

Learning Shell Scripting
with Zsh

Your one-stop guide to reading, writing, and debugging
simple and complex Z shell scripts

Gastón Festari

BIRMINGHAM - MUMBAI

Learning Shell Scripting with Zsh

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1080114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-293-7

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

Credits

Author
Gastón Festari

Reviewers
Takeshi Banse

Alice Ferrazzi

Chien-Wei Huang

Acquisition Editor
Rubal Kaur

Commissioning Editor
Govindan K

Technical Editors
Nikhil Potdukhe

Tarunveer Shetty

Copy Editors
Dipti Kapadia

Kirti Pai

Project Coordinator
Aboli Ambardekar

Proofreader
Bridget Braund

Indexer
Hemangini Bari

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

About the Author

Gastón Festari is a scripting language enthusiast with over five years of experience
and a firm believer in free, open source software. Currently working as a developer
for Globant, he likes to spread the word about zsh at different meetups and events
when away from the keyboard.

The number of people who deserve their name on this page for
making this possible would require a book of its own, so allow me
to start by apologizing if your name isn't here by saying: I owe you a
hug and a big "thank you".

To my grandparents and my family for allowing me to follow my
ambitions. My friends, Xeba and his wonderful family, Mathías and
Eliana, Bruno, Lore, Ce, and Dan for putting up with this project of
mine. Without your encouragement and support, this could have
never been completed.

My colleagues, particularly Gabriel, Diego, and Ale, for their
feedback and for getting me through those particularly difficult
times around Chapter Four. To the technical reviewers Alice
Ferrazzi, Chien-Wei Huang, and Takeshi Banse; and staff at Packt
Publishing for their great suggestions and eagle-eyed corrections.

So now you know, if you don't see your name in here, come by with
a frowning face, and you'll get that much-deserved hug. I promise.

So see you around and again, thank you.

About the Reviewers

Takeshi Banse lives in Tokyo, Japan. He likes to write code for Linux. His e-mail
address is takebi@laafc.net.

Alice Ferrazzi has been using zsh since 2011. She is currently living in Tokyo,
studying Japanese at Tokyo Central Japanese Language School (TCJ) in the morning
and working at MIRACLE LINUX in the afternoon.

She contributes to Gentoo and open source software in her free time. She has
a wiki at http://aliceinwire.net.

Thanks for everyone's support and encouragement.

Chien-Wei Huang is a programmer from Yunlin, Taiwan. His main programming
skills include C and Python, and he also has some experience of PHP/JavaScript/
MongoDB/MySQL/Java/Shell. He loves developing programs to solve the
problems he faces, sharing knowledge with others, and is also interested in new
technologies. His ID on the Internet is carlcarl. You can find him on GitHub, Plurk,
and many other places. He also has a blog for programming notes at http://blog.
carlcarl.me.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Getting Started 7

Installing zsh 7
Installing on Linux 8
Installing on OS X 9
Compiling from source 10

First run 10
Making zsh your login shell 12
Shell options 13
The startup files 14

The shell prompt 16
The prompt command 17
Customizing the prompt 18
Using escape sequences 19
Conditional expressions 22
Putting it all together 22

Summary 25
Chapter 2: Alias and History 27

Working with aliases 27
Quoting characters 29
Single and double quoting aliases 30
Global aliases 33
Hashes 34
Putting it all together 35

Expansion 36
Parameter expansion 36
Command substitution 36
Arithmetic expansion 37

Table of Contents

[ii]

Brace expansion 39
Working with history 41

History expansion 41
History substitution 46
More useful options 46

Summary 47
Chapter 3: Advanced Editing 49

Zsh line editor 49
Getting to know ZLE 50
Working with keymaps 50
Basic editing 51

Going back and forth with words 52
Yanking and transposing text 52

Revisiting history 54
Advanced editing 55

ZLE-related options 55
Defining your own keymaps 56

Don't call them widgets 59
Defining your own widgets 60
Your first function 62

Working with regions 65
Multiline editing 65
Putting it all together 67

Summary 68
Chapter 4: Globbing 71

Quoting your strings 71
Double quotes 73

Getting started with Globbing 74
Globbing with the stars 74
Questions for any single character 76
Brackets for a sequence of characters 76
Using safer ranges on your scripts 77

Avoiding characters 78
Handling mismatches 79

Extended Globbing 81
Special patterns 81

Recursive searching 81
Alternate patterns 82
Numeric ranges 83
Revisiting the caret operator 84
The tilde operator 84

Table of Contents

[iii]

Glob qualifiers 85
Timestamp qualifiers 87
File size qualifiers 88

The zmv function 88
Summary 90

Chapter 5: Completion 91
Getting started with completion 91

Getting assertive with zstyle 93
Command correction 95

Completers 97
Ignoring matches 98

Function definitions 99
The path of the function 101

Summary 105
Chapter 6: Tips and Tricks 107

Main resources 107
Helping tips 108

Directory substitution 108
Magic space 108
Random numbers 109
zcalc 109
Change and list directory contents 109
Finding your path through commands 110

Other projects 111
zsh-lovers 111
zsh-users 111
oh-my-zsh 111
Prezto 112
Explain Shell 112
Your dotfiles 112

Summary 113
Index 115

Preface
If I had to take a wild guess, I'd say that you are reading these lines because, like
me, you spend quite some time dealing with Unix systems. Be it because your job
requires you to, or you simply love to poke around an operating system's internals,
the shell is arguably how you deal with most of your activities.

Historically, shells were conceived for speeding up our work, but we all know that
at some point, what was supposed to be a leaner way to get things done turned into
a slugfest of arcane symbols and impossibly long-to-remember lines of code.

Wouldn't it be great then, if we could squeeze just a bit more out of our system?
Imagine the things you are currently doing and being able to do them in a more
efficient, elegant way, even the things that you thought were some sort of magic
that only Linux's wizards with centuries' worth of experience were able to perform.

What if I told you that feats such as knowing which option flags are available to
a program no longer require you to scan endless screens of manpages? Imagine not
having to deal with journeys along infinite horizontal lines of characters anymore.
And what about relying on automatic completion instead of typing the same lines
again? What if knowing which directory you are currently working on merely
required you to stare at your command prompt? Now imagine that all it takes
for getting started with all of this only demands you to switch to a new shell.

What this book covers
Chapter 1, Getting Started, starts from scratch by explaining how to install and set up
zsh. Learn about startup files and customizing the shell prompt.

Chapter 2, Alias and History, explains how aliasing works, how to define aliases in
your startup files, and teaches you how to work with the shell's history log.

Preface

[2]

Chapter 3, Advanced Editing, introduces zsh's Line Editor and working with the
various shortcuts and key bindings on the command line.

Chapter 4, Globbing, introduces the new ways of working with the system's files and
directories by applying parameter substitution and modifiers to deal with all kinds
of tasks.

Chapter 5, Completion, introduces you to one of zsh's greatest features and shows you
how to start tweaking "the new" completion system by defining your own styles
and functions.

Chapter 6, Tips and Tricks, explains miscellaneous settings and configuration options
that are definitely worth trying, together with some cool community projects that
should be on your radar.

What you need for this book
Before getting started, you should be comfortable in handling a terminal emulator.
Most operating systems bundle such software within their stock set of applications,
but as is the case with any application, there are other offerings out there waiting to
be discovered. Such alternatives are probably even better suited for the task at hand,
so please make sure you get to know the ins and outs of your weapon of choice and
its quirks before jumping into this book.

Also required for following this text and the provided examples is the Git source
code management system. It can be easily obtained and installed by following the
instructions provided at http://git-scm.com, and it's an indispensable tool when
attempting to use some of the various software projects and sources mentioned
throughout this book.

Who this book is for
This book is great for system administrators, developers, and other computer
professionals involved with Unix, who are looking to improve on their daily
tasks involving the Unix shell. It's assumed that you have some familiarity with
a Unix command-line interface and feel comfortable with editors such as Emacs
or vi. The usage of web browsers is optionally required for reading some online
documentation.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "This alias changes the behavior of ls by
calling it with the color flag every time you type it, instead of using its more
vanilla version."

A block of code is set as follows:

zstyle ':completion:*:descriptions' format '%B%d%b'
zstyle ':completion:*:messages' format %d
zstyle ':completion:*:warnings' format 'No matches for: %d'

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

autoload -Uz compinit
compinit

Any command-line input or output is written as follows:

$ zsh --version

zsh 5.0.2 (x86_64-apple-darwin12.3.0)

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Should
your operating system greet you with a polite zsh not found message, that's ok
though; otherwise, you won't be reading these lines."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started
So, what's the deal with Z shell? You probably have a solid notion of what to
expect from a modern shell, so things such as command history, completion, and
autocorrection will not wow you as much as someone who just discovered Bash.
However, unlike some of the other available shells out there, Z shell (zsh) boasts of
a really powerful scripting language and an incredible completion system. Actually,
incredible doesn't even begin to describe it. Swift and effortless sounds a bit more
appropriate. Zsh also incorporates—and arguably, improves on—many of the useful
features of Bash, ksh, and csh, even going so far as to allow you to emulate these
shells in your scripts for an extra layer of compatibility.

Once you discover things such as multiline editing or start relying on automatic
spell correction though, I promise you will look back at your old days of keyboard
mashing buttons and wonder why you didn't make the switch sooner. So let's get
started with it, shall we?

In this chapter, we will start by getting to know zsh, with a quick glimpse at some
of the features that make it unique. Before we embark on our adventure though,
we will need to install and configure our new shell, so we can ensure everything
is up and running smoothly. We then move on to the configuration—what are the
startup files, and how to use the different styles, escape sequences, and conditional
expressions in order to customize the prompt.

Installing zsh
Like most things on your system, zsh needs to be installed and maintained;
so, in this section we will learn how to do that. Note though, in order to avoid
introducing inconsistencies and/or incompatibilities into your operating system,
the recommended way of installing zsh is straight from your package maintainer's
available sources. Either refer to your system's documentation or head to zsh's
home page (http://zsh.sourceforge.net) to learn more about the whole
installation procedure.

Getting Started

[8]

Before getting started, it would be a good idea to check whether you will need to
install or update your current installation of zsh, as the package could already be
installed on some Unix systems. So, open up your favorite terminal emulator and
type in the following command:

$ echo $SHELL

This should print out something like /bin/sh or /bin/bash on most systems, and
this means that your current login shell is something other than zsh. If you see zsh in
the result though, go ahead and call the following commands:

$ zsh --version

zsh 5.0.2 (x86_64-apple-darwin12.3.0)

With some luck (and a healthy regime of system updates on your side, of course),
you should see zsh's version, something that pretty much resembles the previous
snippet. If that's the case, you can go ahead and skip this section. Should your
operating system greet you with a polite zsh not found message. That's ok though,
otherwise you wouldn't be reading these lines. Let's get into the installation part of
the deal, shall we?

We'll use the latest stable release—version 5.0.2 as at the time of
writing this book—as a reference in this book. So it is advisable to try
and update your current installation if you are running a previous
release. Refer to your package manager's documentation in order to
update zsh.

Installing on Linux
Depending on which distribution of Linux your PC is currently sporting, zsh might
(or might not) be in its repositories or, better yet, already installed on your OS.
You should always refer to your OS's package listing in the rare event that zsh is
unavailable.

