versioned protocols are also useful in order to allow things with different hardware
revisions to communicate at different versioned end points.

Massive sensor deployments can benefit from less talkative protocols and layered
message queuing architectures to handle events asynchronously.

IoT deployment security
Security is a difficult subject, and having lots of devices that are Internet-connected
rather that on a private network does not make the situation easier. Many consumer
hardware devices, such as routers, have interfaces that are intended to be used
for upgrades but are also easy to exploit for crackers. A legitimate service facility
thus becomes a backdoor. Increasing the available surface increases the number of
potential attack vectors.

Chapter 10

[205]

Perhaps you recognize some of these anti-patterns from development:

• A developer leaves a way in the code to enable him or her to later submit
code that will be evaluated in the server application context. The idea is that
you as a developer don't really know what kind of hot fixes will be necessary
and whether an operator will be available when the fix needs to be deployed.
So why not leave a "backdoor" in the code so that we can deploy code
directly if needed? There are many problems here, of course. The developers
don't feel that the usual agreed-upon deployment process is efficient enough,
and as an end result, crackers could probably easily figure out how to use the
backdoor as well. This anti-pattern is more common than one might think,
and the only real remedy is code review.
Leaving open doors for crackers is never good, and you can imagine the
calamity if it was possible to exploit a backdoor in a self-driving car or a heat
plant, for instance.

• Unintended exploits, such as SQL injection, mostly occur because developers
might not be aware of the problem.

The remedy is having knowledge about the issue and coding in such a way
as to avoid the problem.

Okay, but what about DevOps and the IoT
again?
Let's take a step back. So far, we have discussed the basics of the Internet of Things,
which is basically our ordinary Internet but with many more nodes than what we
might normally consider possible. We have also seen that in the next couple of years,
the number of devices with Internet capability in some form or another will keep on
growing exponentially. Much of this growth will be in the machine-to-machine parts
of the Internet.

But is DevOps, with its focus on fast deliveries, really the right fit for large networks
of critical embedded devices?

The classic counterexamples would be DevOps in a nuclear facility or in medical
equipment such as pacemakers. But just making faster releases isn't the core idea of
DevOps. It's to make faster, more correct releases by bringing people working with
different disciplines closer together.

The Internet of Things and DevOps

[206]

This means bringing production-like testing environments closer to the developers
and the people working with them closer together as well.

Described like this, it really does seem like DevOps can be of use for traditionally
conservative industries.

The challenges shouldn't be underestimated though:

• The life cycles of embedded hardware devices can be longer than those of
traditional client-server computers. Consumers can't be expected to upgrade
during every product cycle. Likewise, industrial equipment might be
deployed in places that make them expensive to change.

• There are more modes of failure for IoT devices than desktop computers.
This makes testing harder.

• In industrial and corporate sectors, traceability and auditability are
important. This is the same as for deployments on servers, for instance,
but there are many more IoT endpoints than there are servers.

• In traditional DevOps, we can work with small changesets and deploy them
to a subset of our users. If the change somehow doesn't work, we can make a
fix and redeploy. If a web page renders badly for a known subset of our users
and can be fixed quickly, there is only a small potential risk involved. On the
other hand, if even a single IoT device controlling something such as a door
or an industrial robot fails, the consequences can be devastating.

There are great challenges for DevOps in the IoT field, but the alternatives aren't
necessarily better. DevOps is also a toolbox, and you always need to think about
whether the tool you pick out of the box really is the right one for the job at hand.

We can still use many of the tools in the DevOps toolbox; we just need to make
sure we are doing the right thing and not just implementing ideas without
understanding them.

Here are some suggestions:

• Failures and fast turnarounds are okay as long as you are in your testing lab
• Make sure your testing lab is production-like
• Don't just have the latest versions in your lab; accommodate older

versions as well

Chapter 10

[207]

A hands-on lab with an IoT device for
DevOps
So far, we have mostly discussed in the abstract sense about DevOps and the IoT and
the future of the IoT.

To get a feel for what we can do in hands-on terms, let's make a simple IoT device
that connects to a Jenkins server and presents a build status display. This way, we
get to try out an IoT device and combine it with our DevOps focus!

The status display will just present a blinking LED in the event that a build fails.
The project is simple but can be expanded upon by the creative reader. The IoT
device selected for this exercise is quite versatile and can do much more than
make an LED blink!

The project will help to illustrate some of the possibilities as well as challenges of the
Internet of Things.

The NodeMCU Amica is a small programmable device based on the ESP8266 chip
from Espressif. Apart from the base ESP8266 chip, the Amica board has added
features that make development easier.

Here are some of the specifications of the design:

• There is a 32-bit RISC CPU, the Tensilica Xtensa LX106, running at 80 MHZ.
• It has a Wi-Fi chip that will allow it to connect to our network and our

Jenkins server.
• The NodeMCU Amica board has a USB socket to program the firmware

and connect a power adapter. The ESP8266 chip needs a USB-to-serial
adapter to be connected to the USB interface, and this is provided on the
NodeMCU board.

• The board has several input/output ports that can be connected to some kind
of hardware to visualize the build status. Initially, we will keep it simple and
just use the onboard LED that is connected to one of the ports on the device.

• The NodeMCU contains default firmware that allows it to be programmed
in the Lua language. Lua is a high-level language that allows for rapid
prototyping. Incidentally, it is popular in game programming, which might
offer a hint about Lua's efficiency.

The Internet of Things and DevOps

[208]

• The device is fairly cheap, considering the many features it offers:

There are many options to source the NodeMCU Amica, both from electronics
hobbyist stores and Internet resellers.

While the NodeMCU is not difficult to source, the project is fairly simple from
a hardware point of view and might also be undertaken with an Arduino or a
Raspberry Pi in practice if those devices turn out to be simpler to gain access to.

Here are some hints for getting started with the NodeMCU:

• The NodeMCU contains firmware that provides an interactive Lua
interpreter that can be accessed over a serial port. You can develop code
directly over the serial line. Install serial communication software on your
development machine. There are many options, such as Minicom for Linux
and Putty for Windows.

• Use the serial settings 9600 baud, eight bits, no parity, and one stop bit. This
is usually abbreviated to 9600 8N1.

• Now that we have a serial terminal connection, connect the NodeMCU to
a USB port, switch to the terminal, and verify that you get a prompt in the
terminal window.

Chapter 10

[209]

If you are using Minicom, the window will look like this:

Before starting with the code, depending on how your particular NodeMCU was set
up at the factory, it might be required to burn a firmware image to the device. If you
get a prompt in the previous step, you don't need to burn the firmware image. You
might then want to do it later if you require more features in your image.

To burn a new firmware image, if needed, first download it from the
firmware source repository releases link. The releases are provided at
https://github.com/nodemcu/nodemcu-firmware/releases

Here is an example wget command to download the firmware. The released
firmware versions are available in integer and float flavor depending on your needs
when it comes to mathematical functions. The integer-based firmware versions are
normally sufficient for embedded applications:

wget https://github.com/nodemcu/nodemcu-firmware/releases/
download/0.9.6-dev_20150704/nodemcu_integer_0.9.6-dev_20150704.bin

https://github.com/nodemcu/nodemcu-firmware/releases

The Internet of Things and DevOps

[210]

You can also build the firmware image directly from the sources on GitHub locally
on your development machine, or you can use an online build service that builds a
firmware for you according to your own specifications.

The online build service is at http://nodemcu-build.com/. It is worth checking out.
If nothing else, the build statistics graphs are quite intriguing.

Now that you have acquired a suitable firmware file, you need to install a firmware
burning utility so that the firmware image file can be uploaded to the NodeMCU:

git clone https://github.com/themadinventor/esptool.git

Follow the installation instructions in the repository's README file.

If you'd rather not do the system-wide installation suggested in the README, you can
install the pyserial dependency from your distribution and run the utility from the
git-clone directory.

Here's an example command to install the pyserial dependency:

sudo dnf install pyserial

The actual firmware upload command takes a while to complete, but a progress bar
is displayed so that you know what is going on.

The following command line is an example of how to upload the 0.9.6 firmware that
was current at the time of writing:

sudo python ./esptool.py --port /dev/ttyUSB0 write_flash 0x00000 nodemcu_
integer_0.9.6-dev_20150704.bin

If you get gibberish on the serial console while connecting the NodeMCU, you might
need to provide additional arguments to the firmware burn command:

sudo esptool.py --port=/dev/ttyUSB0 write_flash 0x0 nodemcu_
integer_0.9.6-dev_20150704.bin -fs 32m -fm dio -ff 40m

The esptool command also has some other functionalities that can be used to
validate the setup:

sudo ./esptool.py read_mac

Connecting...

MAC: 18:fe:34:00:d7:21

http://nodemcu-build.com/

Chapter 10

[211]

sudo ./esptool.py flash_id

Connecting...

Manufacturer: e0

Device: 4016

After uploading the firmware, reset the NodeMCU.

At this point, you should have a serial terminal with the NodeMCU greeting prompt.
You achieve this state either using the factory-provided NodeMCU firmware or
uploading a new firmware version to the device.

Now, let's try some "hello world" style exercises to begin with.

Initially, we will just blink the LED that is connected to the GPIO pin 0 of the
NodeMCU Amica board. If you have another type of board, you need to figure out
whether it has an LED and to which input/output pin it is connected in case it does.
You can, of course, also wire an LED yourself.

Note that some variants of the board have the LED wired to the
GPIO pin 3 rather than pin 0 as is assumed here.

You can either upload the program as a file to your NodeMCU if your terminal
software allows it, or you can type in the code directly into the terminal.

The documentation for the NodeMCU library is available at
http://www.nodemcu.com/docs/ and provides many
examples of usage of the functions.

You can first try to light the LED:

gpio.write(0, gpio.LOW) -- turn led on

Then, turn off the LED using the following:

gpio.write(0, gpio.HIGH) -- turn led off

Now, you can loop the statements with some delays interspersed:

while 1 do -- loop forever
 gpio.write(0, gpio.HIGH) -- turn led off
 tmr.delay(1000000) -- wait one second
 gpio.write(0, gpio.LOW) -- turn led on
 tmr.delay(1000000) -- wait one second
end

http://www.nodemcu.com/docs/

The Internet of Things and DevOps

[212]

At this point, you should be able to verify a basic working setup. Typing code
directly into a terminal is somewhat primitive though.

There are many different development environments for the NodeMCU that
improve the development experience.

I have a penchant for the Emacs editor and have used the
NodeMCU Emacs mode. This mode, NodeMCU-mode, can
be downloaded from GitHub. Emacs has an inbuilt facility to
make serial connections. The reader should, of course, use the
environment he or she feels most comfortable with.

We need some additional hints before being able to complete the lab.

To connect to a wireless network, use the following:

wifi.setmode(wifi.STATION)
wifi.sta.config("SSID","password")

SSID and password need to be replaced with the appropriate strings for
your network.

If the NodeMCU connects properly to your wireless network, this command will
print the IP address it acquired from the network's dhcpd server:

print(wifi.sta.getip())

This snippet will connect to the HTTP server at www.nodemcu.com and print a
return code:

conn=net.createConnection(net.TCP, false)
conn:on("receive", function(conn, pl) print(pl) end)
conn:connect(80,"121.41.33.127")
conn:send("GET / HTTP/1.1\r\nHost: www.nodemcu.com\r\n"
 .."Connection: keep-alive\r\nAccept: */*\r\n\r\n")

You might also need a timer function. This example prints hello world every
1000 ms:

tmr.alarm(1, 1000, 1, function()
 print("hello world")
end)

www.nodemcu.com

Chapter 10

[213]

Here, Lua's functional paradigm shows through since we are declaring an
anonymous function and send it as an argument to the timer function. The
anonymous function will be called every 1000 milliseconds, which is every second.

To stop the timer, you can type:

tmr.stop(1)

Now, you should have all the bits and pieces to complete the labs on your own.
If you get stuck, you can refer to the code in the book's source code bundle.
Happy hacking!

Summary
In this final chapter, we learned about the emerging field of the Internet of Things
and how it affects DevOps. Apart from an overview of the IoT, we also made a
hardware device that connects to a build server and presents a build status.

The idea of going from the abstract to the concrete with practical examples and then
back again to the abstract has been a running theme in this book.

In Chapter 1, Introduction to DevOps and Continuous Delivery, we learned about the
background of DevOps and its origin in the world of Agile development.

In Chapter 2, A View from Orbit, we studied different aspects of a Continuous
Delivery pipeline.

Chapter 3, How DevOps Affects Architecture, delved into the field of software
architecture and how the ideas of DevOps might affect it.

In Chapter 4, Everything is Code, we explored how a development organization can
choose to handle its vital asset—source code.

Chapter 5, Building the Code, introduced the concept of build systems, such as Make
and Jenkins. We explored their role in a Continuous Delivery pipeline.

After we have built the code, we need to test it. This is essential for executing
effective, trouble-free releases. We had a look at some of the testing options
available in Chapter 6, Testing the Code.

The Internet of Things and DevOps

[214]

In Chapter 7, Deploying the Code, we explored the many options available to finally
deploy our built and tested code to servers.

When we have our code running, we need to keep it running. Chapter 8, Monitoring
the Code, examined the ways in which we can ensure our code is running happily.

Chapter 9, Issue Tracking, dealt with some of the many different issue trackers
available that can help us deal with the complexities of keeping track of
development flows.

This is the last chapter in this book, and it has been a long journey!

I hope you enjoyed the trip as much as I have, and I wish you success in your further
explorations in the vast field of DevOps!

[215]

Module 2

DevOps Automation Cookbook

Over 120 recipes covering key automation techniques through code management
and virtualization offered by modern Infrastructure-as-a-Service solutions

217

1
Basic Command Line

Tools

In this chapter, we will cover the following:

 f Controlling network interfaces

 f Monitoring network details with the IP command

 f Monitoring connections using the ss command

 f Gathering basic OS statistics

 f Viewing historical resource usage with SAR

 f Installing and configuring a Git client

 f Creating an SSH key for Git

 f Using ssh-copy-id to copy keys

 f Creating a new Git repository

 f Cloning an existing Git repository

 f Checking changes into a Git repository

 f Pushing changes to a Git remote

 f Creating a Git branch

Basic Command Line Tools

218

Introduction
Every Linux System Administrator should have a solid grasp of command-line tools, from
the very basics of navigating the file system to the ability to run diagnostic tools to examine
potential issues. The command line offers unparalleled power and flexibility along with the
ability to chain together commands to form powerful one-line scripts. Although it's quicker to
pick up and use the GUI tools as compared to their command line equivalents, few offer the
combination of concision and power that a well used combination of command-line tools
can bring.

For system administrators who utilize DevOps techniques, the command line offers the first
step on the road to automation and offers powerful abilities that can be leveraged with full
stack automation. Ansible, Puppet, and Chef are powerful tools, but sometimes it is easier to
write a small bash script to undertake a task rather than writing a custom function within a
configuration management tool. Despite automation, the command line will be a place where
you will spend the majority of your time, and remember that no matter how attractive a point
and click tool is, it's highly unlikely that you can automate it.

Most operating systems have a command line, even if they are traditionally
seen as the domain of the GUI. For instance, Windows users have the
option of using the excellent PowersShell tool to both administer and control
Windows servers.

In this chapter, we are going to cover some useful recipes that can help DevOps engineers in
their day-to-day lives. These commands will cover a wide variety of topics, covering elements
such as basic networking commands, performance metrics, and perhaps the most important
of all, the basics of using the Git Distributed Version Control Software (DVCS). Depending
on where you approach the DevOps role from, you may find that some of this chapter touches
topics that you have already covered in depth or instance, seasoned Systems Administrators
will find the items on the Net tools and system performance are familiar ground; however,
these can be valuable introductions for a developer. Likewise, developers will probably find
the section on Git to be nothing new, while, many Systems administrators may not be used to
version control systems and will benefit hugely from the items in this section.

Controlling network interfaces
Networking is one of the core elements of server management, and can be one of the more
complex to manage. This recipe will show you how to use the IP tool to discover the details of,
and make changes to, the networking setup of your server.

Chapter 1

219

Although these are ephemeral changes, the ability to apply them at the command line is very
powerful; for instance, it allows you to script the addition and removal of IP addresses. When
looking at command-line tools, it's a good idea to think of not only how they can help you now,
but also how they could be used for automation in future.

Getting ready
The IP tools come preinstalled on the major Linux distributions (RHEL and Debian based),
so additional configuration is no longer required.

How to do it…
Let's configure the network interface as follows:

1. Sometimes you just want to know the IP address of the server you are working on;
this can be found using the following command:
$ ip addr show

This should give you an output similar to to the following screenshot:

This output gives you the details of each interface, including the IP address, state,
MAC address, and interface options.

2. To narrow this down to a single interface, you can use the following command:
$ ip addr show <interface>

Where <interface> is the name of the network interface you wish to see the
details for. So, for example, to see the details of eth0 you can use the following
command:

$ ip addr show eth0

Basic Command Line Tools

220

3. To add a new IP4 address, you can use the ip addr add command. Note that you
also need to supply a netmask in Classless Inter-Domain Routing (CIDR) format.
The command looks like this:
$ ip addr add <IP address>/<CIDR> dev <device>

For example, to add a new RFC1918-compliant address to the interface named eth1,
you will use the following command:

$ ip addr add 10.132.1.1/24 dev eth1

4. You can confirm that the new address is available on the interface using the ip
addr show command:
$ ip addr show eth1

5. Removing an IP address is a straightforward reversal of adding it. The command is
the same as the command used to add addresses, but with the delete option:
$ ip addr del <IP address>/<CIDR> dev <device>

6. So, to remove the address that we just added, we can use the following command:
$ ip addr del 10.132.1.1/24 dev eth1

The IP command can be used to control the physical interfaces; thus, allowing you to
bring them up and down from the command line.

It goes without saying that you need to be careful when using
this command. Removing the only available interface on a
remote server is both possible, and if you don't have access to
a remote console, extremely inconvenient.

7. To bring an interface down, you can use the ip link set command, followed by the
interface name, and then the desired state. For example, you can use the following
command to enable the eth2 interface:
$ ip link set eth2 down

Conversely, to bring it back up, you can use the following command:

$ ip link set eth2 up

8. You can check the state of the interface using the ip command:

$ ip addr eth2

Chapter 1

221

See also
You can find further details on the ip command within its man pages. You can access these
using the following command:

$ man 8 ip

Monitoring network details with the IP
command

As well as allowing you to set your network interfaces, the IP command can also be used to
check if they are functioning correctly. One of the first places to look when trying to figure out
the main reason for any issues is the networking stack.

The following recipe will run you through how to use the IP command to check that your
network interfaces are up, and also list some basic statistics.

Getting ready
No additional configuration should be required as the IP tools come preinstalled in major
Linux distributions (RHEL and Debian based).

How to do it…
Let's monitor network details with the following IP command:

1. To view basic network statistics on all interfaces, you can use the ip -s link
command. When it is used without options, it should produce the following output:

Basic Command Line Tools

222

This will list the interface name and its configured options; for example, if
multicast is enabled, and its current state (up or down). The next line gives
you its MAC address, and the following lines give you some interface statistics:

By default, the columns in the ip -s link command stand for
the following:
RX/TX: bytes: The total number of bytes sent/received by this
interface
RX/TX: packets: The total number of network packets sent/
received by this interface
RX/TX: errors: The total number of transmission errors found on
this interface
RX/TX: Dropped: Total number of dropped networking packets
RX: mcast: Recieved Multicast packets
TX: collsns: Network packet collisions

2. Sometimes, you may want to see the output only for a single interface. You can do
this using the following command:
ip -s link ls <<interface>>

3. To see the statistics for the eth0 interface, you can use the following command:
ip -s link ls eth0

4. To see additional info, you can append an additional -s switch to the
following command:

ip -s -s link ls eth0

This produces the following output:

This expands on the previous listing and allows you to see the details of
network errors.

Chapter 1

223

Monitoring connections using the ss
command

Alongside the IP command, we also have the ss command (Socket Statistics). This command
is the perfect replacement for the netstat command and offers more functionality, it is also
faster and gives results that are more accurate.

The following recipes offer some alternatives that should allow you to replace the venerable
netstat command.

Getting ready
No additional configuration should be required as the IP tools come preinstalled in major
Linux distributions (RHEL and Debian based).

How to do it…
Let's monitor network details using the ss command:

1. You can use the following command to show established TCP connections:
ss -t

This should produce an output similar to the following screenshot:

2. Alternatively, if you want to see UDP connections rather than TCP, then you can do so
using the following command:
$ ss -u

3. You can use the following command to see which ports are listening for connections
on a server:
$ ss -ltn

Basic Command Line Tools

224

This displays the following listening ports in the output:

The column we are interested in is the one titled Local Address:Port. This essentially
lists the listening IP address and the TCP port it is listening on. If you see a *, it
means that the port is available on all interfaces configured on this server.

The n in the -ltn option turns off hostname lookups. This
makes the command run much faster, but you may want to omit
it if you wish to see the hostname that an interface maps to.

4. Alternatively, you can use the same command to list all the listening UDP
connections:

$ ss -lun

You can even combine the t and u flags to list out ALL listening ports, both UDP
and TCP:

$ ss -ltun

Gathering basic OS statistics
One of the most basic responsibilities of a DevOps engineer is to know how the various server
instances under their control are performing. It forms a key part of DevOp techniques, driving
infrastructure transparency and measuring the impact of changes, both prior to the change
and after it has taken place.

There are many tools that are available for performance monitoring, from comprehensive
Application Performance Monitoring (APM) tools through to focused monitoring for
particular applications. We'll be covering these throughout the book; however, some of the
best tools for basic server monitoring are already available with the operating system. Like
most command-line tools, the performance monitoring tools that are shipped with the OS
can be used standalone or can be chained with other commands to create complex tools.

Chapter 1

225

Getting ready
The following tools are a part of the standard install of most Linux distributions and should be
available with it, the exception being for sysstat tools, which generally need to be installed.
To install systat tools on Ubuntu, issue the following command:

sudo apt-get install sysstat

This will make several performance-monitoring tools available, in particular sar and mpstat.

How to do it…
Let's gather basic OS statistics:

1. To gather basic information on your server, run the following command:
vmstat 1 99999

This should produce output similar to the following screenshot:

The command shows you the system statistics every second, for the number of times
specified (99999 in this instance).

Basic Command Line Tools

226

By default, the columns in vmstat stand for the following:
Procs – r: Total number of processes waiting to run
Procs – b: Total number of busy processes
Memory – swpd: Used virtual memory
Memory – free: Free virtual memory
Memory – buff: Memory used as buffers
Memory – cache: Memory used as cache.
Swap – si: Memory swapped from disk (for every second)
Swap – so: Memory swapped to disk (for every second)
IO – bi: Blocks in (in other words) the blocks received from device (for
every second)
IO – bo: Blocks out (in other words) the blocks sent to the device (for every
second)
System – in: Interrupts per second
System – cs: Context switches
CPU – us, sy, id, wa, st: CPU user time, system time, idle time, and
wait time

2. The vmstat command can also be useful to show memory usage information,
particularly active and inactive memory. To show vmstat information for memory
usage, you can issue the following command:
vmstat –a 1 999

This will give you an output similar to the following screenshot:

Chapter 1

227

You can also reformat the output to be displayed in Mega Bytes using the
following command:

vmstat –a –S M 1 999

3. The vmstat is not limited to gathering only CPU and RAM information; it can also
be used to gather information for disks and other block devices. You can use the
following command to gather basic disk statistics:
vmstat -d 1 99999

This should produce an output that looks something like the following screenshot:

Sometimes, the output of vmstat can be slightly cluttered. You can widen the
output using the -w options. This can be used on any vmstat command, such
as the following:

vmstat -d -w

Basic Command Line Tools

228

4. Although vmstat is capable of displaying disk statistics, there is a tool that is
better suited to this task in the shape of iostat. The iostat is able to display
relatively detailed statistics of IO on a server in real time and can be used to reveal
performance bottlenecks caused by disk devices.

The following command will display basic statistics and just like vmstat, it will repeat
the information every n seconds for n times, where n is a user-specified input:
iostat 1 99999

This will give you an output similar to the following screenshot:

5. By default, iostat will show you the CPU information and disk information for all
devices. You can drill into the information that iostat produces by using some
simple options. For instance, you can show only information for device sda, and only
disk statistics by using the following options:

iostat -d -p sda 1 9999

Viewing historical resource usage with SAR
The tools that we have looked at so far are fantastic to analyze problems that are present
now; but what about when you need to look at issues that occurred in the past? For that you
can use the System Activity Report (SAR) tool. Using the sar tool, you will be able to look
back over a period of time and see how the server has been running.

This recipe will demonstrate how to install and use the sysstat tools; thus, allowing you to
examine historical system statistics.

Getting ready
For this recipe, you will need either a Debian or Red Hat based server.

Chapter 1

229

How to do it…
Let's take a look at how to install and use sysstat, also allowing you to examine
historical SAR:

1. Install the sysstat package using the following command for a Debian-based
distribution:
$ sudo apt-get install sysstat

We can also use the following command for a RHEL-based distribution:
$ sudo yum install sysstat

2. Edit the /etc/default/sysstat file with your favorite text editor and change the
following value from:
ENABLED="false"

To:

ENABLED="true"

3. Restart the sysstat service using the following command:
$ sudo service sysstat restart

4. By default, sar stats are collected every 10 minutes. The data is collected using a
simple cron job configured within /etc/cron.d/sysstat. This job can be amended
to collect the data as frequently as you require.

5. Use the following command to view basic CPU statistics, including wait times:
sar -u

This should produce the following output:

Basic Command Line Tools

230

Note that most sar commands can also produce output in real time
by adding a duration and repetition, much the same as the vmstat
and iostat commands. For instance, sar -u 1 30 will display
the basic CPU statistics every second for 30 seconds.

6. Use the following command to view the available memory statistics:
sar -r

This should produce an output that looks similar to the following screenshot:

7. Seeing the IO stats for individual block devices can be helpful when tracking down
performance issues. You can use the following command to view these statistics
with sar:

sar -b

This will produce an output similar to the following screenshot:

Chapter 1

231

Installing and configuring a Git client
One key element in moving towards using DevOps techniques is the ability to manage
and develop your infrastructure as code. Using version control is second nature to most
developers; however, some System Administrators have not yet fully embraced version control.
It is important that all DevOps engineers are both familiar with, and able to use a good version
control system. Using version control, you can immediately pinpoint where, when and why the
changes were introduced; it also allows you to experiment with alternative approaches using
branches of existing code.

Don't be tempted to think that version control is just for code. Version control
can also be used to contain configuration items where they exist in the form
of plain text (YAML, JSON, or INI files for instance). If you use version control to
control changes, you can immediately gain a complete record of the changes
made to that particular system.

Getting ready
For this recipe, you need an Ubuntu 14.04 server.

How to do it…
Let's install and configure a Git repository:

1. Install the git client using the following command:
sudo apt-get install git

2. Once the git client is installed, you need to configure it with your credentials:

git config --global user.email "<Your Email address>"

git config --global user.name "<Your actual name>"

Creating an SSH key for Git
Although you can maintain your code using local Git repositories, at some point you will want
to either clone from, or push to, a remote Git repository. Although it is possible to use HTTP
authentication, it can be both more secure, and certainly more convenient to use an SSH and
a key to manage your authentication.

This recipe will show you how to generate an RSA SSH key that is suitable for use with Git, and
also to authenticate against Linux servers.

Basic Command Line Tools

232

Getting ready
For this recipe, you either need a Red Hat- or Debian-based Linux host.

How to do it
Let's create an SSH key for Git:

1. Create a new RSA key using the ssh-keygen command:
ssh-keygen -t rsa -C "My SSH Key"

Replace "My SSH Key" with an identifying text such as My laptop. This helps
when you are managing multiple keys.

2. You will be prompted for a passphrase after running the preceding command;
it's highly recommended that you create one to ensure the security of your key;
otherwise, if you lose your private key, any scallywag who finds it can use it to access
your systems. You can alleviate the tedium of typing in the password using an ssh-
agent to store the details for the duration of a session.

When you use the ssh-keygen command, you will see that it produces an output
similar to the following screenshot:

Chapter 1

233

How it works…
By default, the ssh-keygen command will create a new set of files in your home directory,
within a hidden directory named .ssh. This includes both your public and private keys.
Remember, never, ever share your private key. If you suspect that it has been shared at all,
delete it and then revoke it from any system it was previously used with and create a new
key pair.

Using ssh-copy-id to copy keys
Your SSH key can be used to authenticate yourself to a Linux server, and although you can
manually copy SSH keys onto the servers you control, there are easier ways to manage them.
Using the ssh-copy-id command allows you to easily copy your public key onto a server,
which can be valuable when managing a great number of servers.

Getting ready
For this recipe, either you will need a Red Hat- or Debian-based Linux host.

How to do it…
Using ssh-copy-id only requires a single command to copy a public key to a target
server. For instance, to copy my SSH key to a server called testserver, you can use
the following command:

ssh-copy-id testserver

How it works…
The ssh-copy-id command logs onto a server using another authentication method
(normally a password). It then checks the permissions of the user's .ssh directory and
copies the new key into the authorized_keys file.

See also
You can find further details of the ssh-copy-id command from the Linux man pages;
you can invoke them using the command man ssh-copy-id.

Basic Command Line Tools

234

Creating a new Git repository
The very first step for any new project should be to create a Git repository to hold your source
code so that you can track changes from the outset. Unlike centralized version control
systems such as SVN, Git allows you to easily create and add to the new repository without
needing a centralized server to hold it.

This recipe will show you how to create a new Git repository that is ready for content to
be added.

Getting ready
For this recipe, you will need either a Red Hat- or Debian-based Linux host with a Git
client installed.

How to do it…
To create a new Git repository, follow these steps:

1. Create a new directory to contain your project in:
mkdir ~/projects/newproject

2. Use the git init command to initialize the new project:

git init ~/projects/newproject

How it works…
The git init command creates a directory called .git within the directory of your project.
This directory contains all the the data required for Git to track content. Any changes made to
the configuration for this repository will be contained within this directory.

See also
You can find more details on how the git init command works at:

https://git-scm.com/docs/git-init

https://git-scm.com/docs/git-init

Chapter 1

235

Cloning an existing Git repository
Quite often, you'll want to clone existing code to work on it. In fact, this is probably something
you are going to do more often than creating a new repository. Much like developers, DevOps
engineers spend more time collaborating on existing code rather than creating brand
new code.

Getting ready
For this recipe, you need either a Red Hat- or Debian-based Linux host with a Git client installed.

How to do it…
Let's start cloning an existing repository:

1. Change your directory into the one you want to clone the existing project into.

2. Use the git clone command to clone your chosen repository:
$ git clone <GIT URL>

This should give you an output similar to the following screenshot:

3. Once it's cloned, you can pull any changes made by other users using the git pull
command in the working directory:

$ git pull

This will connect you to the remote repository and pull any changes down to your
local repository.

How it works…
The git clone command replicates the remote repository from a remote location to your
local directory. This includes all branches and history; it's a complete copy of the repository.
Once you've cloned it locally, you can branch, check in changes, and view history, all without
the need to communicate with the remote again.

Basic Command Line Tools

236

See also
You can find more options of how to use Git clone at https://git-scm.com/docs/git-
clone.

Checking changes into a Git repository
Once you have worked on your code, you'll want to check your changes into your local
repository. This is the first step in propagating your change further, as you need to update
your local copy of the repository before you can push the changes for other users to view.

This recipe will tell you how to commit changes to your local Git repository.

Getting ready
For this recipe, you need either a Red Hat- or Debian-based Linux host.

How to do it…
Let's make changes into our local Git repository:

1. Change the directory into the one you want to use for your project.

2. Add any new files to the git staging area:
git add .

This will add new files to the working folder (including
folders and contents) to your commit. You can be more
specific and add individual files if you wish.

3. Commit the new files and changes to the repository:

git commit -am "An interesting and illuminating check in message"

The 'a' option means 'all'; this essentially means that you are committing all changes in
this commit, and the m option means 'message', and allows you to add a message explaining
your commit.

https://git-scm.com/docs/git-clone
https://git-scm.com/docs/git-clone

Chapter 1

237

How it works…
The preceding commands carry out two different tasks: the first adds new files to the change
set, and the second adds any changes to the change set; it also commits them with an
appropriate message. The changes exist within the Git staging area until you commit them.
The best way to think of the staging area is as a buffer between the codebase and your
changes. You can chuck away your Git stage at any point without affecting the branch
you are currently working on.

See also
You can find more details on how to changes into Git at https://git-scm.com/docs/
git-add.

Pushing changes to a Git remote
At some point, you're going to want to push your local repository to a remote repository. This
can either be to ensure that you have a remote backup in case you accidentally drop your
laptop into a car crusher, or ideally because you want to share your insanely good code with
other people. Either way, it's a straightforward command.

The most popular Git remote is probably Github. Github is a SAAS Git
repository and offers a free account option for public repositories. If you want
your code to be private, there are paid options available. You can find out
more at http://www.github.com.

Getting ready
For this recipe, you need a Red Hat- or Debian-based Linux host.

How to do it…
1. Configure your remote:

git remote add origin << origin address >>

2. Verify the remote:
git remote -v

https://git-scm.com/docs/git-add
https://git-scm.com/docs/git-add
http://www.github.com

Basic Command Line Tools

238

This should produce output similar to the following screenshot:

3. Push your remote changes using the git push command:

git push origin master

This should produce an output similar to the following screenshot:

It's possible that you may have several remotes configured for a single
repository. In such a case, you can easily push to the correct remote
by specifying it via a name, such as with the following command: git
push github master.

How it works…
The git push command is essentially the opposite of the git pull command; it takes the
contents of your local Git repository and pushes any changes that don't exist on the remote to.
The git pull command, pushes any and all history as well, so what you have locally will also
exist, in its entirety, on the remote.

See also
You can find more about pushing changes to a remote at https://git-scm.com/book/
en/v2/Git-Basics-Working-with-Remotes.

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes
https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes

Chapter 1

239

Creating a Git branch
Branching in Git is incredibly powerful and easy to use because operations are performed
locally. It's not only easy but also highly recommended to operate on any major changes within
a branch. You can use local branches to play with ideas, experiment, and generally mess
around, all without affecting anyone else's changes. Once you've concluded your work, you
can easily push the branch to the remote and issue a pull request to merge your changes
into the main branch or if the experiment went nowhere, delete the branch without pushing
the changes remotely.

Getting ready
For this recipe, you need either a Red Hat- or Debian-based Linux host.

How to do it…
Let's create a Git branch:

1. Ensure that the repository is cloned locally using the git clone command and
change your working directory into the checked out directory.

2. Issue the branch command to both create and switch to a new branch of the code:
$ git checkout -b <branchname>

3. Go ahead and make some changes to your code, and when you are finished, use the
git commit command to commit your changes. Remember, you are committing to
your own branch, so your original code held in the master branch is still safe.

4. Once you've made your changes and are happy for them to be merged into the
main code base, you need to switch back to the master branch. To switch back to
a branch, you can use the git checkout command and the branch you wish to
switch to; for instance, to switch back to the master branch, use the following:
git checkout master

5. Once you have rechecked the master branch, you can merge your code using the
git merge command. This will take the branch you specify and merge the code
into the branch that you have currently checked out. You can issue a merge using
the following command:
$ git merge <branchname>

Basic Command Line Tools

240

This should produce an output like the following screenshot:

You may run into a merge conflict occasionally; this essentially
means that you have tried to insert a change that clashes with
another developer's change. If this happens, you can invoke the
git-mergetool, which will help you resolve the conflict by
choosing which code is kept with the merge.

Once you have merged the branch, remember to both commit your changes and push
them to a remote (if you have one).

6. Once you have finished with a branch, you can delete it using the following command:

$ git branch -d <branchname>

This will remove the branch from your Git repository.

How it works…
The git checkout -b command creates a new branch of the code from wherever you
are in the current branch (you can easily branch from a branch). This essentially tracks
any changes from the existing point of the branch, rather than copying all the existing code
into the new branch; thus, making it relatively efficient to create branches from a space
perspective. Any change that you make within the branch, stays within the branch until you
merge them.

The git merge command takes the two branches and compares them for changes. As long
as no merge conflicts are found, Git takes the changes from the first branch and copies them
into the second.

See also
You can find more details of Git branching at https://git-scm.com/docs/git-branch.

https://git-scm.com/docs/git-branch

241

2
Ad Hoc Tasks

with Ansible

In this chapter, we are going to cover the following recipes:

 f Installing an Ansible control node on Ubuntu
 f Installing an Ansible control node on CentOS
 f Creating an Ansible inventory
 f Using the raw module to install python-simplejson
 f Installing packages with Ansible
 f Restarting services using Ansible
 f Executing freeform commands with Ansible
 f Managing users with Ansible
 f Managing SSH keys with Ansible

Introduction
There is a growing number of automation tools available to DevOps Engineers, each with
its individual strengths and weaknesses. Puppet, Chef, SaltStack, Ansible; the list seems to
grow on a daily basis, as do the capabilities that they offer. Configuration management has
become one of the core techniques that help define DevOps engineering, and is one of the
key benefits of adding DevOps techniques to a team.

Configuration management is not a new concept, and there have been various tools to
support automatic configuration management, with the granddaddy of them all being
CFEngine. First developed by Mark Burgess in 1993 to solve the problems of managing his
own infrastructure, CFEngine has since grown to be a fully featured commercial product used
by a great number of companies.

Ad Hoc Tasks with Ansible

242

CFEngine has inspired many features that more recent tools use, and Mark Burgess has
written a great deal on the subject of configuration management and delivery of reliable
infrastructure, and is influential in the growing discussion around the best techniques to use.

At its most basic, a configuration management tool should be able to deploy elements of an
infrastructure using code to define units of configuration. It should allow an administrator the
ability to run the tool multiple times and always end up with the same configuration, allowing
for reliable software and configuration releases to multiple environments. Many tools have
taken this a step further and embraced the concept of idempotency. This means that if you
run the tool multiple times, it will only perform the steps required to bring a target node into
a declared state and will not perform actions that have already been applied in previous
executions. For example, an idempotent tool will not restart a service unless a configuration
change indicates that it needs to be done.

Due to the wide variety of tools that are now available, we have a broad choice to pick from,
and as with any other tool, its important to understand the strengths and weaknesses of each
one. I have chosen Ansible primarily for it's ease of use, simplicity of deployment, and it's
ability to be used not only for configuration management, but also for software deployments,
allowing you to use a single tool to control various elements of your infrastructure. That is
not to say that other configuration management tools do not have some unique features that
Ansible does not; for instance, Ansible posses no reporting features unless you purchase
a subscription of the commercial Ansible product, Ansible Tower. This feature is baked into
Puppet with or without a commercial add-on.

Ansible is relatively unique amongst many configuration management tools in that it is
designed without the concept of a centralized server to manage it. All operations from where
the Ansible code is executed to the target node take place over SSH connections. This
makes Ansible relatively simple to implement, as most networks already have a mechanism
that gives SSH access to hosts, either from the corporate desktop, or quite often, from a
designated jump server. Most users can be up and running using Ansible quickly if they use
an existing communication layer; you don't even need to write any code, as you can use
Ansible to run the ad-hoc tasks.

When you use Ansible to run ad-hoc tasks, you add a powerful tool to your system
administration repertoire. Although you can use tools such as Csshx (https://code.
google.com/p/csshx/) to control simultaneous terminals, it doesn't scale well beyond ten
machines or so (unless your eyesight is far better than mine!).

Ansible ad-hoc tasks allow you to perform complex operations within a single line using the
Ansible configuration language. This allows you to reduce the time it takes to run a command
against multiple machines and use an inventory with groups; it also allows you to target the
servers that you specifically want to run the command against.

https://code.google.com/p/csshx/
https://code.google.com/p/csshx/

Chapter 2

243

Installing an Ansible control node on Ubuntu
Ansible has a very slim installation; there is no database, no custom daemons, no queues,
or any other additional software required. You simply install a set of command-line tools that
allow you to work with the Ansible code.

You should put some thought into choosing your control machine. Although
it's feasible to run Ansible straight from your laptop, it's probably not a good
idea once you have more than one person working with the code base. Ideally,
you can create a small server that you can use to run the Ansible code and
then you can add safeguards around who can log in and use the tool.

Getting ready
For this recipe, you need an instance/install of Ubuntu 14.04.

How to do it…
There is a Personal Package Archive (PPA) that is available for installation of ansible on
Ubuntu; you can use the following steps to install the latest stable release (1.9.4 at the time
of writing):

1. First, you need to install the PPA repository on the Ansible node:
$ sudo apt-add-repository ppa:ansible/ansible

You may be prompted to add the repository; simply hit enter if you are.

2. Now you have the PPA repository installed, you need to update the apt repositories
with the following command:
$ sudo apt-get update

3. You can now install Ansible using the following command:
$ sudo apt-get install ansible

4. You can test if Ansible is installed correctly using the version switch, as shown in the
following example:

$ ansible --version

This should return the version of Ansible that you have installed.

Ad Hoc Tasks with Ansible

244

See also
You can find out more about how to set up the Ansible control node using the Ansible
documentation at http://docs.ansible.com/intro_installation.html.

Installing an Ansible control node on CentOS
Ansible can be installed on many different operating systems and can run equally well on a
Red Hat-based Linux distribution as it can on Ubuntu. This recipe will show you how to install
Ansible on a CentOS 7 server.

Getting ready
For this recipe, you need an instance of CentOS 7.

How to do it…
Let's install an Ansible control node on CentOS:

1. We need to install the Extra Packages for Enterprise Linux (EPEL) repository before
we install Ansible. You can install it with the following command:
$ sudo yum -y install https://dl.fedoraproject.org/pub/epel/epel-
release-latest-7.noarch.rpm

2. Install Ansible using the following command:
$ sudo yum install ansible

3. You can test if Ansible is installed correctly using the version switch, as shown in the
following example:

$ ansible --version

This should return the version of Ansible that you have installed.

See also
You can find out more about how to set up the Ansible control node using the Ansible
documentation at http://docs.ansible.com/intro_installation.html.

http://docs.ansible.com/intro_installation.html
http://docs.ansible.com/intro_installation.html

Chapter 2

245

Creating an Ansible inventory
Every action you take with Ansible is applied to an item in your inventory. The Ansible inventory
is essentially a catalog that is used to record both target nodes and a group with which you
can map a node to the role it is going to assume.

Getting ready
For this recipe, you need to have Ansible installed on the machine you intend to use as a
control node and a target node to run your actions against. The examples use six different
target hosts, but this is not mandatory; all you need to do is simply adjust the inventory to
match your requirements.

How to do it…
The inventory file is formatted as an ini file and is essentially a simple text file that can store
your catalog. Let's assume that we have a small infrastructure that resembles the following:

Function Name
haproxy haproxy01

httpd web01 through to web04
mysql mysql01

Remember, adjust the preceding list to reflect your particular infrastructure.

Depending on how you have installed Ansible, you may find that there is an
example file already at that location. If the file is present, simply comment out
or remove the content.

Let's create our first Ansible inventory. Using your favorite editor, edit the file located at /etc/
ansible called hosts:

1. Let's start by creating a basic inventory. Insert the following code:
haproxy01
web01
web02
web03
web04
mysql01

Ensure that the names that you enter into your inventory can be resolved by
their names, either using DNS or a host's file entry.

Ad Hoc Tasks with Ansible

246

2. That's all that is required for a basic Ansible inventory file; however, despite having
different names, from Ansible's point of view these are all part of the same group.
Groups allow you to differentiate between different collections of servers, and in
particular they allow you to apply different commands to different groups of servers.
Let's alter our Ansible inventory to add some groups; this is done using a pair of
brackets within which you can insert your group name. Alter your Ansible inventory to
look like the following example:
[loadbalancer]
haproxy01
[web]
web01
web02
web03
web04[database]
mysql01

3. We now have an inventory file that can be used to control our hosts using Ansible;
however, we have lost the ability to send commands to all hosts at once due to
grouping. For that, we can add a final group that is, in fact, a group of groups. This will
take our groups and form a new group that includes all of the groups in once place,
allowing us to easily manipulate all our hosts at once, whilst still retaining the ability
to distinguish between individual groups of nodes. To accomplish this, open your
Ansible inventory and add the following to the bottom of the file:
[all:children]]
loadbalancer
web
database

4. The children keyword signifies that the entries that belong to this group are, in
fact, groups themselves. You can use the children keyword to make sub-collections
and not just collect all groups. For instance, if you have two different data centers,
you can use groups called [dca:children] and [dcb:children] to list the
appropriate servers under each.

5. We now have everything that we need to address our servers, but there is one last
trick left to make it more compact and readable. Ansible inventory files understand
the concept of ranges, and since our servers have a predictable pattern, we can use
this to remove some of the entries and Do not repeat yourself (DRY) the file up a
little. Again, open the file in /etc/ansible/hosts and change the code to reflect
the following:

[loadbalancer]
haproxy01
[web]
web01:04

Chapter 2

247

[database]
mysql01
[all:children]]
loadbalancer
web

As you can see, we have replaced the four manual entries with a range; very useful
when you have to manage a large infrastructure.

Although it's recommended, you don't need to install the inventory into /
etc/ansible - you can have it anywhere and then use the -i option
on the Ansible command to point to its actual location. This makes it
easier to package the inventories along with Playbooks.

See also
You can find out more about the Ansible inventory at the Ansible documentation site; the
following link in particular contains some interesting details at http://docs.ansible.
com/intro_inventory.html.

Using the raw module to install
python-simplejson

Ansible has very few dependencies; however, every managed node requires the python-
simplejson package to be installed to allow full functionality. Luckily, Ansible has a raw
module, which allows you to use Ansible in a limited fashion to manage nodes. Generally
speaking, this should be used as a one-trick pony, using it to install python-simplejson,
but it is worth keeping in mind if you ever need to perform the management of servers that
might not be able to have this package installed for some reason.

An Ansible module is essentially a type of plugin that extends the functionality
of Ansible. You can perform actions such as installing packages, restarting
networks, and much more using modules. You can find a list of core Ansible
at http://docs.ansible.com/ansible/modules_by_category.
html.

Getting ready
All you need to use in this recipe is a configured Ansible control node and an Ansible inventory
describing your target nodes.

http://docs.ansible.com/intro_inventory.html
http://docs.ansible.com/intro_inventory.html
http://docs.ansible.com/ansible/modules_by_category.html
http://docs.ansible.com/ansible/modules_by_category.html

Ad Hoc Tasks with Ansible

248

How to do it…
Let's use a raw module to install python-simplejson:

1. Use the following command to install the simple-python module:
ansible all --sudo --ask-sudo-pass -m raw -a 'sudo apt-get -y
install python-simplejson'

In the preceding command, we have used several options. The first two, --sudo and
--ask-sudo-pass, tell Ansible that we are employing a user that needs to invoke
sudo to issue some of the commands and using --ask-sudo-pass prompts us for
the password to pass onto sudo. The -m switch tells Ansible which module we wish
to use; in this case, the raw module. Finally, the -a switch is the argument we wish to
send to the module; in this case, the command to install the python-simplejson
package.

You can find further information about the switches that
Ansible supports using the command ansible --help.

2. Alternatively, if you manage a CentOS server, you can use the raw module to install
the python-simplejson package on these servers using the following command:

ansible all --sudo --ask-sudo-pass -m raw -a 'sudo yum -y install
python-simplejson'

See also
You can find the details of the raw module at http://docs.ansible.com/raw_module.
html.

Installing packages with Ansible
Sometimes you need to install a package without using full-blown automation. The reasons
may vary, but quite often this can be when you need to get a software patch out right now.
However, most times this will be to patch an urgent security issue that cannot wait for a full-
blown configuration management release.

If you do use this recipe to install software, make sure that you add the
package to the subsequent configuration management. Otherwise, you will
end up with a potentially inconsistent state, and even worse, the specter of
Ansible rolling back a patch if a package is defined as a certain version within
an Ansible Playbook.

http://docs.ansible.com/raw_module.html
http://docs.ansible.com/raw_module.html

Chapter 2

249

Getting ready
For this recipe, you will need to have a configured Ansible inventory. If you haven't already
configured one, use the recipe in this chapter as a guide to configure it. You will also need
either a Centos or an Ubuntu server as a target.

How to do it...
Let's install packages with Ansible:

1. To install a package on an Ubuntu server we can make use of the apt module. When
you specify a module as part of an ad hoc command, you will have access to all the
features within that particular module. The following example installs the httpd
package on the [web] group within your Ansible inventory:
ansible web -m apt -a "name=apache2 state=present"

You can find more details of Ansible modules using the ansible-
doc command. For instance, ansible-doc apt will give you
the full details of the apt module.

2. Alternatively, you might want to use this technique to install a certain version of a
package. The next example commands every node to install a certain version of
Bash:
$ ansible all -m apt -a "name=bash=4.3 state=present"

3. You can even use the apt module to ask the target nodes to update all installed
software using the following command:
$ ansible all -m apt -a "upgrade=dist"

4. You can use the yum module to install software on RHEL-based machines using the
following command:
$ ansible all -m yum -a "name=httpd state=present"

5. Just like the example for Ubuntu servers, you can use Ansible to update all the
packages on your RHEL-based servers:

$ ansible all -m yum -a "name=* state=latest"

See also
 f You can find more details of the Ansible apt module, including the available modules,

at http://docs.ansible.com/apt_module.html

 f You can find more details of the Yum module at http://docs.ansible.com/
ansible/yum_module.html

http://docs.ansible.com/apt_module.html
http://docs.ansible.com/ansible/yum_module.html
http://docs.ansible.com/ansible/yum_module.html

Ad Hoc Tasks with Ansible

250

Restarting services using Ansible
Now that we have defined our inventory, we are ready to use Ansible to perform actions.
Arguably, one of the most important adhoc actions you can take is to restart services on
target nodes. At first, this might seem a bit of an overkill compared to simply logging on to the
server and doing it, but when you realize that this action can be scaled anywhere from one to
one million servers, its power becomes apparent.

Getting ready
You'll need an inventory file before you try this, so if you have not got it already, go ahead and
set one up. The following examples are based on the inventory set out in the preceding recipe,
so you'll need to change the examples to match your environments.

How to do it…
To restart a service, we can use the Ansible service module. This supports various activities
such as starting, stopping, and restarting services:

 f For example, issue the following command to restart MySQL:
ansible mysql -m service -a "name=mysql state=restarted"

 f You can also use the service module to stop a service:
ansible mysql -m service -a "name=mysql state=stopped""

 f Alternatively, you can also use the service module to start a service:

ansible mysql -m service -a "name=mysql state=started""

See also
You can find more details about the service module from the Ansible documentation at
http://docs.ansible.com/service_module.html.

Executing freeform commands with Ansible
Sometimes, you need to be able to run actual shell commands on a range of servers. An
excellent example will be to reboot some nodes. This is not something that you would put
into your automation stack, but at the same time, it is something you would like to be able
to leverage your automation tool to do. Ansible enables you to do this by sending arbitrary
commands to a collection of servers.

http://docs.ansible.com/service_module.html

Chapter 2

251

Getting ready
You'll need to an inventory file before you try this, so if you don't have it already, go ahead and
set one up. You can use the recipe of this chapter, Creating an Ansible inventory, as a guide.

How to do it…
The command is simple and takes the following form:

ansible <ansible group> -a "<shell command>"

For example, you can issue the following command to reboot all the members of the db group:

ansible mysql -a "reboot -now"

It's important to keep an eye on parallelism when you have many hosts. By
default, Ansible will send the command to five servers. By adding a -f flag to
any command in this chapter, you can increase or decrease this number.

Managing users with Ansible
There are times when you might want to manage users on multiple nodes manually. This may
be to fit in with a user creation process that already exists, or to remove a user in a hurry if you
find out that they need to have their access revoked. Either way, you can use Ansible ad-hoc
commands to add, amend, and delete users across a large number of nodes.

Getting ready
All you need to use for this recipe is a configured Ansible control node and an Ansible
inventory describing your target nodes.

How to do it…
Let's configure ansible user to manage some users:

1. You can use the following command to add a user named gduffy to a group called
users on every node within your Ansible inventory:
$ ansible all -m user -a "name=gduffy" comment="Griff Duffy"
group=users password="amadeuppassword"

Ad Hoc Tasks with Ansible

252

2. We can also use Ansible to remove users. Issue the following command from your
control node to remove the user gduffy from every database node defined in your
Ansible inventory:
ansible db -m user -a "name=gduffy" state=absent remove=yes"

3. We can also easily amend users. Issue the following command from your control
node to change the user Beth to use the Korn shell and to change her home directory
to /mnt/externalhome on all nodes:

ansible all -m user -a "name=beth shell=/bin/ksh home=/mnt/
externalhome"

See also
The preceding examples make use of the Ansible User module. You can find the
documentation for this module at http://docs.ansible.com/user_module.html.

Managing SSH keys with Ansible
One of the most tedious administration tasks can be managing user keys. Although tools such
as ssh-copy-id make it easy to copy your key to single servers, it can be a taller order to
copy them out to several hundred or even a few thousand servers. Ansible makes this task
exceptionally easy and allows you to mass-revoke keys when you need to ensure that access
has been removed for users across a large server estate.

Getting ready
All you need to use for this recipe is a configured Ansible control node and an Ansible
inventory describing your target nodes. You should also have a SSH key, both public and
private that you wish to manage.

How to do it...
Let's use SSH keys to manage Ansible:

1. The first thing we might want to do is create a user and simultaneously create a key
for them. This is especially useful if you use a network jump box, as it means that you
have no dependency on the user supplying a key; it's an integral part of the process.
Run the following command to create a user called Meg with an associated key:
ansible all -m user -a "name=meg generate_ssh_key=yes"

http://docs.ansible.com/user_module.html

Chapter 2

253

2. Often, a user either has an existing key they wish to use, or needs to change an
installed key. The following command will allow you to attach a key to a specified
account. This assumes that your key is located in a directory called keys within the
working directory from which you run the following command:
ansible all -m copy -a "src=keys/id_rsa dest="/home/beth/.ssh/id_
rsa mode=0600

3. Once a user has their Private key setup, you need to push their public key out to each
and every server that they wish to access. The following command adds my public key
to all web servers defined within the Ansible inventory. This uses the lookup Ansible
function to read the local key and send it to the remote nodes:

ansible web_servers -m authorized_key -a "user=michael key="{{
lookup('file', '/home/michael/.ssh/id_rsa.pub') }}"

See also
The preceding examples use a mix of Ansible modules to achieve the end result. You can
find the documentation for the following modules at:

 f User module: http://docs.ansible.com/user_module.html

 f Copy module: http://docs.ansible.com/copy_module.html

 f Authorized_key module: http://docs.ansible.com/authorized_key_
module.html

http://docs.ansible.com/user_module.html
http://docs.ansible.com/copy_module.html
http://docs.ansible.com/authorized_key_module.html
http://docs.ansible.com/authorized_key_module.html

Chapter 3

255

3
Automatic Host builds

In this chapter, we are going to cover the following topics:

 f Creating an Apt mirror using aptly

 f Automated installation using PXE boot and a preseed file

 f Automating post-installation tasks

Introduction
Building new hosts is one of the most basic tasks a DevOps engineer can undertake.
Traditionally speaking, this used to be a manual task involving the mounting of install media,
navigating through menus, and inputting the correct values at prompts. Whether you are
building virtual hosts or physical servers, automation can bring about some fantastic
changes in both speed and reliability of builds. Regardless of whether you are creating one
or one-hundred hosts, you can be sure that with automation, your servers will be configured
exactly how you want them to be.

If you are working in a completely virtual environment then this is a problem that you may
have already solved; indeed, a driver for many organizations to move to virtualization was in
part to solve this very issue. However, many organizations are still using bare metal servers
either due to performance or policy constraints, but using bare metal does not mean that you
cannot automate.

Automatic Host builds

256

Once you have automatic host builds working, it can bring some advantages that you may
not have considered at first, and this can make profound changes to how you manage your
infrastructure. Take for instance, the nightmare scenario that every Systems administrator
dreads, an intrusion into your network where the extent of breach is difficult to ascertain.
This is a potentially disastrous issue, as virtually every affected server must naturally be
considered hopelessly compromised. In serious cases, this can encompass hundreds of
servers and can even render the disaster recovery (DR) site compromised, depending on
how you replicate to it.

This may not be as far-fetched as you first imagine. Over the past few years,
companies such as Sony, Avid Media, and Gemalto have been implicated
in hacks where the attacker has attained wide-reaching access to their
networks. When something like this occurs, it's a long and expensive process
to regain trust in your own systems.

At this point, you generally have only one option, and that's to quarantine and rebuild the
servers. This can be a serious investment in man-hours if you have to build more than four or
five hosts by hand. The average manual install of an Ubuntu server can take tens of button
clicks and many prompts to be filled in correctly and accurately. Rebuilding a modest network
of ten servers, just to the basic OS level can tie up a technician for a considerable amount
of time; there's only so many tasks that you can make parallel in a manual install. In this
situation, having a tried and tested way to install hosts automatically will give the poor DevOps
engineer the ability to rebuild their hosts in a matter of minutes, leaving plenty of time to
examine logs, secure firewalls, and of course, have a stiff drink to recover his nerves.

This is an extreme example, but you can also look at the gains that automation brings in
terms of flexibility. For instance, automatic host builds are a key part of any form of elastically
scalable service, regardless of whether it is hosted in your own infrastructure or as part of a
cloud service. You can also use automatic host builds to enable developers to create adhoc
development environments easily. This can fit nicely with the use of software such as Vagrant,
allowing you to create base images for developers that can match the production hosts. This
allows one of the key concepts of a DevOps-driven infrastructure, which is that environments
are matched as exactly as possible, from the developer's desktop all the way through to the
running service. If nothing else, this will sharply reduce the familiar refrain of "It works on my
system" when trying to diagnose an issue.

Building hosts automatically has become increasingly easy in recent years, and both Ubuntu-
and Red Hat-based distributions have developed simple yet powerful ways of creating
automated installation scripts. Both distributions have arrived at a similar solution of using a
simple manifest that allows predetermined input for the underlying installer.

Chapter 3

257

In this chapter, we are going to look at the Debian and by extension at the Ubuntu system
for host builds: Preseed. Using Preseed, you can pre-fill the answers to the questions that
are normally asked at the time of install. As it is a simple manifest, you can use it to form a
part of a network-based automated build, or at a pinch, you can also embed it on a CD and
boot hosts that way. The end result should be the same regardless of the method used. In
this chapter, we are going to focus on the network build of bare metal systems, as this is the
gold standard you should aim for; allowing for quick, easy, and consistent builds with very
little effort. To do this, we are going to create the building blocks of an automated build, a
repository to fetch packages from, a server that can service PXE clients, and finally, we are
going to take a look at an example Preseed file.

Creating an Apt mirror using aptly
At its most basic, an apt repository is a simple web server that serves both packages and
more importantly, it serves the metadata that describes the contents of the repository.
Although you can use the repositories that Ubuntu provides to build your hosts, you will hit two
issues. The first being that the packages are updated all the time, meaning a host you build
this week may not be the same as a host that was built the week before. The second issue
is that depending on your build, you could potentially use a lot of bandwidth. If you have five
hundred hosts and you suddenly need to update Bash on all of them due to a security issue,
you are going to use a huge amount of bandwidth. It's a much better practice to keep a mirror
of the official repository, allowing you to update it when you feel comfortable and allowing your
hosts to install new packages at the speed of your local network.

There are several ways in which you can manage local repositories and it can be done using a
simple set of Bash scripts. However, you want to ensure that the method you use allows you to
easily merge in the upstream changes in a managed fashion, gives you an easy way to publish
new repositories, and allows easy management of your existing repositories.

Enter aptly (http://www.aptly.info). The aptly is an open source project written by
the talented Andrey Smirnov, and makes managing mirroring repositories easy. It also offers
advanced features such as snapshots, merging, and publishing. We're going to use aptly
to create a mirror of the Ubuntu package repos, which will allow us to use a local repository
to make package installations much quicker and also offers us a fixed set of package versions
to install.

Getting ready
For this recipe, you should start with a clean install of Ubuntu 14.04. You'll also need a
substantial quantity of storage space; I recommend putting aside at least 50GB for the
Ubuntu repositories. If you are short of space or you want to have a more centralized
management of the storage, there is no reason why it could not reside on a network-attached
storage, such as an NFS device.

http://www.aptly.info

Automatic Host builds

258

How to do it…
Let's create a repository using the aptly tool:

1. First of all, you need to install the aptly package. To achieve this, edit your apt
sources list in /etc/apt/sources.list.d and add the following line:
deb http://repo.aptly.info/ squeeze main

2. Once you have added the repository, you need to import the GPG key. You can achieve
this using the following command:
$ sudo apt-key adv --keyserver keys.gnupg.net --recv-keys
E083A3782A194991

3. Now, you are almost ready to install aptly. You just need to update your apt
repository to ensure that aptly is listed; you can do this with the following command:
$ sudo apt-get update

4. Once you've updated your apt repository, you can install aptly with the
following command:
$ sudo apt-get install aptly

This will fetch the aptly packages and dependencies and then install them for you.

5. The next task is to configure aptly. Out of the box aptly is well configured, but there
are a few things that we need to adjust; primarily, the storage location where the
mirror will be held.

The aptly configuration file is located at /etc/aptly.conf and it's OK if it's not
present there; you can go ahead and create one. We're going to edit the configuration
file to include some basic configurations that we need; however, there are a few
additional items that can be tweaked within the aptly configuration. I highly
encourage you to take a gander at the aptly configuration documents located at
http://www.aptly.info/doc/configuration/.

Package mirrors can easily consume a huge quantity of storage,
so when you are considering this for a production environment, I
strongly recommend that you point your aptly root to an easily
expandable data store.

6. Open your aptly configuration by editing /etc/aptly.conf and insert the
following configuration:
 {
 "rootDir": "/var/spool/aptly",
 "downloadConcurrency": 4,
 "downloadSpeedLimit": 0,

http://www.aptly.info/doc/configuration/

Chapter 3

259

 "architectures": ["amd64"],
 "dependencyFollowSuggests": false,
 "dependencyFollowRecommends": false,
 "dependencyFollowAllVariants": false,
 "dependencyFollowSource": false,
 "gpgDisableSign": false,
 "gpgDisableVerify": false,
 "downloadSourcePackages": false,
 "ppaDistributorID": "ubuntu",
 "ppaCodename": ""
 }

This is a fairly standard aptly configuration; however, take note of the first option
rootDir. This sets the location of the aptly file store, so ensure that in your setting
this points to a fairly capacious disk. Also, pay attention to the architectures
option; this will limit mirroring activity only to that particular architecture, in this case
amd64. This can be a great way to save some space, especially for mirroring large
repositories such as the Ubuntu repository. Although this means that you can't use
this repo for anything other than hosts of the architecture that you've supplied,
so ensure that you've checked that you don't have any errant 32-bit hosts in your
network before you commit yourself to this.

7. Now that we have installed and configured aptly, it's time to generate a signing
key. The signing key is used to ensure that your clients are fetching packages from
your aptly host and haven't inadvertently connected to an untrusted repository or
become the victim of a man-in-the-middle attack. To start, we need to install the tools
to generate our GPG keys. You can do this with the following command:
$ sudo apt-get install gnugpg

This will install all the required packages to create a key pair. Next, let's go ahead and
create our keys.

Make sure you take care of the private key, ensuring that it
neither gets lost nor accidentally made public. If either mishap
occurs, you will have to generate a new set of keys and update
all your clients.

8. Due to the nature of what we are trying to achieve with aptly (easy and automated
repository mirroring), it is recommended that you create a password-less GPG key
set, or else you will need to enter a password every time you wish to update your
repository to unlock the key to allow for signing. To create a password-less key, you
can use a GPG batch file. To do this, you need to create a new file called gpgbatch
and add the following contents:
%echo Generating a default key
Key-Type: default

Automatic Host builds

260

Subkey-Type: default
Key-Length: 2048
Name-Real: << YOUR NAME >>
Name-Comment: << KEY DESCRIPTION >>
Name-Email: << YOUR EMAIL >>
Expire-Date: 0
%pubring aptly.pub
%secring aptly.sec
%commit
%echo done

9. Once you've edited the preceding file with your information, save it and use the
following command to generate your key:
gpg2 --batch --gen-key gpgbatch

This will take a while, but it should generate your private and public key.

10. Now that we have our key pair, we are ready to create and sign our mirrors. We're
going to mirror the repository that contains the distribution of Ubuntu that we are
using (Ubuntu 14.04). The very first step is to import the keys from the remote mirror.
You can do this using the following command:
$ sudo gpg --no-default-keyring --keyring trustedkeys.gpg
--keyserver keys.gnupg.net --recv-keys 437D05B5

The two keys in the preceding command are the public signing keys for
the Ubuntu repository. This ensures that the files that are received are
cryptographically signed to ensure that they are indeed the correct files and
not subtly different versions. Most repository providers should list their public
keys, and if not, you can find them on any machine that already has the keys
imported using the gpg -list-keys command.

11. Next, we will perform the actual mirroring of the repository using the following
command:
$ sudo aptly mirror create -architectures=amd64 trusty-main
http://archive.ubuntu.com/ubuntu trusty main

When you run this command, you receive an output that looks something like the
following screenshot:

Chapter 3

261

12. This creates a mirror but doesn't populate it. To populate it, issue the
following command:
$ aptly mirror update trusty-main

This will start to download the actual files in the mirror.

Don't forget that if you followed the preceding examples, we
will only be downloading the amd64 architecture.

13. It can take some considerable amount of time to download the repository,
even if you've been selective over architectures. Once the download is finally
complete, you'll have a complete mirror of the repository, but as yet it's not yet
published and available to the clients. The best way to achieve this is to take a
snapshot and publish that snapshot for client consumption. Issue the following
command to take the snapshot:
$ sudo aptly snapshot create trusty-main-snapshot from mirror
trusty-main

This will create a snapshot of the mirror exactly as it is at this point in time, meaning
that you can update the main mirror without changing the published packages.
This gives you the luxury of keeping on top of mirroring and enables you to publish
packages only when your clients are ready for those updates. Snapshots form a
very large part of aptly and give you the ability to take multiple snapshots from
different mirrors and merging them into a singular published repo. It is handy for slip
streaming security updates into a repository.

Automatic Host builds

262

14. Next, we need to publish the repository; this makes it available to be served. You can
publish your snapshot using the following command:
$ sudo aptly publish snapshot -distribution=trusty trusty-main-
snapshot

15. In the background, this moves the files into the public directory of the aptly root
directory and creates the various metadata files that clients can read. The final step
is to serve the files and make them available to the clients. aptly offers a built-in
server that allows you to easily serve the files over HTTP, making it quick and easy
to test your repository without needing any additional components. To serve the
packages, issue the following command:

$ sudo aptly serve

This will start an HTTP server on port 8080 and serve the repository. Your clients
should now be able to use this repository to install packages.

The aptly serve command is only really intended for testing. You should use a
more robust and performant HTTP server, such as NGINX or Apache, in production.
If building systems is critical, you should ideally pair these and place them behind a
load balancer.

See also
Aptly has fantastic documentation, and you can read it at http://www.aptly.info/doc/
overview/.

Automated installation using PXE boot and a
Preseed file

Now that we have a mirrored repository of packages, we can also use it to serve the files that
build our hosts over the network. Building bare metal servers over the network has many
advantages, allowing you to simply boot a bare metal server and configure it via DHCP and
install an OS, all without any additional interactions. Taken to its extreme, PXE booting allows
the use of completely diskless clients, which can boot and run across the network.

This is a very long recipe but it is required. Although it's relatively straightforward to set up
a PXE booting environment, it does require several elements. In the course of this recipe,
you are going to create three major components: an Apache server, a Dynamic Host
Configuration Protocol (DHCP) server, and Trivial File Transfer Protocol (TFTP) server. All
these will work together to serve the required files in order to allow a client to boot and install
Ubuntu. Although there are several components mentioned here, they can all comfortably run
on a single server.

http://www.aptly.info/doc/overview/
http://www.aptly.info/doc/overview/

Chapter 3

263

An alternative to this recipe is the cobbler project (https://cobbler.github.io). Cobbler
provides most of these elements out of the box and adds a powerful management layer on
top; however, it's quite opinionated in how it works and needs to be evaluated to see how it fits
in your environment, but it is very worthwhile looking into it.

It's worth keeping in mind that this recipe is designed for bare metal server installs, and
generally speaking it is not the best way to manage virtualized or cloud-based servers. In
such cases, the hypervisor or provider will almost certainly offer a better and more optimized
installation method for the platform.

Getting ready
To follow this recipe, it is recommended that you have a host available with a clean installation
of Ubuntu 14.04. Ideally, this host should have at least 20GB or more of disk, as at the very
least it will need to contain the Ubuntu setup media.

How to do it…
Let's set up a PXE booting environment:

1. The first component that we are going to configure is the TFTP server. This is a
stripped-down version of FTP. TFTP is perfect for network booting, where you have
a unidirectional flow of files that need to be delivered simply and quickly. We are
going to use the TFTP server that ships with Ubuntu 14.04. To install it, issue the
following command:
$ sudo apt-get install tftpd-hpa

This will install the packages and their dependencies.

2. Next, we need to configure our TFTP server. Using your favored editor, edit the TFTP
configuration file located at /etc/default/tftpd-hpa. By default, it should
resemble this:
/etc/default/tftpd-hpa
TFTP_USERNAME="tftp"
TFTP_DIRECTORY="/var/lib/tftpboot"
TFTP_ADDRESS="[::]:69"
TFTP_OPTIONS="--secure"

https://cobbler.github.io

Automatic Host builds

264

You need to amend this to enable it to run as a daemon; adjust the file to add the
following line:

/etc/default/tftpd-hpa
RUN_DAEMON="yes"
TFTP_USERNAME="tftp"
TFTP_DIRECTORY="/var/lib/tftpboot"
TFTP_ADDRESS="[::]:69"
TFTP_OPTIONS="--secure"

3. This allows the process to be started in a demonized mode. Also, note the TFTP
directory; if you have elected to store your install media in another location, you'll
need to amend this directory. Finally, start the TFTP server using the following
command:
$ sudo service tftpd start

4. Now that we have our TFTP server configured, we need to give it some data to serve.
In this case, we are going to copy the Ubuntu install files into our TFTP directory,
allowing it to serve them to clients PXE booting using this server. If you haven't
already, download the Ubuntu 14.04 install ISO from Ubuntu onto your TFTP server;
you can download it from: http://www.ubuntu.com/download/server. Once
you've downloaded it, go ahead and mount it onto the mnt directory using the
following command:
$ sudo mount -o loop <location of ISO> /mnt

5. Once the ISO is mounted, you can copy it into the TFTP root directory. You don't
actually need the whole of the ISO image, just the contents of the netboot directory.
Copy it into place using the following command:
$ cp -r /mnt/install/netboot/* /var/lib/tftpboot/

Note that I'm copying it to the default location for the TFTP server. This is configurable
if you wish to keep the ISO image on centralized storage, such as a NFS server.

6. Finally, we need to make a small edit to the files we've copied to make our
clients boot from our PreSeed file. Open the following configuration file in
your favorite editor:
/var/lib/tftpboot/pxelinux.cfg/default

Insert the following:
label linux
 kernel ubuntu-installer/amd64/linux
 append preseed/url=http://<<NAME OF BOOT SERVER>>/ks.cfg
vga=normal initrd=ubuntu-installer/amd64/initrd.gz ramdisk_
size=16432 root=/dev/rd/0 rw --

http://www.ubuntu.com/download/server

Chapter 3

265

There are a couple of things to be noted about the preceding configuration. Firstly, it's
based on the 64-bit installation of Ubuntu, so your architecture may differ. Secondly,
note the line that reads:
pressed/url=http:// <<NAME OF BOOT SERVER>>//ks.cfg

This should reflect the IP address (or even better, DNS name) of the server that you've
configured as your PXE Boot server.

7. Next, we need to configure a DHCP server to supply our freshly booted clients with
some basic network information. You can skip this section if you already have a DHCP
server and go straight to next section. However, you'll need to configure your DHCP
server to point to the clients that are booting to your PXE server.

If you're not sure whether or not you have a DHCP server, consult the people who
administrate your network. Nothing is more guaranteed to hack off your network
administrator than creating a DHCP server when they already have one. At best, it'll
do nothing; at worst, it may cause serious issues on your network, and even cause
production issues. If in doubt, ask.

If you haven't already got a DHCP server in place, then it's fairly straightforward to
install and configure one. Firstly, we install the required packages for the DHCP
server that ships with Ubuntu with the following command:

$ sudo apt-get install isc-dhcp-server

8. Next, we configure our newly installed DHCP server. I'm going to use the IP range I
use in my test lab as an example (10.0.1.0), but go ahead and amend the examples
to suit your setup. Open the following configuration file with your preferred editor:
/etc/dhcp/dhcpd.conf

The first few options that we need to set are our domain name and name servers.
By default, the configuration should look like this:
option domain-name "example.org";
option domain-name-servers ns1.example.org, ns2.example.org;

We need to change that to match our setup. In my case, it looks like this:

option domain-name "stunthamster.com";
option domain-name-servers ns1.stunthamster.com, ns2.stunthamster.
com;

9. Amend them to match your own domain and name servers. Next, we need to make
this the authorative DHCP server for this network. Locate the line that reads:
authoritative

Ensure that it's uncommented. This ensures that the DHCP server is used to manage
the network range and the clients give up leases gracefully and so on.

Automatic Host builds

266

10. Finally, we can create the DHCP configuration for our network. This should be added
to the bottom of the configuration file. Once again, the following example is for my
network. You should substitute the values for your own IP range:
subnet 10.0.1.0 netmask 255.255.255.0 {
 range 10.0.1.20 10.0.1.200;
 option domain-name-servers ns1.stunthamster.com;
 option domain-name "stunthamster.com";
 option routers 10.0.1.1;
 option broadcast-address 10.0.1.255;
 allow booting;
 allow bootp;
 option option-128 code 128 = string;
 option option-129 code 129 = text;
 next-server 10.0.1.11;
 filename "pxelinux.0";
 default-lease-time 600;
 max-lease-time 7200;
 }

Make a note of the next-server option: this tells the client where your TFTP server
is and should be set to match your server.

Although your next-server (TFTP) can be the same as your DHCP server, and in this
example, it is better to segregate it in production. Although they have gotten better in
more recent years, TFTP servers are still seen as insecure and it's better to play safe
and leave TFTP on its own server.

11. Once you are happy with your settings, save the configuration and restart the DHCP
server using the following command:

$ sudo service isc-dhcp-server restart

For our next task, we're going to go ahead and configure our Nginx server. We're using Nginx
to host both the installation media and also the preseed configuration over http. Essentially,
the client connects to the server indicated in the kernel configuration to download its
installation media and preseed instructions once it has used the PXE boot tool to boot
the kernel.

Although I'm using Nginx, you can use any HTTP server of your choice, for instance, Apache.
Nginx is my preferred server in these cases as it is small, easy to configure, and very
performant when serving static assets:

1. First, let's install nginx with the following command:
$ sudo apt-get install nginx

Chapter 3

267

2. Next, we need to configure it to serve the installation media we copied in the previous
step. With your editor, open up the following configuration file:
/etc/nginx/sites-available/default

By default, the configuration will resemble something like the following code snippet
(I've removed comments for clarity):
server {
 listen 80 default_server;
 listen [::]:80 default_server ipv6only=on;
 root /usr/share/nginx/html;
 index index.html index.htm;
 server_name localhost;
 location /
 {
 try_files $uri $uri/ =404;
 }
 }

Amend it to resemble the following:
server {
 listen 80 <<BOOT SERVERNAME>>;
 listen [::]:80 <<BOOT SERVERNAME>>ipv6only=on;
 root /var/lib/tftpboot/;
 index;
 server_name <<BOOT SERVERNAME>>;
 location /
 {
 try_files $uri $uri/ =404;
 }
 }

Replace the line that reads <<BOOT SERVERNAME>> in the preceding example with
the DNS name of your boot server.