On Debian and its multitude of derived distributions—such as Ubuntu and Linux
Mint—you could get the whole installation process completed by simply opening a
terminal and running the following commands:

$ sudo apt-get update

$ sudo apt-get install zsh

Depending on your flavor of Debian and its repositories, you could get any version
of zsh ranging from 4.3.x to 5.0.0 and upwards (if using any current release, at least).
Again, try to stick to the latest and greatest whenever possible.

Chapter 1

[9]

You can always check the version of zsh by running zsh
--version in the terminal.

Red Hat-based distributions such as Fedora will need you to input the
following commands:

$ sudo yum check-update

$ sudo yum install zsh

Then, there are the openSuSE users:

$ sudo zypper refresh

$ sudo zypper install zsh

And let's not forget the Arch users:

$ sudo pacman -S zsh

Wait for the download and installation scripts/triggers to complete, go ahead, and
skip to the next section.

Installing on OS X
Arguably, the easiest way to get your hands on zsh in OS X is either via
Homebrew (http://www.brew.sh) or MacPorts (http://www.macports.org),
package managers that aim to extend the default options available to OS X users.
Unfortunately, neither of these options come bundled with OS X. You will need to
install either of the solutions before you can go ahead and make do with the latest
version of zsh (which remains 5.0.2 at the time of writing this book). So, open your
terminal emulator of preference, and either type:

$ brew install zsh

or

$ sudo port install zsh

Wait for the download and installation scripts to finish, and then go ahead and jump
straight into the next section. Also, refer to the documentation of each application
in order to troubleshoot any kind of problems that could come up during the
installation of the package.

Getting Started

[10]

Compiling from source
The official home for zsh is located at zsh.sourceforge.net, and this is where you
should point your browser in order to get started with your building adventure.
Keep in mind, though, that the recommended way of obtaining a zsh binary for your
system is via the compiled binaries packages. If for some reason, however, you just
want to get the latest and greatest and don't mind dealing with more bugs than those
of a stable release, you most likely will need to clone the repo using the Git version
control software:

$ git clone git://git.code.sf.net/p/zsh/code zsh

Make sure you check-out and track the master branch, which is where the latest
goodies have been committed. Also, keep in mind that there are some dependencies
that need to be met before you can build your fresh local copy of zsh. These are all
well-documented in the many configuration files that have been cloned into your
disk, so take a long, hard look at the README file before you attempt things such as
building the configure script.

Installing Git on your platform of choice goes beyond the scope of this
book, but be rest assured that you won't have trouble following the
instructions at http://www.git-scm.com.

First run
Now that zsh is on your system, how about we take it for a spin? Go ahead and open
your terminal emulator of choice and call the following command:

$ zsh

Like many other applications these days, zsh has a first-run wizard (bear with me, it
almost resembles one). This is one of those magic creatures whose sole purpose is to
help us configure our tools on a swift swoop of questions and decision making. We'll
skip the new user configuration this time, but feel free to choose whatever method
works best for you, taking the question-by-question approach or just pressing Q on
your keyboard to abort the operation. Just remember that the newuser module is
called from <zshInstallFolder>/Functions/Newuser/zsh-newuser-install
or <zshInstallFolder>/functions/zsh-newuser-install in OS X—should you
require its services in the future.

zsh.sourceforge.net

Chapter 1

[11]

In order to avoid having to skip the configuration options on each subsequent run,
you can go ahead and create what is known as a startup file:

% touch ~/.zshrc

We just created our main preferences file; the problem is, it stands empty as it is.
Let's go ahead and add some preferences, shall we?

There will be plenty of references to zsh's options—the various settings
that alter the shell's behavior—thus, now is as good a time as any to
establish a couple of conventions. Firstly, the naming scheme is somewhat
too forgiving—it is case-insensitive and ignores underscores and ignores
underscores. As such, both the following option names mean the same.
SOME_OPTION and SOMEOPTION
Secondly, try to think of options as switches. As the name implies, they can
either be turned on or off. Of the many ways that zsh provides to toggle its
options, it is arguably easier to remember the setopt/unsetopt combo.

setopt SOME_OPTION # enables any option.

unsetopt SOME_OPTION # use this to disable an option.

Conversely, you can negate the behavior of an option by prepending NO
to its name, thus making unsetopt SOME_OPTION mean the same as
setopt NO_SOME_OPTION or, keeping in mind that underscores are
only there for human readability, the same as setopt NOSOMEOPTION.

Just for sanity's sake and because I do love me some standards, we'll use
ALL_CAPS_SNAKE_CASE for the options in this book.

Open ~/.zshrc with your favorite editor; you can use editors such as vim, Emacs,
nano, or whatever kids find cool these days, and add the following line:

autoload -U promptinit # initialize the prompt system promptinit

Let's go over what we just typed: the first line of the code is our way to tell the
shell to start its promptinit module—a series of functions that deal with handling
the shell's various prompts and functionality. What you see right after the hash
sign is just a comment to remind you of what the command is doing and why it is
there. Finally, the last line is the one that actually calls and initializes the prompt
module. It might not seem much, but it will come in handy when dealing with
prompts, I promise.

Feel free to omit the comments and make sure you save your changes.

Getting Started

[12]

Zsh will ignore each line that starts with a hash (#)—or pound—sign. This
is really helpful for debugging preferences and, better yet, documenting
your functionality. Consider the next example, with comments in bold:

This is a comment and will be ignored by the shell.

HISTFILE=~/.zsh_history # sets the location of the
history file

Making zsh your login shell
If there's something that shells take seriously, is their role. See, the thing with shells
is that they like to hang out in very specific categories—they are either interactive or
non-interactive, and then there are login shells.

As you might have guessed from their name, interactive shells allow you to interact
with them; that is, they display a prompt, you enter a command, and they get back
to you with an answer and a prompt that is ready for new input. On the other hand,
Apply interactive shells get called to execute a script and go off their own merry way
when the job is done.

Put simply, a prompt usually is the blinking cursor that tells you a
shell is ready for you.

What about login shells then? Well, unlike interactive shells, login shells are usually
called when the user performs a login—be it either on the local machine or when
using tools such as SSH, for example—and takes the trouble to go through your
startup files and configuration bits and pieces of the shell. More importantly, your
login shell doesn't necessarily need to be interactive.

In the previous section, we used a direct call to the binary zsh to start zsh. As you
can imagine, this is but a temporary workaround, as typing the name of the shell
every single time we want to use it seems a bit impractical, to say the least. Even
worse is the thought of having your previous shell lurking beneath and ready to
jump back at you as soon as you're done with zsh. If you don't trust me, go ahead
and type exit; I'll wait. See that thing that's on your screen? That's your former
command-line companion right there. Say your goodbyes and hop back into zsh by
typing zsh and pressing return.

So what comes next is—you guessed it—getting rid of that old shell of yours and
saving yourself the trouble of remembering to call zsh each time you want to use it.

Chapter 1

[13]

You can always trick zsh, and many other shells, into thinking it is a
login shell by starting it with either the -l or --login flag. Open your
terminal and type either of the following commands:
$ zsh -l

or
$ zsh --login

Voilà! A shell with a login complex.

Luckily for us, the Unix chsh command seems to be just what the doctor
recommended, so go ahead and type the following in your terminal:

$ chsh -s $(which zsh)

In the previous snippet, we're telling the system to change the shell for the current
user. The option -s is used here to specify the location of the shell binary. That fancy
$() construct you see there is our way of telling the shell to expand the result of the
command within the parentheses, which is the result of the command which zsh.

You might recall which from the previous section, when we required its services to
figure out the location of our existing zsh installation. The job of which consists of
shouting out loud the location of any program file in the user's $PATH environment
variable. Thus, we can safely assume that if zsh is not there, something has taken a
wrong turn somewhere and, perhaps, it's advisable to retrace our steps.

It's more than likely that changing your login shell will require it to run with
elevated privileges, so make sure you are using an account with the appropriate
permissions.

From now on, you'll be greeted by zsh by default on your system and every time you
start your terminal emulator of choice. And likely so, you have installed and made
zsh your login shell. Next up is tweaking it.

Shell options
Besides tricking zsh into thinking it's a login shell with the -l flag, there are many
other helpful options you can set when invoking it. Namely, zsh -v will switch
on the verbose mode, which will make the shell print out any line before it gets
executed. Then, there's zsh -x—for xtrace—which can prove invaluable when
debugging your scripts, or zsh -f that will start a clean instance of zsh using the
default settings.

Getting Started

[14]

Any of these options can also be set after the shell has been started; you simply have
to call the desired option flag via the set command. The following example triggers
the verbose mode on a running session:

% set -v

% echo 'quite the echo in here'

> echo 'quite the echo in here'

> 'quite the echo in here'

Downloading the example code
You can download the example code files for all Packt books
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

And, you can disable any option with the same set command and replacing the
dash/minus sign with a plus sign as follows:

disables verbose mode

% set +v

More info regarding the various shell options and their usage can be found in the
zshoptions(1) manpage (man zshoptions).

The startup files
Like most login shells, zsh relies on a series of configuration files known as startup
files, which contain the commands and preferences to be executed and set during the
shell startup routine. We used the .zshrc file in the previous sections to avoid being
bothered by the newuser function, but now that we have made zsh our login shell,
it's time we take a closer look at what we can do with them.

By default, zsh looks for startup files in the user's home directory,
$HOME (or its alias, the more popular tilde, ~. We'll alternate their
use in this text as the path to the current user's home folder on the
system), environment variable. You can tell zsh to look for your
configuration files in another folder by setting the parameter ZDOTDIR
to a directory of your choice in your .zshenv file under $HOME:

ZDOTDIR=/etc/my_kewl_folder/.zshrc

Chapter 1

[15]

During startup, zsh looks for, or sources, a very specific system and user set of
filenames under /etc/. Right after this, each of these files have a user-editable
doppelganger, typically located in $HOME, which gets read. There are some rules,
however, that might make zsh skip some of these files altogether. The ordering of
these files is really important, as setting an option in the wrong file can result in
commands getting executed at the wrong time and some really funky behavior.
Thus, try to keep in mind the following order when setting preferences on your files:

• zshenv

• zprofile

• zshrc

• zlogin

If zsh is not called as an interactive shell, zprofile and zshrc together with their
counterparts in $HOME (~/.zprofile and ~/.zshrc) will not be sourced. In addition,
if zsh is not called as a login shell, zlogin and $HOME/.zlogin will also be skipped.

Depending on how you installed zsh, another directory besides
/etc/ can be used when looking for the global files.

Typically, you'd only like to mess with your own user's preferences, so we'll focus on
the startup files that reside under $HOME, those are as follows:

• ~/.zshenv: This will be called immediately after /etc/zshenv. You should
only add things such as the PATH settings and stuff you want to make
available to any type of shell, whether it's interactive or not.

• ~/.zprofile: This is the companion to /etc/zprofile and kind of the
boring guy out of the startup files bunch. You should put here any scripts
you want executed before ~/.zshrc.

• ~/.zshrc: This is your workhorse. Most of your user settings and shell
preferences end up here. Keep in mind it'll only be taken into account for
interactive shells. As we'll see later on, you can declutter and expand its
reach by sourcing multiple files.

• ~/.zlogin: This will be executed right after ~/.zshrc and works pretty
much like ~/.zprofile, so you should put the scripts that you want called
after your main startup file here.

Getting Started

[16]

On the opposite corner of the startup files, there are the shutdown files. As you can
imagine, this relatively smaller set of files gets called not only in a specific order
but also during the logout sequence of the login shell. The shutdown files can be
considered a subset of the startup files, so there's no need to lose sleep over them.
The important thing to remember is that when you type logout in the command
line, the settings stored in the user configurable ~/.zlogout file are read, followed
by the installation file /etc/zlogout.

You can use the options RCS and GLOBAL_RCS to disable the loading mechanism of
the startup files. This preference has to be unset on the system file /etc/zshenv
as follows:

unset RCS # disables loading of files other than zshenv
unset GLOBAL_RCS # disables loading of files under /etc/

For instance, if the RCS option is unset in zshenv (the first file that is read),
~/.zshenv and all the remaining files will be skipped. Keep in mind though, that
both of these options can be turned on again by any subsequent file that you load.

For example, if you have the following in /etc/shenv:

unset RCS

source my_options_file.zsh

And then in my_options_file.zsh add:

some more options here

set RCS

Then, the shell will proceed and load .zshenv as if nothing happened. So, be careful!

We have taken a look at the startup files and their somewhat strict ordering; now, it's
time we get up close and personal with the prompt.

The shell prompt
Give anyone enough time with a shell and, inevitably, the question of "how do I
add colors to it?" is bound to come up. Luckily though, zsh boasts a truckload of
configuration options and escape sequences that will let you do just that and even
more. In this section, we'll delve into the nuts and bolts of options at your disposal to
customize the prompt.

Chapter 1

[17]

The prompt command
Zsh comes with a wide array of predefined prompt configurations that can be
used as building blocks for something that more adequately meets your needs.
Among other things, the utility prompt allows you to select your preferred theme.
On a default installation, the various themes and user contributions are located
under <zshFolder>/Functions/Prompts (or <zshFolder>/functions in OS X)
and follow the naming scheme prompt_<theme>_setup. To have a look at what's
included in the stock package, just type the following command:

$ prompt –p

And you should see a list of all the available prompt themes included with zsh.
You can use the -p option together with a theme name to take a closer look at any
of the themes:

$ prompt -p

In order to use the prompt function, you will need to set up the promptinit module
on your shell. The easiest way to do this is to add it to your .zshrc file. Take a look
at the section First run if you haven't done so yet.

You can refer to the PROMPT THEMES section under the
zshcontrib(1) manpage in order to get more in-depth information
regarding prompts on zsh. Just type man zshcontrib in your
terminal to get started.

You can test drive any theme you like, applying it temporarily to your current shell
by typing:

$ prompt <theme_name>

Some themes, such as adam1, can even accept some extra configuration parameters
like the following:

$ prompt adam1 red yellow magenta # sets the 'adam1' theme

By default, zsh won't be too fond of comments typed in the command line. Luckily,
you can alter this behavior by setting the following option in your .zshrc file:

setopt INTERACTIVE_COMMENTS # allow inline comments like this one

Getting Started

[18]

In the previous snippet, we are passing a list of options to the theme, namely the
colors red, yellow, and magenta. You can get a more thorough description of what's
allowed for each prompt theme by calling the built-in help on any given theme:

$ prompt -h <theme_name>

Try this on your favorite themes and see what else can be tweaked out of them.

Once you have found a combination that suits you, you can go ahead and
commit to those changes. Just open your .zshrc file with your editor and add the
following line:

autoload -U promptinit

promptinit

prompt adam1 red yellow magenta

We took our previous preferences file and sparkled some color in the default prompt
adam1. So, how about we tweak it to make it feel more like home?

If you have invested a fair amount of time on customizing your
prompt in your previous shell, it can be quite a headache trying to
figure out the different rules set, so it can be ported to zsh. Luckily,
zsh provides a series of tools for making the switch a more or less
smooth experience. Located under <zshFolder>/Misc, you can
use the bash2zshprompt or c2z scripts to migrate your Bash or csh
preferences respectively. Note, however, that some distributions might
be missing this, in which case you should head straight to the official
repo and get your hands on a local copy. See the Compiling from source
section for more information on how to get the zsh source code.

Customizing the prompt
Zsh boasts five different prompts you can tweak, each with its specific purpose.
Although you probably won't have to worry about dealing with them in most usage
scenarios, it is, nevertheless, important that we get to know their role. For a more
detailed description of each of them, I suggest you take a look at man zshmisc.

Zsh likes to refer to its main prompt variable as $PS1 or its alias, $PROMPT (also
$prompt). Rest assured though, both (actually the three of them, that is) are the
same beast and are treated equally by zsh. Then there's $RPS1 that prints a prompt
at the right-hand side of the screen. Unlike other prompts though, it automatically
disappears whenever line width is needed.

Chapter 1

[19]

$PS2 gets displayed whenever the shell is waiting for more input, such as at the
start of some unfinished syntactic structure or when you add inline comments to
the command line. $PS3 is used for making choices within a select loop control
mechanism. Last but not the least, $PS4 really comes in handy for debugging scripts.

Overall, these are the set of tools we will be working with, extending their
functionality beyond the basics with a nifty set of tools known as escape sequences.

You can use the source command to reload your zsh
configuration files at any time. Just save your changes and call the
following command:

$ source file_path/file_name

Remember to use double quotes if your file path includes spaces.
$ source "random folder/.zshenv"

Using escape sequences
Escape sequences are a set of predefined information shortcuts that can be added to
zsh's prompt settings. They can show information such as the name of the machine
to which you are logged on, the current date and time of the system, and even the
current working directory. Most escape sequences are defined with a modulo or
percent (%) operator, and some of them even take optional parameters to extend their
functionality further.

For the magic to happen, however, we first need to add a new setting to our
preferences file. Open .zshrc and add the following line:

setopt PROMPT_SUBST

By doing this, we're enabling the PROMPT_SUBST option. This will make zsh treat
$PROMPT just as if it were a vanilla shell variable, and it will be checked against for
command substitution, parameter and arithmetic expansion.

Next, we'll go through many of the available escape sequences and their meanings.
Keep in mind that this is by no means a complete list of all the available options; as
such, you can always refer to the zshmisc(1) manpage—particularly, the section
titled Prompt Expansion—should you need a more comprehensive listing of the
available options.

Getting Started

[20]

Shell state options
The following options serve as indicators for some aspects of the current state of
the shell:

• %#: This displays # if the shell is running with elevated privileges and
displays % otherwise

• %?: This shows the exit status code of the last command executed
• %h or %!: This shows the current history event number
• %L: This displays the current value of the $SHLVL variable
• %j: This prints the number of jobs being executed

Login information options
The following options display more useful information about the host and machine
on which the shell is currently running:

• %M: This shows the machine's hostname.
• %m: Same as the previous. Hostname is printed up to the first dot (.)

separator. It takes an optional integer after % for the number of components
to be displayed.

• %n: This will have the same effect as printing environment variable
$USERNAME.

Directory options
The following options provide information regarding the path of the current
working directory ($PWD) and filesystem directories:

• %d or %/: This shows the current directory. Works just as printing the $PWD
environment variable.

• %~: Same as the previous, but if the current directory is $HOME, ~ is displayed
instead.

• %c or %.: This lists the amount of directories trailing $PWD. It takes an integer
as the parameter after %. Thus, %2c would show the two preceding directories
to $PWD.

• %C: Same as the previous, but directory names are not replaced with
any symbols.

Chapter 1

[21]

Date and time options
The following options provide miscellaneous date and time information:

• %D: This prints the current system date in the yy-mm-dd format.
• %W: Same as the previous but in mm/dd/yy format.
• %w: This shows the date in day-dd format.
• %T: This displays the current time of the day, 24-hour format.
• %t or %@: Same as the previous, uses a 12-hour, am/pm format.
• %*: Same as the previous, also displays seconds.

Text formatting options
Unlike the previous escape sequences, these need to be opened and closed
around the desired part of the prompt. That is, in order to underline word, you
need to type it as %Uword%u. Pay special attention to the difference in the case of the
opening (UPPERCASE) and closing (lowercase) escape sequences, as shown in the
following points:

• %U %u: This enables underline mode.
• %B %b: This enables boldface mode.
• %K %k: This sets the background color. Use it as %K{red}%k.
• %F %f: Like the the previous, but applies to the foreground color.
• %S %s: This enables standout (highlight) mode.

When dealing with escape sequences, both % and) are somewhat special as far as
zsh is concerned; thus, remember to type %% if you need to display a literal % on your
prompt. Likewise, a literal) should be typed as %). This technique is commonly
referred to as escaping characters.

You can enable the PROMPT_BANG option on your zsh configuration to
use a bang (!) in your prompt in order to display the current history
event number instead of having to escape it (%!). Just remember to type
!!, should you require a literal !.

setopt PROMPT_BANG # enables '!' substitution on prompt

Getting Started

[22]

Conditional expressions
We will conclude our trip of the escape sequences by taking a look at the escape
sequences available for conditional expansion. Luckily though, most of it can be
summed up as the following ternary expression:

%(X.true-text.false-text)

Basically, what this means is that if the condition X is true, do whatever is in true-
text, otherwise do whatever is in false-text. The important thing to remember is
that you should wrap your expression with %(), and that the dots (.) you see there
are completely arbitrary, meaning you can replace both of them with whatever
character you like.

Regarding the true-text/false-text expressions, the manpage (as when you visit
man zshmisc) tells us that they can be replaced with the likes of !. This will evaluate
to true if the shell is running with privileges or ?, which in turn can be preceded by
an integer n and will evaluate to true only if the exit status of the last command
matches. Thus, in order to display # as your main prompt to signal whether you
are running on elevated privileges, with a bit of imagination, you can come up with
things like the following:

PS1=%(!.#.>)

Likewise, you could use the following line to wrap the exit status of the last
command that was run, if it was other than 0, that is:

PS1=%(?..(%?%))

Putting it all together
As you are more than aware by now, zsh has many great features built in its prompt
themes. So many in fact, that most of the time our custom solutions might feel like
reinventing the wheel. We still need to take a shot at building our own prompt
though; so, how about using one of the included themes as a starting point?

Navigate to your zsh installation folder or repository clone, and navigate to the
Prompts folder under Functions. As we saw earlier, all prompts come with a setup
function that follows the prompt_<theme_name>_setup naming pattern. Look for the
setup file for the SuSE theme and open it. It will most likely be under prompt_suse_
setup.

Chapter 1

[23]

What you see there is a shell function that goes by the same name as the file. A single
call to this prompt_suse_setup function, with no parameters passed, is all that it
takes to make two assignments—one for the PS1 prompt and the other for PS2. Have
a look at the following code, which has been formatted for this example:

PS1="%n@%m:%~/ > "

PS2="> "

So let's get started with hacking that prompt to pieces, shall we? Open your .zshrc
file, and remember you will be adding the following line after the call to promptinit.
We can start by highlighting the username, just like in the adam1 prompt:

PS1="%K{yellow}%n%k@%m:%~/ > "

If you recall from the previous section, the %K%k escape sequence defines the
background color. Highlighted in the code, we wrap the escape sequence, %n, to add
some background color to the current session, $USERNAME. On the right-hand side
of the @ symbol remains the short version of the machine name and some fancy line
indicators, of course.