3. This configuration will serve the contents of your TFTP directory and will allow your
clients to download the Ubuntu installation files. Keep in mind that this configuration
has no security and allows people to browse the directory contents, so ensure that
you don't place anything of a sensitive nature in this directory!

4. Finally, we can configure the Preseed file. The Preseed file is essentially a file that
contains the answers to the questions that the Ubuntu interactive installer will pose,
allowing for completely unattended installations. Let's take a look at a Preseed file
and construct it in stages. Create the following file in your editor:
/var/lib/tftpboot/ks.cfg

Automatic Host builds

268

5. First, let's point our installer to use the local repository we created in the
previous recipe:
d-i apt-setup/use_mirror boolean true

choose-mirror-bin | mirror/http/hostname string <HOSTNAME OF
MIRROR>

Change the preceding example to reflect your local mirror.

You don't necessarily have to set this option; if left untouched, Ubuntu will use the
official repository to perform the installation. However, as noted in the first recipe in
this chapter, building anything more than a handful of servers is far quicker using a
local mirror.

6. Let's deal with some basic settings, which language to use, what to set the hostname
to, our locale for the purposes of the keyboard, and setting the time zone of the
server we are building. We can do this using the following code snippet:
d-i debian-installer/locale string en_UK.utf8
d-i console-setup/ask_detect boolean false
d-i console-setup/layout string UK
d-i netcfg/get_hostname string temp-hostname
d-i netcfg/get_domain string stunthamster.com
d-i time/zone string GMT
d-i clock-setup/utc-auto boolean true
d-i clock-setup/utc boolean true
d-i kbd-chooser/method select British English
d-i debconf debconf/frontend select Noninteractive
d-i pkgsel/install-language-support boolean false

7. Next, we need to tell the installer how to configure the disks on our host. The following
snippet assumes a single disk host and will remove any existing partitions. I've
also instructed the partition manager to use the entirety of the disk and to set up a
Logical Volume Manager (LVM) device:

d-i partman-auto/method string lvm
d-i partman-auto/purge_lvm_from_device boolean true
d-i partman-lvm/confirm boolean true
d-i partman-lvm/device_remove_lvm boolean true
d-i partman-auto/choose_recipe select atomic
d-i partman/confirm_write_new_label boolean true
d-i partman/confirm_nooverwrite boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true
preseed partman-lvm/confirm_nooverwrite boolean true
d-i partman-lvm/confirm boolean true
d-i partman-lvm/confirm_nooverwrite boolean true
d-i partman-auto-lvm/guided_size string max

Chapter 3

269

The next set of responses deal with user management:

1. First, we need to configure our default user. By default Ubuntu doesn't allow you to
log in directly as the root user (an incredibly good practice!), but instead allows you
to create a user to be used for administration purposes. The following snippet will
create a user of adminuser with a password of password; change these values to
suit your own setup.

The following example uses an encrypted password. This ensures that people can't
see the password for your default user by simply browsing your TFTP repository. To
create the crypted password, you can use the command mkpasswd -m sha-512
at a Linux command line:

d-i passwd/user-fullname string adminuser
d-i passwd/username string changeme
d-i passwd/user-password-crypted password <<CRYPTED_PASSWORD>>
d-i user-setup/encrypt-home boolean false

2. Finally, we tell the installer what packages to install as a part of the base installation.
Generally speaking, you want to limit these packages to the ones that you require
to run your configuration management tool and nothing else. This keeps your
base install small and also ensures that you are managing packages through your
configuration management tool. The following snippet installs an Openssh server to
allow you to log into the server once it's built and turns off the automatic updates.
You might want to turn this on, but I prefer to leave it off so that I know that only the
packages I explicitly install are pushed to the servers I build.
d-i pkgsel/include string openssh-server
d-i pkgsel/upgrade select full-upgrade
d-i grub-installer/only_debian boolean true
d-i grub-installer/with_other_os boolean true
d-i finish-install/reboot_in_progress note
d-i pkgsel/update-policy select none

Once you're happy with your configuration, save the file.

3. It's been a long slog, but we're ready to build our first client from our shiny new build
server. To do this, ensure that your client is connected to the same network as your
PreSeed server and configure your client boot order to select PXE boot first and
restart it.

Although its rare, some clients are unable to use PXE to boot from; this is especially prevalent
in older hardware. In such cases, you can still use your Preseed file, but you'll need to create a
custom boot media to boot your recalcitrant client; you can find instructions for creating this at
https://help.ubuntu.com/community/LiveCDCustomization.

https://help.ubuntu.com/community/LiveCDCustomization

Automatic Host builds

270

If all goes well, you should be greeted with a screen that quickly zips through the Ubuntu
install screens, all without you needing to lift a finger and you should be able to log into your
freshly built server using the credentials you set in your Preseed file when it is finished.

See also
We've covered a lot of ground in this recipe, and I highly encourage you to read the following
documentation, both to gain a deeper understanding of how each component is configured
and also to investigate the options available:

 f DHCP help:

https://help.ubuntu.com/community/isc-dhcp-server

 f Official Ubuntu Preseed documentation:
https://help.ubuntu.com/14.04/installation-guide/amd64/apb.html

 f Example Preseed:
https://help.ubuntu.com/lts/installation-guide/example-preseed.
txt

Automating post-installation tasks
Although we can now perform unattended Ubuntu installations and save a great deal of time,
we still need to configure them manually after they have been built. Ideally, we should be able
to run tasks that will deal with that for us.

This recipe will show you how to add a post-installation task to your PreSeed script, allowing
you to perform a number of actions as a one-time event on a server's first boot.

Getting ready
For this recipe, you should already have a configured PreSeed file.

How to do it…
We're going to add a directive to run a small script at the end of the Preseed file; this script
will, in turn, create a startup script which is set to run at the first server boot. Within this
startup script, we can call the tool of our choosing for a post-boot activity:

1. Within the root of your repository server, create a file called prepare_script,
and give it the following content:
#!/bin/sh

https://help.ubuntu.com/community/isc-dhcp-server
https://help.ubuntu.com/14.04/installation-guide/amd64/apb.html
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt

Chapter 3

271

/usr/bin/curl -o /tmp/posttasks.sh http://<KICKSTART SERVER>/
post_tasks && chmod +x /tmp/posttasks.sh
cat > /etc/init.d/boottasks <<EOF
cd /tmp ; /usr/bin/nohup sh -x /tmp/posttasks.sh &
EOF
chmod +x /etc/init.d/boottasks
update-rc.d boottasks defaults

This script downloads a file called posttasks.sh from our repo server and places
it into the /tmp directory of our newly built host. Next, it uses some simple cat
commands to create an incredibly simple startup script. This startup simply runs the
posttasks.sh script we placed into the /tmp directory.

2. Next, we update our Preseed file to run the prepare.sh command at the very end of
the build process. We can do this using a command similar to the following snippet:
d-i preseed/late_command string chroot /target sh -c "/usr/bin/
curl -o /tmp/prepare.sh http://<< REPO SERVER>>/prepare_script &&
/bin/sh -x /tmp/prepare.sh"

3. Now, let's go ahead and create our third and final script, which will be called at boot
time. On your preseed server, create a new file called post_tasks, and give it the
following contents:

#!/bin/sh

update apt
/usr/bin/apt-get update
/usr/bin/apt-get upgrade
reboot

Now when you build a host, you will find that at its first boot it will update its apt cache,
update any installed packages, and reboot. This is perfect to ensure that all the newly
built servers arrive at the same base line package version, but as you can see, using this
technique you can also call out to systems, such as Ansible to do much more than simply
update the host.

273

4
Virtualization with

VMware ESXi

In this chapter, we will cover the following topics:

 f Installing ESXi

 f Installing and using the Vsphere Client

 f Allowing SSH access to ESXi

 f Creating a new guest

 f Allocating resources to a guest

 f Using the ESXi command line to start, stop, and destroy guests

 f Managing command-line snapshots

 f Tuning the host for guest performance

Introduction
Virtualization has been a cornerstone of the server landscape for some considerable time
and is used both to consolidate servers to wrangle the most efficient use of the underlying
hardware, and to allow for quick and easy deployment of new servers.

Virtualization with VMware ESXi

274

Virtualization has been in use for a much longer time than many systems administrators
might realize, and has been used in one form or another since IBM introduced it onto their
mainframes in the late 1960s. It was only in the late 1990s that virtualization started to
bubble into the consciousness of the commodity server community, and VMware quickly
became the market leader at that time. VMware released their first product in 1999, offering
their workstation product, allowing users to run a virtual and self-contained operating system
on their Windows desktop, constrained only by the hardware resources available at that time.
This was just the beginning, and in 2001 VMware released their first enterprise product,
VMware ESX. ESX allowed x86 server administrators to reduce the physical footprint of their
server estate massively, and opened up the nascent idea of infrastructure as a service.
Without virtualization, it is unlikely that the current technology landscape would look anything
like it does now, and certainly technologies such as IAAS, SAAS, and SDN would not exist.

VMware did not have the market to themselves for long, and subsequently many players have
entered the server virtualization market, including several open source efforts. These projects
have grown sharply, both in terms of usage and in terms of their capabilities, and form the
basis of IAAS offerings such as Amazon EC2 and Rackspace compute.

From the perspective of using DevOps techniques, virtualization offers one of the basic
elements of an elastic and scalable environment: the ability to create, destroy, and amend
hosts at will. Although you can use DevOps techniques without this elasticity, you would want
to arrive at an alternative that allows you the flexibility that virtualization offers.

For this chapter, I have selected ESXi as the hypervisor of choice. Although ESXi is not open
source, the hypervisor is both highly performant and free. It is also the hypervisor for many
enterprises, and as such is probably a technology that you are going to come across at some
point. The recipes in this chapter do not include using the vSphere products. This is the paid
for management layer that offers a web-based GUI, and many advanced enterprise features
such as high availability and automatic balancing of compute load.

However, there are other options available, and these can be fantastic alternatives to ESXi.
Some available alternatives to choose from are:

 f KVM: This is a hypervisor that ships as part of the Linux kernel. It is open source
and has many features that ship with ESXi. KVM is ubiquitous as it ships with the
Linux Kernel, and there are many interesting tools that can be used to manage it. For
further information, visit http://www.linux-kvm.org/page/Main_Page.

 f Xen: This is a powerful bare metal hypervisor and it is open source. Xen underpins
many IAAS projects and offers many powerful features. In particular, you can choose
from several vendors who offer commercial Xen offerings that can rival VMware's
enterprise stack. It can be studied at http://www.xenproject.

 f Oracle Virtualbox: Virtualbox is a completely open source hypervisor that offers many
features. Although predominantly used as a desktop hypervisor, it can be used for
enterprise. For documentation, vist https://www.virtualbox.org.

http://www.linux-kvm.org/page/Main_Page
http://www.xenproject
https://www.virtualbox.org

Chapter 4

275

 f Microsoft HyperV: Microsoft has embraced virtualization and introduced HyperV
as a part of Windows Server 2008 onwards. For enterprises that already have a
large Windows footprint, HyperV offers a compelling and high-performance choice of
hypervisor: http://www.microsoft.com/en-us/server-cloud/solutions/
virtualization.aspxg.

Installing ESXi
Before we go any further, we need to install our virtualization software. In this case, we are
going to use the latest version of VMware ESXi - at the time of writing, ESXi 6.0. Although
VMware has commercial offerings, the bare metal hypervisor is both free to use and widely
employed in private data centers.

Getting ready
First, you will need a place to install ESXi. This means that you are going to need some
hardware that is capable of running it. ESXi supports a wide array of hardware, and most
modern desktops will suffice. If you need a small workgroup server, you can find small servers
such as the Dell PoweredgeT20 or the HP Micro G8 server that will suffice for small workloads
of around five or six smallish VM's. Of course, if you need to support larger workloads, then
ESXi will happily run on monstrous multi-processor and multi-core servers.

You can check out the servers that are compatible at
http://www.vmware.com/resources/compatibility.

Once you have your hardware, the next step is to download the ESXi software. This can be
downloaded from www.vmware.com/go/get-free-esxi. Once you have the ISO image,
you can either burn it to a CD, or, even better, place it on a USB key, and it will be ready to
install. Once your hardware and install media is ready, you will be ready to go.

Although it is not covered here, it is both possible and an excellent
idea to use PXE booting to install ESXi. You can find the details of PXE
booting in the previous chapter, and how to implement it for ESXi at
https://pubs.vmware.com/vsphere-50/topic/com.vmware.
vsphere.install.doc_50/GUID-4E57A4D7-259D-4FA9-AA26-
E0C71487A376.html.

http://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspxg
http://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspxg
http://www.vmware.com/resources/compatibility
www.vmware.com/go/get-free-esxi
https://pubs.vmware.com/vsphere-50/topic/com.vmware.vsphere.install.doc_50/GUID-4E57A4D7-259D-4FA9-AA26-E0C71487A376.html
https://pubs.vmware.com/vsphere-50/topic/com.vmware.vsphere.install.doc_50/GUID-4E57A4D7-259D-4FA9-AA26-E0C71487A376.html
https://pubs.vmware.com/vsphere-50/topic/com.vmware.vsphere.install.doc_50/GUID-4E57A4D7-259D-4FA9-AA26-E0C71487A376.html

Virtualization with VMware ESXi

276

How to do it…
The following steps show you how to install and configure ESXi:

1. The first step is to boot your server from the install media. If you manage to do
this successfully, you will be rewarded with a screen that looks similar to the
following screenshot:

2. Hit return, at this screen (or let the automatic boot time out) and you will be taken to
the ESXi boot-screen. Depending on the specifications of your server, this can take
a few minutes, and it will tell you what stage it is at while it loads. Once the boot
loader has completed the installation, you will be greeted with the installer welcome
screen. Hit return, and you will be presented with the license screen. Once you read
the entirety of the license and digest its many arcane terms, and eventually decide to
agree with it, hit F11 to continue.

3. Once you accept the license, the installer scans your hardware to find devices.
This includes disks. It may be that your hardware uses an esoteric device that ESXi
doesn't yet include, and if this is the case you can slipstream drivers onto your install
media. You can find instructions on how to do that at https://pubs.vmware.
com/vsphere-51/index.jsp#com.vmware.vsphere.install.doc/GUID-
78CC6C2E-E961-4A5E-B07D-0CE7083DE51E.html. Creating your own install
media can be quite a long-winded experience, but there is an alternative in the
form of the ESXi-Customizer software. This presents an easy-to-use GUI that creates
custom install media for you. You can find the ESXi-customizer at http://www.v-
front.de/p/esxi-customizer.html.

https://pubs.vmware.com/vsphere-51/index.jsp#com.vmware.vsphere.install.doc/GUID-78CC6C2E-E961-4A5E-B07D-0CE7083DE51E.html
https://pubs.vmware.com/vsphere-51/index.jsp#com.vmware.vsphere.install.doc/GUID-78CC6C2E-E961-4A5E-B07D-0CE7083DE51E.html
https://pubs.vmware.com/vsphere-51/index.jsp#com.vmware.vsphere.install.doc/GUID-78CC6C2E-E961-4A5E-B07D-0CE7083DE51E.html
http://www.v-front.de/p/esxi-customizer.html
http://www.v-front.de/p/esxi-customizer.html

Chapter 4

277

Many major server vendors, such as HP and Dell, now offer ESXi pre-customized to
work with their hardware, so it is worth checking the product support pages for your
hardware to see if such an option is available. Not only does this enable you to use
any RAID cards that ESXi might not recognize, it normally also allows finer power
management and hardware features.

4. Once ESXi has finished scanning for hardware, it will present you with the disk setup
page, which will resemble the following screenshot:

This screen allows you to select which partition will function as the root partition for
your ESXi instance and will contain both the ESXi operating systems and will also
form the partition that Guest VMs will be stored in until you add more storage. For
now, select the disk you wish to install your VMware on, and hit Enter.

You should use the quickest disk you can lay your hands on for the partition
on which the guests reside. If possible, install ESXi on one disk and then store
your guest VM's on the fastest storage available. Disk latency can have a
profound impact on the performance of guests.

Virtualization with VMware ESXi

278

5. Next, ESXi will prompt you to select your language. Simply select your keyboard layout
and hit Enter. Next up, you need to set the password for your root user. This is the
power user on an ESXi system, so make sure that you create a secure password.
Finally, you will be prompted if you are happy with your selections. If you are, hit the
F11 key to complete the installation. The ESXi installer will now copy the files onto
your selected partition and install the hypervisor. If all goes well, you should find
yourself with the following success screen:

6. Select the Remove the installation disc before rebooting..., hit Enter, and the
installer will reboot the server. After a reboot, you will be greeted with the ESXi start-
up screen. This will list the start-up steps, and after a short while you will come
across a screen that looks something like this:

Chapter 4

279

Congratulations! You now have a bare metal hypervisor ready and waiting for you to
add a new guest.

Installing and using the vSphere Client
For this chapter, we will mostly use the VMware command-line tools to carry out our tasks.
Understanding the VMware CLI helps you to use SSH and scripting to automate many tasks.
However, for some day-to-day tasks, having a GUI at hand can be a quick and easy way to
visualize what is happening on your ESXi platform.

As you can guess from the name, the vSphere Client manages the VMware vSphere platform.
The vSphere platform is VMware's commercial offering; it provides an easy method of
managing a large number of hypervisors and running hundreds of guests. It can also be
used as an effective GUI to control a single instance of the free ESXi hypervisor.

Virtualization with VMware ESXi

280

Getting ready
The vSphere Client can be downloaded from your new ESXi server. Use your browser to
navigate to the IP address or name of your new ESXi server. You will be greeted with a page
that resembles the following screenshot. Note the highlighted download link:

Click on the Download vSphere Client to download the install file.

The astute among you might have already noticed that there is a single link
to download the client. This is because there is only one available client:
a Windows client. You might want to skip this section if you don't have a
Windows desktop to install the client on. Don't worry, though: you can create
and work with hosts using just the CLI.

Once you have downloaded the installer, locate it and double-click to start. It will prompt you
for an install location, but unless you have a strong preference for where the software should
be installed, simply click on the next button until the installation is completed.

Chapter 4

281

How to do it….
Let's install and use the vSphere Client client:

1. Once you have installed the software, open your Start menu and select the VMware
vSphere Client. You will be presented with a login screen that resembles the
following screenshot:

Virtualization with VMware ESXi

282

2. Enter the IP address or name of your ESXi server in the IP address field. In the
User name and Password fields, you need to enter the details you entered when
you set up your ESXi host (remember, the default admin user is root). You will be
taken to your ESXi inventory when you click the Login button. Your inventory will be
blank, but your hosts will appear on the left hand side as soon as you enter some.
Here are mine as an example:

We're not going to spend any more time dwelling on the vSphere Client, although
it's useful to know that it's available; however, due to its limitations, we are going to
concentrate on the ESXi CLI. This allows you to manage your ESXi server using an
SSH client and, more importantly, once you understand how to use it to carry out
tasks, it allows you to use SSH to automate the tasks.

Allowing SSH access to ESXi
ESXi ships with a minimal Userspace client to allow you to interact directly with the ESXi
server. This offers you the ability to use the command line to manage crucial tasks such as
creating new hosts, deleting hosts, and adjusting configuration. Access is enabled via SSH,
allowing you to use an existing SSH client to log on.

Chapter 4

283

It is incredibly important that you keep this secure. By allowing SSH to the
ESXi server, you are opening a new attack surface, and if a malicious user
gains access it will have a full control over the underlying hypervisor. If you do
allow SSH access, I strongly recommend ensuring that it is heavily firewalled
from general access.

Getting ready
To use this recipe, you will need an ESXi installed host.

How to do it…
Let's configure and allow SSH to the EXSi server:

1. On the ESXi console, press F2 to bring up the options page. This should look similar
to the following screenshot:

Virtualization with VMware ESXi

284

2. Select the option named Troubleshooting Mode Options. This should reveal a screen
that resembles the following screenshot:

3. Set Enable ESXiSSH to true and exit this screen.

You may notice that there is both an ESXi shell and SSH. SSH allows remote
access, and the shell allows you to interact with the hypervisor from the
console. For this recipe, we only need to enable the SSH access.

4. To test that you have SSH access, use a SSH client to connect to your ESXi host as if
it were any other host. Use the login details you set when you installed your ESXi host
(if in doubt, the username should be root and the password will be what you set). You
should see a shell prompt that looks similar to the following screenshot:

Chapter 4

285

Creating a new guest
Virtualization offers you the ability to create new virtual guests quickly and easily on the
underlying ESXi host. You can create your hosts using a GUI, but it's possible to define and
create hosts entirely from the command line.

This recipe shows you how to achieve this by creating a VMware configuration file and
importing it using the ESXi shell.

Getting ready
You'll need an ESXi host that has SSH enabled.

How to do it...
Let's create a new guest using SSH onto your ESXi host:

1. SSH onto your ESXi host, and change directory to your default data store using the
following command:
cd /vmfs/volumes/datastore1

2. Next, you need to create a place to hold the VM files. You can do this by using the
mkdir command:
mkdir examplevm

Virtualization with VMware ESXi

286

3. Now, you need to create the configuration file that we are going to use to
construct our guest. Use vi to create a new file called examplevm.vmx, and
insert the following content:
config.version = "8"
virtualHW.version = "11"
memsize = "256"
numvcpus = "1"
cpuid.coresPerSocket = "1"
floppy0.present = "false"
displayName = "newVM"
guestOS = "linux"
ide0:0.present = "TRUE"
ide0:0.deviceType = "cdrom-raw"
ide:0.startConnected = "false"
Ethernet0.present = "TRUE"
Ethernet0.connectionType = "monitor_dev"
Ethernet0.networkName = "VM Network"
Ethernet0.addressType = "vpx"
scsi0.present = "true"
scsi0.virtualDev = "pvscsi"
scsi0:0.present = "true"
scsi0:0.fileName = "newvm.vmdk"
scsi0:0.deviceType = "scsi-hardDisk"

4. Let's take a look at some of the important values from the example:

virtualHW.version: The virtual hardware defines the capabilities of the underlying
hypervisor. More details can be found at http://kb.vmware.com/selfservice/
microsites/search.do?language=en_US&cmd=displayKC&external
Id=1003746.

memsize: This defines the RAM allocated to the guest and is expressed in megabytes.

scsi0:0.fileName: This is the name of the disk that we will create in the next step.

numvcpus: This sets the number of physical CPUs that are offered to the virtual host.

cpuid.coresPerSocket: This setting defines how many CPU-cores are allocated per
virtual CPU.

Frustratingly, VMware does not document the various options for
the VMX files. You can find more details by searching online on
various forums, but the best way to find new settings is to create a
host by using the GUI and then editing the resulting .vmx file.

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1003746
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1003746
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1003746

Chapter 4

287

Next, we need to create a new virtual disk for this guest:

1. You can do this using the following command:
vmkfstools –c -a pvscsi -d zeroedthick4gnewvm.vmdk

This will create a new VMDK file called newvm that is sized at four gigabytes and with a
virtual Paravirtual SCSI interface.

You can find the usage details for the vmkfstools utility at
https://pubs.vmware.com/vsphere-51/topic/com.
vmware.vsphere.storage.doc/GUID-A5D85C33-A510-
4A3E-8FC7-93E6BA0A048F.html.

2. Next, we will register the machine with ESXi. This makes it available to power on and
start to install. At the ESXi command line, issue the following command:
vim-cmd -s register /vmfs/volumes/datastore1/example.vmx

This will parse the VMX file and register the new host. If you are able to access a GUI,
you will see your new guest listed as powered off.

3. Finally, we will start the Guest VM using the following command. To do this, we
require the inventory ID of the machine. You can find it with the following command:
vim-cmdvmsvc/getallvms

This should produce an output similar to the following screenshot:

4. Note the Vmid on the left-hand side. You can start the VM using the ID in the
following command:

vim-cmdvmsvc/power.on<Vmid>

This will then power-on the VM and make it available for use.

https://pubs.vmware.com/vsphere-51/topic/com.vmware.vsphere.storage.doc/GUID-A5D85C33-A510-4A3E-8FC7-93E6BA0A048F.html
https://pubs.vmware.com/vsphere-51/topic/com.vmware.vsphere.storage.doc/GUID-A5D85C33-A510-4A3E-8FC7-93E6BA0A048F.html
https://pubs.vmware.com/vsphere-51/topic/com.vmware.vsphere.storage.doc/GUID-A5D85C33-A510-4A3E-8FC7-93E6BA0A048F.html

Virtualization with VMware ESXi

288

Allocating resources to a guest
Now that we have the ability to create virtual machines, we also need a way to amend them.
One of the huge advantages of virtualization is the ability to amend the specification of the
virtual machines very quickly and easily. Need more RAM? No problem. Need a few more CPU
cores? Easily done. The flexibility of virtual hardware is one of its biggest selling points and
one of its most powerful features. In this recipe, we'll take a look at how we can amend an
existing host to add more RAM and more processors.

Getting ready
You'll need an ESXi host with remote access enabled and a virtual host that you wish
to amend.

How to do it…
Let's allocate resources to the guest:

1. SSH onto the ESXi host and locate the .vmx file of the virtual machine you wish to
amend. Open it using the following command:
vi <virtualmachine>.vmx

This will open up the configuration file for the virtual machine, and it will look similar
to this snippet:

scsi0.present = "TRUE"
scsi0:0.deviceType = "scsi-hardDisk"
scsi0:0.fileName = "examplevm.vmdk"
scsi0:0.present = "TRUE"
ethernet0.virtualDev = "e1000"
ethernet0.networkName = "VM Network"
ethernet0.addressType = "generated"
ethernet0.wakeOnPcktRcv = "FALSE"
ethernet0.present = "TRUE"
displayName = "examplevm"
guestOS = "ubuntu-64"
toolScripts.afterPowerOn = "TRUE"

2. To add more RAM, locate the line called memSize in the .vmx file and change it to
the desired size in megabytes. For instance, for a 16GB VM, I'd amend it to reflect the
following value:
memSize = "16384"

Chapter 4

289

3. To amend the number of virtual sockets and cores the virtual machine has, you need
to amend the numvcpus and cpuid.coresPerSocket values respectively. For
instance, to create a powerful machine that has four sockets, each with two cores,
you would insert the following configuration:
numvcpus = "8"

cpuid.coresPerSocket = "4"

Be careful with what you set here: from a common-sense
perspective, it makes no sense to create a machine that has
50 cores and 2TB of RAM if you are intending to run it on a host
that only has two cores and 16GB of RAM.

4. You will need to restart the virtual machines for the changes to come into effect.

Using the ESXi command line to start, stop,
and destroy guests

Now that we are able to create and amend our VMs, it's time to look at some of the more
basic management tasks; that is, how we stop, start, and destroy them. This is especially
useful to know in a command line, as it opens up the possibility to use scripting to manage
the lifecycle of a VMware guest.

Getting ready
You will need an ESXi host with SSH access and a VMware guest that is ready to be started.

How to do it…
Let's use the ESXi command to start or stop a virtual machine:

1. Before we start or stop a virtual machine, we should first ascertain its current state.
This can be done using the following command on the ESXi host:
esxclivm process list

You can find further details of the esxcli command
at https://pubs.vmware.com/vsphere-60/
index.jsp?topic=%2Fcom.vmware.vcli.ref.
doc_50%2Fesxcli_vm.html.

https://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware.vcli.ref.doc_50%2Fesxcli_vm.html
https://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware.vcli.ref.doc_50%2Fesxcli_vm.html
https://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware.vcli.ref.doc_50%2Fesxcli_vm.html

Virtualization with VMware ESXi

290

This will give an output similar to the following screenshot:

0

2. Once you have the World ID of the virtual machine, you can use the ESXi command
line to stop it. This can be done using the following command:
$ esxclivm process kill --type=soft --world-id=<worldID>

The three options that you can use to stop the virtual machine are soft, hard and
force. Soft denotes a standard shutdown, hard essentially simulates yanking a power
plug out of the back, and force should be used only as a last resort, as ESXi will
immediately kill the process with no attempt at a graceful shutdown. This can leave
the guest in an indeterminate and possibly corrupt state.

3. To start a VM, first list the available VMs using the following command:

$vim-cmdvmsvc/getallvms

Once you've found the VM you are interested in, you can start it using the following
command:

$ vim-cmdvmsvc/power.on<VMID>

Managing command-line snapshots
One of the huge advantages of using virtual machines is the ability to use snapshots to take
a point-in-time image of a guest. This allows you to take risks, since as long as you have a
snapshot to return to, you know that you can easily go back to a known good state.

Chapter 4

291

Snapshotting is one of the prime candidates for scripting. You should take a snapshot every
time you carry out an operation on a virtual machine. Installed a new package? Take a
snapshot. Changed some settings? Take a snapshot.

Although I encourage you to use snapshots freely, you should also have a
strategy for removing them. ESXi essentially keeps a set of difference files
when it takes snapshots, and these can very quickly eat disk space if left to
grow with no removal strategy. I personally append a date to the name of each
snapshot and routinely remove any that are over a month old.

Getting ready
For this recipe, you will need an ESXi host and a guest VM.

How to do it…
Let's manage the command-line snapshot:

1. First, find the id of the VM that you wish to examine for snapshots. To do this, use
the following command:
$ vim-cmdvmsvc/getallvms

2. Using the id of the VM, issue the following command to take a snapshot of the guest:
$ vim-cmdvmsvc/snapshot.create<vmid><snapshot
name><"description"><include memory><quiesced>

3. For example, the command will look similar to this:
$ vim-cmdvmsvc/snapshot.create 2 test1"A test" 1 1

Generally, you want both include memory and quiescence to be set to true.
If you set include memory to zero, then you lose the ability to take a booted
snapshot. When you restore the snapshot, it will instead reboot the machine.
Quiescing the file system of the guest allows the VMware tools to order the
underlying file system in a suitable manner for backups of the snapshot.

Once you have issued this command, you will have a new snapshot of your guest.

Virtualization with VMware ESXi

292

4. Now that we have the snapshots, we need to be able to work with them. First, find
the ID of the VM you wish to examine for snapshots. To do this, use the following
command:
$ vim-cmdvmsvc/getallvms

5. To see a list of snapshots present on the guest, issue the following command using
the ID of the VM:
$ vim-cmdvmsvc/get.snapshotinfo

This should produce an output that looks similar to the following screenshot:

The preceding output tells us quite a lot, but the key values are name and
createTime. These tell us the name of the snapshot and the date it was created.

6. Now that we have listed the snapshots on the guest, we can tidy them. Using the
following command, find the ID of the VM that you wish to denude of its snapshots:
$ vim-cmdvmsvc/getallvms

7. Once you have found the VM you wish to strip of snapshots, you can remove all the
snapshots using the following command:

$ vim-cmdvmsvc/snapshot.removeall<VMID>

Chapter 4

293

Note that <VMID> is the id of the VM you wish to clear down. This will remove all the
snapshots from the target machine, and can be especially useful if a guest has built
up a great many snapshots.

Tuning the host for guest performance
Although ESXi ensures that the guest OS believes it is running on real hardware, it is of course
running on a time-shared virtual system. Although the hypervisor does its best to mask this
to the guest operating system, there are steps that you can take to help ensure the best
performance.

This recipe will show you how to tune the performance of an Ubuntu guest OS. However,
you can also find other tuning guides, for example, for Windows.

Getting ready
For this recipe, you will need an ESXi host and an Ubuntu 14.04 guest.

How to do it…
First, you need to install the VMware guest-tools. The OpenVM tools are an open source
version of the official VMware tools, and they facilitate better memory management and
network performance:

1. To install them, use the following command:
$ sudo apt-get install open-vm-tools

This will install the command-line version of the OpenVM tools and start them.

2. Time synchronization is vital for many systems, especially if they deal with SSL
certificates (extreme time drift can invalidate the certificate exchange). Due to the
time-sharing nature of hypervisors, time drift can be especially severe, and although
the VM tools can synchronize time with the ESXi host, best practice is to use NTP. To
setup ntp, install the ntp client using the following command:
$ sudo apt-get install ntp

3. To set the NTP servers that you synchronize with, edit the /etc/ntp.conf file. By
default, it should contain the following:

server 0.ubuntu.pool.ntp.org

server 1.ubuntu.pool.ntp.org

server 2.ubuntu.pool.ntp.org

server 3.ubuntu.pool.ntp.org

Virtualization with VMware ESXi

294

Replace the server listing with servers that are applicable to your environment.
Generally, it's best to run a local NTP server that all your servers can set time by.

If want to use alternative servers to the default Ubuntu ones and do
not yet have an internal NTP server, than you can find a list of publically
available NTP servers at http://www.pool.ntp.org.

See also
I highly recommend you read the official ESXi documentation. You can find it at https://
www.vmware.com/support/pubs/vsphere-esxi-vcenter-server-6-pubs.html.

http://www.pool.ntp.org
https://www.vmware.com/support/pubs/vsphere-esxi-vcenter-server-6-pubs.html
https://www.vmware.com/support/pubs/vsphere-esxi-vcenter-server-6-pubs.html

295

5
Automation

with Ansible

In this chapter, we are going to cover the following topics:

 f Installing Ansible

 f Creating a scaffold Playbook

 f Creating a common role

 f Creating a webserver using Ansible and Nginx

 f Creating an application server role using Tomcat and Ansible

 f Installing MySQL using Ansible

 f Installing and managing HAProxy with Ansible

 f Using ServerSpec to test your Playbook

Introduction
Automation is one of the defining techniques of DevOps engineers, and it's not entirely without
reason. Both developers and operators have long made use of automation methods to provide
services, with operators using automation to define server configuration, and developers
automating software build activities. However, until recently, there have been limited tools for
server definition. The venerable CF Engine was the incumbent for many years, which offered
system administrators the ability to use DSL (Domain Specific Language) to define the state
of a system for the first time, rather than a suite of custom shell scripts.

Automation with Ansible

296

Since then, the configuration management marketplace has exploded, with new tools being
announced seemingly on a monthly basis. Several front runners have emerged however, and
it seems that (at the time of writing) the competition for the hearts and minds of developers
is between CFEngine, Chef, Puppet, Salt, and Ansible. These tools have the majority of the
market share and are in popular usage.

Ansible in particular has seen huge growth. Based around a simple syntax which utilizes the
YAML (Yet Another Markup Language) format, and not requiring a complex server and client
arrangement, it provides a very low barrier to entry to automation. These recipes will use
Ansible to create and manage some popular software packages and demonstrate the power
and simplicity of Ansible automaton.

Installing Ansible
Before we go any further, we will need to install Ansible. As mentioned in the introduction,
Ansible is simple to install, and does not require a complex master/slave arrangement. A
package for Ansible is available for Linux and MacOS, and the source code is readily available
from Github should you wish to try the latest and greatest release. We are going to use the
package method to install Ansible on Ubuntu 14.04.

Getting ready
For this recipe, you will need an Ubuntu 14.04 host.

How to do it…
Installing the latest stable version of Ansible is easy, as the Ansible project maintains an
Ubuntu PPA. This allows you to use the apt package manager to install it:

1. First, add the required software using the following command:
$ sudo apt-get install software-properties-common

Now, add the Ansible PPA repository:

$ sudo apt-add-repository ppa:ansible/ansible

2. Update your apt repository to ensure that the Ansible repository is up to date:
$ sudo apt-get update

3. Finally, use apt to install the Ansible software:
$ sudo apt-get install ansible

4. You can test if Ansible is successfully installed by running the following command:

$ ansible --version

Chapter 5

297

See also
The detailed installation guide for Ansible is available at http://docs.ansible.com/
intro_installation.html.

Creating a scaffold Playbook
Ansible Playbooks are a means to organize Ansible tasks (or Plays as they are known in the
Ansible world) so that they can be applied to groups of servers. Within each Playbook, you
will find a set of roles; roles contain a combination of Ansible code, variables, and potentially
files and templates. These are often organized along the lines of functions such as an Apache
web server or MySQL. For instance, you might have a Playbook that is used to create web
applications; the web application requires a MySQL server, Apache Web server, and Tomcat
server. The Playbook contains the list of tasks to be run against each server that makes up
the service, and the roles contain the code that actually implements the configuration.

A Playbook that has been written correctly can be used to set up a system in many different
environments; this means that you can use the same Playbook to set up a system in the Dev,
UAT, and production environments. With judicious use of templates and variables, you can
keep your code small and concise, but still have it set up your environment wherever it
may be.

In this recipe, we will create a bash script to set up a scaffold Playbook. This skeleton is
based largely on Ansible best practices (http://docs.ansible.com/playbooks_best_
practices.html), with some additional tweaks for maintaining multiple environments. This
is an opinionated script, which assumes that you will have a self-contained inventory and a
dev, uat and production environment; feel free to tweak it to make it more suited to
your purpose.

Getting ready
You'll need an Ubuntu 14.04 client with Ansible installed.

How to do it
The steps that follow will show you how to create a bash script that will create the layout for
our template Playbook.

http://docs.ansible.com/intro_installation.html
http://docs.ansible.com/intro_installation.html
http://docs.ansible.com/playbooks_best_practices.html
http://docs.ansible.com/playbooks_best_practices.html

Automation with Ansible

298

The Playbook layout the script will create will be as follows:

<Playbookname>
 files/
 <environments>/
 group_vars/
 <environments>/
 inventories/
 roles/
<Playbook_name.yml>

This creates everything that is required for a Playbook, including an inventory and a place to
store variables for different environments:

1. Using your editor, create a new file called playbookscaffold.sh.

2. Edit the playbookscaffold.sh file and insert the following code snippet:
#!/usr/bin/env bash
Display usage instructions
usage() { echo "Usage: $0 [-p <Playbook Path>] [-t <Playbook
Title>]" 1>&2; exit 1; }
Gather the users options
while getopts ":p:t:" OPTION; do
 case "${OPTION}" in
 p)
 PROJECT_PATH=${OPTARG}
 ;;
 t)
 PLAYBOOK_TITLE=${OPTARG}
 ;;
 *)
 usage
 ;;
 esac
done
If the user missed a switch, get them remind them that
they need to add it.
if [-z ${PROJECT_PATH}]; then
echo "You need to supply a Project Path"
exit 1
fi
if [-z ${PLAYBOOK_TITLE}]; then
echo "You need to supply a Project Title"
exit 1
fi

Chapter 5

299

Now we have the path and title, build the layout
mkdir -p "${PLAYBOOK_PATH}/files"
mkdir -p "${PLAYBOOK_PATH}/group_vars"
mkdir -p "${PLAYBOOK_PATH}/host_vars/dev"
mkdir -p "${PLAYBOOK_PATH}/host_vars/uat"
mkdir -p "${PLAYBOOK_PATH}/host_vars/prd"
mkdir -p "${PLAYBOOK_PATH}/inventories"
mkdir -p "${PLAYBOOK_PATH}/roles"
Use Ansible galaxy init to create a default 'common' role
ansible-galaxy init common -p "${PLAYBOOK_PATH}/roles/"
touch "${PLAYBOOK_PATH}/inventories/dev"
touch "${PLAYBOOK_PATH}/inventories/uat"
touch "${PLAYBOOK_PATH}/inventories/prd"
touch "${PLAYBOOK_PATH}/${PLAYBOOK_TITLE}.yml"

3. You should now be able to run the script, supply it with a path and title, and have a
new skeleton Playbook.

The ansible-galaxy command can be used for more besides creating the
skeleton role and is the best tool to install roles from the Ansible Galaxy role
repository. More details can be found at http://docs.ansible.com/
galaxy.html#the-ansible-galaxy-command-line-tool.

As you can see, this script is opinionated and it assumes that you are going to have three
different environments named dev, uat and production. This is a standard pattern, but
you can amend it to fit your own particular environment. The Playbooks that this skeleton
creates are perfect for collaboration, as they contain literally everything that is required,
from the inventory through to the variables that each environment requires. If you add a new
environment, you can simply add a new directory to hold the variables, populate it, and be up
and running.

Creating a common role
Now that we have a way to create our scaffold Playbook we can go ahead and create our first
role; this role will create users, add SSH keys, and install software. I tend to find it invaluable
on any server I am managing.

Getting ready
For this recipe, you need an Ubuntu 14.04 server to act as an Ansible client, and an Ubuntu
14.04 server that you wish to configure.

http://docs.ansible.com/galaxy.html#the-ansible-galaxy-command-line-tool
http://docs.ansible.com/galaxy.html#the-ansible-galaxy-command-line-tool

Automation with Ansible

300

How to do it…
Let's create a common role:

1. First, create a new playbook using our scaffold script, which we created in the
preceding recipe:
$ playbookscaffold.sh -p . -t "first_playbook"

2. Edit first_playbook/roles/common/tasks/main.yml and insert the following
code snippet:

tasks file for common
- include: create_users.yml

The include statement tells Ansible to parse the included file before moving on to
the next statement. Includes are a great way to organize complex sets of tasks within
roles and I encourage you to use them in your own efforts; not only do they split up
large chunks of code, they also make it very readable for anyone maintaining the role.
By looking in the main.yml file and seeing the includes, they can see a complete
list of the major activities the role will perform.

3. Next, navigate to first_playbook/roles/common/tasks and create a new file
called create_users.yml. We're going to add some Ansible code to create new
users. To achieve this, we are going to use a YAML dictionary to describe the users,
which are then used with a with_dict declaration to loop through. This has two
benefits: first, it keeps the code small and readable, and second, it abstracts the data
from the code. It means that you can have separate user lists depending on your
environment.

You can find more information on loops on the Ansible site at
http://docs.ansible.com/playbooks_loops.html.

4. Edit first_playbook/roles/common/create_users.yml and insert the
following code:
- name: Add users
 user: name={{ item.key }} state={{ item.value.state }} uid={{
item.value.uid }} shell={{ item.value.shell }} password={{ item.
value.password }} update_password=on_create
 with_dict: users

- name: Add Keys
 authorized_key: user={{ item.key }} key="{{ item.value.sshkey
}}"
 with_dict: users

http://docs.ansible.com/playbooks_loops.html

Chapter 5

301

This defines two Ansible tasks. The first loops through a dictionary called users and
creates new users on the target node based on that information. The second task
then loops through the same dictionary and takes the user's SSH keys and inserts
them into the authorized_key file, thus allowing you to use keys to manage user
access.

5. Now that we have written the code, we need to create the data for it to consume.
Create a new file called users.yml under first_playbook/group_vars/dev
and insert the following code:
users:
 admin:
 state: present
 comment: "Administrator User"
shell: "/bin/bash"
 uid: 5110
 gid: 5110
 password: "<< PASSWORD >>"
 sshkey: "<< PUB_KEY >>"

 testuser:
 state: present
 comments: "Example User"
 shell: "/bin/bash"
 uid: 510
 gid: 510
 password: "<< PASSWORD >>"
 sshkey: "<< PUB_KEY >>"

Wherever you see < PUB_KEY > insert the user's public key as a string and insert
the user's encrypted password where you see < PASSWORD >. Users can use the
mkpasswd utility to generate the password using the following command:

mkpasswd --method=SHA-512

6. This creates users for the dev environment; you can now maintain a different list of
keys and users for other environments by creating a users.yml file under first_
playbook/group_vars/<<environment>>/.

7. Now that we have created our users, let's install some packages that we want present
on each host. First, let's create a new task within our common role by creating a new
file called install_packages.yml under first_playbook/roles/common/
tasks/ by inserting the following code:
- name: "Install Common packages"
 apt: name={{ item }} state=latest
 with_items:
 - sysstat
 - open-vm-tools

Automation with Ansible

302

8. Again, we will use a loop to perform a repetitive task, and this code will install every
package within the with_items list.

with_items is an invaluable directive to keep in mind. Often
you can shorten very long tasks with adroit use of the with_
items command.

9. We also need to include this task in our main.yml file, so edit the first_
playbook/roles/common/tasks/main.yml file and ensure that it has the
following code:
tasks file for common
- include: create_users.yml
- include: install_packages.yml

Keep in mind that Ansible will parse these in the order
presented, so the users will always be created before the
packages are installed.

10. Now we will create the playbook file itself. The playbook file defines which roles
to apply against a host or set of hosts, and allows you to configure elements such as
which user to run as, and if it should prompt for a sudo password when executed.
This file should already have been created by the scaffold script, so edit first_
playbook/first_playbook.yml and insert the following code:
- name: Manage Common Items
 hosts: all
 remote_user: "{{ remote_user }}"
 sudo: yes

 roles:
 - { role: common, tags: ['common'] }

Note the hosts item; by using hosts: all, we ensure
that every host within our inventory is configured using
the common role. Note the assignment of a tag within the
role declaration; this is good practice, and it allows you to
selectively run individual elements of a complex playbook.

This is done using the --tags switch in the ansible-
playbook command. You can find further details at
http://docs.ansible.com/ansible/playbooks_
tags.html.

http://docs.ansible.com/ansible/playbooks_tags.html
http://docs.ansible.com/ansible/playbooks_tags.html

Chapter 5

303

11. Note that we have used a variable to define the remote_user; often, environments
have different predefined superusers. By using a variable, we can define the
username of the superuser for each individual environment. For example, to define
the variable for the dev environment, create a file in first_playbook/group_
vars/dev/main.yml and insert the following configuration:
remote_user: admin

Here, remote_user is the username of the environment's power user.

12. Now we are missing only one more element: the inventory. As we are aiming to make
this playbook self-contained, we will create the inventory along with it, rather than
relying on the default Ansible location. This means that you will have a playbook
that you can share with your colleagues, and it will contain every element required
to build the targeted environment. We're now going to define our development
environment. You should already have a file called named dev in first_playbook/
inventories. Edit it and insert the following code:
[<<groupname>>]
<<targethosts>>

[dev:children]
<< groupname >>

13. Where <<groupname>> is the group of servers that you wish to collect, and
<<targethosts>> is the list of the servers you wish to configure within that group.
Notice the [dev:children]block at the end. This group is the link between your
environment variables and your inventory, and it should reflect the environment for
which you are creating the inventory. Ensure that any group that you create is also
listed within the dev:children group of groups to ensure that your variable files are
included within the Play.

Ansible creates a link to the directories in the group_vars folder
in the playbook for both hosts and groups in the inventory; thus, in
the preceding example, we can use <<playbook>>/groups_
vars/<<hostname>>/main.yml, <<playbook>>/group_
vars/prerequisites/main.yml, and <<playbook>>/
group_vars/dev/main.yml to hold variables. This allows you
to set the variables at the most appropriate place in your hierarchy.

14. Once you are happy, you can run your new playbook. At the command line, use the
following command within the root directory of your playbook:

$ ansible-playbook -i inventories/dev -K first_playbook.yml

Automation with Ansible

304

The -i switch is used to indicate where your inventory is located, and the -k to
indicate which playbook that is to be executed. This should produce an output that
looks similar to the following screenshot:

The preceding screenshot uses the default (and some would say, boring)
output. If you want to have a little fun with your configuration management,
then install the cowsay package on the host you're running your Ansible
scripts from and enjoy a little cow-based joy. You can install cowsay by
issuing apt-get install cowsay.

Chapter 5

305

See also
 f You can find details about the Ansible module user at the following locations:

 � User: http://docs.ansible.com/user_module.html

 � Apt: http://docs.ansible.com/apt_module.html

 f You can find the documentation for Ansible Playbooks at http://docs.ansible.
com/playbooks.html

 f And you can find the example code for this recipe at https://github.com/
stunthamster/devopscoobookcode

Creating a webserver using Ansible and
Nginx

Now we have our common role defined, we can move onto defining specific roles to install and
manage applications. One of the more common tasks that underpin many web applications is
the installation of an HTTP server. This is a relatively common task that belies a large amount
of configuration; installing a package is easy, but applying the configuration and tuning can
be non-trivial, especially when you are maintaining multiple servers in a cluster. A simple
mistake, such as applying tuning to one host but not the other, can lead to obscure issues,
such as a misbalanced cluster, and it can be tricky to track down if each host has been
created manually. We are going to create a new role that allows us to install, configure, and
tune the powerful Nginx HTTP server across any number of clients.

Getting ready
For this recipe, you will need an Ubuntu 14.04 host to run your Ansible Playbook and at least
one Ubuntu 14.04 server to configure as the Nginx server.

How to do it…
1. First, we need to create a new role within our playbook. To accomplish this, we are

going to use the ansible-galaxy command to create a new scaffold role. On the
command line, navigate to your first_playbook/roles directory and issue the
following command:
$ ansible-galaxy init nginx --force

This will create our new role.

http://docs.ansible.com/user_module.html
http://docs.ansible.com/apt_module.html
http://docs.ansible.com/playbooks.html
http://docs.ansible.com/playbooks.html
 github.com/stunthamster/devops_coobook_first_playbook
 github.com/stunthamster/devops_coobook_first_playbook

Automation with Ansible

306

2. Next, we need to start defining our tasks. Let's create a task to install the packages.
Within the first_playbook/roles/nginx/tasks directory, create a new file
called install_packages.yml and insert the following code:
- name: "Install Nginx packages"
 apt: name=nginx state=present

3. To include this within the role, edit first_playbook/roles/nginx/tasks/
main.yml and ensure that it includes the following:

tasks file for nginx
- include: install_packages.yml

4. Next, we need to configure Nginx. For this, we are going to use the power of Ansible
templates. Create a new file called nginx.j2 in the first_playbook/roles/
nginx/templates directory and insert the following code:
user www-data;
worker_processes {{ worker_processes }};

pid /run/nginx.pid;

events {
 worker_connections {{ worker_connections }};
 multi_accept {{ multi_accept }};
}

http {
 sendfile {{ send_file }};
 tcp_nopush {{ tcp_nopush }};
 tcp_nodelay {{ tcp_nodelay }};
 keepalive_timeout {{ keepalive_timeout }};
 types_hash_max_size {{ types_hash_max_size }};
 server_tokens {{ server_tokens }};
 include /etc/nginx/mime.types;
 default_type application/octet-stream;
 access_log /var/log/nginx/access.log;
 error_log /var/log/nginx/error.log;
 gzip {{ gzip }};
 gzip_disable "msie6";
 include /etc/nginx/conf.d/*.conf;
 include /etc/nginx/sites-enabled/*;
}

This file is a fairly standard Nginx configuration file with Jinja2 template elements
applied to it. Whenever you see a set of curly braces, it will be interpolated with data
supplied by our Ansible.

Chapter 5

307

Templating is insanely powerful; wherever possible,
ensure that you manage your configuration items with a
variable, even if it's not a value you are interested in at
the moment. Although it's a little bit of upfront work, it
pays dividends when you do need to change something
further down the line.

5. Now we have created our template, we need to create a place to store the values that
we are going to insert into the variables defined within the template. Create a new file
called nginx.yml within the first_playbook/group_vars/dev directory and
fill it with the following values:
worker_processes: 4

worker_connections: 768

multi_accept: "on"

send_file: "on"

tcp_nopush: "on"

tcp_nodelay: "on"

keepalive_timeout: 65

types_hash_max_size: 2048

server_tokens: "off"

gzip: "on"

6. Next, we need a task that will copy the template to an appropriate place on the
server. Create a new file called configure_nginx.yml under the first_
playbook/roles/nginx/tasks directory and insert the following code:
- name: Deploy Nginx configuration
 template: src=nginx.j2 dest="/etc/nginx/nginx.conf"
 notify: restart nginx

Note the notify:directive. This makes use of the ability of Ansible to trigger
actions if it causes a change of state to a resource. In this case, Ansible will restart
Nginx every time there is a change in the nginx configuration. This is incredibly
useful, as it ensures that whenever you use Ansible to push a change, it gets applied.
Let's add the code to manage the restart.

7. Edit the first_playbook/roles/nginx/handlers/main.yml file to contain
the following code snippet:
- name: restart nginx
 service: name=nginx state=restarted

Automation with Ansible

308

As you can see from the directory it resides in, this is known as a handler. A handler
is a task that is only called when another task triggers a notify directive. This allows
you to trigger events after implementing a change of state within a task. A classic
example is the one that we have used, restarting a service after a configuration
change.

8. We're going to apply a common tuning technique when running a high-volume web
server, and increase the number of open files available to the Nginx user. Within
Linux, everything is considered a file, including network sockets; a high-volume web
server can chew through the default 1024 extremely quickly, so it's a good practice to
allow a high number, especially if the server is dedicated to the Nginx role. Within the
first_playbook/roles/nginx/tasks/configure_nginx.yml file, add the
following code:
- name: Add File limits

 lineinfile: dest=/etc/security/limits.conf line='www-data
- nofile 65535' owner=root group=root mode=0644

 notify: restart nginx

This uses the Ansible lineinfile module to insert a value into the limits.conf
file; note that this value will be inserted at the end of the limits.conf file.

This is a fairly simple use of lineinfile, but it is a powerful
module and you should be comfortable with it, as it can use a
regular expression to insert, amend, and replace values. You
can find more details of the lineinfile module at http://
docs.ansible.com/ansible/lineinfile_module.
html.

9. One last task remains in configuring Nginx, and that's to remove the default site that's
installed when the package is installed. Again, we're going to use our configure_
nginx task by adding the following code snippet:
- name: Remove defaults

 file: path="/etc/nginx/sites-enabled/default" state=absent

The state=absent declaration ensures that if the file is present then Ansible will
remove it.

10. Finally, we add the configure_nginx task to our role by adding the following to the
main.yml file:
- include: configure_nginx.yml

http://docs.ansible.com/ansible/lineinfile_module.html
http://docs.ansible.com/ansible/lineinfile_module.html
http://docs.ansible.com/ansible/lineinfile_module.html

Chapter 5

309

11. We're now ready to add our own virtualhost to nginx, and we will use the
templates to keep them consistent. First, let's create a template virtualhost;
create a new file called virtual_host.j2 in first_playbook/roles/nginx/
templates/virtual_host.j2 and insert the following content:
server {

 server_name {{ item.value.server_name }};
 root {{ item.value.vhost_root }};
 index index.html index.htm;
 location / {
 try_files $uri $uri/ =404;
 }
}

Again, notice the use of double curly braces to denote an interpolated Ansible
variable. The preceding virtualhost file is a simple one and we only have two
values to configure; the server name, such as www.example.com, and the root file
system where the HTML files can be found.

12. Now that we have a template, let's create a new variable file to hold the values to
insert into it. First, create a new file called virtualhosts.yml under the /first_
playbook/group_vars/dev/directory and insert the following dictionary:
virtualhosts:
 test1:
 server_name: test.stunthamster.com
 vhost_root: '/usr/share/nginx/test1'

 test2:
 server_name: test2.stunthamster.com
 vhost_root: '/usr/share/nginx/test2'

You can define as many virtualhosts as you like within this structure; you'll see
in the next part of the recipe that the dictionary is looped over to create them, so you
can control anything from 1 to 100 virtual hosts using this method.

Remember, in the preceding example we have created the
virtualhosts within the dev environment. You can
follow the same steps within the /first_playbook/
group_vars/<<environment>> directory if you wish
to configure virtualhosts for another environment.

Automation with Ansible

310

13. Now we have the data that we need to configure our virtual hosts. Create a new file
called configure_vhosts.yml under the first_playbook/roles/nginx/
tasks directory and give it the following contents:
- name: Create Virtual Host root
 file: path="/usr/share/nginx/{{ item.key }}" state=directory
owner=root
 with_dict: virtualhosts

- name: Add Virtual Hosts
 template: src=virtual_host.j2 dest=/etc/nginx/sites-available/{{
item.key}}.conf
 with_dict: virtualhosts

- name: Add Virtual Host symlink
 file: src="/etc/nginx/sites-available/{{ item.key}}.conf"
dest="/etc/nginx/sites-enabled/{{ item.key}}.}}.conf" state=link
 with_dict: virtualhosts
 notify: restart nginx

14. Note the use of item.key in the above example; these loops through the dictionary
defined in our variable file and retrieves the key of the hash it is currently evaluating.
In this case, we have used the hash to name our configuration files, which would be
named test1.conf and test2.conf in this case.

Don't forget to add this to the main.yml so that it runs. By now, your main.yml
should resemble the following:

tasks file for nginx
- include: install_packages.yml
- include: configure_nginx.yml
- include: configure_vhosts.yml

15. Now we have a new role, we can add it to the Playbook so that it can be run. We also
need to update our inventory to define the servers the Nginx role will be run against.
First of all, open the file first_playbook/first_playbook.yml and insert the
following code:
- name: Manage Nginx
 hosts: nginx
 remote_user: "{{ remote_user }}"
 sudo: yes
 roles:
 - { role: nginx, tags: ['nginx'] }

Chapter 5

311

16. This will apply the Nginx role against any server that is defined within the inventory
as an Nginx node. Next, let's amend our inventory. Edit first_playbook/
inventories/dev and insert the following configuration:
[nginx]
<< NGINX SERVER >>

[dev:children]
nginx

Here << NGINX SERVER >> is the IP address or name of the server(s) you wish to
configure as nginx server(s). This maps against the hosts directive in the Playbook.

17. We're now ready to run our playbook. At the terminal, run the following command
within the root of the first_playbook directory:

$ ansible-playbook -i inventories/dev -K first_playbook.yml

If all goes well, you should see an Ansible output that looks something like the
following screenshot:

Automation with Ansible

312

See also
You can find the Nginx documentation at http://nginx.org/en/docs/.

Creating an application server role using
Tomcat and Ansible

We have explored using Ansible to perform common tasks on a server, and to define selected
servers as nginx servers. This recipe will demonstrate using Ansible to install and configure
a Java application server. For this recipe, we will be installing the venerable Tomcat server.
Tomcat is a rock-solid open source container for Java apps, and is used in a huge array of
organizations to host applications both small and large.

Currently, Ubuntu ships with a package for Tomcat 7. However, the Tomcat project is already
at version 8, so we're going to look at how we can use Ansible to install Tomcat straight from
the web.

Getting ready
For this recipe, you need an Ubuntu 14.04 server to act as the Ansible client, and an Ubuntu
14.04 server that you wish to configure.

How to do it…
Let's use Ansible to install and configure Tomcat:

1. First, we are going to create a new role within our playbook to hold our tasks. Then,
we're going to use the ansible-galaxy command to create a new boilerplate role.
On the command line, navigate to your first_playbook/roles and issue the
following command:
$ ansible-galaxy init tomcat

This will create our new role.

2. Now, we're going to create a new task to install the pre-requisite packages. Generally
speaking, we want a JRE at the very least. Create a new file called install_
packages.yml under the first_playbook/roles/tomcat/tasks/ directory
and insert the following content:
- name: "Install Tomcat prerequisites"
 apt: name={{ item }} state=latest
 with_items:
 - default-jre
 - unzip

http://nginx.org/en/docs/

Chapter 5

313

3. Next, we amend the main task to execute this code by editing the first_
playbook/roles/tomcat/main.yml file and inserting the following code:

tasks file for tomcat
- include: install_packages.yml

4. Generally speaking, we shouldn't run anything as the root user, Tomcat included.
Let's use Ansible to create a Tomcat user and also a group with which we can
run Tomcat. Create a new file called create_users.yml under the first_
playbook/roles/tomcat/tasks directory, and insert the following snippet:
- name: Create Tomcat Group
 group: name=tomcat gid=5000
- name: Create Athoris User
 user: name=tomcat comment="Tomcat App User" uid=5000 group=5000

5. We need to update main.yml to include this new task. Edit your first_playbook/
roles/tomcat/main.yml file and add the following content:
- include: create_users.yml

6. Now that we have our users and our JRE, it's time to grab the Tomcat 8 zip. We can
do this using the get_url module. Since this is essentially a package install, we're
going to add this code to our existing install_packages.yml file. Edit it and add
the following code:
- stat: path=/usr/local/apache-tomcat-8.0.21
 register: tc

- name: "Fetch Tomcat"
 get_url: url=http://www.mirrorservice.org/sites/ftp.apache.org/
tomcat/tomcat-8/v8.0.21/bin/apache-tomcat-8.0.21.zip dest=/tmp
mode=0440

- name: "Unpack Tomcat"
 unarchive: src=/tmp/apache-tomcat-8.0.21.zip dest=/usr/local/
copy=no
 when: tc.isdir is undefined

There are a few things to note in the preceding snippet. The first declaration we
need to make is to use the stat module to fetch the state of our Tomcat directory.
This is an important step in making the code idempotent. Next, we fetch the zip
file containing Tomcat and unpack it. It's here that we make use of the state of the
directory that we recorded using the stat module. The unarchive module will
unpack the archive without testing if the Tomcat directory exists This is bad news for
two reasons; first, it's not idempotent, so the target node will always take action, and
secondly, it will almost certainly overwrite any subsequent changes. Using the stat
module to test the existence of the directory will cause the unarchive task to skip
executing if the Tomcat directory already exists.

Automation with Ansible

314

You can find more details about the stat module at http://
docs.ansible.com/ansible/stat_module.html.

7. Now that we have unpacked Tomcat into our chosen location, we need to perform
some tidying up. Tomcat ships with some default apps, which we may not want.
Let's create a task to remove these. Add the following snippet to the install_
packages.yml task:
- name: "Remove default apps"
 file: path={{ item }} state=absent
 with_items:
 - /usr/local/apache-tomcat-8.0.21/webapps/docs
 - /usr/local/apache-tomcat-8.0.21/webapps/examples
 - /usr/local/apache-tomcat-8.0.21/webapps/host-manager
 - /usr/local/apache-tomcat-8.0.21/webapps/manager
 - /usr/local/apache-tomcat-8.0.21/webapps/ROOT

Again, note the use of with_items to remove multiple items with a single task.

8. Now that we've removed the unwanted applications, we can configure tomcat.
Create a new file called setenv.j2 under the first_playbook/roles/
templates/tomcat directory, and insert the following snippet:
export CLASSPATH=\
$JAVA_HOME/lib/tools.jar:\
$CATALINA_HOME/bin/commons-daemon.jar:\
$CATALINA_HOME/bin/bootstrap.jar
export CATALINA_OPT="{{ tomcat.catalina.opts }}"
export JAVA_OPTS="{{ tomcat.java.opts }}"

9. Next, let's create a place to hold the variables we're interpolating. Create a new file
called tomcat.yml under the first_playbook/group_vars/dev directory, and
insert the following code:
tomcat:
 appgroup: tomcat
 appuser: tomcat
 gid: 5000
 uid: 5000
java:
 home: '/etc/alternatives/java'
 opts: '
 -Duser.timezone=UTC
 -Dfile.encoding=UTF8
 -Xmx6g
 -Xms6g

http://docs.ansible.com/ansible/stat_module.html
http://docs.ansible.com/ansible/stat_module.html

Chapter 5

315

 '
 catalina:
 home: '/usr/local/apache-tomcat-8.0.21/'
 pid: '/usr/local/apache-tomcat-8.0.21/temp/tomcat.pid'
 opts: '-Dcom.sun.management.jmxremote
 -Dcom.sun.management.jmxremote.port=8082
 -Dcom.sun.management.jmxremote.authenticate=false
 -Dcom.sun.management.jmxremote.ssl=false'

10. We've inserted two new data structures here, one to hold our Java options and the
other to hold the Tomcat specific Catalina data. Let's create the code to add this
configuration to our target node. In the first_playbook/roles/tomcat/tasks
folder, create a new file called configure_tomcat.yml and insert the following
code snippet:
- name: "deploy setenv.sh"
 template: src=setenv.j2 dest=/usr/local/apache-tomcat-8.0.21/
bin/setenv.sh owner=tomcat group=tomcat

This will place the setenv.sh file in place and fill it with the options we've
configured.

11. The final element is the startup script. As we have downloaded Tomcat from the
packaged distribution, it's up to us to supply our own. Create a new file in the
templates directory called tomcat.j2 and insert the following code:
#!/bin/sh

SHUTDOWN_WAIT=30

export APP_USER="{{ tomcat.appuser }}"
export JAVA_HOME="{{ tomcat.java.home }}"
export CATALINA_HOME="{{ tomcat.catalina.home }}"
export CATALINA_PID="{{ tomcat.catalina.pid }}"

SU="su"

start() {
 isrunning

 if ["$?" = 0]; then
 echo "Tomcat is already running"
 return 0
 fi

 # Change directory to prevent path problems

Automation with Ansible

316

 cd $CATALINA_HOME

 # Remove pidfile if still around
 test -f $CATALINA_PID && rm -f $CATALINA_PID

 $SU $APP_USER -c "umask 0002; $CATALINA_HOME/bin/catalina.sh
start" > /dev/null
}

stop() {
 isrunning

 if ["$?" = 1]; then
 echo "Tomcat is already stopped"
 rm -f $CATALINA_PID # remove pidfile if still around
 return 0
 fi

 echo -n "Waiting for Tomcat to exit (${SHUTDOWN_WAIT} sec.): "

 count=0
 until ["$pid" = ""] || [$count -gt $SHUTDOWN_WAIT]; do
 $SU $APP_USER -c "$CATALINA_HOME/bin/catalina.sh stop -force"
> /dev/null
 findpid

 echo -n "."
 sleep 3
 count=$((count+3))
 done

 echo ""

 if ["$count" -gt "$SHUTDOWN_WAIT"]; then
 echo "Forcing Tomcat to stop"
 /bin/kill -9 $pid && sleep 5
 fi

 # check if tomcat is still around, this will be our exit status
 ! isrunning
}

findpid() {
 pid=""

Chapter 5

317

 #pid=$(pgrep -U $APP_USER -f "^$JAVA_HOME/bin/java.*cpatalina.
base=$CATALINA_HOME")
 pid=$(ps -fu $APP_USER | grep "Dcatalina.home=$CATALINA_HOME" |
awk {'print $2'})

 # validate output of pgrep
 if ! ["$pid" = ""] && ! ["$pid" -gt 0]; then
 echo "Unable to determine if Tomcat is running"
 exit 1
 fi
}

isrunning() {

 findpid

 if ["$pid" = ""]; then
 return 1
 elif ["$pid" -gt 0]; then
 return 0
 fi
}

case "$1" in
 start)
 start
 RETVAL=$?

 if ["$RETVAL" = 0]; then
 echo "Started Tomcat"
 else
 echo "Not able to start Tomcat"
 fi
 ;;

 stop)
 stop
 RETVAL=$?

 if ["$RETVAL" = 0]; then
 echo "Stopped Tomcat"
 else
 echo "Not able to stop Tomcat"
 fi

Automation with Ansible

318

 ;;

 restart)
 stop
 sleep 5
 start
 RETVAL=$?

 if ["$RETVAL" = 0]; then
 echo "Restarted Tomcat"
 else
 echo "Not able to restart Tomcat"
 fi
 ;;

 status)
 isrunning
 RETVAL=$?

 if ["$RETVAL" = 0]; then
 echo "Tomcat (pid $pid) is running..."
 else
 echo "Tomcat is stopped"
 RETVAL=3
 fi
 ;;

 *)
 echo "Usage: $0 {start|stop|restart|status}."
 ;;

esac

exit $RETVAL

12. Next we need to add the Ansible code to place the template onto the server. Add the
following snippet at the bottom of the configure_tomcat.yml file,:
- name: "Deploy startup script"
 template: src=tomcat.j2 dest=/etc/init.d/tomcat owner=root
mode=700

Chapter 5

319

13. Now, let's add this set of tasks into the main playbook. You can do this by adding
the highlighted code to the main.yml file:

tasks file for tomcat
- include: create_users.yml
- include: install_packages.yml
- include: configure_tomcat.yml

14. Next, we should amend our inventory to add our Tomcat servers to it. Edit the
inventory located in first_playbook/inventories/dev and insert the following
code:
[tomcat]
<<Node>>

Now, replace <<Node>> with the nodes you wish to configure as a Tomcat node.

15. Finally, we add the role to our playbook file. Edit first_playbook/first_
playbook.yml and insert the following code:
- name: Manage Tomcat
 hosts: tomcat
 remote_user: "{{ remote_user }}"
 sudo: yes
 roles:
 - { role: tomcat, tags: ['tomcat'] }

16. You can now run this role and you will have a Tomcat 8 container ready to run
your code.

See also
You can find the documentation for Tomcat at http://tomcat.apache.org/tomcat-
8.0-doc.

Installing MySQL using Ansible
We now have an Ansible Playbook that can manage common items. It can install and
configure Nginx, and also finally, install and configure Tomcat. The next logical step is to
install some form of data storage, and for this, we are going to look at MySQL.

http://tomcat.apache.org/tomcat-8.0-doc
http://tomcat.apache.org/tomcat-8.0-doc

Automation with Ansible

320

MySQL is arguably one of the most popular databases deployed due both to its relative ease
of use, and its open source heritage. MySQL is powerful enough for sites both large and small,
and powers many of the most popular sites on the Internet. Although it may lack some of the
enterprise features that it's more expensive cousins, such as Oracle and Microsoft SQL, have,
it more than makes up for that by being relatively simple to install and able to scale without
license costs.

Getting ready
For this recipe, you need an Ubuntu 14.04 server to act as your Ansible client, and an Ubuntu
14.04 server that you wish to configure for MySQL.

 How to do it…
Let's install MySQL using Ansible:

1. As with the previous recipes, we're going to create a new role within our playbook.
Navigate to the tasks folder and issue the following command:
$ ansible-galaxy init mysql --force

This will create our new role and the underlying folder structure.

2. We're going to start by installing the packages for MySQL. Create a new file called
install_packages.yml under the MySQL role's tasks folder, and insert the
following code:
- name: 'Install MySQL packages'
 apt: name={{ item }} state=latest
 with_items:
 - python-dev
 - libmysqlclient-dev
 - python-pip
 - mysql-server

- pip: name=MySQL-python

There are a couple of things going on here. First, we are installing a few more
packages aside from MySQL itself. This is to support the Ansible MySQL module, and
to allow us to use the pip package manager to install another prerequisite package.

Chapter 5

321

3. Now that we have installed MySQL, we can configure it. First, start by changing the
password of the root MySQL user; by default, it is set to nothing. Create a file called
configure_mysql.yml in the tasks directory, and insert the following code
snippet:
- name: Set root password
mysql_user: name=root host={{ item }} password={{
mysql_root_password }}
 with_items:
 - "{{ ansible_hostname }}"
 - 127.0.0.1
 - ::1
 - localhost

4. Remember to add this task to the main.yml file by adding the following to the
bottom of the file:
- configure_mysql.yml

There are two things to notice here. First, we're iterating over the list of hosts.
This ensures that the root user has their password changed in all the various
permutations that it might exist in. Second, we're using a variable to contain the root
password. Note the use of {{ansible_hostname}} in the with_items list. This
uses details gathered from the target host to populate certain reserved variables; this
is incredibly useful for situations such as these.

You can find more details of Ansible facts at http://docs.
ansible.com/ansible/playbooks_variables.
html#information-discovered-from-systems-facts.

5. Next, we're going to create a .my.cnf file. This is a convenience file that allows you
to insert certain options that the MySQL client can use, and saves you the effort of
typing at the command line. Normally, this is used to save key strokes but in this case
it is used to ensure that when Ansible runs for the second time, it can access the
database using the password we have set. Create the .my.cnf file using this code
snippet:
- name: Create .my.cnf file
 template: src=my.cnf.j2 dest=/root/.my.cnf owner=root
mode=0644

6. As you've noticed, this makes use of a template to create the file. Create the template
by creating a new file called my.cnf.j2 under the templates directory in the MySQL
role and insert the following code:
[client]
user=root
password={{ mysql_root_password }}

http://docs.ansible.com/ansible/playbooks_variables.html#information-discovered-from-systems-facts
http://docs.ansible.com/ansible/playbooks_variables.html#information-discovered-from-systems-facts
http://docs.ansible.com/ansible/playbooks_variables.html#information-discovered-from-systems-facts

Automation with Ansible

322

7. Normally, we would create a file under the group_vars/dev directory to hold the
MySQL root password variable, and this will work. However, since this is sensitive
information, we want to make sure that casual prying eyes don't stumble across the
root password of our shiny new MySQL server. Instead, we are going to use the
Ansible vault feature. This will create an encrypted file that will hold our password,
and Ansible will be able to read it at runtime. Run the following command from the
root of the playbook:
$ ansible-vault create group_vars/dev/mysql.yml

8. You'll be prompted to enter a vault password. Make sure it's something you can
remember, as you'll need it every time you run your Ansible Playbook. Once you enter
and confirm the password, you will be handed over to an editor to enter your data.
Insert the following data:
mysql_root_password: <<ROOTPASSWORD>>

Here, <<ROOTPASSWORD>> is your chosen MySQL password. Save the file and exit,
and Ansible will encrypt it for you. If you open the file in your editor now, you will find it
has content similar to this:

$ANSIBLE_VAULT;1.1;AES256
633530396537386632323834653432353531663630343063613436373239616638
65386137316263
3133383237616662653837613966396666653732376136620a3561396339373838
30613732336533
373934653964316137373839613162653363313736373731666164303932383265
35366333303632
3661643237303266370a3461616635336434366433316161653661643261636362
34633932336364
343764373237376535663232616661336438343539383230313038653039623662
38

Using the Ansible crypt feature is a fantastic way to keep
sensitive data a secret, and can be used on a variable file. You
can find more details on the crcypt feature at https://docs.
ansible.com/playbooks_vault.html.

9. Now that we have our .my.cnf file, we can tidy up. Within the default install on
Ubuntu 14.04, an anonymous user is created along with a test database; we're going
to use the Ansible MySQL module to remove both of these. Insert the following code
snippet into the configure_mysql.ym file:
name: delete default user
 action: mysql_user user="" state="absent"
- name: remove the test database
 action: mysql_db db=test state=absent

https://docs.ansible.com/playbooks_vault.html
https://docs.ansible.com/playbooks_vault.html

Chapter 5

323

10. Now that we have installed and configured our MySQL server, it's time to use the
Ansible MySQL module to create a new database and database user. In this case,
we're going to create a database for a blog. Create a new task within the MySQL role
called create_blog_db.yml and insert the following content:
- name: Create MyBlog DB
mysql_db: name=myblog state=present

- name: Create MyBlog User
mysql_user: name=myblog_user password=agreatpassword
priv=myblog.*:ALL state=presentpresent

This code snippet uses the Ansible MySQL module to create a new database and a
matching user with the correct privileges to use it.

11. Finally, we just need to update our main.yml file to include our various tasks. Edit it
to include the following content:

tasks file for mysql
- include: install_packages.yml
- include: configure_mysql.yml
- include: create_blog_db.yml

12. Our new role is complete and ready to use. Now, we just need to update our playbook
and inventory to include it. First, open up the first_playbook.yml file in your
editor and add the following content:
- name: Manage MySQL
 hosts: mysql
 remote_user: "{{ remote_user }}"
 sudo: yes

 roles:
 - { role: mysql, tags: ['mysql'] }

13. Now, we need to update our inventory. Open the inventories/dev file and insert
the following snippet:
[mysql]
<< mysql_server >>

[dev:children]
nginx
tomcat
mysql

Where mysql_server is the server (or servers) that you wish to configure MySQL on.