Let's add an error flag to the right-hand side, so we can check immediately for an
abnormal command exit code:

RPS1="%(?..(%?%))"

If you feel like it, you can test our brand-new right-hand prompt by calling a
program in a way that will end abnormally. Remember, an exit status of 0 is ok;
everything else will trigger our prompt. Something such as ls some_nonexistent_
folder should be enough:

gfestari@machine:~/ > ls nonexistent_folder

ls: cannot access nonexistent_folder: No such file or directory

gfestari@machine:~/ > (2)

You can sparkle some color into our right-hand prompt like we did for PS1. When
you are done with your tweaking, try to leave .zshrc resembling the following code
as much as possible:

autoload -U promptinit

promptinit

PS1="%K{yellow}%n%k@%m:%~/ > "

PS2="> "

RPS1="%(?..(%?%))"

Getting Started

[24]

We left the autoload -U promtpinit and promptinit calls in the previous
example, so the prompt module would be loaded and ready for use, should you
eventually require its services. Note, however, that you do not require both these
calls unless you are planning on using the prompt module.

Save your file and let's reload zsh configuration. We do this by sourcing the .zshrc
file one more time. Be careful though as this could take a while depending on the
links to other files you might have added:

% source ~/.zshrc

source has a leaner and meaner brother: the dot (.) alias. Now
that you've met him, feel free to do things such as the following:
% . ~/.zshrc

How about we take advantage of the whole width of the terminal emulator's
window? You know, because widescreen.

A particularly useful on-screen help is the current directory shortcut, which if you
recall can be either %~ or %d. So, how about we add a bit more context information to
that lazy right-hand side prompt?

RPS1=%~

Come on, I know you didn't just think it was going to be that easy, right? We are
adding functionality here, so it's not just about ditching our exit status indicator.
Think about it; we need to add the current working directory to that right-hand
prompt. Your first guess might be along the lines of the following command:

this won't work!

RPS1=%(?..(%?%)) %~

This is almost perfect, save for the fact that it won't work straightaway.

% source .zshrc

> job not found: ~

Bummer! However, the slight detail that's missing is the usage of double quotes.
That's right, we can sneak those spaces through the shell's string processing and
come out with no errors just by using double quotes, as follows:

RPS1="%(?..(%?%)) %~"

Chapter 1

[25]

This will tell the prompt function to take the RPS1 variable as it is and to not worry
about parsing multiple parameters.

And, that's it. You have your own version of the prompt on your brand-new
installation of zsh. Although, you might be wondering what's the deal with the
second prompt that we left there. I'll leave it for you to decide its fate, as I really like
the current old-school > indicator.

Before we are done with this chapter however, I'd like to point you towards the
PROMPT THEMES section in the zshcontrib(1) manpage. Go ahead and type man
zshcontrib on the terminal emulator of your choice for more detailed information
when creating your own prompt themes.

Summary
In this chapter, we took a head-first dive into zsh by learning the essentials regarding
its features and replacing your previous login shell. We even went that extra mile
and added a touch of homemade goodness by customizing the prompt with the
various escape sequences and configuration options available. Just because my
memory is really awful, here's a list of what's been covered so far:

• We learned how to configure and set up zsh, so we could ditch your current
shell and replace it with your brand-new installation of zsh

• We met the startup files, and now we have a clear understanding of what
goes on behind the curtains moments before your terminal emulator window
pops up on screen

• We got acquainted with the shell prompt, and discovered that zsh offers
much more than meets the eye

• We went one step further and customized the prompt after learning about
escape sequences and conditional expressions

Now, your system should be all set and ready for what's left of this adventure. We
still have plenty of ground to cover though, so we better get started with the next
chapter, Alias and History, where we'll learn about the alias mechanism, how to
create your own shortcuts for functions, and we'll start working with the shell's
history log.

Alias and History
In this chapter, we'll expand on the basics of zsh while focusing on aliases, one of the
most time-saving features available. We'll take a closer look at how aliases work and
learn to replace long, boring commands with our own short versions and automate
the whole process within the startup files. We'll then move on to brace expansion, in
order to avoid typing extra keystrokes whenever we can. Instead of typing the same
things over again, we'll learn how to work with zsh's history and history expansion
mechanisms and incorporate these new features into our workflow.

Working with aliases
An alias is an alternative way of saying the same thing. Think of it as a nickname for
your commands. Though, unlike the embarrassing nicknames that you might get
after a party, the alias mechanism provided by your shell is a handy shortcut to a
series of commands and options under a friendlier name. The whole point of an alias
is to do more and, preferably, type less.

I bet I got your attention with that last "type less" part. Allow me to explain:

The ls command lists a directory's contents. A quick look at its manpage (man ls)
tells us that there are quite a few options there:

ls -a # lists all files, even those hidden that start with a dot
ls -l # shows more information for each file, like size and
permissions

Using aliases we can go ahead and do something like the following:

% alias la='ls -a'

Alias and History

[28]

No spaces are allowed around the equals (=) sign. If the right-hand
side of the assignment (that is, the part that comes after the equals)
contains spaces or tabs, then make sure you use quotation marks
around it as follows:

% alias talk='echo "quack!"'

% talk

> quack!

Now guess what happens if you type la? Go ahead and try it. The shell reads your
alias—la in this particular case—and expands it. The whole process is similar to
looking up the meaning of a word in the dictionary. Although here, once it's been
found, the meaning is executed.

We can do basically the same for the -l option:

% alias ll='ls -l'

Or even mix and match as shown in the following line:

% alias lla='ls -laF'

That last snippet uses both the l and a flags together with F, meaning it behaves just
the same as the –la switch, with the added option to format the output so as to easily
tell files and folders apart.

Aliases apply only to interactive shells. Your shell will disable all
of your existing aliases if it's being run in the non-interactive mode.
Keep this in mind when creating your scripts.

You have two ways of declaring an alias. The first one is straight from the command
line, as we have been doing so far. This nets you an alias which you can use instantly;
the downside is that changes are only present temporarily for the duration of your
current session. Close your terminal emulator or log out of the system and it goes the
way of the dodo. The basic syntax for declaring an alias is as follows:

alias [shortname]=<longname or command(s)>

You can use this approach for something you'll be typing a lot but won't come
back to it later. Most of the time though, we'll need something a bit more resilient.
Something we can use every time we work with the command line.

Chapter 2

[29]

Enter the startup files; if you recall from the previous chapter, startup files are read
every time the shell starts, and its configuration is loaded for the current session.
Kind of what the doctor recommended.

Let's open up your .zshrc then, and add the aliases we've been working on so far:

put this on your .zshrc

alias la='ls -aF'

alias ll='ls -lF'

alias lla='ls -laF'

Save your changes, source (or use its alias, the dot (.)) your file, and aliases will
be set for you to use on every future session of the shell. Despite their different
behavior, both the ways of alias declaration sport the same syntax.

Quoting characters
Any given character can be quoted by adding a \ character in front of it. This is
particularly useful when dealing with "special characters" which have an additional
meaning, such as $, and even an actual \ character. Take, for example, the following
echo sentence:

this is wrong!

% echo 'that's a quoted sentence for you'

quote>

The shell prompt indicates it's waiting for a quote character to be (properly) closed.
The problem here is that we did not properly escape the apostrophe on "that's":

% echo 'that\'s a quoted sentence for you'

> that's a quoted sentence for you

That's all nice and working, but what happens when we have a great number of
escaping to do?

% echo 'Escaping single quotes like this \' with backslashes \\ is really
tedious'

> Escaping single quotes like this ' with backslashes \ is really tedious

Luckily, zsh provides the RCQUOTES option as a workaround, which allows you to
use double single quotes ('') for escaping:

% setopt rcquotes

% echo 'Look ma'' I''m escapin'' single quotes'

> Look ma' I'm escapin' single quotes

Alias and History

[30]

What about double quotes then? Well, these are truly special and out of the bunch,
as they allow you to perform parameter and command substitution as we'll see in
no time. What you have to remember when using double quotes is that either ", \, $,
and ` characters need to be escaped with a backslash.

Let's give double quotes a try:

% echo "'echo \"\$HOME\"' will print out '$HOME'"

> 'echo "$HOME"' will print out '/Users/gfestari'

In the preceding example, the $HOME environment variable gets replaced by the
actual value (/Users/gfestari) when the $ character is not quoted.

You can also use backquote within double quotes for executing programs:

% echo "zshenv is located at: `locate zshenv`"

> zshenv is located at: /etc/zshenv

The shell will first execute locate zshenv as if it were any other command, and
substitute its output within the parameters being passed to echo.

As you can see, you can work around single quotes' limitations for most day-to-
day usage, and turn to double quotes, escape sequences, and parameter expansions
whenever you have a particular need for doing so.

Single and double quoting aliases
Single quotes (') are required when using spaces on your alias assignments;
nevertheless, it's generally advisable to use them regardless of the spaces on your
right-hand side. Granted, this is a "just to be safe" approach, but trust me when I say
it will save you from a couple of avoidable headaches when declaring your aliases.

On the other hand, if you wish to use things such as environment variables or
parameter substitution within your assignment expression (think of the prompt
escape sequences we saw in the previous chapter), double quotes (") are required
instead. Imagine you wish to output the current user's name with an alias. As we
saw earlier, the direct way of accessing it is via the environment variable $USERNAME.
The first thing that comes to mind then is to use the following alias:

This is wrong!

alias saymyname='echo $USERNAME'

Chapter 2

[31]

Unfortunately, this won't work with single quotes. The correct way of doing this is
with double quotation marks as follows:

% alias saymyname="echo $USERNAME"

% saymyname

> gfestari

Complex expressions with variables generally need to be quoted, we use single
quotation marks for that. If your alias requires variables to be expanded before the
alias is used, go with double quotes.

As you can see, the alias mechanism is indeed a nifty powerful feature. If used
properly, it even allows you to reshape a command's meaning:

% alias ls='ls --color=auto'

Or its equivalent on OS X:

% alias ls='ls –G'

You can define aliases from another alias. Following the preceding
example, if you do the following:

alias ls='ls --color=auto'

alias la='ls -a'

The la alias will behave just as if you typed ls --color=auto –a,
there's no need to type --color=auto again on your definition.

This alias alters the behavior of ls by calling it with the color flag every time you
type it, instead of using its more vanilla version. While this comes in handy for this
particular scenario, it can be really dangerous for commands such as rm if not used
with caution.

For example, imagine what would happen if you aliased a force removal of files
to rm:

Be careful when doing things like this!

alias rm='rm -f'

Here you are forcing the deletion of files without a warning. What will happen is
that someone, unknowingly, will execute the wrong command and end up bashing
their heads on the keyboard after a mistaken deletion. The takeaway message here is
that the further you stay from overriding an existing command with your "l33t alias",
the better. Think of all those broken keyboards. Don't be that guy.

Alias and History

[32]

So, what if you don't know whether you are bypassing any of the aliases' current
set for your session? Well, there's a command for that. Typing alias will list all the
aliases for the current session:

% alias

> la='ls -aF'

ll='ls -lF'

lla='ls -laF'

saymyname="echo $USERNAME"

You can also get the information for a particular alias simply by specifying its name,
as follows:

% alias la

> la='ls -aF'

And you can disable, albeit temporarily, any existing alias by typing:

% unalias <aliasname>

Simply replace aliasname with the name of the alias you want to turn off. This
comes in really handy on those occasions when you're using a particularly strict
program whose options, or even command-line syntax, is overridden by an alias.

There are a few ways by which you can prevent the shell from executing
an alias that is called just as another command. Single-quoted commands
and commands prepended with a backslash (\) as well as those typed as
relative or absolute paths are not treated as aliases by the shell.
For example, you could use either of the following if you wish to avoid a
call to an alias:
% 'ls'

% \ls

or even:

% /usr/bin/ls

Zsh also has command that will execute any argument as an external
command instead of as a function or built in. Thus, you can also use it to
avoid aliases. That would leave us with the following for the preceding
example:

% command ls

You can get more information via man zshbuiltins.

Chapter 2

[33]

As with many other things we'll be discovering throughout this book, an alias is not
a golden hammer and as such, you shouldn't be aliasing willy-nilly throughout your
terminal sessions. Here are a few simple considerations to keep in mind before you
embark into your less-typing adventure with your pack o'aliases:

• Is my alias easier to remember? echo -n is way simpler than aliasing
something like echodontprinttrail. Keep it simple, don't use aliases
for the sake of it. The "Future You" will be really thankful two months
from now.

• Is my alias easier to type? An awkward alias is an awful alias. Using
alias grepcola='grep --color=auto' instead of a simpler grep, really?
Remember: clear, concise names are awesome, but something you can't
remember for the life of ping is not cool.

• Is my alias overriding some behavior just for the sake of it? Think of the
previous rm -f example. Most of the time we would like to stay away
from something like that; however, prompting the user each time seems
like a sensible feature to add to our toolbox. Aliasing rm='rm -i' so the
shell requires confirmation before deleting something seems a bit... nicer.
Be careful with these kinds of tricks though, as relying too much on such
an alias could lead to a false sense of security. That is, imagine what would
happen if you get used to rm constantly waiting for confirmation and
eventually use it recklessly on a different environment?

Global aliases
If you enjoyed the simplicity aliases brought to the table, then global aliases are the
icing on the cake. As the name implies, global aliases are, well, aliases that can be used
anywhere, allowing you to treat filters or certain commands as a simple suffix.

Let's see some examples:

alias -g L='|less'

Pay particular attention to the -g option, as in a global alias.

Now you can append the less pager to any command's output, just by adding
the L suffix:

% ls -la /etc L

Another option that is frequently spotted in the wild is redirecting standard error
(stderr) and standard output (stdout) to /dev/null, so any given command can
run silently:

alias -g NUL="> /dev/null 2>&1"

Alias and History

[34]

This will allow you to call things such as command NUL without the need to pollute
your current terminal window with thousands of log lines and messages.

Just for the sake of clarity, never mind sticking to standards, it's advisable for you to
try and define your global aliases just like your global variables, all in caps.

Hashes
You can use a hash to give a particular directory an alias. This is particularly
convenient for your workspace:

% echo $GOPATH

> /Users/gfestari/workspace/go

I don't want to type /Users/gfestari/workspace/go each time I want to reach the
src folder in my $GOPATH directory. So how about putting hash to a good use?

% hash -d gosrc=$HOME/go/src

And now we can get there as quick as typing cd ~gosrc (pay attention to the
leading ~ character).

Here's another example, this time using the /var/www directory:

% hash -d www=/var/www

% cd ~www

/var/www

You can go ahead and hash your most frequently visited directories. Just remember
to add the required entries to your .zshrc, so you don't have to type the same thing
over and over again.

For bonus points, set the AUTO_CD option, so you only need to input the directory's
name whenever you want to change the working directories:

% setopt autocd

% ~www

> /var/www

Now go ahead and start showing off with your acquaintances, I'll wait here.

Chapter 2

[35]

Putting it all together
Before we move on to the next topic, here's a couple of things to try with our newly
found aliases.

Raise your hand if you found yourself typing cd .. more than a few times on a
terminal session. I know, I feel your pain. How about making it simpler?

We could try the following instead:

% alias ..='cd ..'

Now it's just a matter of typing . to move your current working directory up one
level. Not bad, uh? We can take it a bit further:

alias ...='cd ../..'

alias='cd ../../..'

I'd argue that going more levels in for directory changing is pushing things a bit too
far, but feel free to extend your aliases as you see fit.

What about creating directories? I bet that, like myself, more than once you saw the
following:

% mkdir dir1/dir2

> mkdir: dir1: no such file or directory

This happens because dir1 doesn't exist. So what we do is—you guessed it—create
an alias that allows us to automatically create the parent directory and also, be more
verbose (as in, "list directories as they are created") about the output:

alias mkdir='mkdir -pv'

Now try to issue mkdir dir1/dir2 and see what happens. You can also apply
the same switch to commands such as cp and mv, just remember to quote
your assignments!

You can use the COMPLETE_ALIASES option in your startup
files in order to force the shell to treat aliases as a distinct
command for completion purposes. In other words, the alias
won't get substituted before attempting completion.

Alias and History

[36]

Expansion
The shell allows you to perform different types of manipulations right before
executing a line. In the following section we'll learn how to take advantage of each of
the different forms of expansion and substitution available in zsh.

Parameter expansion
Parameter expansion allows you to replace known variables in between the
assignments of the command line. Simply put, parameter substitution is the
mechanism by which the shell can change the following:

% foo=Hello

It will be changed to the following:

% echo "${foo}, world!"

> Hello, world!

Notice how the variable foo we declared in the previous line is replaced inside the
arguments of echo with its actual value. You should be paying special attention to
that peculiar ${} construction. What happens is that when zsh reads the ${foo}
construction, it immediately knows it has to replace what's in it with whatever value
it holds.

The astute reader might also have taken notice of the double quotes that surround
the echo arguments. It's important to remember that just like aliases and prompt
sequences, parameter substitution will work for arguments passed between double
quotes, just like every other variable out there.

Command substitution
Like parameter expansion, command substitution allows the shell to execute a
command call and replace its output within a specially formed syntax. Command
substitution usually takes the form of `command`, a program name wrapped around
back quotes.

There's another form of program substitution available in newer shells such as zsh,
which takes the form of $(command). Both forms of substitution, `` and $(), mean
the same; however, back quotes are considered a bit more portable, as they are
recognized on pretty much every other shell out there.

Chapter 2

[37]

In the wild, command substitution is frequently used to find out the full path to
a command:

% print $(which zsh)

/usr/local/bin/zsh

Or, to make it more portable:

% print `which zsh`

/usr/local/bin/zsh

Arithmetic expansion
Don't let the name discourage you; just like parameter substitution, arithmetic
expansion is yet another form of substitution to help us sail swiftly across the
command line. As its name implies, you can expand your input into a series of
elements that will otherwise require you to type a lot.

Let's try it:

% echo $((5 + 4))

> 9

We started with some rather simple arithmetic expression (I know, I know; Math).
But fret not, what just happened can be easily explained. We already know echo
prints information into the standard output, so there are no mysteries there. What
follows it is just an arithmetic expression using the $(()) construct. Notice that,
unlike parameter substitution, this kind of arithmetic substitution requires an extra
set of parentheses. This is our way of letting zsh know that it needs to work with
numbers, and that's why our 5 + 4 is treated as such.

The same rules apply to the following:

% echo $((5 + 4 * 3))

> 17

Which leads us to realize we need more parentheses for operator precedence:

% echo $(((5 + 4) * 3))

> 27

Remember, the $(()) construct is just a special construct, it's what tells zsh to treat
what resides inside as arithmetic expressions.

Alias and History

[38]

Interestingly, we can invite parameter substitution to this party too. Looks like
variables can also be substituted inside arithmetic expressions:

% num=5+4

% echo $((num * 3))

> 27

In the preceding snippet, we declare a variable to hold our 5 + 4 expression;
this makes num a container that, when asked what's up, will yell out our 5 + 4
expression. An easy way to check this is:

% echo ${num}

> 5+4

Note however, that by using num in the expression we did not require an extra set
of parentheses in order to set operator precedence. This is because our num variable
gets replaced on the following line with its value, which leaves us with an expression
equivalent to (5 + 4) * 3. Expressions get evaluated before they are replaced,
otherwise the result of the preceding call would have been 17.

Let's kick it up a notch with another handy arithmetic substitution:

% num=5+

% echo $(($num 4))

> 9

On this opportunity, we are leaving the num expression as something that resembles
"add whatever follows to it". This is why when it is evaluated on the next line, it
gets replaced for what you'd expect, in this case 5 +. See that $ right before the num
variable? Remember parameter substitution from the beginning of this section?
That's what's going on here. Without that $num there, zsh simply does not know how
to deal with the num assignment:

This is horribly wrong!

% num=5+

% echo $((num 4))

> zsh: bad math expression: operator expected at `4 '

Remember, if you wish to substitute a parameter, use $:

% echo $(($num 4))

You can always have a look at all supported types of expansions by
typing man zshexpn on your console.

Chapter 2

[39]

Brace expansion
Another useful type of expansion is known as brace expansion. As the name
implies, its syntax has to do with the use of curly braces ({})—I suppose "curly
brace expansion" was a bit too verbose when they were picking a name for it. Brace
expansion allows you to declare an array of entries as follows:

% echo picture.jp{eg,g}

> picture.jpeg picture.jpg

What happens then is that the {eg,g} construct gets expanded into an array
containing the elements eg and g. The shell then loops through those elements,
passing two arguments to the echo command, which basically has the same meaning
as typing the following:

% echo picture.jpeg

% echo picture.jpg

But you saved yourself from quite a few keystrokes and the accompanying boredom.
Let's try another example:

% touch log_00{1,2,3}.txt

% ls

> log_001.txt log_002.txt log_003.txt

This time we are creating simple logfiles with the pattern log_00<num>.txt. The
shell expands the {1,2,3} element into the elements 1, 2, and 3, and then calls the
touch command three times:

% touch log_001.txt

% touch log_002.txt

% touch log_003.txt

In case you didn't notice, we use commas (,) in order to declare each of the elements
inside curly braces. Now, you might be thinking "what happens when we use a
longer array?" Here's when it gets even more interesting; declare a range of values:

% touch log_{007..011}.nfo

% ls | grep .nfo

log_007.nfo log_008.nfo [...] log_010.nfo log_011.nfo

Alias and History

[40]

It's worth noting a couple of things going on with the preceding example. I took the
liberty to format the output of the list. But that (…) implies files 007 to 011 do exist.
Firstly, we are now using brace expansion to extend a range, this time from nine up
to eleven. The next thing that's also worth mentioning is that zsh is smart enough
to notice the leading zeros and use it as a padding for the other values instead of
replacing them with, say, vanilla integers. That is why you see the sequence starting
with log_007.nfo and ending with log_011.nfo.

On the second line, we use a pipe symbol (|) to link or redirect output between
different commands on your shell. This way we are listing the contents of the file,
and redirecting the output into the utility grep, so we can filter said output by the
.nfo extension.