Automation with Ansible

324

14. Now, if you run the playbook you will find your selected host will have MySQL
installed, with the new database ready for use. As we now have an encrypted file, you
will need to add the --ask-vault-pass switch; your command should now look
something similar to the following:

$ ansible-playbook --ask-vault-pass -i inventories/dev -k first_
playbook.yml

This will prompt you for your vault password and it will then decyrpt and use the
values contained within.

See also
 f You can find out more about the Ansible MySQL module at:

http://docs.ansible.com/mysql_db_module.html

 f You can find details of the Ansible MySQL User Module at:

http://docs.ansible.com/mysql_user_module.html

 f You can find details of the Ansible Playbook vaults at:

https://docs.ansible.com/playbooks_vault.html

Installing and managing HAProxy with
Ansible

One key element of high-performance web applications is the ability to scale, and the easiest
way to achieve this is to use a load balancer to direct traffic to multiple nodes. This can
provide both horizontal scale and, just as importantly, the ability to survive individual
node failures.

There are many load balancers available, both open source and commercial, but HAProxy is
certainly one of the more popular. Open Source, high performance, and highly configurable,
HAProxy is a good choice for any site that requires load balancing.

This recipe will demonstrate how to install HAProxy, configure it, and add both a frontend and
backend service to it.

Getting ready
For this recipe, you need an Ubuntu 14.04 server to act as our Ansible client and an Ubuntu
14.04 server that you wish to configure for HAProxy.

http://docs.ansible.com/mysql_db_module.html
http://docs.ansible.com/mysql_user_module.html
https://docs.ansible.com/playbooks_vault.html

Chapter 5

325

How to do it…
Let's install and manage HAProxy and Ansible:

1. We are going to use the ansible-galaxy command to create our role scaffold. Do
this by issuing the following command:
$ ansible-galaxy init haproxy -p "${PLAYBOOK_PATH}/roles/"

2. Now we have the role, let's start with the tasks that will deal with installing the
packages. By default, Ubuntu 14.04 ships with HaProxy 1.4, whereas 1.5 is the latest
version and brings important features such as SSL termination. Fortunately, there is
a PPA available which allows us to install the more recent version. Start by creating
a new file called install_packages.yml under the roles/tasks directory, and
insert the following snippet:
name: "Add HAProxy repo"
 apt_repository: repo="deb http://ppa.launchpad.net/vbernat/
haproxy-1.5/ubuntu trusty main" state=present

- name: Install HAProxy
 apt: name=haproxy state=installed force=yes

3. This will add the PPA to the package list and install HAproxy; however, we're also
going to install the hatop package. Hatop is a fantastic tool for monitoring HAProxy
and allows you to see detailed traffic statistics quickly and easily. Add the following
code in the install_packages.yml file:
- name: Install HATop
 apt: name=hatop state=installed

This will install hatop to allow you to monitor your load balancer. Next, we're going to
configure HaProxy. Create a new file called configure_haproxy.yml, and insert
the following code:

- name: Deploy HAProxy configuration
 template: src=haproxy.cfg dest=/etc/haproxy/haproxy.cfg
 notify: Restart HAProxy

4. Remember to add this task to the main.yml file by appending the following code at
the bottom:
- configure_haproxy.yml

Automation with Ansible

326

5. As you can see, this writes a template into the /etc/haproxy directory; you need to
create the template by creating a new file under the haproxy role, in the templates
directory, and add the following content:
global
 log 127.0.0.1 local0 notice
 stats socket /var/run/haproxy.sock mode 600 level admin
 stats timeout 2m
 maxconn {{ haproxy.maxconns }}
 user haproxy
 group haproxy

defaults
 option http-server-close
 log global
 option dontlognull
 timeout http-request {{ haproxy.http_timeout }}
 backlog {{ haproxy.backlog }}
 timeout queue {{ haproxy.timeout_q }}
 timeout connect {{ haproxy.timoutconnect }}
 timeout client {{ haproxy.timeoutclient }}
 timeout server {{ haproxy.timoutserver }}

frontend default_site
 bind {{ haproxy.frontend_ip }}:{{ haproxy.frontend_port }}
 mode http
 option httplog
 default_backend app_server

backend app_server
 balance {{ haproxy.balance }}
 mode http

 {% for node in groups['tomcat'] %}
 server {{node}} {{node}}:8080 check
 {% endfor %}

6. As you can see, we're using a lot of variable interpolation in this template; this is good
practice. If you think you might be changing a value, it's best to template it. Also, take
a look at this snippet:
 {% for node in groups[nginx] %}
 server {{node}} {{node}}:8080 check
 {% endfor %}

Chapter 5

327

This code is interesting as it uses the data included in the Ansible inventory to build
the template values. This essentially means that whenever we add a new host to the
Nginx role, not only will it be configured for Nginx, it will be added to the load balancer
automatically.

7. Now that our template is ready, we can create a file to hold the values that it's going
to interpolate. Create a new file called haproxy.yml inside the group_vars/dev
directory and insert the following:
haproxy:
 frontend_ip: 192.168.1.1
 maxconns: 4096
 backlog: 2
 timeout_q: 400ms
 timoutconnect: 5000ms
 timeoutclient: 5000ms
 timoutserver: 5000ms
 http_timeout: 15s
 balance: leastconn
 frontend_port: 83

8. Next, we need to add the role and host into the playbook and inventory respectively.
First, let's amend the playbook to add our new role. Open the first_playbook.
yml file, and insert the following:
- name: Manage HAProxy
 hosts: haproxy
 remote_user: "{{ remote_user }}"
 sudo: yes
 roles:
 - { role: haproxy, tags: ['haproxy'] }

9. Now, we amend the inventory. Open the inventories/dev file in your editor and
insert the following snippet:
[haproxy]
<<SERVER NAME>>

10. Also, remember to add the haproxy role to the children as the highlighted code in
this snippet:

[dev:children]
nginx
tomcat
mysql
haproxy

Automation with Ansible

328

Now when you run your playbook, you will find that the servers you have configured as HAproxy
hosts will be configured with HAproxy; they will also add the servers you have configured as
Nginx nodes to the load balancer.

See also
 f The HAproxy documentation can be found here:

http://www.haproxy.org/#docs

 f There is a module within Ansible that can be used to control the HAproxy; this can be
used to integrate a load balancer with a deployment script:

http://docs.ansible.com/haproxy_module.html

Using ServerSpec to test your Playbook
As mentioned in the introduction of this book, the DevOps methodology is built on some of the
best practices already in use within software development. One of the more important ideas is
the concept of unit testing; in essence, a test that ensures that the code performs the correct
operations under certain scenarios. It has a two-fold advantage; first of course, you can test
for code correctness before it even arrives in a test environment and you can also ensure that
when you refactor code, you don't inadvertently break it. It is the second of these advantage
that truly shines for Ansible Playbooks. Due to the way Ansible works, you can guarantee that
a certain state will appear when you declare it; Ansible is almost running unit tests itself to
ensure that an operation has been carried out correctly. However, you might need to ensure
that certain elements are there on a server, and it's incredibly easy to drop these accidently,
especially if you are carrying out a large-scale refactoring exercise having ServerSpec on hand
can help stop this from happening.

Getting ready
You will need an Ubuntu 14.04 client to run the serverspec code.

How to do it…
Let's test our Playbook:

1. First, we are going to install the packages we need. ServerSpec is written in Ruby, so
we can use the Gem package manager to install it; however, first we need to install
Ruby. You can do this using the following command:
$ sudo apt-get install ruby

http://www.haproxy.org/#docs
http://docs.ansible.com/haproxy_module.html

Chapter 5

329

2. Once Ruby is installed at the command line, enter the following command:
$ geminstall serverspec highline

This will install both ServerSpec and its dependency highline.

3. Next, we are going to use serverspec to create a new skeleton project. Since
this is going to test our playbook, ensure that you are in the root of the playbook
directory when you issue the next command:
$ serverspec-init

This command is going to prompt you for a few details; see the following screenshot
for some example entries:

Remember, this will be run against a test server; ideally this is something like a
Virtual Machine that runs on your desktop. ServerSpec can also integrate with
Vagrant, and this is also an excellent method to test your code without needing a
dedicated server.

Automation with Ansible

330

4. Now, we need to do a little clean up. When you use the serverspec-init
command, it creates a file called sample_spec.rb under a folder named after your
test server; we don't need this, so remove it.

5. Now, we are going to create our test file for our Nginx Role. Create a new file under
spec/{testserver} called nginx_role_spec.rb and insert the following:
require 'spec_helper'

require 'yaml'

These require statements will bring in the libraries that we will need to run our tests.

6. We're going to start by testing the basics; check if the Nginx package installed, and if
the service is running and listening on the correct port; insert the following code into
the test:
describe package('nginx'), :if => os[:family] == 'ubuntu'
do
 it { should be_installed }
end

describe service('nginx'), :if => os[:family] == 'ubuntu' do
 it { should be_enabled }
end

describe port(80) do
 it { should be_listening }
end

These three blocks of code use the additional functions provided by the spec_helper
library to allow us to describe a test; much like Ansible, it abstracts you away from
needing explicit commands to test something and instead provides preset resources
that you can easily access

You can find the complete list of ServerSpec resources at:
http://serverspec.org/resource_types.html

http://serverspec.org/resource_types.html

Chapter 5

331

7. Now that we have the basics covered, let's use some data from our Playbook to power
the next test. As mentioned above, ServerSpec tests are written in pure Ruby, so we
can use the features of that language to help write more tests that are complex. In
this case, we're going to load the contents of our variables in Ansible to iterate over
our virtual hosts and check if the configuration files are present and linked properly;
insert the following code into your test file:
vh_list = YAML.load_file('group_vars/dev/virtualhosts.yml')
vh_list['virtualhosts'].each do |key|
 describe file ("/etc/nginx/sites-enabled/#{key[0]}.conf")do
 it { should be_linked_to "/etc/nginx/sites-
available/#{key[0]}.conf"}
 end

8. We are using a basic Ruby loop to open our virtualhosts.yml file, extract
the values of each hash, and use it to build a test against the file. This is a great
technique to keep in mind, as it means that your test can use the data in your
playbook automatically.

9. We can now run our test suite using the following command:

$ rake spec

If we now run the tests against a test server that hasn't had Ansible run against it, you
should see output similar to the following:

Automation with Ansible

332

This is exactly what we want to see; since we haven't configured anything yet, all the
tests should fail. If we run Ansible to configure Nginx on the server and run the tests
now, you should see an output similar to the following:

By writing unit tests for your Ansible code, you are ensuring that changes can be applied with
far more confidence, and can reduce incidences of broken code.

See also
You can find more details at the ServerSpec home page at http://serverspec.org.

http://serverspec.org

333

6
Containerization

with Docker

In this chapter, we are going to cover the following topics:

 f Installing Docker

 f Pulling an image from the public Docker registry

 f Performing basic Docker operations

 f Running a container interactively

 f Creating a Dockerfile

 f Running a container in detached mode

 f Saving and restoring a container

 f Using the host only network

 f Running a private Docker registry

 f Managing images with a private registry

Introduction
Containerization is not a new technology, but it has enjoyed a recent renaissance; this has
been due to the emergence of Docker, which has made using containerization reasonably
straightforward, and it has enjoyed a rapid uptake of both developers and system
administrators. However, despite all of the enthusiasm, Docker is based on existing
and well-understood technology.

Containerization with Docker

334

Containers have been around in some form or other for a very long time, but until Docker
debuted they lacked an especially compelling tool chain. This has caused them to languish,
with most users electing to spin up full fat virtual machines rather than containers. This is a
shame, as there are many compelling benefits to using containers over full virtualization in
many use cases. To understand these benefits, we need to consider how a container works
versus virtual machines. Unlike a virtual machine which runs a full kernel user space and
application within an isolated system, a container uses the underlying kernel of the container
host and runs the user space and Applications in its own sandbox. This sharply reduces
overhead on contended hosts, as you are only running a single kernel, rather than many.
Docker also makes use of a layered file system; it builds images by layering many immutable
layers together and creates an isolated writable space for the container. This means that if
you have a hundred containers based on Ubuntu 14.04, you are only consuming the disk
space for a single Ubuntu image; you use the disk space only to store the changes made to
the running container.

It's important to understand the difference between a container and an
image. An image is an immutable template, which is generally built from a set
of instructions called a Dockerfile. The image cannot be changed once it is
built, and is used as the basis for a container. When you run a container, the
image is used to boot it, and from there the container writes any changes to a
new mutable layer.

Docker debuted in March 2013 as an Open Source project, and has grown explosively; it is
now used by startups and large enterprises alike. It has also attracted a great deal of interest
from investors, and at the time of writing, the Docker project has grown into one of the most
funded startups in the world, and is partnering with companies as diverse as Microsoft and
Red Hat to bring containers to a vast array of differing platforms. It's not just the operating
system vendors who have embraced Docker, and many of the Platform-as-a-Service (PAAS)
vendors either rolled out Docker support or are planning to in the near future.

There are many reasons why Docker appeals to developers. Primarily, it helps solve the
problem of packaging. For many years, there has been an enduring question over what should
constitute a deployable package, and how much of the underlying operating system should
be encompassed within it. Docker offers the ability to create a complete deployable with every
dependency, from operating system up, managed in an easily deployable artifact. Secondly,
Docker makes it easy to scale elastic applications, as containers are generally small and fast
to start. The most time consuming part of standing up a new container is the time it takes to
download the initial image; this can be ameliorated by creating a local Docker registry, and we
will be looking at how to achieve that later in this chapter.

Although it is easy to create and destroy containers at will, it does bring new challenges; such
a free flowing infrastructure creates confusion over which apps are hosted where. Fortunately,
now there is a growing ecosystem of applications that offer orchestration of Docker
containers, and this is set to be an area of growth within the Docker ecosystem.

Chapter 6

335

Installing Docker
Before we go any further, we will learn how to install the software that allows us to host
Docker containers.

Getting ready
For this recipe, you will need an Ubuntu 14.04 server.

How to do it…
The Docker developers have gone to great lengths to make the installation of Docker as
simple as possible, and this recipe should have you up and running within minutes:

1. First, ensure that you have the wget tool installed by issuing the following command:
$ sudo apt-get install wget

2. Once you have wget installed, issue the following command to run the Docker
installer:
$ wget -qO- https://get.docker.com/ | sh

3. The installer will prompt you for the sudo password, which once entered will install
Docker and any dependencies. Once the install is complete, you can verify that
Docker is correctly installed by running the following command:

$ docker -v

You should receive output similar to the following screenshot:

See also
You can find the Docker installation instructions for various operating systems at:
https://docs.docker.com/installation/.

https://docs.docker.com/installation/

Containerization with Docker

336

Pulling an image from the public Docker
registry

Now that we have installed Docker, we can use it to run a container from the public Docker
registry. The public Docker registry contains thousands of ready to use images that cover
hundreds of different packages, from databases, through to app servers. The public registry
also includes official images from certain software providers, offering you a quick method to
start developing with those packages, and the surety that the image is correct and secure.

For this recipe, we're going to use a combination of two different images to run a basic
WordPress blog.

Getting ready
To use this recipe, you will need an Ubuntu 14.04 server with Docker installed.

How to do it…
This recipe will use some simple Docker commands, and will use the public Docker images for
MySQL and WordPress to install a blog:

1. The first task that we need to accomplish is to create a MySQL container to hold our
data. We can do this using the following command:
$ sudo docker run --name test-mysql -e MYSQL_ROOT_
PASSWORD=password -d mysql:latest

2. This command will connect to the Docker public registry and pull the container
image tagged as mysql:latest down to the server. Once it's downloaded, a new
Docker container called test-mysql will be started with a MySQL root password of
password. You can confirm it's running by issuing the following command:
$ docker ps

This should produce output similar to this:

Chapter 6

337

3. Now that we have a MySQL container, we can turn our attention to WordPress. As with
MySQL, the WordPress developers have created an official container image, and we
can use this to run WordPress using the following command:
$ docker run --name test-wordpress -p 80:80 --link test-
mysql:mysql -d wordpress

4. This command will retrieve and run the official WordPress image, and will name it
test-Wordpress. Note the --link option; this links the MySQL container to the
WordPress container without creating an explicit network between the two.

Keep in mind that you can only link two containers on the
same host; if the containers are on different hosts, you will
need to map ports for them to be able to communicate.

5. Note the -p option, this exports TCP port 80 from the container to port 80 on the
host, making the WordPress installation accessible. It will not be available to the
outside world without the port mapping, even though the container has port 80
open. The mapping essentially creates a firewall rule on the Docker host that bridges
between the host network and the virtual network created for the Docker containers
to run on.

6. Open a browser, point it to the address of your Docker host, and you should see the
following page:

Containerization with Docker

338

See also
 f You can find the official MySQL image at https://registry.hub.docker.

com/_/wordpress/

 f In addition, you can find the official WordPress image and documentation at
https://registry.hub.docker.com/_/wordpress/

Performing basic Docker operations
Now that we have the ability to create Docker containers, let's have a look at how to
control them. Docker has a comprehensive set of tools that allows you to start, stop,
and delete containers.

Getting ready
For this recipe, you will need an Ubuntu 14.04 server with Docker installed.

How to do it…
This recipe demonstrates the basic commands used to manage Docker containers. By using
these commands, you can manage the full lifecycle of the container:

1. Use the following command to list the running containers on your system:
$ sudo docker ps

This only shows the running containers. To see the containers that
have been stopped, use the following command:
$ sudo docker ps -a

2. To stop a running container, use the following command:
$ docker stop <dockerID>

Here the ID is derived from running docker ps and selecting the ID of the image
you wish to stop.

3. To remove a docker container, use the following command:
$ sudo docker rm <CONTAINER ID>

https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/

Chapter 6

339

Remember, this only removes the CONTAINER and not the
underlying image.

4. Use the following command to list the Docker images that have been downloaded to
the host:
$ sudo docker images

This should produce output that looks something similar to this:

5. Use the following command to remove an image:

$ sudo docker rmi < IMAGE ID >

Removing images is a safe operation; Docker uses reference counting to keep
track of containers that have image dependencies. If you attempt to remove
an image that is in use by a container (started or stopped) on your host, you
will receive a warning, and it will not be removed.

See also
You can find instructions on how to work with images and containers at
https://docs.docker.com/userguide/.

Running a container interactively
You will want to run containers in a detached mode; however, there are times when it is very
useful to be able to run the container interactively to diagnose issues.

Running a container interactively essentially gives you a shell on the container, and from
within the container you can work in the same way, as you would with any other Linux system.

Getting ready
For this recipe, you will need an Ubuntu 14.04 server with Docker installed.

https://docs.docker.com/userguide/

Containerization with Docker

340

How to do it…
You can start any Docker container in an interactive mode using the following command:

$ sudo docker run -i -t ubuntu /bin/bash

See also
Refer the documentation on Docker at: https://docs.docker.com/articles/basics/.

Creating a Dockerfile
Although there are many premade images available on the Docker registry, it is inevitable that
you will want to create your own images as the basis for your containers. One of the standout
features of Docker is its straightforward build tools, and you can easily create new images with
a simple text file.

In this recipe, you will learn how to use Docker to package the Gollum Wiki software and push
it to the Docker public repository.

Getting ready
For this recipe, you will need a server with Docker installed.

How to do it…
The following steps outline how to create a new Dockerfile, build it, and finally push it to the
Docker Registry:

1. First, we are going to create a new Docker registry account. Start by visiting
https://registry.hub.docker.com and follow the signup instructions that you
will find on this page to create a new account. By creating your account, you create a
namespace within the Docker registry, which allows you to upload your own images.

2. We have created a Docker registry account, so we can now turn our attention to
creating our first Dockerfile. A Dockerfile is the list of steps used to create a complete
Docker image. These steps can include copying files into the image, or running
commands, but every Dockerfile needs to start with a FROM command. The FROM
command allows you to choose the Docker image that will form the basis for this
container; generally speaking, this will be an OS image, and many Linux distributions
now ship an official image that can be used.

https://docs.docker.com/articles/basics/
https://registry.hub.docker.com

Chapter 6

341

It might strike you as slightly recursive that you need to use an image
to create an image. If you wish to create your own OS image to serve as
your base, you can follow the instructions given at: https://docs.
docker.com/articles/baseimages/.

3. Let's use the Ubuntu image for our Gollum container. Do this by creating a new file
called Dockerfile and inserting the following code:
FROM ubuntu:14.04

This will use Ubuntu 14:04 as our base image.

4. Next, we can insert a little metadata that allows people to see who is currently
maintaining the image. This allows people to see who authored the image, and who
to contact if they have questions or issues. This takes the form of a text field, and
it's generally accepted to put your name and e-mail address in it. You can do this by
adding the following command in the Docker file:
MAINTAINER Example User example@adomain.com

5. Now that we have taken care of the metadata for our container, we can turn our
attention to installing software. As we are using the Ubuntu base image, we use the
apt package manager to install our software; however, the base image may have an
out-of-date package list cached, so it's best to update it. To update the package list,
add the RUN directive. In your Dockerfile, insert the following code:
RUN apt-get update && \

The RUN directive is one you are going to see a lot, as it allows you to
run commands within the container. Be careful, though, as you need
to ensure that the commands you run are non-interactive; interactive
commands will cause your image build to fail as you have no way to
interact with it at build time.

6. Notice the && \; this is a shell function that runs a subsequent command if the
previous command was successful, allowing us to chain commands in one line.
This is useful for keeping the number of Docker layers small. The \ is a line break,
allowing you to keep your Dockerfile readable.

https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/

Containerization with Docker

342

When you run a Docker build, each command creates a new layer, and each
layer is placed on top of the next, building your eventual Docker image.
However, each layer carries a small amount of internal metadata, which
although small, can add up. Perhaps more importantly, there is a limit to the
amount of layers an image can contain, a constraint of the underlying AUFS
filesystem; at the time of writing, the limit is 127 layers. Although you can
use alternative file systems with Docker that might remove this limitation, it's
worth designing with it in mind.

7. Now, we can start to install our prerequisite software. Since Gollum is a Ruby
application, it requires Ruby, plus some additional build tools. Again, we are going
to use the RUN command and have apt install these packages for us. Insert the
following code inside your Dockerfile:
RUN apt-get update && apt-get install -y ruby1.9.1 ruby1.9.1-dev
make zlib1g-dev libicu-dev build-essential git

This will install the software that we need to install Gollum.

8. Next we want to install Gollum itself. Gollum is distributed as a Ruby gem, so we can
use the Gem package manager to install it for us. To do this, add the following code:
RUN apt-get update && \
apt-get install -y ruby1.9.1 ruby1.9.1-dev make zlib1g-dev libicu-
dev build-essential git && \
gem install gollum

As you can see, we are performing the installation as a chained set of commands
rather than using an individual RUN directive for each new line.

9. We now need a directory to store our wiki content. Unlike many wikis that rely on a
database to store content, Gollum uses a Git repository as its persistent store. All
that is required is a file system to store the Git repository on, and it takes care of the
versioning. Let's create it now; insert the following code into your Dockerfile:
RUN mkdir -p /usr/local/gollum

Chapter 6

343

10. Now, we are going to set the work directory. By default, Docker runs all directives
within the root directory of the container; by setting the work directory, we can run the
commands in the directory of our choice. To set the work directory, add the following
directive to your Dockerfile:
WORKDIR /usr/local/gollum

11. With the work directory set, we can now create the initial repository to hold our wiki
content; this is achieved using the Git command. Add this code to your Dockerfile:
RUN git init .

This command will be run in the work directory we set in the previous command, and
it will create an empty Git repository ready for our content.

12. Now, we need to expose a network port. By exposing the port, we will be able to
connect to the service from the network; it also allows other containers to connect
to the service via linking. Gollum runs by default on TCP port 4567; add the following
code to expose it:
EXPOSE 4567

13. Finally, we add a default command that will be run when the container is started. In
this case, the Gollum package installs a binary that can be used to start the wiki. Add
the following command to execute it when the container starts:
CMD ["gollum"]

14. We are now ready to build our Docker container. At the command line, navigate to the
directory containing your Dockerfile and issue the following command:
$ sudo docker build -t <username>/gollum:4.0.0 .

Where <username> is the Docker registry username that you setup earlier. Notice
the -t: this is the tag. The tag is used both to name your image and to version it. In
this case, I have used the version of the software.

Versioning is as always a contentious issue, and it is best to use
your existing standards if in doubt. I tend to create a container
version that matches the version of the application I am packaging,
as it allows me to see at a glance which host is running which
version of a given piece of software.

Containerization with Docker

344

15. Once you trigger this command, you should see output similar to the
following screenshot:

16. Once your build is complete, you can push it to the Docker repository. By pushing your
image to the repository, you make it straightforward to deploy it to other machines. To
push the container, issue the following command:

$ sudo docker push <username>/gollum:4.0.0

This will push the image to the Docker repository and make it ready to be distributed. If you
wish to make it private, then you can sign up for a premium account and make use of the
private repository feature; alternatively, you can host your own Docker registry.

See also
The Docker build documents can be found at: https://docs.docker.com/reference/
builder/.

https://docs.docker.com/reference/builder/
https://docs.docker.com/reference/builder/

Chapter 6

345

Running a container in detached mode
You should run your container in a detached mode. This ensures that the applications that
are running within your container are able to run unattended, much in the same way as a
daemonized service. In this example, we are going to take the container we created in the
previous recipe, and run it as a detached process.

Getting ready
For this recipe, you will need an Ubuntu 14.04 server with Docker installed. You should also
have completed the previous recipe, Creating a Dockerfile, or have a suitable image to use.

How to do it…
The following steps show you how to use the docker command to run a container in a
detached fashion:

1. Running a container in detached mode is relatively straight forward. On your Docker
host, run the following command:
$ sudo docker run -d -t <username>/gollum:4.0.0 --name gollum -p
4567:4567

2. Let's take a look at these options. The -d tells Docker to run the container in a
detached mode; this means that it will run in the background, non interactively. Next
we use the -t option and supply the tag of our image, telling it which image we wish
to start our container from. Then, we use the --name option to allocate a name to
the container; without this option, a random name will be allocated.

3. The final option (-p) bridges the network between the container and the host,
allowing you to connect to your Gollum Wiki. This is presented as <container
port>:<host port> and allows you to connect to the host on a different port to
the one that is presented by the container; this can be very useful if you want to run
multiple versions of the same app, as it allows you to export the service onto several
different ports, and use technology such as haproxy to load balance between them.

Containerization with Docker

346

4. Once you have issued the command, you should be able to connect to your new Wiki.
In your browser enter the url ::4567. You should be presented with a page that
looks similar to this:

See also
 f You can find the Docker run command reference at https://docs.docker.com/

reference/run/

 f You can find the Gollum documentation at https://github.com/gollum/
gollum/wiki

https://docs.docker.com/reference/run/
https://docs.docker.com/reference/run/
https://github.com/gollum/gollum/wiki
https://github.com/gollum/gollum/wiki

Chapter 6

347

Saving and restoring a container
One of the powers of containers is the flexibility that they provide, and part of this is the
ease with which you can take snapshots of running containers and restore them onto other
Docker hosts. This can be used both to back up containers and to diagnose issues. If you
have a production issue with a particular container, you can use a snapshot to restore
the problematic container to a test host and test the exact same container in a controlled
environment.

Getting ready
For this recipe, you will need an Ubuntu 14.04 Docker host and a running Docker container.

How to do it…
The following steps will show you how to save a Docker container and then restore it on
another machine:

1. First we need to locate the container we are interested in. Using the docker ps
command, locate the container you wish to snapshot and make a note of its ID.

2. Once you have located the container you wish to commit, issue the following
command:
$ sudo docker commit <containerid> <imagename>:<imageversion>
--pause=false --author=<yourname>

Let's go through some of these options in more detail. The containerid
should be the id of the container you wish to commit, and the imagename and
imageversion are the name and version you wish to give to the image you're
creating. The pause flag is important for production instances, as this controls the
behavior of the running container when committing. By default, Docker will pause the
image whilst the commit takes place; this is to ensure that the data is consistently
captured. However, it also renders the container unable to serve requests during this
time. If you need the container to continue to run, you can use the --pause=false
flag to ensure this. Be aware, though, the image you create may contain corrupted
data if a write takes place during the commit. Finally, we also add an author name,
as this helps the people who examine the image to know who took it.

3. Once you have issued the command, you can use the following command to check if
it has been created:
$ docker images | grep "<imagename:imageversion>"

This should show your newly created image.

Containerization with Docker

348

4. Now that we have our image, we can push it to the Docker repository using the
following command:
$ docker push -t <imagename:imageversion>

5. We can now make the image available for diagnosis on a test machine using the
following command:
$ Docker pull -t <imagename:imageversion>

6. Alternatively, you can skip pushing the image to the Docker repository by using the
Docker save command. The save command creates a tar file of the image, which is
suitable to be passed around with tools such as SCP, or shared file systems such as
NFS. To use the save command, issue the following at the command line:
$ docker save <imagename:imageversion> > /tmp/savedimage.tar

7. This will create a tar file of the image. Copy it to your test host using the tool of your
choice, and issue the following command on the test host:
$ docker load < savedimage.tar

Now, if you check the Docker images on your test host, you will find that your saved image is
available to run.

See also
You can find details of Docker save, load, and commit commands at: https://docs.
docker.com/reference/run/.

Using the host only network
Docker uses a bridge to connect to the underlying virtual network and present services within
a container, and by and large, this is perfectly satisfactory. However, there are some edge
cases where this can cause issues; a perfect example is an application that makes use of
multicast. To get around this, you can present the host networking stack to the container,
allowing it to make full use of the host network. This allows items such as multicast to work at
the expense of some flexibility and convenience.

Wherever possible, you should avoid using this technique. Although it can
help avoid certain issues, it also breaks one of the underlying ideas of
containerization by making a container rely on features of the host. It also
stops you from being able to run multiple containers that rely on the same
port. For instance, under normal circumstances you can run multiple Nginx
servers using Docker, and also map the host ports of 80, 81, and 82 to three
containers listening on port 80. You cannot do this by tying the host network
to the container, as the port is tied to a single process.

https://docs.docker.com/reference/run/
https://docs.docker.com/reference/run/

Chapter 6

349

Getting ready
For this recipe, you will need an Ubuntu 14.04 host and a container with which it can network.

How to do it…
The following recipe shows you how to run a container in a detached fashion and give it
access to the host network:

1. First, we're going to start a new container; in this example, we're going to use the
Gollum container from earlier in the chapter. Start it using the following command:
docker run -d --name gollum --net=host -t <username>/gollum:4.0.0

Note the additional option of --net=host; this directs Docker to start the container
with the host network rather than bridging. Also note the lack of the -p option to map
ports; this option becomes superfluous as the container communicates directly with
the host network, so no bridge is required.

2. As we are no longer mapping a port, Docker cannot take care of configuring the IP
Tables for use. Due to that, you will need to insert a new rule to allow traffic to reach
the service running in the container. You can do this by using the following command:

iptables -I INPUT 5 -p tcp -m tcp --dport <serviceport> -j ACCEPT

Substitute <<serviceport>> with the TCP port number of the service that you're
running on.

See also
You can find more information on advanced Docker networking techniques at:
https://docs.docker.com/articles/networking/.

Running a private Docker registry
Although the Docker registry offers a robust and cost effective place to store Docker images,
for some companies this can be limiting, either due to the cost involved, or possibly due to
security policies. Luckily, it is possible to run your own private Docker repository, allowing you
to keep your images completely within the boundaries of your own network.

In this recipe, we are going to set up a minimal Docker registry. We are not going to delve
into items such as authentication mechanisms or alternative storage mechanisms. This
is left as an exercise for the reader, and you can find excellent guidance within the Docker
documentation at: https://docs.docker.com/registry/.

https://docs.docker.com/articles/networking/
https://docs.docker.com/registry/

Containerization with Docker

350

The registry we create will contain some minimal security in the form of SSL, and we are
going to export the filesystem to the underlying host. Docker registries can consume massive
amounts of disk space and ideally, you should hold the data on a robust storage device, such
as an NFS server with both a large capacity, and solid redundancy.

Getting ready
For this recipe, you will need an Ubuntu 14.04 host with Docker installed.

How to do it
The following steps will show you how to create a new Docker repository and secure it
using SSL:

1. By default, the Docker registry does not ship with SSL enabled. To enable it, we need
to download the source code. Create a folder to contain it and download it using the
following command:
$ wget -q https://github.com/docker/distribution/archive/
v2.0.0.tar.gz

2. Next, unpack the source code using the tar command:
$ tar -xvf v2.0.0.tar.gz

3. Move to the distribution directory and create a new certs directory using the
following command:
$ cd distribution-2.0.0 && mkdir certs

4. Now we create the SSL certificates for our Docker host using the following command:
$ openssl req -newkey rsa:2048 -nodes -keyout certs/registery.key
-x509 -days 730 -out certs/registery.crt

5. This command will trigger some prompts asking for further details about the new
certificate you are creating:

Chapter 6

351

Pay special attention to the hostname when you fill these in, as this should match the
hostname of registry you are creating.

6. Next, we need to amend the registry configuration to recognize the new certificates.
Edit the /cmd/registry/config.yml file within the registry source code and find
the block marked http, then amend the code to look similar to this:
http:
 addr: :5000
 secret: asecretforlocaldevelopment
 debug:
 addr: localhost:5001
 tls:
 certificate: /go/src/github.com/docker/distribution/certs/
registry.crt
 key: /go/src/github.com/docker/distribution/certs/
registry.key

7. Next, locate the key named filesystem: and amend it so that it resembles the
following snippet:
 filesystem:
 rootdirectory: /var/spool/registry

8. Now we have finished our changes, we can build our custom registry image using the
following docker build command:
$ docker build -t docker_registry .

9. Once the build is complete, you can run the registry using the following command:
$ docker run -p 5000:5000 -v /var/spool/registry:<host_dir>
docker_registry:latest

Where host_dir is a directory on the host machine.

Containerization with Docker

352

10. Since we are using a self-signed certificate, we need to configure any Docker client
that wishes to use this repository to recognize the new certificate. On each Docker
client, copy the registry.crt into /etc/docker/certs.d/<<registrydoma
in>>:<<registryport>>/ca.crt. Ensure that you replace registrydomain
with the DNS name of your Docker registry, and the registryport with the port it
will be running on. This will then suppress any warnings you may encounter due to
untrusted certificates.

11. We can check if our registry has started correctly by querying the API. Point your
browser at the address of your new registry (remember to ensure it's https rather
than http). You should see a response similar to this:

This is exactly what we expect; by returning a 200 response and an empty JSON array,
you can see that the API is ready to go.

See also
You can find details on how to deploy and use the Docker Registry at: https://docs.
docker.com/registry/.

Managing images with a private registry
Once you have created your own Docker registry, you can start to push your Docker images to
it. By pushing your images to a self-hosted Docker registry, you are not only gaining security,
you are also making the build and deployment of further images much faster. Pushing to a
self-hosted registry is straightforward, and there is nothing to stop you from pushing an image
to multiple registries; this can be useful if you maintain registries for certain environments.

Getting ready
For this recipe, you will need an Ubuntu 14.04 Docker host and a self-hosted Docker registry.

How to do it…
I have split this recipe into two sections, the first dealing with pushing images to your registry,
and the second for how to pull images.

https://docs.docker.com/registry/
https://docs.docker.com/registry/

Chapter 6

353

Pushing images
The following steps deal with taking an image and pushing it to a private Docker registry:

1. For this recipe, we are going to use the Gollum Dockerfile, which we created
previously. Change the directory to the Dockerfile directory and trigger a build using
this command:
$ sudo docker build -t <username>/gollum:4.0.0 <<docker_registry_
name_and_port>>

Note that, instead of your usual Docker registry username, you are inserting the
name and port number of your own Docker registry into the image tag. This is going
to act as a pointer to Docker, for both where to push the image to and where to pull
it from.

2. Next, we can push the image using the following command:
$ docker push <docker_registry_name_and_port>/gollum:4.0.0

3. If all goes well, you should see output similar to this:

Containerization with Docker

354

4. Now, we can also use the Registry API to check if our image has been correctly
pushed. At the command line, enter the following command:
curl -v -X GET address>:5000/v2/gollum/tags/list

5. You should see a response along the lines of the following screenshot:

If you see this, then you have successfully pushed the image to your own Registry.

Pulling images
Now that we have pushed images to our Docker registry, we can look at how we can
subsequently pull them. Again, we can use the Gollum example, which we uploaded in the
previous examples.

At your command line, enter the following command:

$ docker run -d -t <<docker_registry_name_and_port>>/gollum:4.0.0

This will pull the image from your registry and run it.

See also
You can find more details of working with a self-hosted Docker registry at: https://docs.
docker.com/registry/spec/api/#overview.

 https://docs.docker.com/registry/spec/api/#overview
 https://docs.docker.com/registry/spec/api/#overview

355

7
Using Jenkins for

Continuous Deployment

In this chapter, we are going to cover the following topics:

 f Installing Jenkins

 f Installing the Git plugin

 f Installing a Jenkins slave

 f Creating your first Jenkins job

 f Building Docker containers using Jenkins

 f Deploying a Java application to Tomcat with zero downtime using Ansible

Introduction
Continuous integration is one of the most powerful techniques you can use when developing
software and it underpins a great deal of what many consider a DevOps tool-chain. Continuous
integration (CI) essentially entails taking your code and building it on a frequent schedule
and deploying it into a representative environment for the purpose of testing. This automated
job should both build and test, if the tests are passed, you can deploy your software into a
nominated environment. Without the ability to automate code deployment, you are left with an
enormous piece of manual labor in your deployment pipeline. It's one thing to be able to build
servers and deploy configuration automatically, but if you are unable to build your code in a
reliable manner and then push it to a test environment, then you are going to be wasting a lot
of time and energy.

Using Jenkins for Continuous Deployment

356

Continuous integration is an incredibly valuable tool and something that most development
teams should be working towards if they don't already have it. Once you have a CI tool in place
you will be deploying and testing code very frequently and increasing the visibility of bugs
before they can be deployed any further than an integration environment.

How often you run the integration job is something for the team to agree on.
I've worked with systems that deploy every time a developer checks in and I've
also worked in teams where it happens once every hour. I will suggest that
you run the integration at least once a day. If your integration tests are long,
the best time will be when the last developer goes home; so that, when you
return the next day, you can see the state of your last build and fix any issues
that may have occurred overnight.

Taken to extreme, continuous integration can be used to take code from the repository and
take it right through to production deployments and indeed, there are companies that utilize
continuous integration in this fashion. Even if you don't take your system to such a degree, you
will still find that the judicious use of continuous integration can help you identify bugs in the
code quicker.

The key to continuous integration is to leverage the existing tools. You almost have the
existing testing suites in place, so re-purpose those to be used in the continuous integration
environment. We can also re-use the automation tools and techniques we use to build the
environments. This not only re-uses existing tools but also ensures that any deployment tool
you use is tested regularly, ensuring that these are as bug free as possible.

In this chapter, we are going to focus on using Jenkins as the basis of our continuous
integration recipes. Jenkins is a fork of the Hudson CI system and has a thriving and active
development community with many plugins to enhance its functionality.

Although Jenkins is a fork of Hudson, I recommend that you stick with Jenkins
rather than its progenitor. It has a much more active developer community
and more plugins.

Jenkins allows the use of a master and slave arrangement and this allows you to scale it out
for truly massive builds. The Jenkins master controls the slaves and with a few select plugins,
you can use technologies such as Docker to keep your build environment elastic; alternately,
you can use plugins to drive build slaves using AWS, Digital Ocean, and many other PAAS
providers.

We will also be making use of both Ansible and Docker to build and configure our integration
environment. If you are not up to speed with either of these, I suggest that you have a look
at Chapter 5, Automation with Ansible, and Chapter 6, Containerization with Docker. Both of
these chapters contain everything you need to get up and running with these technologies.

Chapter 7

357

Installing Jenkins
This recipe will show you how to install a basic Jenkins server. The Jenkins server will form the
basis of the continuous integration environment, and this is where you define your build jobs
and also manage build users, plugins, and environment details. We are also going to cover
some basic setup tasks, ensuring that your new Jenkins servers is secured from anonymous
usage is a very important step if your hosting your build platform on a publicly accessible host.

We are going to use Ansible to install our Jenkins master; this allows us to easily re-create
the basic server if we have a problem or allows us to create a new one if we need a second
master, perhaps for a new project.

This recipe will setup the Jenkins master but you will quickly realize that
the Jenkins master is not the important part; the crucial parts are the jobs
you create. Make sure that once you start to use Jenkins, you back up your
system regularly. If disaster strikes and you haven't backed up your Jenkins
master, you will have a very tedious time re-creating jobs from scratch.

Getting ready
For this recipe, you will need an Ubuntu 14.04 server and an Ubuntu 14.04 host with Ansible
installed. If you need more information on how to use Ansible, please consult Chapter 5,
Automation with Ansible.

How to do it…
The following steps will show you how to write a basic Ansible role to install the Jenkins server
and how then to setup some basic security:

1. We're going to create a new Ansible role to manage the installation of our Jenkins
Master; use the following command to create the new role:
ansible-galaxy init jenkins

2. Now, we have our new template role ready and we can start adding code. Edit
jenkins/tasks/main.yml and add the following snippet:
- name: Add Apt key
 apt_key: url=http://pkg.jenkins-ci.org/debian/jenkins-ci.org.key
state=present
- name: Add Jenkins Repository
 apt_repository: repo='deb http://pkg.jenkins-ci.org/debian
binary/' state=present update_cache=yes

Using Jenkins for Continuous Deployment

358

- name: Install Jenkins
 apt: name=jenkins state=present

- name: Start Jenkins
 service: name=jenkins state=started

This code is straightforward and performs the following tasks:

 � Adds the Jenkins repository key

 � Adds the Jenkins repository to the apt sources

 � Installs the Jenkins package

 � Starts the Jenkins service.

If you now use your browser to point at the DNS/IP address of your build server on
port 8080 you should be presented with the following page:

Chapter 7

359

3. Now that you have installed Jenkins, we should at least add a minimum amount of
security; this is especially important if you are hosting your Jenkins server on a public
facing server. Click on the Manage Jenkins on the left-hand side of the home page
marked as:

4. The next page allows you to manage some of the features of Jenkins. If you have
not already setup your security, you should find a banner that looks similar to the
following screenshot at the top of the screen:

5. Click on the button marked as Setup Security. This should take you to the next
screen, which looks like the following screenshot:

Using Jenkins for Continuous Deployment

360

6. Check the highlighted checkbox and then click on the Save button; it will take you to
the next screen of the setup, which should resemble the following screenshot:

Note the selected settings. This will configure Jenkins to use it's own in built user
directory and ensure that only logged in users are able to perform any actions.

This only stops users from being able to perform actions within Jenkins, but
it does not stop unauthenticated users from seeing information on your build
server. If you are hosting this on an externally available site, I strongly urge
you to get additional security; at the very least a reverse proxy, such as an
Apache or Nginx server in front of your Jenkins with basic authentication.
Alternatively, you can also add a user called Anonymous, and remove all the
rights; this will effectively stop unauthenticated users from being able to take
any actions or see any data.

Once you are happy with the settings, hit Save and you will be taken back to the
configuration page.

Chapter 7

361

7. Finally, we need to create a user to log in with. From the management page, find and
click on the link that looks like this:

8. This will take us to the user management page. On the left-hand side, you will find a
link called Create User, click on it and you will be taken to a page that looks similar
to the following screenshot:

Add the details of your user as shown in the preceding instance and hit the Sign up
button. You should now be able to login to Jenkins as that user and start to create
jobs. If you don't supply user details, you can still see some of the less secure
elements of Jenkins; however, you will be unable to alter anything.

Using Jenkins for Continuous Deployment

362

See also…
 f You can find further details of how to install Jenkins at https://wiki.jenkins-

ci.org/display/JENKINS/Installing+Jenkins

 f You can find details of Jenkins authentication methods at https://wiki.
jenkins-ci.org/display/JENKINS/Authentication

 f You can find details of how to administer Jenkins at https://wiki.jenkins-ci.
org/display/JENKINS/Administering+Jenkins

Installing the Git plugin
By default, Jenkins is shipped with the ability to connect to CVS and Subversion; despite the
growing popularity of Git, it's still not available by default. Fortunately, Jenkins has a plugin
that allows you to use Git as your repository of choice. This recipe will show you how to install
the plugin and configure the credentials to connect to your repo.

Getting ready
For this recipe, you will need a Jenkins server and a Git repo to connect to.

How to do it…
The following steps use a combination of Ansible and a Jenkins plugin to add Git client
functionality to the Jenkins Server.

1. First, we need to install the Git client on to our Jenkins server. Rather than doing this
manually, we are going to adjust the Ansible role from the installation recipe. Within
the Jenkins role, edit the following file: Jenkins/tasks/main.yml, and insert the
following code:
- name: Install Jenkins
 apt: name=jenkins state=present
- name: Install Git
 apt: name=git state=present

2. Re-run the Ansible role against your server; this should install the Git client. You can
test this by issuing the following command on your Jenkins server:
git --version

This should return the version of the Git client that you installed.

https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Authentication
https://wiki.jenkins-ci.org/display/JENKINS/Authentication
https://wiki.jenkins-ci.org/display/JENKINS/Administering+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Administering+Jenkins

Chapter 7

363

3. Now, since we have the Git client installed, we can install the Jenkins Git plugin. From
the front page of the Jenkins console, click on the Manage Jenkins button found on
the left-hand side of the page.

Although not covered in this recipe, it's possible to use Ansible to
manage the plugins, a great example can be found at: https://
github.com/ICTO/ansible-jenkins.

4. On the manage Jenkins page, find and click on the Manage Plugins button, found
around halfway down the page and then click on the Available tab.

5. In the filter box, type Git Plugin; it should return a list of plugins similar to the
following screenshot:

As you have probably noticed, each of the plugins has a link in the
title; this takes you through to the documentation and is worth
looking at before installing them.

Tick the checkbox next to the Git Plugin, click on the Download now, and install
after restart button. This will prompt Jenkins to download the plugin, install it, and
restart Jenkins to make it available for use.

6. Next, we need to configure our credentials to connect to Git.

https://github.com/ICTO/ansible-jenkins
https://github.com/ICTO/ansible-jenkins

Using Jenkins for Continuous Deployment

364

When setting up Git credentials, I recommend that at the very least, your
build system should have its own credentials. Although it's tempting to re-
use existing credentials, it makes it both hard to audit and more susceptible
to intrusion. It's also creating a problem for the future, when the builds stop
working and you revoke the key of the person who setup the build server
when they leave.

7. Log on to your Jenkins server and issue the following command:
$ sudo su Jenkins

8. Now, we can create a new SSH key with the following command:
$ ssh-keygen -t rsa -b 4096 -C "jenkins@example.com"

9. You will be greeted with a response similar to the following screenshot:

As you can see, I've left the responses at their default values.

This will create the key without a password. If you wish, you can create
a key with a password and the password can be passed via Jenkins.

Chapter 7

365

10. Log on to your Jenkins server and click on the link on the left-hand side marked as
Credentials. This will take you into credentials management page, which should look
something similar to the following screenshot:

11. Click on the global credentials link and select the link on the left-hand side marked
as Add Credentials; this will bring up a screen that will allow you to add your Git
credentials; look at the following screenshot to get an idea of how it should look when
you enter your credentials:

Using Jenkins for Continuous Deployment

366

As you can see, we're asking the Jenkins server to simply look-up the key that we
generated earlier. Alternatively, you can add it directly to Jenkins or keep it in a
different place than the SSH default on the server itself. Tweak these details to fit
your build infrastructure.

See also
 f You can find the details of the Git plugin at https://wiki.jenkins-ci.org/

display/JENKINS/Git+Plugin

 f You can find more details about the credentials plugin at https://wiki.jenkins-
ci.org/display/JENKINS/Credentials+Plugin

Installing a Jenkins slave
As we've already covered, Jenkins can be scaled by adding additional build slaves. These
slaves can be used to distribute builds amongst many different servers. This allows you to
have a single low-powered server, which acts as the Jenkins master and then as many slaves
as you need to perform the build jobs.

Getting ready
For this recipe, you will need a Jenkins master and a server running Ubuntu 14.04 with a JDK
installed to act as the slave.

How to do it…
The following steps will show you how to add a Jenkins slave to the Jenkins master:

1. On your slave node, add a new Jenkins-user with the following command:
$ adduser jenkins

Login to your Jenkins Master and add new credentials. These are going to be the
credentials used to connect to your new Slave; it should look similar to the following
screenshot:

https://wiki.jenkins-ci.org/display/JENKINS/Git+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Git+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Credentials+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Credentials+Plugin

Chapter 7

367

As you can see, I'm using a username and password to connect to my slave;
however, you can also use an SSH key if you prefer.

2. Once you have created your credentials, you now need to add the new slave. On
the main screen, click on Manage Jenkins and then select the option marked as
Manage Nodes. Inside the management panel, you should find that the master is
already listed and should look something similar to this:

3. Click on the button on the left-hand side of the management panel marked as New
Node; this will open the following dialog box:

As you can see, you need to name your node. This is descriptive and doesn't
necessarily need to the be same name as the actual node. As you can see, there is
only one option available for slave nodes but you can add more via an appropriate
plugin. Click on OK to move to the next step.

Using Jenkins for Continuous Deployment

368

4. The next step allows you to enter the details of your slave node; have a look at the
following screenshot:

These options allow you to configure some fairly important settings for your node.
First of all, it allows you to set the name and description of this node; It's best to be
as descriptive as possible. Next, you can set the number of executors and this sets
the number of parallel jobs the node can perform at one time. Generally speaking,
the more powerful the server, the more jobs it should be able to perform. Mine is a
tiny server, so I'll leave it at the default of one.

Next up, we have the remote root directory; this is where the Jenkins workspaces will
be kept. So it's best to make sure that this is a location that has the majority of the
disk space. Next, we have labels. Labels are a mechanism to allow you to use certain
nodes for certain jobs; for instance, in my case, I've set two tags on my slave, test
and Docker. This means that any Jenkins job that has that tag will have this node
available to them. If no node with that tag exists, it will fail.

This is a great way to separate out nodes by capability; so for instance,
you could label some nodes as being Redhat, Ubuntu, Beta, and so on.

Finally, we have our launch options. In the case of my slave, I'm using SSH to connect
to it using the credentials we created in step 2. Once you have entered your details,
click on Save.

Chapter 7

369

5. If you now navigate to the node management page, you should find that it now looks
something similar to this:

Your new node is now available for building with.

Remember, your slave node will need the appropriate tools installed for
your build; for instance, Git, maven and so on. It's a good practice to
automate this using a tool such as Ansible. This makes it quick and easy
to spin up new slaves.

See also
For further details on the SSH plugin, you can see the documentation at https://wiki.
jenkins-ci.org/display/JENKINS/SSH+Slaves+plugin.

Creating your first Jenkins job
The basic building blocks of Jenkins are jobs. A Jenkins job is a series of steps that normally
check software out of a repository, run unit tests, and builds the artifact ready for deployment;
however, they are versatile and can be used to perform almost any task you can think of.

When we talk of an artifact in this context, we are referring to the deployable
object your build job produces. This is commonly an object, such as an
executable binary, library, or software package. An artifact is the object you
wish to take from your build server, deploy, and execute on your environments
to test.

At its core, you add steps to a Job and it can trigger another when it succeeds; generally
speaking, these are command-line jobs but as with many Jenkins items, this capability
can be extended with the use of Jenkins plugins.

https://wiki.jenkins-ci.org/display/JENKINS/SSH+Slaves+plugin
https://wiki.jenkins-ci.org/display/JENKINS/SSH+Slaves+plugin

Using Jenkins for Continuous Deployment

370

For this example job, I am going to build my blog. This is based on the excellent Hugo static
blog engine (http://gohugo.io). Hugo allows us to create a relatively straightforward
job that will download the code from a Git repository and run a task that will build our end
product; we're then going to use Jenkins to archive this ready for distribution.

Getting ready
For this recipe, you will need a Jenkins server. You should also have a blog ready to process
within Hugo. You can find an example blog at https://github.com/spf13/hugo/tree/
master/examples/blog.

How to do it…
The following steps will show you how to install the Hugo blog engine and create a Jenkins job
that will fetch an example site and build it:

1. Our first task it to install the Hugo blog engine; you can do this by issuing the following
command on either the Jenkins server or Jenkins slave that will run this job:
$ wget https://github.com/spf13/hugo/releases/download/v0.14/
hugo_0.14_amd64.deb && dpkg -i hugo_0.14_amd64.deb

2. Next, we are going to create a new job. Login to your Jenkins server and click on New
Item button:

3. In the next window, give your project a descriptive name and select Freestyle project.

http://gohugo.io
https://github.com/spf13/hugo/tree/master/examples/blog
https://github.com/spf13/hugo/tree/master/examples/blog

Chapter 7

371

You can find the differences between the different project types at https://
wiki.jenkins-ci.org/display/JENKINS/Building+a+softwar
e+project#Buildingasoftwareproject-Settinguptheproject.

4. In the next screen, you start to fill in the details that comprise your job. Take a look at
the following screenshot:

As you can see, I've added a description for the project and also selected the
Discard old builds option. This is important; if left unconstrained, Jenkins can eat a
stupendous amount of disk space. I've left it at five builds but you can also use the
number of days instead. As with many Jenkins elements, there are plugins that allow
you to tune this in more detail.

https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Settinguptheproject
https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Settinguptheproject
https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Settinguptheproject

Using Jenkins for Continuous Deployment

372

5. Next, we define our code repository options. As you can see in the succeeding
screenshot, I've used Git to store the code for this particular project:

This makes use of the Git credentials that we set up in the earlier recipe. If you
choose to use a different type of repository, then amend your configuration to fit it.

6. Now we can configure how Jenkins will schedule the builds. You could leave this as a
manual job but that rather flies in the face of a CI server; instead, I have set mine to
periodically poll Git; have a look at the following screenshot:

Chapter 7

373

The Poller uses a similar syntax to cron to set out the schedule, with a few notable
differences. You can see one of these above; the H denotes a hash, which ensures
that the job will run at a randomized time within that period; in this case, my schedule
is to run at a random minute, every hour, day, month and year. This helps to keep
the load light on the upstream server; perhaps not as important on a scalable public
platform such as Github, but very important when you run your own server.

7. Finally, we setup both our build and post-build steps. The build steps are what
command you to run once you have cloned your source code; have a look at the
following screenshot:

For my job, I am calling the hugo command. Hugo is a statically generated CMS. It
takes the content, processes it, and creates the HTML, CSS and also the images that
make up the site. This has a huge performance boost over CMS systems such as
WordPress, as content is not generated on the fly; it also makes it very easy to use
with a Content Distribution Network (CDN).

Using Jenkins for Continuous Deployment

374

After we execute our build, we add a post-build action to archive the artifacts. This
will produce a zip file containing the selected items from our build. In this case, I'm
zipping up the public files that comprise the deployable part of the blog. Each time a
build is successful, you will be able to open it in Jenkins and find the artifact available
for download from within it.

Don't forget, you're not limited to one-step for either the build
or post-build; you can have as many as you like and they can be
ordered using drag and drop.

At this point, hit the save button and we're ready to run our job.

8. Back at the job screen, hit the Build now button. This will trigger an immediate build.
To the left of the screen, you should see the Build History; it looks similar to the
following screenshot:

As long as the icon is blue, the build is a success. Clicking on the icon will take you
to results of that particular build and its here that you can see the console output
from the job, and most importantly, the build artifact. If the icon is red, it means that
something didn't quite go right in your build and you need to examine the console
output to derive what might have occurred.

See also
You can find detailed documentation around Jenkins jobs at https://wiki.jenkins-ci.
org/display/JENKINS/Building+a+software+project.

https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project
https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project

Chapter 7

375

Building Docker containers using Jenkins
One of the important elements of creating an automated build is to ensure that the
environment is consistent; unless you ensure consistency, you may find that integration tests
pass when they should fail. Docker is perfect for this. By building your environment within a
Docker container, you can ensure that your environment is the same from the initial build,
right through to the production deployment and you can dispose of this environment after
the build.

By utilizing Docker, you are also preparing for continuous deployment. A successful build
within a container can be promoted to the next environment without needing to be amended.
If it passes that environment, it can be passed onto the next and so on. If you trust your
automated testing sufficiently, you can even push your container into service in production.

You can find more about continuous deployment patterns in the seminal book
on the subject, Continuous Delivery by Jez Humble.

Getting ready
For this recipe, you will need a Jenkins server with Docker installed.

How to do it…
The following steps will show you how to install Docker and use it to create a deployable
artifact using Jenkins:

1. Follow the instructions in Chapter 6, Containerization with Docker of recipe Installing
Docker, to install Docker on your Jenkins server.

2. For Jenkins to be able to use the docker commands during a build, we need to give
the Jenkins user the correct permission. We need to create a docker group and
add the Jenkins user to it. You can do that by issuing the following command on the
Jenkins server:
$ usermod -aG docker Jenkins

If your Jenkins server is running it will not pick up these changes; restart it with the
following command:

$ service Jenkins restart

Using Jenkins for Continuous Deployment

376

3. If you want your automated build to be able to be able to publish to the Docker
registry, then you need to sign in. Use the following commands to enable your
Jenkins user to access your registry:
$ sudo su sudo Jenkins

$ docker login

Enter your details when prompted; they will then be stored for use within Jenkins.

4. Now that we have finished our setup steps, we are ready to build our container. We
are going to take the Hugo blog from the previous recipe and use a Docker container
to host the built artifact. We will also add an Nginx HTTP server to serve the blog.

First, we are going to move the contents of our blog into a new folder structure. Open
a terminal session in the root of your blog project and issue the following command:

$ mkdir -p files/hugo

Issue the following command to move your blog content into your new directory
structure:

$ mv * files/hugo

5. Next, we are going to create our Dockerfile. This Dockerfile will install Nginx
and add the contents of our Hugo blog into the default location to be served by
Nginx. Create a new file called Dockerfile in the root of your project and insert the
following code:
FROM ubuntu:14.04

MAINTAINER <MAINTAINER DETAILS>

RUN apt-get update && apt-get upgrade -y

RUN apt-get install -y nginx

ADD files/hugo/public /usr/share/nginx/html

Expose ports.

EXPOSE 80

CMD ["nginx", "-g", "daemon off;"]

Once you are done editing, save the file and check your project into your Git repository
and push to your remote.

6. Now, we can edit our build to create a Docker image. Login to your Jenkins server and
locate the job used to build your Hugo blog; click on the configure button.

7. The first item we need to edit is the first build step. Previously, we simply triggered the
hugo command in the root of the work directory; since we have moved the files into a
sub-directory, this will no longer work. Instead, edit it to resemble the following:

Chapter 7

377

The -s switch enables you to give hugo a path to its input file and we can then supply
the new directory structure.

8. Now, we need to add a new build step. Underneath the first step, click the button
marked Add build step, and select Execute Shell Script as the action. This will add a
new textbox underneath the original build step; add the following content:

As you can see, this is using the Docker command to perform the build for us and
add the tag of Latest to it.

9. Now, we shall add a step to push the built image to the Docker registry. Again, click
on the Add build step button and select Execute Shell Script. This time, add the
following command:

Using Jenkins for Continuous Deployment

378

10. This final step is optional, but recommended. As with all Docker hosts, repeated
builds create containers and these can add up over time. You can alleviate this by
deleting old containers and images using the following command:

This will remove all Docker images and containers after each build and will stop your
disk space from disappearing into the ether.

This can cause your build to go slower as Docker will be unable to use a build
cache; depending on the size of your image, locality of Docker registry, and
speed of Internet connection, this may not matter. However, if you want the
quickest possible build, omit this step and police your Docker storage using
other means.

11. We're now ready to build. Save your job and hit the build button. Once it's complete,
examine the build-log by locating and clicking on the last build on the build history
panel on the left-hand side. Once you have opened the build, click on the button on
the left-hand marked Console Output; it should look something like this:

If all goes well when you scroll down, it should look something like this:

Chapter 7

379

Notice the message is telling you Finshed: SUCCESS; if it says something differently, then you
have a problem; otherwise, you should now have a new Docker image ready to use. You can
double check by examining your Docker registry; you should find a new build within it.

Of course, it is understood that this is the tip of the iceberg. Using this recipe as a base, you
can easily extend this job to build your software, package it into a Docker image once it has
passed its unit tests and then automatically promote the image to an integration environment
for testing. Be creative and with a small amount of work, you can save yourself a vast amount
of manual testing.

Deploying a Java application to Tomcat with
zero downtime using Ansible

Docker is not the only way to perform deployments using Jenkins, and indeed, for many
organizations their container efforts are still in the nascent stages. For many, Java and Tomcat
are still the mainstay of most platforms and will continue to be so for some considerable time.

Tomcat is now in its eighth version and is still one of the most common Java containers in
use, both due to it's Open Source heritage and battle tested stability. Over time, it has also
learned some interesting new tricks, with a particularly innovative one being a function called
parallel deployment. Parallel deployment allows you to deploy a new version of an application
alongside an existing one and Tomcat will then ensure that any existing connections to the
application will be satisfied, while new connections will be passed to the new version. From a
user perspective, there is no downtime and they simply flip from one version to another the
next time they connect to the application.

Using a combination of Ansible, Tomcat, and Parallel deployment, you can promote builds
seamlessly, and even better, if you deploy a bad build, you can roll it back relatively easily;
all without causing downtime to your platform.

Using Jenkins for Continuous Deployment

380

It goes without saying that this is great for your app but you need to
design your architecture around this capability. It is no good using parallel
deployments, if your app is dependent on a manual database migration or
if you have a heavy dependency on state. A state in particular will not be
passed from one application to another.

Getting ready
For this recipe, you are going to need a Jenkins server to host the build and a tomcat server
to act as the app server plus a repository to hold the example code. Ensure that your Jenkins
server also has the Ansible installed; you can see instructions on how to do this in Chapter 5,
Automation with Ansible, in recipe, Installing Ansible.

How to do it…
The following steps will demonstrate how to use Jenkins, Ansible and Tomcat to deploy a very
simple test application:

1. To demonstrate how parallel deployment works, we are going to create a very simple
web app and package it in a war file. Use the following command to create a new
directory structure:
$ mkdir -p testapp/WEB-INF

2. Next, edit a new file under testapp/WEB-INF called web.xml and insert the
following content:
<web-app></web-app>

This is a very simple web app configuration file.

Save this file and create another file called index.jsp and insert the following code:

<html>
 <head>
 <meta http-equiv="refresh" content="1">
 </head>
 <body>
 <H1>Test App</H1>
 <%= date = new java.util.Date() %>
 <p>Greetings, this is the first version of our test app. The
time is currently: <%= date %></p>
 </body>
</html>

Chapter 7

381

This is a remarkably simple application, whose only role in life is to print out a
pithy greeting, the date and time, use the HTML META tag to force the browser to
refresh the page; however, it's perfectly suited to demonstrate the power of parallel
deployment.

3. Next, we are going to create a new Ansible playbook to perform our deployment.
Create a new directory to hold our playbook using the following commands:
$ mkdir -p appdeploy/inventory

$ mkdir -p appdeploy/group_vars/appdeploy

This creates a basic structure to house our Ansible code, including a place to hold our
inventory and variables.

If you have an existing Ansible setup, you would like to use this code.
In this recipe, we are going to add a new playbook and inventory item,
both of which can happily live inside an existing project.

4. Next, we're going to create our Ansible inventory and create a new file called
appdeploy/inventory/appinventory file and insert the following code:
[appdeploy]
<< tomcatserver >>

Where << tomcatserver >> is the name/ip address of your tomcat server.

5. Now that we have our inventory, we are ready to create our playbook. Create a new
file called appdeploy.yml under the appdeploy folder and insert the following
content:
- hosts: appdeploy
 gather_facts: false
 sudo: true
 tasks:
 - name: Deploy App
 copy: src=/var/lib/jenkins/jobs/workspace/tomcat_test /
testapp.war dest="/usr/local/apache-tomcat-8.0.23/webapps/
testapp##{{ buildnum }}.war" owner=tomcat group=tomcat

Using Jenkins for Continuous Deployment

382

This is a simple playbook. First, we declare that this will only run against the servers
that are tagged as appdeploy hosts. We are also declaring that this playbook
does not need to gather facts. Not gathering facts can be a good way to speed up a
playbook and is an excellent practice when you know that your Ansible code does not
make use of them, as it skips a relatively expensive fact of gathering task. As usual,
this is a trivial time saver against one host but when you scale out to hundreds of
hosts, it can make a difference.

You may need to amend the paths in the preceding example,
especially if you are using a slightly different version of Tomcat.

Next, we declare the tasks that we are going to carry out. In our case, we are only
performing a single task, copying a war file to the remote host. Notice the {{
buildnum }} variable; this is going to be our link between Ansible and Jenkins
and it will be explained later in the recipe.

6. In the appdeploy/group_vars/appdeploy directory, create a new file called
main.yml and insert the following code:
Intentionally left blank

This is a simple kludge to ensure that the directory is added if you are using a Git
repository. We are going to fill the content of this file by dynamically using Jenkins
but Git has a nasty habit of not adding empty directory structures. This ensures
that it will be included when we check it in and push it to our remote.

A .gitignore file also suffices well for this purpose.

Once you have finished editing your files, create, check in, and push your code to
your repository.

Chapter 7

383

7. Now, we can create our new Jenkins job. Log on to your Jenkins server and create a
new item called tomcat_test and ensure that it's set as a freestyle project. Once
created, we can set the basic job options. We want to ensure that our job doesn't fill
the disk of our Jenkins server, which is a real and immediate issue with builds that
can generate large artifacts; ensure that your build matches the options listed in the
following screenshot:

As you can see, I'm limiting the job to only keeping 10 builds at a time; you should
edit this to suit your particular needs.

Using Jenkins for Continuous Deployment

384

8. Next, we're going to configure our source code repository options. These will be
different depending on your Git hosting options and repository name; you can
use the following screenshot as a guide to configure your repository options:

Now we can set our build triggers. Since we are creating a CI process, we should
poll our code repository regularly to look for changes, the idea being, that when a
developer checks in code, it is immediately picked up and a build is attempted.
Have a look at the following screenshot:

Chapter 7

385

As you can see, I'm polling the SCM (Source Control Manager) every minute. You can
amend this to fit the capabilities/spec of your repository, especially if you have many
builds. Having a periodic polling can completely crush an SCM with a lowly spec, so
be cautious with this option and be ready to scale when your job list gets relatively
big.

As with all things Jenkins, there are many plugins that allow you to
control the polling behavior; it is worth browsing the plugin directory
to see if it can help on this front. Alternatively, you may find that your
SCM supports hooks that allow you to push build events rather than
polling for them. This is ideal as the SCM is only being called when
there is actually something to do, rather than being battered with
needless traffic.

9. Now we have our schedule in place, it's time to get on and construct our build steps.
First, we're going to use the jar command to create our Java archive. Add a new
execute shell build step and ensure that it has the following command:
mv chapter7/testapp/* . && jar cf testapp.war WEB-INF/index.jsp

This is a simple command that takes the checked out code and moves it into the
working directory and uses the jar command to create the archive.

10. Next, we need to create the variable that will inform Ansible, which builds the
application we are pushing. Create a new execute shell build step and add the
following content:
echo "buildnum: $BUILD_NUMBER" > chapter7/appdeploy/group_vars/
appdeploy/main.yml

11. This command makes use of one of the environment variables that Jenkins sets as
part of its build. These environment variables are astonishingly powerful, as they
allow you to act on the output of your build.

You can find the list of available variables at your Jenkins
server at the /env-vars.html/ URL; you can also act on
other environment variables that you set yourself.

12. Finally, we can trigger our Ansible build. Add another execute shell build step and add
the following command:
ansible-playbook -i chapter7/appdeploy/inventory/appinventory
chapter7/appdeploy/appdeploy.yml

This invokes Ansible to use your inventory and playbook.

Using Jenkins for Continuous Deployment

386

If all goes well, your build steps should resemble the following screenshot:

Once you are happy that your job looks correct, save it and return to the main
Jenkins screen.

13. Before we can run our project, we need to make some changes to our servers. As our
Ansible code is being run as the Jenkins user we need to ensure that it has access to
the target server and it has a sudo access on each server. If you are using Ansible to
control the tomcat servers, then you can add a Jenkins user and key via Ansible; see
Chapter 5, Automation with Ansible, for an example. You will also need to add sudo
access; this can be done by adding the following task into the Role that manages your
user:
- name: Add Jenkins Sudo access

 lineinfile: dest=/etc/sudoers state=present line='jenkins
ALL=(ALL) NOPASSWD:ALL' validate='visudo -cf %s'

This code uses the Ansible lineinfile module to insert a new rule into the
sudoers file; it will also use the visudo command to double check that the new rule
is valid.

Regardless of how you achieve it, ensure that your Jenkins user has both access to
your target servers and a sudo access.

Chapter 7

387

It is understood, that when using Jenkins in this manner
it's vitally important to ensure that the Jenkins server is
secure, especially if you use this technique in production
deployments. I tend to air gap the development and
production servers in this scenario and ensure that the
production Jenkins is heavily monitored and locked down.

14. We're now ready to run our Jenkins build. Hit the Build now button and wait a few
seconds. If all goes well, you should have a successful build and console output that
resembles the following:

Using Jenkins for Continuous Deployment

388

Open your browser, and point it at your test application. You should see something
similar to the following screenshot:

If you see this, then excellent; your automated build has succeeded in taking a
code from a developer and deploying it to a target machine without any manual
interactions.

15. Now that we have deployed the first version of our code, it's time to make an
amendment and deploy the second version. Keep your browser window open in the
background and open up the code in testapp/index.jsp and edit it to resemble
the following code example:
<html>
 <head>
 <meta http-equiv="refresh" content="1">
 </head>
 <body>
 <H2>Test App</H2>
 <%= date = new java.util.Date() %>
 Greetings, this is the second version of our test
app.
<p>The time is currently: <%= date %></p>
 </body>
</html>

As you can see, this a slight tweak to our original code. Adding the maximum amount
of style that a DevOps engineer generally decorates their apps with. Once you have
made the tweak, save the code and check-in to your repository and push to your
remote.

Chapter 7

389

16. In addition to your existing browser window, open a new session and point it at
server>:8080/testapp. You should see the new content showing, with the
original content in your original browser window. Here's a general idea of what
you should see:

As you can see, two versions of the same app are running at the same time and
will continue to do so as long as we have our browser window open with the old
application. As soon as we close the window with the old application, it will be
unloaded and will not be used again.

It's worth going over the details of what this recipe is doing. At its most basic form, this
recipe is using Jenkins to construct an artifact and packaging it into a WAR file. Once this
file is created, we use Ansible to transfer the built file to our targeted tomcat server, into the
webapps directory. The important detail is that it appends the build number onto the WAR file,
prepended with ## before the file extension.

 server>:8080/testapp
 server>:8080/testapp

Using Jenkins for Continuous Deployment

390

When Tomcat sees a WAR file with ## in front of its file extension, it works on the assumption
that this is a versioned application and as with any app, it will attempt to explode and
automatically deploy the code. When a newer version of the app is placed into the web apps
directory, it explodes and deploys this as well, but it ensures that the existing app is also ran
alongside it until all user sessions are expired. This is incredibly powerful and allows for true
zero-downtime deployment using Tomcat; however, there are several issues:

 f Old applications are not removed and will stay on the server until you
house keep them.

 f When running two apps side by side, you need to ensure that you have enough
memory to service both, even if it's only for a short time.

 f This only works with numeric build numbers; any other characters are not supported.

 f As noted in the stat of this recipe, your app needs to be able to cope with an in
service upgrade.

See also
You can find more details around parallel deployment at https://tomcat.apache.org/
tomcat-7.0-doc/config/context.html#Parallel_deployment.

https://tomcat.apache.org/tomcat-7.0-doc/config/context.html#Parallel_deployment
https://tomcat.apache.org/tomcat-7.0-doc/config/context.html#Parallel_deployment

391

8
Metric Collection

with InfluxDB

In this chapter, we are going to cover the following topics:

 f Installing InfluxDB

 f Creating a new InfluxDB database

 f Logging events with the InfluxDB REST API

 f Gathering host statistics with Telegraf

 f Exploring data with the InfluxDB data explorer

 f Installing Grafana

 f Creating dashboards with Grafana

Introduction
The importance of monitoring cannot be overstated and it is seen as one of the core
elements of a DevOps approach to a system. Monitoring takes many shapes; however, it's
common to stop once you've added state monitoring, such as Is the database up? or Is the
site responding?. These are indeed critical things to monitor, but they don't cover important
questions such as How fast am I responding to requests? And How many things have I done?.
This is where a time series database can be a valuable addition to the monitoring and
information stack that you have to hand not handle.

Metric Collection with InfluxDB

392

A time series database is a storage technique that is designed to be fast at both storing and
retrieving points of data. For instance, you can measure CPU usage in percentiles from one
second to the next or alternatively measure the number of times a particular service call has
been made. Once you have a different series, you can start to use this data for correlation. In
the above example, we can overlay the CPU statistics across the service call information and
start noting where the CPU spikes correlate with the service calls. This starts to form the basis
for an Application Performance Monitoring (APM) solution; thus, allowing you to drill into the
detail of where your platform is spending time and where improvements can be made.

A time series databases are becoming increasingly popular as people are realizing the
value of the data their platform produces, and there are several dedicated open source TSD
providers (such as InfluxDB and Whisper), and the industry heavy-weights, such as Microsoft
and Oracle, are also enhancing their time series offerings.

For this chapter, we are going to use InfluxDB. InfluxDB is relatively a newcomer but it has
many interesting features. That being said, it has yet to hit a 1.0 release and is a rapidly
evolving, product especially with items such as clustering. However, InfluxDB is fast, easy to
use, and extremely easy to deploy, and is being used by an increasing set of companies as
their preferred time series database.

Installing InfluxDB
Installing InfluxDB is straightforward and it has no external dependencies; it also has
packages for many operating systems. This recipe will show you how to install InfluxDB on
an Ubuntu 14.04 server. The following steps are manual; however, you should consider
automation using a tool such as Ansible (if you decide to use InfluxDB in production).
You can find details of Ansible in Chapter 5, Automation with Ansible.

Getting ready
For this recipe, you need an Ubuntu 14.04 server.

How to do it…
The following steps will show you how to download, install, and configure InfluxDB:

1. On your server, issue the following commands:
$ wget http://influxdb.s3.amazonaws.com/influxdb_0.9.3_amd64.deb

$ sudo dpkg -i influxdb_0.9.3_amd64.deb

This will fetch the InfluxDB package and install it.

Chapter 8

393

2. Next, we can configure our InfluxDB server. You can find a ready-made configuration
file in /etc/opt/influxdb/influxdb.conf, which is already populated with
default InfluxDB values.

There are a few configuration options that you should set specifically; first, locate the
following entry in the configuration file:
[data]
 dir = "/root/.influxdb/data"

This should be amended to reflect your preferred storage location.

It goes without saying, that you should aim to make your storage location
both large and high-performance. Wherever possible, aim to use SSD
storage. Time series data can lead to a staggering amount of IO, so always
plan for your future requirements where possible.

3. You should also find the following configuration item:
[meta]
 dir = "/root/.influxdb/meta"
 hostname = "localhost"

4. Change the value for the host name to reflect the host name of this particular
node. Once you have made your changes, save the file and start InfluxDB using
the following command:
$ sudo /etc/init.d/influxdb start

5. You can test your new installation by issuing the following command:
$ /opt/influxdb/influx -version

6. This should return a response similar to this:
InfluxDB shell 0.9.4

7. You should be able to access the built-in graphical user-interface by opening the
following URL in your browser:

http://localhost:8083

Metric Collection with InfluxDB

394

This will give you a page similar to the following screenshot:

You will be ready to start with your InfluxDB instance one you see this screenshot.