Arrays can get even more interesting when we sparkle a bit more math in them:

% foo=(A B C)

% bar=(1 2 3)

% echo $^foo-$^bar

> A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3

In the preceding snippet, we declare two arrays, one containing the elements A, B,
and C, and the other with the elements 1, 2, and 3. The call to echo then passes the
argument ${^foo}-${^bar}. Notice the ^ operator (curly braces were implicit on
the previous call, so I added them here for the sake of clarity). Again, we are telling
zsh to expand the variables that come after the $ character, only this time we get
a Cartesian product instead of, say, A B C-1 2 3. This is because the ^ operator
serves as the array expansion expression. So as far as zsh is concerned, we're using
each element of the array independently.

For a more detailed description of how array expansion and the ^ operator
works, visit man zshoptions (particularly, the RC_EXPAND_PARAM section) and
man zshexpn.

As with other sequences, some characters are considered "special" and
need to be escaped. Commas and single quotes need to be escaped with a
backslash:

% echo \'{\,,\'}\'' needs to be escaped'

> ',' needs to be escaped ''' needs to be escaped

Chapter 2

[41]

Working with history
Like an elephant, many modern Unix shells tend to remember in great detail the
copious amount of commands entered while working with them. As many others,
zsh too boasts a history log and an even more convenient way of accessing each of
its entries. Being able to glimpse at what you have been up to is not only practical
from a work-log perspective, but also as a way to speed things up. Think about it;
you could use history to see (and eventually edit) a previously typed command, get
a bit of context as to what's going on with your system, or avoid retyping the same
thing over and over. Being able to easily retrieve a command from the past sounds
awesome, because it is indeed a really neat feature.

We'll now take a look at how to use zsh's history expansion to work with previous
entries in the command line.

Working with history
A more traditional approach to recalling history entries is by using the up
arrow and down arrow keys on your keyboard to scroll through history
entries. We'll have a closer look at how to alter this behavior when we
examine the zsh line editor (ZLE) module in the next chapter. For now,
we'll pretend that these are the only keys to move around history.

History expansion
One of the ways zsh provides for you to access your history is via the so-called
history expansion. This works whenever your input begins with the bang ! special
character. As we saw in the previous chapter, the default behavior of the ! character
can be overridden by setting the histchars shell parameter to something different:

% set histchars='@^#'

Unlike other shells though, zsh accepts up to three parameters when setting
histchars. In addition to expansion (changed to @), the other two are used for
substitution (^) and comments (#) respectively.

By replacing the default bang (!) with the @ character, you can now do things like
calling your last executed command line as follows:

% ls *.txt

> readme.txt notes.txt

% @@

% ls *.txt

> readme.txt notes.txt

Alias and History

[42]

By redefining histchars you'll be able to use commands that actually require
special characters such as ! without the need to escape them or worry about history
substitution. You can choose any combination that you want, but, as a rule of thumb,
try to stick with the less frequently used characters so that it is actually worth
the effort.

History expansion will only work if you are running an interactive shell
and the option NO_BANG_HIST is unset in your .zshrc file.

Accessing your history entries is done via what we call event designators. Like escape
sequences, designators are fancy names for constructs that the shell expands in order
to know exactly what needs to be retrieved from history. One of the most popular
and helpful event designators is the double bang (!!), which by itself refers to the
most recent command entered:

% sh myscript.sh

> myscript.sh: Error: you need to be root to execute this.

% sudo !!

> myscript.sh: executing myscript.sh

As you can see, the !! character can be really useful for those occasions when you
forget to run something on elevated privileges. What happens then is that zsh
immediately expands the reference to the last command in history and replaces it in
the line that contains the sudo call, saving you from entering the whole line again.

Having the shell making substitutions and automatically executing commands
demands a bit more "blind faith" than most of us would like to deposit on their shell.
Luckily, we can set the HIST_VERIFY option in .zshrc to force zsh into asking for
confirmation every time you bang a command:

% setopt HIST_VERIFY

% echo 'Hello!'

> Hello!

% !!

% echo 'Hello!'

As you can see, the shell completes the input in your prompt using the previous
command, but does not execute it. This is really useful for things like elevated
privileges or sudo commands. Feel free to go ahead and add setopt HIST_VERIFY
to your .zshrc file, as we'll assume it is being used from now on.

Chapter 2

[43]

That's really neat for the command we just typed, but what if the previous
command is further back in the history timeline? Well, then we need to use the
vanilla event bang:

% !cat

% cat /etc/hosts | grep 127.0.1.1

Here my last executed command that had cat in it was a printout of my hosts file
(cat /etc/hosts), followed by a call to grep as I was looking for lines that have
127.0.1.1 on them.

If you connect to a remote host using SSH, you could use something like the
following to retrieve the last run connection:

% !ssh

% ssh gfestari@192.168.1.10

As you can see, the syntax for history expansion is fairly easy to remember. Just
put a ! character together with the command you're looking for and let zsh work
its magic.

Word designators indicate the words of the command line that will be
included in a history reference. What follows is a quick reference of the
available designators:

• ^: The first argument.
• $: The last argument.
• %: The most recent match for a given word.
• x-y: A range of words. Negative indexes like -i mean 0-i; thus,

-1 would mean "the penultimate entry".
• *: All the arguments. Return null for events with just one word.

Note that a % word designator will only work when used as !%, !:%, or
!?str?:%; anything else and you will be greeted with an error.

For a more in-depth look at word designators and history expansion
semantics, please refer to man zshexpn, particularly the section titled
"HISTORY EXPANSION".

Let's kick it up a notch then; you can combine the special characters ^ and $ in order
to access the first and last arguments of a history entry respectively:

% mkdir new_folder

% cd !^

% cd new_folder

Alias and History

[44]

The ^ character gets expanded into the first argument of the mkdir command, which
in this particular case is new folder.

% touch log1.txt log2.txt

% nano !$

% nano log2.txt

Here the same happens with $, only this time the last argument of the touch
command is expanded so we can eventually edit it using nano.

If you are familiar with regular expressions, both of these designators' behavior
shouldn't be too surprising. However, if what you need to do is access some string
that is not located either at the beginning (^) or end ($) of the history, then you need
the ? designator:

% !?etc

> cat /etc/hosts | grep 127.0.1.1

The preceding expression matches the most recent command containing etc.
Generally speaking, the syntax for using the ? event designator can then be summed
up as follows:

!?str[?]

The optional ? you see there at the end is only necessary if the command is followed
by any text that is not to be considered part of str; for example:

% !?etc?^

> /etc/hosts

Did you notice how both the ? characters serve as delimiters for the etc keyword?
Think of them as parentheses that wrap the expression you're trying to match. The
caret operator (^) is there as we are interested in the first argument of that particular
command line, which coincidentally is the /etc/hosts string.

There's lots more we can do with the history bang operator. Another neat trick is that
it can refer to a particular line in your history. As before, the syntax is merely a tweak
of what we already know:

!<hist_number>

% !103 # this retrieves the 103rd entry in your $HISTFILE.

% !4 # this retrieves the 4th entry.

Chapter 2

[45]

But what about knowing which line I want to use? Well, that's a bit more complex,
but not as much as using grep, ack, or whatever it is that kids are using these days to
search within your history file:

% history | grep nano

> 2045 nano /etc/hosts

Using grep and searching for entries that feature nano, I can see that I edited /
etc/hosts with it, and that the record resides on line 2045 of my $HISTFILE. If we
wanted to open the hosts file again, it'll be a simple matter of calling:

% !2045

% nano /etc/hosts

And now for a bit of mix and match:

% history | grep git

> 1571 cd ../git/dotfiles

 1572 git status

 1573 git diff zsh/zsh_funcs

 1574 git diff zsh/zshrc

 1584 history | grep git

On this opportunity I'm looking for git entries. As you can see from the results,
there are quite a few things I've been doing with it. Combine what we have learned
so far, and we can accomplish quite a few things:

% more !1573$

% more zsh/zsh_funcs

As you can see, we used the bang operator together with the $ selector to refer to the
last argument of line 1573 of our history.

Interestingly, you can also use a negative integer to refer to the nth-to-last entry:

% !-2 # this will retrieve the 2nd to last entry in history.

% !-97 # this does the same to the 97th to last entry.

Negative indexes should be pretty familiar territory for some programmers (I'm
looking at you, Python and Ruby developers).

Alias and History

[46]

History substitution
Another helpful feature of the history expansion on zsh is command substitution.
Using this kind of substitution, you can avoid re-entering a whole line of your shell
history just so you can edit a comparatively smaller section of it.

Raise your hand if you have made something like the following:

% ls

> dir1 file.txt

% mv fiel.txt dir1/

mv: rename fiel.txt to dir1/fiel.txt: No such file or directory

It seems I misspelled the file.txt name, so what now? Traditional history usage
would suggest we just press the up arrow key to recall the previous line, navigate
left to the fiel typo, re-type the correct name, and be done with it. The zsh approach
however, is a bit more practical:

% ^fiel^file

% mv file.txt dir1/

What sorcery is this? Put simply, the chained ^ operator allows you to match the first
occurrence of a word and replace it with the word attached to the second ^ operator.
A more general syntax would be:

^history-entry^word-replacement

You can prevent a command from being added to your history by setting
HIST_IGNORE_SPACE in your startup options. This will make the shell
ignore the lines that start with a space.

% echo "this line will be recorded in history"

% echo "this will not"

More useful options
To round off this section, here are a couple of history-related options worth
considering when populating your startup files, in addition to what we have already
discussed throughout this chapter. Just put any (or all) of these on your .zshrc and
remember to append setopt before each entry.

• EXTENDED_HISTORY: Saves a timestamp and duration for each history entry
run. An excellent addition for the data analysis aficionado.

Chapter 2

[47]

• HIST_IGNORE_ALL_DUPS: Ignores duplicate entries when showing results.
• HIST_FIND_NO_DUPS: Does not display eventual duplicates of a line that has

already been found.
• HIST_REDUCE_BLANKS: Removes extra spaces and tabs from history entries.
• INC_APPEND_HISTORY: Adds entries to the history as they are typed, that is,

doesn't wait until the shell exits. Probably one of the most awesome features
of zsh. You know you want this.

• SHARE_HISTORY: Shares history between different zsh processes. Another
great option to compliment the previous entry.

Summary
In this chapter we had a look at some of the most prominent time-saving features
of zsh. The purpose of this entry in our shell adventure was to start accomplishing
more by typing less. Thus, this chapter focused on understanding aliases, how they
work, and how to roll our own keystroke-saving definitions in a way that won't
cause more trouble than what they attempt to solve.

We then moved onto expansions, learning the ways of arithmetic and brace
expansion in order to make command-line related chores feel more like a breeze.
Finally, we took a closer look at how to work with history, going beyond the
keyboard arrow-mashing approach and learning history expansion and event
designators in order to avoid repeating ourselves into oblivion.

By now you should have a fairly solid notion regarding the following:

• Aliases: We learned what an alias is and how to define a useful shortcut for
our commands together with a handful of tips to start your collection.

• Parameter expansion, command substitution, and arithmetic and brace
expansion: How to replace entries on the command line with the output of
any given program, the result of an arithmetic expression, and even how to
expand arrays so you don't have to type the same thing more than once.

• History expansion and substitution: How to apply all of the above, together
with some more specific constructs such as the double bang (!!) to the shell's
history and avoid repeating yourself to boredom.

Alias and History

[48]

Not bad at all. Pat yourself on the back or go grab a beer, by now you should feel
confident enough to work your way around zsh without problems. That's great,
but there's still much more left for us to discover, so don't slack! Next in store for
us is ZLE, the zsh line editor. We'll get to know another of zsh's cooler features and
discover that we don't actually require a dedicated program in order to perform
some of the more advanced text processing on the command line. Besides saving
us hundreds of hours of mind-numbing repeated keystrokes, we'll also learn how
to customize the editor's shortcuts and key bindings so we don't have to rely on
guesswork anymore.

Advanced Editing
In this chapter, we are taking a step forward from basic zsh usage and diving into the
more advanced features of the command line. We will be getting close and personal
with the zsh line editor, understanding how it works and why zsh needs it's very
own input editor. We will discover new ways of accessing and tapping into the
shell's history and learn some new command line editing tricks in order to speed up
most of our regular tasks and avoid repeating ourselves to boredom. Finally, we
will discover that there's really no need to be limited to a single line of text while
using zsh.

Zsh line editor
In the previous chapter, we learned how to access the shell's history and how to
use some special escape sequences in order to access its records. Nevertheless, we
assumed that the only way for us to review previous history entries was by using the
arrow-up and down keys on the keyboard and loop through them sequentially. Well,
as you can imagine, it's time we got acquainted with another of zsh's great features:
the zsh line editor.

Unlike other shells—I'm looking at you, Bash—zsh does not depend on GNU's
readline library, rolling instead with its own version of a command line editor
that boasts most of the bells and whistles you'd expect to find in a full-fledged
application. The zsh line editor, or ZLE in short, allows you to define your own key
bindings (a combination of key presses) and set of custom keymaps (collections of
key bindings) in addition to extending predefined entries. ZLE is also a key module
of zsh, and is present in any interactive shell you use. Luckily, zsh is smart enough to
know when not to load ZLE, thus avoiding extra resources if ZLE is not required.

Advanced Editing

[50]

Getting to know ZLE
By now, you have been using zsh long enough to notice that some things just seem
odd; like when you press a key, say PageUp, you are bound to see some arcane
glyphs, same as trying to use the Ctrl + left-arrow shortcut to move the cursor
between words. As it stands, ZLE is the one in charge of knowing what these
symbols mean and what behavior is linked to them, a task we need to set up via key
bindings. We can even group our collection of keybinds under the same name and
use different collections for altogether different purposes such as Home to move to
the beginning of the line when editing commands or selecting the first entry when
searching through history. But first, let's take advantage of what's already defined in
a default installation of zsh and the vanilla ZLE.

Working with keymaps
On its own, ZLE comes with some handy bindings in order to cater to Emacs and vi
users, some of the most popular editors out there. ZLE supports both vi insert and
read modes, but defaults to Emacs as this seems to be the most user-friendly mapping
for new users.

You can access it at any time by typing bindkey -e in the command line. We will be
using the Emacs keybinds throughout this book, but feel free to roll with the vi mode
if you feel more comfortable with it. You can always go back to Emacs mode by
typing bindkey -e into your terminal. Whatever you choose, keep in mind that ZLE
works only in interactive shell sessions, and that you will need to add your different
configuration entries and bindings to your .zshrc file as they will be needed to be
set for each session.

Zsh relies on your environment variables $EDITOR and $VISUAL in
order to guess—make an educated guess, that is—which keybind it will
default ZLE to. However, note that names such as vile, which contain
the string vi, will trigger the use of vi keymap. You can add your own
safety net of sorts, simply by adding bindkey -e in your .zshrc file to
avoid possible conflicts and explicitly setting the layout.

For example, in order to default each new session to the Emacs mode, open up your
.zshrc and append the following line:

bindkey -e

Chapter 3

[51]

Having a default set in your startup files does not mean you have to commit to it at
all times though. You can switch between vi and Emacs modes respectively, simply
by typing the following line:

% bindkey -e

or

% bindkey -v

By using the e or v options, you are telling bindkey to link the provided emacs
or viins keymaps to the main alias, which in turn gets loaded by default during
startup. If anything goes awry, ZLE will default to .safe, which is a very
constrained mode that provides you with the bare essentials. In such cases, your best
shot at jumping out of the frying pan is by typing things such as bindkey -e and
pressing return in order to switch keybinds. As you might expect then, using .safe
spells trouble with your configuration and thus, is a binding you really don't want to
see that often.

As vi users might expect, zsh provides two keymaps for vi: viins and
vicmd. Be careful when tinkering with those though, as defaulting to
vicmd will leave you without the ability to insert any kind of text.

Basic editing
Now that we have set our default key mapping to Emacs, we can start discussing
some of its more interesting features such as keyboard shortcuts that speed up
your tasks.

The following table contains some useful Emacs mappings:

Ctrl + A Moves the cursor to the beginning of the line
Ctrl + E Moves the cursor to the end of the line
Ctrl + W Deletes the whole word backwards from the cursor location
Esc + B Moves the cursor backwards one word
Esc + F Moves the cursor forward one word
Ctrl + D Deletes a character (moves forward) / lists completions / logs out
Ctrl + U Deletes the whole line
Ctrl + K Kills (or deletes) until the end of the line

Advanced Editing

[52]

Esc + D Deletes one word on the right of the cursor
Esc +
Backspace

Deletes one word on the left of the cursor

Ctrl + Y Yanks the last killed word
Esc + Y Switches the last yanked word
Ctrl + T Transposes two characters
Esc + T Transposes two words
Ctrl + R Incremental search backwards
Ctrl + S Incremental search forwards (automatically enables NO_FLOW_

CONTROL option)

Depending on your keyboard and input configuration, you could replace
the Esc + button sequences with what is commonly known as the Meta
key. This is usually mapped to the Alt key; however, we'll refer to these
kinds of mappings with the Esc + sequences throughout this text, since
they sport the same behavior and are arguably more portable.

Going back and forth with words
The Esc + B and Esc + F bindings are tightly related to the WORDCHARS shell variable.
This is zsh's way of knowing where any given word begins, although the definition
of "word" might be rather peculiar for those coming from other shells. Particularly,
the WORDCHARS shell variable defaults to… well, see it for yourself:

% echo $WORDCHARS

> *?_-.[]~=/&;!#$%^(){}<>

See those symbols? These are also considered as part of any given word (besides
alphanumeric characters, that is). What's important to keep in mind here is the
rather bipolar behavior of the shell; a character is either part of a word, or it isn't.
Keep this in mind when using sequences such as Esc + B or Esc + F, and remember
you can always override the WORDCHARS definition in those rare occasions where it
might be required.

Yanking and transposing text
You might have noticed the terms yanking and transposing in the shortcuts table and
immediately addressed your thoughts with a healthy dose of what? So let's expand a
bit more on that.

Chapter 3

[53]

Transposing (Ctrl + T) might be a fancy name, but rest assured its functionality is
nowhere near as complicated to understand as it sounds. Put simply, transposing
a character will swap its place with the one immediately following it on the right,
making it march valiantly towards the end of the line, one place at a time. Once
there, it'll only swap positions with the character immediately before it. This might
be a bit confusing, so let's get going with an example as follows:

% echo bca

> bca

That's not right. Let's edit our previous history entry:

% echo bca

Now move your prompt on top of a—the more straightforward way of doing this is
by hitting the end-of-the line shortcut, Ctrl + E—and hit the transpose shortcut, Ctrl
+ T.

% echo bac

a and c switched places. Progress! Now go back one char to the left, placing your
cursor on top of a again and, again hit the transpose shortcut.

% echo abc

Success! As we'll see in Chapter 5, Completion, automatic completion will amend
most of these silly mistakes; however, transposing comes in really handy on those
occasions when you mistype things like parameter flags or URLs.

% git psuh origin master

A mistyped git push sentence can be easily fixed by simply navigating to u in psuh
and hitting transpose.

% git push origin master

The same rules apply to the word transposing mechanism (Esc + T). The only
difference, as you might have guessed already, is that it works with whole words
instead of just chars.

As the old saying goes, actions speak louder than words, so the following is another
example, this time by transposing words:

% echo 'world hello,'

Whoops! Got that completely backwards, time for some Esc + T. Put your prompt's
cursor right on top of hello and hit the transpose shortcut.

% echo 'hello, world'

Advanced Editing

[54]

Sure enough, this will give the Backspace key a much-deserved vacation.

Yanking seems a bit harder to explain, but basically boils down to inserting a word
you previously deleted by any of the kill shortcuts (Ctrl + W, Ctrl + U, Ctrl + K, Esc +
D, Esc + Backspace). It works as follows:

Start typing your command.

% echo world hello

Realize you made a mistake, and kill the offending part. In this example, we use Esc
+ Backspace to delete the hello string.

% echo world _

Now move the cursor one word backwards, using the Esc + B bind.

% echo _world

And yank the hello string into the line by pressing Ctrl + Y (note that in this
particular case, you will need to add an extra space between both the words and the
_ character is there to show where the prompt cursor should be).

% echo hello_world

After using the Ctrl + Y shortcut for yanking, you can call the Esc + Y shortcut to
swap between previously deleted words. The shell you see retains up to 10 deleted
words in memory, in case you need to use them again. This sort of "deleted words
clipboard" is popularly known as the kill ring due to its behavior—you will swap
each of the killed words up to the last, and then start again from the very first by
repeatedly pressing Esc + Y. However, note that pressing Ctrl + Y again will only
insert a new previously yanked word.

Revisiting history
As you might have noticed in the Emacs shortcuts table, there are quite a few
shortcuts we can use to work with history. So let's put ZLE to better use and build on
the History expansion section from Chapter 2, Alias and History, with our newly learned
bindings.

Turns out we can use Esc + < to go to the very beginning of our history file, that is,
the first entry of our log. Likewise, pressing Esc + > will deliver us to the end of the
history file. However, that's hardly convenient for larger history logs. What we really
need is to perform an incremental search. Ctrl + R is the default provided mechanism
in zsh, and this will show us a prompt in which we can type to use as an immediate
search filter. The more you type, the more precise the match is.

Chapter 3

[55]

% # press Ctrl + R

bck-i-search: _

Start typing and once you have found the history entry you were looking for, you
can either go ahead and press return to execute it, or the left-arrow/right-arrow key
to edit the selected entry. You can exit this mode at any time by pressing Ctrl + G.

The incremental search mode has its own keymap,
conveniently called isearch.

It's very likely that your terminal is set to use the Ctrl + Q and Ctrl + S combinations
for flow control, respectively stopping and resuming any output to the terminal. In
order to avoid overlapping the default history-search-forward binding (also Ctrl
+ S), zsh offers the NO_FLOW_CONTROL option, which can be set in your startup files.

setopt NO_FLOW_CONTROL

This will safely disable such behavior within the shell (other programs can depend
on flow control normally) and thus, is the recommended way of using Ctrl + S.

Advanced editing
So far we have discovered our way around the command line and started to get
the hang of ZLE. It's time we kick it up a notch though, so we can see what the line
editor is really capable of.