See also
You can find the InfluxDB installation document at https://influxdb.com/docs/v0.9/
introduction/installation.html.

Creating a new InfluxDB database
This recipe outlines how to create a new database in InfluxDB using the in-built GUI that
is shipped as a part of the installation. This will create a new and empty database ready
for data.

Getting ready
For this recipe, you need an Ubuntu 14.04 server with InfluxDB installed.

How to do it…
Let's create a new database in InfluxDB using the GUI:

1. Open the GUI in your browser by opening the following URL:
http://localhost:8083.

2. You should be presented with a blank query field. At this point, you can either enter
the query manually or select the Query Templates button on the bottom right-hand
side. If you do so, you can select the option entitled Create Database. This will fill out
the query for you as follows:

https://influxdb.com/docs/v0.9/introduction/installation.html
https://influxdb.com/docs/v0.9/introduction/installation.html

Chapter 8

395

3. To create your new database, simply give it a name (one word and no special
characters) and hit return. If all goes well, you should see a message telling you
that the database was successfully created. You can then use the query SHOW
DATABASES in the query field to list your current database. It should look something
like this:

4. We can test that our database is ready for use by entering some data. To manually
enter a new piece of data, click on the Write data link. This will create a new pop-up
window that allows you to write a new piece of data in InfluxDB line protocol. Insert
the following code to create an example data:

numOrders,site="www.testsite.com",currency="GBP" value=15.50

You can find more details of the InfluxDB line protocol at https://
influxdb.com/docs/v0.9/write_protocols/line.html.

If all goes well, you will see a success message; your new database is now ready
for data.

https://influxdb.com/docs/v0.9/write_protocols/line.html
https://influxdb.com/docs/v0.9/write_protocols/line.html

Metric Collection with InfluxDB

396

See also
You can see the official InfluxDB instructions at https://influxdb.com/docs/v0.9/
introduction/getting_started.html.

Logging events with the InfluxDB REST API
InfluxDB can be used to log events and other statistics. An event can be anything from a user
clicking on a button on your website to performing deployments. The latter is especially useful,
as it means that you can have a single place to log any event that might occur on the platform.

This recipe will show you how to enter data using the REST API provided with InfluxDB. It
allows you to create your own applications to enter extremely useful data. By leveraging the
REST API, you will be able to use a wide spectrum of existing tools to enter data from Jenkins
jobs to Ansible and beyond.

Getting ready
For this recipe, you need an InfluxDB instance.

How to do it…
The following steps will show you how to create a new InfluxDB database and populate it using
the REST API:

1. First, we need to create a database in which we can log our events. We can use the
REST API rather than using the GUI and you an use the following command to do this:
$ curl -G http://localhost:8086/query --data-urlencode "q=CREATE
DATABASE events"

You should receive a JSON response that is similar to the following:
{"results":[{}]}

Although it's slightly abstract, this empty response indicates that the command
was successful.

2. Now, we can add data to our new database. Let's start with a deployment and use the
following curl command to input the data:
$ curl -i -XPOST 'http://localhost:8086/write?db=events' --data-
binary 'deployment, deployer=mduffy,app=test_app,version="1.1",env
ironment="test" value="sucess"'

https://influxdb.com/docs/v0.9/introduction/getting_started.html
https://influxdb.com/docs/v0.9/introduction/getting_started.html

Chapter 8

397

3. Let's take a look at this command. First, we have the details of the InfluxDB server we
want to connect to; in this case, I've chosen to connect to my local instance on port
8086. Next, let's decide on the action we wish to take and the database we wish to
take it on; in this case, we wish to write a value and target the events db.

4. We move to the contents once we have set the target. First, we need to give the
measurement a name; in this case, deployment. We then give this measurement a
set of fields and values; in this case, the deployer, app, version, and environment.
Finally, we give the measurement a value; in this case, success. This will create a new
data point that we can query.

5. Now, since we have inserted a value, we can query it. Use the following command to
do the same:
$ curl -G 'http://localhost:8086/query?pretty=true' --data-
urlencode "db=events" --data-urlencode "q=SELECT * FROM deployment
WHERE deployer='mduffy'"

6. This should produce a JSON response that looks something like this:

{
 "results": [
 {
 "series": [
 {
 "name": "deployment",
 "columns": [
 "time",
 "app",
 "deployer",
 "environment",
 "value",
 "version"
],
 "values": [
 [
 "2015-09-
 16T21:17:54.799294876Z",
 "test_app",
 "mduffy",
 "\"test\"",
 "success",
 "\"1.1\""
]
]
 }
]
 }
]
}

Metric Collection with InfluxDB

398

As you can see, we can use InfluxDB to track more than just measurements, and its
simple API makes it very easy to integrate into other tools. By extending this into your
tool set, you can quickly build up an easy-to-query and simple-to-graph time line of
events; ranging from alerts to deployments and errors. Use your imagination and you
will be able to build a wealth of data very simply.

See also
You can find more details of the InfluxDB REST API at https://influxdb.com/docs/
v0.9/guides/index.html.

Gathering host statistics with Telegraf
One of the most useful examples of a time series database is to contain statistical
information, and this is especially relevant and useful when it comes to tracking host
performance. Due to the type of data, server resource monitoring can collect a great deal of
measurements very quickly across a wide range of data points. Using the InfluxDB Telegraf
tool, this can be done in a relatively straightforward manner and the data can be easily
queried using InfluxDB's powerful set of query tools.

Getting ready
For this recipe, you need a server with InfluxDB installed and configured, and an Ubuntu
14.04 server to install telegraf onto.

How to do it…
The following steps will show you how to both install the tools and configure the Telegraf
agent onto an Ubuntu host. Once this is done, we will look at how to configure it to log to an
InfluxDB server:

1. Use the following command to fetch the telegraf package:
$ wget http://get.influxdb.org/telegraf/telegraf_0.1.8_amd64.deb

2. Now, install the package using the following command:
$ sudo dpkg -i telegraf_0.1.8_amd64.deb

3. Before we can start to send data to InfluxDB, we need to create a database for it to
log information to. Use the following command to create a new database:
$ curl -G http://localhost:8086/query --data-urlencode "q=CREATE
DATABASE telegraf"

https://influxdb.com/docs/v0.9/guides/index.html
https://influxdb.com/docs/v0.9/guides/index.html

Chapter 8

399

4. Next, we need to configure telegraf to log data on to the selected InfluxDB
instance. On the host you have installed telegraf, to edit /etc/opt/telegraf/
telegraf.conf and look for the following configuration item:
 [outputs.influxdb]
 url = "http://localhost:8086"
 database = "telegraf"

5. Edit the values to match your setup and ensure that the database matches the one
that you created in step three.

6. Start the telegraf service using the following command:
$ sudo service telegraf start

At this point, Telegraf should start logging data into your InfluxDB.

7. You can select some sample data using the following command:
$ curl -G 'http://localhost:8086/query?pretty=true' --data-
urlencode "db=telegraf" --data-urlencode "q=SELECT * FROM io_
write_bytes WHERE host='<<INFLUXHOST>>'"

8. Where <<INFLUXHOST>> is the same as your InfluxDB host. This will select the
number of bytes written to the disks on the host and should produce an output
similar to the following:

{
 "results": [
 {
 "series": [
 {
 "name": "io_write_bytes",
 "columns": [
 "time",
 "host",
 "name",
 "value"
],
 "values": [
 [
 "2015-09-16T21:25:54Z",
 "influxdb1",
 "vda1",
 1259130880
],
]
 }
]
 }
]

Metric Collection with InfluxDB

400

You can easily use this data to create real time charts of important metrics with the
help of a tool such as Grafana. You can also use a tool such as Sensu to alert you
about certain thresholds.

See also
You can find more information about Telegraf at https://github.com/influxdb/
telegraf.

Exploring data with the InfluxDB data
explorer

InfluxDB comes with a ready-to-use GUI to query your data; this makes exploring your data
quick and easy. Although it's not a comprehensive tool and lacks niceties such as exporting,
reporting, and so on, the built-in data explorer is great to get a feel for your time series data.
Using this, you can easily pull certain data out of your InfluxDB database and use it to test
queries for use in other tools.

Getting ready
For this recipe, you will need an InfluxDB server installed and configured and a data set
to query.

How to do it…
Let's explore the data using the InfluxDB data explorer:

1. Log on to the InfluxDB server using a browser to visit the following URL:
http://<INFLUXDBSERVER>:8083

You should see a screen similar to the following:

https://github.com/influxdb/telegraf
https://github.com/influxdb/telegraf

Chapter 8

401

This panel allows you to run ad-hoc queries against your data sources. Select your
database by clicking on the Database telegraf list on the top right menu and pick a
database that has data to query.

For those of you who already have SQL experience, the following recipe
will seem familiar; this is because the InfluxDB query language has been
designed to be as SQL like as possible; however, it's worth checking the
manual to understand the nuances of the query language. You can find
a useful comparison at https://influxdb.com/docs/v0.9/
concepts/crosswalk.html.

2. The first query we can execute is the one that allows us to see the measurements
that are available to use. In the query panel, enter the following code:
SHOW MEASUREMENTS

This should return a list of all the measures in the selected database and should look
something like this:

Using this query, we can list the measurements currently available in the database.

This and several other simple queries are available from the query template
drop-down menu located underneath the query panel. The query template
menu is a fantastic way of exploring some common InfluxDB queries.

https://influxdb.com/docs/v0.9/concepts/crosswalk.html
https://influxdb.com/docs/v0.9/concepts/crosswalk.html

Metric Collection with InfluxDB

402

3. Next, we can start querying to our data. From the data I have, I'm interested in the
contents of the cpu_busy data set. The cpu_busy data is made up of several
measures and I'm particularly interested in the statistics of the first CPU (cpu0). Now,
we can use the following queries:
SELECT * FROM cpu_busy WHERE cpu = 'cpu0'

This command will return the following output:

4. Next, we can start to whittle down the data by adding conditions. In this case, we'll be
looking into the CPU values higher that 500 (in this case, 500mhz). We can do this
using the following query:
SELECT * FROM cpu_busy WHERE cpu = 'cpu0' AND value > 500

This command will return the following output:

Chapter 8

403

5. Now I want to look at this data on a host-by-host basis; we can do this using the
GROUP BY statement by extending our query to look like this:

As you can see, the results are now returned grouped by the host. Note that I'm also
adding an additional parameter limiting the query by time. I'm asking for any data
less than ten seconds from the system timestamp.

You can find more details about using the query language, including
Time Ranges, at https://influxdb.com/docs/v0.9/query_
language/query_syntax.html.

See also
You can find more details of the data explorer at https://influxdb.com/docs/v0.9/
query_language/data_exploration.html.

https://influxdb.com/docs/v0.9/query_language/query_syntax.html
https://influxdb.com/docs/v0.9/query_language/query_syntax.html
https://influxdb.com/docs/v0.9/query_language/data_exploration.html
https://influxdb.com/docs/v0.9/query_language/data_exploration.html

Metric Collection with InfluxDB

404

Installing Grafana
Gathering data is a relatively useless task without an accessible method for both accessing
and displaying it. This is especially true of time series data, which can produce a huge mass
of information made of many small points of data. Without a tool that allows you to easily spot
trends, the noise can easily become overwhelming; thus rendering your carefully gathered
data useless.

InfluxDB can make use of an open source visualization tool called Grafana. Grafana is a
sleek and stylish tool that allows you to take time series data and display it in many different
fashions, including good-looking graphs. These can be combined into dashboards, which are
perfect to display on TV's.

This recipe will show you how to install Grafana.

Getting ready…
For this recipe, you will need an InfluxDB data source with some data to query, and a server to
host Grafana.

How to do it…
1. We start by fetching the latest grafana release using the following command:

$ wget https://grafanarel.s3.amazonaws.com/builds/grafana_2.1.3_
amd64.deb

2. Next, use the following command to install the Grafana pre-requisites:
$ sudo apt-get install -y adduser libfontconfig

3. Now, we can install the grafana package using the following command:
$ sudo dpkg -i grafana_2.1.3_amd64.deb

4. Now that grafana is installed, you can start it using the following command:
$ sudo service grafana-server start

5. You should now be able to connect to Grafana by going to the following URL:
http://<GRAFANA SERVER>:3000

Here, <GRAFANA SERVER> is the name or IP address of your Grafana instance. You
should be able to see a page similar to the following:

Chapter 8

405

6. You can log in to the panel with the following user details:

 � User: admin

 � Password: admin

When logged in, you should be greeted with a page similar to the following:

Metric Collection with InfluxDB

406

This is the default view of Grafana. When you create dashboards, you can see them
listed on the pane on the far right, and you can add your favorites to the pane on the
left for easy access.

7. Next, click on the Data source button, as shown in the following screenshot:

This will take you to a page that lists your configured data sources; this will currently be
blank. On the top menu there is a button entitled Add New. Click on this and it will take
you through to a panel that allows you to add a new source. This requires the details of
your InfluxDB and when filled in, it should resemble the following screenshot:

There are a few points to note. First, you can make this your default data source,
to make the creation of new views on the data easier. Secondly, you can choose
between several different types of data sources; this includes different versions of
InfluxDB, so ensure that you choose correctly.

Once you are happy with your details, click on the Save button; you can also use the
Test Connection button to test if Grafana can connect. Click on OK before saving.

Chapter 8

407

See also
You can find further details about Grafana at http://docs.grafana.org.

Creating dashboards with Grafana
Once you have installed Grafana, you will have the ability to create attractive and informative
dashboards that are ideal for display on devices such as projectors or TVs. The dashboards
can display information from several different data sources, allowing you, for example, to
display combined CPU statistics from a cluster of servers, alongside the number of orders
taken in the same time period and the HTTP return codes. Grafana can hold any number of
dashboards and makes it easy to embed links within dashboards to other dashboards. So,
feel free to make specific dashboards for your data and they should remain easy to access.

Getting ready
For this recipe, you need to have a server with InfluxDB and Grafana installed.

How to do it…
Let's create a dashboard with Grafana:

1. Log into the grafana panel. In the top menu, click on the menu item titled Home.
Click on the option marked as New dashboard that you see at the bottom of the
drop-down menu.

2. Next, you will see a screen that looks similar to the following screenshot:

http://docs.grafana.org

Metric Collection with InfluxDB

408

3. This is a blank dashboard that is ready for new content to be added. Observe the
green strip to the right of the Dashboards menu items; this is a menu. When you click
on it you will be presented with the following options:

This menu allows you to edit your panel options. Let's start by clicking on the Add
Panel link. This will open another menu listing the available options, which are as
follows:

 � Graph: This is a line graph of a selected data series

 � Single Stat: This is a singular number derived from a selected series

 � Text: This is a free text field that allows you to enter your own text

 � Dashboard list: This allows you to construct links to further dashboards

4. Let's start by adding a new Graph. Click on the Add panel option and select Graph.
This should add a new graph that looks like this screen shot:

This is a default graph based on example data; let's change that to real data. Click on
the graph title and click on the edit option. This will create a new window underneath
the graph that looks like the following screenshot:

Chapter 8

409

5. This panel allows you to edit your new graph. Note the option at the bottom:

6. This allows you to set your data source. Click on the button titled grafana and
select your data source. For these examples, I'm using the information derived from
Telegraf. When you select your data source you are offered the option to select a
query, as shown:

The FROM entry will allow you to select any measurement from your data source. Go
ahead and select both your measurements and, if needed, a query to whittle the data
down into the selection you want.

By clicking on the + icon next to the WHERE clause, you will be taken
into the interactive query builder; this will help you define queries to
narrow down the data.

Metric Collection with InfluxDB

410

7. Once you are happy with your graph, click on Back to Dashboard.

8. Now that we have our first graph, we can add another item. Click on the button
entitled ADD ROW in the pop-up menu and select Text. This will add a new blank text
box to the dashboard. Click on the title of the text box and you will be offered a menu;
click on the Edit text button. This will open a new panel that allows you to add a text
suh as the following example:

Once you've added your text, click on Back to Dashboard.

9. Click on the green bar next to your new text panel and select Add panel. This will
create a new panel next to your text panel. In this case, select Single stat. Once
again, this will be a panel with example text. Click on the title and it should present
a new panel; this is the same as the graphing panel and allows you to create a new
query to select your data. Once you've selected your data, go back to the dashboard.
Your dashboard should look similar to this:

Chapter 8

411

Although basic, this dashboard is a great start. You can continue to add panels,
but keep in mind that it needs to fit whichever device you are using to display it (TV,
monitor, and so on). If you need to add a lot of data, the best approach is to create
links that allow you to drill down into more detailed dashboards.

See also
You can find further information about dash boarding at http://docs.grafana.org/
reference/graph/.

http://docs.grafana.org/reference/graph/
http://docs.grafana.org/reference/graph/

413

9
Log Management

In this chapter, we are going to cover the following subjects:

 f Centralizing logs with syslog

 f Using syslog templates

 f Managing log rotation with the Logrotate utility

 f Installing Elasticsearch, Logstash, and Kibana

 f Importing logs into Elasticsearch with Logstash

 f Using Kibana queries to explore data

 f Using Kibana queries to examine data

Introduction
Log management is one of the most essential roles that systems administrators have been
performing since the term came into being, and it's a crucial part of running any system. Without
log management the logs will overflow, disks will fill up, and eventually data will be lost.

Until recently, the true value of logs has been understated by many systems administrators.
Generally looked upon as a troubleshooting mechanism, logs had been consigned to being
looked at only as a last resort and had been left to gather digital dust on a shelf somewhere.
However, recently, there has been a renaissance in how logs are perceived, with developers and
operators alike considering the humble log file more in the perspective of an event stream; that
is, a continuous stream of information that not only indicates if you have issues, but can also be
used to check for underlying patterns that can highlight significant state changes.

Log Management

414

A good example of this can be found in the HTTP server access logs. These tend to contain
not only issues (404, 500, and so on) but also successful transactions. This data is generally
enriched to contain additional data, such as a client IP, pages access, response time, and so
on. This additional metadata can then be further added to; for instance, using the originating
IP to derive geographical location, which can give you a real-time view on business processes.

Event stream analysis is becoming a very large element of successful and scalable
infrastructure, and many of the pioneers in the industry are embracing it to underpin items
such as automated security scanning, platform scaling, and so on.

The recipes in this chapter will introduce you to several valuable tools for the management
of logs, running the whole gamut of log management tasks, from centralization to rotation
and finally into analysis. Armed with these recipes you should be ready to capture and explore
many facets of data that your platform gathers in the course of the day and use them to scale,
secure, and improve your platform.

Centralizing logs with Syslog
Generally speaking, most applications will have a logging facility that will produce text logs
that can be written into an arbitrary location on a storage device (normally, defaulting to a
local disk partition). Although this is an essential first step, it also produces problems; you
need to provide adequate storage for logs and you need to put in place rotation to stop them
from growing too large. If they contain vital information, you need to ensure that they are
rotated to a safe location, but you may also need to ensure that they remain secure if they
contain sensitive information, such as credit card numbers. On top of all of this, you will lose
the current logs if you have a disaster on that node.

A good solution to manage these issues is to use a central location to store logs. This allows
you to provide appropriate storage and gives you a central place to back up, secure, and
examine logs. As long as the logging mechanism that your application uses supports syslog,
it is straightforward. Syslog was originally used as the logging mechanism for the venerable
Send mail MTA and was developed in the early 80s. Since then, it has been standardized and
is now in use as the standard logging mechanism for most *nix based operating systems,
with many implementations of the standard available.

Getting ready
For this recipe, you will need two Ubuntu 14.04 hosts; one to act as the Syslog server and
another to act as a sending host.

Chapter 9

415

How to do it…
This recipe will show you how to set up a server to act as a central Syslog server and how to
configure a client log to utilize it. This will use the default syslog implementation on Ubuntu
14.04, Rsyslog:

1. Rsyslog is the default syslog package for Ubuntu 14.04 and should be pre-installed;
you can double check this by issuing the following command:
$ sudo apt-get install rsyslog

This should return a message that states that rsyslog is already installed.

2. Next, we need to change the configuration of the Rsyslog package so that it listens
for network connections. By default, Rsyslog is set only to listen to local socket
connections. Edit the file /etc/rsyslog.conf and locate the following lines:
provides UDP syslog reception
#$ModLoad imudp
#$UDPServerRun 514

provides TCP syslog reception
#$ModLoad imtcp
#$InputTCPServerRun 514

3. Uncomment them so that they resemble the following:
provides UDP syslog reception
$ModLoad imudp
$UDPServerRun 514

provides TCP syslog reception
$ModLoad imtcp
$InputTCPServerRun 514

In the preceding configuration, we have enabled both UDP and TCP log
reception. Generally speaking, I recommend using UDP to forward logs; it
has a much lesser impact on performance than TCP as it is fire and forget.
The downside is that some log messages might be lost if the server is too
busy to receive the UDP packets. Use TCP where your logs are critical;
otherwise, stick with UDP.

Log Management

416

4. Restart the rsyslog service by issuing the following command:
$ sudo service rsyslog restart

Your Rsyslog server is now ready to use. Next, we can turn our attention to the
Rsyslog client.

5. On the Rsyslog client, ensure that Rsyslog is installed.

6. We are going to start by ensuring that all logs dealing with the user login activity are
forwarded to the Syslog server. This is an excellent place to start, as monitoring who
logged into which server and when is a crucial part of securing your systems, and
sending it off-host makes it harder to tamper with. Edit the /etc/rsyslog.d/50-
default.conf file and find the following line:
auth,authpriv.* /var/log/auth.log

Change it to the following:

auth,authpriv.* @<Syslog server>:514

When you prepend your remote host with a single @ symbol, you are using
UDP. To use TCP, use @@ instead.

7. Restart the Rsylsog service on the client using the following command:
$ sudo service rsyslog restart

8. Log on to the host server while monitoring the /var/log/auth.log log on your
Syslog server; you should be able to see entries similar to the following snippet:

Jun 29 07:47:05 sysloghost sshd[19563]: Accepted publickey for
root from 178.251.183.111 port 33241 ssh2: RSA f0:0c:25:c1:9a:94:f
f:20:6e:f7:57:70:9f:3c:9c:5c
Jun 29 07:47:05 sysloghost sshd[19563]: pam_unix(sshd:session):
session opened for user root by (uid=0)

Notice the highlighted text; this is the hostname of the server that has sent the log
entry and it can be used to search for specific entries.

The field after the date in the syslog entry is always the hostname of the
host sending that particular log entry.

This can be very useful when you have more than a handful of servers reporting to
your Syslog server and it enables you to use tools such as grep to quickly search for
information across many servers at once.

Chapter 9

417

See also
You can find the Rsyslog documentation at http://www.rsyslog.com/doc/master/
index.html#manual.

Using syslog templates
Although it's advantageous to be able to send all the logs to a single location, there are times
when you will want to be able to split logs out into separate log files based on certain criteria;
for instance, a per-host log for certain elements.

Rsyslog supports this using a system of templates and the property replacer feature; this
allows you to distribute logs of your choice into the location you need.

Getting ready
For this recipe, you will need an Ubuntu 14.04 server acting as a Syslog server and a host to
send logs to it.

How to do it…
Let's use the syslog templates for the:

1. As with the previous recipe, we're going to take the auth logs from our Ubuntu host
and send them to our Syslog server. On the shipping host, ensure that you have a line
that resembles the following in your copy of /etc/rsyslog.d/50-default.conf:
auth,authpriv.* @<Syslog server>:514

2. Restart the syslog Daemon using the following command:
$ sudo service rsyslog restart

3. On your Syslog server, open /etc/rsyslog.d/50-default.conf and edit it to
include the following snippet:
$template Remote, "/var/log/%HOSTNAME%/%syslogfacility-text%.log"

auth,authpriv.* -?Remote

4. Locate the following line and comment it out with a #:
auth,authpriv.* /var/log/auth.log

5. In the preceding code, we are disabling the default log settings for the auth log and
using variables to replace the filename and path.

http://www.rsyslog.com/doc/master/index.html#manual
http://www.rsyslog.com/doc/master/index.html#manual

Log Management

418

6. Restart the Syslog server using the following command:
$ sudo service rsyslog restart

7. You should now find that when you log in to the host server, its auth messages will
be sent to a file that will be located at /var/log/<hostname>/auth.log.

As you may have considered, this technique can be used to organize any log
that you want to be forwarded onto the remove Syslog server; indeed, for
ephemeral hosts, it can be very useful, as you can create and destroy them
at will and still retain all logs created over their life cycles.

See also
You can find details on the Rsyslog property replacer at http://www.rsyslog.com/doc/
property_replacer.html.

Managing log rotation with the Logrotate
utility

It's often surprising how much space can be consumed by something as simple as a plain text
file, and without constant care and attention logs can grow to fill the available free space on
a host. Fortunately, given their nature as plain text, they are compressible. Indeed, you can
expect compression ratios of 80% or more on most log files.

The Logrotate utility is shipped with most Linux distributions and offers a simple yet powerful
method to manage logs, allowing you to rotate, compress, and remove on the schedules
you set. It also has the ability to run scripts both pre- and post-rotation, thus allowing you to
send signals to applications to gracefully restart or to send logs to a remote location after
compression. Most applications that are packaged with the operating system should come
with a Logrotate configuration, but you should also ensure that any applications you develop
or deploy are catered for.

Getting ready
For this recipe, you will need an Ubuntu 14.04 host.

http://www.rsyslog.com/doc/property_replacer.html
http://www.rsyslog.com/doc/property_replacer.html

Chapter 9

419

How to do it…
This recipe will show you how to create a new logrotate configuration, for example, app and
also point out important configuration options:

1. In this example, we're going to rotate the logs on notional app located in /usr/
local/exampleapp/logs.

2. To start, create a new file in /etc/logrotate.d called exampleapp (no extension)
and insert the following content:
/usr/local/exampleapp/logs/*.log {
 daily
 rotate 31
 copytruncate
 compress
 notifempty
}

3. This is a relatively straight forward Logrotate entry, which will do the following:

 � Rotate any files with a .log extension in the directory /usr/local/
exampleapp/logs

 � Rotate the log files daily

 � Keep 31 days' worth of logs

 � Will truncate files without removing them

 � The logs will be compressed using gzip

 � The logs will not be rotated if they are already empty, saving on empty
archived logs

Be careful with the copytruncate option. It's useful when you have an
application that can't accept a signal to reload and use a new logfile.
Using copytruncate avoids the need for this by copying the contents
of the current log and zeroing out the existing one; however, in the time
between copying the log and zeroing it, there may be new entries that will
be subsequently lost.

This example should serve as a good starting point for most applications. Use
the Logrotate documentation to explore some further options that your application
might require.

Log Management

420

See also
You can find the documentation for Logrotate by issuing the following command:

$ man logrotate

Installing ElasticSearch, Logstash, and
Kibana

Once you have established a policy to control retention, archiving, and centralization of your
logs, you can consider how best to extract the data from them. Log analysis software has seen
some serious growth in recent years, as an increasing number of systems administrators,
developers, and managers realize the value of the data they can provide. Currently, Splunk
has gained a great number of traction, offering both an easy-to-install and easy-to-use product
with a great deal of integrations; however, it can be costly with a pricing model that ratchets
up along with the quantities of data you wish to analyze. This has led to open source projects
springing up and aiming to rival Splunk, in particular, it has been popularized by the trifecta
of ElasticSearch, Logstash, and Kibana. Together these form what is popularly known as an
ELK stack. These three products combine to offer a compelling alternative to Splunk; thus,
allowing you to ship, analyze, and present data derived from your log streams.

This recipe will deal with the ElasticSearch and Kibana elements of the stack, allowing you to
create a server that is ready to have logs shipped to it via Logstash.

Getting ready
For this recipe, you will need an Ubuntu 14.04 server.

How to do it…
1. To start, we need to install a Java virtual machine to run ElasticSearch; either the

Sun or the OpenJDK implementation is supported; we're going to use the OpenJDK
distribution as it is packed into the Ubuntu repositories. Install the OpenJRE by
issuing the following command:
$ sudo apt-get install default-jre

Chapter 9

421

2. Next, install the public signing key for the ElasticSearch repository with the following
command:
$ wget -O - http://packages.elasticsearch.org/GPG-KEY-
elasticsearch | sudo apt-key add -

3. Next, create a new file within /etc/apt/sources.list.d/ called
elasticsearch.list and insert the following:
deb http://packages.elastic.co/elasticsearch/1.7/debian stable
main

4. Now, install ElasticSearch using the following command:
$ sudo apt-get update && sudo apt-get install elasticsearch

5. Next, start your ElasticSearch instance by issuing the following command:
$ sudo service elasticsearch start

6. Now, since we have ElasticSearch, we can install Kibana. Start by downloading the
most recent release using the following command:
$ wget https://download.elastic.co/kibana/kibana/kibana-4.1.0-
linux-x64.tar.gz

7. Next, issue the following command to create a new user to run the Kibana process:
$ adduser kibana --home /opt/kibana-4.1.0-linux-x64

8. Now, decompress the installation using the following command:
$ cd /opt && tar -xvf <<fullpathtokibana.tar.gz>> && chown -R
kibana:kibana .

Make sure you replace the <<fullpathtokibana>> text with the path to where you
downloaded the Kibana gzip.

9. Run the following command to start the Kibana instance as a background process
using the user we created in step six:
$ sudo su kibana -c '/opt/kibana-4.1.0-linux-x64/bin/kibana > /
opt/kibana-4.1.0-linux-x64/kibana.log &'

This isn't as robust as a true startup script and you may want to consider
writing a more complete init script for production use.

Log Management

422

10. You can now test your Kibana instance by going to the URL
http://<kibanaserver>:5601. You should see a screen that looks similar to
this:

This indicates that Kibana is ready for use. Next, we'll turn our attention to the
Logstash server.

11. First, create a new file in /etc/apt/sources.list.d/ called logstash.list
and insert the following:
deb http://packages.elasticsearch.org/logstash/1.5/debian stable
main

12. Install the signing key using the following command:
wget -qO - https://packages.elasticsearch.org/GPG-KEY-
elasticsearch | sudo apt-key add -

Chapter 9

423

13. Next, install the package using apt-get:
$ sudo apt-get update && sudo apt-get install logstash

14. Now, we need to configure the Logstash server. The bulk of Logstash configuration
comprises inputs and outputs; inputs take log streams in and outputs forward
them onto a given system. In our case, we are going to create a new output for
ElasticSearch. Use your editor to create a new file called elasticsearch.conf
within the /etc/logstash/conf.d directory and insert the following snippet:
output {
 elasticsearch {
 host => localhost
 }
}

This will take any data input into Logstash and place it into the ElasticSearch
instance.

15. Finally, start the logstash process using the following command:

$ sudo service logstash start

At this point, Logstash will start and then quit; this is expected, as we have
no configured input. See the next recipe to configure an input for Logstash.

See also
 f You can find the documentation for ElasticSearch installation at https://www.

elastic.co/guide/en/elasticsearch/reference/current/setup.html

 f You can find the installation documents for Kibana at https://www.elastic.co/
guide/en/kibana/current/setup.html

 f You can find the installation documents for Logstash at https://www.elastic.
co/guide/en/logstash/current/getting-started-with-logstash.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html
https://www.elastic.co/guide/en/kibana/current/setup.html
https://www.elastic.co/guide/en/kibana/current/setup.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html

Log Management

424

Importing logs into Elasticsearch with
Logstash

Logstash can function as a log forwarding agent as well as a receiving server; however, due
to it's reliance on both a JVM and a relatively large memory footprint, it is unsuitable for hosts
of more modest means. Instead, we can use the Logstash forwarder (formerly known as
Lumberjack). The Logstash forwarder is written in Go and has a significantly smaller footprint.
As a result, it also removes the need for any external dependencies, such as a JVM. Using the
Logstash forwarder, you can securely forward logs from your hosts onto your ELK stack.

Getting ready
For this recipe, you will need an Ubuntu 14.04 server acting as a Logstash server and an
Ubuntu 14.04 server with Nginx to act as the forwarder. Nginx has been used to supply
example logs and can be swapped out with the application of your choice.

How to do it…
The following steps will show you how to use a Logstash forwarder to import logs into
Elasticsearch:

1. To start, we are going to install the Logstash log forwarder. Use the following
command to download the package:
$ wget https://download.elastic.co/logstash-forwarder/binaries/
logstash-forwarder_0.4.0_amd64.deb

2. Next, we can install the package using this command:
$ sudo dpkg -i logstash-forwarder_0.4.0_amd64.deb

3. Now, we need to return to the Logstash server to configure certificates. To maintain
the security of your messages, the Logstash forwarder will only communicate
over SSL connections, so at the very least we need to generate some self-signed
certificates. On your Logstash server, create a directory to hold your keys and
certificates:
$ sudo mkdir -p /etc/logstash/ssl/certs && mkdir -p /etc/logstash/
ssl/keys

4. Now, we create the key using the following command:
$ openssl req -x509 -batch -nodes -newkey rsa:2048 -keyout
logforwarder.key -out logforwarder.crt -subj /CN=<< ELASTICSEARCH
SERVER NAME >>

Chapter 9

425

5. Finally, we can copy the certificates into place with this command:
$ sudo mv logforwarder.key /etc/logstash/ssl/keys && sudo mv
logforwarder.crt /etc/logstash/ssl/certs

6. You will also need to copy the certificate onto the log forwarding host; copy it into
/etc/ssl/certs/logforwarder.crt.

7. Now, we are ready to create our configuration; in this example, we're going to
configure the forwarder to forward logs from our Nginx instance to our ElasticSearch
server. Open the file /etc/logstash-forwarder.conf in your editor and replace
the contents with the following:
{

 "network": {

 "servers": [

 "<<ELASTICSEARCHSERVER>>:5043"

],

 "ssl ca": "/etc/ssl/certs/logforwarder.crt",
 "timeout": 15

 },

 "files": [

 {

 "paths": [

 "/var/log/syslog",

 "/var/log/*.log"

],

 "fields": {

 "type": "syslog"

 }

 },

 {

 "paths": [

 "/var/log/nginx/access.log"

],

 "fields": {

 "type": "nginx-access"

 }

 }

]

}

Log Management

426

Ensure that you replace <<ELASTICSEARCHSERVER>> with the IP
address/name of your ElasticSearch server, ensuring that it matches the
certificate name.

As you can see, this is straightforward JSON. This configuration will do the following:

 � Forward the selected logs onto your ElasticSearch server

 � Forward events from the syslog file and any file with a .log file extension
within the /var/logs directory and process them as syslog files

 � Forward events from the nginx log file located within /var/log/nginx/
access.log

8. We have one last step we need to perform before we can receive the logs; we need to
add a Logstash filter to correctly parse the incoming data. First, we create a directory
to hold the pattern by issuing the following command:
$ sudo mkdir /opt/logstash/patterns/

9. Next, we can create our pattern. Using your editor, create a new file under /opt/
logstash/patterns called nginx (no extension) and insert the following content:
NGINXACCESS %{IPORHOST:clientip} \[%{HTTPDATE:timestamp}\]
"%{WORD:verb} %{URIPATHPARAM:request} HTTP/%{NUMBER:httpversion}"
%{NUMBER:response} (?:%{NUMBER:bytes}|-) (?:"(?:%{URI:referrer}|-
)"|%{QS:referrer}) %{QS:agent}

This takes the incoming log and breaks it into discrete pieces of data for insertion
into the ElasticSearch index.

You can find further information on Logstash patterns at https://www.
elastic.co/guide/en/logstash/current/plugins-filters-
grok.html.

10. Next, we need to adjust our Logstash server to use our new pattern. Create a new
file called filter_nginx.conf under /etc/logstash/conf.d and insert the
following JSON:
filter {
 if [type] == "nginx-access" {
 grok {
 match => { "message" => "%{NGINXACCESS}" }
 }
 }
}

https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html

Chapter 9

427

Nginx is also able to log straight to JSON, thus allowing you to simplify the
preceding steps by simply importing the raw JSON log. You can find the
nginx logging details at https://www.nginx.com/resources/
admin-guide/logging-and-monitoring/.

11. This configuration file causes Logstash to inspect incoming data for any that match
a type of nginx-access. If it matches, then the data is parsed via the pattern we
created earlier. You can enable your new configuration by restarting Logstash using
the following command:
$ sudo service logstash restart

12. You can test that your logs are being forwarded correctly by querying the indices on
your Elastic server. On the Elastic host, use the following command:

$ curl 'localhost:9200/_cat/indices?v'

You should receive a reply that is similar to the following screenshot:

Notice the dated index; this is the content of the logs we've forwarded on and is ready
to query.

See also
You can find the documentation for the Log forwarder at https://github.com/elastic/
logstash-forwarder.

Using Kibana queries to explore data
Once you have your data indexed into ElasticSearch, you will want to work with it to reveal
anything of interest. Kibana is a fantastic tool to enable this, allowing you to query, display and
report on data of interest. Kibana offers an easy-to-use GUI to explore your data, allowing both
ad-hoc data exploration and the creation of stunning and detailed dashboards.

In this recipe we're going to focus on using Kibana to explore data to discover underlying
patterns within an Nginx access log.

https://www.nginx.com/resources/admin-guide/logging-and-monitoring/
https://www.nginx.com/resources/admin-guide/logging-and-monitoring/
https://github.com/elastic/logstash-forwarder
https://github.com/elastic/logstash-forwarder

Log Management

428

Getting ready
For this recipe you need an Ubuntu 14.04 server with Kibana and ElasticSearch installed; you
should also have set up some inputs into ElasticSearch, preferably from an Nginx server.

How to do it…
The following steps will give you a very quick tour of how to locate and view data within
Kibana:

1. First, point your browser at your Kibana instance (normally located at
<<kibanaserver>>:5601). You should be able to see a page similar to the
following:

This allows you to configure your initial index pattern; this maps back to the indices
available within ElasticSearch.

If you need to see a list of available indices, you can issue this command
against your ElasticSearch server: curl 'localhost:9200/_cat/
indices?v'.

Generally speaking, if you're using Logstash to ship your logs into ElasticSearch, you
should be fine accepting the default; hit the button marked Create.

Chapter 9

429

2. The next screen allows you to select fields to analyze and should look something
similar to the following screenshot:

Kibana will attempt to work out the type for the field, but if it's a little wide of the mark
you can use the pencil icon at the end of the row to adjust the setting. Once you're
happy with your fields, you can click on the Discover menu item at the top.

3. The Discover page is where you can start to truly dig into your data. By default, it
displays a graph of activity over time of all of the data that is indexed, and should look
something similar to this:

Log Management

430

4. From here, we can start to drill into our data. At present, I have two different data
sources available to me; my server's auth.log and my Nginx access log. Let's take
a look at the Nginx access logs first. On the left-hand side of the menu, click on the
item marked file; it should reveal a drop-down menu that looks similar to this:

5. This menu allows you to quickly drill into the individual files that you have shipped to
Kibana. It also allows you to have a look at how active the files are within the time
frame. As we can easily see, my Nginx access log is by far the busiest. Let's click
on the icon and drill into the data. As soon as you drill into any data, the main page
updates to reflect this; for instance, my example data now looks similar to this:

Chapter 9

431

6. You can already see that there is an anomalous spike of traffic in the preceding chart.
There are several ways we can explore this, but by far the easiest is to click and drag
over the time series we're interested in; this binds the data to the period selected:

7. By zooming in, we can easily see that the traffic is coming in over a very short period;
a minute in this case. We can now dig deeper into this by examining the pages that
we're requesting by opening up the requests field on the left-hand menu:

As you can see, the requests are evenly split.

Log Management

432

8. We can use the Visualize feature within Kibana to explore the data at hand. Right
now, we'll take a look at the IP addresses. Click on the clientIP field on the left-hand
side; it should look something similar to this:

9. As you can see, it has ranked the IPs by frequency; however, we can use the
visualization feature to look at the data in more detail. Click on the Visualize button
at the bottom.

The warning is the result of the field containing analyzed data. Due to the
possibly huge amount of variance available within an analyzed field, Kibana
will warn you that this could be a computationally expensive operation.

10. The next screen arrays the IP's in order of the number of requests over the selected
time period and will look similar to this:

Chapter 9

433

As you can see, only four IP's make up the bulk of the traffic!

11. Within the visualization we can report on this further. On the left-hand side, under
buckets, click on the Add sub-buckets button. This opens a drop-down menu that
allows you to add further data within the visualization. In this case, add the options
as per the following screen shot:

Log Management

434

12. Once you've added the options, click on the green play button at the top to run the
query. This will order the results of the IPs by the top three requested URLs, and it
should look similar to the following:

Although you can't make out the text in this image, you can see that the bulk of the
requests are going to a single page; an unusual pattern.

13. As a final check, we can go back to the main page by clicking on the Discover button
at the top and then clicking on the field on the left-hand side marked as agent. In my
example, it looks similar to this:

Plainly, this activity is the result of a load test and we have spotted and investigated it
using Kibana.

Chapter 9

435

See also
You can find the getting started guide for Kibana at https://www.elastic.co/guide/
en/kibana/current/getting-started.html.

Using Kibana queries to examine data
The previous recipe was a whistle-stop tour of using the Kibana interface to interactively drill
into and examine your data; however, some of the true power of Kibana is its ability to use the
ElasticSearch query language to allow you to select elements of information for examination.

Although you can impart order to your data when you ship it using Logstash, you will probably
still have a lot of unstructured data that you need to examine. Using ElasticSearch queries,
you can start to construct queries to examine your data and use Kibana to display it in an easy
to understand manner. This recipe will take a look at some simple ElasticSearch queries to
examine security issues on a Linux host.

Getting ready
For this recipe, you will need an ELK server plus some data forwarded from an auth.log.

How to do it…
The following steps will show you how to search your data using queries in Kibana and how to
save them as Dashboards:

1. Log onto your Kibana server and select the files tab from the left-hand side; it
should look similar to the following screen shot:

Select the plus sign next to the auth.log to drill further into that data.

https://www.elastic.co/guide/en/kibana/current/getting-started.html
https://www.elastic.co/guide/en/kibana/current/getting-started.html

Log Management

436

2. The main screen should now look similar to the following:

3. Although you cannot make out the text, the graph is the point of focus; this shows
us the auth log activity over time. Now, we should start constructing our query; in
this instance, I'm interested in failed logins. In the search bar in the top, enter the
following:
"Failed password"

4. You will find that Kibana is now filtering the log messages that contain that term; it
will also update the graphs and data to reflect this and highlight the data. See the
following screen shot for an example:

5. It's certainly nice to be able to search for a term, but you can also chain together
queries with operators to gain a little granularity. For instance, I want to be able
to filter out the entries that are failed logins for the root user and see the non-root
accounts that are being affected. In your search bar, enter the following:
("Failed password") NOT ("root")

This runs the first query (find all entries with the text Failed password) and then use
the NOT operator to exclude the ones that include the text root.

6. Let's take it further and also exclude invalid users. This allows us to see the non root
users who are actually present on the box and are being targeted. Enter the following
query into the search bar:
("Failed password") NOT ("root") NOT ("invalid user")

Chapter 9

437

Hit the run button. In my example, my result looks similar to this:

As you can see, there are users such as UUCP, backup, and others who are valid
users and are being targeted by some form of brute-force attack.

7. This is an interesting query and one that I'd like to be able to quickly return to. To do
this, we can save the query. Click on the disk icon on the top left corner:

8. You will be prompted to name the saved search; go ahead and call it something
meaningful. Now, whenever you want to see this query, you can load it by clicking
on the load icon:

You can use this feature to build up a library of reports that allow members of
the team who are less familiar with the query language to quickly and easily
access information.

Log Management

438

See also
You can find more details of how to use Kibana to query data at https://www.elastic.
co/guide/en/kibana/current/discover.html and https://www.elastic.co/
guide/en/kibana/current/discover.html.

https://www.elastic.co/guide/en/kibana/current/discover.html
https://www.elastic.co/guide/en/kibana/current/discover.html
 https://www.elastic.co/guide/en/kibana/current/discover.html
 https://www.elastic.co/guide/en/kibana/current/discover.html

439

10
Monitoring with Sensu

In this chapter, we are going to cover the following topics:

 f Installing a Sensu server

 f Installing a Sensu client

 f Installing check prerequisites

 f Finding community checks

 f Adding a DNS check

 f Adding a disk check

 f Adding a RAM check

 f Adding a process check

 f Adding a CPU check

 f Creating e-mail alerts

 f Creating SMS alerts

 f Using Ansible to install Sensu

Introduction
One of the cornerstones of DevOps engineering is the effective monitoring of resources and
services, and the ability to react to them in a timely fashion. This is not unique to DevOps;
monitoring has been one of the key aspects of running a system for as long as there have
been systems to run.

Monitoring with Sensu

440

Monitoring takes many forms and there is no such thing as a finished monitoring system.
Just when you think you have everything monitored, you will find an obscure edge case that
will cause issues if not correctly accounted for. On the other side, you need to ensure that
your monitoring is accurate. Nothing kills a monitoring platform quicker than having to wade
through a wall of false alerts. People start to ignore alerts, sooner rather than later, and you
end up with an outage, which you could have seen coming but did not.

Fortunately, there are many products to choose from when it comes to monitoring and
alerting, both open source and commercial, and each has its strengths and weaknesses. For
many years, the de facto standard for open source monitoring was Nagios (https://www.
nagios.org). Nagios is a hugely popular product and is used all over the world. However, it
has some weaknesses. Several branches of Nagios are addressing some of these perceived
weakness, with Icinga (https://www.icinga.org) becoming especially popular. However,
some projects have gone further and have started to re-evaluate the core principles to
rearrange the monitoring infrastructure.

One more promising product is Sensu (https://sensuapp.org). Sensu takes a different
approach to many monitoring solutions and, rather than using a master/client solution, it
uses a Publication/Subscription model using a message queue. This approach makes it far
simpler to configure monitoring for a large number of services and is useful for environments
that contain a large amount of ephemeral hosts. By allowing clients to subscribe simply and
easily to a set of checks, it makes it much easier to roll out new clients; they simply start the
client with the correct subscription, and start running and sending results back to the master
to process.

Other than utilizing a message queue, Sensu allows for custom checks to be written relatively
easily and with flexibility. This allows the responsibilities of writing checks to be split evenly
among team members, both application and infrastructure developers. It should help ensure
that your monitoring coverage is as broad as possible.

Sensu is an open source project that also has a commercial offering; the open source
product is referred to as Sensu Core, while the commercial version is Sensu Enterprise.
Sensu Enterprise offers a better issue routing system, tweaked dashboard and, perhaps
most compellingly, support. However, Sensu Core is a powerful product in its own right,
and can happily monitor huge amounts of clients.

This chapter will show you how to set up, configure, and roll out checks using Sensu. We will
also look at how to configure Sensu to alert you via the two most important avenues: SMS
and e-mail.

https://www.nagios.org
https://www.nagios.org
https://www.icinga.org
https://sensuapp.org

Chapter 10

441

Installing a Sensu server
Setting up Sensu and its pre-requisites is reasonably straightforward, and it should take little
time to set it up and configure some initial checks. This recipe will show you how to install
Sensu Core and Uchiwa as its dashboard. Thus, giving you both a powerful and scalable
Sensu server; however, it only gives you a single place to examine any issues. Using Uchiwa
allows you to have multiple Sensu servers across many sites and still have a singular place to
examine them in a graphical fashion.

Lastly, we will also set up SSL keys to ensure that the communication between the Sensu
queue and its subscribing hosts remains confidential.

Getting ready
For this recipe, you require an Ubuntu 14.04 server to host both Sensu Core and Uchiwa.

How to do it…
The following steps will demonstrate how to install a Sensu server, RabbitMQ, and the
Uchiwa panel:

1. Our first step is to install RabbitMQ, which requires Erlang to be installed. Use the
following command to install Erlang:
$ sudo apt-get update && sudo apt-get -y install erlang-nox

2. Now that we have Erlang, we are ready to install RabbitMQ. The Sensu project
recommends the use of the latest upstream release of Rabbit rather than the
version available for distribution. To do this, we need to first download and install the
RabbitMQ package signing key:
$ sudo wget http://www.rabbitmq.com/rabbitmq-signing-key-public.
asc && sudo apt-key add rabbitmq-signing-key-public.asc

3. Next, we need to make the apt repository available and install the RabbitMQ
package with the following two commands:
$ echo "deb http://www.rabbitmq.com/debian/ testing main" |
sudo tee /etc/apt/sources.list.d/rabbitmq.list

$ sudo apt-get update && sudo apt-get install rabbitmq-server

4. Now we will create the keys to secure our Sensu communication, but first we need to
install the OpenSSL tools with the following command:
$ sudo apt-get install openssl

Monitoring with Sensu

442

5. Once OpenSSL is installed, we can download a tool provided by the Sensu team
to generate the certificates. The script uses the OpenSSL tools to generate a set
of certificates and place them into the CA, server and client directories. First we
download the script using the following command:
$ wget http://sensuapp.org/docs/0.20/files/sensu_ssl_tool.tar &&
tar -xvf sensu_ssl_tool.tar

6. Once downloaded, we run the script and generate the certificates using the
following command:
$ sudo./sensu_ssl_tools/ssl_certs.sh generate

7. This should produce new directories containing the Certificate Authority, client
certificates, and Server certificate and key. Next, we both create the directory
structure, and copy the server and Certificate Authority certificates using this
command:
$ sudo mkdir -p /etc/rabbitmq/ssl && sudo cp sensu_ca/cacert.pem
server/cert.pem server/key.pem /etc/rabbitmq/ssl

8. Finally, we need to amend our RabbitMQ configuration to make use of the certificates.
Create a new file called rabbitmq.config within /etc/rabbitmq/ and insert the
following content:
[
 {rabbit, [
 {ssl_listeners, [5671]},
 {ssl_options, [{cacertfile,"/etc/rabbitmq/ssl/cacert.pem"},
 {certfile,"/etc/rabbitmq/ssl/cert.pem"},
 {keyfile,"/etc/rabbitmq/ssl/key.pem"},
 {verify,verify_peer},
 {fail_if_no_peer_cert,true}]}
]}
].

9. This directs RabbitMQ to start a new listener on TCP port 5671 using the certificates
we have generated to secure communication on this port. Now that we have
configured the certificates, you should restart the RabbitMQ server using the
following command:
$ sudo /etc/init.d/rabbitmq-server restart

10. With RabbitMQ installed and configured, we can start creating the RabbitMQ users
and virtual hosts for Sensu to be used as a publishing endpoint. Let's start by
creating a new RabbitMQ virtual host for Sensu with the following command:
$ sudo rabbitmqctl add_vhost /sensu

Chapter 10

443

11. Next, create a RabbitMQ user with a password of your choice with the following
command:
$ sudo rabbitmqctl add_user sensu <<YOURPASSWORD>>

Remember to replace <<YOURPASSWORD>> with the password of your choice.

12. Finally, we give the sensu-user full permission over its virtual host with this
command:
$ sudo rabbitmqctl set_permissions -p /sensu sensu ".*" ".*" ".*"

13. We're finished with RabbitMQ and now we are ready to move onto the next
prerequisite, which is Redis. In this case, the version included with the Linux
distribution is fine. You can install Redis using the following command:
$ sudo apt-get install redis-server

14. Now that we have installed and configured RabbitMQ and Redis, we can install Sensu
Core. First, we add the Sensu package signing key using the following command:
$ wget -q http://repos.sensuapp.org/apt/pubkey.gpg -O- | sudo apt-
key add -

15. We can then add the repository with this command:
$ echo "deb http://repos.sensuapp.org/apt sensu main" | sudo
tee /etc/apt/sources.list.d/sensu.list

16. Finally, we install the Sensu package. This installs the server, API, and client as
a bundle:
$ sudo apt-get update && sudo apt-get install sensu

17. Now we have installed the Sensu server, we can configure it. First, copy the client
certificate we created earlier in place with the following command:
$ sudo mkdir -p /etc/sensu/ssl && sudo cp client/cert.pem client/
key.pem /etc/sensu/ssl

18. Next, we configure our Sensu server's basic connectivity. Create a new file called
config.json under the directory of /etc/sensu and insert the following content:
{
 "rabbitmq": {
 "ssl": {
 "cert_chain_file": "/etc/sensu/ssl/cert.pem",
 "private_key_file": "/etc/sensu/ssl/key.pem"
 },
 "host": "localhost",
 "port": 5671,

Monitoring with Sensu

444

 "vhost": "/sensu",
 "user": "sensu",
 "password": "<<password>>"
 },
 "redis": {
 "host": "localhost"
 },
 "api": {
 "port": 4567
 }
}

Ensure that you replace <<password>> with the password you chose while setting
up the Sensu RabbitMQ user.

19. Start the Sensu services using the following commands:
$ sudo service sensu-server start

$ sudo service sensu-api start

Notice that we're not starting the Sensu client in this instance; this is to
keep this recipe focused. I thoroughly encourage you to configure a client
on your Sensu master and monitor it as with any other host.

20. Next, we are going to install uchiwa. Uchiwa is an elegant and easy to use dashboard
for Sensu, designed to be used for information radiators, such as TVs. Install Uchiwa
using the following command:
$ sudo apt-get install uchiwa

21. Now that we have installed Uchiwa, we need to configure it; edit the file
/etc/sensu/uchiwa.json and ensure that it has the following content:
{
 "sensu": [
 {
 "name": "<<site description>>",
 "host": "<<sensuserver>>",
 "port": 4567,
 "timeout": 5
 }
],

Chapter 10

445

 "uchiwa": {
 "host": "0.0.0.0",
 "port": 3000,
 "interval": 5
 }
}

Ensure that you replace <<site description>> and <<sensuserver>> with the
correct values. The site description can be set to a description of your choice; I tend
to use it to delineate geographical sites (for instance, London, DC). Ensure that the
sensu server is set to the DNS name or IP address of your Sensu server.

22. Start the service using the following command:

$ sudo service uchiwa start

Within your browser, navigate to your Sensu server on port 3000 and you should be
able to see a screen similar to the following screenshot:

See also
 f You can find further installation details for Sensu at https://sensuapp.org/

docs/0.20/installation-overview

 f You can find installation details of Uchiwa at http://docs.uchiwa.io/en/
latest/getting-started/

https://sensuapp.org/docs/0.20/installation-overview
https://sensuapp.org/docs/0.20/installation-overview
http://docs.uchiwa.io/en/latest/getting-started/
http://docs.uchiwa.io/en/latest/getting-started/

Monitoring with Sensu

446

Installing a Sensu client
Once you have installed the Sensu server, you need to install the Sensu client to run checks
and report the data back to the server. The Sensu client subscribes to the RabbitMQ virtual
host and listens for checks to be published in a subscription to which the client belongs. When
a check is published, the client runs the assigned check and publishes the results back onto
the RabbitMQ; from here, the Sensu server then processes the check results.

Getting ready
For this recipe, you will need an Ubuntu 14.04 client to act as the Sensu client and a Sensu
server to connect to.

How to do it…
The following steps show you how to install the Sensu Core package and how to configure the
Sensu client.

1. The Sensu Core package used to install the Sensu client includes the client, server,
and API package. First we add the Sensu package signing key using the following
command:
$ wget -q http://repos.sensuapp.org/apt/pubkey.gpg -O- | sudo apt-
key add -

Then we add the repository:

$ echo "deb http://repos.sensuapp.org/apt sensu main" | sudo
tee /etc/apt/sources.list.d/sensu.list

2. Finally, we can now install the Sensu package using the following command:
$ sudo apt-get update && sudo apt-get install sensu

If you have already read the How to install a Sensu server recipe, then you
might have noticed that the steps are the same for both client and server.
This is because the Sensu package is an omnibus package that contains
everything; you only start the services you want.

3. Next, we need to copy the client key into place. You can start by creating a directory to
place the certificates with this command:
$ sudo mkdir -p /etc/sensu/ssl

Chapter 10

447

4. Copy the following files from the keys you created when you created your Sensu
server and into the directory you created in the step above:
client/cert.pem

client/key.pem

5. Now, we can configure the Sensu client. First, create a file in /etc/sensu called
config.json and insert the following content:
{
 "rabbitmq": {
 "ssl": {
 "cert_chain_file": "/etc/sensu/ssl/cert.pem",
 "private_key_file": "/etc/sensu/ssl/key.pem"
 },
 "host": "<sensumaster>",
 "port": 5671,
 "vhost": "/sensu",
 "user": "sensu",
 "password": "<password>"
 },
 "redis": {
 "host": "localhost"
 },
 "api": {
 "port": 4567
 }
}

Note that you need to replace the values of <<sensumaster>> and <<password>>
with the IP or name of your Sensu Master and Sensu password, respectively.

6. Now that we have configured the general Sensu connectivity, we can configure
the client specific settings. Create a new file under /etc/sensu/conf.d called
client.json and insert the following content:
{
 "client": {
 "name": "sensuhost",
 "address": "<ip address>,
 "subscriptions": ["common"]
 }
}

Monitoring with Sensu

448

It's worth going over this slim piece of configuration. The first part of the configuration
defines the name that is displayed for this host when reporting the check results;
I suggest that this should be the DNS name of the client for easy identification.
The address field allows you to define an IP address that the client reports as its
originating address. The subscriptions field allows you to add subscriptions for checks.
I recommend that you have a common set of checks that all hosts should respond to;
these can be things, such as disk space, CPU usage, RAM usage, and so on.

Subscriptions are a key part of using Sensu, and are a fantastic
organizational tool. I generally recommend using a common subscription
for the usual suspects, such as RAM and CPU checks. You can use a
role description for other subscriptions, such as a subscription called
nginx_server, or haproxy_lb.

7. Now that we have configured our client, we are ready to start the Sensu client service.
Start it by issuing the following command:
$ service sensu-client start

8. On your sensu master, log into your uchiwa panel and select this icon:

This takes you to the client-listing page. Once there, you should be able to see your
new host listed and it should look something similar to the following screenshot:

Chapter 10

449

See also
You can find further details about the client installation at https://sensuapp.org/
docs/0.20/install-sensu-client.

Installing check prerequisites
Sensu checks are generally written using Ruby and there is broad support for the language
throughout Sensu. However, this means that there are certain dependencies on Ruby for
some checks.

Getting ready
For this recipe, you will require an Ubuntu 14.04 server with Sensu installed.

This recipe requires you to install development tools to compile the native
Ruby extensions that some checks require. If having development tools on
hosts contravenes your security policies, I recommend that you use a tool,
such as FPM (https://github.com/jordansissel/fpm) to build
the checks on a build machine and then re-package for distribution.

How to do it…
To install the various packages, issue the following command:

$ sudo apt-get install -y ruby ruby-dev build-essential

Finding community checks
Once the Sensu client and server are installed, it's now time to add the checks to be
monitored for any issue. By default, the Sensu client reports nothing; it is up to you to add
any relevant checks to make it useful.

Sensu checks can be written in any language as long as it returns the correct response to the
server via RabbitMQ; however, they are generally written either in Bash or more commonly in
Ruby. Luckily, the Sensu community has contributed a great many open source checks to the
project. These can be installed, thus saving you from having to create your own and they cover
many of the common check scenarios.

https://sensuapp.org/docs/0.20/install-sensu-client
https://sensuapp.org/docs/0.20/install-sensu-client
https://github.com/jordansissel/fpm

Monitoring with Sensu

450

Getting ready
For this recipe, you will need an Ubuntu 14.04 host to act as the Sensu check host and a
Sensu server to connect to. You should also have installed the prerequisite packages as
detailed in the recipe Installing check prerequisites.

How to do it…
You can find the Sensu community checks at http://sensu-plugins.io/plugins/.

Each link should take you to a Github page containing the code for that particular check, and
it should have the additional documentation on the usage of the check.

See also
 f You can find further details of the Sensu community checks at http://sensu-

plugins.io/plugins/

 f You can find details of the Sensu check format at https://sensuapp.org/docs/
latest/checks

Adding a DNS check
Almost every application has external dependencies, such as databases, Redis caches, e-mail
servers, and so on. Although it is generally reliable, DNS can occasionally cause problems
and, at first glance, it can be difficult to diagnose. By adding a check that constantly checks
the DNS record, you can be assured that these dependencies are available.

Getting ready
For this recipe, you will need an Ubuntu 14.04 host to act as the Sensu check-host and a
Sensu server to connect to. You should also have installed the prerequisite packages as
detailed in the recipe Installing check prerequisites.

How to do it…
Let's start by adding DNS check to track DNS records:

1. For this recipe, we're going to install the sensu-plugins-dns. Use the following
command to install the new plugin:
$ sudo gem install sensu-plugins-dns

http://sensu-plugins.io/plugins/
http://sensu-plugins.io/plugins/
http://sensu-plugins.io/plugins/
https://sensuapp.org/docs/latest/checks
https://sensuapp.org/docs/latest/checks

Chapter 10

451

2. You can test if the plugin has been installed successfully by issuing the following
command:
$ check-dns.rb -d www.packtpub.com

3. You should see a response like the following:
DNS OK: Resolved www.packtpub.com A records

4. On the Sensu server, create a new file called web_check.json under the directory /
etc/sensu/conf.d and insert the following content:
{
 "checks": {
 "check_google": {
 "command": "/usr/local/bin/check-dns.rb -d google.com",
 "interval": 60,
 "subscribers": ["web_check"]
 },
 "check_yahoo": {
 "command": "/usr/local/bin/check-dns.rb -d yahoo.com",
 "interval": 60,
 "subscribers": ["web_check"]
 },
 "check_fail": {
 "command": "/usr/local/bin/check-dns.rb -d sdfdsssf.com",
 "interval": 60,
 "subscribers": ["web_check"]
 }
 }
}

5. Once you have entered the configuration, restart the Sensu server by issuing the
following command:
$ service sensu-server restart

6. Next, we need to configure our client to subscribe to the checks. Edit the client.
json file located within /etc/sensu/conf.d and to reflect the following code:
{
 "client": {
 "name": "sensuhost",
 "address": "<<SENSUCLIENTIP>>",
 "subscriptions": ["common","web_check"]
 }
}

Monitoring with Sensu

452

7. Notice the additional subscription. When you restart the client, it will subscribe to
a set of checks that publish themselves for web_check clients to run. Restart the
Sensu client by issuing the following command:
$ service sensu-client restart

8. Your checks should now be running; however, it may take a few minutes for them to
show up. This is due to the checks being placed on the MQ and being checked at the
interval specified (60 seconds in the above example). To check, log on to Uchiwa on
your Sensu master and select the following icon on the left-hand side:

You should see the check to which we have deliberately given a nonsense address:

9. You can also check in /var/log/sensu/sensu-server.log and locate the line
that resembles the following:

{"timestamp":"2015-07-14T16:55:14.404660-0400","level":"info",
"message":"processing event","event":{"id":"c12ebe42-62ed-454f-
a074-49c71c3c8f7a","client":{"name":"sensuhost","address":"10.1
31.154.77","subscriptions":["common","web_check"],"version":"0
.20.0","timestamp":1436907305},"check":{"command":"/usr/local/
bin/check-dns.rb -d sdfdsssf.com","interval":60,"subscribers":["w
eb_check"],"name":"check_fail","issued":1436907314,"executed":1436
907314,"duration":0.262,"output":"DNS CRITICAL: Could not resolve
sdfdsssf.com\n","status":2,"history":["2"],"total_state_change":0}
,"occurrences":1,"action":"create"}}

Chapter 10

453

See also
You can find further details of the Sensu DNS check at https://github.com/sensu-
plugins/sensu-plugins-dns.

Adding a disk check
Disk checks are a critical part of infrastructure monitoring. A full disk can cause processes
to fail, servers to slow down, and logs to be lost. Providing alerts for disk issues in a timely
manner is vital to the smooth running of any infrastructure.

This recipe shows you how to install the community disk check and add it to a subscription
called common.

Getting ready
For this recipe, you will need both a Sensu server and at least one Sensu host. You should
also have installed the prerequisite packages as detailed in the recipe Installing check
prerequisites.

How to do it…
Let's install the community disk check:

1. First, we install the disk check gem using the Gem package manager:
$ sudo gem install sensu-plugins-disk-checks

This gem installs many additional disk based checks in addition to space
usage, allowing you to check for issues such as SMART alerts, and so on.
You can see the details at: https://github.com/sensu-plugins/
sensu-plugins-disk-checks.

2. Now we can configure the check configuration. On the Sensu master, create a new file
called disk_checks.json under the /etc/sensu/conf.d directory and insert
the following content:
{
 "checks": {
 "check_disk_usage": {
 "command": "/usr/local/bin/check-disk-usage.rb -w 75 -c 90",
 "interval": 60,
 "subscribers": ["common"]
 }
}

https://github.com/sensu-plugins/sensu-plugins-dns
https://github.com/sensu-plugins/sensu-plugins-dns
https://github.com/sensu-plugins/sensu-plugins-disk-checks
https://github.com/sensu-plugins/sensu-plugins-disk-checks

Monitoring with Sensu

454

The configuration above makes use of the disk check plugging, and uses the -w and
-c switches. These switches are relatively common amongst Nagios-style checks and
allows you to set a warning and a critical threshold. In this case, I'm using a warning
at 75% and a critical alert at 90%. This is very useful as it allows us to use different
alert types based on the threshold; for instance, a warning could trigger an e-mail
and a critical alert could send an SMS. Read the plugin documentation to fid details
of what thresholds you can set and how to set them.

3. On the client side, edit the file called client.json within /etc/sensu/conf.d
and ensure that the following code is present:
{
 "client": {
 "name": "sensuhost",
 "address": "10.131.154.77",
 "subscriptions": ["common","web_check"]
 }
}

4. To check that the check is running correctly, look in /var/log/sensu/sensu-
server and check that a line resembling the following is present:

{"timestamp":"2015-07-14T17:26:42.689883-0400","level":"info","mes
sage":"publishing check request","payload":{"name":"check_disk_us
age","issued":1436909202,"command":"/usr/local/bin/check-disk-
usage.rb -w 75"},"subscribers":["common"]}

See also
You can find more details for the community disk checks at https://github.com/sensu-
plugins/sensu-plugins-disk-checks.

Adding a RAM check
Having sufficient RAM available for a server is a crucial part of running a performant service.
When memory resources run short, the application either runs slow, if the OS is forced to use
swap space, or in extremes can cause applications to crash.

This recipe demonstrates how to use Sensu to monitor that sufficient free RAM is present on a
monitored system.

https://github.com/sensu-plugins/sensu-plugins-disk-checks
https://github.com/sensu-plugins/sensu-plugins-disk-checks

Chapter 10

455

Getting ready
For this recipe, you will need both a Sensu server and at least one Sensu host. You should
also have installed the prerequisite packages as detailed in the recipe Installing check
prerequisites.

How to do it…
Let's add the RAM check:

1. We need to install the sensu-plugins-memory-checks gem; this installs an
executable for the RAM check:
$ sudo gem install sensu-plugins-memory-checks

2. Now we can configure the config check. On the Sensu master, create a new file
called ram_checks.json under the /etc/sensu/conf.d directory and insert the
following content:
{
 "checks": {
 "check_ram": {
 "command": "/usr/local/bin/check-ram.rb -w 70 -c 95",
 "interval": 60,
 "subscribers": ["common"]
 }
 }
}

Again, note the use of the -w and -c switches; these set the thresholds in percentage
used that needs to trigger an alert.

3. On the client, edit the file called client.json within /etc/sensu/conf.d and
ensure that the following code is present:
{
 "client": {
 "name": "sensuhost",
 "address": "10.131.154.77",
 "subscriptions": ["common","web_check"]
 }
}

Monitoring with Sensu

456

4. To determine that the check is running correctly, look in /var/log/sensu/sensu-
server and check that a line resembling the following is present:

{"timestamp":"2015-07-14T17:43:28.066609-0400","level":"wa
rn","message":"config file applied changes","file":"/etc/
sensu/conf.d/check_ram.json","changes":{"checks":{"check_ram_
usage":[null,{"command":"/usr/local/bin/check-ram.rb","interval":6
0,"subscribers":["common"]}]}}}

See also
For further details on the Sensu memory checks, see the following page https://github.
com/sensu-plugins/sensu-plugins-memory-checks.

Adding a process check
One important item to monitor is if a process is actually running on a system. It's little use
knowing that you have plenty of disk and CPU resources, but not realizing that your apache
server has fallen over. Sensu can be used to monitor the key processes that are running on
your server and it can alert you if a process has gone AWOL.

This recipe shows you how to check if the sshd process is running on any host subscribed to
the common subscriptions; however, the same technique can be used to monitor any process.

Getting ready…
For this recipe, you will need both a Sensu server and at least one Sensu host. You should
also have installed the prerequisite packages as detailed in the recipe Installing check
prerequisites.

How to do it…
This recipe will show you how to install the Sensu process check plugin and how to configure it
to monitor a running process.

1. First, we install the process check gem using the Gem package manager. Use the the
following command to install the plugin:
$ sudo gem install sensu-plugins-process-checks

https://github.com/sensu-plugins/sensu-plugins-memory-checks.
https://github.com/sensu-plugins/sensu-plugins-memory-checks.

Chapter 10

457

2. Now, we can configure the check configuration. On the Sensu master, create a new
file called sshd_process_check.json under the /etc/sensu/conf.d directory
and insert the following content:
{
 "checks": {
 "check_sshd_usage": {
 "command": "/usr/local/bin/check-process.rb -p 'sshd -D'",
 "interval": 60,
 "subscribers": ["common"]
 }
 }
}

This check makes use of the -p switch to allow us to specify a process that we wish
to monitor; this should be the full string of the running process (notice that, in the
preceding example, I have added the -D switch that the process runs with).

3. On the client, edit the file called client.json within /etc/sensu/conf.d and
ensure that the following code is present:
{
 "client": {
 "name": "sensuhost",
 "address": "10.131.154.77",
 "subscriptions": ["common","web_check"]
 }
}

4. To determine if the check is running correctly, look in /var/log/sensu/sensu-
server and check that a line resembling the following is present:

{"timestamp":"2015-07-14T18:13:48.464091-0400","level":"info","me
ssage":"processing event","event":{"id":"f1326a4f-87c2-49a7-8b28-
70dfa3e9836b","client":{"name":"sensuhost","address":"10.131.154
.77","subscriptions":["common","web_check"],"version":"0.20.0","
timestamp":1436912025},"check":{"command":"/usr/local/bin/check-
process.rb -p 'sshd -D'","interval":60,"subscribers":["common"],
"name":"check_sshd_usage","issued":1436912028,"executed":1436912
028,"duration":0.128,"output":"CheckProcess OK: Found 1 matching
processes; cmd /sshd -D/\n","status":0,"history":["1","1","1","1",
"0"],"total_state_change":0},"occurrences":4,"action":"resolve"}}

See also
You can find further details of the process checks at https://github.com/sensu-
plugins/sensu-plugins-process-checks.

https://github.com/sensu-plugins/sensu-plugins-process-checks
https://github.com/sensu-plugins/sensu-plugins-process-checks

Monitoring with Sensu

458

Adding a CPU check
Having sufficient CPU resources is a vital part of running a performant service and it is hard to
spot without sufficient monitoring. Using Sensu to alert when CPU usage is running high, you
will be able to deal with slow running processes before the customer notices.

Getting ready
For this recipe, you will need both a Sensu server and at least one Sensu host. You should
also have installed the prerequisite packages as detailed in the recipe Installing check
prerequisites.

How to do it…
Let's add a CPU usage check:

1. First, we install the CPU check gem using the Gem package manager. Use the
following command to install the plugin:
$ sudo gem install sensu-plugins-cpu-checks

2. Now we can configure the check configuration. On the Sensu master, create a new file
called cpu_check.json under the /etc/sensu/conf.d directory and insert the
following content:
{
 "checks": {
 "check_cpu_usage": {
 "command": "/usr/local/bin/check-cpu.rb",
 "interval": 60,
 "subscribers": ["common"]
 }
 }
}

3. On the client, edit the file called client.json within /etc/sensu/conf.d and
ensure that the following code is present:
{
 "client": {
 "name": "sensuhost",
 "address": "10.131.154.77",
 "subscriptions": ["common","web_check"]
 }
}

Chapter 10

459

4. To determine that the check is running correctly, look in /var/log/sensu/sensu-
server and check that a line resembling the following is present:

{"timestamp":"2015-07-15T16:24:26.800371-0400","level":"info"
,"message":"publishing check request","payload":{"name":"che
ck_cpu","issued":1436991866,"command":"/usr/local/bin/check-cp.
rb"},"subscribers":["common"]}

See also
You can find further details of the process checks at https://github.com/sensu-
plugins/sensu-plugins-cpu-checks.

Creating e-mail alerts
Although you can view your Sensu alerts using the Uchiwa panel, it's unlikely that you will have
your eyes glued to the TV at all times. Instead, you need to give Sensu the ability to alert you
in a more interactive fashion, and one of the most tried and trusted methods is via e-mail. In
today's world of laptops, Smartphones and tablets, it's a rare time indeed when you are not
able to receive e-mails.

This recipe will show you how to configure the Sensu e-mail plugin to allow you to receive
e-mails whenever an alert is triggered.

Getting ready
For this recipe, you will need a configured Sensu server and Sensu client. You should also
have at least one check configured. You will also need an SMTP server that can relay mail. You
should also have installed the prerequisite packages as detailed in the recipe Installing check
prerequisites.

How to do it…
Let's create an e-mail alert:

1. First, you can use Ruby's gem to install the mail plugin using the following command:
$ gem install sensu-plugins-mailer

https://github.com/sensu-plugins/sensu-plugins-cpu-checks
https://github.com/sensu-plugins/sensu-plugins-cpu-checks

Monitoring with Sensu

460

2. Now, we can configure the mail plugin. Create a new file called plugin_mailer.
json within /etc/sensu/conf.d and insert the following content:
{
 "mailer": {
 "admin_gui": "http://<sensuserver>/#/events",
 "mail_from": "<<fromaddress>>",
 "mail_to": "<<toaddress>>",
 "smtp_address": "<<smtpaddress>>",
 "smtp_username": "<<smtpusername>>",
 "smtp_password": "<<smtppassword>>",
 "smtp_port": "587",
 "smtp_domain": "<<smtpdomain>>"
 }
}

Ensure that you replace the values inside the angle brackets with the relevant
information for your e-mail setup. The admin gui is simply a link to the uchiwa
panel, so fill in the address of your Sensu server.

3. Now the mailer plugin is configured, we can create the handler.

4. You can combine the plugin and handler settings into the same file, but it's better
practice to keep them separate.

5. A handler is an executable piece of code that is triggered by an event sent via a
Plugin; you can think of plugins as raising alerts and handlers as dealing with how
to distribute the event to end users. Sensu allows you to configure many different
handlers, which allows you to be flexible in how you are alerted. You may wish to
e-mail some checks, others you might want to send via SMS, and still others you
might want to allow for a combination of the two; handler definitions allow you to
define these. To create the handler definition for the mailer, create a new file called
mail.json under the /etc/sensu/handlers and insert the following content:
{
 "handlers": {
 "mailer": {
 "type": "pipe",
 "command": "/usr/local/bin/handler-mailer.rb"
 }
 }
}

6. This has created a new handler called mailer that we can make available for our
checks. The type of pipe is the most commonly used type of handler and outputs
the contents of the Sensu event into the command. Effectively, the event is raised
by a plugin, placed on the MQ, processed by the Sensu Server, and then parsed
via the handler.

Chapter 10

461

7. To add the handler to a check, open up a check definition and amend it to include the
following code:
{
 "checks": {
 "check_cpu": {
 "command": "/usr/local/bin/check-cpu.rb",
 "interval": 60,
 "subscribers": ["common"],
 "handlers": ["mailer"]
 }
 }
}

8. Now, whenever an alert is triggered, you should receive an e-mail that resembles
something like this:

DNS CRITICAL: Could not resolve sdfdsssf.com
Admin GUI: http://sensumaster.stunthmaster.com/#/events
Host: sensuhost
Timestamp: 2015-07-15 19:07:14 -0400
Address: 10.131.154.77
Check Name: check_fail
Command: /usr/local/bin/check-dns.rb -d sdfdsssf.com
Status: CRITICAL
Occurrences: 1
And when the check is resolved, you should see a resolution E-mail
that looks something like this:
Resolving on request of the API
Admin GUI: http://sensumaster.stunthmaster.com/#/events
Host: sensuhost
Timestamp: 2015-07-19 19:15:12 -0400
Address: 10.131.154.77
Check Name: check_fail
Command: /usr/local/bin/check-dns.rb -d sdfdsssf.com
Status: OK
Occurrences: 2976

By editing the handler-mailer.rb code, you can modify this e-mail to more suit
your formatting needs.

See also
 f You can find more details of the Sensu handlers at https://sensuapp.org/

docs/0.20/handlers

 f You can find more details of the e-mail handler at https://github.com/sensu-
plugins/sensu-plugins-mailer

https://sensuapp.org/docs/0.20/handlers
https://sensuapp.org/docs/0.20/handlers
https://github.com/sensu-plugins/sensu-plugins-mailer
https://github.com/sensu-plugins/sensu-plugins-mailer

Monitoring with Sensu

462

Creating SMS alerts
Sometimes you need alerts that are more immediate than an e-mail. When a critical service
goes down, you don't want to miss it because you eschewed carrying a smartphone and your
laptop wasn't near by.

SMS messaging is a fantastic way to send default alerts and is in many ways the spiritual
successor to the pager. SMS has the advantage of being almost universal and it is virtually
impossible in this day and age to find a cell phone that does not support it.

Unlike e-mail, you cannot run a local SMS server to send messages directly; instead, you
need to sign up with an SMS gateway, which will route your messages to the various mobile
phone providers. In this recipe, we're going to use Twilio (https://www.twilio.com). Twilio
supports both Voice and SMS gateways and has an easy to use API. Like all SMS gateways,
Twilio charges per message; however, trial accounts are available to test your integration.

Getting ready
For this recipe, you will need a Sensu server, Sensu client, and at least one configured
check. You will also need a Mobile phone to receive your test message. You should also have
installed the prerequisite packages as detailed in the recipe Installing check prerequisites.

How to do it…
Let's create SMS alerts:

1. First, signup for a new Twilio account by visiting https://www.twilio.com/try-
twilio. It will ask you for some basic details, and will send you an e-mail to confirm
the account. Ensure that you have confirmed your details, and that you can log in.

2. Once you have a Twilio account, you can install the Twilio Sensu plugin using the
following command:
$ sudo gem install sensu-plugins-twilio

3. Next, we will configure the plugin. As with the mailer plugin, this takes two forms:
the handler configuration and the plugin configuration. Let's deal with the plugin
configuration first: create a new file /etc/sensu/conf.d/plugin_twilio.json
and insert the following content:
{
 "twiliosms":{
 "token":"<<TWILIOTOKEN>>",
 "sid":"<<TWILIOSID>>",
 "number":"<<TWILIONUMBER>>",

https://www.twilio.com
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio

Chapter 10

463

 "recipients":{
 "+<<RECIPIENTNUMBER>>": {
 "sensu_roles":["all"],
 "sensu_checks":[],
 "sensu_level": 1
 }
 }
 }
}

4. There are a few things to note with this code. First, you need to have your own Twilio
API and SID at hand; if you need to find them, you can find them on this page:

https://www.twilio.com/user/account/settings

They should be available about halfway down the page and will resemble this:

5. Next we need to set up the recipient number. This is an array and can contain as
many recipients as you need; however, the recipient will need to be acknowledged
within the Twilio panel.

A Twilio test account has many limitations, including a limit on
the recipients.

6. Each recipient can have a different set of roles and checks that will trigger an SMS;
in our example, we're leaving it as all roles to ensure that every alert will send an
SMS. However, you can use this configuration item to restrict SMS alerts only to
critical roles.

https://www.twilio.com/user/account/settings

Monitoring with Sensu

464

7. Next, we can configure the handler configuration. Create a new file called
/etc/sensu/handlers/plugin_twilio_sms.json and add the following
configuration:
{
 "handlers": {
 "twiliosms": {
 "type": "pipe",
 "command": "/var/lib/gems/1.9.1/gems/sensu-plugins-
twilio-0.0.3/bin/handler-twiliosms.rb"
 }
 }
}

8. Once you have done this, save the file and restart the Sensu server with the
following command:

$ sudo service sensu-server restart

The next time you have an alert, you should receive an SMS message
that looks similar to the following screenshot:

See also
 f You can find more information about Twilio at https://www.twilio.com

 f You can find further information about the Twillio plugin at https://github.
com/sensu/sensu-community-plugins/blob/master/handlers/
notification/twiliosms.rb

https://www.twilio.com
https://github.com/sensu/sensu-community-plugins/blob/master/handlers/notification/twiliosms.rb
https://github.com/sensu/sensu-community-plugins/blob/master/handlers/notification/twiliosms.rb
https://github.com/sensu/sensu-community-plugins/blob/master/handlers/notification/twiliosms.rb

Chapter 10

465

Using Ansible to install Sensu
When rolling out on any kind of scale, it's almost certain that you will want to use automation
to perform the install, especially for the clients; this allows you to roll out the changes quickly,
easily, and with minimum fuss.

As with other recipes in this book, we are going to use Ansible as our automation tool of
choice and rather than write a new playbook from scratch, we're going to make use of a truly
excellent role available on the Ansible galaxy (https://galaxy.ansible.com/detail#/
role/279).

If you need a refresher on Ansible, see Chapter 5, Automation with Ansible.

Getting ready
For this recipe, you will need a node to run the Ansible playbook and at least two servers:
one to act as the Sensu server and the other, the Sensu client. The Sensu Server node
should have RabbitMQ and Redis already installed on it. You should also have installed the
prerequisite packages as detailed in the recipe Installing check prerequisites.

Although slightly out of scope for this recipe, you can use two other Ansible
roles to automate both RabbitMQ and Redis, https://github.com/
Mayeu/ansible-playbook-rabbitmq and https://github.com/
DavidWittman/ansible-redis, respectively.

How to do it…
1. On the host that will act as your Ansible node, run the following command to install

the Sensu role:
ansible-galaxy install Mayeu.sensu

If you do not have Ansible installed in the default location, you can also
clone the role and place it in your own structure; the code is available
here: https://github.com/Mayeu/ansible-playbook-sensu/
blob/master/vagrant/site.yml.

https://galaxy.ansible.com/detail#/role/279
https://galaxy.ansible.com/detail#/role/279
https://github.com/Mayeu/ansible-playbook-rabbitmq
https://github.com/Mayeu/ansible-playbook-rabbitmq
https://github.com/DavidWittman/ansible-redis
https://github.com/DavidWittman/ansible-redis
https://github.com/Mayeu/ansible-playbook-sensu/blob/master/vagrant/site.yml
https://github.com/Mayeu/ansible-playbook-sensu/blob/master/vagrant/site.yml

Monitoring with Sensu

466

2. Next, let's create an inventory. I'm assuming you are using the default location for
the inventory; otherwise, use the -i switch on the ansible-playbook command
to specify one in the location of your choice. In the inventory, ensure that you have
the following:
[sensu_servers]
 <<SENSUSERVERS>

[sensu_clients]
 <<SENSUCLIENTS>>

Where <<SENSUSERVER>> is the DNS name of your Sensu server and <<SENSU_
CLIENTS>> are the DNS names of your Sensu clients.

3. Now, we need to create a new playbook; create a new file called <<playbook>>/
sensu.yml and insert the following content:
- hosts: sensu_servers
 user: <<sudo_user>>
 vars:
 - sensu_install_server: true
 - sensu_install_client: false
 vars_files:
 - group_vars/sensu.yml
 roles:
 - Mayeu.sensu

- hosts: sensu_clients
 user: <<sudo_user>>
 vars:
 - sensu_install_server: false
 - sensu_install_client: true
 - sensu_client_hostname: '{{ ansible_hostname }}'
 - sensu_client_address: '{{ ansible_eth0["ipv4"]["address"]
 - sensu_client_subscription_names [common]
}}'
 vars_files:
 - group_vars/sensu.yml
 roles:
 - Mayeu.sensu

Chapter 10

467

4. Replace <<playbook>> with the name of the directory you wish your playbook to
reside in. Also replace the <<sudo_user>> with a user that has sudo permissions
on the servers you are connecting to.

As you can see, in this playbook we are defining two different plays: one for the Sensu
Server and another for the Sensu clients. Note how each play references a variable
file allowing us to define certain shared configuration items. We are also setting
certain variables at the client level where we need differences.

5. Next, we need to create some directories to contain the files that the Ansible role will
require. Use the following command to create them:
mkdir -p <playbook>/files/sensu/extensions && mkdir -p <playbook>/
files/sensu/handlers && mkdir -p <playbook>/files/sensu/plugins

These folders are to hold your handlers, plugins, and if you use them, your
extensions.

You can find details of Sensu extensions at https://sensuapp.org/
docs/0.20/extensions.

6. For instance, if you wish to add a new plugin, you will first add the plugin ruby file to
the <playbook>/files/sensu/plugins directory; this will then be placed in the
appropriate place on the Sensu server.

7. Next, create a folder to hold your Sensu certificates:
mkdir -p <playbook>/files/sensu/certs

Now, copy your certificates into the newly created folder.

You can find the details for how to create the certificates in the recipe
entitled How to install a sensu server.

8. Now, let's create the variables file for the common Sensu items. Create a new
file under <<playbook>>/group_vars called sensu.yml and insert the
following content:
sensu_server_rabbitmq_hostname: '<<SENSUSERVERDNSNAME>>'
sensu_server_rabbitmq_user: <<sensuMQuser>>
sensu_server_rabbitmq_password: <<sensuMQpassword>>
sensu_server_rabbitmq_vhost: "sensu"
sensu_server_api_user: <<SENSU_USER>>
sensu_server_api_password: <<SENSU_PASSWORD>>

https://sensuapp.org/docs/0.20/extensions.
https://sensuapp.org/docs/0.20/extensions.

Monitoring with Sensu

468

The values in this file define the settings for your Sensu server and cover aspects
such as the MQ to connect to the vhost, username, password, and so on. You may
notice that this seems to be a short list; this is because this particular role has very
sensible defaults. You can find the list of defaults on the readme at https://
galaxy.ansible.com/detail#/role/279.

9. Now we have configured our server and client, the next step is to define some checks
to run on the client. First, we configure the server to send out a request for the check
to the common subscription. Insert the following into the <<playbook>>/group_
vars/sensu.yml file:
sensu_checks:
 cpu_check:
 handler: default
 command: "/usr/local/bin/check-cpu.rb"
 interval: 60
 subscribers:
 - common

10. You will also need to install the check-package onto the clients; you can do this
by inserting the following code within the role that sets up the client. I normally
recommend making this part of any common role that is used to setup all hosts:
name: "Install Sensu CPU Check Plugin"
gem: name='sensu-plugins-cpu-checks' state=present

11. Finally, we should define a handler on the Sensu server; insert the following code into
the <<playbook>>/group_vars/sensu.yml file:
sensu_handlers:
 basic_mailer:
 type: pipe
 command: "mailx -s 'Sensu Alert' opsuser@opsaddress.com"

The preceding handler will send a simple e-mail if there is an alert, and you can use
the same technique to set up as many handlers as you like.

12. Run Ansible using the following command:
ansible-playbook -K sensu.yml

This should install Sensu and Uchiwa, and configure the clients with a CPU check,
plus add a simple handler.

See also
You can find details of the Sensu Ansible role at https://github.com/Mayeu/ansible-
playbook-sensu.

https://galaxy.ansible.com/detail#/role/279
https://galaxy.ansible.com/detail#/role/279
https://github.com/Mayeu/ansible-playbook-sensu
https://github.com/Mayeu/ansible-playbook-sensu

Chapter 11

469

11
IAAS with Amazon AWS

In this chapter, we are going to cover the following topics:

 f Signing up for AWS

 f Setting up IAM

 f Creating your first security group

 f Creating your first EC2 host

 f Using Elastic Load Balancers

 f Managing DNS with route53

 f Using Ansible to create EC2 hosts

Introduction
The term cloud computing has diluted immensely over the years and the cloud label is being
applied to any technology that interacts over the network. Originally though, it was used to
describe what is now being termed as Infrastructure-as-a-Service (IAAS).

IAAS has revolutionized the approach of many companies by helping them build applications
and infrastructure, and for many companies, has turned infrastructure into a utility rather
than a massive internal cost center. This in turn has freed them to explore new platforms and
systems without the requirement of building costly servers and data centers. At it's heart, IAAS
platforms offer the ability to provision servers rapidly, but it may also offer additional features,
such as load balancers, persistent storage, and other elements of a traditional data center
offering; thus, allowing you to run a full-bodied infrastructure on a pay-as-you-go basis.

IAAS with Amazon AWS

470

Amazon was one of the earliest IAAS vendors and it became the most popular very rapidly.
Its features are possibly the most complete of all IAAS vendors, offering features, such as
compute units, load balancers, big data tools, and orchestration facilities. Amazon boasts
clients of every size, from one-man development companies, through to the giants of the
industry, such as Netflix. However, there are alternative. For some, the sheer complexity of
the Amazon platform can be an issue and there are many competitors available, ranging
from compute focused companies, such as DigitalOcean to fully featured offerings, such
as Rackspace.

There are disadvantages of using IAAS platforms and it is important that you design your
architecture to suit the particular foibles of such an offering. First, IAAS platforms are heavily
contended for RAM, CPU, Disk, and network, and performance is not guaranteed. Your
applications should be able to balance the load across many nodes, rather than relying
on single, powerful nodes to do the heavy lifting. There is also the issue of cost; generally
speaking, costing large IAAS platforms can be a complex task, with elements, such as CPU
and RAM being charged by the minute, disks being charged via usage, and networks being
charged by the megabyte of transferred data (sometimes on differing rates depending on it
being external, or inter-DC traffic). However, as long as you are aware of the shortcomings, the
benefits of using an IAAS can be vast.

Signing up for AWS
Before you can use any of the features of Amazon AWS, you need to register and set up
your account to be ready for use. This recipe takes you through the steps required to set up
an account.

Getting ready
For this recipe, you will require a web browser, an e-mail address to sign up with. You will
also need a valid credit/debit card, but this will not be charged until you start using a
billable compute.

How to do it…
Before we can approach any recipe in this chapter, we need to create a new AWS account. You
can create an account by navigating to https://aws.amazon.com and the following the
steps detailed in the signup process.

https://aws.amazon.com

Chapter 11

471

See also
 f You can find the AWS getting started guide at https://aws.amazon.com/

documentation/gettingstarted/

 f You can see pricing information at https://aws.amazon.com/ec2/pricing/

Setting up IAM
Security is a critical part of managing any infrastructure regardless of its origin and a key part
of security is having the ability to identify and limit access to the platform. Amazon provides a
tool known as Identity and Access Management (IAM) that allows you to set up fine-grained
users and access rights to access your AWS infrastructure. Using IAM, you can ensure that all
the relevant users can access your AWS resources. It also ensures that users are only able to
access and interact with the resources in the manner of your choice.

Getting ready
For this recipe, you will need an AWS account.

https://aws.amazon.com/documentation/gettingstarted/
https://aws.amazon.com/documentation/gettingstarted/
https://aws.amazon.com/ec2/pricing/

IAAS with Amazon AWS

472

How to do it…
The following steps will illustrate how to use the AWS IAM system to create a new user and
assign suitable roles:

1. Log in to your AWS account and select the IAM panel by selecting the following icon:

2. You will be greeted by a page that gives you a summary of your users. It will also
give a recommendation checklist for a new account and it should look similar to the
following screen shot:

Chapter 11

473

Click on the drop-down menu beside Activate MFA on your root account and select
Manage MFA.

MFA stands for Multi Factor Authentication and ensures
that in addition to a password, you also need a device that
will give you a one-time code to enter alongside it. MFA is a
crucial part of keeping your AWS account secure and I highly
recommend enabling it.

3. The next screen will prompt you to select a type of MFA token, either a virtual or a
hardware token; both offer the same functionality but differ in form factor. If you
have a smartphone, then you will be able to use one of many applications, such as
Google Authenticator that offers MFA tokens; select the virtual option if you wish to
use these.

4. If you select the virtual MFA option, then you should be presented with a barcode that
will allow you to register your MFA device and it will resemble the following screenshot:

IAAS with Amazon AWS

474

In your smartphone app, you should be able to point your camera at the screen and it
will register the account and offer you the MFA tokens. Enter the first two codes when
prompted and select Activate Virtual MFA.

5. Now that you have secured the root AWS account, it is good to create individual users
to login. This gives the ability to audit and lock down users from certain activities. You
can start by returning to the IAM panel and selecting Create individual IAM users
and then Manage users.

You will be presented with a list of your current users. Select Create New Users.
In the next screen, you should be able to enter a list of usernames that you want
to create:

Notice the tick box; this controls the creation of access keys to be used for the API. If
you are creating users that will only interact with AWS via the web console, then you
can leave this un-ticked. Once you are happy with your users, click on Create.

The next screen will show you a confirmation that your users have been created and,
if requested, the details for the API access.

6. Now that we have created users, we can provide permissions via user-groups. Return
to the IAM panel and select Use groups to assign permissions and click on Manage
groups. Like the user panel, you will be presented with a list of your current groups.
Click on Create New Group.

Chapter 11

475

7. Start by assigning a name for your group and click on Next step. This will take you to
the policy selection; these should look a little something similar to this:

These policies allow you to control the amount of access that users in this group will
have in considerable detail. Select the appropriate policy, and click on Next Step.

You can see what a policy will do by reading its name; you can
also find more details of IAM policies at http://docs.aws.
amazon.com/IAM/latest/UserGuide/policies_
managed-vs-inline.html#aws-managed-policies.

For this recipe, I recommend that you apply the AdministratorAccess role to any user
that you will be following the recipes in this chapter with.

http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_managed-vs-inline.html#aws-managed-policies
http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_managed-vs-inline.html#aws-managed-policies
http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_managed-vs-inline.html#aws-managed-policies

IAAS with Amazon AWS

476

8. The next screen will allow you to review your choices; check that you are happy with
them and select Create Group.

9. You should be returning to the Groups list. To add users to your new group, click on
it in the list and select Add Users to Group. You can then select the users you wish to
apply the new role to and add them.

10. Finally, you can set the overall password policy for your AWS infrastructure by
returning it to the IAM panel and selecting Apply an IAM policy. A password policy
is very important and allows you to ensure that your users set strong passwords. In
combination with an MFA token, it makes the brute force cracking of user accounts
as hugely unlikely. The Password Policy panel resembles the following screenshot:

Select the options that make the most sense for your organization; you should ensure
a decent length of password and at least some guarantee of variety.

Chapter 11

477

See also
You can find details of the IAM utility at https://aws.amazon.com/documentation/iam/

Creating your first security group
Security groups are the equivalent of a firewall and defines the type of traffic that can be
directed to a host, both originating from your platform and from the outside world. Like
any firewall, it's important to define the security groups correctly, as this is the first point of
securing your traffic.

This recipe will show you how to define a new security group ready to be applied to new EC2
hosts to use as a basic web server.

Getting ready
For this recipe, you need an AWS account.

How to do it…
The following recipe will demonstrate how to use the EC2 security group configuration to set a
secure policy.

1. Log into the AWS management console, and select the EC2 options:

In the EC2 panel you will find a menu on the left-hand side; select the menu entry
called Security Groups around halfway down the menu.

2. In the Security Groups panel, you should find a list of security groups; by default,
you should only have one, the default group. To create a new one, select the Create
Security Group button.

https://aws.amazon.com/documentation/iam/

IAAS with Amazon AWS

478

3. You should be presented with a screen similar to the following:

This allows you to give your new security group a name, a description, and attach it to
a VPC.

A VPC is a virtual private cloud. AWS allows you to have
several segregated clouds, each with its own policies and
hosts. This allows separation of concern between them, for
instance a development infrastructure and a production
environment. It is not to be confused with availability zones,
which offers geographically separated sites to aid with
reliability and performance.

Once you have named your group and given it a description, click on the Add
Rule button.

Chapter 11

479

4. The next step is to create your inbound rule set; this is the traffic that you will allow to
reach your instances from the outside world. Click on the button titled Add Rule; this
will open a window that allows you to select the rules you wish to add. The dropdown
list allows you to select either from a set of common types or a free-form custom
type. In my example, I've added the common ports for a web server as shown in the
following screenshot:

5. Note that I have also added SSH to the inbound group; this is to allow me to manage
instances. It's worth noting that I have locked this rule down to a specific IP address
to ensure that it can't be accessed via random port brushing by opportunistic
scripted attacks.

6. Now, since we have set our inbound rules, we can now set our outbound rules. By
default, these are set to allow all traffic out; this can be a valid configuration, but
if possible, it is better to lock this down by removing the default outbound rule and
allowing only certain protocols. In the following example, I've limited any instance
using this security group to only be able to access DNS and SMTP:

Once you have edited the rule-set to your liking, click on the Create button. The
security group is now available for use everywhere within this VPC.

See also
You can find details of the AWS security groups at http://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/using-network-security.html.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html

IAAS with Amazon AWS

480

Creating your first EC2 host
The basic unit of an IAAS platform is a compute unit and on AWS it is comprised of EC2
(Elastic Compute) instances. An EC2 instance is a highly configurable server, which is able
to cater to almost any conceivable usage; from CPU hungry analysis platforms to IO bound
database instances. As noted in the introduction, you should keep in mind that these are
generally contended, and you should factor that into application design.

Within the creation process of an EC2 instance, you have the option to create
a dedicated instance. This allows you to remove some of the contention
constrains and allows security conscious users to ensure that they are not
physically sharing equipment. This is a particular concern for users in the
industries, such as the financial sector.

This recipe will show you how to create a new EC2 host running Ubuntu.

Getting ready
For this recipe, you will need an AWS account.

How to do it…
The following steps will demonstrate how to create a new Elastic Compute instance and
assign a security group to it.

1. Login to the AWS management panel and select the EC2 panel using the
following icon:

2. The EC2 panel gives you a top-level overview of the EC2 resources you are using and
gives you a quick view of the health of your region.

Keep in mind, this view is just for a single region. If you are
using multiple regions, then you will need to use the drop
down in the top right of the screen to select that particular
region. It can be easy to forget that an instance is running if
it's not in your default region.

Chapter 11

481

It is also where you can launch new Instances. Click on the button marked Launch
Instance to start a new EC2 compute instance.

3. The first step is to select the type of Amazon Machine Image (AMI) that you wish to
create. This essentially boils down to selecting the operating system/distribution that
you prefer and covers the most popular Linux distributions and even Window.

If you select a commercial distribution, such as RedHat or
Windows; it attracts a higher cost due to licensing. This is
reflected in the hourly running cost of the instance.

Select your preferred distribution and click on the button marked Select next to it.

It's worth noting that you can create your own AMI's from
launched instances. This allows you to create your own AMI,
complete with tools that you require rather than the generic
images offered.

4. The next choice is the instance type. As you can see in the following screenshot, this
is essentially your choice of virtual hardware and storage type and varies from the
micro instances made-up of a single processor and 1GB of memory, to the compute
optimized instances made up of 36 processors and 60GB of RAM.

5. Select the instance type that fits your intended usage and budget.

IAAS with Amazon AWS

482

EC2 pricing can become extremely complex and it's worth
reading up on the various costs at https://aws.amazon.
com/ec2/pricing/. There are calculators available on the
pricing portal that will allow you to come to an indicative price
for your AWS infrastructure.

6. You can click on the Review and Launch button at this point. This will launch the
instance with a default security group and the default VPC; however, for this example,
click the button marked Configure Instance Details to set more options.

7. The next screen will allow you to configure the details of your instance, as you can
see in the following screenshot:

This includes elements, such as the number of instances, network, and subnet if you
have multiple VPC's defined. One element to consider is if you want this instance to
be publicly available; if you do, you can select the option marked Auto-assign Public
IP. This will give this instance a publicly available IP address from Amazon's pool and
make the instance available to the wider Internet.

8. You can also receive detailed monitoring using Amazon's monitoring product,
Cloudwatch; you can leave this un-ticked and still receive the basic Cloudwatch
package. However, if you require any level of detail about the instance usage, the
commercial Cloudwatch package is probably of interest.

9. By setting the Tenancy option, you can run it on an isolated hardware; thus, ensuring
that you are not sharing the compute unit with other clients; this can be useful if you
have security policies that demand a certain level of isolation. Be aware though, that
this option attracts a higher hourly fee.

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/

Chapter 11

483

10. Once you are happy with your selections, click on Add Storage.

11. The storage page allows you choose both the size of your EBS (Elastic Block Store)
volumes and the type and performance.

Of particular note in this panel is the volume type option; here, you can select from
a general purpose SSD, guaranteed IOP's SSD, and platter based magnetic storage.
Each of these has a trade-off in terms of cost and performance and you should select
the one most suitable for your usage. You can also select what happens to your
data when you terminate your EC2 instance; by default, it is deleted along with the
instance. However, you can use this panel to save certain partitions so that they are
kept when the instance is terminated.

12. Once you have created the appropriate storage for your image, select Tag Instance.

13. Within the tag instance page, you can add free form metadata in the form of key
value pairs. This allows you to set a tag to denote the environment this instance is
for, department, or any other relevant information. See the following screenshot for
examples of tagging:

Once you've added tags, click on the button marked Configure Security Group.

IAAS with Amazon AWS

484

14. The security group page allows you to add the security group details for your new
instances. By default, you can create a new security group, or alternatively, you can
select a pre-existing group.

From my experience, it is better to create your own security
groups up front rather than creating them on a per instance
basis. This helps to keep a cohesive policy in place and
avoids configuration drift and replication.

If you have an existing security group, you can select Select an existing security
group and a list of the existing groups will be displayed. Similar to the following
screenshot:

Make a note that you can create a new security group based on an existing one by
selecting the Copy to new option. This is useful when you have an existing complex
policy that requires a simple tweak for the new instance.

15. Once you are happy with your selections, click on Review and Launch.

16. The next page allows you to review your instance details and gives you the
option to edit any elements that don't look quite right. Once you're happy, you can
select launch.

17. If you haven't uploaded an SSH key pair you will be prompted to create one in the
following screenshot:

Chapter 11

485

18. You also have the option to proceed without using a Key pair; however, I do not
recommend this unless you are using a custom AMI with pre-existing secure
authentication methods built in.

19. Once you have created and downloaded your key pair, click on Launch instance.

THIS IS THE ONLY TIME YOU CAN DOWNLOAD THE KEYS. Be
sure that you have copied them down, as there is absolutely
no way to re-download them afterwards.

You will be shown a page that shows the EC2 instance being set up and you will
return to the EC2 panel. Your new instance should be listed alongside its Public
IP and you should now be able to log in using the key pair you downloaded in the
previous step.

See also
You can find the documentation for EC2 at https://aws.amazon.com/documentation/
ec2/.

https://aws.amazon.com/documentation/ec2/
https://aws.amazon.com/documentation/ec2/

IAAS with Amazon AWS

486

Using Elastic Load Balancers
One of the key elements of running applications on an IAAS platform is to ensure that work
can be balanced between many nodes. This offers an increased resiliency, but also allows
you to offset one of the weaknesses of an IAAS platform, performance issues caused by
contention. Unless you have a compelling reason not to, you should use load balancing for any
production instance of an application.

This recipe shows that you how to set up an Elastic Load balancer group that directs web
traffic between two different nodes.

Getting ready
For this recipe, you will require an AWS account and at least a single EC2 instance.

How to do it…
The following steps show you how to create a new EC2 Elastic Load Balancer and assign both
balanced ports and an EC2 to host it:

1. Start by logging into your AWS management panel and select the EC2 link.

2. In the EC2 management panel, locate the link titled Load Balancers in the left-hand
menu and click on it.

3. The next page gives you a summary of your Load Balancers. If this is your first time
in this panel, it should be blank. Click on the blue button at the top of the screen
marked Create Load Balancer to create a new Load Balancer.

4. The next page allows you to set certain basic elements of your load balancer. In this
example, I am going to create a load balancer to balance common web traffic (HTTP
and HTTPS). You can start by giving the load balancer a name that will allow you to
identify it. Next, you can select the VPC you wish to create the load balancer in and
select if this is an internal only load balancer

Internal load balancers are extremely useful to balance
load between your applications internally, and is especially
crucial when designing architectures, such as a Micro
Service based app.

Chapter 11

487

5. You can also perform advanced VPC configurations at this point, allowing you
to select specific VPCs to load balance to if you require granularity over the
configuration.

6. Next, we have the listener configuration. This is where you select the ports you wish to
load balance.

Notice that you can select the load balancer and instance
port to be different; this is exceptionally useful when you
cannot make the application listen on port 80 directly; for
instance, with applications that run inside Tomcat containers.

As you can see in the following screenshot, I have kept it simple and added both HTTP
and HTTPS to be load balanced:

Once your happy with your choices, click on the button titled 'Assign Security Groups

7. Much like creating an EC2 instance, assigning security groups allows you to set
the pre-existing security group you wish to use or alternatively to set up new ones.
If you create a new group, it should use the initial listener configuration to create
a template.

8. Once you have created/selected a group that you are happy with; click on Configure
Security Settings.

9. If you have selected a listener to be HTTPS then you will be directed to the next page,
Configure Security Settings, otherwise you will have to click through a warning that
notes that you have no secure listener.

It is now expected that a website should be usable over
HTTPS, and indeed, it is becoming increasingly common for
sites to only offer HTTPS connections, and Google will penalize
the site in it's page ranking if they do not offer HTTPS.

IAAS with Amazon AWS

488

This page allows you to upload an SSL certificate, which will allow the load balancer
to terminate the SSL connections for you, saving you the need to configure individual
servers to handle an SSL termination. If you have previously uploaded a certificate,
then you can select it here; otherwise, you can paste the details into this form:

Once you have entered your certificate details, click on the button marked as
Configure Health Check.

10. In the next screen, you can set the health check that will be regularly sent to the
instances that the load balancer is sending traffic to. This allows the load balancer
to remove instances that are no longer capable of serving requests or are no longer
performant. The health check comprises of either a HTTP or HTTPS request for a
nominated health page, or can use a simple TCP or SSL check on a certain port.

Chapter 11

489

As you can see in the preceding screenshot, you can also set a reasonable set of
granularity to the checks; thus, allowing you to tweak how slowly a node should respond
to be considered unhealthy and how often to call the health check itself. Once you are
happy with your choices, click on the button marked Add EC2 Instances.

11. The next screen will show you a list of your EC2 instances and will allow you to select
the members for your load balancer group. Select each of the instances that you wish
to partake in the load-balanced group. If you are using multiple availability zones,
you can also set options to allow you to balance across them, allowing you to spread
traffic geographically.

12. Once you have selected the EC2 instances that you wish to include in the load
balancer, click on the button marked as Add Tags.

13. The next screen allows you to set tags against the load balancer; as with EC2
instances, this allows you to add key value pairs and helps you to identify your
load balancer within a busy AWS infrastructure.

Add any tags you believe are relevant and click on the blue button marked
Review and Create.

14. The next screen will show you a summary of the load balancer you are about to create
and it will offer you the opportunity to amend any details. Review them and when you
are happy, click on the button marked Create load balancer. The load balancer will
be created and you will be passed back to the Load Balancer management screen.

15. The Load Balancer management screen should list your new load balancer and it
should look something similar to the following screenshot:

Note the DNS name; you should use a CNAME DNS record to point your records that
you wish to be load balanced.

Do not be tempted to use an A record; the IP address of the
Elastic Load Balancers can and will shift.

16. You should now be able to direct traffic at your new load balancer and have it
balanced across your selected EC2 instances.

IAAS with Amazon AWS

490

See also
You can find further details of Elastic Load Balancing at https://docs.aws.amazon.com/
ElasticLoadBalancing/latest/DeveloperGuide/elastic-load-balancing.
html.

Managing DNS with route53
Domain Name Services (DNS) underpins the Internet and a reliable and performant DNS
service is crucial to running a web service of any kind. It's a surprisingly neglected area of
performance monitoring and a poorly configured or poorly performing DNS server can have
a very large impact on the health of your application.

AWS Route53 is a highly scalable DNS server, which has advanced features allowing for
geo-routing, Apex CNAME records, and so on. It is also highly performant with DNS servers
in most major geographical areas, allowing for a minimum network hops to resolution.

This recipe will show you how to set up a new DNS zone and how to add new records.

Getting ready…
For this recipe, you need an active AWS account. You will also need a registered domain
name that you wish to use.

How to do it…
This recipe will show you how to take an existing domain and manage its DNS records using
Amazon Route53:

1. Log into your AWS management console and select the Route 53 panel by clicking
on the following icon:

https://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elastic-load-balancing.html
https://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elastic-load-balancing.html
https://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elastic-load-balancing.html

Chapter 11

491

This will take you into the Route53 panel and if this is your first time, you will be
greeted with the following introductory screen:

For this recipe, I'm going to assume that you already have a
domain to manage; if this is not the case, then you can select
the domain registration and register them via AWS.

2. Click on the button titled Get Started Now underneath the DNS management header;
this will take you to the DNS management panel. The management panel allows you
to see at a glance the DNS zones that you are managing via Route53. Click on the
blue button marked Create Hosted Zone to create a new zone.

This should open a panel allowing you to input your Zone name and resembles the
following screenshot:

IAAS with Amazon AWS

492

This allows you to enter your zone name (for instance, example.com), and select
the scope. By default, it is created as a public DNS zone and will make the zone
available to all public clients; however, you can create zones that are only available
to instances hosted within AWS. This is useful in building your internal network and
keeping its records hidden from public view.

Input your domain name into the input and click on the blue button titled Create.

3. Once you have entered your domain name, you will be taken to the record set
management screen. This allows you to enter the records that describe your
infrastructure and any permissible DNS record type.

You can find a good rundown of DNS record
types at https://support.google.
com/a/answer/48090?hl=en.

By default, the Zone will be populated with the name server records, and should look
like this:

4. To create a new record, click on the blue button marked Create Record Set.

5. The record set creation screen allows you to enter your DNS record; for instance,
creating an A record would look something like this:

https://support.google.com/a/answer/48090?hl=en
https://support.google.com/a/answer/48090?hl=en

Chapter 11

493

6. Route53 is like many DNS systems in that you enter a record name, select the DNS
type, and enter a relevant value and TTL (Time to live). Where Route53 differs is
its routing policy. Routing policies allow you to add additional flexibility to your DNS
infrastructure, allowing you to add features, such as Geographical DNS, allowing
different countries to resolve to different IP's.

Enter the desired record type and click 'create' to create your new record. Once
you click on create, your record will be created, propagated, and made available to
the public.

See also
You can find further details of Route53 at https://aws.amazon.com/documentation/
route53/.

https://aws.amazon.com/documentation/route53/
https://aws.amazon.com/documentation/route53/

IAAS with Amazon AWS

494

Using Ansible to create EC2 hosts
Using an IAAS platform ensures that you automate early and often; due to the cost model of
AWS, it's more efficient to be as on demand or elastic as possible. By using automation, you
can automate the deployment of an application across its entire lifecycle, from the creation of
a host to deployment of an application and finally, the destruction of the host. This also allows
you to stand up to new environments easily, as there is no need to provision new hardware,
networks, or any other such activities.

This recipe will demonstrate how to use Ansible to create a new EC2 host.

Getting ready
For this recipe, you will need an active AWS account and an Ansible client.

How to do it…
The following recipe demonstrates how to use a very simple Ansible playbook to automatically
create an EC2 instance:

1. First, create a directory to hold your Ansible code using the following command:
mkdir ansibleec2

2. Next, we create our inventory. Create a new file called ec2inventory and insert the
following content:
[ec2]
localhost

Note that you are simply asking Ansible to run commands on the same host on which
the Ansible playbook is run; this is because you are essentially using your own host
to run commands against Amazon's EC2 API rather than interactively working directly
with AWS.

3. Now we have an inventory, we can use Ansible to create our EC2 instance. Create a
new file called ec2.yml and add the following code:
- hosts: ec2
 connection: local
 tasks:
 - name: 'Create EC2 instance'
 ec2:
 aws_access_key: AKIAICW3HOQKY6LMCD4A
 aws_secret_key: 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

Chapter 11

495

 key_name: test
 region: us-west-2
 group: webserver
 instance_type: t2.micro
 image: ami-5189a661
 wait: yes
 wait_timeout: 50
 monitoring: yes
 vpc_subnet_id: subnet-89770eec
 assign_public_ip: yes

This code is relatively straightforward and is an example of using a playbook outside
of a role. First, it ensures that it uses the localhost entry listed in the inventory and
also uses a local connection rather than the usual SSH. Next, we define our list of
tasks, in this case calling the Ansible EC2 module and giving it several parameters.
These are generally self-explanatory and map directly back to the options you could
use in the GUI. One interesting parameter is the wait parameter; this ensures that
Ansible will only return once the host is created, rather than assuming that all is well.

4. Run the playbook using the following command:

ansible-playbook -i ec2inventory ec2.yml

This will create a new EC2 instance and start its running.

Its also worth pointing out that in production use you will want
to either pass the AWS credentials as an environment variable
or encrypt them using Ansible vault. You can find the details at
http://docs.ansible.com/ansible/guide_aws.
html#authentication.

See also
You can find further details of the EC2 Ansible module at http://docs.ansible.com/
ansible/ec2_module.html.

http://docs.ansible.com/ansible/guide_aws.html#authentication
http://docs.ansible.com/ansible/guide_aws.html#authentication
http://docs.ansible.com/ansible/ec2_module.html
http://docs.ansible.com/ansible/ec2_module.html

Chapter 12

497

12
Application

Performance Monitoring
with New Relic

In this chapter, we are going to cover the following topics:

 f Signing up for a New Relic account

 f Installing the New Relic Java agent

 f Using the performance overview

 f Locating performance bottlenecks with Transaction Traces

 f Observing database performance with New Relic

 f Release performance monitoring with New Relic

 f Server Monitoring with New Relic

Introduction
Monitoring is a key part of running any system, from the smallest to the largest; however,
monitoring takes many forms. We covered application monitoring in Chapter 10, Monitoring
with Sensu and those recipes demonstrated how to set up monitoring for application
faults. Fault monitoring is only one part of the picture; however, for a true reflection of
your application's health, you need to know how well it is performing, how effectively it can
communicate with it's dependencies (Databases, external API's, and so on), and if there are
particular elements that are not performing as you expect.

Application Performance Monitoring with New Relic

498

This monitoring niche can be filled with an Application Performance Monitoring tool (APM).
APM solutions offer the ability to drill into your application, exposing performance and
reliability issues with considerable detail. Generally speaking, they use some form of agent
that allows the APM tool to insert hooks into the running code at runtime, allowing it access
to method calls, network calls, and so on. It may also offer additional tools, such as more
'traditional' server monitoring, external site monitoring, and so on.

The key to a good APM tool is the ability to present this myriad form of data in an accessible
form and allow proactive reporting and alerting to be set up against it. Most, if not all APM
tools on the market today offer web consoles that allow you to drill into the data in a fairly
intuitive fashion; this is important, as it can offer a meeting place for Developers, stake
holders, and infrastructure staff to examine issues, without needing to learn many different
esoteric tools.

The APM market place is growing and at the time of writing, there are several competitors,
but by far, the most popular tools are AppDynamics and New Relic; both offer a broad set
of features allowing detailed monitoring of application performance and both offer a SAAS
platform (although AppDynamics also offers on premises options). Both AppDynamics and
New Relic are commercial tools, albeit ones that offer free limited accounts. At present, the
open source community has yet to create a tool that can compete on features; however, that
looks to be changing, with several projects showing promise.

In this chapter, we are going to briefly look at New Relic. New Relic is easy to use, offers a free
(if limited account), and a trial of its full package. To cover the product in detail requires a
book in itself; so, I have focused on some of the key elements, with recipes that demonstrate
how to pinpoint common application bottlenecks.

Signing up for a New Relic account
Before we can use New Relic, we need to create an account. This is straightforward and
by default, it will offer you a trial of the full enterprise product. After the trial expiration, the
account will revert to a free limited account. The free account misses many of the options;
thus, allowing for detailed monitoring; however, it still allows for an excellent top-level view of
your application.

Getting ready
For this recipe, you will need a web browser.

Chapter 12

499

How to do it…
Let's start up with signing up with New Relic account:

1. Open the following URL in your browser:

https://newrelic.com/signup

2. You should see a screen similar to the following:

This single page form is all you need to fill in order to create your account. Ensure that
the e-mail address you use is valid, as you will need to confirm the sign up.

https://newrelic.com/signup

Application Performance Monitoring with New Relic

500

3. Once your account has been created, you will be taken to the initial sign in page; this
will show you a banner of the New Relic application stack:

These links allow you to access the various products that New Relic offers, from the
APM product, to mobile app monitoring, Real User Monitoring from the browser, data
exploration, and external site monitoring.

See also
You can find further details on the signup process at https://docs.newrelic.com/
docs/accounts-partnerships/accounts/account-setup/create-your-new-
relic-account.

Installing the New Relic Java agent
To gather statistics, New Relic uses an agent that views transactions as they pass through the
application. This is then recorded and sent onto New Relic. The Java agent is suitable for use
with any Java based application, both inside and outside of a container. In this recipe, we will
demonstrate how to setup the New Relic agent within a Tomcat container.

Getting ready
For this recipe, you will need a New Relic account and an application that runs within a
Tomcat container.

How to do it…
Let's install the New Relic Java component:

1. Log into your New Relic Account and click on the profile menu in the top-right corner.
From the drop-down, select the item title Account Settings. On the right-hand side
of the next screen, you will find a list of available agents. Click on the Java release to
download it.

https://docs.newrelic.com/docs/accounts-partnerships/accounts/account-setup/create-your-new-relic-account
https://docs.newrelic.com/docs/accounts-partnerships/accounts/account-setup/create-your-new-relic-account
https://docs.newrelic.com/docs/accounts-partnerships/accounts/account-setup/create-your-new-relic-account

Chapter 12

501

You'll notice that there is a separate download for the Java
8 installer; keep this in mind when downloading the agent.
There are also links to 'established' releases. These are the
versions that have the most established user base. Use this
one if you are cautious.

2. Copy the zip file containing the Java agent onto the server that you wish to monitor
and unzip it using the following command:
$ unzip -d /opt <pathto_newrelic.zip>

Where <newrelic.zip> is the versioned zip file. This will unpack the New Relic
agent into the /opt directory.

3. With your favorite editor, open up the setenv.sh file within your Tomcat application,
this will be located within the bin directory of your Tomcat installation. If one does not
exist, create it and edit it to resemble the following:
JAVA_OPTS="$JAVA_OPTS -javaagent:/opt/newrelic/newrelic.jar"

This is based on a vanilla install of Tomcat; if you already
have your JAVA_OPTS set, ensure that you add the
-javaagent option in the correct place.

4. Restart your application. After start-up, pause for around five minutes for New Relic
to start logging data and then log into your account. Click on the APM menu and you
should see a screen similar to the following:

Application Performance Monitoring with New Relic

502

5. Click on the My Application, and you should see the following screen:

Your application is now set up and is recording performance metrics.

By default, all data is transmitted to a New Relic using SSL
and you can obfuscate certain data elements to ensure that
sensitive information is not stored within their platform. See
https://docs.newrelic.com/docs/accounts-
partnerships/accounts/security/security for
details of what you can secure.

See also
Further details of the Java agent can be found at https://docs.newrelic.com/docs/
agents/java-agent.

Using the performance overview
New Relic offers a huge amount of information in a readable format; this allows you to see at
a glance if your application and dependencies are performing, as you would expect. This data
is readily available on the performance overview screen and gives you a window into the detail
that New Relic holds about your application. This recipe briefly touches on the major parts of
the overview screen and highlights elements that can reveal issues.

https://docs.newrelic.com/docs/accounts-partnerships/accounts/security/security
https://docs.newrelic.com/docs/accounts-partnerships/accounts/security/security
https://docs.newrelic.com/docs/agents/java-agent
https://docs.newrelic.com/docs/agents/java-agent

Chapter 12

503

Getting ready
For this recipe, you need a New Relic account and an application reporting data.

How to do it…
Now let's go through the performance overview:

1. Log into your New Relic account and select the APM tab; you will be presented with a
list of applications that are currently reporting to New Relic. Select the app you wish
to examine; this will take you onto the summary screen for that application.

2. The first part to focus on is the main graph and should look a little something like this:

This chart summarizes the following areas:

 � Response times of the application split by its components (in this case, the
JVM or application code and database).

 � The throughput of the application in requests per minute

 � The Apdex rating of the application

Apdex is a method of taking the measurements that New
Relic gathers and presenting them in a single easy to use
metric. The Apdex measures user satisfaction, allows you to
set an overall goal (the site should respond in n seconds),
which can then be used to extrapolate how many of your
users are satisfied, tolerating, and frustrated. More details
can be found here: http://www.apdex.org.

http://www.apdex.org

Application Performance Monitoring with New Relic

504

The response time chart is stacked and will include the following:

 � JVM (App) response time

 � Database response time

 � External resources response time

3. Clicking the legend will allow you to strip the elements out; thus, allowing you to
focus on a badly behaving component. You can also drag on the chart to zoom in
on a particular time period and this will cause any other view you visit to reflect the
time selected.

4. Also, note that the chart is split between web and non-web transactions. You can
change the view by clicking on the drop-down menu on the top-left of the chart, it
should resemble the following screenshot:

5. Underneath the charts, you can see a list of transactions in the selected time period,
a chart of the current Error rate, and a complete list of the Recent Events. It should
look something like this:

6. Look first at the Transactions list:

Chapter 12

505

This is a list of the top transactions that the platform has processed in the time
period, and the average response time. These can be clicked on, and are linked to
the more detailed transaction list, and allows you to see exactly where the time is
being spent in these processes.

7. Next, we have the Error rate chart.

Application Performance Monitoring with New Relic

506

8. Any time an error is logged within the application that generates one of the following
response codes, New Relic logs it:

 � 400 Bad Request

 � 401 Unauthorized

 � 403 Forbidden

 � 502 Bad Gateway

 � 503 Service Unavailable

It is possible within the New Relic settings to exclude
certain errors; this can be useful if they are expected,
and can stop alerts being generated.

9. Next, we have the Recent events list:

Any time a significant event happens; New Relic will record it and display it here.
Significant events can be anything from serious application errors, to deployments,
to warnings, and offers you a quick way to check if an event has occurred you were
unaware of.

Chapter 12

507

10. Finally, we have the server list:

New Relic records details of every server hosting the application in the current time
span and offers a brief summary of its throughput, responsiveness, and resource
usage. This is linked to the New Relic server monitoring and if the monitoring agent is
installed, it allows you to view server-monitoring statistics during this period.

See also
You can find further details of the summary screen at https://docs.newrelic.com/
docs/apm/applications-menu/monitoring/apm-overview-dashboard.

Locating performance bottlenecks with
Transaction Traces

New Relic can dig deep into the reasons as to why an application may not be performing
well by performing a Transaction Trace. Transaction Tracing allows for a huge level of details,
allowing you to see why a certain transaction is running slow, right down to the individual
method calls.

Transaction Tracing is initiated when New Relic notices and records certain transactions that
are breaching the Apdex rating. At this point, it starts to sample these transactions, recording
in detail what the transaction is doing.

Using the Transaction Traces, you can easily spot where code is less than optimum, highlighting
inefficient SQL queries, long running elements of code, and slow external services.

Getting ready
For this recipe, you will require a New Relic account (paid) and an application with the New
Relic agent installed.

https://docs.newrelic.com/docs/apm/applications-menu/monitoring/apm-overview-dashboard
https://docs.newrelic.com/docs/apm/applications-menu/monitoring/apm-overview-dashboard

Application Performance Monitoring with New Relic

508

How to do it…
1. Log into the New Relic portal and click on the APM in the top menu. From the left-

hand menu on the next screen, select Transactions.

2. You should see a screen similar to the following:

Notice the table on the bottom left-hand side of the screen;
this is a list of Transaction Traces. Select one by clicking on
the link.

3. When you click on the Trace, it opens a new overlaid window with the Trace details
and it should resemble something like this:

Chapter 12

509

This is a break down of the wall clock time of this particular trace, including a graph
demonstrating where the time was spent. The list of components lists the slowest
elements of this transaction, and most importantly, how many times it was called.
This can be useful if you are looping through and calling resources unnecessarily,
such as multiple SQL queries that could be collapsed into a single and more
efficient query.

Application Performance Monitoring with New Relic

510

4. Click on the tab titled Trace Details. This should show a screen similar to
the following:

Chapter 12

511

5. This is a list of the methods that the transaction called and the wall clock time that
each method took. Notice that New Relic has highlighted the element of code that is
problematic. We can drill into this by clicking on the magnifying glass icon; this will
then expand the method to show the stack trace, allowing you to examine in greater
detail what this piece of code was doing; it should look something like this:

Application Performance Monitoring with New Relic

512

See also
You can find further details of Transaction Tracing at https://docs.newrelic.com/
docs/apm/transactions/transaction-traces/transaction-traces.

Observing database performance with New
Relic

Many, if not most, modern applications are backed by a SQL database, generally providing a
persistent data storage. The performance of this data store is critical to the overall application
performance and yet it can be somewhat opaque to view.

New Relic tracks database calls, allowing you to see both the overall performance of the
database and the details of where the database calls originate within the application and
where it may be running slowly.

Getting ready
For this recipe, you will need a New Relic account (trial or paid), an application deployed with
the New Relic agent, and a database that the application connects to (and a JDBC compatible
database should work).

How to do it…
1. Log into your New Relic account and click on the menu item titled APM. From the

next screen, select the link on the left-hand sidebar titled Databases. This should
present you with a screen that looks similar to the following screenshot:

https://docs.newrelic.com/docs/apm/transactions/transaction-traces/transaction-traces
https://docs.newrelic.com/docs/apm/transactions/transaction-traces/transaction-traces

Chapter 12

513

2. This is a list of every database call made during the selected time period and it
graphs the duration of the top calls and response time of the database operations
and finally a throughput of the database.

3. You can easily sort between the most time consuming and the slowest response time
throughput by clicking on the Sort by menu at the top of the transaction list. This
enables you to quickly zero in on interesting data on these three axis.

Application Performance Monitoring with New Relic

514

4. When you find a transaction that interests you, click on it in the list. This will open the
detailed transaction view and should resemble the following screenshot:

This gives you a breakdown of that particular transaction and highlights the response
over time alongside throughput. Of particular interest is the bottom graph; this
illustrates the most common transactions that are calling this an SQL query, charted
by the overall time spent being called by that particular transaction. These are linked
to the transaction view; thus, allowing you to see detailed information about that
particular transaction.

Chapter 12

515

See also
You can find further details of the New Relic SQL monitoring at https://docs.newrelic.
com/docs/apm/applications-menu/monitoring/databases-slow-queries-
dashboard.

Release performance monitoring with New
Relic

One of the most important events to track in any monitoring is a release; this can be anything
from a software release, through to server upgrades and anything in between. New Relic allows
you to add these as reportable elements, allowing you to perform before and after performance
reporting. Using the release monitoring you can take the guesswork out of the effectiveness of a
release and this allows you to use empirical data to judge if a release was good.

New Relic offers an API to record a release, allowing you to integrate your automated release
tools, configuration management, and others. Using the New Relic API, you should be able to
ensure that any automated process can register the release.

In this recipe, we will examine using the New Relic REST API to trigger a deployment
notification using a simple curl from the command line.

Getting ready
For this recipe, you will need a New Relic account (free/trial/paid) and an application with the
New Relic agent installed.

How to do it…
1. First, we need to enable the API access. Log onto your New Relic account and click

on the profile menu located in the menu on the top-left. From the drop down menu,
select the entry titled Account settings and in the next screen, click on the link in the
left-hand sidebar titled Data sharing.

2. In the data-sharing screen, you will be offered the option to create a new REST API
Key. Click on this link and a new API key will be generated and API access to the
account will be granted.

3. From your command line, use the following command to record a release against
your application:
curl -H "x-api-key:<APIKEY>" \
-d "deployment[application_id]=<APPLICATION ID>" \
-d "deployment[description]=<DEPLOYMENT DESCRIPTION>" \

https://docs.newrelic.com/docs/apm/applications-menu/monitoring/databases-slow-queries-dashboard
https://docs.newrelic.com/docs/apm/applications-menu/monitoring/databases-slow-queries-dashboard
https://docs.newrelic.com/docs/apm/applications-menu/monitoring/databases-slow-queries-dashboard

Application Performance Monitoring with New Relic

516

-d "deployment[revision]=<NEW APP VERSION>" \
-d "deployment[changelog]=<LIST OF CHANGES>" \
-d "deployment[user]=Michael Duffy" https://api.newrelic.com/
deployments.xml

Ensure that you replace the elements between the angle brackets with your
own items.

You can find the Application ID within the deployments tab,
underneath the link titled Show instructions.

4. If all goes well, you should receive an XML reply containing a summary of elements
prior to release; it will resemble something along these lines:
<?xml version="1.0" encoding="UTF-8"?>
<deployment>
 <account-id type="integer">1078425</account-id>
 <agent-id type="integer">8699096</agent-id>
 <avg-apdex-f type="integer" nil="true"></avg-apdex-f>
 <avg-apdex-s type="integer" nil="true"></avg-apdex-s>
 <avg-apdex-t type="integer" nil="true"></avg-apdex-t>
 <avg-apdex-threshold type="float" nil="true"></avg-apdex-
threshold>
 <avg-cpu type="float">0</avg-cpu>
 <avg-db type="float">0</avg-db>
 <avg-enduser-apdex-f type="integer" nil="true"></avg-enduser-
apdex-f>
 <avg-enduser-apdex-s type="integer" nil="true"></avg-enduser-
apdex-s>
 <avg-enduser-apdex-t type="integer" nil="true"></avg-enduser-
apdex-t>
 <avg-enduser-apdex-threshold type="integer" nil="true"></avg-
enduser-apdex-threshold>
 <avg-enduser-rt type="float">0.0</avg-enduser-rt>
 <avg-enduser-throughput type="float">0.0</avg-enduser-
throughput>
 <avg-errors type="float">0.0</avg-errors>
 <avg-memory type="float">1359.3242187499998</avg-memory>
 <avg-rt type="float">0.0</avg-rt>
 <avg-throughput type="float">0.0</avg-throughput>
 <changelog>I added many interesting things to the code.</
changelog>
 <description>A shiny deployment</description>
 <end-time type="datetime" nil="true"></end-time>
 <id type="integer">8908958</id>

Chapter 12

517

 <revision>1f1f1</revision>
 <timestamp type="datetime">2015-09-10T13:59:28-07:00</timestamp>
 <user>Michael Duffy</user>
</deployment>

5. Log into your New Relic account and click on the item titled APM from the top menu.
From the left-hand menu on the next screen, click on the item marked Deployments
under the events heading.

6. The next screen offers a list of deployments and a brief summary of the Apdex score,
Response time and throughput. If you click on one of the deployments, you should
see a screen similar to the following:

This details the performance prior to the release and after, with the grey bar marking
the point of release.

Application Performance Monitoring with New Relic

518

See also
You can find further details of release monitoring at https://docs.newrelic.com/docs/
release-notes/agent-release-notes/java-release-notes.

Server Monitoring with New Relic
New Relic is made up of several different products and combined allow you to see end-to-end
performance metrics of every part of your application. For instance, if the APM-panel tells you,
there are performance issues; one of the first things you should do is look at the performance
of the underlying server.

New Relic offers a simple, yet easy to use server monitoring tool, allowing you to monitor your
servers alongside your applications. Although lacking some of the sophistication of other
monitoring packages, it has the advantage that it is closely tied to APM monitoring. If you are
looking at a particular time span in the APM, you can check the server monitoring and have
it automatically adjust the time-range to match your app. New Relic can also map apps to
servers, allowing you see at a glance, which app is running on which server.

Finally, at the time of writing, Server Monitoring is a free component and you can add as many
servers as you like; they do not need to have applications that are monitored within the APM.
This allows you to monitor your app servers, but also dependencies, such as database servers
and file servers within the same place.

Getting ready
For this recipe, you will require an Ubuntu 14.04 server and a New Relic account.

How to do it…
1. On the host on which you wish to install the New Relic server monitoring, run the

following command:
$ sudo echo deb http://apt.newrelic.com/debian/ newrelic non-free
>> /etc/apt/sources.list.d/newrelic.list && wget -O- https://
download.newrelic.com/548C16BF.gpg | apt-key add -

2. This adds the New Relic package repository and adds the signing key. Next, run apt-
get update using the following command:
$ sudo apt-get update

https://docs.newrelic.com/docs/release-notes/agent-release-notes/java-release-notes
https://docs.newrelic.com/docs/release-notes/agent-release-notes/java-release-notes

Chapter 12

519

3. You can install the New Relic server monitoring package using the following
command:
apt-get install newrelic-sysmond

4. Although the package is installed, you still need to configure it to send data to your
New Relic account. To do this, use the following command:
$ sudo nrsysmond-config --set license_key=<LICENSE>

Replace <LICENSE> with your New Relic account license. You can find this by
clicking on the profile menu on the top-right of the New Relic panel and by clicking on
Account Settings. On the next screen, you should find a panel on the right-hand side
that resembles the following screenshot:

5. Finally, you can start the New Relic server monitor by issuing the following command:
$ sudo service newrelic-sysmond start

Application Performance Monitoring with New Relic

520

6. You should wait for around five minutes for initial data to be propagated to New Relic,
but once you have, you can log into your New Relic account and click on servers. You
should be able to see the server that you added to the list, and if you click on it, you
should see something similar to the following screenshot:

From here, you can explore details of the process running on the server, network, and
disk and, if you use it, Docker usage.

See also
You can find more details of the New Relic server monitoring solution at http://newrelic.
com/server-monitoring.

http://newrelic.com/server-monitoring
http://newrelic.com/server-monitoring

[521]

Module 3

Continuous Delivery and DevOps – A Quickstart Guide - Second Edition

Deliver quality software regularly and painlessly by adopting CD and DevOps

Evolution of a
Software House

As described in the Preface, both Continuous Delivery (CD) and DevOps are
complementary ways of working. The former assists with shipping quality software
quickly, the latter helps harmonize the teams that deliver and support said software.
Both approaches can help you to optimize, streamline, and improve the way you
work. Ultimately, both will help you ship quality software.

Before we get onto the meat of CD and DevOps, let me introduce you to ACME
systems—a typical software business—and walk you through their trials, tribulations,
and evolution. The topics we will cover in this chapter are as follows:

• How ACME systems started from humble beginnings
• The growing pains it went through to become successful
• The positives and negatives that came from success and dramatic growth
• The advantages that came with adopting CD and DevOps ways of working
• How it adapted to utilize what it had learned to drive their business into new

markets and opportunities

Without further ado, let's meet ACME systems.

A brief history of ACME systems
This fictional software business started out—as many successful tech companies
do—in the garage of one of the founders. The founders were visionaries with big
ambitions, good ideas, and a little bit of cash.

Evolution of a Software House

[524]

After a few years of hard work, determination, much blood, sweat, and tears,
the dreams of the founders were realized. The business is recognized as a leader
in its field and is then acquired by a multinational corporate. This acquisition brings
with it the funding and resources needed to allow the business to grow and expand
to become a global player. However, with corporate owners comes corporate
responsibilities, rules, bureaucracy, and processes.

The ACME systems team start to find it increasingly difficult and painful to deliver
quality software. They adopt and adhere to the parent company's processes to
improve quality and reduce risk, but this makes the seemingly simple task of
delivering software, laborious and extremely complex.

They come to an evolutionary crossroad and have to make a decision either to live
with the corporate baggage that they have inherited and potentially face extinction,
or try and get back to the good old days and good old ways that had reaped
rewards previously.

While trying to decide which way to go, they discover they have another choice
—implement CD and DevOps—which could give them the best of both worlds.
As luck would have it that is exactly what they did.

Over the next few pages, we'll go through this evolution in a little more detail.
As we do, you may recognize some familiar traits and challenges.

The name ACME is purely fictional and based upon the
ACME Corporation, first used in Road Runner Cartoons
in the 1950s—just in case you were wondering.

We'll start with the initial incarnation of the ACME systems business, which for
want of a better name, will be called ACME systems version 1.0.

ACME systems version 1.0
Some of you have most probably worked for (or currently work for) a small software
business. There are many such businesses scattered around the globe and they all have
one thing in common—they need to move fast to survive and they need to entice and
retain customers at all costs. They do this by delivering what the customer wants just
before the customer needs it. Deliver too soon and you may have wasted money on
building solutions that the customer decides they no longer need, as their priorities
or simply their minds have changed. Deliver too late and someone else may well
have taken your customer—and more importantly, your revenue—away from you.
The important keyword here is deliver.

Chapter 1

[525]

As mentioned earlier, ACME systems started out in humble beginnings; the founders
had a big vision and could see a gap in the market for a web-based solution. They had
an entrepreneurial spirit and managed to attract backers who injected the lifeblood of
all small businesses—cash.

They then went about sourcing some local, keen, and talented engineers and set about
building the web-based solution that bridged the gap in the market, which they had
seen before anyone else could.

At first, the going was slow and the work was hard; a lot of pre-sales prototypes
needed to be built in a hurry—most of which never saw the light of day—some went
straight into production. After many long days, nights, weeks, and weekends, things
started to come together. Their customer base started to grow and the orders started
rolling in; as did the revenue. Soon the number of employees was in double figures
and the founders had become directors.

So, I hear you ask, "What has this got to do with CD or DevOps?" Well, everything
really. The culture, default behaviors, and engineering practices of a small software
house are what would be classed as pretty good in terms of CD and DevOps.
For example:

• There are next to no barriers between developers and operations
teams—in fact, they are generally one and the same

• Developers normally have full access to the production environment
and can closely monitor their software

• All areas of the business are focused on the same thing, that being to
get software into the production environment as quickly as possible
and thus delight customers

• Speed of delivery is of the essence
• When things break, everyone swarms around to help fix the

problem—even out of hours
• The software evolves quickly and features are added in incremental chunks
• The ways of working are normally very agile

Evolution of a Software House

[526]

There is a reason for stating that the culture, default behaviors, and engineering
practices of a small software house would be classed as pretty good rather than ideal.
This is because there are many flaws in the way a small software house typically has
to operate to stay alive; for example:

• Corners will be cut to hit deadlines, which compromises software design
and elegance

• Application security best practice is given short shrift or even ignored
• Engineering best practices are compromised to hit deadlines
• The concept of technical debt is pretty much ignored
• Testing is not in the forefront of the developer's mind and even if it were,

there may not be enough time to work in a test-driven development way
• Source and version control systems are not used religiously
• With unrestricted access to the production environment, tweaks and changes

can be made to the infrastructure with little or no audit trail
• Software releasing will be mainly manual and most of the time an

afterthought of the overall system design
• At times, a rough and ready prototype may well become production code

without the opportunity for refactoring
• Documentation is scant or nonexistent—that which does exist is most

probably out of date
• The work-life balance for an engineer working within a small software house

is not sustainable and burn out does happen

To emphasize this, let's have a look at a selection of typical conversations between
three individuals within the ACME systems team: Stan, the manager; Devina, the
developer; and Oscar, the operations guy.

Chapter 1

[527]

Don't worry,
you'll get time

to rewrite it

The prototype we
are now using in

production
keeps crashing

You're not
going home until

it's fixed.
I'll get the pizza!

The manual hack I
did last week has

caused the disks to
fill up and the

production server
has crashed

You and Devina aren’t
going home until

it's fixed. I'll get the
pizza!

That will only slow
things down and

we don't have
the time

I can manually hack
the production server to
improve performance

and stability to
overcome the

issues we're having

I fully trust your
judgment on this, just

get it done quickly

Is it free? On
second thoughts we
don't have the time.
Let’s look at it later

Is it free? On
second thoughts
we don't have the

time. Let’s look
at it later

We would like to
invest time in
implementing

automated server
provisioning

The production
environment
has crashed

You're not
going home until

it's fixed.
I'll get the pizza!

Is it free? On
second thoughts we
don't have the time.
Let’s look at it later

We would like to
invest some time
in implementing
a source control

system

We would like to
invest time in
developing a

fully automated
test suite

This prototype is
rough and ready and
needs to be rewritten
before we hand it over

to our customers

We want to work
in a test-driven
development

mode

We'll now have a look at the software delivery process for ACME systems version 1.0,
which, to be honest, shouldn't take too long.

Evolution of a Software House

[528]

Software delivery process flow version 1.0
The following diagram gives an overview of the simple process used by ACME
systems to deliver software. It's simple, elegant (in a rough-and-ready kind of way),
and easy to communicate and understand.

Have a
great idea

Deploy it Develop it

An overview of the ACME systems version 1.0 software delivery process

Let's move forward a few years and see how ACME systems is doing and gain some
insight into the benefits and pitfalls of being the leader in the field.

ACME systems version 2.0
The business has grown in size and turnover. The customer base is now global and
the ACME systems software platform is being used by millions of customers on a
daily basis. ACME systems is well established, well renowned, and recognized as
being at the forefront in its area of expertise.

So much so that the board of ACME systems is approached by a multinational
corporation and discussions are entered into regarding an acquisition. These
discussions don't take long and the acquisition is completed within weeks.
The board members are extremely happy, and the business as a whole sees
this as a positive recognition that they have at last reached the big time.

At first, everything is good; everything is great in fact. The ACME systems team
now has the backing they need to invest in the business and be able to scale out
and obtain a truly global reach. They can also focus on the important things such
as building quality software; scaling out the software platform; and investing in
new technologies, tools, and R&D. The drier side of business—administration,
program, project management, sales, marketing, and so on—can be passed to the
new parent company that has all of this in place already.

Chapter 1

[529]

The ACME systems team moves forward in excited expectation. The level of
investment is such that the software engineering team doubles in size in a matter
of months. The R&D team—as they're now called—introduces new tools and
processes to enable speedy delivery of quality software. Scrum is adopted across
the R&D team and the opportunity to fully exploit engineering best practices is
realized. The original ACME systems platform starts to creak and is showing its
age, so further investment is provided to re-architect and rewrite the software
platform using the latest technologies. In short, the R&D team feels that it's all
starting to come together and they have the opportunity to do it right.

In parallel to this, the ACME systems operations team is absorbed into the parent's
global operations organization. On the face of it, this seems a very good idea;
there are data centers filled with cutting-edge kit, global network capabilities, and
scalable infrastructure. Everything that is needed to host and run the ACME systems
platform is there. Like the R&D team, the operations team has more than they could
have dreamed of. In addition to the tin and string, the operations team also has
resources available to help maintain quality, control change to the platform, and
ensure the platform is stable and available 24/7.

Sitting above all of this, the parent company also has well-established governance,
program, and project management functions to control and coordinate the overall
end-to-end product delivery schedule and process.

On the face of it, everything seems rosy and the teams are working more effectively
than ever before. At first, this is true, but very soon, things start to take a downward
turn. Under the surface, things are not that rosy at all.

We'll shift forward another year or so and see how things are:

• It is becoming increasingly difficult to ship software—what took days,
now takes weeks or even months

• Releases are getting more and more complex as the new platform grows
and more integrated features are added

• Despite the advances in re-architecting and rewriting the platform, there still
remains large sections of legacy code deep within the bowels of the system,
which refuse to die

• Developers are now far removed from the production environment and as
such are ignorant as to how the software they are writing performs, once it
eventually goes live

• There is a greater need to provide proof that software changes are of the
highest quality and performance before they can go anywhere near the
production servers

Evolution of a Software House

[530]

• Quality is starting to suffer as last minute changes and frantic bug fixes are
being applied to fit into release cycles

• The technical debt amassed during the fast and loose days is starting to cause
major issues

• Project scope is being cut at the last minute as features don't fit into the
release cycles, which is leaving lots of redundant code lying around

• More and more development resources are being applied to assisting
releases, which is impacting on the development of new features

• Deployments are causing system downtime—planned and unplanned
• Deadlines are being missed, stakeholders are being let down, and trust is

being eroded
• The business's once glowing reputation is being tarnished

The main problem here, however, is that this attrition has been happening very
slowly over a number of months and not everyone has noticed—they're all too
busy trying to deliver.

Let's now revisit the process flow for delivering software and see what's
changed—it's not a pretty picture.

Software delivery process flow version 2.0
As you can see from the following diagram, things have become very complicated
for the ACME systems team. What was simple and elegant has become complex,
convoluted, and highly inefficient. The number of steps and barriers have increased,
making it extremely difficult to get software delivered. In fact, it's increasingly difficult
to get anything done. The following diagram gives you an overview of the ACME
systems version 2.0 software delivery process:

Chapter 1

[531]

Get sign off to
proceed

Have a great
idea

Debate it

Test it

Schedule the
release

Fix it

Scope out
requirements

Develop it

Develop it

Develop it

Develop it

Develop it

Develop it

Develop it
Test it as
part of
release

Deploy it as
part

of a release

Get sign off
to

proceed

Have a great
idea

Debate itFix it

Get
paperwork
signed off

Test it

Schedule
the

release

Fix it
Raise

required
paperwork

Scope out
requirementsFix it

An overview of the ACME systems version 2.0 software delivery process

Evolution of a Software House

[532]

Not only has the process become very inefficient—and to all intents and purposes
broken—but the dialogue and the quality of the communication have also broken
down. Let's again review a typical discussion between Devina, Oscar, and Stan
regarding a live issue.

I'll email him later.
I'm tied up in meetings
for the next hour or so
and getting beaten up

about these
performance issues

Which server?

Have you obtained
permission from the
management to see
this information?

You'll have to be
more specific,

we've got hundreds
of servers. Maybe

it's listed on a
project plan?

That's not good, no wonder
there are performance

issues. Can we increase
it up to 16 GB? That's
the minimum space

the application needs

You'll have to raise
a change ticket

Okay—for now I'll
set the deployment
parameters to use

8 GB, can you
update the system

configuration?

That's an infrastructure
change. You'll have to
raise an infrastructure

change ticket

That sounds more
like it. We've found
it. What information

do you need?

What about spinning up
a couple of new servers
so we can spread the

burden?

That's a DC infrastructure
change. You'll have to raise
a DC infrastructure change

ticket

Arrrrrggggghhhhh! I quit

Devina,
I'm being hassled

to get this performance
issue sorted today –
what's the hold up?

We now have all the tickets
raised and signed off. We're
now ready to deploy this fix

Arrggghhh! I give up!!

As the heap size has changed,
we need to see the results from
integration, performance, and

functional tests as this
deployment could have an

adverse impact on the
production platform

We need to urgently fix
a performance bug and
need to check some of

the system configuration
values for one of the
production servers

Sure, I'll get onto that
as soon as I can. I'm
tied up in meetings

about the performance
issue

Stan, can you get some
infrastructure and DC
infrastructure tickets

raised, prioritized
and expedited?

Some time later

Some time later

Stan, can you tell Oscar
I have permission to view
the server configuration

values?

I have obtained
permission to see the
system configuration
values for one of the

production servers. Can
you please supply it?

We've no idea—
the one running
the secure web

login service

We've checked
through an old project
plan and it's listed as

DC02MM03DB16
The heap size for

the JVM

It's 16 GB. However,
the server's only got

8 GB of RAM

Chapter 1

[533]

Okay, so this might be a little over the top, but it just serves to highlight the massive
disjoint between the R&D and Operations team(s)—who you'll remember were pretty
much one and the same in the early days of ACME systems. It should also be noted
that this communication is now normally done via e-mail.

A few brave men and women
As was previously stated, not everyone noticed the attrition within the organization—
luckily a few brave souls did. A small number of the ACME systems team are able to
see the issues within the overall process as clear as day and they become determined to
expose them and, more importantly, sort them out—it is just a question of how to do
this while everyone is going at full pelt to get software delivered at all costs.

At first, they seek out a like-minded manager who has influence within the business
and helps them to form a small virtual team. They then start identifying and breaking
down the immediate issues and go about implementing the following tooling to ease
some of the pain:

• Build and test automation
• Continuous Integration (CI)
• Automated deployment and monitoring solutions

This goes some way to address the issues but there are still some fundamental
problems that tooling cannot address—the culture of the organization itself and
the many disjointed silos within it. It becomes obvious that all the tools and tea
in China will not bring pain relief; something more drastic is needed.

The team refocuses and works to highlight this now obvious fact to as many
people as they can up and down the organization, while the influential manager
works to obtain backing from the senior leadership to address it—which luckily
is forthcoming.

We're now going on to the third stage of the evolution where things start to come
back together and the ACME systems team regains their ability to deliver quality
software when it is needed.

Evolution of a Software House

[534]

ACME systems version 3.0
The CD team—as they are now called—gets official backing from up high and
becomes dedicated to addressing the problematic culture and behaviors, and
developing ways to overcome and/or remove the barriers. They are no longer
simply a technical team; they are a catalyst for change.

The remit is clear—do whatever is needed to streamline the process of software
delivery and make it seamless and repeatable. In essence, implement what we
now commonly refer to as CD and DevOps.

The first thing they do is to simply talk with as many people across the business as
possible. If someone is involved in the process of getting software from conception
to consumer and support it when it's live, they are someone you need to speak with.
This not only gathers useful information but also gives the team the opportunity to
evangelize and form a wider network of like-minded individuals.

The team has a vision, a purpose, and they passionately believe in what needs to be
done, and have the energy and drive to do it.

Over the next few months, they embark on (among other things):

• Running various in-depth sessions to understand and map out the
end-to-end product delivery process

• Refining and simplifying tooling based upon continuous feedback
from those using it

• Addressing the complexity of managing dependencies and order
of deployment

• Engaging experts in the field of CD to independently assess the progress
being made (or not as the case may be)

• Arranging offsite CD training and encourage both R&D and Ops team
members to attend the training together (it's amazing how much DevOps
collaboration stems from a chat in the hotel bar)

• Reducing the many handover and decision-making points throughout the
software release process

• Removing the barriers to allow developers to safely deploy their own
software to the production platform

• Working with other business functions to gain trust and help them to refine
and streamline their processes

• Working with R&D and operations teams to experiment with different agile
methodologies such as Kanban

Chapter 1

[535]

• Openly and transparently sharing information and data around deliveries
and progress being made across all areas of the business

• Replacing the need for complex performance testing with the ability
for developers to closely monitor their own software running in the
production environment

• Evangelizing across all areas of the business to share and sell the overall
vision and value of CD and DevOps

These initiatives are not easy to implement and it takes time to produce results but,
after some months, the process of building and delivering software has transformed to
the extent that a code change can be built, fully tested, and deployed to the production
platform in minutes, many times per day—all at the press of a button and initiated and
monitored by the developer who made the change.

Let's look again at the software delivery process flow to see what results have
been realized.

Software delivery process flow version 3.0
As you can see from the diagram, the process looks much healthier. It's not as simple
as version 1.0 but is efficient, reliable, and repeatable. Some much needed checks and
balances have been retained from version 2.0 and optimized to enhance rather than
impede the overall process.

Obtain feedback
for refinements

Deploy it

Monitor it

Debate it Develop it

Debate it Develop it

Debate it Develop it

Integrate it

Have a great
idea

Test it

Develop it

Have a great
idea

Have a great
idea

Debate itDevelop it

Debate itDevelop it

Debate itDevelop it

Integrate it

Have a great
idea

Obtain
feedback

for
refinements

Write
test cases

Test itDeploy it

Develop itMonitor it

An overview of the ACME systems version 3.0 software delivery process

Evolution of a Software House

[536]

This highly efficient process has freed up valuable DevOps resources so that they can
focus on what they are best at—developing and delivering new software features and
ensuring that the production platform is healthy and customers are again delighted.

The ACME systems team has gotten its mojo back and is moving forward with a
new-found confidence and drive. They now have the best of both worlds and there's
nothing stopping them.

ACME systems version 4.0
The ACME systems team have come through their challenges stronger and leaner
but their story doesn't end there. As with any successful business, they don't rest
on their laurels but decide to expand into new markets and opportunities—namely,
to build and deliver mobile optimized clients to work with and complement their
core web-based propositions.

With all they have learned throughout their evolution, they know they have an
optimal way of working to allow them to deliver quality products that customers
want, and they know how to deliver quickly and incrementally. However, the
complexities of delivering code to a hosted web-based platform are not the same
as the complexities of delivering code to an end consumer's mobile device—they
are comparable but not the same. ACME systems also realizes that the process of
delivering code to its production platform many times per day is under its control—
code is being deployed to its infrastructure by its engineers using its tools—whereas
it has little or no control over how its mobile clients are delivered, nor if and when
the end consumer will install the latest and greatest version from the various app
stores available. ACME systems also realizes that delivering a new version of its
mobile clients many times per day is not viable nor welcome.

All is not lost—far from it. The ACME systems team has learned a vast amount
throughout their evolutionary journey and decide to approach this new challenge
as they did previously. They know they can build, test and deliver software with
consistent quality. They know how to deliver change incrementally with little or
no impact. They know how to support customers, and monitor and react quickly
to change. They know their culture is mature and that the wider organization can
work as one to overcome shared challenges. With this taken into account, here are
a few of the things they decide to do:

• Agree on a realistic delivery cadence to allow for regular incremental
changes without bombarding the end consumer

• Invest in new automated build, CI, and testing tools, which seamlessly
integrate with and enhance the existing tooling

Chapter 1

[537]

• Invest time and effort in nonfunctional features that will allow for greater
visibility of what is running out in the wild, which again seamlessly
integrates with the existing tooling and monitoring approach

• Ensure that the engineers delivering the mobile clients work closely with
the backend engineers (DevOps) so that the client integrates seamlessly
and doesn't cripple the existing production platform

As the ACME systems team start to look into applying their established and
proven approach to the new venture, they also discover another side effect of their
newly rekindled success; they need to scale their platform and they need to do it
as soon as possible. Given the timescales and urgency, the ACME systems team
decides to move away from relying on their own datacenter and move towards a
globally distributed "cloud-based" solution. This brings with it new challenges; the
infrastructure is completely different, the provisioning tools are new, and the tools
used to build and deliver software are incompatible with the existing ACME systems
tools. Again, they take this in their stride and forge ahead with confidence using the
ways of working, techniques and approaches that are now part of their DNA.

Could the ACME systems version 1.0 business have taken on these new challenges
and succeeded? It's possible, but the results would have been mixed, the risks would
have been much greater, and the quality much lower. It's pretty obvious that the
ACME systems version 2.0 business would have had major struggles and by the
time the products had hit the market, they would have been outdated and fighting
for the market share with quicker and leaner competition.

If you would like to understand where you and your business sits within the
CD and DevOps evolutionary scale, please see Appendix B, Where Am I on the
Evolutionary Scale?

Evolution of a Software House

[538]

The evolution in a nutshell
Throughout this chapter, we have been following the evolution of ACME systems;
where it started, the growing pains that came from success, how it discovered that
being acquired brings with it negatives as well as positives, how it overcame its near
extinction by adopting CD and DevOps, and how it regained its mojo and confidence
to move forward. All of this can be represented by the following simple diagram:

Start-up

Fast and
loose

Corporate

Slow and
(un)steady

Best of
both

Nimble and
reliable

An overview of ACME systems evolution

Summary
The ACME systems evolution story is not atypical of the many software businesses
out there today. As stated previously, you may recognize and relate to some of the
traits and challenges, and you should be able to plot where you, your business,
or your employer currently sit within the stages detailed.

We'll now move from storytelling mode and start to look in more detail at some of
the practical aspects of adopting CD and DevOps, starting with how one identifies
the underlying problems that can—and do—stifle the delivery of quality software.

No Pain, No Gain
In the previous chapter, you were introduced to ACME systems and given an insight
into how they realized that they had problems with their software delivery process
(severely impacting their overall product-delivery capability), how they identified
and addressed these problems, evolved, and after much hard work and some time,
adopted a CD and DevOps ways of working. This isn't to say that you should simply
dive in and adopt CD and DevOps because ACME systems did—far from it.

CD and DevOps, like any solution, can help you solve a problem, but you need to truly
understand what the problem you're trying to solve is for it to be fully effective.

ACME systems took the time to understand the problem(s) they had before they began
to implement CD and DevOps. They had to inspect before they could adapt.

Your first reaction to this might be that you don't have any problems, that everything
is working well, and everyone involved with your software delivery process is highly
effective, engaged, and motivated. If this is indeed true, then either:

• You have achieved software delivery utopia
• You are in denial
• You may not fully understand how efficient and streamlined software

delivery can actually be

It's more likely that you have a workable process to deliver software, but there are
certain teams of individuals within the process that slow things down. This is, most
probably, not intentional; there might be certain rules and regulations that need to
be adhered to, certain quality gates that are needed, it might be that no one has ever
questioned why certain things have to be done in a certain way and everyone carries
on regardless, or it might be that no one has highlighted how important releasing
software actually is.

No Pain, No Gain

[540]

Something else to take into account is the fact that different people within your
organization will see (or not see) a problem in different ways. Let's go back to ACME
for a moment and examine the views of the three personas you were introduced to in
relation to having the software releases controlled by the operations team:

I dread each release. Every
release is the same – it never
goes smoothly – and I spend
many long hours getting the

thing to work and days
afterwards clearing up the

mess

I don't see this arrangement
as being a problem. This is the way

it's always been and seems the most
logical way to do things. It was set in
place by the IT operations director
and I don't want to rock the boat

with him

The release process is
someone else's problem and I

will do the bare minimum in
preparation for it – I'm far too

busy writing software

As you can see, different people have wildly different views depending on what
part they play in the overall process.

For the sake of argument, let's assume that you do indeed have some problems
releasing your software with ease and want to understand what the root cause is
(or most likely, what the root causes are) so that you can make the overall process
more efficient, effective, and streamlined. Just like ACME, before you can adapt,
you need to inspect; this is the fundamental premise of most agile methodologies.

Chapter 2

[541]

Throughout this chapter, we will explore:

• How to identify potential issues and problems within your software
delivery process

• How to surface them without resorting to blame
• How it can sometimes be tough to be honest and open, but doing so provides

the best results
• How different people within your organization will see the same problem(s)

in different ways

Before we start looking into how to inspect, I would like to go off on a slight tangent
and talk about a large gray mammal.

Elephant in the room
Some of us have a very real and worrying ailment that blights our working lives:
elephant in the room blindness, or to give its medical name, Pachyderm in situ vision
impairedness. We are aware of a big problem or issue that is in our way, impeding
our progress and efficiency, but we choose to either accept it, or worse still, ignore
it. We then find ingenious ways to work around it and convince ourselves that this
is a good thing. In fact, we might even invest quite a lot of effort, time, and money
in building solutions to work around it.

To stretch this metaphor a little more—please bear with me, there is a point to
this—I would like to turn to the world of art. The artist Banksy exhibited a piece of
living artwork as part of his 2006 Barely Legal exhibition in Los Angeles. This living
artwork was in the form of an adult Indian elephant standing in a makeshift living
room with floral print on the walls. The elephant was also painted head to toe with
the same floral pattern. The piece was entitled, as luck would have it, Elephant in
the Room. It seems ludicrous at first, and you can clearly see that there is a massive
12,000 lb. elephant standing there; while it has been painted to blend in with its
surroundings, it is still there in plain sight. This brings me to my point; the problems
and issues within a software delivery process are just like the elephant, and it is just
as ludicrous that we simply ignore their existence.

The elephant in the room is not hard to spot if you look
closely. It's normally sitting/lurking where everyone can
see. You just need to know how to look and what to look
for before you can expose it.

No Pain, No Gain

[542]

Through the remainder of this chapter, we'll go through some ways to help highlight
the existence of the elephant in the room and, more importantly, how to ensure
as many people as possible can also see it and realize that it's not something to be
avoided, worked around, or ignored.

Before you start removing the figurative floral pattern from the figurative elephant,
there's still some legwork you need to do.

Defining the rules
With any examination, exposé, investigation, or inspection, there will be, to some
degree, dirt that will need to be dug up. This is inevitable and should not be taken
lightly. The sort of questions that will be asked may well include the following:

� Why are things done in certain ways?

� Which deranged fool came up with this
process in the first place?

� Who makes the decision to do one thing
over another and what right do they
have to make the decision?

� When exactly are these decisions made?

� Who owns the overall product delivery
process?

� Who owns the various steps within the
process?

� Has anyone questioned the process
previously and what happened?

� Does anyone actually know how the
process works end to end?

� Why can't the management see the issues
and why don't they listen to us?

Chapter 2

[543]

These types of questions may well make some people very uncomfortable and bring
to light facts that produce emotive responses or emotional reactions, especially from
those that might have originally had a hand in designing and/or implementing the
very process that you are putting under scrutiny. Even if they can see and understand
that the process they nurtured is broken, they might still have an emotional attachment
to it, especially if they have been involved for a long time. You need to be mindful that
these self-same people might be needed to help replace and/or refine the process, so
tread carefully.

To keep things on a purely professional level, you should map out some ground
rules that clearly define what the investigation is for and what its goal is. These rules
need to be clear, concise, easy for everyone involved to understand, and worded in a
positive way. The sort of things you should be looking at are as follows:

� We're trying to understand
how the process as it stands
came to be

� We want to make things
better

� We need to see how the
many processes link end to
end

� We want to verify if our
process works for us as a
business

� We want to surface issues
and problems so that
everyone can see them and
help fix them

No Pain, No Gain

[544]

To further ensure you minimize the emotional reactions, you should define some
rules of engagement so that everyone involved understands where the line is and
when it is about to be crossed. Again, keeping these rules simple, concise, and
using positive language will help everyone understand and remember them.
Good examples would be:

� No naming and
shaming

� This is not a post mortem

� There are no right or
wrong answers

� No detail is too trivial

� Facts over fiction

� No personal attacks or
witch hunting

� Leave egos at the door

Retrospection can be a powerful tool, and if used incorrectly, it can
cause more trouble than good; you can shoot yourself in the foot
many, many times. You need to make sure you know what you are
letting yourself in for before you embark on this sort of activity.

You now need to consider who should be involved and who will add the most value.

Including (almost) everyone
Although you will have the best intentions and will want to include everyone
involved in the software delivery process to take part in the inspection, this might
be neither realistic nor practical. What you need is information from individuals
who can actively contribute, are engaged, are ideally open to change (or at least
would like to see things change for the better), and understand and agree to the
aforementioned rules.

Chapter 2

[545]

These engaged contributors should come from all parts of the business; if they are
involved in product creation and delivery, they should be involved. You need a broad
set of information and data to move forward; therefore, you need to get a broad set of
people involved.

As you start compiling the list of participants, which for a large organization can
be quite daunting, you will no doubt find that there will be some degree of natural
selection as you start to ask people to contribute; some might say they're too busy,
some won't want to be involved for reasons they don't want to disclose, and some
might simply not care enough either way.

Identifying the key people
One tip when compiling the list of participants is to try and identify the key people
within the process. These key people might not be obvious at first, however, asking
simple questions such as who should I ensure I invite to this? or who do you normally
talk to if there's a problem? of a number of different people from different parts of
the business will give you some indications.

There is a strong certainty that some of these key people will be the ones who say
they are too busy. The fact that they are too busy might be directly attributed to the
fact that the process they are working within is broken, but they don't have the time
to stop and realize this. I recommend that you take time to ensure that the key people
who fit into this category are encouraged, cajoled, and convinced to take part; if they
are key, it sometimes helps to let them know this, as an ego boost can sometimes
help win them over. Again, playing the if you don't take this opportunity to sort things
out for the better, someone else might and it might be worse card sometimes works.

You might (will) also come across individuals who are very eager to be involved
simply because they have an axe to grind or need a soapbox to proclaim their
personal opinion. This is fine, but you need to be mindful of the fact that such people
can potentially derail the investigation process—which again might be why they
want to be involved. You should not simply dismiss these people out of hand as
they might have valuable observations to bring forward, and dismissing them might
foster further negativity. You should, however, ensure these individuals agree to
be engaged contributors and understand the ground rules you have set. Of course,
you will need to keep an eye on them, much like the naughty children of the class.
That said, you might be surprised at how much value they bring to the process.

No Pain, No Gain

[546]

Too many cooks
As you build your list of participants, you might encounter a positive problem—you
have too many people who want to be involved in the investigation. In some respects,
this is a good thing; oversubscription is a nice problem to have. If this is the case, you
should consider running multiple sessions rather than drop people off the list. We'll
cover the format of the session(s) in more detail later, but suffice to say they can turn
out to be very interactive with a high degree of active participation. As such, my advice
would be to try and keep the numbers down, otherwise you will end up with too many
voices generating too much noise. What you want is a few voices providing valuable
information and data. The rule of thumb would be a maximum of 30 participants,
which is more than enough, unless you're a very experienced facilitator.

In essence, you need to engage and include as many people as possible who
are actively involved in the process of defining, building, testing, shipping, and
supporting software within your organization. The wider the net is cast, the more
relevant the information and data you will catch, so to speak.

Not only is the way in which the investigation is to be conducted and who is involved
very important, but it is also vitally important that you ensure the environment is
set up correctly and the proper open and honest behaviors are used and encouraged
throughout.

We'll look into behaviors and culture in more detail in a later chapter, but for now,
let's concentrate on three key areas.

Openness, transparency, and honesty
To truly get to the bottom of a given problem, you need to gather as much information
and data about it as possible so that you can collectively analyze and agree the best
way to overcome or address it—you need to know how big the elephant truly is before
you expose it and then remove it. The natural reaction of most management "Stans"
will be to run a closed session investigation and invite a selected few to take part.

This might provide some information and data, but it's a strong bet that it will not
give you what you need; things will be missed, people will feel intimidated, and
they will not feel free to disclose some pertinent pieces of information; some might
simply forget an important detail, or worse still, some of the information might be
misinterpreted or simply taken out of context.

Chapter 2

[547]

All in all, closed session investigations are a hotbed for distrust,
nondisclosure, disengagement, and blinkered points of view.
Therefore, it is not recommended that you follow this course.

To realistically get the level of information and engagement, you need to create
an open and transparent environment in which positive behaviors and honest,
constructive dialog can flourish. This does not mean you have to work within
a glass house, have every conversation in public, and every decision made by
a committee. What is needed is a distinct lack of secrets.

Let me clarify what I mean by using a couple of examples:

1. Your senior management begrudgingly admits that there might be a few
problems that need addressing. They then instruct the VP of engineering to
handpick a team of people they trust to compile a list of solutions to present
back. The VP is under orders to not disclose or discuss this with anyone
outside of the closed group.

2. Your CEO invites every employee to an all-day workshop and asks
everybody to provide open and honest feedback about the issues they face
day to day. The CEO and the leadership team then spend the next few weeks
openly working through all of the feedback. A follow-up workshop is then
arranged to honestly discuss and debate the various options available.

I think it's plain to see the difference, which of the two approaches will bear fruit,
and which will wither and die.

All of this might sound unrealistically simple, but without openness, honesty, and
transparency, people will remain guarded, and you will not get all of the facts you
need—the word facts in used intentionally. You need an environment where anyone
and everyone feels that they can speak their minds, and more importantly, contribute.

Location, location, location
Ideally, you should plan to run your investigation collocated (everyone in the same
physical location) as this allows for greater human interaction, building rapport,
building trust, and encourages the general ebb and flow of conversation in what
can be highly interactive exercises. You might also want to consider running these
sessions on neutral ground (for example, rent a conference room in a local hotel or
office complex), which not only puts people at ease but also takes some focus away
from the office and its day-to-day distractions.

No Pain, No Gain

[548]

If you don't have the luxury of collocated teams, you need to be a little more creative
in how you approach things. You should consider the following:

• Bringing the remote team(s) to you, budget permitting
• Sending the local team(s) to them, again budget permitting
• Using video conferencing (voice conferencing just isn't good enough)

You should also ensure that you take into account challenges around time zones and
come up with workable options. For example, don't expect your Boston-based team
to remotely attend a workshop at 5 a.m. (EST) just because it's easier for the UK team.

As you can see, before you embark on the challenge of exposing the elephant in the
room, there is some preparation you need to do.

Throughout this chapter, you have been introduced to terms such as investigation,
elephant exposure, and retrospection. In relation to your software delivery process,
these all mean pretty much the same thing: gathering information and data on how
the process works end to end so that you can highlight the issues, which can then
be rectified. We'll now move on to some of the ways you can gather this information
and data, but before we do so, let's clear a few things up.

It's all happy-clappy management
waffle – isn't it?
Some of you of a technical ilk might be reading this chapter wondering who it's
targeted at and thinking surely this is all soft skill people management self-help waffle and
doesn't really apply to me. In some respects, this is very true; any good manager or leader
worth their salt should at least know how to approach this type of activity. However,
you have to take into account the very real fact—an ineffectual process has a greater
impact on those within it than those who are perceived to be running it. Simply put, as
an engineer, if your effectiveness, morale, and enjoyment of your role is impacted by a
process that you feel is broken and needs changing, then you have as much right and
responsibility to help change it for the better as anyone else. In my experience, the best
engineers are those who can examine, understand, and solve complex problems—be
they technical or not. In addition, who better to have on board while trying to find out
the problems with a process than those directly involved in it and affected by it?

Chapter 2

[549]

If you're a Devina or an Oscar stuck in a process that slows you down and impacts
your ability to effectively do your job, then I strongly encourage you to get actively
involved with investigating and highlighting the problems (there will be many, and
some might not be as obvious to you as you first think). It can be daunting, and yes,
if you're employed to analyze requirements or design systems, cut code, or look
after the infrastructure, then why should you get involved in a business analysis?
It's simple really; if you don't do anything, then someone else might, and things
might get worse.

If you're a Stan, then I suggest you actively allow and encourage all of your Devinas
and Oscars to get involved. As we just stated, they are the ones who are living within
the process, and by implication, they know the process very intimately—far better than
you, I suspect. Yes, some might need your help, some might need encouragement,
some might need training or coaching, some might need empowerment, and some
might need all of the above. In the long run, it will be worth it.

Not only should you encourage the troops to be actively involved, you should also
use your influence and encourage your peer group to do the same. On the face of
it, this might seem easy to achieve, but it can be quite a challenge, especially when
other managers start putting roadblocks in your way. The sort of challenges you
will face include:

• Convincing them it is a good and worthwhile thing to do
• Getting them to agree to allow many people to stop doing their day jobs

for a few hours so that they can participate
• Getting them to agree to listen to others and not drive the agenda
• Getting them to be open and honest within a wider peer group
• Ensuring that they allow subordinates to be open and honest without

the fear of retribution
• Getting them to trust you

As you can imagine, you might well be involved in many different kinds of
delicate conversations with many people, roles, and egos across the business.
It won't be easy, but the perseverance will be worth it in the long run.

Now that we have cleared that up, let's move on to the fun part—exposing
the elephant.

No Pain, No Gain

[550]

The great elephant disclosure
Let's presume at this point that you have overcome all of the challenges of getting
people in the same location (physically and virtually), you have obtained buy-in
from the various management teams, have agreed some downtime, and have a
safe environment set up in a neutral venue. You're almost ready to embark on the
elephant disclosure, almost. What you now need to do is actually pull everyone
together and run the workshop(s) to capture the data you need. These types of
sessions need two things:

• The staple toolset of any agile practitioner: some big blank walls covered
in paper, large whiteboards, flipcharts, sticky notes, various colored pens,
and various colored stickers, some space, plenty of biscuits, and a little bit
of patience

• A tried-and-tested agile technique that defines the format for the workshop

With regards to the second point, there are many varied-and-proven techniques
and exercises you can use with wonderful names such as StoStaKee, the Starfish,
the Sailboat, and TimeLine.

For the sake of space, I'll include references to these (and many others) within
Appendix C, Retrospective Games, and we'll focus on the one in particular that has
proven to be effective.

Value stream mapping
This lean technique derives from—as quite a few agile methodologies and tools do—
manufacturing, and it has been around, in one guise or another, for many years. As
with any lean methodology/tool/technique, value stream mapping revolves around
a value versus waste model. In essence, a value stream map is a way to break down
a product delivery process into a series of steps and handover points; it can also be
used to help calculate efficiency rates, if that's useful to you. The overall map can be
laid out and analyzed to see where bottlenecks or delays occur within the flow; in
other words, you can see which steps within the process are not adding value. The
key metric used within value stream mapping is the lead time (for example, how
long before the original idea starts making hard cash for the business).

There are lots of resources and reference materials available to detail
how to pull together a value stream map, and there are a good number
of specialists in this area should you need some assistance.

Chapter 2

[551]

To effectively create a value stream map, you will need a number of people across all
areas of the business who have a very clear and, preferably hands-on, understanding
of each stage of the product delivery process—sometimes referred to as the product
life cycle. Ideally, a value stream map should represent a business process; however,
this might be too daunting and convoluted at first. To keep things simple, it might be
more beneficial to pick a recent example project and/or release and break this down.

As an example, let's go through the flow of a single feature request delivered by the
ACME system's Version 2.0 business (before they saw the light):

New feature
request
from

customer

Product
owner adds

to
backlog (1hr)

Product
owner

adds to
priorities

(2hr)

Feature
estimated
and story

breakdown
(2hr)

5d10d 5d

Release prep
(2d)

Create release
notes, test

results
and proforma

Obtain
signoff
(5d)

Cut
release (1d)

User
acceptance

test release (5d)

5d 2d 5d

Customer
starts

using feature

Software
released (1d)

Release GO /
NO GO

decision (2d)

5d1d

2d

Development

(10d)
Develop/

document/ test

Development
prep(2d)

Dev and QA
environments

setup
Test plan
updated

Scheduling
(1d)

PM updates
release plan
QA and Dev

mgrs allocate
resource

System
design

and story
refinement

(2d)

5d10d 2d

3d

5d

Each box represents a step within the overall process. The duration value within each
box represents the working time (that is, how long it takes to go through each step).
The duration value in each arrow represents the wait time between each step (that is,
how long it takes between each step).

No Pain, No Gain

[552]

This is a very simplistic overview, but it does highlight how much time it can take to
get even the most simplistic requirement out of the door. It also highlights how much
waste there is in the process. Every step, delay, and mistake has a cost. The only real
value you get is when the customer actually uses the software so if it takes too long
to get a feature, then the customer may well get bored of waiting and go elsewhere.

On the face of it, generating this type of map should be quite simple, but it can also be
quite a challenge. This simplistic diagram is created in real time with input from many
different areas of the business. There will be lots of open and honest dialogue and
debate as facts are verified, memories jogged, dates and times corroborated, examples
clarified, and agreements reached across the board as to what actually happens.

If you prefer to use the standard value stream mapping terminology and iconography,
you can take the sticky notes version and convert it into something like the following,
which again represents the flow of feature requests through the business:

10.5d

42d

Efficiency = 10.5 days/ 52.5 days = 20%

Business

Release

Customer

0.5d

0d 2d 10d 30d

5d 2d 2d 1d

Plan Develop Build releaseTest

This diagram also includes the efficiency (which is based upon the amount of time value is being added
versus the dead time within the flow)

The most valuable output from this particular technique is that you can stop the
obvious areas of waste. These are the parts of the overall process that are slowing
down and impeding your overall ability to deliver. With this information, you can
focus on these problem areas and start to look at options that will make them less
wasteful and more valuable to the overall process.

Chapter 2

[553]

Summary
Throughout this chapter, you have been given an insight into the following aspects:
how to expose problems within your product delivery process—what we are calling
the elephant in the room, the challenges and benefits of using collaborative, engaging
approaches to identify these problems, and some effective tools and techniques to
help you break down the problems into easily identifiable chunks of work.

Now, you know how to obtain valuable information and data about your problem(s)
and have some much-needed actions to work with. You now know how to inspect.
Let's presume these problems revolve around the waste created through long release
cycles and a siloed organization. This being the case, you have a very clear objective,
which will almost certainly address the problems and deliver what the entire business
needs—you need to implement a CD and DevOps ways of working. All you now need
to do is pull together a plan to implement it. In other words, you now need to adapt;
this is handy as that's what we'll cover in Chapter 3, Plan of Attack.

Plan of Attack
Throughout Chapter 2, No Pain, No Gain, which for ease of reading we'll now refer
to as the inspect stage, you were introduced to the tools and techniques to identify the
problems you may well have with your overall product delivery process. We referred
to this as the "elephant in the room" as it is something that is not hard to spot, just very
easy to ignore. The presumption here is that the problems identified are the common
place issues related to most software delivery processes. Some of these issues are listed
as follows:

• Waste due to having too many handover and decision points in the process
• Waste due to unnecessary wait time between steps
• Many software changes are packaged up into large, complex big bang releases
• Large and infrequent releases breed an environment for escaped defects

and bugs
• Releases are seen as something to dread rather than a positive opportunity

for change
• People are disengaged or there is low morale (or both)
• Software changes are not trusted until they have been tested many many times
• Over complex dependencies within the software design
• Tasks that are duplicated throughout the process

We will now take the information and data you have captured and work on the
method of turning this into something that you can implement to overcome the
problems—a plan of attack to implement CD and DevOps if you will.

This plan of attack should not be taken lightly; just like the inspect stage, there is
quite a bit of groundwork you need to do to ensure the scope of the implementation
is understood, accepted, and communicated. As with any plan or project, there needs
to be an end goal and a vision of how to get there.

Plan of Attack

[556]

Setting and communicating the goal
and vision
A goal and vision for any project is important as it ensures all concerned know what
is expected, and for those working on the project understand where it and they are
heading. It may sound simple but it is not always obvious. How you communicate
the goal and vision is just as important as setting them. Do this incorrectly and you
are in danger of losing buy-in from the business, especially the senior management.
For example, they may believe that to fix just one or two of the issues highlighted
during the inspect stage will be enough to overcome all of the problems found.
You have to be crystal clear what you plan to achieve, and crystal clear who you
are communicating this to.

When it comes to CD and DevOps, this can be quite challenging as the deliverables
and benefits are not always easy for the uninitiated to understand or envision. It may
also be difficult to fully quantify as some of the benefits you obtain from the adoption
of CD and DevOps are not wholly tangible (that is, it is quite hard to measure increases
in team collaboration and happiness).

The best advice is keep it simple stupid (KISS). You have a list of issues that the
wider business has provided, and what they want is something (anything) that will
make their lives easier and allow them to do their jobs. If truth be told, you most
probably have more things on the list than you can effectively deliver. This should be
seen as a good thing as you have some wriggle room when it comes to prioritization
of the work.

Your challenge is to use this list and pull together a goal and vision, which will
resonate with all of the stakeholders and ensure it is something that can be delivered.
This may need quite a bit of effort but it is doable. For a good example, let's once
again have a look at ACME systems. When they were planning the implementation
of CD and DevOps, they came up with a goal for the project, which was to be able
to release working code to production 10 times per day. This was a nice simple tag line,
which everyone could understand (almost everyone, but we'll come to that later)
and formed the basis of their communication strategy. Yes, it was an ambitious goal
but they knew with a little hard work, courage, determination, and the right people
involved, it was possible. They even created posters that could be stuck on walls
around the office.

Chapter 3

[557]

A very simple tag line that anyone and everyone can understand

Setting your goal may be just as easy. You have a good understanding of the business
problems that need to be overcome, you know which teams are involved, and you
have a good idea of what will resonate with the stakeholders. The goal needn't be
a grandiose thing—maybe something as simple as to allow engineers to release their
own code or ship code at the press of a button will suffice. The most important thing here
is to set a goal that people can get behind, which solves some—ideally most—of the
problems highlighted.

Once you have a goal (or most probably, a list of potential
goals), canvass opinion from people whose judgment you
trust; if they think your proposal is way off the mark, it might
just be so. If you're lucky enough to have PR or marketing
people accessible, canvass their opinions; this is after all
something they are pretty good at.

Once you're happy with the goal, you need to work on the vision. It may help to think
of the goal as what you want to achieve and the vision as how you will achieve it. The
vision should contain as much detail as can be easily communicated and understood.
You have to be mindful of the fact that too much detail will confuse and cause people
to become disengaged, so KISS.

Plan of Attack

[558]

Let's go back to the ACME team to see how they went about doing this. They had
a goal (release working code to production 10 times per day) and now had to set out the
vision. They took the list of issues highlighted during the inspect stage and translated
them into a list of easy-to-understand actions and tasks that needed addressing.
A good example of this is the problem engineers are unable to ship their own code,
which made perfect sense to the engineers themselves, but wasn't simple enough to
understand for anyone outside of that group—questions such as ship to where? and
what do you mean by ship? arose. After some debate, discussion, and refinement, this
problem was translated to allow engineers to release fully working code from their laptop to
the live platform with ease. This was something the majority could understand—it was
simple. This can also be simplified further to laptop to live, which still conveyed the
meaning but was easier to digest and communicate.

The vision ACME created included a wide variety of things, some technical and some
not, which could all be clearly communicated and understood. Those of you who are
au fait with agile ways of working, may spot this as a prioritized feature backlog.

The next step was to share the goal and vision to the business and stakeholders
and gain an agreement that what was proposed would address the problems and
issues captured during the inspect stage. This was directed to as wide an audience
as possible—not just the management—with many sessions booked over many
days to allow as many people to be involved as possible.

Once the goal and vision had been shared, discussed, and revised—based upon
the constructive feedback from all involved, a top-level plan was pulled together.
Put simply, ACME generated a story backlog that contained almost everything
they needed to address and deliver.

To ensure transparency and ease of access to the goal and vision, the ACME team
needed to ensure that all of the data, information, and plans were publicly (internal
to the business rather than in the public domain) available. To this end, they fully
utilized all of the internal communication and project repository tools available to
them: internal wikis, blogs, websites, intranets, and forums.

If you don't have tools like these available to you, it shouldn't be a vast
amount of effort to get one set up using open source solutions. There
are even on-line solutions that are secure enough to keep company
secrets safe—some examples can be found in Appendix A, Some Useful
Information. Having this level of transparency and openness will help
as you move forward with the execution of the plan. This is especially
true of social solutions such as blogs and forums, where feedback can
be given and virtual discussions can take place.

Chapter 3

[559]

It all sounds pretty simple when it's put down into a few paragraphs and to be honest,
it could be with the right environment and the right people involved. It's just a case
of ensuring that you have a good grasp of what the business and stakeholders want,
you know how to summarize this into an easily understandable goal and align the
vision to drive things in the right direction. The key here is easily understood, which can
sometimes be a challenge, especially when you take into account communication across
many business areas (and possibly many time-zones and cultures), where each have
their own take on the terminology and vocabulary used. This brings us to how you
should communicate and ensure everyone involved understands what is happening.

Standardizing vocabulary and language
One small and wholly avoidable factor that can scupper any project is the
misinterpretation of what the deliverables are. This may sound a little alarming but
projects can fail simply because one person expects something, but another person
misunderstands or misinterprets and delivers something else. It's not normally
down to ignorance; it's normally due to both sides interpreting the same thing
in different ways.

For example, let's look at something simple—the word release. To a project manager
or a release manager, this could represent a bundle of software changes, which need
to be tested and made live within a schedule or program of work. To a developer
working in an agile way, a release could be a one line code change, which could
go live soon after he/she has completed coding and running the tests.

There can also be a bit of a problem when you start to examine all of the different
words, terminology, and three letter acronyms (TLA) that we all use within IT.
We therefore need to be mindful of the target audience we are communicating
to and with. Again the KISS (a FLA or four-letter acronym if you prefer) method
works well here. You don't necessarily have to go down to the lowest common
denominator; that may be very hard to do and could make matters worse. Try to
strike a balance. If some people don't understand, then get someone who does
understand to talk with them and explain; this will help bridge the gap and also
helps to form good working relationships.

Plan of Attack

[560]

Another suggestion to help bridge the gap is to pull together a glossary of terms
that everyone can refer to. The following is a simple example:

Term What it is What it is not
Continuous Delivery A method of delivering

fully working and
tested software in small
incremental chunks to
the production platform

A method of delivering huge
chunks of code every few
weeks or months

DevOps A way of working
that encourages the
Development and
Operations teams to
work together in a
highly collaborative way
towards the same goal

A way to get developers
to take on operational tasks
and vice versa

CD See Continuous Delivery
Continuous Integration A method of finding

software issues as early
as possible within the
development cycle and
ensuring all parts of the
overall platform talk to
each other correctly

Something to be ignored
or bypassed because it
takes effort

CI See Continuous
Integration

Definition of done A change to the platform
(software, hardware,
infrastructure, and so
on) is live and being
used by customers

Something that has been
notionally signed off as
something that should
work when it goes live

DOD See definition of done
Release A single code drop to

a given environment
(testing, staging,
production, and so on)

A huge bundle of changes
that are handed over to
someone else to sort out

Deploy The act of pushing a
release into a given
environment

Something the Operations
team does

If you have a wiki/intranet/blog/forum, then that would be a good place to share
this as others can update it over time as more buzzwords and TLAs are introduced.

Chapter 3

[561]

The rule of thumb here is to ensure whatever vocabulary, language, or terminology
you standardize on, you must stick to it and be consistent. For example, if you
choose to use the term CD and DevOps, you should stick with it through all forms of
communication, written and verbal. It then becomes ingrained and others will use it
day to day, which means conversations will be consistent and there is much less risk
of misinterpretation and confusion.

You now have a goal, a vision, a high level backlog, a standard way of communicating,
and you're ready to roll (almost). The execution of the plan is not something to be
taken lightly. Whether you are a small software shop or a large corporate, you should
treat the adoption and implementation of CD and DevOps with as much gravitas as
you would any other project, which touches and impacts many parts of the business.
For example, you wouldn't implement a completely new e-mail system into the
business as if it were a small scale skunk works project—it takes collaboration and
coordination across many people. The same goes for CD and DevOps.

A business change project in its own right
Classing the implementation of CD and DevOps as business change project may
seem a bit dry but that's exactly what it is; you are potentially changing the way the
whole business operates, for the better. Not something to be taken lightly at all. If
you have ever been involved in business change projects, you will understand how
far reaching they can be.

There's a high probability that the wider business may not understand this as well as
you do. They have been involved in the investigation and have verified the findings
and seen what you intend to do to address the issues raised. What they may not
understand fully is the implication of implementing CD and DevOps—in terms of the
business, it can be a life-changing event. A little later on in the book, we'll go through
some of the hurdles you will face during the implementation. However, if you have a
heads-up from the start, you're in a much better position to leap over the hurdles.

Suffice to say that you should ensure you get the business to recognize that the
project will be something that will impact quite a few people, albeit in a positive
way. Processes will change as will the ways of working. We're not just talking
about the software delivery process here; CD and DevOps will change the way
the business thinks, plans, and operates.

Plan of Attack

[562]

For example, let's assume that marketing and program management teams are
currently working on a 6 to 9 month cycle to take features to the market. If all goes well
with the CD and DevOps implementation, they will have to realize that a feature may
be live in a few weeks or even days. They will therefore need to work at a different
cadence and will have to speed up and streamline their processes. From experience,
this sort of change also brings with it some unexpected benefits—that being a renewed
level of trust throughout the business that when the development and Operations
team say they will deliver something, they actually deliver it. Therefore, the traditional
contingency plan B is no longer required (nor plans C, D, or E). The way features are
delivered will drastically change and the rest of the business needs to accept this and
be ready for it.

In the early stages of the project, the wider business will most probably believe
that the impact of CD and DevOps—as the name suggests—will be localized to the
Development and Operations teams. The following diagram depicts the extent of
this change as the business sees it:

+ Operations DevOpsDevelopment

What the business sees at the early stages

At first, this may not be too far from the truth, and you may start small so that you can
get to grips with the subtleties and to find your feet as it were. This is fine; however,
once you get some momentum—which won't take long—things will start to change
very quickly and if people aren't ready, or at least aware, you may hit some barriers,
which could slow things down or even stop the implementation in its tracks. The
business therefore must accept that the impact will be far reaching as depicted below:

+ +Operations DevOpsThe rest of
the business

Development

What the business should be seeing as representative of the areas that will be impacted and involved

Chapter 3

[563]

Getting the business to understand this will not be an easy task, they will need some
convincing and some good old-fashioned diplomacy may be again required. Luckily,
CD and DevOps is now becoming more widely known outside of the traditional IT
realm and there is plenty of information, such as case studies, available to reference.
That said, you have to be mindful that the wide business will still see this as an IT
thing rather than a business thing.

Let's move forward and presume that the business is in agreement regarding the wide
reaching nature of the implementation and (almost) everyone is behind the project.
The next challenge is looking at the merits of using a dedicated team to implement
the goal and vision.

The merits of a dedicated team
As with any high-profile project, it's worth considering the merits of having a
dedicated team focused on the implementation of CD and DevOps. This is the
approach ACME took and although it worked for them, it's your call whether you
go down this route or not. There may be a temptation to run the implementation as a
skunk works project. This type of project will tend to bubble along in the background
and be staffed by like-minded individuals who have an interest but don't have the
backing or reach needed to make sweeping changes, nor the free time to dedicate to
make it truly successful. My recommendation is to not do this as such projects tend to
fade away as more seemingly important projects—which do have backing and formal
widespread recognition—take the limelight and more importantly the resource. This
may sound cynical but it's a fact of life and you need to be mindful of this.

There seems to be a growing trend to hire or set up dedicated CD
and/or DevOps teams to run the process of delivering software.
This is not what I am referring to. I am referring to setting up a
cross-functional and multi-disciplined team that can help drive
the goal and vision on behalf of the wider business.

I would advise that you work with the wider business to ensure their agreement to
the implementation of CD and DevOps goes further than simply paying lip service.
They need to put their money where their mouth is and provide some people to help
with the implementation. Reiterating the fact that the implementation of CD and
DevOps should be considered as a business change project may help. In the end,
you will need a team of like-minded individuals working on the project from across
the business (not just developers and operations guys) to make this successful. You
may want to start small and build up but the reality is that once things start getting
traction, the wider business will need to get involved.

Plan of Attack

[564]

As soon as this is highlighted, you will no doubt get some areas of the business take
a big step back in terms of engagement and commitment—especially those areas
that manage the very people you want to second onto the project. It is then down to
you to cajole, beg, bargain, and barter to get the people you need. To be honest, this
shouldn't be too difficult as you have quite a large amount of ammunition to use—
the same information and data you worked so hard to compile, which the business
itself agreed was causing pain. If you used the value stream mapping exercise, you
should also be able to pinpoint the pain areas with accuracy.

One thing to take into account is the level of commitment of those outside of the
traditional IT realm—I'm thinking of such things as sales, marketing, HR, finance,
and so on. It may not be viable to have such individuals dedicated full-time to the
project. However, you should ensure they allocate some of their time and make
themselves available when needed.

Let's take a typical discussion between you - who, for this example, is played by
Devina and Stan, the manager—who, for this example, is the head of Testing and QA:

I don't see why not,
maybe one or two
days each sprint

would work

When you put it like
that it's a no brainer.
When do you want

him to start?

But if Steve can sort out the
development process and help

them implement test-driven
development techniques along

with all the other stuff we're
looking at, the quality of the code
will be the highest it's ever been

Stan, I could really do with
Steve working on the CD and

DevOps project with me. He knows
your area of the business inside

and out and from discussions we've
had he seems really passionate

and enthusiastic to sort things out

I'm thinking more
like full time for the

duration of the
project

I'm not too sure about that.
He's a critical resource and is

the only one who can deal
with the developers when

they deliver really buggy code,
which is normally late. How

many sprints are we talking?

It's looking like
nine to ten

months

It's out of the question.
You've seen the pain

we have to go through.
Without Steve we'll grind

to a halt

It will also arrive in
small chunks that
are easy to test.
Added to this we

ehave some of th
Operations guys on
board, so all of the

environmental
issues your own
team highlighted
should go away

All in all having Steve on board
will help you and your teams

more than having him stuck in a
situation where he can't change

or influence anything

Chapter 3

[565]

I admit it might not go exactly along those lines but you can see the point. You have
been given a clear insight into what pains the business and have been asked to remove
the said pains. The business needs to realize that this will not come without some cost
and that they need to provide you with what you need to get the job done.

Who to include
If you decide to utilize a dedicated team, then you'll no doubt want to know who to
include. This really depends on the way in which your business is set up. To help a
little, let's again go back to ACME systems and see what they did. During version
2.0 of their evolution, the teams that were actively involved in delivering software
included: Architecture, Development, Testers, Operations, and Change Management.
They therefore decided to include individuals from each of these disciplines within
their CD and DevOps team. They then added a scrum master and a product owner
and topped it all off with a senior manager (someone who could act as the project
sponsor and represent the team at a higher level). To follow the theme of inclusion,
they also added stakeholders from the wider business. In the end, the ACME systems
CD and DevOps team looked something like this:

Integrate itHave a great
idea

Have a great
idea

Have a great
idea

Scrum
master

Change
controller

Deploy it Debate it Develop it Test itDebate itDevelop itOperations Product
owner

Debate itDevelop itDevelopers(,Marketing
HR etc)

Extended team

Develop itDebate itDevelop itTestersArchitect
Senior

Manager

The ACME CD and DevOps project team

Plan of Attack

[566]

If and how you go about setting up your own CD and DevOps team and who
you include totally depends on the way in which your business is set up. The most
important thing to remember when/if setting up a dedicated team is that it must be
made up of more than just developers if they are to have credibility and be successful.

Let's move on from the practical elements of team building to the weird and wonderful
world of evangelism and the benefits this activity can bring.

The importance of evangelism
Whenever you introduce a change, be it a new product, service, or a wholesale change
to the ways of working, you need evangelists to ensure everyone who needs to know
about the change, knows about it. Sometimes, this is seen as marketing or PR, but
in its basic form, it is evangelism. Evangelism is important. It's also very hard work
but is essential for any change to be successful. CD and DevOps has the potential
to introduce a vast amount of change to the way your business works. Therefore,
a vast amount of evangelism will be required. Even if you have a goal, vision, and
the blessing from up on high, you need to evangelize to ensure those who are most
important to the success of the implementation are behind you and understand what
they are getting behind. You need to get out there and be seen and be heard.

Don't get me wrong, to evangelize across an entire business is going to take some
effort and some determination. It will also take some energy. Actually, that's wrong;
it will take a lot of energy. Your target audience is wide and far reaching, from senior
management to the shop floor. So, it will take up quite an amount of time for you to
get the message across. Before we go into the details of what to say to who, when,
and how, let's get the ground rules sorted:

• If you are to be convincing when evangelizing to others the virtues of
CD and DevOps, you need to believe in it 100 percent—if you don't,
then how can you expect others to?

• You and whoever is involved in the project must practise what you
preach and lead by example. For instance, if you build some tools as
part of the project, make sure you build and deploy them using the
exact same techniques and tools you are evangelizing about.

• Many people will not get it at first. So, you will have to be very, very
patient. You might have to explain the same thing to the same person
more than once. Use these kind of individuals as a yard stick; if they
start to understand what CD and DevOps is all about, then there's a
pretty good chance your message is correct.

Chapter 3

[567]

• Remember your target audience and tailor your message accordingly.
Developers will want to hear technical stuff, which is new and shiny; system
operators would want to hear words such as stability and predictability; and
management types would want to hear about efficiencies, optimized processes,
and risk reduction. This is rather generalist. However, the rule of thumb is if you
see their eyes glaze over, your message is not hitting home, then change it.

• Some people will simply not want to know or listen and it may not be worth
focusing your efforts to make them (we'll be covering some of this in Chapter
6, Hurdles Along the Way). If you can win them round, then kudos to you but
don't feel dejected by a few laggards.

• Keep it relevant and consistent. You have a standardized language, a goal,
and a vision so use them.

• Don't simply make stuff up. Just stick to what can be delivered as part of
your goal and vision; nothing more, nothing less. If there are new ideas
and suggestions, get them added to the backlog for prioritization.

• Don't on any account give up.

What it boils down to is you will need to talk the talk and walk the walk. There
will be quite a bit of networking going on; so be prepared for lots of discussion.
As your network grows, so will your opportunities to evangelize. Do not shy away
from these opportunities, and make sure you are using them to build good working
relationships across the business as you're going to need these later on. Evangelizing
is rewarding and if you really believe that CD and DevOps is the best thing since
sliced bread, you will find that having opportunities to simply talk about it with
others is like a busman's holiday.

As mentioned earlier, evangelism is a form of PR. So, if you have PR people available
(or better still as part of the team), you should also look into getting simple things
together, such as a logo or some freebies (such as badges, mugs, mouse mats, and so
on), to hand out. This may seem a little superfluous but as with any PR you will want
to ensure you get the message across and have it imbedded into the environment
and peoples' psyche.

Up until this point, I may have painted things in a somewhat rosy glow. Adopting
CD is no picnic. There's quite a big hill to climb for all concerned. As long as everyone
involved is aware of this and has the courage and determination to succeed, things
should go well.

Plan of Attack

[568]

Courage and determination
Courage and determination may seem like strong words to use but they are the
correct words. There will be many challenges, some you are aware of some you are
not, that will try to impede the progress. So, determination is required to ensure this
keeps moving in the right direction. Courage is needed as some of these challenges
will require you, the team, and the wider business to make difficult decisions, which
could result in actions being taken from which there is no going back. I'll refer to
ACME systems Version 2.0 for a good example of this.

In the early days of their adoption of CD and DevOps, they started with a small subset
of their platform as the candidates for releasing using the new deployment toolset
and ways of working. Unfortunately, at the same time, there was a lot of noise being
generated around the business as another release (using the old package everything up
and push out as one huge deployment method) was not going well. The business asked
everyone to focus on getting the large release out at all costs, including halting the CD
trials. This didn't go down too well with the team. However, after a rather courageous
discussion between the head of the ACME CD team and his peers, it was agreed that
resource could be allocated if there was universal agreement that this would be the
last of the big bang releases and that all future releases would use the new CD pipeline
process going forward. The agreement was forthcoming and so ended the era of the big
bang release and the new era of CD dawned. After the last of the big bang releases was
eventually completed, the entire development and operations teams were determined
to get CD up and running as soon as possible. They had been through enough pain and
needed another way or rather a better way. They persevered for a few months until
the first release, using the new tooling and ways of working, went to the production
environment, then the next, and so on. At this point, there was no turning back as too
much had changed.

As you can no doubt appreciate, it took courage from all parts of the business to
make this decision. There was no plan B and if it hadn't worked, they had no way
to release their software. Knowing this fact, the business was determined to get the
new CD and DevOps ways of working imbedded and established.

The preceding example could be classed as an extreme case but nonetheless, it goes
to show that courage and determination are sometimes very much needed. If there's
a will, there's a way.

Before we move away from the planning stage, there are still a couple of things you
should be aware of as you prepare to embark on your new adventure: where to seek
help and ensuring you and the wider business are aware of the costs involved with
implementing CD and DevOps. We'll cover costs first.

Chapter 3

[569]

Understanding the cost
Implementing CD and DevOps will ultimately save the business quite a lot of
money—that is a very simple and obvious fact. The effort required to release
software will be dramatically reduced, the resources required will be miniscule when
compared to large big bang releases, the time to market will be vastly reduced, the
quality will be vastly increased, and the cost of doing business (that is, volume of
bug fixes required, support for system downtime, fines for not meeting SLAs, and
so on) will be negligible. That said, implementing CD and DevOps does not come
for free. There are costs involved and the business needs to be aware of this.

Let's break these down:

� Resources assigned to the CD and
DevOps project may not be available for
other tasks

� Changes to business process
documentation and/or business process
maps

� Changes to standard operating
procedures

� Changes to hosting (on the assumption
there is a move to virtual and / or
cloud based infrastructure)

� Tweaks to change management systems
to allow for quicker and more
lightweight operations

� Internal PR and marketing materials

� Enlisting the help from external
specialists (see below)

� Things may slow down at the start as
new ways of working bed in

These costs should not be extortionate; however, they are costs that need to be taken
into account and planned for. As with any project—especially one as far reaching as
CD and DevOps—there will always be certain costs. If the business is aware of this
from the outset, then the chance of it scuppering the project later down the line can
be minimized.

Plan of Attack

[570]

There may be some costs that are indirectly caused by the project. You may have
some people who cannot accept the changes and simply decide to move on; there
will be costs to replace them (or not as the case may be). As previously stated at
the beginning of the transition from big bang releases, you may well slow down to
get quicker. If you have contractual deadlines to meet during this period, it may be
prudent to renegotiate them.

You will know your business better than anyone—especially, after completing
the investigations into how the business functions—so, you may have better ideas
related to costs. Just make sure you do not ignore them.

Let's now focus on where you can get help and advice should you need it.

Seeking advice from others
Before you take the plunge and change the entire way your business operates,
it would be a good idea to do some research and/or reach out to others who:

• Have been through this transition already—maybe a few times
• Have insights that you may not considered or thought about
• Have some battle scars that you will want to avoid
• Are in the same boat as you

There is an ever-growing number of people around the globe who have experience
in implementing (and even defining) CD and DevOps. Some are experts in the field
and focus on this as their full-time jobs; some are simply members of the growing
community who have seen the light and selflessly want to help others realize the
benefits they have witnessed and experienced.

If you can secure the budget to have an external expert come in to work with you that
may help take some of the pressure off. If you do go down this route, be mindful of
who you chose—remember that some consultancies will be more than happy to assist
and will be just as happy to sell you their latest CD pipeline tool. If you're confident
in your approach, then maybe just having a sounding board available every few
weeks/months will suffice.

To reiterate, implementing CD and DevOps is no picnic and sometimes being at the
forefront can be a lonely place. Do not feel like you should struggle alone. There are
some valuable reference materials available (this book being one of those I would
hope) and more importantly, there are a good number of communities—online and
face-to-face meet-ups—which you can join to help you.

Chapter 3

[571]

You never know, your story and input may be an inspiration for others, so in
true DevOps style, break down the barriers and enjoy open and honest dialogue.
I'll include a list of some of the reference materials and contacts in Appendix A,
Some Useful Information.

Summary
As with any business change project, to successfully implement CD and DevOps, you
need to ensure you know what you are setting out to do (your goal), understand how
you're going to reach it (your vision), understand who's help you will need, clarify
how you will communicate and evangelize, be realistic about how much it will cost,
and most important of all, be realistic about how much work, courage, energy, and
determination it will take. As mentioned previously, this is no picnic but it will be
worth it.

Hopefully, you're all fired up and ready to go but before we do this let's take a look
at something that may not be so obvious now but is yet another essential part of the
CD and DevOps jigsaw: culture, and behaviors.

Culture and Behaviors
In Chapter 2, No Pain, No Gain, we learned that asking people to be open and honest
is not easy unless you set the environment up to allow for it to happen. The culture
and environment have to be such that honest disclosure can take place, and you have
to ensure that every participant agrees to behave according to the flexible rules set
out. We will now take this newfound knowledge and expand upon it to ensure the
culture and behaviors throughout the organization are set up to allow for—what
can be—potentially massive change. The sorts of things we'll cover throughout this
chapter are:

• Why culture is so important
• How culture and behaviors affect your progress
• Encouraging innovation at grass roots
• Fostering a sense of accountability across all areas of your organization
• Removing blame from the working environment
• Embracing and learning from failure
• Building trust
• Rewarding success in the right way
• Instilling the sense that change is good and not risky
• How good PR can help

Throughout this chapter, we'll also look at what this means to the three personas
(Stan the manager, Devina the developer, and Oscar the ops guy) you were
introduced to in Chapter 1, Evolution of a Software House.

It should be noted that I am by no means an expert in the human sciences, nor
do I have a PhD in psychology. What follows are learnings through observation,
experience, and collaboration with experts in these fields.

Let's start by clarifying why culture is so important to CD and DevOps.

Culture and Behaviors

[574]

All roads lead to culture
Some people might think that CD and/or DevOps is simply about implementing
technical tools, making slight tweaks to existing heavyweight processes to allow
software to be released every few weeks, or worse still, a bona fide reason to set
up a new "DevOps" team inside an existing organization. If you think any of these
are correct, then you are wrong. CD and DevOps are—put very simply—ways of
working. As such, the culture in which people work and the behaviors they exhibit
has a massive part to play. If you have barriers or power struggles between teams,
silos across the organization, ineffective lines of communication, a rigid old-school
hierarchy, dysfunctional leadership, or your business is resistant to change or learning
from failure, then your environment and culture are not conducive to adopting
CD or DevOps ways of working. Attempting to implement CD or DevOps in such
an environment will ultimately lead to failure, unless you address the underlying
behaviors and overarching culture.

As we found in Chapter 2, No Pain, No Gain, which for ease of reading we'll now
refer to as the inspect stage, culture is quite nebulous and can be hard to define.
The following diagram attempts to clarify what we mean by culture in relation
to this subject; we'll cover some of this in more detail throughout this chapter.

Transparency

Change is
good

Honesty and
openness

Collaboration

Trust

Embrace
failure

No blame

Accountability

Grassroots
innovation

Rewarding
good

behaviors

Culture

The cultural interconnectedness of all things CD and DevOps

Chapter 4

[575]

You need to ensure that your organization is set up in such a way as to allow for
all of the positive behaviors you witnessed during the inspect stage to resurface and
become the norm. In essence, what you need is a positive, collaborative, and open
culture. This is no mean feat, but it can be done. To some degree, you have already
planted the seed during the inspect stage—albeit in safe greenhouse conditions—and
have proven and realized the benefits. What you need to do is nurture this seedling
and let its roots dig deep and spread across your organization.

This Cultural Revolution shouldn't be restricted to the shop floor; whoever is
involved in or makes decisions about software delivery, be they an engineer, a
manager, or the VP of engineering, needs to at least have an understanding and
appreciation of how culture and behaviors can help or hinder the adoption of CD
and DevOps.

A healthy culture is central to a successful way of working, and is therefore central
to CD and DevOps, as is depicted in the following diagram:

Behaviors

CommunicationProcesses

EnvironmentCulture
Tools &

Techniques

Culture is central to all aspects of successful CD and DevOps adoption

Now, let's revisit something that we looked at during the setting up of the inspect
stage and expand upon it.

Culture and Behaviors

[576]

An open, honest, and safe environment
Apart from sounding like something taken directly out of a management training
manual, what does having an open, honest, and safe environment actually mean?
In relation to CD and DevOps, this means that you need to ensure that anyone and
everyone involved in your product delivery process is able to openly comment
and discuss ideas, issues, concerns, and problems, without the fear of ridicule
or retribution.

As you found during the inspect stage, allowing for open discussions and honest
appraisals of how things are done within your organization and the product
delivery process brings to the surface details and facts that otherwise would have
been missed or stayed hidden. You need to persist the culture where the distinct
lack of secret behavior is maintained or, if there is a gap between your inspect stage
and implementation stage, rekindled and reaffirmed.

On the face of it, this all sounds like common sense, but unfortunately, this way of
working is not encouraged, or worse still, is actively discouraged in some working
environments. If you find yourself in this situation, then you have some additional
challenges to overcome simply due to the fact that these edicts are normally defined
and enforced through the HR and management guidelines, which in-turn define the
policies under which the business operates. You therefore can't simply break or bend
these rules at will. We'll cover this in more detail later in the book, but suffice to say
that you need to tread very carefully and ensure you lead by example in terms of
your behaviors.

Let's break down these concepts in more detail.

Openness and honesty
Openness and honesty are key factors to ensure that the implementation of CD and
DevOps is successful. Without these behaviors in place, it's going to be very difficult
to break down barriers and implement the much needed changes throughout your
organization. You already engaged the majority of the business during the inspect
stage to obtain honest feedback about the current situation. You now need to ensure
that you continue this dialogue with all concerned. Everyone involved in the product
delivery process, from developers and testers through change and release controllers
to product owners and senior managers, must have a forum they can use to share
their thoughts, suggestions, observations, worries, and news.

Chapter 4

[577]

The most effective way to do this, as was the case during the inspect stage, is via face-
to-face human interaction, be this in person or virtually via video conference systems
(remember that video is preferable to voice). There is one potential drawback to this
approach—getting everyone in the same place at the same time. We'll look at some
ways to overcome physical environment challenges later; if face-to-face is not wholly
viable all the time, you can look at other options such as online collaboration tools
(Campfire, for example), real-time forums (Yammer, for example), or group chat
systems (IRC or HipChat, for example). Links to the aforementioned tools can be
found in Appendix A, Some Useful Information.

Whatever approach you choose, it is advisable that you set up some form of etiquette
or guidelines so that everyone knows what is acceptable and what is not. Hopefully,
common sense will prevail. What should not prevail is a heavy-handed policing
or moderation of the content as this will discourage openness and honesty and
ultimately make the solution redundant.

Let's look at what this means in terms of contribution from our three personas:

• Stan can use his influence to ensure his peers understand the importance
of openness and honesty and that they encourage their teams to exhibit
these behaviors.

• Devina and Oscar can work together to implement the aforementioned tools
that can help enhance communications across the organization. They can
also influence their peer groups to be more open and honest.

As you go through the implementation of CD and DevOps, it is extremely important
that you have regular open, honest, and truthful feedback from all concerned in
terms of what is working with the implementation and, more importantly, what is
not. Again, the simplest and most effective way is face-to-face human interaction;
simply walk around and ask people. Again, if this is not wholly viable, then you
should consider sort of lightweight survey solutions (such as survey monkey). The
word 'lightweight' is important here as no one will provide feedback on a regular
basis if they have a 10-page questionnaire to fill out every few weeks.

If you follow or use an agile methodology and run regular
retrospectives, ask those running these sessions to forward
on any feedback related to your implementation.

You're hopefully getting an idea of what open and honest dialogue is all about,
but what about courageous dialogue, where does this come into the equation?

Culture and Behaviors

[578]

Courageous dialogue
There will be times when someone lower down the food chain will have an opinion
or a view on how those above them help or hinder the product delivery process. You
might have individuals whose views are at odds with specific parts of the business,
or indeed, other individuals. It takes guts for an individual to speak up about
something like this, especially within a corporate environment. For these people to
speak up, they want to be sure that what they say (within reason, of course) is not
taken as a black mark on their record. They need to be given a de-militarized zone
(DMZ), where they can share their ideas, views, and opinions—where they can
point out the emperor's new clothes.

You should work with the management team, and HR, if need be, to ensure that
there is a forum for this type of dialogue as it is very important. The content might
not be enlightening, but if you have a number of people saying the same thing, then
there is a good chance that something needs to be addressed. At the very least, you
can work with the management types to implement some sort of amnesty or a way
for anonymous feedback to be collected—a suggestion box or online surveys,
for example.

One important thing to also take into account is the quiet ones. Generally speaking,
there are two distinct types of personality traits: introverted and extroverted. The
extroverts are the ones that are not afraid to interact, talk, and discuss their views
and feelings in public. For extroverts, open, honest, and courageous dialogue isn't
something they would shy away from. Introverts are the opposite, and will more
often than not simply close down or just go with the flow in these situations.
You, therefore, need to be very mindful of this fact and ensure everyone has the
opportunity to contribute and voice their opinions. It might seem like additional
work, but from experience, it will be worth it as the contributions from the introverts
are normally well considered and enlightening.

If you have difficulty spotting the different types, then here's one
easy tip: extroverts talk to make their brains work whereas introverts
use their brains to make their mouths work.

Let's be very open, honest, and courageous about how easy it will be to implement
and embed these sorts of behaviors into normal ways of working—it is not. It will
be challenging, complex, time consuming, and at times, very frustrating. However,
if you persevere, and it starts to work (and it will), you'll find it's a very effective
way to work. You will find that once openness and honesty are embedded into the
normal ways of working, things really start coming together.

Chapter 4

[579]

Let's summarize what we've covered so far:

Do’s
Allowing freedom of
expression

Encouraging
anyone and
everyone to have
their say (within
reason)

Being patient with
the “quiet ones” as it
will take a bit longer
for them to open up

Ensure management
and HR understand
why openness and
honesty are essential

Getting
management to
contribute and lead
by example

Having a distinct
lack of secrets

Don't’s
Having a closed and
secretive
environment and
culture

Ignoring or
dismissing people's
opinions and views

Using feedback in a
negative or
nefarious way

Being impatient

Do as I say not as I
do attitudes

What might not be obvious is the fact that the physical environment is something
that can and does cause further complications when looking at encouraging open
and honest dialogue and behaviors. We'll now take a look at this.

Culture and Behaviors

[580]

The physical environment
Some of you might be lucky enough to work in nice, airy, open-plan offices with
plenty of opportunity to wander around for a chat and line-of-sight visibility of
people you collaborate with. The reality is that you might not be so lucky and will
have teams physically separated by office walls, flights of stairs, the dreaded cubicles
of doom, or even time zones. At this point, let's hypothesize that the office space is
not open-plan and there are some physical barriers. There are a few things you can
look at to remove some of these barriers:

• Keep the office doors open or, if possible, remove them altogether.
• Set aside an area for communal gatherings (normally in the vicinity of the

coffee machine) where people can chat and chill out.
• Have regular (weekly) sessions where everyone gathers (normally in the

vicinity of coffee and doughnuts) to chat and chill out.
• Get a foosball table; it's amazing how much ice is broken by having a friendly

foosball competition within the office.
• If you use scrum methodology (or similar) and have separate teams locked

away in offices, each holding their daily stand-up in private, then hold a
daily scrum of scrums (or stand-up of stand-ups), and have one person
from each team attend it.

• See whether some of the partition walls can be removed.
• If you have cubicles, remove them, all of them. I personally think that they

are the work of the devil and produce more of a negative environment than
having physical walls separating teams.

• See whether an office move-around is possible to get people working closer
together, or at the very least, mix things up.

• As previously mentioned, look into implementing some sort of collaborative
forum/messaging/chat solution, which everyone can use and have access
to. You can also inject a bit of fun and innovation using tools such as Hubot
(https://hubot.github.com), which might encourage more people to use
the solution.

• Stop relying on e-mail for communications and encourage people to
talk—have discussions, mutually agree, and follow up with an e-mail,
if need be.

https://hubot.github.com

Chapter 4

[581]

These are, of course, merely suggestions based upon a very broad assumption of
your environment, and you will no doubt have better ideas. The end game here
is to start removing the barriers, both virtual and physical.

Let's see what our personas can do to help:

• Stan, the manager, can work within his peer group to convince those above
of the importance of changes to the physical environment. Trying this alone,
especially when money needs to be spent, might be challenging, so having
many management voices saying the same thing will add weight.

• Devina and Oscar can work together to make small changes and run
experiments, for example, to be seen to have face-to-face discussions,
rather than via e-mail, or take over an area of the office and sit together.

We'll now move on from the seemingly simple subject of openness and honesty
to the seemingly simple area of collaboration.

Encouraging and embracing collaboration
As you set out on your journey to implement CD and DevOps, you will no doubt
be working with the assumption that everyone wants to play ball and collaborate.
Most of the business has been through an exercise to capture and highlight the
shortcomings of the incumbent process, and you all did this together in a very
collaborative way; surely they want to continue in this vein?

At first, this might well be very true; however, as time goes on, people will start to
fall back into their natural siloed position. This is especially true if there is a lull in
the CD and DevOps implementation activity—you might be busy building tools or
focusing on certain areas of the existing process that are most painful. Either way,
old habits will sneak back in if you're not careful.

It is, therefore, important that you keep collaborative ways of working at the
forefront of people's minds and encourage everyone to work in these ways as
the default mode of operation. The challenge is to make this an easy decision
(for example, working collaboratively is easier to do than not).

You must keep your eyes and ears open to ensure you get an early indication when
things slip back. If you have built up a network, use it to find out what's happening.

Culture and Behaviors

[582]

There are many ways to encourage collaboration, but you need to keep it lightweight
and ensure that those you are encouraging don't feel that this way of working is being
forced on them; they need to feel it's their idea. Here are some simple examples:

• Encourage everyone to use your online collaborative forum/messaging/chat
solution rather than e-mail—even incentivize its use at first to get some
buy-in.

• If the norm is for problems to be discussed at a weekly departmental
meeting, rather than having a 5-minute discussion at someone's desk, cancel
the departmental meeting and encourage people to get up and walk and talk.

• If the norm is headphones on and heads down, you should discourage this as
it simply encourages isolation and stifles good old-fashioned talking to
each other. If people like to listen to music while working, you can consider
something radical, such as a jukebox or some Sonos/networked speakers.

• Even if you don't follow a scrum methodology, use the daily stand-up
technique across the board—you can even mix it up across teams so
people can move between the stand-ups.

• Install some magnetic whiteboards around the office space, which will
encourage people to get up, mix, and be creative while explaining problems,
showing progress, or simply having fun and doodling.

• Ensure you mingle and keep open discussions with all teams—you never
know, you might hear something that another person has also been
discussing, and you can act as the CD and DevOps matchmaker.

Besides impacting openness and honesty, the physical environment can impact
(positively and negatively) the adoption of collaborative ways of working, so you
need to be mindful of this.

Let's again see what our personas can do to help:

• Collaboration is not the exclusive realm of engineers. Managers can
and should be seen to collaborate. Stan should be actively seen to be
collaborating, and if tools have been implemented, he and his peers
should actively use them.

• Devina and Oscar should practice what they preach and be highly
visible when collaborating. Even simple things such as encouraging
developers and operations engineers to go to the same pub on a Friday
lunchtime can make a difference.

Chapter 4

[583]

As collaboration becomes embedded within the business, you will see many changes
come to life. At first, these will be quite subtle, but if you look closely you'll soon
start to see them: more general conversations at peoples' desks, more I'm trying to do
X but not sure of the best way—anyone fancy a chat over coffee to look at the options? in the
online chat room, and more background noise as people talk more or share the joke
of the day.

Some subtle (or sometimes not so subtle) PR might help, for example, posters around
the office, coffee mugs, or even prizes for the most collaborative team; anything to
keep collaboration in sight and mind.

Let's leave collaboration for now and together move on to innovation and
accountability.

Fostering innovation and accountability
at grass roots
If you're lucky enough to work (or have worked) within a technology-based
business, you should be used to having innovation as an important and valued
input for your product backlog and overall roadmap. Innovation is something
that can be very powerful when it comes to implementing CD and DevOps,
especially when this innovation comes from the grass roots.

Many of the world's most successful and most used products have come from
innovation, so you should help build a culture throughout the business where
innovation is recognized as a good and worthwhile thing rather than a risky way
of advancing a product. Most engineers thrive, or at least enjoy, innovation, and if
truth be told, this was most probably one of the major drives for them choosing to
become engineers—this and the fine wine, fast cars, and the international jet-setter
lifestyle (okay, this might be stretching things a bit too far).

This isn't to say that they can all go off and do what they want; there are still
products to deliver and support. What you need to do is allow some room for
investigation and experimentation—rekindle the R in R&D. Innovation is not
just in the realm of software; there might be different ways of working or product
delivery methodologies that come to light that you can and should be considering.

Agile techniques such as Test-driven development (TDD), scrum,
and Kanban all started out as innovative ideas before gaining
wider notoriety.

Culture and Behaviors

[584]

Despite normal convention, innovation is not the exclusive right of solutions
and systems architects; anyone and everyone should be given the opportunity to
innovate and contribute new ideas and concepts. There are many ways to encourage
this kind of activity (competitions, workshops, and so on), but you need to keep it
simple so that you get a good coverage across the business. One simple idea is to
have a regular innovation forum or get-together, which allows anyone and everyone
to put forward, and if possible, prototype an idea or concept.

Innovation can increase risk, new things always do; therefore, the engineering teams
must understand that with the freedom they are given to make decisions and choices
comes responsibility, ownership, and accountability for the new stuff they come up
with, produce, and/or implement. They cannot simply implement shiny new toys,
tools, processes, and software and hand them off to someone else to support. The
somebody else's problem (SEP) or throw it over the wall approaches will no longer work.

A good example of this is the ACME systems plan to allow developers to deploy
code directly to production. On the face of it, this is very much what CD and DevOps
is all about, but one simple question caused the plan to falter. The question was who
is going to hold the pager?, or to bring this into the 21st century, are the developers going
to be on call when things go wrong out of hours? Ultimately, you need everyone involved
in the process of delivering and supporting software to have the same strong sense of
accountability so that the question need not be asked.

So, how can these values and behaviors be instilled into your organization? Let's see
what our personas can do to help:

• Stan should actively allow time for his team members to try things out
or experiment, be this by setting aside some 10 percent time or simply
encouraging them to put forward their ideas and suggestions for product
or productivity advancement.

• Devina and Oscar should actively pursue this agenda as part of discussions
with their managers during one-to-one's or team meetings. To help things
along, using some spare time on an idea, and then presenting it back, might
be a good thing as it shows commitment and that you're serious. Working
together collaboratively will also add credence.

Chapter 4

[585]

As your adoption of CD and DevOps matures, you will find that innovation and
accountability will become commonplace as the engineering teams (both software
and operations) will have more capacity to focus on new ways of doing things and
improving the solutions they provide to the business. This isn't just related to new
and shiny things; you'll find that there is renewed energy to revisit the technical
debt of old to refine and advance the overall platform.

Believe it or not, sometimes things will go wrong. We'll now look at how things that
don't go so well should be dealt with, and why a culture of blame is not a good thing
to have.

The blame culture
Encouraging a fail-fast way of working is a critical element to good agile engineering
practice; it is all well and good saying this, but this has to become a real part of the way
your business works; as they say, actions speak louder than words. If, for example,
we have a manager who thinks that pointing the finger and singling people out when
things go wrong is a good motivational technique, then it's going to be very difficult
to create an environment where people are willing to put themselves out and try new
things. A culture of blame can quickly erode all of the good work done to foster a
culture of openness, honesty, collaboration, innovation, and accountability.

Ideally, you should have a working environment where when mistakes happen
(we're only human and mistakes will happen), instead of the individual(s) being
jumped on from on high, they are encouraged to learn from the mistake, take
measures to make sure it doesn't happen again, and move on. No big song and
dance. Not only this, but they should also be actively encouraged to share their
experiences and findings with others, which enforces all the other positive ways
of working we covered so far.

Culture and Behaviors

[586]

Blame slow, learn quickly
In a commercial business, it might sound strange and be seen as giving out the wrong
message (for example, you might seem to be ignoring or encouraging failure), but if
lessons are being learned, and mistakes are being addressed quickly out in the open,
then a culture of diligence and quality will be encouraged. Blaming individuals for a
problem that they quickly rectify is not conducive to a good way of working. Praising
them for spotting and fixing the issue might seem wrong to some, but it does reinforce
good behaviors. The following illustration shows the possible impact of a blame slow,
learn quickly culture:

As blame diminishes, learning will grow as people will no longer feel that they have to keep looking over their
shoulders and only stick to what they know or are told to do

If managers are no longer preoccupied with the small issues,
they can focus on the individuals who create issues but don't fix
them or take accountability.

As you can no doubt understand, this culture change is not going to be easy for
some, especially for the managers who have built up the reputation of being Mr.
or Mrs. Shouty. Sometimes, they will adapt, and other times, they might simply
step out of the way of progress—as the groundswell gains momentum. They will
have little choice but to do one or the other.

Chapter 4

[587]

Let's again summarize this:

Do’s
Accepting
accidents will
happen

Encouraging a
fail fast, learn
quickly culture

Encouraging
accountability

Encouraging the
open and honest
sharing of lessons
learned

Not making a big
thing of issues

Focusing on
individuals who
don't exhibit good
behaviors

Don't’s
Pointing fingers

Calling out an
individual's
failings

Blaming before all
of the facts are
known

Halting progress

Removing the threat and culture of blame from the engineers' working life will
mean that they are more engaged, willing to be more open and honest about
mistakes, and more likely to want to fix the problem quickly.

Of course, there is a large element of trust required on all sides to make this
work effectively.

Culture and Behaviors

[588]

Building trust-based relationships across
organizational boundaries
Now, I will freely admit that this does sound like something that has been taken
directly from an HR or management training manual; however, trust is something
that is very powerful. We all understand what it is and how it can benefit us. We
also understand how difficult things can be with a complete lack of it. If you have
a personal relationship with someone, and you trust them, the relationship is likely
to be open, honest, and a long and fruitful one. Building trust is extremely difficult;
you don't simply trust a colleague because you have been told to do so—life doesn't
work this way. Trust is earned over time through peoples' actions.

Trust within a working environment is also a very hard thing to build. There are
many different reasons for this (insecurity, ambition, reputation, personalities, and
so on), so you need to tread carefully. You also need to be patient as it's not going
to happen overnight.

Building trust between traditional development and operations teams can be even
harder. There is normally a level or an undercurrent of distrust between these two
areas of the business:

• The developers don't trust that the operations team know how the platform
actually works or how to effectively investigate issues when they occur.

• The operations team don't trust that the developers won't bring the entire
platform down by implementing dodgy code.

This level of distrust can be deeply ingrained and is evident up and down the two
sides of the business. These types of attitudes, behaviors, and the culture they create
are all too negative. It's hard enough to get software developed, shipped, and stable
without playing silly games with who does what and who doesn't. If you have an
environment like this, then the business needs to grow up and act its age.

There is no silver bullet to forge a good trust-based relationship between two or more
factions; however, the following techniques proved to work for ACME systems and
might help you:

• If you arrange for some off-site CD or DevOps training, ensure that you get
a mix of software and operations engineers to attend and ensure they are in
the same hotel. You will be amazed how collaborative working relationships
start out in the hotel bar.

• If there are workshops or conferences you are looking at attending
(for example, DevOpsDays), make sure there's a mix of Devs and Ops in
attendance and a hotel bar.

Chapter 4

[589]

• If you are a manager, be very mindful of what promises and/or commitments
you make and ensure you either deliver against them or you are very open
and honest as to why you didn't/couldn't.

• If you are an engineer, act in exactly the same way.
• If you have set up an innovation forum (as mentioned previously),

encourage all sides to attend and contribute.
• Discourage us and them discussions and behaviors.
• If it's viable, try and organize job swaps or secondments across the software

and operational engineering teams (for example, get a software engineer
to work in operations for a month, and vice versa). This can also include
management roles.

We'll now move from trust to rewards and incentives.

Rewarding good behaviors and success
How many of us have worked with or been part of a business that throws a big post-
release party to celebrate the fact that against all odds you managed to get the release
out of the door? On the face of it, this is good business practice and management 101,
and after all, most project managers are trained to include an end of project party task
and budget in their project plans. This is not altogether a bad thing if everything that
was asked for has been delivered on time to the highest quality. Let's try rewording
the question.

How many of us have worked with or in a business that throws a big post-release
party to celebrate the fact that against all odds you managed to deliver most of what
was asked for and only took the live platform offline for 3 hours while they tried to
sort out some bugs that had not been found in testing?

If the answer to the question is quite a few, but it was a hard slog and we earned it, then
you are a fool to yourself. Rewarding this type of behavior is 100 percent the wrong
thing to do. The businesses that deliver what customers want and do it quickly are
the ones that succeed.

If you want to be a business that succeeds, you need to stop giving out the wrong
message. We did say that it was okay to fail as long as you learn from it quickly;
we didn't however mention rewarding failure to deliver. You should be rewarding
everyone when they deliver what is needed when (or before) it is needed. The
word everyone is quite important here as a reward should not be targeted at an
individual as this can cause more trouble than it's worth. You want to instill a sense
of collaboration and DevOps ways of working, so make the reward a group reward,
a party, a day out, and so on.

Culture and Behaviors

[590]

The odd few
Okay, so there might be the odd few who will put in extra effort when times get
sticky, and rewarding those individuals is not a bad thing; however, this should not
be the norm. If engineering teams (software and operational) are consistently being
told to work long days, long nights, and weekends, then there is something wrong
with the priority of the work. If, however, they decide to apply some extra effort to
overcome some long outstanding technical debt or implement some labor-saving
tools to speed things up, then this is completely different, and you should be looking
at specific rewards for these specific good behaviors.

At the end of the day, you want to reward individuals or teams for doing something
amazing that is above and beyond the call of duty, rather than simply successfully
releasing software. As CD and DevOps ways of working become embedded, you
will notice that you don't actually have what you would previously have called
releases anymore (they are happening too quickly to notice each one), and therefore,
you need to look at other ways to reward. For example, you can look at throwing a
party when a business milestone is hit (such as when you reach the next millionth
customer), when a new product successfully launches, or simply because it's sunny
outside and the bosses want to say thank you.

CD and DevOps will change the way the business operates, and this fact needs to be
recognized across all areas. As such, the way you reward people needs to change to
instill the good behaviors previously mentioned (openness and honesty, innovation,
accountability, and so on). This can be quite a shift for some businesses, and some
might even need to implement new reward systems, solutions, or processes to cater
for this.

One of the standard ways of rewarding people is via some kind of bonus or incentive
scheme. This will also need to change, but first you need to recognize how the current
system might foster the wrong behaviors and can stifle your implementation of CD
and DevOps.

Recognizing dev and ops teams are
incentivized can have an impact
There is a simple and obvious fact that some people might not instantly realize,
but it is something that is very real and very widespread throughout the entire IT
industry. This fact is that development teams are incentivized to deliver change,
whereas operations teams are incentivized to ensure stability and system uptime,
thus discouraging change. The following figure highlights this:

Chapter 4

[591]

Dev
� Change
� Speed
� Risk

Ops
� Stability
� Predictability
� Certainty

Incentivising developers to deliver more quickly is at odds with
incentivising operations teams with keeping things stable and safe

If you think about it, the two methods of incentivizing are at odds with each
other; operations teams get a bonus for reducing or even stopping change, and
development teams get a bonus if they deliver a lot of change. So, how do you
square the circle and allow a steady stream of change to flow through without
having the operations team up in arms about the fact that their bonus is at risk?

There's no simple answer, but there are some examples you can look at to ease
the pain:

Incentive Pros Cons
Have the same
incentives across
both Dev and Ops.

If you are incentivizing to allow
for continuous change, you will
increase the potential for having
CD and DevOps becoming the
norm as everyone involved will
focus on the same goal.

There is more risk as
people might think that
changing things quickly
is more important than
quality and system
uptime.

Including each
side of the DevOps
partnership in each
other's incentive
schemes.

If some of the bonus of the software
engineering team is dependent on
live platform stability, then they'll
think twice before taking a risk. If
some of the operations engineering
team's bonus is dependent on
enabling CD, they will think twice
before blocking changes just for the
sake of it.

If the percentage of the
swap is small, it might be
ignored as the focus will
remain on getting the
majority of the bonus,
which will still encourage
the old behaviors.

Replacing the
current incentive
scheme with one
that focuses on
good behaviors
and encourages a
DevOps culture.

This has the potential to remove
conflict between the engineering
teams (Dev and Ops) and would
encourage them to focus on what
is important: delivering products
customers want and need.

The reality is that it will
be quite difficult to get
a full agreement, and
get it in place quickly,
especially in a corporate
environment. This doesn't
mean it's not something
worth pursuing.

Culture and Behaviors

[592]

Whatever you do in regards to incentivizing and rewarding people, you need to
instill a sense of positivity around change, while at the same time ensuring risk
is reduced.

Embracing change and reducing risk
In the same vein as fostering innovation and accountability at grass roots, you need
to work across the wider organization to ensure they accept the fact that change is a
good thing and not something to be feared.

It is true to say that changing anything on the production platform—be it a new
piece of technology, a bug fix to a 15-year old code-base, an upgrade to an operating
system, or a replacement storage array—can increase the risk of the platform, or
parts thereof, failing. The only way to truly eliminate this risk is to change nothing,
or simply switch everything off and lock it away, which is neither practical nor
realistic. What is needed is a way to manage, reduce, and accept the risk.

Implementing CD and DevOps will do just that. You have small incremental changes,
transparency of what's going on, the team that built the change and the team that will
support it working hand in hand, a sense of ownership and accountability from the
individual(s) who actually wrote the code, and a focused willingness to succeed. The
challenge is getting everyone in the business to understand and embrace this as the
day-to-day way of working.

Changing people's perceptions with pudding
Getting the grass roots to understand this concept should be quite simple when
compared to other parts of the business that are, by their very nature, risk averse.
I'm thinking here of the QA teams, senior managers, project and program managers,
and so on. There are a few ways to convince them that risks are being controlled,
but the best way is via using the proof of the pudding methodology:

• Pick a small change and ensure that it is well publicized around the business
• Engage the wider business, focusing on the risk averse, and ensure they are

aware; also invite them to observe and contribute (team stand-ups, planning
meetings, and so on)

• Ensure that the engineers working on the change are also aware that there is
a heightened sense of observation for the change

• As the change is progressing, get the engineering teams involved to post
regular blog entries detailing what they are doing, including stats and
figures (code coverage, test pass rate, and so on)

Chapter 4

[593]

• As the release goes through the various environments to production, capture
as many stats and measurements as possible and publish them

• When all is done, pull all the above into a blog post and a post-release report,
then present them

You might be thinking that this is a vast amount of work, and to be honest, it is if
you follow the preceding steps for each and every change you make. What it does
do is serve a purpose; it proves to the business that change is good and risks can be
controlled and managed. I recommend you follow these steps a few times to build
trust and confidence—you can always refine later down the line. Another positive
you will find is that it will foster a culture of diligence at grass roots; if they are
very aware that the business is keeping an eye on things, especially when things
go wrong, then they will think twice before doing something silly.

It should be noted that even though the steps detailed will generate
additional work, this is nothing compared to how some organizations
currently function; changes are fully documented and risk assessed,
progress meetings are held, the project progress is publicized, and every
meticulous detail is captured and documented. Is it any wonder why
delivering software can be so painful?

As with anything in life, if you make a small change, the risk is vastly reduced. If you
repeat the process many times, the risk is all but removed and habits are formed. To
follow this thread, if infrequent releases contain a large amount of change, the risk is
large. Make it small and frequent, and the risk goes away. It's quite simple when you
look at it this way.

As part of the proof of the pudding example, there was a lot of publicizing and blog
posting going on. This should not be seen as an overhead, but a necessary part of
CD and DevOps adoption. Being highly visible is key to breaking down barriers
and ensuring anyone and everyone is aware of what is going on.

Being transparent
As we previously covered, being secretive about what you do and how you do it is
not conducive to building an open, honest, and trust-based working environment
or culture. If anyone and everyone can see what is going on there should be no
surprises. What we're looking for is a culture, and ways of working where change is
good and frequent, individuals work together on common goals, the wider business
trusts the product delivery teams to deliver what is needed when it is needed, and
the operations teams know what is coming. If there is a high degree of visibility
across the entire process, anyone and everyone can see this happening, and more
importantly, how effective it is.

Culture and Behaviors

[594]

You should look at the option of installing large screens around the office to display
stats, facts, and figures. You might well have something like this set up already, but I
suspect these screens display very technical information—system stats, CPU graphs,
alerts, and so on. I also suspect that most of these reside in the technical team areas
(development, operations, and so on). This is not a bad thing, it's just very specialized,
and those of a nontechnical nature might well ignore them or most likely not even
know that they exist. See if you can move some of the screens to communal areas of
the office or try and find some budget to buy new ones.

You should also complement this highly technical information with very simple,
easy to read and understand data related to your CD and DevOps process. You
should be looking at displaying the following kinds of information:

• Number of releases this day, week, month, and year against the number
yesterday, last week, last month, and last year

• The release queue and progress of the current release going through the
process and who initiated it

• Production system availability (current and historical)
• If you use an online scrum/Kanban board (such as AgileZen or Trello), then

consider having this data displayed to show your backlog, work in progress,
and work completed along with related stats such as velocity and burndown

• The latest business information such as share price, active user numbers,
the number of outstanding customer care tickets, and so on

The last point is very important. You should publish, display, and advertise
complementary information and data that is business-relevant, rather than simply
focusing on technical facts and figures. This will help to heighten engagement and
awareness outside of the technical teams. Having this information visible as you
progress through your adoption and implementation of CD and DevOps will also
provide proof that things are improving.

Chapter 4

[595]

Summary
We covered quite a lot of ground in terms of the human side of implementing CD and
DevOps throughout this chapter. Hopefully, it has been impressed upon you that the
culture in which you operate is essential for CD and DevOps to work. When it comes
to collaboration, you will find that trust, honesty, and openness are powerful tools that
allow individuals to take responsibility and accountability for their actions. Rewarding
good behaviors and removing blame will also help drive adoption.

At this point, you should have a plan and some insight into the importance of culture
and behaviors when implementing CD and DevOps. In Chapter 5, Approaches, Tools,
and Techniques, we'll look at some things that will help as you drive forward.

Approaches, Tools,
and Techniques

The preceding chapters focused on surfacing the issues within your delivery process
and defining a plan to address these by (hopefully) implementing CD and DevOps.
The chapters also taught you how to set up the working environment to ensure that
you're successful. The following chapters will focus on the steps you need to consider
when executing against the plan. First, we will focus on some of the technical aspects.

There will be quite a lot of things to cover and take in, some of which you will need,
some of which you might have in place, and some of which you might want to
consider implementing later down the line. Whatever the situation, what follows
should provide some small chunks of wisdom, or information at the very least, that
you can adapt or adopt to better fit your requirements. I should point out that the
majority of this chapter is focused on software engineering (that is, the Dev side of
the DevOps partnership); however, quite a lot of the areas covered are as relevant to
system operations as they are to software engineering.

In this chapter, we'll cover the following topics:

• Examples of proven engineering best practice
• Some simple rules and tools
• Automated CI and CD tooling
• The value of monitoring and metrics
• How a manual process can be just as effective as tools

It is worth pointing out at this point that the tools and approaches mentioned are not
mutually exclusive—it is not a case of all or nothing—you just need to pick what works
for you. If you want to look at the tools in more detail, take a look at Appendix A, Some
Useful Information. Let's start with some good old-fashioned engineering best practice.

Approaches, Tools, and Techniques

[598]

Engineering best practice
For those of you who are not software engineers or from a software engineering
background, your interest in how software is developed might be extremely
minimal. Why, I hear you ask, do I need to know how a developer does their job?
Surely, developers know this stuff better than I do? I doubt I even understand 10
percent of it anyway!

To some extent, this is very true; developers do (should) know their stuff, and having
you stick your nose in might not be welcome. However, it does help if you at least
have an understanding or appreciation of how your software is created, as it can
help you identify where potential issues could reside. Let's put it another way: I have
an understanding and appreciation of how an internal combustion engine is put
together and how it works, but I am no mechanic—far from it in fact. So, when I take
my car to a mechanic for a routine service, I will question why he has had to replace
all of the exhaust system because he found a fuel-injector problem—in fact, I think I
would vigorously question why.

It is the same with software development and the process that surrounds it. If you're
not technical in the slightest, it still helps to have an idea of how things are done. So,
when you have to question why things are done in a specific way, you may be able
to spot the slippery "blind them with technobabble—that'll scare them off" types.

CD is based on a premise that quality software can be defined, developed, built,
tested, and shipped very quickly many times in quick succession—ideally, we're
talking hours or days at the most. The following figure depicts this cycle:

Define

DevelopShip

BuildTest

A typical software delivery cycle

Chapter 5

[599]

When looking at a typical agile development project, the first four steps (starting
from Define) happen quite quickly and—depending on the development techniques
used—might happen in a slightly different order. In a waterfall style project, the first
four steps might take a while longer, sometimes considerably so. What both methods
suffer from is their shipping step. This is normally the step that takes the time, effort,
and resources—as you will have no doubt found out during the inspect stage (see
Chapter 2, No Pain, No Gain). CD and DevOps can help reduce this pain and the time
taken to ship, but you need to ensure beforehand that your engineering practices are
as optimal as they can be; otherwise, you might not reap the benefits of a CD and
DevOps approach.

Let's look at some fundamentals in terms of software engineering:

• Commit and merge small code changes frequently into a source
control repository

• Do not make code overly complex and keep it maintainable
and documented

• Avoid introducing breaking changes
• If you have automated tests, run them very frequently

(ideally, continuously)
• If you have a CI solution that controls your build and test suite,

run it frequently
• Use regular code reviews
• Refactor as you go

As you can see, the preceding list is not overly complex, and to most software
engineers who work on modern software development projects, this list is pretty
much common sense and common practice.

You might be able to speed up your software delivery process
without using the preceding steps, but it will not be easy, nor
will it be pretty or sustainable. What you are really trying to do
is find issues as soon as possible. If you're making small changes
frequently and reviewing/testing them regularly, you'll have a
better chance at spotting potential bugs early on.

What it comes down to is that if you do not find software problems early on, these
problems will slow you down later on and will influence the overall project. To put
it another way, if there are next to no bugs when the software is delivered, releasing
it should be a doddle.

Let's break these down a little further, starting with source control.

Approaches, Tools, and Techniques

[600]

Source control
Source control is a must for modern collaborative software development.
There are many different source control tools and solutions available (see http://
en.wikipedia.org/wiki/Comparison_of_revision_control_software if you
don't believe me). These range from commercially licensed (such as Team Foundation
Server (TFS) or ClearCase) to open source ones (such as GIT, SVN, or Mercurial),
so you will not struggle to find one that meets your needs and/or budget. If your
code is in source control, it is versioned, it is available to anyone who has access,
and it is secure.

There are books and reference materials aplenty available that cover this subject in
much more depth, so I will not dwell on it here. Suffice to say, if you do not have a
source control solution, then implement one. Now!

It should be noted that the use of source control should not be restricted
to software source code. You can (and should) utilize source control
for anything that can be changed within your system as a whole. This
includes things such as system configuration, start-up scripts, server
configuration, network configuration, and so on. This is even more
important if you are considering automated provisioning solutions
(we'll cover more on this later.)

A source control solution is an essential tool for CD and DevOps adoption, as is the
practice of keeping changes small and frequent.

Small, frequent, and simple changes
Keeping changes small means the impact of the change should also be small,
the risks reduced, and the opportunities for change increased. This sounds overly
simplistic, but this is also very true. The following diagram gives some indications
on how this could look:

Version 1.0
Version 2.0

Version 3.0

Ver 1.0 Ver 1.2 Ver 1.3 Ver 1.4 Ver 1.5 Ver 1.6 Ver 1.7 Ver 1.8 Ver 2.0 Ver 2.1 Ver 2.2 Ver 2.3 Ver 2.4 Ver 3.0 Ver 3.1 Ver 3.2 Ver 3.3

Large releases versus small incremental releases

http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software

Chapter 5

[601]

What this diagram also tries to illustrate is the difference between working with
large clumps of changes and small chunks of incremental changes. Typically, the large
clump will consist of many small code changes—sometimes hundreds or thousands
of lines of code—which are developed in isolation and then brought together at the
last minute, tested, and merged into the core codebase. This, as you can imagine,
brings with it many challenges and, if truth be told, lots of waste. Working with a
small amount of change—maybe a few lines of code—doesn't bring this overhead
and vastly reduces complexity and the potential for late-breaking quality issues.

Another disadvantage of working with large clumps of change is something I like to
call version overlap. Typically, when development on a version has been completed,
the task of bringing it all together and getting it working starts. As it doesn't normally
need the whole team to do this, while the poor souls who have been given this task get
on with it, the rest of the team start working in parallel on the next version. This can
create a whole new set of problems—for example, the need to create more branches
in source control or the fact that additional changes will be made to code that hasn't,
as yet, been fully verified.

You might be thinking that there's no real point in delivering in chunks if you don't
currently have the luxury of shipping your code frequently. To some extent, this is
true; however, once you have CD and DevOps up and running, you'll be working in
this mode. So, why not start getting used to it and gain some advantages beforehand?

It should be noted that this practice need not be restricted to software
engineering; it is just as relevant to changes in the system operations
area as well. For example, making a small, isolated tweak to server
configuration is much safer and easier to control and monitor than
making sweeping changes all at once. If you make small changes,
you have a much better chance of seeing if the change had an impact
(positive or negative) on the overall operation of the platform.

We'll now move on to how breaking changes can affect your platform.

Approaches, Tools, and Techniques

[602]

Never break your consumer
Your platform will most probably be complex and have quite a few dependencies—
this is nothing to be ashamed of and is quite normal. These dependencies can be
classified as relationships between consumers and providers. The providers can be
anything from shared libraries or core code modules to a database. The consumers
will call/execute/send requests to the providers in a specific way as per a predefined
API spec (sometimes called a service contract). If, for some reason, the provider has
been changed so that what is returned is not what the consumer expects or differs
from what was originally agreed upon, the consumer might behave in an unexpected
way, throw an error, or simply crash.

The rule of thumb here is to avoid these situations where possible. Avoidance
techniques can range from creating a dependency map of your entire platform
through running impact analysis of each change to using simple peer code reviews
to ensure that nothing is amiss. Do some research and see what fits best.

It should be noted that there might be exceptions when these breaking changes
cannot be avoided. In such cases, you should have a strategy planned out to cater for
this. An example strategy would be to accommodate side-by-side provider versioning,
which would allow you to run more than one version of a software asset at the same
time on the same platform, thus allowing consumers to migrate from one version of a
provider to another over time.

Within the system operations area, the never break your consumer rule
should also apply. For example, the software platform could be classed
as a consumer of the server operating system (the provider); therefore,
if you change or upgrade the operating system, you must ensure that
there are no breaking changes that will cause the consumer to fail.

There might be times when the consumer/provider relationship fails, as the person or
team working on the provider is unaware of the relationship. To overcome this, or at
least to minimize the risk, open and honest peer-working practices should go some
way to help.

Open and honest peer-working practices
There are many different agile software delivery methodologies in use today,
but they all revolve around some form of collaborative and transparent ways of
working, where those who are writing code regularly share their workings with
others. Even the most capable engineer on the planet is human, and they can/will
make mistakes—they will, of course, be reluctant to admit this.

Chapter 5

[603]

Having a process where change is regularly reviewed by the peer group—which
could include peers outside of the development team—or simply reviewed by
someone sitting next to you will, among other things, help find issues early, help
share knowledge, and help build relationships across the peer group. There are
even tools available that will help you with this process.

Having an open, honest, and transparent peer-review process is as
important within an operations team as it is within a development
team. Changes made to any part of the platform run a risk, and
having more than one pair of eyes to review will help reduce this
risk. As with software code, there is no reason to not share system
configuration changes.

One normally unforeseen advantage of peer working is that if a change fails to get
through peer review, the impact on the production system is negated. It's all about
failing fast rather than waiting to put something live to find it fails.

Fail fast and often
Failing fast and often might seem counterintuitive, but it's a very good ethos to work
to. If a bug is created but it is not found until it has gone live—which is sometimes
referred to as an escaped defect—the cost of rectifying the bug could be relatively
high (it could be a completely new release). In addition, allowing defects to escape
into the wild might impact your customers, your reputation, and possibly, your
revenue. Finding faults early is a must.

Some engineering techniques such as Test-driven development (TDD) are based on
the principle of exposing faults with software very early on in the process. If the code
written fails to clear the first hurdle of tests, it goes no further.

This might sound strange—especially for the managers out
there—but if bugs are found early on, you should not make a
big issue of it, and you should not chastise people who have
introduced the bugs (remember the no-blame culture covered
in Chapter 4, Culture and Behaviors). There might be some banter
around the office but nothing more. Find the problem, find out
why it happened, fix it, learn from it, and move on.

To effectively find issues early on, you need to run your tests on a regular basis.
The use of automation can help here.

Approaches, Tools, and Techniques

[604]

Automated builds and tests
Finding faults early provides rapid feedback to the engineer as to whether the
changes they have made actually work (or not as the case might be). You could, of
course, use manual testing processes to achieve this, but this can be cumbersome,
inconsistent, prone to error, and not always fully repeatable.

Implementing automation will help speed things up, keep things consistent, and,
above all, provide confidence. If you are repeatedly running the same builds and
tests against your software and getting the same results, it's a strong bet that the
software works as expected. It is, therefore, plausible that if you change one thing
(remember small and frequent changes) and the previously working builds or tests
fail, there is a very good chance that the change has broken something.

Test data can be a bit of a thorny issue and can cause more
problems than it solves. A good rule of thumb would be to
create and tear down the test data you need when the test
is being run; this way, the outcome of the test will not be
impacted by pre-existing data, which might itself be faulty.

How you go about choosing the best approach, tools, and techniques for automation
can be daunting, but applying the KISS rule will help; start small, focusing on your
major pain points, and then evolve as your confidence grows. Suffice to say that the
investment in automation will reap rewards. One such reward is the ability to use
continuous integration.

Continuous Integration
Continuous Integration (CI) is a tried and tested method of ensuring that a given
software asset builds correctly and plays nicely with the rest of the platform. The
keyword here is continuous, which, as the name implies, is as frequent as possible
(ideally, upon each change). Just like the aforementioned source control solutions,
there are quite a few CI tools available, from the commercially licensed (such
as Bamboo, Go, or TeamCity) to open source ones (such as Jenkins, Hudson, or
CruiseControl). A pretty comprehensive list is available at http://en.wikipedia.
org/wiki/Comparison_of_continuous_integration_software—which also
provides a good indication of which CI solutions play nicely with each of the
source control solutions currently available.

http://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software
http://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software

Chapter 5

[605]

CI systems are basically software solutions that orchestrate the execution of your
automated scripts when certain events occur, for example, when you commit a
change to source control. These CI jobs contain a list of activities that need to be run
in quick succession; for example, get the latest version of source from source control,
compile to an executable, deploy the binary to a test environment, get the automated
tests from source control, run them, and capture the results.

If all is well, the CI job completes and reports a success. If it fails, it reports this fact
and provides detailed feedback as to why it failed. Each time you run a given CI job,
a complete audit trail is written for you to go back and compare results.

CI tools can be quite powerful, and you can build in simple logic to control the
process—for example, if all of the automated tests pass, the CI tool can add the
executable to your binary repository, or if something fails, it can e-mail the results
to the engineering team. You can even build dashboards or radiators to provide
an instant and easy-to-understand visual representation of the results.

CI solutions are a must for CD. If you are building and testing your
software changes on a frequent basis, you can ship frequently. Using
a CI solution will also help in building the DevOps relationships, as
the Ops half of the relationship will be able to see proof that builds
and tests have been successful. They could also be heavily involved
in defining and creating some of the dashboards.

Your CI solution will help you build and test your software to ensure it is fit to ship.
You now need to ensure you can take into account how to move this built software
towards the production environment. Before we do this, there is one more thing to
take into account.

Using the same binary across all environments
When a software asset is ready to be shipped, it has normally been built/compiled into
an executable. To ensure that the software functions in the production environment as
it did in your development and/or test environment(s), you need to ensure that this
self-same unchanged binary is used. This might sound like obvious common sense,
but sometimes, this is overlooked or simply ignored.

There might be issues related to this which are not obvious, for example, if the
software needs access to certain secure data (such as credentials to connect to a
database). If you have traditionally baked this into the binary at build time (or worse
still, hardcoded this in source), you will need to change this practice. This might well
require some additional development work and should not be taken lightly.

Approaches, Tools, and Techniques

[606]

Let's now look at the optimal use of environments for various steps within your
development process.

How many environments are enough?
How many environments you need depends on your ways of working, your
engineering setup, and, of course, your platform. Suffice to say that you should not
go overboard. There might be a temptation to have many environments set up for
different scenarios: development, functional testing, user-acceptance testing, and
performance testing. If you have the ability to ensure that all the environments can be
kept up to date (including data) and you can easily deploy to them, then this might be
viable. The reality is that having too many environments is counterproductive and can
cause far too much noise and overhead.

The ideal number is two—one for development and one for production. This might
sound like an accident waiting to happen, but many small businesses manage fine
with such a setup.

For your development environment, you could look at virtualization
on the desktop (using a tool such as Vagrant or Docker) where you can
pretty much spin up a virtual copy of your production environment
on a developer's workstation (on the presumption that there's enough
horse power and storage available).

It's a fact of life that as a business grows, so does the need to be risk averse. This
normally means more checks and balances are needed, which lead to burdensome
processes and inevitably more and more environments being created to allow for
these processes to work. It need not be this cumbersome. My advice is to be very
prudent and somewhat ruthless when it comes to the number of environments you
need (need rather than want). Get the Dev and Ops team together with the team(s)
that look after change and risk management to ensure that there is a middle ground
that allows for speed of delivery while, at the same time, allows for a reduced/
managed risk.

When your CD and DevOps adoption has matured, you will be
shipping code very quickly. Try to imagine how much overhead
managing and maintaining multiple environments will be and
how it could slow you down.

Chapter 5

[607]

One thing that might sway this decision is having the ability to develop against a
production-like environment.

Developing against a production-like
environment
As we've mentioned previously, there are many ways to ensure that a software
change will play nicely when it is deployed to the production platform. By far the
easiest is to actually develop and test against an environment that is as close to
your production environment as possible.

The utopia would, of course, be to develop and test against the production
environment, but this is very risky, and the possibility that you could cause
outage—albeit inadvertently—is quite high. Therefore, having an environment
that closely resembles the production environment is the next best thing.

As mentioned previously, there are tools available to allow
developers (or anyone who wants to) to spin up a virtual
version of your production environment.

With this kind of environment in place, you can then develop in isolation, but be
more confident that the changes that are being made will play nicely when you ship
the software to the production environment. There is one thing you will need to
take into account with this approach—which is also true of any development or test
environment—that being realistic like-live data. You need to consider how you can
create a realistic subset of your production data. Alternatively, you could consider
allowing access to production databases (as long as this access is secure). I suggest
you work with your database administrator (DBA) and Security Operations
(SecOps) team to work out the best approach.

You are starting to get all of the building blocks in place to realize your goal.
There are still, however, few other hurdles to get over, one of them being how you
seamlessly move the fully built and tested software asset through to production.
Here is where CD tooling comes into play.

Approaches, Tools, and Techniques

[608]

CD tooling
You could consider CD tools as being the natural evolution of the aforementioned CI
tooling. Instead of controlling and orchestrating the build and test process, CD tools
control and orchestrate the act of deploying the built software components to the
various environments you have. Currently, there doesn't seem to be a standard set
of standalone CD tools. Instead, many vendors and tool creators have extended their
products to include this functionally.

Before committing to a tool or solution, you should consider some of the
following questions:

• Can it deploy the same binary to multiple environments?
• Can it seamlessly access the binary and source repositories?
• Can it remotely invoke and control the installation process on the server

that it is being deployed to?
• Is it capable of deploying database changes?
• Does it have the functionality to allow for queuing up of releases?
• Does it contain an audit of what has been deployed, when, and by whom?
• Is it secure?
• Can it interact with the infrastructure to allow for no-downtime

deployments?
• Can it/could it orchestrate automated infrastructure provisioning?
• Can it be extended to interact with other systems and solutions such

as e-mail and change-management, issue-management, and project-
management solutions?

• Does it have simple and easy-to-understand dashboards that can be
displayed on big screens around the office?

• Can it interact with and/or orchestrate the CI solution?
• Will it grow with our needs?
• Is it simple enough for anyone and everyone to use?

If you manage to find a tool (or collection of tools) that answers most/all of these
questions, then congratulations! If not, then you should seriously consider building
some of your own tools (or possibly bolting some existing tools together). After
all, you want to enhance your process with tools rather than restrict your process
because of the tools you chose.

Chapter 5

[609]

It should be noted that deployment of database changes via CD
tooling can be a very complex thing to do compared to deploying
software. If this is a must-have requirement, you should take time
and run some trials before committing to a tool or approach.

Let's spend some time digging into a couple of the considerations listed earlier,
starting with automated provisioning.

Automated provisioning
If you are lucky enough to have a platform (or have re-engineered your platform)
that can run on virtual infrastructure, then you can consider automated provisioning
as part of the deployment process.

Automated provisional tools are available for non-virtualized
(read physical) environments and platforms, but these can be overly
complex and costly. If you can utilize virtualization, you should.

Automated provisioning is nothing new. The likes of Amazon and Google have
been providing their cloud-based servers for a while now, and you have been able to
provision what servers you want when you need them (for a price).

Having automated provisioning as a step within the deployment process is something
that is extremely useful and powerful. It should be noted that it can also be quite
complex and, at times, painful to implement—unless you know what you're doing.

As is normal within the IT industry, there are many buzzwords floating around to
add to this complexity—Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service
(PaaS) being the most common ones. Simply put, automated provisioning solutions
allow you to programmatically talk to a system; provide it with a recipe that contains
things such as server spec, operating system, configuration, and so on; and it spits out
a server at the other end.

In addition to IaaS and PaaS, there's another widely used buzzword—Infrastructure-
as-Code (IaC). In simple terms; this is, as the name implies, code written in what
could be (and pretty much is) classed as a development language that defines the
recipe and the process of provisioning.

Infrastructure-as-code is an area where the notional line between
Dev and Ops becomes blurred, and most of the aforementioned
engineering practices become as relevant to your average Oscars
as they do for your Devinas.

Approaches, Tools, and Techniques

[610]

With automated provisioning, getting your software up and running can be
relatively simple. You have the fully tested software asset, and you have the
recipe for your environment/server configuration, so the act of deployment
could be as simple as shown here:

� Provision a server
your software asset
needs to run on

� Deploy and install
the software asset
onto the server

� Add the new server
to your platform

� Start using it

OK, so there is a little more to it than that, but to all intents and purposes, if you have
the ability to do this, then there is no reason you should not consider it. If you wish
to go down this route, it is vitally important that your CD tooling allows for it. One
other benefit of automated provisioning at deployment time is that it can help a great
deal in terms of no-downtime deployments.

No-downtime deployments
One of the things that come with large releases of software (legacy or otherwise) is
the unforgivable need to take some or all of your production platform offline while
the release happens. Yes, I did say unforgivable, because this is exactly what it is.
It is also wholly avoidable.

If you are operating a real-time online service, you can bet a pretty penny that your
customers will not take kindly to not being able to access your system (or more
importantly, their data) for a few hours so that you can upgrade some parts of it.
There is also a very strong possibility that they will look upon this with distrust
as they'll be pretty sure something will go wrong once it's up and running again.
It will and you will then be in damage-limitation mode to keep them happy. They
might even shop around to find a competitor who does not have downtime.

Chapter 5

[611]

OK, so this is a bit on the dark and negative side, but this is the reality, even more so
with today's social media and viral ways of spreading bad news—some say that bad
news travels faster than anything else known to man. The last thing you need is bad
news generated because of a release; this will knock your confidence, tarnish your
reputation, and erode any trust you had built up within the business. Release-related
incidents can and will happen, so adding insult to injury is not ideal.

There are many simple things that can be done to remove the need for downtime
deployments, some of which we have already covered:

• Ensure the never break your consumer rule is followed religiously
• Ensure your changes are small and discrete
• If possible, implement automated provisioning and integrate this as part

of your CD tooling
• Implement load balancers and have the CD tooling orchestrate servers in

and out of the pool during the deployment
• If you cannot avoid implementing breaking changes, then do so gradually

rather than with a big bang

There are, of course, many more things that you might be aware of or can find
information on elsewhere, but suffice to say that if you ever have to take your
platform offline to release software, something is fundamentally wrong.

One thing to point out, which might not be obvious, is that it's not just the production
environment that should have maximum uptime. Any environment that you rely
on for your development, testing, and CD should be treated the same. If the like-live
environment is down, how are you going to develop? If your CI environment is down,
how are you going to integrate and test? The same rules should apply across the
board—without exception.

To reuse a metaphor from an earlier chapter, there is an elephant in the room that
we've been skirting around. This elephant has fast become a must-have big-ticket
item for most software businesses and is seen as synonymous with the adoption of
CD and DevOps. This elephant is the cloud.

Approaches, Tools, and Techniques

[612]

The cloud
As mentioned earlier, delivering software using cloud solutions and technologies
has been around for a while; however, the vast majority of businesses around the
globe have not taken full advantage of this phenomenon as yet —especially in their
production environments. The uptake of cloud solutions and technologies within
the enterprise space, for example, is growing, but the numbers small and uptake
are still very slow. That's not to say it can't be done; it's just a bigger leap for some
well-established and old-school businesses.

One of the major advantages of using cloud-based infrastructure is the plethora of
mature and proven tools, technologies, and techniques that have emerged in recent
years. You can pick them up with relative ease and—being mostly open source—
without heavy investment. There's also a fast-growing and vastly experienced
community globally available that can help you at every stage.

Adopting cloud-based technologies can help with accelerating your CD and DevOps
adoption. The aforementioned plethora of tools will allow you to fast track some
areas of your adoption—for example, you would be able to let engineers spin up new
servers with relative ease to simply try some experiments with a new CI module or
see whether an OS upgrade has any impact on the software platform.

In a quid pro quo kind of way, adopting DevOps ways of working can also help
accelerate the adoption of cloud-based solutions and technologies. You'll need
closely-knit Dev and Ops teams that can work seamlessly and collaboratively to
implement, set up, and manage your virtual IaC-based environment. They will
also need to work closely together to monitor everything that is happening in
their now globally distributed platform.

Before you go all guns, there are, however, a few caveats you should take into account
when it comes to cloud adoption. Here are a few examples:

• A major hurdle for some is the simple fact that the skills and experience
needed to effectively use these tools, technologies, and techniques are more
attuned to developers than traditional system operators—more Dev than
Ops. There is, therefore, something of a learning curve and possibly some
skillset realignments that are required.

• Scale can also bring new problems—imagine trying to deploy a software
asset to thousands of servers without a Dev and Ops team working
cohesively with a shared toolset in a highly collaborative way.

Chapter 5

[613]

• There is also the age-old issue of security. It's hard enough for your average
SecOps person to ensure adherence to regulations and data security when
your data lives on servers that are sitting in a locked-down server room—
imagine their reaction to we're moving it all to the cloud. Without having open,
honest, and trust-based relationships in place, you're going to struggle to
help these people overcome their initial shock and feeling of dread.

I'm pretty sure you would be able to add to this list; however, you will find that
the proven advantages of adopting cloud-based solutions and technologies will
outweigh the caveats.

Previously, we covered open and honest ways of working as part of engineering
best practices. Openness and honesty are just as important when it comes to CD.
A good way of providing this level of transparency is to monitor everything and
have it available to all.

Monitoring
One of the most important ways to ensure whether CD and DevOps is working is
to monitor, monitor, and then monitor some more. If all of the environments used
within the CD process are constantly being observed, then the impact of any change
(big or small) is easy to see—in other words, there should be no hidden surprises.

If you have good coverage in terms of monitoring, you have much more
transparency across the board. There is no reason why monitoring should be
restricted to the operations teams; everyone in the business should be able to see
and understand how any environment—especially the production platform—is
performing and what it is doing.

There are plenty of monitoring tools available, but it can be quite difficult to get a
single view that is consistent and meaningful. For example, something like Nagios
is a pretty good tool for monitoring infrastructure and servers, Graphite is pretty
good at collecting application metrics, and Logstash is pretty good at collecting and
analyzing server logfiles. Unless you can tie them all together into a single coherent
view, things will look disjointed. Ideally, you should try and aggregate the data
from these tools—or at least try and integrate them—and present a unified view of
how the production platform (or any environment for that matter) is coping and
functioning. You will be surprised how much extremely valuable data you can get
and how it can direct your development work, as the engineers can see exactly how
their software or infrastructure is behaving in real time with real users.

Approaches, Tools, and Techniques

[614]

Monitoring is a must for CD and DevOps. As change is being made to
production (software or infrastructure), both the Dev and Ops sides of
the DevOps partnership can see what is going on and assist when/if
problems occur.

Another less-obvious positive that monitoring can bring you is proof that CD is not
having an adverse impact on the environment to which you are deploying. Let's
assume that you are using some graph over time monitoring solution that is recording
and graphing things such as network throughput, server load, and application
performance. If you, then, somehow get your CD tool(s) to record a spike or a marker
to the graph when a deployment takes place, you can then visually see when the
deployment took place and what impact, if any, it had. If the other metrics show little
or no change during/after the deployment, you can be pretty confident that there has
been no impact. The following figure shows this (the deployment took place at 21:30):

An example graph over time showing a deployment

Up until this point, we have mainly focused on technical solutions. These solutions
might help to provide you with much of what you need in your toolbox. However,
there is still room for simple manual processes, which complement the technical
solutions.

When a simple manual process is also an
effective tool
Even if you have enough tooling to shake a stick at, you will no doubt have some
small and niggling challenges that cannot be overcome with tooling and automation
alone. To be honest, tooling and automation can be overkill in some respects and can
actually create barriers between certain parts of the organization you are trying so
hard to bring together—here, I am talking about the Dev and Ops partnership that
forms DevOps.

Chapter 5

[615]

If tooling and automation completely negate the need for human
interaction and discussion, you might well end up back where you
started. You might also find that it is almost impossible to automate
your way out of a simple problem.

Let's take, for example, the thorny issue of dependency management. As a software
platform matures, many interdependencies will form. If you are deploying your
code using a CD process, these many interdependencies become ever-moving targets
where components are being developed and deployed at different rates. You can try
to capture this within your CI process, but something somewhere might be missed,
and you could end up inadvertently bringing down the entire platform because
component B was deployed before component A.

You can try to map this out and build into the tooling rules to restrict or at least
minimize these moving targets, but the rules might end up more complex than
the original dependencies themselves. Alternatively, you could simply agree on a
process whereby only one change happens at any given point in time. To feed into
this, you can implement a simple queuing mechanism written on a whiteboard and
reviewed regularly by all of the engineering and operations teams.

This approach worked extremely well for ACME systems. The following is what
they did:

• They obtained blanket agreement from everyone that only one change
would go through to production at any given point in time. They called
this a deployment transaction.

• None of the CD tooling was changed to have this restriction built in;
they simply relied on common sense and collaborative ways of working.

• To highlight the fact that someone was making a change to production
(either a deployment or operational change), that person held the production
environment token, which was in the form of a plush toy animal and was
given the name the deployment badger. If you had the deployment badger,
you were changing production.

• They implemented a simple prioritized queue system using a whiteboard.
Each morning, whoever wanted to make a deployment would come along
to the deployment stand-up where everyone agreed the order in which
deployments (or changes) would be made that day.

• Screens were installed throughout the office (not just the Dev and Ops areas),
showing a real-time dashboard of what was going on.

Approaches, Tools, and Techniques

[616]

All very simple, but what this gave ACME systems was a way to overcome
dependency hell (for example, if they could only change one thing at a time,
there was an implied logical order of which change went before another) and
built a sense of collaboration throughout all the teams involved.

Other very simple manual solutions you can use could include the following:

• Use collaborative tools for real-time communication between everyone
(that is, internet relay chat (IRC), chat rooms, or similar) and integrate
this into your CD tooling so that deployments are announced and can
be followed by all

• If your management is uneasy about having developers deploy to
production without involving the operations team, set up a workstation
within the operations area, call it the deployment station, and make sure
that's the only workstation from where live deployments can be run from

• If instant rollback is needed should a deployment fail, consider simple ways
of rolling back, such as deploying the previous version of the component
using the CD tooling

• Consistently inspect and adapt through regular retrospectives to see what
is working and what is not

As you can tell, it's not all about technical solutions. If simple manual processes
or tweaks to the ways of working are sufficient, then why bother trying to
automate them?

And so ends the lesson—for now. Let's recap what we have covered throughout
this chapter.

Summary
As stated at the beginning of this chapter, there is a lot to cover and take in. Some
of it is relevant to you now, and some of it will be relevant for the future. All things
considered, you need to ensure that you have the technical building blocks in place.
You need to ensure that you are using engineering best practice, have the necessary
tools and solutions in place, work in small chunks of change rather than big clumps,
consider how many environments you actually need, consider simple manual
processes over technology where they fit best, and monitor, monitor, and then
monitor some more.

As you can see, there is quite a bit that needs to be done. It's not all technical either;
simply convincing people to adopt and use the tools and processes you implement
is no small task. In Chapter 6, Hurdles Along the Way, we'll look at some of the other
hurdles and challenges you'll face.

Hurdles Along the Way
Up until now, we have been focusing on the core tools and techniques you'll need
in your toolbox to successfully implement and adopt CD and DevOps. Along the
way, we looked at a few of the hurdles you'll have to get over. We'll now look at
some of these potential hurdles in more detail and the ways to overcome them
or at least minimize the impact of them so that you can drive forward with your
goal and vision.

What follows is by no means an exhaustive list; however, there is a high probability
that you'll encounter at least one or two of these problems along the way. The
main thing that you need to do is be aware that there will be the occasional storm
throughout your journey. You need to understand how you can steer your way
around or through it and ensure that it doesn't ground you or completely run the
implementation onto the rocks—to use a nautical analogy for some reason.

What are the potential issues you need to
look out for?
Depending on your culture, environment, ways of working, and business maturity,
there might be more potential hurdles than you can shake a stick at. Hopefully, this
will not be the case, and you will have a nice, smooth implementation, but just in
case, let's go through some of the more obvious potential hurdles. What follows
are some example hurdles you may encounter:

• Individuals who just don't see why things have to change and/or simply
don't want to change how things are

• Individuals who want things to go quicker and are impatient for change
• The way people react to change at an emotional level

Hurdles Along the Way

[618]

• A lack of external understanding or visibility of what you are trying to achieve
might throw a spanner in the works when business priorities change

• Red tape and heavyweight corporate processes
• Geographically diverse teams
• Unforeseen issues with the tooling chosen for the tool kit (technical

and nontechnical)
• Recruitment

The list could be much longer, but there's only so much space in this book. Let's
therefore focus on more obvious potential issues that could if left unchecked run the
implementation of CD and DevOps into shallow waters or, worse still, aground. We'll
start by focusing on individuals and how they can have an impact, both negative and
positive, on your vision and goal.

Dissenters in the ranks
Although the word dissenters is a rather powerful one to use, it is quite representative
of what can happen should individuals decide what you are doing doesn't fit with
their view of the world.

As with anything new, some people will be uncomfortable, and how they react
depends on many things, but there's a strong chance that, you will have some
individuals who decide that they are against what you are doing. The whys and
wherefores can be examined and analyzed to the nth degree, but there is something
very important for you to realize: if one or two individuals are loud enough, they
can redirect your attention from your vision and goal. This is exactly what you
don't want to happen.

This is nothing new. If you look back at the early days of agile adoption, there are
plenty of examples of this phenomenon. The individuals involved in the adoption
of agile within an organization broadly fall into three types:

• A small number of innovators trailblazing the way
• A larger number of followers who are either interested in this new way

of doing things or can see the benefits and have decided to move in the
direction that the innovators are going

• Finally, the laggards who are undecided or not convinced that it's the
right direction to go.

Chapter 6

[619]

The general consensus is that effort and attention should be focused on the innovators
and followers as this makes up the majority of the individuals involved. The followers
who are moving up the curve towards the innovators need some help to get over
the crest and over the other side, so more attention is given to them. To focus on the
laggards would take too much attention away from the majority, so the painful truth
is that they either shape up or ship out—even if they're senior managers. This might
seem rather brutal, but this approach has worked for a good number of years, so there
must be something in it.

So, let's consider our dissenters or laggards in terms of our implementation; what
should you do? As previously pointed out, if they are loud enough, they can make
enough noise to disrupt things, but not for long. If the majority of the organization
has bought into what you are doing—don't forget that you are executing a plan based
on their input and suggestions—they will not easily become distracted; therefore, you
should not become distracted. If you have managed to build up a good network across
the business, use this network to reduce the noise and, if possible, convert the laggards
into followers.

If these laggards are in managerial positions, this might make things more difficult—
especially if they are good at playing the political games that go on in any business—
however, they will be fighting a losing battle as the majority will be behind you
(because you are delivering something they have asked for). You just need to be
diligent and stick to what you need to do. You will have your eyes peeled and your
ear to the ground, so you should be able to tell when trouble is brewing, and you can
divert a small amount of effort to addressing this and stop it from becoming a major
issue. The addressing this part can be in the form of a simple non-confrontational face-
to-face discussion with the potential troublemaker over a coffee—this way, they are
being listened to, and you have an idea of what the noise is all about. As a last resort, a
face-to-face discussion with their boss might do the trick. Don't resort to e-mail tennis!

All in all, you should try wherever possible to deal with dissenters as you would the
naughty child in the classroom; don't let them spoil things for everyone; don't give
them all of the attention; and use a calm, measured approach. After a while, people
will stop listening to them or get bored with what they are saying (especially if it's
not very constructive).

Let's look a couple of examples that could potentially fuel the voice of the dissenters.

Hurdles Along the Way

[620]

No news is no news
Something that could increase the risk of dissenters spoiling the party is a lack
of visible progress in terms of CD and DevOps implementation. It might be that
you're busy with a complex process change or developing tooling, and there is
a lull in visible activity. If you have individuals within your organization who
are very driven and delivery focused, they might take this lull as a sign of the
implementation faltering, or they may even think that you're finished.

As we mentioned previously, being highly visible, even if there's not a vast amount
going on, is very important. If people can see that progress is being made, they will
continue to follow. If there is a period of perceived inaction, the followers might not
know which way you are heading and might start taking notice of the dissenting
voices. Any form of communication and/or progress update can help stop this from
happening—even if there's not a vast amount to report, the act of communication
indicates that you are still there and still progressing towards the goal.

The anti-agile brigade
In Chapter 5, Approaches, Tools, and Techniques, we looked at engineering best practice,
which, if truth be told, is simply based on modern agile engineering techniques. You
might find that some of the dissenting voices belong to the old-school engineers who
have an aversion to anything agile. Maybe they have been working in the same mode
for the past 20 years and believe that they are exempt from this new fad. Maybe they
simply don't understand it or are afraid of working in such a way. Whatever the
reasons, you need to be mindful of the fact that they will cause some noise. If they
are relatively senior and/or well respected, you should tread carefully as you don't
want to end up with a power struggle.

Focus your time and energy on the followers and innovators
and see if you can get some of them to work with the old-school
laggards and ease them in gently.

You should also consider working with their managers and looking into specific
training or incentives to help ease their move from the dark side—without resorting
to or being seen to resort to bribery. What you need is more innovators and followers
than laggards.

Chapter 6

[621]

If your entire engineering team's ways of working are based on old-school waterfall
delivery practices, your hurdles are going to be much larger. In reality, CD and
DevOps do not play nicely with traditional waterfall software delivery; therefore, you
are going to have to address this problem with some urgency. You should consider
investing time, effort, and money in training, sending people to relevant conferences
or local meet-ups—again, focus on those individuals who have the potential to
become your innovators, as they can help drive forward the adoption of agile
engineering practices.

We briefly covered the fact that some people will be uncomfortable with change,
and they might react in unexpected ways. We'll now look at how change can impact
individuals in different ways and what you need to be aware of.

The transition curve
Let's get one thing out in the open—and this is important—you need to recognize
and accept that the identification of a problem and subsequent removal of it can be
quite a big change. You have been working with the business to identify a problem,
and you are now working to remove it. This is change, pure and simple.

Earlier in the book, we stated that the brave men and women of ACME systems who
helped implement the DevOps and CD ways of working were a catalyst for change.
This wording was intentional as change did come about for the ACME systems
team—a very big change as it turned out. The implementation of CD and DevOps
and its impact on individuals should not be taken lightly, even if they originally
thought it was the best thing since sliced bread.

Those of you who have been in, or are currently in, management or leadership
roles should understand that change can be seen as both positive and negative,
and sometimes, it can be taken very personally—especially where a change to a
business impacts individuals and their current roles within it. Let's look at some
fundamentals in relation to how humans deal with change.

Any change, large or small, work related or not, can impact people in different
ways. Some people welcome change, some are not fazed by it and accept it, some
are downright hostile and see a change as something personal. More importantly,
some people are all three. If we are mindful of these facts before we implement
change, we will have a clearer idea of what challenges to overcome during the
implementation to ensure that it is successful.

Hurdles Along the Way

[622]

There has been much research on this subject, and many papers have been published
by learned men and women over the years. I don't suggest for one minute that I know
all there is to know on this subject, but there is some degree of common sense required
when it comes to change—or transition as it is sometimes called—and there are some
very simple and understandable traits to take into account.

One of my preferred ways to visualize and understand the impact of change is
something called the change or transition curve. This depicts the stages an individual
will go through as change/transition is being implemented.

The following diagram is a good example of a change/transition curve:

John Fisher's personal transition curve—the stages of personal change

John Fisher's personal transition curve diagram can be found at
http://www.businessballs.com/freepdfmaterials/
fisher-transition-curve-2012bb.pdf.

http://www.businessballs.com/freepdfmaterials/fisher-transition-curve-2012bb.pdf
http://www.businessballs.com/freepdfmaterials/fisher-transition-curve-2012bb.pdf

Chapter 6

[623]

You can clearly see that as change is being planned, discussed, or implemented,
people will go through several stages. We will not go through each stage in detail
(you can read through this at your leisure at http://www.businessballs.com/
personalchangeprocess.htm); however, there are a few nuggets of information
that are very pertinent when looking at implementing CD and DevOps. They are
as follows:

• People might go through this curve many times—even at the very early
stages of change

• Everyone is different, and the speed at which they go through the curve is
unique to the individual

• You and those enlightened few around you will go through this curve
• Those who do not / cannot come out of the dip might need more help,

guidance, and leadership
• Even if someone is quiet and doesn't seem fazed, they will inevitably be

sat at some stage in the curve—it's not just the vocal ones to look out for

The long and short of it is that individuals are just that; they will be laggards,
followers, or innovators, and they will also be somewhere along the change curve.
The leaders and managers within your organization need to be very mindful of
this and ensure that people are being looked after. You also need to be mindful of
this, not least because this will also apply to you, as it might give some indication
as to why certain individuals act in one way at the beginning, yet they change their
approach as you go through the execution of the plan and vision.

At a personal and emotional level, change is good and bad, exiting and scary,
challenging and daunting, welcomed and avoided. It all depends on how you, as an
individual, feel at any given point in time. CD and DevOps is potentially a very big
change; therefore, emotions will play a large part. If you are aware of this and ensure
that you look for the signs and react accordingly, you will have a much better time of
it. Ignore this, and you will have one hell of a battle on your hands.

On this light note, we'll move on to the subject of what to do about those people
within your organization who are not involved in your journey or might not even
be aware that it is ongoing. We'll call them the outsiders.

http://www.businessballs.com/personalchangeprocess.htm
http://www.businessballs.com/personalchangeprocess.htm

Hurdles Along the Way

[624]

The outsiders
The percentage of those involved with the implementation of CD and DevOps
will largely depend on the overall size of your organization. If you are a startup,
the chances are that everyone within the organization will be involved. If you are a
small to medium enterprise (SME), there is a good chance that not everyone within
your organization will be involved. If you are working within a corporate business,
the percentage of those actively involved will be smaller than those who are not.

The following diagram illustrates how a typical corporation is made up and where
you and your team sit within it:

Office

Organisation

Corporation

Team

Department

You

The further out from the inner circle, the greater the possibility that there is ignorance about
what you are doing and why

Those sitting outside of the circle of active involvement will have little/no idea of
what is going on and could—through this lack of knowledge—put hurdles in the
way of your progress. This is nothing new and does not specifically apply to the
implementation of CD and DevOps; this is a reality for any specialized project.
Let's take a look at ACME systems and see how this situation impacted their
implementation.

During the version 2.0 stage of their evolution, ACME systems became part of a large
corporate. They ended up as a satellite office—the corporate HQ being overseas—
and on the whole, were left to their own devices. They beavered away for a while
and started to examine and implement CD and DevOps. They were doing so, when
viewed at a global corporate level, in isolation. Yes, they were making far-reaching
and dramatic changes to the ACME systems organization, but they were a small cog
in a very big wheel. No one outside of the ACME systems offices had much visibility
or in-depth knowledge of what was going on.

Chapter 6

[625]

As a consequence, when a new far-reaching corporate strategic plan was announced,
little or no consideration was given to what ACME systems were up to; no one
making the decisions really knew. As a result, the progress of the CD and DevOps
implementation was impacted.

In the case of ACME systems, the impact turned out to be positive in respect to the
CD and DevOps implementation and actually provided an additional boost—you
might not be so lucky. If you experience wide-reaching changes during your journey
and people are ignorant of what you're doing, your story might not end so well. Bear
this in mind.

The moral of the story is this: not only should you keep an eye on what is happening
close to home, but you should also keep an eye on what is happening in the wider
organization. We've already looked at how important it is to communicate what you
are doing and to be highly visible. This communication and visibility should not be
restricted to those immediately involved in the CD and DevOps implementation; you
should try to make as many people aware as possible. If you are working within a
corporate environment, you will, no doubt, have some sort of internal communications
team who publish regular news articles to your corporate intranet or newsletter. Get in
touch with these people and get them to run a story on what you are doing. A good bit
of PR will help your cause and widen the circle of knowledge.

This might seem like quite a lot of work for little gain, but you might be surprised
how much benefit it can bring. For example, let's imaging that you write an article
on CD and DevOps, get it published, and it is read by your CEO or SVP who then
decides to visit and see what all the fuss is about. This is a major moral boost and
good PR. Not only that, but it can help with your management dissenters—if they
see the high-ups recognizing what you are doing as a positive thing, they might
(will) reconsider their position.

We're primarily considering outsiders as individuals outside of your immediate
sphere of influence that are ignorant of what you are doing and where you're
heading. You might have others who are well aware, but are either restricted
by or hiding behind corporate red tape. Let's spend some time looking at this
potential hurdle and what can be done to overcome it.

Hurdles Along the Way

[626]

Corporate guidelines, red tape, and standards
The size and scale of this potential hurdle is dependent on the size and scale of
your organization and the market in which you operate. For example, you might
work within the service sector and have commercial obligations to meet certain
service-level agreements (SLAs), or you might work within a financial institution
and have regulatory and legal guidelines to adhere to. Whatever the industry,
there's a strong bet that you will be hampered in some way by things and people
outside of your control. This, as they say, comes with the territory.

To overcome this hurdle or, at the very least, minimize the impact, you need to
work closely with those setting and/or policing the rules to see what wriggle room
you have. Build rapport, entice them with coffee and doughnuts, get to know them,
and understand what drives them and what constraints they have to work with.
Eventually, you'll start to build a picture of what constraints you have and which
of these could have the biggest impact on your plan and vision. You might also find
that things aren't as black and white as first thought. For example, you might find
that some of the rules and guidelines set in place are overkill and have only been
implemented in their current form, because it was easier, quicker, or safer to stick
to what it said in a book than it was to refine to fit the business needs.

Fundamentally, the need for such rules, guidelines, and policies revolves around
change management and auditability. In simple terms, they offer a safety gate and
a way to ascertain what has been changed by whom, should problems occur.

One hurdle that isn't immediately obvious is that those managing or policing the
rules, guidelines, and policies might well consider CD and DevOps to be incompatible
with their ways of working. If you think about it, they'll be imagining software flying
through the door at a rate of knots. This might be a scary vision for them.

They might also consider CD and DevOps as a threat and be overly defensive.
This might be due to the fact that during the inspect stage (see Chapter 2, No Pain,
No Gain), their organization/department had been highlighted as an area of waste
(I would put money on it), and as such, they might not be totally willing to embrace
the change you are bringing. It might even be the case that they simply don't know
what they can change without breaking a rule or corporate policy. Use your new-
found rapport and work with these people and help them understand what CD
and DevOps is all about and help them research what parts of their process they
can change to accommodate. Do not simply ignore them and break the rules, as this
will catch up with you later down the road and could completely derail you. Open,
honest, and courageous dialogue is the key (see Chapter 4, Culture and Behaviors).

That said, open and honest dialogue might be hindered by geography, so let's look at
how we can address this.

Chapter 6

[627]

Geographically diverse teams
We previously touched upon the subject of setting up an open and honest physical
environment to help enforce open, honest, and collaborative ways of work. This is
all well and good if the teams are collocated; however, trying to recreate this with
geographically diverse teams can be a tricky problem to solve.

It all depends on the time-zone differences and, to some extent, cultural differences.
Not having a physical presence is always a barrier—unless you have perfected the
art of matter teleportation; however, there are a few things that you could look at to
overcome this:

• Ensure local team(s) have regular (ideally daily) teleconference calls with
the remote team(s)—even if it's nothing more than to say good morning.

• If you're using scrum (or a similar methodology) and decide to have a daily
scrum of scrums, get the remote teams(s) dialed in as well—even if you call
them on your cell phone and have them on speakerphone.

• Time zones can play havoc with daily stand-ups (from experience, these
normally happen first thing in the morning), so try and be creative around
the schedule (don't forget to accommodate changes to clocks throughout
the year).

• We all have access to some form of video conferencing—be that using
a corporate teleconferencing system or something as simple as Skype
(or similar). You could set this up within your office space (rather than
hidden away in some meeting room) and use it like an always-on virtual
wall / window that allows team members to simply walk up and have a
face-to-face conversation, as if they were in the same room/city/country.

• If your budget allows, try and get people physically swapped across the
offices either via secondments or short-term project placements.

• Don't rely on e-mails for discussions; instead, invest in real-time collaborative
tools and encourage their use.

Cultural differences were previously mentioned as a potential problem. This should
not be taken lightly. The reality is that in some parts of the world, the culture is far
and removed from the fast and loose western culture where everyone has a voice
and isn't afraid to use it. Instilling openness, honesty, and transparency might be
more difficult for some, and you should be mindful of this. Work with the local HR
or management, explain what you're trying to do, and see what they can do to help
with this.

We'll now look at what you should do if you encounter failure during the execution
of your goal and vision.

Hurdles Along the Way

[628]

Failure during evolution
As you go along your journey, things will occasionally go wrong—this is inevitable
and is nothing to be afraid or ashamed of. There might be situations that you didn't
foresee, or there might be hidden steps in an existing process that were not surfaced
during the inspect stage (see Chapter 2, No Pain, No Gain). It might even be as simple
as a problem within the chosen toolset, which isn't doing what you had hoped it
would or is simply buggy.

Your natural reaction might be to hide such failures or at least not broadcast the
fact that a failure has occurred. This is not a wise thing to do. You are working
hard to instill a sense of openness and honesty, so the worst thing you can do is
the exact opposite.

Admitting defeat, curling up in a fetal position, and lying in the corner whimpering
is also not an option. As with any change, things go wrong, so review the situation,
review your options, and move forward. Once you have a way to move around or
even through the problem, communicate this. Ensure you're candid about what the
problem is and what is being done to overcome it. This will show others how to react
and deal with change—leading by example if you will.

You might be concerned that admitting failures might give the
laggards more ammunition to derail the adoption; however, their
win will be short lived once the innovators and followers have
found a solution. Hold fast, stand your ground, and have faith.

Okay, so this is all very happy-clappy positive mental attitude (PMA) and might
be seen by some of a cynical nature as management hot air and platitudes; however,
this approach does and will work. Let's look at another real-world example.

As a simple way to manage dependencies and ensure that only one change
went through to the production system at any one point in time, ACME systems
implemented something they called a deployment transaction (see Chapter 5, Approaches,
Tools, and Techniques). This worked well for a while, but things started to slow down
and impact their ability to deliver. After some investigation and much debate, it turned
out that the main source of the problem was that there was no sure way of determining
which change would be completed before another, and there was no way to try out
different scenarios in terms of integration. Simply put, if changes within asset A had
some dependency on changes within asset B, then asset B needed to go live first to
allow for full integration testing. However, if asset A was ready first, it would have
to sit and wait—sometimes for days or weeks. The newly implemented deployment
transaction itself was starting to hinder CD.

Chapter 6

[629]

The following diagram details the deployment transaction as originally implemented:

Deploy

DEPLOYMENT TRANSACTION

Dev
Environment

CI
Environment

Production
Environment

Like live
Environment

DeployBuild

Develop against like live

The deployment transaction version 1.0

Everyone had agreed that the deployment transaction worked well and provided a
working alternative to dependency hell. When used in anger, however, it started
to cause real and painful problems. Even if features could be switched off through
feature flags, there was no way to fully test integration without having everything
deployed to production and the like live environment. This had not been a problem
previously, as the speed of releases had been very slow and assets had been clumped
together. ACME systems now had the ability to deploy to production very quickly
and now had a new problem: which order to deploy? Many discussions took place
and complicated tooling options were looked at, but in the end, the solution was
quite simple: move the boundary of the deployment transaction and allow for full
integration testing before the assets went to production. It was then down to the
various engineering teams to collaborate and agree in which order things should
be deployed.

Hurdles Along the Way

[630]

The following diagram depicts the revised deployment-transaction boundary:

DEPLOYMENT
TRANSACTION

Dev
Environment

CI
Environment

Production
Environment

Like live
Environment

DeployBuild

Develop against like live

Deploy

The deployment transaction version 2.0

So, ACME had a potential showstopper that could have completely derailed their CD
and DevOps implementation. The problem became very visible, and many questions
were asked. The followers started to doubt the innovators, and the laggards became
extremely vocal. With some good old-fashioned collaboration and open and honest
discussions, the issue was quickly and relatively easily overcome.

Again, open and honest communication and courageous dialogue is the key. If you
keep reviewing and listening to what people are saying, you have a much better
opportunity to see potential hurdles before they completely block your progress.

Another thing that might scupper your implementation and erode trust is
inconsistent results.

Processes that are not repeatable
There is a tendency for those of a technical nature to automate everything they touch;
automating the build of engineer's workstations, automated building of software,
automated switching on of the coffee machine when the office lights come on, and
so on. This is nothing new, and there is nothing wrong with this approach as long as
the process is repeatable and provides consistent results each time. If the results are
inconsistent, others will be reluctant to use the automation you spent many hours,
days, or weeks pulling together.

Chapter 6

[631]

When it comes to CD and DevOps, the same approach should apply—especially
when you're looking at tooling. You need to trust the results that you are getting
time and time again.

Some believe that internal tooling and labor-saving solutions or processes that
aren't out in the hostile customer world don't have to be of production quality,
as they're only going to be used by people within the business. This is 100 percent
wrong. Internal users are as important as external ones.

Let's look at a very simple example; if you're a software engineer, you will use
an integrated development environment (IDE) to write code, and you will use a
compiler to generate the binary to deploy. If you're a database administrator (DBA),
you'll use a SQL admin program to manage your databases and write SQL scripts.
You will expect these tools to work 100 percent of the time and produce consistent
and repeatable results; you open a source file, and the IDE opens it for editing; and
you execute some SQL, and the SQL admin tool runs it on the server. If your tools
keep crashing or produces unexpected results, you will be a tad upset (putting it
politely) and will no doubt refrain from using said tools again. This might drive
you insane.

"Insanity: doing the same thing over and over again and expecting
different results."

 – Albert Einstein

The same goes for the tools (technical and nontechnical) you build and/or implement
for your CD and DevOps adoption. You need to be confident that when you perform
the same actions over and over again, you will get the same results. As your confidence
grows, so does your trust in the tool/process, and you then start taking it for granted
and use it without a second thought. Consequently, you will also trust the fact that if
the results are different, then something has gone wrong and needs addressing.

We have already covered the potential hurdles you'll encounter in terms of corporate
guidelines, red tape, and standards. Just think what fun you will have convincing
the gate keepers that CD and DevOps is not risky when you can't provide consistent
results for repeatable tasks. Okay, maybe fun is not the correct word; maybe pain is
a better one.

Another advantage of consistent, repeatable results comes into play when looking at
metrics. If you can trust the fact that to deploy the same asset to the same server takes
the same amount of time each time you deploy it, you can start to spot problems (for
example, if it starts taking longer to deploy, then there might be an infrastructure issue,
or you might have introduced a bug within the latest version of the CD tools).

Hurdles Along the Way

[632]

All in all, it might sound boring and not very innovative, but with consistent and
repeatable results, you can stop worrying about the mundane and move your
attention to the problems that need solving, such as the very real requirement
to recruit new people into a transforming or transformed business.

Recruitment
This might not, on the face of it, seem like a big problem, but as the organization's
output increases, the efficiency grows, and the business starts to be recognized as one
that can deliver quality products quickly (and it will), then growth and expansion
might well become a high priority—which is a great problem to have. You might also
have lost a few laggards along the way who have decided they don't like this new and
improved way of working and have moved on.

You, therefore, need to find individuals who will work in your new way, believe in
your approach, exhibit the behaviors you have worked so hard to instill and embed
throughout the organization, and, possibly, bring new skills and experience to the
team. This is not an easy task, and it will take some time. Simply adding experience in
CD and DevOps to a job spec will not produce the results you want. Although CD and
DevOps are becoming prevalent approaches, they are still relatively new, and there's
not that many people out there with the specific skills or experience you need. There
is a growing market of recruiters who specialize in finding "DevOps engineers", but
if truth be told, hardly any of them actually know what this really means—apart
from adding 20 percent to the recruitment fee and salary expectations, of course.

You will need to embark on more knowledge sharing with those
involved in your recruitment process to ensure that they fully
understand what and who you're looking for. You might need
to do this number of times until this sinks in, so be forewarned.

This might also be a good time to reach out to the CD and DevOps community and
let them know you're hiring. You never know how a brief chat during the coffee
break of your local DevOpsDays conference (http://devopsdays.org/) with a
renowned engineer might pan out.

Getting potential candidates is going to be challenging. The next challenge is going
to be how you filter out the good from the not so good once you have them sitting
face to face in front of you. Hiring experienced and skilled engineers can be hard
work normally, but when it comes to CD and DevOps, how they do things becomes
as important (if not more important) than what they can do.

http://devopsdays.org/

Chapter 6

[633]

You'll need people who not only have proven technical experience, but also don't see
the barrier between development and operations; who understand the importance
of collaboration, accountability and trust; and who understand what you're actually
talking about when you discuss CD and DevOps. Watch out for those who have
simply read a book on the subject just before the interview—unless it's this one,
of course.

You'll need to structure the interview in such a way as to tease out these intangible
qualities. One example and a very simple interview question that I find works well is:

As a software engineer, how do you feel if your code was running in the production
environment being used by millions of customers 30 minutes after you commit it to
source control?

The question is worded specifically to get an honest emotional response, the key
word here being feel. You will be surprised by the responses to this; for some, it
simply stops them in their tracks, some will be shocked at such a thing and think
you're mad to suggest it, and some will think it through and realize that although
they have never considered it, they quite like the idea. If, however, the response is,
30 minutes? That's far too slow, you might be onto a winner.

Take your time and ensure that you pick the right people. You need potential
innovators and followers more than you need laggards.

Summary
As you go through the journey of implementing and adopting CD and DevOps,
you will hit some bumps in the road. If you take this on board from the outset and
recognize these bumps as things that are surmountable, you will be able to deal with
them and continue to drive forward. As we have covered throughout this chapter,
some hurdles are obvious and others not so. What they normally have in common
is people or individuals who are much more difficult to analyze and debug than
software or tools. It might be frustrating, but if you take your time and approach
each hurdle carefully, you will reap the rewards and ultimately be successful.

Talking of success, let's now move on to the measurement of success and why it is
(also) so important.

Vital Measurements
Over the previous chapters, we have looked at what tools and techniques you will
need to successfully adopt CD and DevOps, and we highlighted some potential
hurdles to overcome. With this information in hand, you should be in a good shape
to succeed.

We'll now look at the important but sometimes overlooked—or simply dismissed—
area of monitoring and measuring. This, on the face of it, might be seen as something
that is only useful to the management types and won't add value to your CD and
DevOps implementation and adoption; however, being able to understand and
demonstrate progress will definitely add value to you and everyone else who is on
the CD and DevOps journey. We're not just talking about simple project-management
graphs and PowerPoint fodder; what we are looking at is measuring as many aspects
of the overall process as possible. This way, anyone can plainly see and understand
how far you have come and how far there is left to go. To be able to do this effectively,
you'll need to ensure that you address this early on, as it will be very difficult to see a
comparison between then and now if you don't have data representing then. You'll also
need to ensure that you are continuously capturing these measurements so that you
can compare the state of progress at different points in time.

In this chapter, you will learn:

• How to measure the effectiveness of your engineering process(es)
• How to measure the stability of the various environments you use and rely on
• How to measure the impact your adoption of CD and DevOps is having

We'll start, as they say, at the beginning and focus initially on engineering metrics.

Vital Measurements

[636]

Measuring effective engineering best
practice
This is quite a weird concept to get your head around; how can you measure
effective engineering, and more than that, how can you measure best practice?
It's not as strange or uncommon as you would think. There are a great number
of software-based businesses around the globe using tools to capture data and
measurements for things such as:

• Overall code quality
• Adherence to coding rules and standards
• Code versus comments
• Code complexity
• Code duplication
• Redundant code
• Unit test coverage
• Commit rates
• Mean time between failures
• Mean time to resolution
• Bug escape distance
• Fix bounce rate

Measuring each of these in isolation might not bring a vast amount of value;
however, when pooled together, you can get a very detailed picture of how things
stand. In addition, if you can continuously capture this level of detail over a period of
time, you can then start to measure and report on progress. You could, for example,
see whether there is an impact on code quality and complexity if you reduce code
duplication or redundancy.

It all sounds very simple, and to be honest, it can be, but you need to be mindful
of the fact that you will need to apply some time, effort, and rigor to ensure that
you gain the most value. There will also be a degree of trial and error and tweaking
as you go—more inspecting and adapting—so you need to ensure that you factor
this in. Not only will these sort of measurements help your engineering team(s),
but they will also help with building trust across the wider business. For example,
you'll be able to provide open, honest, and truthful metrics in relation to the quality
of your software, which, in turn, will reinforce the trust they have in the team(s)
building and looking after the platform.

Chapter 7

[637]

One thing to seriously consider before you look at measuring things such as software
code metrics is how the engineers themselves will feel about this. What Devina is
thinking might be a typical reaction:

I'm not sure
I like this.

Isn't this all a
bit big brother?

Why are you
spying on me?

A typical reaction to this approach

Some engineers will become guarded or defensive, and see it as questioning their skill
and craftsmanship in relation to creating quality code. You need to be careful that
you don't get barriers put up between you and the engineering teams. You should
sell these tools as a positive benefit for the engineers. For example, they have a way
to prove how good their code actually is; they can use the tools to inspect areas of
over complexity or areas of code that are more at risk of containing bugs; they can
highlight redundant code and remove it from the codebase; they can visually see
hard dependencies, which can help when looking at componentization; and so on.

If you have vocal dissenters, then get them actively involved in the
setting up and configuration of the tools (for example, they could
set the threshold at which code versus comments is set or what
level of code coverage is acceptable).

If nothing more, you need to ensure that you have the innovators and followers from
the engineering community brought in. To add some clarity, let's look at a few items
from the preceding list—which, by the way, is not exhaustive—in a little more detail
and examine why they are potentially important to your CD and DevOps adoption.
Let's start with quality.

Vital Measurements

[638]

Simple quality metrics
There are a few items on the preceding list that are quite simple yet very powerful
in terms of quality. The ones that are pertinent to CD and DevOps are Mean time
between failures (MTBF), Mean time to resolution (MTTR), and bug escape
distance, which are explained as follows:

• MTBF: This will help you measure how often problems (or failures) are
found by end users—the longer the time between failures, the greater the
stability and quality of the overall platform

• MTTR: This will help you measure the time taken between an issue being
found and being fixed

• Bug escape distance: This will help you measure when an issue is found

I won't go into much more detail here, but it suffices to say that measuring these
types of data will give you a good indication of progress. For example, you would
expect MTBF to go up and MTTR to go down over time if CD and DevOps are
working well for you. If they don't, then there's something you need to look into.

Let's now look at some other items from the list.

Code complexity
Having complex code is sometimes necessary, especially when you're looking at
extremely optimized code where resources are limited and/or there is a real-time
UI—basically, where every millisecond counts. When you have something like an
online store, login page, or a finance module, having overly complex code can do
more harm than good. Some engineers believe they are special because they can write
complex code; however, complexity for complexity's sake is really just showing off.

Overly complex code can cause lots of general problems—especially when trying
to debug or when you're trying to extend it to cater for additional use cases—which
can directly impact the speed at which you can implement even the smallest change.
The premise of CD is to deliver small incremental changes. If your code is too complex
to allow for this, you are going to have issues down the line.

I would recommend that you put some time aside to look into this complex (pun
intended) subject in more detail before you dive into implementing any process or
tooling. You really need to understand what the underlying principles are and the
science behind them; otherwise, this will become messy and confused. Some of the
science is explained in Appendix D, Vital Measurements Expanded.

The next thing you could consider is code coverage.

Chapter 7

[639]

Unit test coverage
Incorporating unit tests within the software-development process is a recognized
best practice. There is lots of information available on this subject; however, simply
put, it allows you to exercise code paths and logic at a much more granular and
lower level during the early stages of development; this, in turn, can help spot and
eradicate bugs very early on. If a small chunk of code has a good coverage, then
you will be more confident that you can ship that code frequently with minimal
risk—the CD approach of little and often. As you become more reliant on unit tests
to spot problems, it's always a good idea to get some indication of how widespread
the use is—hence the need to analyze coverage. From this, you can start to map out
the areas of risk when it comes to shipping code quickly (for example, if your login
page is frequently changed and has a high level of coverage, the risk of shipping this
frequently becomes less).

It should be pointed out that the metric being measured is broadly based on the
percentage of the codebase that is covered by tests; therefore, if the business gets
hung up on this value, they might consider a low value to equate to a major risk.
This isn't necessarily so, especially when you're just starting out implementing
unit tests against an existing codebase that had no coverage. You should set the
context and ensure that everyone looking at the data understands what it means.
Maybe, you can explain to them that a handful of tests (or even one) is much better
and less of a risk than none.

Let's now look at the effectiveness of measuring the frequency of commits.

Commit rates
Regular commits to source control is something that should be widely encouraged
and should be deeply embedded within your ways of working. Having source
code sat on people's workstations or laptops for prolonged periods of time is very
risky and can sometimes lead to duplication of effort or, worse still, might block
the progress of other engineers.

There might be a fear that if engineers commit too frequently, the chances of bugs
being created increases, especially when you think there's an outside risk that
unfinished code could be incorporated into the main code branch. This fear is a
fallacy, as no engineer would seriously consider doing such a thing—why would
they? The real risk is due to the fact that the longer the period of time between
commits, the more code there is to be merged; this, in turn, can cause greater
problems, delays, and potential bugs.

Vital Measurements

[640]

The CD approach is based on delivering changes little and often. This should not be
restricted to software binaries; delivering small incremental chunks of source code
little and often is also a good practice. If you're able to measure this, you can start
seeing who is playing ball and who isn't. One word of warning: don't use this data
to reward or punish engineers, as this can promote the wrong kinds of behaviors.

Next, we'll look at the thorny issue of code violations and adherence to rules.

Adherence to coding rules and standards
You may already have coding standards within your software development teams
and/or try to adhere to an externally documented and recognized best practice. Being
able to analyze your codebase to see which parts do and which parts don't adhere to
the standards is extremely useful as it again helps highlight areas of potential risk.
There are a good number of tools available to help you do this, some of which are
listed in Appendix A, Some Useful Information.

This type of analysis will take some setting up as it is normally
based on a set of predefined rules and thresholds (for example, info,
minor, major, critical, and blocker), and you'll need to work with the
engineering teams to agree and set these up within your tooling.

This all sounds like hard work—on top of all the other hard work—so is it actually
worth it? Yes it is!

Where to start and why bother?
As stated earlier, there are many things that you can and should be measuring,
analyzing, and producing metrics for, and there are many tools that can help you
do this. You just need to work out what is most important and start from there.
The work and effort needed to set up the tools required should be seen as a great
opportunity to bring into play some of the good behaviors you want to embed:
collaboration, open and honest dialogue, trust, and so on.

As noted earlier, it is better to implement these types of tools early in your CD
and DevOps evolution so that you can start to track progress from the get-go.
Needless to say, it is not going to be a pretty sight to begin with, and there no
doubt be questions around the validity of doing this when it doesn't directly drive
the adoption forward—in fact, things might look pretty awful, especially early on.

Chapter 7

[641]

It might not directly affect the adoption, but it offers some worthwhile additions,
which are explained here:

• Having additional data to prove the quality of the software will, in turn,
build trust that code can be shipped quickly and safely

• There is a good chance that having a very concise view of the overall
codebase will help with the reengineering to componentize the platform

• If the engineers have more confidence in the codebase, they can focus on
new feature development without concerns about opening a can of worms
every time they make a change

One thing you should also consider is including this kind of measurement and tooling
within your CI process. For example, you could include run code quality analysis as a
step within CI jobs so that the software that doesn't pass the test doesn't get shipped.
If you think about it, you'll not only be measuring software quality, you'll also have a
discreet quality gate to ensure that the code is as it should be.

We'll now move our focus from measuring the act of creating software and look at
the importance of measuring what happens when it's built.

Measuring the real world
Analyzing and measuring your code and engineering expertise is one thing; however,
for CD and DevOps to work, you also need to keep an eye on the overall platform,
the running software, and the progress of CD and DevOps effectiveness. Let's start
with environments.

Measuring the stability of the environments
As mentioned earlier, it might be that you have a number of different environments
that are used for different purposes throughout the product-delivery process. As your
release cycle speeds up, your reliance on these various environments will grow—if
you're working in a two-to-three-month release cycle, having an issue within one of the
environments for half a day or so will not have a vast impact on your release, whereas
if you're releasing 10 times per day, a half-a-day downtime is a major impact.

Vital Measurements

[642]

There seems to be a universal vocabulary throughout the IT industry related to this,
and the term environmental issue crops up time and time again, as we can see here:

Why did your
overnight tests fail?

Looks like a network or
database blip,so must be
an environmental issue

The build server has
just dropped off the
network. Must be an
environmental issue.

I can't commit my
changes. Must be an
environmental issue

Why can't users log in?
I know my code is OK

so it must be an
environmental issue

Why is the live
platform not working?

It must be an
environmental issue.

The universal environmental issue discussion

We've all heard this, and some of us are just as guilty of saying such things
ourselves. All in all, it's not very helpful and can be counterproductive in the long
run, especially where building good working relationships across the Dev and Ops
divide is concerned, as the implication is that the infrastructure (which is looked
after by the operations side) is at fault even though there's no concrete proof.

To overcome this attitude and instill some good behaviors, we need to do something
quite simple:

• Prove beyond a shadow of a doubt that the software platform is working as
expected, and, therefore, any issues encountered must be based on problems
within the infrastructure

Chapter 7

[643]

Or:

• Prove beyond a shadow of a doubt that the infrastructure is working
as expected, and, therefore, any issues encountered must be based on
problems within the software

When I said quite simple, I actually meant not very simple. Let's look at the options
we have.

Incorporating automated tests
We've looked at the merits of using automated tests to help prove the quality of
each software component as it is being released, but what if you were to group these
tests together and run them continuously against a given environment? This way,
you would end up with a vast majority of the platform being tested over and over
again—continuously in fact. If you were to capture the results of these tests, you can
quickly and easily see how healthy the environment is, or, more precisely, you could
see if the software is behaving as expected. If tests start failing, we can look at what
has changed since that last successful run and try to pinpoint the root cause.

There are, of course, many caveats to this:

• You'll need a good coverage of tests to build a high level of confidence
• You might have different tests written in different ways using different

technologies, which do not play well together
• Some tests could conflict with each other, especially if they rely on certain

predetermined sets of test data being available
• The tests themselves might not be bullet proof and might not show issues,

especially when they have mocking or stubbing included
• Some of your tests might flap, which is to say they are inconsistent and for

some reason or another fail every now and again
• It could take many hours to run all of the tests end to end (on the assumption

that you are running these sequentially)

Assuming that you are happy to live with the caveats or you have resources
available to bolster up the tests so that they can be run as a group continuously
and consistently, you will end up with a solution that will give you a higher level
of confidence in the software platform. Therefore, you should be able to spot
instability issues within a given environment with relative ease—sort of.

Vital Measurements

[644]

Combining automated tests and system monitoring
Realistically, just running tests will only give you half the story. To get a truer
picture, you could combine your automated test results with the outputs of your
monitoring solution (as covered in Chapter 5, Approaches, Tools, and Techniques).
Combining the two will give you a more holistic view of the stability—or not,
as the case may be—of the environment as a whole. More importantly, should
problems occur, you will have a better chance at pinpointing the root cause(s).

OK, so I've made this sound quite simple, and to be honest, the overall objective is
simple; the implementation might be somewhat more difficult. As ever, there are
many tools available that will allow you do to this, but again, time and effort is
required to get them implemented and set up correctly. You should see this as yet
another DevOps collaboration opportunity.

There is, however, another caveat that we should add to the previously mentioned list:

• You might have major issues trying to run some of your automated tests in
the production environment

Unless your operations team is happy with test data being generated and torn down
within the production database many times per hour/day and they are happy with
the extra load that will generate and the possible security implications, this approach
might well be restricted to non-production environments. This might be enough
to begin with, but if you want a truly rounded picture, you need to look at another
complementary approach to gain some more in-depth real-time metrics.

Real-time monitoring of the software itself
Combining automated tests and system monitoring will give you useful data but will
realistically only prove two things: the platform is up, and the tests pass. It does not
give you an in-depth understanding of how your software platform is behaving or,
more importantly, how it is behaving in the production environment being used by
many millions of real-world users. To achieve this, you need to go to the next level.

Consider how a Formula One car is developed. We have a test driver sitting in the
cockpit who is generating input to make the car do something; their foot is on the
accelerator, making the car move forward, and they are steering the car to make it
go around corners. You have a fleet of technicians and engineers observing how fast
the car goes, and they can observe how the car functions (that is, the car goes faster
when the accelerator is pressed and goes around a corner when the steering wheel is
turned). This is all well and good, but what is more valuable to the technicians and
the engineers is the in-depth metrics and data generated by the myriad of sensors
and electronic gubbins deep within the car itself.

Chapter 7

[645]

This approach can be applied to a software platform as well. You need data and
metrics from deep within the bowels of the platform to fully understand what is
going on; no amount of testing and observation of the results will give you this.
This is not a new concept; it has been around for many years. Just look at any
operating system; there are many ways to delve into the depths and pull out useful
and meaningful metrics and data. Why not simply apply this concept to software
components? In some respects, this is already built in; look at the various log files
that your software platform generates (for example, HTTP logs, error logs, and so
on), so you have a head start; if only you could harvest this data and make use of it.

There are a number of tools available that allow you to trawl through such outputs
and compile them into useful and meaningful reports and graphs. There is a but here;
it's very difficult to make this generated in real time, especially when there's a vast
amount of data being produced, which will take time to fetch and process.

A cleaner approach would be to build something into the software itself, which can
produce this kind of low-level data for you in a small, concise, and consistent format
that is useful to you—if truth be told, your average HTTP log contains a vast amount
of data that is of no value to you at all. I'll cover some examples in Appendix D, Vital
Measurements Expanded, but simply put, this approach falls into two categories:

• Incorporate a health-check function within your software APIs; this will
provide low-level metrics data when called periodically by a central data
collection solution

• Extend your software platform to push low-level metrics data to a central
data collection solution periodically

You will, of course, need something to act as the central data collection solution,
but as ever, there are tools available if you shop around and work in a DevOps
manner to choose and implement what works best for you.

Monitoring utopia
Whatever approach (or combination of approaches) you adopt, you should end
up with some very rich and in-depth information. In essence, you'll much have as
much data as your average Formula One technician (that being lots and lots of data).
You just need to pull it all together into a coherent and easy-to-understand form.
This challenge is another one to encourage DevOps behaviors, as the sort of data
you want to capture/present is best fleshed out and agreed between the engineers
on both sides.

Vital Measurements

[646]

If you're unsure whether you should measure a specific part
of the platform or the infrastructure but feel it might be useful,
measure it anyway. You never know whether this data will come
in handy later down the line. The rule of thumb is if it moves,
monitor it; if it doesn't move, monitor it just in case

Ultimately, what you want to be able to do is ensure that the entire environment
(infrastructure and software platform) is healthy. This way, if someone says it must
be an environmental issue, they might actually be correct.

If we pull all of this together, we can now expand on the preceding list:

• Prove beyond a shadow of a doubt that the software platform is working as
expected, and, therefore, any issues encountered must be based on problems
within the infrastructure
Or:

• Prove beyond a shadow of a doubt that the infrastructure is working as
expected, and, therefore, any issues encountered must be based on problems
within the software
Or:

• Agree that problems can occur for whatever reason and that the root cause(s)
should be identified and addressed in a collaborative DevOps way

We'll now move on from the technical side of measuring and look at the
business-focused view.

Effectiveness of CD and DevOps
Implementing CD and DevOps is not cheap. There's quite a lot of effort required,
which directly translates into cost. Every business likes to see the return on investment,
so there is no reason why you should not provide this sort of information and data. For
the majority of this chapter, we've been focusing on the more in-depth technical side of
measuring progress and success. This is very valuable to technical-minded individuals,
but your average middle manager might not get the subtleties of what it means, and to
be honest, you can't really blame them. Seeing a huge amount of data and charts that
contain information such as Transactions per second (TPS) counts or response times
for a given software component or how many commits were made is not awe inspiring
to your average suit. What they like is top-level summary information and data, which
represents progress and success.

Chapter 7

[647]

As far as CD and DevOps is concerned, the main factors that are important are
improvements in efficiency and throughput, as these translate directly into how
quickly products can be delivered to the market and how quickly the business can
start realizing the value. This is what it's all about. CD and DevOps is the catalyst
to allow for this to be realized, so why not show this?

With any luck, you will have (or plan to have) some tooling to facilitate and orchestrate
the CD process. What you should also have built into this tooling is metrics; the sort of
metrics that you should be capturing are:

• A count of the number of deployments completed
• The time taken to take a release candidate to production
• The time taken from commit to the working software being in production
• A count of the release candidates that have been built
• A league table of software components that are released
• A list of the unique software components going through the CD pipeline

You can then take this data and summarize it for all to see—it must be simple,
and it must be easy to understand. An example of the sort of information you could
display on screens around the office could be something like the one shown in the
following screenshot:

An example page summarizing the effectiveness of the CD process

Vital Measurements

[648]

This kind of information is extremely effective, and if it's visible and easily accessible,
it also opens up discussions around how well things are progressing, what areas still
need some work and optimization, and so on.

What would also be valuable, especially to management types, is financial data
and information, such as the cost of each release in terms of resource and so on.
If you have this data available to you, then including it will not only be useful for
the management, but it could also help provide focus for the engineering teams,
as they will start to understand how much these things cost.

Access to this data and information should not be restricted and should be highly
visible so that everyone can see the progress being made and, more importantly,
see how far they are away from the original goal.

We've looked at the effectiveness; let's now look at the real-world impact.

Impact of CD and DevOps
Implementing CD and DevOps will have an impact on your ways of working
and business as a whole. This is a fact. What would be good is to understand
what this impact actually is. You might already capturing and reporting against
things such as business key performance indicators (KPI) (number of active users,
revenue, page visits, and so on), so why not add these into the overarching metrics
and measurements? If CD and DevOps is having a positive impact on customer
retention, then wouldn't it be nice for everyone to see this.

At a basic level, you want to ensure that you are going in the right direction.

Before we move away from measuring and monitoring, let's look at something that,
on the face of it, does seem strange: measuring your DevOps culture.

Measuring your culture
I know what you're thinking; measuring software, environments, and processes
is hard enough, but how can you measure something as intangible as culture?
To be honest, there are no easy answers, and it really depends on what you feel
is of most value. For example, you might feel having developers working with
system operators 20 percent of their time is a good indication that DevOps is
working and is healthy, or the fact that live issues are resolved by developers
and the operations team is a good sign.

Chapter 7

[649]

Capturing this information can also be tricky; however, it needn't be overly complex.
What you really need to know is how people feel things are progressing and if they
perceive things are progressing in the correct way.

The far simplest way to capture this is to ask as many people as you can. Of course,
you'll want to capture some meaningful data points—simply having a graph with
the words it's going OK doesn't really give you much. You could look at using
periodical interviews or questionnaires that capture data such as:

• Do you feel there is an effective level of collaboration between engineers
(Dev and Ops)?

• How willing are engineers (Dev and Ops) to collaborate to solve
production issues?

• Do you feel blame is still predominant when issues occur?
• Do you feel operations engineers are involved early enough in

feature development?
• Are there enough opportunities for engineers (Dev and Ops) to improve

their ways of working?
• Do you feel you have the tools, skills, and environment to effectively do

your job?
• Do you feel that CD and DevOps is having a positive impact on our business?

There might be other example questions that you can think up; however, don't
overdo it and bombard people—KISS (see Chapter 3, Plan of Attack). If you can use
questions that allow for answers in a scale form (for example 1 being strongly agree,
2 being agree, 3 being disagree, and 4 being strongly disagree), you'll be able to get
a clearer picture, which you can then compare over time.

Again, if you pool this data with your technical data, this might provide some
insights you were not expecting. For example, maybe, you implemented a new
process that has reduced the escaped defects by 10 percent, but releases per day
have dropped by 5 percent, and the majority of the engineering team is unhappy.
In such a case, you might have a problem with the process itself or rather the
acceptance of it at grass roots.

Vital Measurements

[650]

Summary
Throughout this chapter, you learned that capturing data and measurements is
important, as this gives you a clear indication of whether things are working and
progressing in the way you planned and hoped. Whether you're interested in
the gains in software quality over time, reduction in bugs, performance of your
software platform, or number of environmental issues in the past quarter, you need
data. Lots of data. Complementing this with business-focused and real-world data
will only add value and provide you with more insight into how things are going.

You are striving to encourage openness and honesty throughout the organization
(see Chapter 4, Culture and Behaviors); therefore, sharing all of the metrics and data
you collect during your CD and DevOps implementation will provide a high degree
of transparency. At the end of the day, every part of any business turns into data,
metrics, and graphs (financial figures, head count, public opinion of your product,
and so on), so why should the product-delivery process be any different?

The sooner you start to capture this data, the sooner you can inspect and adapt.
You need to extend your mantra from monitor, monitor, and then monitor some
more to monitor and measure continuously and consistently.

Let's now move from measuring everything that can and should be measured to
see how things look once your CD and DevOps adoption has matured.

Are We There Yet?
Up until this point, we have been on a journey, from surfacing the issues that
caused the business pains through defining the goal and vision to remove them,
addressing cultural and technical impediments, adopting the much-needed tools
and techniques, and overcoming hurdles, to measuring success.

Let's presume that you are actively implementing CD and DevOps within your
organization and, in fact, have been doing so for some time. The business has
started to see the benefits and reap the rewards in terms of the ability to deliver
quality features to the market sooner. On the face of it, you're almost done,
but—and it's a very important but—this is not the end.

The journey you have all been on has been a long one, and just like the 5-year-old
who has been sat in the back of the car on the long road trip to grandma's house,
you will now have people within your organization repeatedly saying things such
as are we there yet?, how much longer?, and I need to pee—okay, maybe not so much
of the last one, but I think you get the point. It is now time to pause for a moment
and take stock of where you are.

Are We There Yet?

[652]

Reflect on where you are now
Yes, you have come a long way, yes things are going much more smoothly, yes the
organization is working more closely together, yes the Dev and Ops divide is less of a
chasm and more of a small crack in the ground, and yes you have almost completed
what you set out to do. You have reduced the process of delivering software from
something complex and cumbersome to something as simple as this:

A nice simple process for delivering software

The problems you originally set out to address revolved around the waste within
the process of delivering software and, more specifically, the waste that comes from
large infrequent releases. Adopting CD and DevOps has helped you overcome these
problems. As a result of this, you will now start to hear comments such as we can
deploy quickly, so we must have implemented CD or our developers and operations people
are working closely together, so we must have implemented DevOps.

Some would suggest that once you start to hear this, it must mean that you have
indeed completed what you set out to do. In some respects, this is true; however,
in reality, this is far from the truth.

What these comments do illustrate is the fact that the major issues highlighted at
the beginning of the journey have now started to become dim and distant memories.
The business has grown to accept CD and DevOps as the way we do things around here
and has at last started to grasp their meaning—which is good. However, you're not
quite done yet. As you did at the beginning of the journey, it is again time to inspect
and ascertain what problems are important now. To explain this, we have to go off
on a bit of a tangent.

Chapter 8

[653]

Streaming
Let's compare your software-release process to a river (I did say it was a bit of
a tangent):

• At the very beginning, many small streams flowed downhill and converged
into a river. This river flowed along, but the progress was impeded by a
series of locks and a massive man-made dam.

• The river then backed up and started to form a reservoir.
• Every few months, the sluice gates were opened, and the water flowed freely,

but this was normally a short-lived and frantic rush.
• As you identified and started to remove the man-made obstacles, the flow

started to become more even, but it was still hindered by some very large
boulders further downstream.

• You then set about systematically removing these boulders one by one,
which again increased the flow; this, in turn, started to become consistent,
predictable, and manageable.

• As a consequence of removing the obstacles to increase the flow, the water
level starts to drop and small pebbles start to appear and create eddies,
which restrict the flow to a small degree, but not enough to halt it.

• The flow goes on increasing, the water level goes on decreasing, and it
soon becomes obvious that the pebbles were actually the tips of yet more
boulders hidden up until this point in the depths of the river.

The flow of software resembles the flow of a river

Are We There Yet?

[654]

So, what's this got to do with your adoption of CD and DevOps? Quite a lot if you
think about it:

• Before you started, you had many streams of work, all converging into one
big and complicated release—these were the streams into the river that
backed up into the reservoir.

• At the beginning of your journey, you had a pretty good idea of what the
major issues and problems were. These were pretty obvious to all and were
causing the most pain—these were the locks and dams.

• You removed these obstacles, and the flow started to be more consistent, but
it was being hindered by the boulders—these are the lack of engineering best
practice, bad culture and behaviors, lack of an open and honest environment,
and so on.

• You systematically addressed and removed each of the boulders and started
to get a good consistent flow, but new unforeseen issues start to pop up
and impede your progress—these are the pebbles that turn out to be more
boulders under the waterline.

Your original goal and vision was focused on the major issues highlighted during the
inspect stage (the manmade locks and dams)—the things you knew were problems
when you started out. As you systematically worked to address these, the overall
process began to flow freely, and you started to see some positive and interesting
results. As things progressed, hurdles (the boulders) that were not as obvious or
important became more visible and a cause for concern. You then focused your
efforts on removing these, which, in turn, improved the overall process. As more
improvements are made, more boulders appear. All of a sudden, you have more
work to do; this is something you had no way of foreseeing when you set out.

A victim of your own success
Due to the fact that things are now flowing more rapidly and smoothly, even the
smallest of problems can start to become a new major issue. These problems can
be relatively simple things such as:

Chapter 8

[655]

Why is it taking 15 minutes
to complete a build and

automated test run? Surely
we can do that in seconds

Why do we need to spend
25 minutes filling out

release documentation?
Surely we can automate that

Why do we need to release
software components in
sequence? Surely we

can parallelize this

Why do MySQL database
schema updates take so

long? Surely we can
streamline this or look at
other storage platforms

We can't maintain the
growth in scale using our
data centre, we need to

move to the cloud and we
need to do it now

Why do we need to wait for
days to get network changes

made? Surely we can
implement some sort of

infrastructure provisioning
solution

Our monitoring solution
can't cope with the amount

of data we're now producing.
We need to look at other

solutions as soon
as possible

In the space of a few months, the vast majority of the team members originally
working within the constraints of big release cycles—which took many weeks or
months to pull together, test, and push into the production environment—have all
but forgotten the bad old, dark old days and are now finding new things to worry
and grumble about. This is nothing unusual; it happens within every project, be it a
major business change project or a relatively simple software-development project.
It's nothing unusual, but if you think about it, it is a positive problem to have.

Are We There Yet?

[656]

The teams were severely restricted and unable to truly innovate, experiment, or flex
their engineering muscles due to the complexity and constraints of the big release
process. They no longer have to worry about the process of releasing software, as
this has become an everyday background noise that just happens over and over
again without the need for much effort—mainly due to the excellent work you
have all done.

The seemingly small problems that are now being raised would have been, in the
dark days, simple annoyances, which would have been dismissed as low priority.
They were pebbles. Now, they are something real, boulder shaped, and they need
to be addressed; otherwise, there is a risk that things will slow down, and the days
will again become darker.

Does the fact that new problems have surfaced mean that your original goal has
not been met and you have failed? No it doesn't. It just means that the landscape
has changed. Does this mean you need to change the goal and create a new plan?
Not necessarily. What you now need is some PDCA.

[P]lan, [D]o, [C]heck, [A]djust
There are a number of variations of this acronym; however, the most widely used
one is Plan, Do, Check, and Adjust. You might also find PDCA being referred to
as the Deming circle or the Shewhart cycle. Whatever definition you prefer, the idea
behind the PDCA approach is quite simple; it is a framework and approach that
you can use for continuous and iterative improvement. The following diagram
should help explain this:

Adjust

Check

Plan

Do

The iterative PDCA process

Chapter 8

[657]

Simply put, this approach is an expansion of the inspect and adapt approaches that have
been mentioned many times previously—although, if truth be told, it's been around
for much longer. The concept is pretty easy to grasp and follow and can be applied
to almost every aspect of your CD and DevOps adoption. Let's look at an example:

• Plan: You realize that your current process to deliver software is broken
and decide that you need to find out why, by running workshops to map
out the entire process.

• Do: You run the workshops and capture input and data from across
the business.

• Check: You analyze the outputs to ascertain if the data provided gives you
an insight into where the pain points are within your process.

• Adjust: You highlight some areas of waste and agree on corrective actions.
• Plan: You set a goal and pull together a plan of attack to address the major

pain points.
• Do: You execute against this plan.
• Check: You review the progress against the goal.
• Adjust: You make tweaks to the approach as more information and

unforeseen hurdles are unearthed.
• Plan: You realign the plan to ensure that the goal is still achievable, given the

new information you have gathered.
• Do ….. I think you can fill the rest in yourself.

As with most of the tools and techniques covered in this book, using the PDCA
approach over any other is your call; however, it is a well-proven and well-recognized
framework to use—especially when you're looking at implementing something that is
as wide reaching and business changing as CD and DevOps—so, I would suggest you
don't simply dismiss it out of hand.

One major advantage of PDCA is that it has the luxury of being simple to grasp and
understand at all levels of the business, and it is also highly adaptable—for example,
this book has been developed using the self-same approach. Do some research and
make your own mind up, but before you take action, you should take a step back
and take stock of where you are and what you need to do next.

Are We There Yet?

[658]

Exit stage left
The business has gotten used to the changes you have all spent many long hours, days,
and months implementing, and it is now experiencing new issues. The question is who
should address these new found challenges? The answer is quite simple—not you.

You have helped embed the new collaborative ways of working, helped bridge the
gap between Dev and Ops, helped implement new tools and optimized processes,
drank lots of coffee, and had little sleep. It's now time for those you have been
helping to step up.

Way back in Chapter 2, No Pain, No Gain, we looked at how to identify the problems
and issues the business faced. We called this the elephant in the room. You learned
how to use retrospection and other tools to look back and plan forward and how
open, honest, and courageous dialogue helped to find the correct path. Now, think
of the boulders in the water as a new type of elephant, and you're in exactly the same
situation as you were previously. There is, however, one major and very important
difference: the business now has the tools and capabilities to identify the elephant-
shaped boulders very quickly and now has the tools, knowledge, confidence,
experience, and expertise to remove them quickly and painlessly on their own.

As you near your original goal, your swan song is to help others help themselves.
It was fun while it lasted, but all good things must come to an end. You would have
reached or be very close to reaching your original goal, so now is a good time to
consider your exit strategy. This isn't to say that you should not be involved at all;
it just means that to fully encourage the fledging ways of working, you need to be
the responsible parent and let the kids grow up and learn by their own actions.

Your focus should now change from delivering to assisting and guiding the
continuation of delivery. Those who were driving the adoption of CD and DevOps—
yourself included—should now start encouraging those who mostly benefitted to
step into the light and take responsibility for their own boulders. It's a bit of a shift
change but shouldn't be too much of a challenge—especially after all you've been
through. One major parental role you can now play is to ensure that complacency
doesn't set in.

Chapter 8

[659]

Rest on your laurels (not)
So, you've done a lot, progressed further, and the business and those working within it
are all the better for it. This is a positive and good thing that you and all those involved
should be very proud of. However, this is no reason to rest on your laurels; it might be
tempting, but now is not the time to simply sit back and admire your handy work.

You have helped the business evolve, but you have to be very mindful of the fact
that the business can start to devolve just as easily if complacency sets in. As with
any far-reaching project or business change, if the frantic rate of change simply stops,
things start to stagnate and old ingrained habits start to resurface. The laggards might
start to become noisy again, and the followers might start to listen to them.

You will have actively and notably shifted your position from doer to facilitator
and influencer. You also need to be visible and be there to help and assist where
needed. Just like a good parent, you have set up a safe environment for growth
and self-discovery, and, therefore, you should only need a light touch, a bit of
guiding here, some advice there, and the odd prod in the right direction.

When compared to what you have achieved, this might seem simple, but it
can be much harder at times; you're used to being actively involved in driving
others and doing stuff yourself and now have to help and watch others doing
stuff. It's sometimes harder but just as rewarding. You have now taken the next
step in your personal evolution, and as such, you are in a good position to look
beyond the initial goal to see if there are opportunities to assist in a wider capacity.

Summary
Adopting CD and DevOps is a long and hard journey. If you think it's not, you are
deluded. You'll circumvent elephant-filled rivers and other unforeseen challengers
as you near the journey's end. Parental guidance is needed to steer the business in the
right direction, while you plan how to step out of the limelight and make room for
those who have benefited from the achievements you have collectively made. New
problems will emerge and threaten the adoption progress; however, the business is
wiser and should now have the tools, maturity, and experience to cope. Keeping an
eye on things is worthwhile; however, you have bigger and better things to focus on.

The Future is Bright
Throughout this book, we have, on the whole, been focused on traditional software
delivery within a typical and traditional web/server software-based business. Yes,
there are some young, trendy, and innovative software businesses out there that have
the agility and opportunity to be creative in the way they deliver software. However,
the vast majority of businesses that deliver software on a day-to-day basis are not so
lucky—the intention might be there, but the will to act might be lacking. Hence, the
focus is on the traditional.

There's a strong possibility that you yourself work within one of these traditional
businesses. Having followed the advice provided in this book and successfully
adopted CD and DevOps, there's a very good chance that you would have caught up
with the whippersnappers, and your business is able to be just as agile and creative
in how it delivers software, maybe even more so.

At the tail end of Chapter 8, Are We There Yet?, we turned our focus onto you and
how you could take your newfound knowledge and experience forward, beyond
the initial goal of embedding the CD and DevOps ways of working within your
organization. Let's look at what this could actually mean.

Expanding your horizon
Let's presume that you have been instrumental in the successful adoption of CD
and DevOps and have, on the whole, delivered what you set out to do. Things are
working well, even better than you envisaged. The business is all grown up, can tie
its own shoe laces, and doesn't need you to hold its hand anymore—well, not quite.

The Future is Bright

[662]

Take a moment to consider where most of the individuals within the business were
at the beginning of the journey and where they are now. What you will most probably
find is that the vast majority are now at the same point that you were when you started
out—they are just starting to realize that there is another way and that it is a better
way. Now, look at how far you have come in comparison; you are so far ahead that
you are not much more than a small figure in the distance.

YOU

Other's perception of you

Regardless of your role at the beginning of the journey, be that a developer, a system
admin, a manager, or something else, your role has now changed. Like it or not, you
have become the holder of knowledge and experience. You are the CD and DevOps
subject-matter expert. You know your stuff.

You have travelled far, the landscape has changed quite dramatically from where
you started, and you have new hills to climb—these are the new opportunities that
the business is now ready to look at. Maybe these were challenges that the business
could not overcome earlier; maybe they simply didn't know these opportunities
existed, but with newfound knowledge, they are keen to try new things; maybe
your chief technology officer (CTO) has been chatting with his young and trendy
counterparts at the golf club. Whatever the reason, now is the time to apply your
stuff to these new challenges and opportunities. What follows are some examples
of what these could be.

Chapter 9

[663]

Reactive performance and load testing
The more observant of you might have noticed that there is a little mention of
performance or load testing throughout the book. This is intentional as, to my mind,
attempting this activity without the close collaboration, tooling, and techniques
that come from adopting CD and DevOps is a fool's errand. Yes, there are many
established and traditional approaches, but these normally amount to shoehorning
something into the process just before you want to ship your code—which might well
result in the code not shipping due to the fact that performance issues were found
at the last minute. I would also hazard a guess and say performance / load testing
was highlighted as a major burden or even an area of waste during the inspect stage.
It needn't be and shouldn't be the case.

Once you have adopted CD and DevOps, the act of performance / load
testing can become relatively simple and straightforward. You just need
to change the way you approach it.

Let's assume that you have implemented extensive monitoring of your overall
platform from which you can observe in great detail what is going on under
the covers. From this, you can glean an idea of how things should look during
normal day-to-day operation. With this data, you should then be able to safely
run controlled experiments and observe the results in terms of overall platform
performance. For example, you could run an experiment to incrementally apply
additional load to the platform while it's being used. As the load increases, you
start to see where the pain points are—a heat map of sorts. As both Dev and Ops
are working closely together, observing the platform as a whole, they should be
able to work out where the problems are by comparing normal day-to-day stats
to those generated under load.

If issues are pinpointed, they could even apply patches in real time using the CD
tooling while the load is still in place—giving instant feedback. Alternatively, they
might witness an overall slowdown of the platform, but the monitoring solution
doesn't highlight anything specific. This could mean that there is a gap in the
overall monitoring coverage.

All in all, trying to run performance or load testing without extensive monitoring
in place and/or a high degree of collaboration between the Dev and Ops teams
will not provide the results you expect or need. This is not an obvious benefit of
adopting CD and DevOps, but it is a very powerful and compelling benefit, as is
reducing complexity.

The Future is Bright

[664]

Reducing feature flag complexity
There are many established approaches to allow for different use cases or user flows to
be switched on and off in real time, but most revolve around some sort of feature flag
or configuration setting within the platform. Although this is a viable approach, it does
add something to the code base, which can, over time, become a massive headache—
complexity. It also adds complexity to the overall testing—especially if you start to
chain the feature flags together (for example, feature C is on if feature A is on, but
feature B is off).

Having adopted CD and DevOps, you will be shipping code with ease, and you'll
have the Dev and Ops team working as one. Therefore, it would be far simpler to
consider using the CD approach to enable and disable features or functionality.
In other words, to enable the feature, you just ship the code with it enabled—no
messing around with flags, settings, or chaining. OK, so this is an overly simplistic
view, but with CD and DevOps, you can start looking at these sorts of problems in
new and innovative ways. The advantages might not be immediately obvious, but
reducing complexity, if nothing else, will save you time, effort, and the business
money. Something that can drive the necessity of feature flags is A/B testing.

Easing A/B testing
Another major benefit to come out of adopting CD and DevOps is the relative ease
by which you can implement an A/B-testing approach. I won't go into too much
depth regarding this subject—there are plenty of books and on-line resources you
could read. However, the top level is this: A/B testing gives you the ability to run
different use-cases in parallel and examine the results to see which approach (A or B)
worked best.

Maybe you want to see what the impact would be if you introduced a new design
or web-page layout. If you can, in some way, force some users down path A and
the rest down path B, you can then monitor the user behavior to see which worked
best. You can also run A/B experiments covertly. For example, if you have a new
recommendation service that you want to try out, you could again force some
user traffic to this and see how it works compared to the incumbent service.
The possibilities are endless.

Chapter 9

[665]

A AB

B
Page

Experimental page

A
Page

Existing page

A simplistic example of A/B testing

You don't need CD or DevOps to implement A/B testing; however, CD does give
you the ability to ship code quickly—for example, you want to implement the code
to split traffic to A or B across all servers in minutes so that all users start using the
same code at the same time. You also have Dev and Ops closely working together,
monitoring everything that is going on. If gaps are found in the data used to analyze
the results, you have the ability to address this with relative ease. You also have the
option to roll everything back if things take an unexpected turn.

Without CD and DevOps, you would need to plan this kind of activity very closely
in advance and hope nothing is missing or amiss when you implement it. You will
also have to hope that the world hasn't moved on too much between planning and
execution and that the use-case you are trying to test is still relevant. Something else
that is time critical is security patching.

The Future is Bright

[666]

Security patching and saving your bacon
It seems that every day, the tech press includes a report about the latest business
that has been hacked or suffered a distributed denial-of-service (DDOS) attack.
Let's apply this scenario to a traditional software business that has not adopted
CD or DevOps. Now think of the answers you would get if you asked the
following questions:

• How quickly do you think your average traditional software business would
apply a patch to overcome the problem?

• How calm do you think their operations team feels with their CEO, VP of PR,
and SVP of operations, all breathing down their collective necks?

• How confident are the Ops team that hastily applying an O/S patch that
should have been applied months ago will not impact the software platform?

• How happy do you think the development team will be when the SVP of
engineering tells them that they can't go home until they have sorted out a
fix to overcome the issues introduced by hurriedly applying an O/S patch?

• How much market value do you think is wiped off a listed company when
the news gets out?

It doesn't take a PhD to guess the answers to these questions. Now, imagine the
same situation for a business that has adopted CD and DevOps. The answers to
the preceding questions would be something like this:

• As quickly as they can normally release—minutes or hours at the most.
• Perfectly calm, and, to be honest, the senior management wouldn't know

anything about it until they've been informed that an issue had been found
during routine monitoring and was in the process of being addressed.

• Very confident as they can collaborate with the development team to
ensure that there are no impacts and/or work on a plan to address the
impacts in parallel.

• They won't have to.
• If the message delivered is "We found an issue and have already applied

a fix. The impact was minimal and we can assure our customers that their
data is perfectly safe", the news isn't very newsworthy, and the markets
might not even care. In fact, they might even see it as good news and want
to invest more in the business (OK, I can't quantify this, but it is plausible).

Chapter 9

[667]

As you can see, adopting CD and DevOps can provide some major bacon-saving
benefits. That isn't to say that you couldn't achieve the same results without CD and
DevOps, but having the ability to deliver quickly and having a very close working
relationship across the Dev and Ops teams will make it much easier to spot and fix
live issues before anything breaks. To reinforce this approach, some people actually
try to actively break their live platform on purpose.

Order out of chaos monkey
It doesn't matter how much care and attention you apply to your platform; something
will always go wrong when you least expect it. A server will fail, a process might start
looping, a network switch decides it doesn't want to be a network switch anymore,
a pipe bursts in the office above the server room, or someone decides to hack you
because you're a nice big target. As the saying goes, you need to expect the unexpected.

Most businesses will have some sort of business contingency plan in place to cater
for the unexpected, but there's a strong possibility that they don't try to force the
issue on purpose—they just hope nothing bad will ever happen, and if it does,
they hope and pray that they'll be ready and the plan works.

What if you had some tools that could safely initiate a failure at will to see what
happens and, more importantly, where the weak spots in your platform are? This is
exactly what some bright spark did, and this has been widely adopted as the chaos
monkey approach. There are a few variations, but what it boils down to is this: a tool
that you can run within your closely monitored environment to try and break it.

The tools currently available are very much focused
on cloud-based installations, but the approach could
be applied to other environment setups.

If you tried to attempt this without a strongly embedded CD and DevOps culture,
you would end up in a complete mess—to be honest, I doubt if you would be even
be allowed to try it in the first place. With close collaboration, in-depth monitoring,
and trust-based relationships, attempting to break the platform to observe what
happens is relatively (but not totally) risk free.

There is one caveat to this approach; you need to be confident that
your platform has been designed and built to gracefully allow for
failure. You should avoid committing platformicide in public with
core dumps and HTTP 500 messages available for all to see.

The Future is Bright

[668]

One other advantage to the chaos monkey approach is that it's also a great way to
share knowledge of how the overall platform works. Trying to break things on
purpose can prove the resilience of your overall platform, but might well annoy
customers; let's take a look at how we can keep your customers happy.

End user self-service
Over the course of the book, we have been focused on a unidirectional process
of pushing software out to a given environment (including production). What if
you wanted to turn this around and allow end-users to initiate the pulling of your
software at will? It might sound strange, but there are a few legitimate scenarios
where this could be required.

Maybe you have a team that would like to test out different scenarios and use
cases or a SecOps team that needs to run a set of deep security scans or some DDOS
scenarios. Traditionally, this would involve quite a large amount of mundane work
(that's putting it very mildly) to set up a dedicated environment and get all of the
software needed installed and working as it should. What if these teams could press
a button and have an entire environment set up for them and they could trust that it
has been set up correctly?

With CD and DevOps embedded into your ways of working, you should be able to
do this. You will have tooling that can reliably provision servers, deploy software
assets, and provide in-depth monitoring. You have a DevOps team who are used
to collaborating and are, therefore, happy to help the teams in question. You have
a culture that is open and honest so that if problems are found, they can be openly
discussed and investigated without fear of blame. Finally, you have the ability to
quickly fix and ship if need be. All in all, the activity becomes valuable and not in
the least bit mundane or wasteful.

You can most probably think of other scenarios but the point is that with CD and
DevOps embedded within your ways of working, you are able to take the load off
the Ops and Dev team and at the same time have happy internal customers. This
approach can also help build trust—something that again is a pretty powerful asset.
Continuing the theme of making customers happy, let's look at how you can widen
your horizons and apply CD and DevOps in other ways.

Chapter 9

[669]

CD and DevOps and the mobile world
CD and DevOps are normally associated with delivering server-based solutions—
that's not to say it is exclusively the case; however, this is the norm. The fact that
CD and DevOps are based on enhancing culture, behaviors, and ways of working
means that they needn't be constrained to this flavor of software delivery. You
could, should, and can apply the same approaches to other flavors, for example,
the development and delivery of mobile apps.

As mentioned earlier, CD and DevOps are based on culture, behaviors, and ways of
working, therefore applying this approach to delivering mobile applications—which is
a large and ever-growing industry—can work. There are a couple of caveats in terms
of how delivering mobile application software differs from web-based / server-based
software delivery.

They are explained here:

• Delivering software to a web platform 10 times per day seamlessly
without impacting the end user is achievable—you are in full control of
the infrastructure and the mechanism for releasing. Doing the same with
a mobile application will have a major impact on the end user—can you
imagine what will happen if you send a mobile app to end users' smart
phones 10 times per day?

• There are no system operators living within the end users' smart
phones / tablets; therefore, the Ops side of the DevOps partnership
doesn't strictly exist

So, how do you square this circle? In reality, you don't need to. Most mobile apps
are distributed via some sort of app store, which is simply a third-party binary
repository—similar to what you would use when shipping binary files to your
servers within your CD toolset. When the user wants to install the app, they initiate
a process to pull it and install it (very similar to the self-service approach mentioned
earlier). When updates are published, the user (or the operating system) simply pulls
the binary and installs it.

All pretty simple stuff, so why should you apply CD and DevOps to this? Because
you can, and it will add value. The work undertaken to embed collaboration, trust,
and honesty within your organization can easily be applied to developing, building,
testing, and shipping your mobile apps. You have implemented tools and techniques
to automate the process of building, testing, shipping, and monitoring your server
platform, so extending these for your mobile apps should be relatively straightforward.

The Future is Bright

[670]

Added to this is the fact that mobile apps can be written in the same technologies
as you would use on a server-based website—HTML5, for example. This, in turn,
means that the same code base could potentially be shipped to both server and
mobile; therefore, using the same techniques, tools, and approaches will make
the process seamless.

One thing you will need to look into is slightly tweaking the approach in terms
of CD. There's nothing stopping you from releasing your app 10 times per day to
prove that your process works or to allow for rigorous beta testing. However, you
should seriously consider how often you publish this to the app store so that your
end users aren't bombarded with app updates' notifications. On the whole, this is a
minor issue. Another slight tweak would be to apply the CD and DevOps ways of
working outside the world of traditional software delivery.

Expanding beyond software delivery
Despite what you have read, CD and DevOps need not be restricted to simply
software/product delivery. The tools, processes, and best practices that come with
this way of working can be extended to include other areas of the business outside of
traditional IT. For example, let's presume that your product-delivery process is now
optimal and efficient, but there are certain business functions that sit before and after
the actual product-delivery process; these functions are starting to creak, or, maybe,
they are starting to hinder the now highly-efficient product-delivery stage.

There is no reason why using the same techniques covered earlier you cannot
address wider reaching business problems. You now have the experience,
confidence, and respect to take something that is unwieldy and cumbersome and
streamline it to work more effectively, so why not apply this further afield? For
example, you could extend the overall product-delivery process to include the
inception phase (which normally sits before the product-delivery process and
is sometimes referred to as the blue-sky phase) and the customer-feedback phase
(which normally sits after you have delivered the product).

The following diagram illustrates this:

Extending the product-creation process to include the pre and post stages

Chapter 9

[671]

Doing this could provide even greater business value and allow more parts of the
business to realize the huge benefits of the CD and DevOps ways of working. As I
say, CD and DevOps is not just about delivering software; the way things get done,
the collaboration, the open and honest environment, the trust-based relationships,
and even the language used can and will help revitalize any business process.
It's worth considering whether this is what you would like to do.

What about me?
The preceding are simply examples, but none will have the chance of becoming a
reality without someone helping the business and steering it in the right direction.
Like it or not, you will have the experience, skills, and reputation as the go-to guy
for things related to CD and DevOps.

You now have the opportunity to start a new journey and again help the business
help itself by driving forward the sort of changes that can only be realized with a
mature and strong CD and DevOps culture.

If this doesn't float your boat, then, maybe, keeping up with the ever-changing and
ever-growing CD and DevOps landscape is your thing. Just trying to keep up with
the new ways to do things, new tools, new ideas, and new insights could take most
of your time and attention. More and more businesses are realizing the huge value
of having evangelists in their ranks—especially when it comes to software and
product delivery.

You might well have hooked yourself into the global CD and DevOps communities,
which will give you opportunity to share or present your experiences with others and,
more importantly, bring others' experiences and knowledge back into your business.
Maybe you could even capture this and publish it on public blogs and forums, or even
get it printed in book form. Stranger things have happened.

Whatever you choose to do, you will not be bored, nor will you be able to go back
to how things were. You have learned a very valuable lesson—there is a better way,
and CD and DevOps is it.

The Future is Bright

[672]

What have you learned?
I keep making references to your experience, knowledge, and expertise, but until
you have actually gone through the motions of adopting and implementing CD
and DevOps, this will amount to what you have read. Let's take a final chance to
recap what we have covered:

• CD and DevOps are not just about technical choices and tools; a vast amount
of the success is built on the behaviors, culture, and environment.

• Implementing and adopting CD and DevOps is a journey that might seem
long and daunting at first, but once you've taken the first step and then put
one foot in front of the other, you'll hardly notice the miles passing.

• Teams who have successfully implemented CD and DevOps seldom
regret it or are tempted to go back to the bad old days when releases were
synonymous with working weekends and late nights—working late nights
and weekends should be synonymous with innovation and wanting to create
some killer app or the next world-changing technology breakthrough.

• You don't have to implement both CD and DevOps at the same time, but
one complements the other. You don't have to, but you should seriously
consider it.

• Where you do need to make technical choices, ensure that you implement
something that enhances and complements your ways of working—never
change your ways of working to fit the tooling.

• It can be big and scary, but if you start with your eyes wide open, you should
be able to get through. There is a global community available that can help,
assist, and give advice, so don't be afraid to reach out.

• Don't simply start implementing CD or DevOps just because it's the next
new thing that everyone else is doing. You need to have a good reason to
implement both/either, or you will not reap the benefits, nor truly believe
in what you are doing.

• Although we have covered a vast amount, you don't have to implement
everything you have read about; take the best bits that work for you and
your situation, and go ahead from there—just as you would with any good
agile methodology.

• Just because you can ship software, it doesn't mean you are done. CD and
DevOps are ways of working, and the approaches within can be applied to
other business areas and problems.

• Share failures and successes so that you learn, and others have the
opportunity to learn from you.

Chapter 9

[673]

Summary
This book, like all good things, has come to an end. As pointed out numerous
times earlier, we've covered quite a lot in a few pages. This book is, by no means,
the definitive opus for CD and DevOps; it is merely a collection of suggestions
based on experience and observations.

Even if you are simply window shopping and looking at what is needed to
implement and adopt CD and DevOps ways of working, you should now have
a clearer idea of what you are letting yourself and your organization in for;
forewarned is forearmed as they say. It's not an easy journey, but it is worth it.

So, go grab yourself a hot beverage, a notepad, and a pen; skip back to Chapter 2,
No Pain, No Gain; and start mapping out why you need to implement CD and
DevOps and how you are going to do it.

Go on then, stop reading, go!

Good luck!

Some Useful Information
Although this book provides some (hopefully) useful information, there's only
so much space available. I've, therefore, compiled a list of additional sources of
information that will complement this book. I've also included a list of the many
subject-matter experts out there who might be able to provide further assistance
and guidance as you progress along your journey. Additional resources can be
found on my website http://www.swartout.co.uk.

What follows is, by no means, an exhaustive list, but it is a good start.

Tools
Some of the following tools are mentioned within this book, and some are considered
the best of breed for CD and DevOps:

Tool Description Where to find more information
Jenkins An award-winning and world-

renowned open source CI tool
http://jenkins-ci.org/

GIT A free and open-source
distributed version-control
system

http://git-scm.com/

GitHub An online-hosted community
solution based on GIT

https://github.com/

Graphite A highly-scalable real-time
graphing system that allows
you to publish metric data
from within your application

http://graphite.wikidot.com/

Tasseo A simple-to-use Graphite
dashboard

https://github.com/
obfuscurity/tasseo

http://www.swartout.co.uk
http://jenkins-ci.org/
http://git-scm.com/
https://github.com/
http://graphite.wikidot.com/
https://github.com/obfuscurity/tasseo
https://github.com/obfuscurity/tasseo

Some Useful Information

[676]

Tool Description Where to find more information
SonarQube An open platform to manage

code quality
http://www.sonarqube.org/

Ganglia A scalable distributed-
monitoring system for
high-performance
computing systems

http://ganglia.sourceforge.
net/

Nagios A powerful monitoring system
that enables organizations
to identify and resolve
IT-infrastructure problems
before they affect critical
business processes

http://www.nagios.org/

Dbdeploy An open source database
change management tool

http://dbdeploy.com/

Puppet Labs A tool to automate the creation
and maintenance of IT
infrastructure

http://puppetlabs.com/

Chef Another tool to automate the
creation and maintenance of
IT infrastructure

https://www.getchef.com/chef/

Vagrant A tool to build complete
development environments
using automation

https://www.vagrantup.com/

Docker An open platform for
distributed applications

https://www.docker.com/

Yammer An Enterprise private social
network (think of it as a
corporate Facebook)

https://www.yammer.com

HipChat A private group-chat and
team collaboration tool

https://www.hipchat.com/

IRC The granddaddy of
collaboration and chat tools

http://www.irc.org/

Campfire A private group-chat and
team collaboration tool

https://campfirenow.com/

Hubot An automated "bot" that can be
set up within most chat-room
systems

https://hubot.github.com/

Trello An online scrum / Kanban
board solution

https://trello.com/

AgileZen An on-line scrum / Kanban
board solution

http://www.agilezen.com/

http://www.sonarqube.org/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://www.nagios.org/
http://dbdeploy.com/
http://puppetlabs.com/
https://www.getchef.com/chef/
https://www.vagrantup.com/
https://www.docker.com/
https://www.yammer.com
https://www.hipchat.com/
http://www.irc.org/
https://campfirenow.com/
https://hubot.github.com/
https://trello.com/
http://www.agilezen.com/

Appendix A

[677]

People
What follows is a list of people who are actively involved in the agile and continuous
delivery and DevOps communities:

• Patrick Debois is seen by many in the DevOps community as the
daddy of DevOps and the founder of the DevOpsDays movement
(http://devopsdays.org/). This relatively small get together of
like-minded individuals in 2009 has grown into a global gathering.
For more information on Patrick Debois, visit http://www.jedi.be/.

• John "Botchagalupe" Willis is a regular and well-renowned
contributor to the DevOps community and has inspired many with
his honest way of sharing his wisdom. For more information on him,
visit http://www.johnmwillis.com/.

• Jez Humble is the co-author of the Continuous Delivery book that is
used by many as the definitive reference material when investigating
or implementing continuous delivery. He also actively contributes to
the continuous-delivery blog (http://continuousdelivery.com/).
For more information on him, visit http://jezhumble.net/.

• John Allspaw is the SVP of Operations at Etsy.com and seems to understand
the value of DevOps—even though he's one of the senior management types.
For more information on him, visit http://www.kitchensoap.com/.

• Gareth Rushgrove is a self-confessed Web geek, who seems to somehow
find time to produce the DevOps weekly e-mail newsletter (http://
devopsweekly.com/), which is full of useful and insightful information.
For more information on him, visit http://www.garethrushgrove.com/.

• Gene Kim, co-author of The Phoenix Project, is the founder and former CTO
of Tripwire. He is passionate about IT operations, security, and compliance,
and how IT organizations successfully transform from good to great. For more
information on him, visit http://www.realgenekim.me/.

• Mitchell Hashimoto is a self-confessed DevOps tools mad scientist and
the creator of Vagrant, Packer, Serf, Consul, and Terraform. For more
information on him, visit http://about.me/mitchellh.

• Steve Thair is the cofounder of DevOpsGuys and a regular speaker on Web
performance. For more information on him, visit http://www.devopsguys.
com/About/Team/Steve.

• Rachel Davies is an internationally-recognized expert in coaching teams on
the effective use of agile approaches and has a wealth of knowledge when it
comes to retrospective techniques and games. For more information on her,
visit http://www.agilexp.com/agile-coach-rachel-davies.php.

http://devopsdays.org/
http://www.jedi.be/
http://www.johnmwillis.com/
http://continuousdelivery.com/
http://jezhumble.net/
http://www.kitchensoap.com/
http://devopsweekly.com/
http://devopsweekly.com/
http://www.garethrushgrove.com/
http://www.realgenekim.me/
http://about.me/mitchellh
http://www.devopsguys.com/About/Team/Steve
http://www.devopsguys.com/About/Team/Steve
http://www.agilexp.com/agile-coach-rachel-davies.php

Some Useful Information

[678]

• Ken Schwaber is the godfather of scrum and agile. For more information on
him, visit http://kenschwaber.wordpress.com/.

• John Clapham is an all-round nice guy and agile/DevOps evangelist. For
more information on him, visit http://johnclapham.wordpress.com/.

• Karl Scotland is a renowned agile coach who specializes in lean and agile
techniques. For more information on him, visit http://availagility.
co.uk/.

Recommended reading
The following books are well worth a read—even if you don't decide on some
strange reason to adopt CD and/or DevOps:

Resource Description Link

Agile Coaching A nice
introduction on
how to become a
good agile coach

https://pragprog.com/book/sdcoach/
agile-coaching

Agile
Retrospectives:
Making Good
Teams Great

An excellent
book that covers
most of what you
need to know
to run effective
retrospectives

https://pragprog.com/book/dlret/
agile-retrospectives

Continuous
Delivery:
Reliable Software
Releases through
Build, Test, and
Deployment
Automation

The CD bible http://www.amazon.com/dp/0321601912?
tag=contindelive-20

The phoenix project A unique take on
DevOps adoption
in fiction form,
well worth a read

http://itrevolution.com/books/
phoenix-project-devops-book/

Agile Product
Management
with Scrum

View scrum
and agile from
the product
managers' point
of view

http://www.amazon.com/exec/obidos/
ASIN/0321605780/mountaingoats-20

http://kenschwaber.wordpress.com/
http://johnclapham.wordpress.com/
http://availagility.co.uk/
http://availagility.co.uk/
https://pragprog.com/book/sdcoach/agile-coaching
https://pragprog.com/book/sdcoach/agile-coaching
https://pragprog.com/book/dlret/agile-retrospectives
https://pragprog.com/book/dlret/agile-retrospectives
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20

Appendix A

[679]

Resource Description Link

The Enterprise
and Scrum

This book
provides
some addition
insight into the
challenges of
adopting an agile
approach and
ways of working

http://www.amazon.com/exec/obidos/
ASIN/0735623376/mountaingoats-20

The Lean Startup Real-life
experiences and
insights into how
to transform your
business, culture,
and ways of
working

http://amzn.com/0307887898

Getting Value
out of Agile
Retrospectives

Gives a good
introduction on
retrospectives
and provides a
good, long list of
games/exercises

https://leanpub.com/
gettingvalueoutofagileretrospectives

http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://amzn.com/0307887898
https://leanpub.com/gettingvalueoutofagileretrospectives
https://leanpub.com/gettingvalueoutofagileretrospectives

Where Am I on the
Evolutionary Scale?

It's sometimes difficult to ascertain where your business sits on the CD and DevOps
evolutionary scale; however, some simple questions can help you get a rough idea.
For example, in relation to your business:

• Does it favor process over people?
1. Process
2. People
3. We don't have any processes worth mentioning, so I suppose

it's people

• Do immoveable deadlines in project plans take precedence over delivering
quality solutions incrementally?

1. Yes, meeting deadlines is the only thing that matters
2. We have flexibility to make small changes and replan to ensure

that quality doesn't suffer
3. We do whatever is needed to keep the customer happy

• Are your projects run with fixed timescales, fixed resources, and fixed scope,
or is there flexibility?

1. Yes, and this is all agreed up front, signed off, and intricately planned
2. No, we have flexibility in at least one of these areas
3. We do whatever is needed to keep the customer happy

Where Am I on the Evolutionary Scale?

[682]

• Is failure scorned upon or used as something to learn from?
1. Failure is failure, and there are no excuses—heads will roll
2. We ensure that failures have a small impact and learn from

our mistakes
3. Failure means no more business, and we're all out of our jobs

• Who is on call for out-of-hours production issues?
1. The T1 helpdesk with T2 operations support and T3 applications

support teams backing them up
2. We normally have a "point man" on call who can reach out to anyone

he needs
3. Everyone

• Are you able to ship code when it is ready, or do you have to wait for a
scheduled release?

1. The release team schedules and agrees the delivery to production via
the change advisory board (CAB) and transition team, based on the
agreed program plan

2. We trust our engineers to ship code using our deployment tools
when they are confident that it is ready and doesn't compromise
the overall quality

3. Our engineers normally use file transfer protocol (FTP) to transfer
the code to the production servers when it's finished compiling

If you were to apply these to the ACME systems' business at certain points through
their evolution, you would find that the version 1.0 business would mostly answer
3 to all questions, the version 2.0 business would mostly answer 1, and the highly
evolved version of the business would mostly answer 2.

Retrospective Games
Retrospectives are normally the inspect part of the agile inspect and adapt. If you
are aware of or are using scrum or some other agile methodology, then running
retrospectives should be nothing new. If you have never run a retrospective before,
then you would have some fun things to learn.

The remit of a retrospective is to look back over a specific period of time, project,
release, or simply a business change and highlight what worked well, what didn't
work well, and what improvements are needed. This process can traditionally be
a bit dry, so retrospectives tend to be based on games (some people refer to these
as "exercises", but I prefer the word "games"), which encourages collaboration,
engagement, and injects a bit of fun.

As with any game, there are always rules to follow. Here are some example rules:

• Each session should be strictly time-boxed
• Everyone should be given a voice and a chance to actively contribute
• Everyone should be able to voice their opinion but not at the expense

of others
• Whoever is facilitating the session is in charge and should control

the session as such
• The session should result in tangible and realistic actions that can be taken

forward as improvements

As with the value-stream mapping technique mentioned in Chapter 2, No Pain, No
gain, the only tools you really need are pens, paper, a whiteboard (or simply a wall),
some space, and some sticky notes.

Let me introduce you to a couple of my favorite games: timeline and StoStaKee.
We'll start with the timeline game.

Retrospective Games

[684]

The timeline game
The timeline game, as the name suggests, revolves around setting up a timeline and
getting your invited guests to review and comment on what happened during the
period of time in question. There are a number of variations of this game, but in
essence, it revolves around the entire team writing out sticky notes related to notable
events during the period in question and indicating how the events made them
feel using sticky dots (green stands for glad, blue for sad, and red for mad). From this,
you have an open and honest discussion on those events that provoked the most
emotions and agree on actions to take forward (for example, things to stop doing,
start doing, and keep doing).

The following figure depicts a typical timeline wall:

Team
delivered

We
weren’t

actually
finished

1st
weekend

off for
months

Still lots
of bugs

At last

Who
needs
sleep

PAIN!!!

Why
elebrate
failure?

Another
long day

and
night

Everyone
mucked

in

BeerIt’s live!

Release
took live
platform
out for
3 hours

Budget
agreed

Scope
changes

Lots of late
night as

not enough
devs

Spec not
agreed

before dev
started

Massive
effort to
fix bugs

We did
it!

02/01/2012 13/01/2012
Planning
started

24/01/2012
Development

started

24/01/2012
Dev

complete

24/02/2012
UAT

complete

03/03/2012
UAT

complete
(for real

this time)

13/03/2012
Release #1

(failed)

22/03/2012
Release #2

(live this
time)

29/03/2012
Beer

31/03/2012

01/02/2012 01/03/2012

Dev
servers
keep

crasing

More
long
days/
nights

lots of
bugs

Not all
dev

team
available

New
project is

challenges

We get
new
work

New stuff

Vague
require-
ments

StoStaKee
This stands for stop, start, and keep. Again, this is an interactive time-boxed exercise
focused on past events. This time, you ask everyone to fill in sticky notes related to
things they would like to stop doing, start doing, or keep doing, and add them to one
of three columns (stop, start, and keep). You then get everyone to vote—again with
sticky dots—on the ones they feel most strongly about. Again, you should encourage
lots of open and constructive discussions to ensure that everyone understands what
each note means. The end goal is a set of actions to take forward.

Appendix C

[685]

The following figure depicts a typical StoStaKee board:

Actions
Focusing on quality

software and escaped defects

Keep running regular
retrospectives

Looking at working in a
DevOps mode

Stop working long hours
and weekends

Investigate TDD and run a
trial

Focus on more agile
adoption

Project ‘A’ retro

Stop Keep

On
trucking

Using
agile

Retrospect-
ives

Good
working
relation-

ship

Not
working
weekends

More beer

Breaking
down
work

Taking
pride

Working
smarter

TDD

Defining
scope in
advance

Devs and
Ops

working
closer

Releasing
buggy

software

Scope
creep

Testing
too late

Waterfall

Working
all

hours

Cutting
resource

Celebrating
failure

Cutting
scope

Promising
what we

can’t
deliver

Start

Using
agile

The preceding examples are a mere subset of what is available, but both have proven
time and time again to be the most effective in investigating and, more importantly,
understanding the issues within a broken process.

Vital Measurements
Expanded

Chapter 7, Vital Measurements, introduced you to a number of different ways of
measuring certain aspects of your processes. We will now expand on some of these
and look in more detail at what you could/should be measuring. We'll start by
revisiting code complexity and the science behind it.

Code complexity – some science
As mentioned in Chapter 7, Vital Measurements, having complex code in some
circumstances is fine and sometimes necessary; however, overly complex code can
cause you lots of problems, especially when trying to debug or when you're trying
to extend it to cater to additional use cases. Therefore, being able to analyze how
complex a piece of code is should help.

There are a few documented and recognized ways of measuring the complexity
of source code, but the one most referred to is the cyclomatic complexity metric
(sometimes referred to as MCC or McCabe Cyclomatic Complexity) introduced by
Thomas McCabe in the 1970s. This metric has some real-world science behind it,
which can, with the correct tools, provide quantifiable measurements based on
your source code. The MCC formula is calculated as follows:

M = E - N + X

In the preceding formula, M is the MCC metric, E is the number of edges (the code
executed as a result of a decision), N is the number of nodes or decision points
(conditional statements), and X is the number of exits (return statements) in the
graph of the method.

Vital Measurements Expanded

[688]

Code versus comments
Including comments within your source will make it much more readable, especially
in the future when someone other than the original author has to refactor or bug
fix the code. Some tools will allow you to measure and analyze the ratio of code
versus comments.

That said, some software engineers don't believe that comments are worthwhile and
believe that if another engineer cannot read the code, then they're not worth their
salt. This is one view; however, including comments within one's source should be
encouraged as a good engineering practice and good manners.

One thing to look out for should you implement a code-versus-comments analysis
is those individuals who get around the rules by simply including things such as
the following code snippet:

/**
 * This is a comment because I've been told to include comments in my
 * code
 * Some sort of code analysis has been implemented and I need to
 * include comments to ensure that my code is not highlighted as poor
 * quality.
 *
 * I'm not too sure what the percentage of comments vs code is
 * required but if I include lots of this kind of thing the tool will
 * ignore my code and I can get on with my day job
 *
 * In fact this is pretty much a waste of time as whoever is reading
 * this should be looking at the code rather than reading comments.
 * If you don't understand the code then maybe you shouldn't be trying
 * to change it?!?
 */

This might be a bit extreme, but I'm sure if you look close enough at your codebase,
you might well find similar sorts of things hidden away.

One other good reason for comments—in my experience—is for those situations
when you have to take the lid off some very old code (by today's standards, very
old could be a couple of years) to investigate a possible bug or simply find out what
it does. If the code is based on outdated design patterns or even based on an old
language standard (for example, an older version of Java or C#), it might be quite
time-consuming trying to understand what the code is doing without, at least, some
level of commenting.

Appendix D

[689]

Embedding monitoring into your software
As mentioned in Chapter 7, Vital Measurements, there are a few ways you can include
and embed the generation of metrics within the software itself.

Let's assume that your software components contain APIs that are used for
component-to-component communication. If you were able to extend these APIs
to include some sort of a health-check functionality, you could construct a tool that
simply calls each component and asks the component how it is. The component can
then return various bits of data, which indicates its health. This might seem a bit
convoluted, but it's not that difficult.

The following diagram gives an overview of how this might look:

A health-checker solution harvesting health-status data form software components

In this example, we have a health-checker tool that calls each component via the APIs
and gets back data that can then be stored, reported, or displayed on a dashboard.
The data returned can be as simple or complex as you like. What you're after is to
ascertain whether each component is healthy. Let's say, for example, one element of
the data returned indicated whether or not the software component could connect
to the database. If this comes back as false and you notice that the system monitor
looking at the free disk space on the database server is showing next to zero, you
can very quickly ascertain what the problem is and rectify it.

Vital Measurements Expanded

[690]

This method of monitoring is good but relies on you having some tooling in place
to call each component in turn, harvest the data, and present it to you in some
readable/usable form. It's also restricted to what the APIs can return or rather how
they are designed and implemented. If, for example, you wanted to extend the data
collection to include something like the number of open database connections, you
will need to change the APIs, redeploy all of the components, and then update the
tooling to accept this new data element. This is not a huge problem, but a problem all
the same. What could be a huge problem, though, is the single point of failure, which
is the tooling itself. If this stops, working for whatever reason, you're again blind, as
you don't have any data to look at, and, more importantly, you're not harvesting it.

There is an alternative approach that can overcome these problems. In this approach,
the component itself generates the metrics you need and pushes the data to your
tooling. Something like Graphite does this very well. Instead of extending the APIs,
you simply implement a small amount of code; this allows you to fill up buckets of
metrics data from within the software component itself and push these buckets out
to the Graphite platform. Once in graphite, you can interrogate the data and produce
some very interesting real-time graphs. Another advantage of graphite is the
plethora of tools now available to generate and create very effective graphs, charts,
and dashboards based on the Graphite data.

[691]

Bibliography
This course is a blend of text and quizzes, all packaged up keeping your journey in
mind. It includes content from the following Packt products:

• Practical DevOps, Joakim Verona
• DevOps Automation Cookbook, Michael Duffy
• Continuous Delivery and DevOps – A Quickstart Guide - Second Edition,

Paul Swartout

Thank you for buying
Learning DevOps: Continuously Deliver

Better Software

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Preface
	Table of Contents
	Module 1
	Chapter 1: Introduction to DevOps and Continuous Delivery
	Introducing DevOps
	How fast is fast?
	The Agile wheel of wheels
	Beware the cargo cult Agile fallacy
	DevOps and ITIL
	Summary

	Chapter 2: A View from Orbit
	The DevOps process and Continuous Delivery – an overview
	Release management
	Scrum, Kanban, and the delivery pipeline
	Wrapping up – a complete example
	Identifying bottlenecks
	Summary

	Chapter 3: How DevOps Affects Architecture
	Introducing software architecture
	The monolithic scenario
	Architecture rules of thumb
	The separation of concerns
	The principle of cohesion
	Coupling
	Back to the monolithic scenario
	A practical example
	Three-tier systems
	The presentation tier
	The logic tier
	The data tier
	Handling database migrations
	Rolling upgrades
	Hello world in Liquibase
	The changelog file
	The pom.xml file
	Manual installation
	Microservices
	Interlude – Conway's Law
	How to keep service interfaces forward compatible
	Microservices and the data tier
	DevOps, architecture, and resilience
	Summary

	Chapter 4: Everything is Code
	The need for source code control
	The history of source code management
	Roles and code
	Which source code management system?
	A word about source code management system migrations
	Choosing a branching strategy
	Branching problem areas
	Artifact version naming
	Choosing a client
	Setting up a basic Git server
	Shared authentication
	Hosted Git servers
	Large binary files
	Trying out different Git server implementations
	Docker intermission
	Gerrit
	The pull request model
	GitLab
	Summary

	Chapter 5: Building the Code
	Why do we build code?
	The many faces of build systems
	The Jenkins build server
	Managing build dependencies
	The final artifact
	Cheating with FPM
	Continuous Integration
	Continuous Delivery
	Jenkins plugins
	The host server
	Build slaves
	Software on the host
	Triggers
	Job chaining and build pipelines
	A look at the Jenkins filesystem layout
	Build servers and infrastructure as code
	Build phases
	Alternative build servers
	Collating quality measures
	About build status visualization
	Taking build errors seriously
	Robustness
	Summary

	Chapter 6: Testing the Code
	Manual testing
	Pros and cons with test automation
	Unit testing
	JUnit in general and JUnit in particular
	Mocking
	Test Coverage
	Automated integration testing
	Performance testing
	Automated acceptance testing
	Automated GUI testing
	Integrating Selenium tests in Jenkins
	JavaScript testing
	Testing backend integration points
	Test-driven development
	REPL-driven development
	A complete test automation scenario
	Summary

	Chapter 7: Deploying the Code
	Why are there so many deployment systems?
	Virtualization stacks
	Executing code on the client
	The Puppet master and Puppet agents
	Ansible
	PalletOps
	Deploying with Chef
	Deploying with SaltStack
	Salt versus Ansible versus Puppet versus PalletOps execution models
	Vagrant
	Deploying with Docker
	Comparison tables
	Cloud solutions
	AWS
	Azure
	Summary

	Chapter 8: Monitoring the Code
	Nagios
	Munin
	Ganglia
	Graphite
	Log handling
	Summary

	Chapter 9: Issue Tracking
	What are issue trackers used for?
	Some examples of workflows and issues
	What do we need from an issue tracker?
	Problems with issue tracker proliferation
	All the trackers
	Summary

	Chapter 10: The Internet of Things
and DevOps
	Introducing the IoT and DevOps
	The future of the IoT according to the market
	Machine-to-machine communication
	IoT deployment affects software architecture
	IoT deployment security
	Okay, but what about DevOps and the IoT again?
	A hands-on lab with an IoT device for DevOps
	Summary

	Module 2
	Chapter 1: Basic Command Line Tools
	Introduction
	Controlling network interfaces
	Monitoring network details with the IP command
	Monitoring connections using the ss command
	Gathering basic OS statistics
	Viewing historical resource usage with SAR
	Installing and configuring a Git client
	Creating an SSH key for Git
	Using ssh-copy-id to copy keys
	Creating a new Git repository
	Cloning an existing Git repository
	Checking changes into a Git repository
	Pushing changes to a Git remote
	Creating a Git branch

	Chapter 2: Ad Hoc Tasks
with Ansible
	Introduction
	Installing an Ansible control node on Ubuntu
	Installing an Ansible control node on CentOS
	Creating an Ansible inventory
	Using the raw module to install
python-simplejson
	Installing packages with Ansible
	Restarting services using Ansible
	Executing freeform commands with Ansible
	Managing users with Ansible
	Managing SSH keys with Ansible

	Chapter 3: Automatic Host builds
	Introduction
	Creating an Apt mirror using aptly
	Automated installation using PXE boot and a Preseed file
	Automating post-installation tasks

	Chapter 4: Virtualization with VMware ESXi
	Introduction
	Installing ESXi
	Installing and using the vSphere Client
	Allowing SSH access to ESXi
	Creating a new guest
	Allocating resources to a guest
	Using the ESXi command line to start, stop, and destroy guests
	Managing command-line snapshots
	Tuning the host for guest performance

	Chapter 5: Automation
with Ansible
	Introduction
	Installing Ansible
	Creating a scaffold Playbook
	Creating a common role
	Creating a webserver using Ansible and Nginx
	Creating an application server role using Tomcat and Ansible
	Installing MySQL using Ansible
	Installing and managing HAProxy with Ansible
	Using ServerSpec to test your Playbook

	Chapter 6: Containerization
with Docker
	Introduction
	Installing Docker
	Pulling an image from the public Docker registry
	Performing basic Docker operations
	Running a container interactively
	Creating a Dockerfile
	Running a container in detached mode
	Saving and restoring a container
	Using the host only network
	Running a private Docker registry
	Managing images with a private registry

	Chapter 7: Using Jenkins for Continuous Deployment
	Introduction
	Installing Jenkins
	Installing the Git plugin
	Installing a Jenkins slave
	Creating your first Jenkins job
	Building Docker containers using Jenkins
	Deploying a Java application to Tomcat with zero downtime using Ansible

	Chapter 8: Metric Collection
with InfluxDB
	Introduction
	Installing InfluxDB
	Creating a new InfluxDB database
	Logging events with the InfluxDB REST API
	Gathering host statistics with Telegraf
	Exploring data with the InfluxDB data explorer
	Installing Grafana
	Creating dashboards with Grafana

	Chapter 9: Log Management
	Introduction
	Centralizing logs with Syslog
	Using syslog templates
	Managing log rotation with the Logrotate utility
	Installing ElasticSearch, Logstash, and Kibana
	Importing logs into Elasticsearch with Logstash
	Using Kibana queries to explore data
	Using Kibana queries to examine data

	Chapter 10: Monitoring with Sensu
	Introduction
	Installing a Sensu server
	Installing a Sensu client
	Installing check prerequisites
	Finding community checks
	Adding a DNS check
	Adding a disk check
	Adding a RAM check
	Adding a process check
	Adding a CPU check
	Creating e-mail alerts
	Creating SMS alerts
	Using Ansible to install Sensu

	Chapter 11: IAAS with Amazon AWS
	Introduction
	Signing up for AWS
	Setting up IAM
	Creating your first security group
	Creating your first EC2 host
	Using Elastic Load Balancers
	Managing DNS with route53
	Using Ansible to create EC2 hosts

	Chapter 12: Application Performance Monitoring with New Relic
	Introduction
	Signing up for a New Relic account
	Installing the New Relic Java agent
	Using the performance overview
	Locating performance bottlenecks with Transaction Traces
	Observing database performance with New Relic
	Release performance monitoring with New Relic
	Server Monitoring with New Relic

	Module 3
	Chapter 1: Evolution of a
Software House
	A brief history of ACME systems
	ACME systems version 1.0
	ACME systems version 2.0
	ACME systems version 3.0
	ACME systems version 4.0
	The evolution in a nutshell
	Summary

	Chapter 2: No Pain, No Gain
	Elephant in the room
	Defining the rules
	Including (almost) everyone
	Openness, transparency, and honesty
	The great elephant disclosure
	Summary

	Chapter 3: Plan of Attack
	Setting and communicating the goal
and vision
	Standardizing vocabulary and language
	A business change project in its own right
	The merits of a dedicated team
	The importance of evangelism
	Courage and determination
	Understanding the cost
	Seeking advice from others
	Summary

	Chapter 4: Culture and Behaviors
	All roads lead to culture
	An open, honest, and safe environment
	Encouraging and embracing collaboration
	Fostering innovation and accountability at grass roots
	The blame culture
	Building trust-based relationships across organizational boundaries
	Rewarding good behaviors and success
	Recognizing dev and ops teams are incentivized can have an impact
	Embracing change and reducing risk
	Being transparent
	Summary

	Chapter 5: Approaches, Tools,
and Techniques
	Engineering best practice
	How many environments are enough?
	Developing against a production-like environment
	CD tooling
	The cloud
	Monitoring
	When a simple manual process is also an effective tool
	Summary

	Chapter 6: Hurdles Along the Way
	What are the potential issues you need to look out for?
	Summary

	Chapter 7: Vital Measurements
	Measuring effective engineering best practice
	Measuring the real world
	Summary

	Chapter 8: Are We There Yet?
	Reflect on where you are now
	Streaming
	A victim of your own success
	[P]lan, [D]o, [C]heck, [A]djust
	Exit stage left
	Rest on your laurels (not)
	Summary

	Chapter 9: The Future is Bright
	Expanding your horizon
	Expanding beyond software delivery
	What about me?
	What have you learned?
	Summary

	Appendix A: Some Useful Information
	Tools
	People
	Recommended reading

	Appendix B: Where Am I on the Evolutionary Scale?
	Appendix C: Retrospective Games
	The timeline game
	StoStaKee

	Appendix D: Vital Measurements Expanded
	Code complexity – some science
	Code versus comments
	Embedding monitoring into your software

	Bibliography