ZLE-related options
This chapter wouldn't be complete without some options for us to tinker with now,
would it? The following are some things to try if you are looking to modify ZLE's
default behavior:

• NO_BEEP: This option skips beeping on errors.

Advanced Editing

[56]

• OVERSTRIKE: This defaults the editor to the insert mode. The way it works is
that each new character replaces the one to the immediate right, instead of
displacing it one position to the right as default.

• SINGLELINEZLE: It turns off multiline editing. No, I'm not on drugs. This
could be used as a reminder of darker times.

Sprinkle some of these on your startup files (namely, .zshrc) and you'll be all set.

Defining your own keymaps
Besides the Emacs and vi mode-setting options, the bindkey built-in allows you
to create your own keymaps and alias them by using a couple of simple options.
Namely, the -N flag will let you define a new keymap on the fly.

% bindkey -N newmap # this creates a keybind named 'newmap'

Or even create one based on an existing one.

% bindkey -N mycoolmap emacs # this creates a new keymap based off
 the existing 'emacs'

You can then alias your new keymap with the -A option by simply issuing the
following command:

% bindkey -A mycoolmap mymacs # this creates an alias 'mymacs' for
 'mycoolmap'

Creating the alias mymacs for the existing mycoolmap keybind will allow you to
eventually use bindkey -D mycoolmap to delete it without the fear of losing
your settings. Turns out that both aliases are treated as separate keybinds; thus,
deleting one does not affect the other. This proves useful during the time you are
experimenting with bindings and wish to start from scratch, or just wish to have
a backup of sorts for when things go awry. Be careful when naming your aliases
though, as any existing keybind will be immediately replaced by the new alias if
their names are the same!

You should avoid naming your own keymaps starting with the
dot . character as future editions of zsh might eventually ship
with conflicting namespaces.

Chapter 3

[57]

The bindkey command also has quite a few other options at its disposal. Of
particular interest when populating your startup files are the listing options. Namely,
l and L allow you to list the available keymaps in different formats. By typing
bindkey -l, you can quickly have a look at the currently available keymaps, while
issuing bindkey -lL will format the output as a series of the bindkey commands.

% bindkey -lL

> bindkey -N command

 bindkey -N emacs

 bindkey -N isearch

 bindkey -N listscroll

 bindkey -A emacs main

 bindkey -N menuselect

 bindkey -N vicmd

 bindkey -N viins

You can also use this option in order to check if a particular keymap is a link:

% bindkey -lL mymacs

> bindkey -A mycoolmap mymacs

This tells you that, as expected, mymacs is an alias for the mycoolmap keymap we
defined earlier on. By using the -lL option to check the main alias, you have a
practical way of determining the keymap currently in use.

% bindkey -lL main

> bindkey -A emacs main

Finally, you can use the -L option to have a list of all your current bindings, including
those of a built-in keymap, formatted in a way you can use within your scripts:

% bindkey -L

 bindkey "^@" set-mark-command

 bindkey "^A" beginning-of-line

 bindkey "^B" backward-char

 bindkey "^D" delete-char-or-list

 bindkey "^E" end-of-line

 bindkey "^F" forward-char

 bindkey "^G" send-break

 bindkey "^H" backward-delete-char

 # [...] large list of bindings omitted

 bindkey -R "\M-^@"-"\M-^?" self-insert

Advanced Editing

[58]

Just copy and paste the output into your startup files and you have the foundation
for your custom keymap. It's just a matter of replacing the action or shortcut keys
with something that better suits your needs, and you are done. Handy, isn't it?

You can use the read utility in order to figure out the actual escape
sequence your terminal emulator is sending to the shell; just call read
and then input the sequence you want to try out. For example, the
following is what Ctrl + back-arrow is sending on my system:

% read

> ^[[1;5D

Some keys such as Backspace might require you to use the -k option,
which allows you to specify the number of characters to read. Used by
itself, it'll default to one.

% read -k

Now (press Backspace.)

^?

% # and you are back to the prompt

Keep in mind that you can exit the read command at any time by
pressing Ctrl + C.

Emacs users will find themselves at home with the Esc + X sequence. By pressing Esc
followed by the key X, ZLE greets you with an execute prompt. You can then start
typing in your commands and even use the Tab key for auto-completion help. For
example:

type in "hello" and navigate to the beginning of the line (Ctrl + A)
followed by Esc + X

% _hello

execute:

ZLE waits for your command, type `ca` and press Tab key:

% _hello

execute: ca

% _hello

execute: capitalize-word

now press return and watch how the command is applied

% Hello

Chapter 3

[59]

The reason we used Ctrl + A is for the prompt to be at the beginning of the line, just
before the rest of the string.

Remember that you can exit the execute prompt at any time
by using the Ctrl + G sequence.

As the astute reader might have noticed, there are quite a few ways of achieving the
same behavior, but that's partially missing the point of the execute sequence. It is
there simply to allow you to do things you would normally not do (either because
of an awkward shortcut or lack of muscle memory); execute it and its completion
mechanism will make recalling commands a snap.

In the same vein as execute, where-is—which is unbound to any sequence by
default—will show you how to perform any given command. Just call execute,
type where-is (you can use Tab for completion just as before) and press return.
This time you will be greeted with the Where is: prompt, where you can also use
completion to list any command you are after. Press return for ZLE to show you the
sequence bound to the said command. For example, we can use where-is to find an
alternative shortcut to our capitalize-word example as follows:

% # enter where-is mode via Esc + X

> Where is: capitalize-word

> capitalize-word is on "^[C" "^[c"

Well, look at that. Turns out we can capitalize the word immediately after the
prompt by using the Esc + C combination.

Don't call them widgets
There comes a time in the life of any eager zsh learner to talk about widgets. It's time
you and me had that talk already.

Ever wondered how all those keybindings and special actions are put together and
work marvelously? Well, we have widgets to thank for that. See, zsh likes to delegate
responsibilities whenever it can, and widgets are a prime example of that; instead of
having to deal with handling every little action performed by key sequences (similar
to those defined in your keymaps), zsh relies on widgets to do the actual work. Think
of them as small functions designed to carry out a simple mission. I, on the other
hand, like to think of them as those sneaky gnomes that make magic happen in the
kitchen whenever I'm not around.

Advanced Editing

[60]

ZLE comes with quite a few built-in widgets, each boasting two names, a vanilla
name and a hidden name, which is simply defined as the normal name and preceded
by a dot . character. Hidden names are there just to signal that they can't be rebound
to a different widget (thus creating a backup copy that's always available in case
your keybind definitions go awry).

As you might have guessed, that's not the whole deal; widgets can be user-defined or
defined by other modules (such as ZLE or the built-in FTP client, zftp).

Defining your own widgets
Defining your own widgets doesn't get more complicated than calling zle -N with
your widget's name on it.

autoload -Uz tetris
zle -N tetris
bindkey '\et' tetris

The previous example, a slight variation from one of the suggestions available at
the zsh wiki site (http://zshwiki.org), binds the Esc + T combination to the
built-in tetris module, so you can spend those idle times on the command line a bit
more entertained.

Let's go over it, line by line:

autoload -Uz tetris

This is the good old autoload module, which handles the loading of different
modules and functions across the shell. In this particular case, we're importing the
tetris module for later use.

zle -N tetris

This is where the magic actually happens; we're defining the new widget by calling
ZLE with the -N option and telling it that the name for our new widget is tetris.

Keep in mind that hidden names are special for widgets, so
refrain from using names starting with a dot (.).

We wrap up the definition simply by binding our newly defined widget to the Esc +
T shortcut on the keyboard:

bindkey '\et' tetris

Chapter 3

[61]

Notice that the bold tetris call there refers to the widget we defined and not the
actual tetris module.

Now, to actually see this in action, you'll have to either add it to your .zshrc file or
save it as a separate file and source it from .zshrc, just as we've done before. So go
ahead and save this as .zsh_tetris in your $HOME folder, and source it from .zshrc
by adding the following line:

source .zsh_tetris

Now go ahead and type Esc + T to enjoy your new widget.

Just some Tetris. Yes, I'm rusty.

Special variables
Some special variables that are available in ZLE should come in handy when
defining your own widgets for editing and/or manipulating the command line.

The following list contains some of the most commonly used references:

• CURSOR: This is the current position of the cursor on the command line.
• BUFFER: This contains the current editing buffer and can span multiple lines.

Advanced Editing

[62]

• LBUFFER/RBUFFER: These are the contents to the left and right of the current
cursor, respectively. They too can span multiple lines.

• PREBUFFER: This contains the buffer already read when editing a
continuation line.

• WIDGET: This gives the name of the widget currently in use by the editor.

By using these variables you can, for example, know precisely which character is
currently under the cursor by simply using the ${BUFFER[CURSOR]} expression.
This might as well read as "the value of the BUFFER array for the CURSOR position"
(remember, CURSOR is just a number that tells which column the prompt is at).

Your first function
You can achieve even more complex behavior by defining your own functions. Each
time the widget is executed, it'll call the corresponding function. Let's kick it up a
notch with our second widget.

For the following example, we'll work with a variant of the excellent rationalize-
dot widget, as presented on the ZSH-LOVERS' manpage (http://grml.org/zsh/
zsh-lovers.html):

function rationalize-dot {
 if [[$LBUFFER = *..]]; then
 LBUFFER+=/..
 else
 LBUFFER+=.
 fi
}
zle -N rationalize-dot
bindkey . rationalize-dot

And now let's go ahead and go over it line by line.

Firstly, we're defining our own function here, called rationalize-dot. The way
we declare a function is simply a matter of giving it a special name, followed by
parentheses as follows:

my_function() {
 my_code
}

The curly braces {} you see there are the delimiters of the function body; whatever
lays between them is considered part of the function, just like the my_code stub in the
preceding example.

Chapter 3

[63]

Alternatively, you can also define functions using the reserved keyword function
and using a slight variation of the previous syntax as follows:

 function my_function {
 my_code
 }

As you can see, we trade the parentheses for the preceding function keyword.
Otherwise, both syntaxes represent the same thing and are interchangeable. So pick
whatever floats your boat.

Likewise, calling a function doesn't get any more complicated than explicitly writing
its name; my_function, in this particular case.

Back to the rationalize-dot example, the second line there is an if statement,
the most basic control flow mechanism provided by the shell. When used in its full
glory, an if statement will resemble the following:

if condition; then
 my_code
elif another_condition; then
 more_code
else
 even_more_code
fi

In its most basic form, if statements test for a Boolean condition, an expression or
command that resolves as either true or false (or has an exit status to indicate this),
and takes action accordingly. Whatever is not suitable for the first clause, the else
part will gladly take care of as follows:

if condition; then
 do_a_barrel_roll
else
 echo "can't do it"
fi

Notice the fi at the end? Think of the first if as an opening
brace { character, and the fi as the closing one }.

The previous sample will test the condition condition, if it evaluates to something
that is true, our mock function will call the do_a_barrel_roll code. If condition
is not true (what is popularly known as false), then the else block gets called, and
dutifully issues an echo "can't do it" command.

Advanced Editing

[64]

The elif statement simply means "else, if" and is used to evaluate further
conditions. You can add as many elif clauses as the options you have, but be
careful when traversing down that road; neat code becomes wild spaghetti in a
matter of keystrokes if not properly tamed.

In the rationalize-dot example, the if statement tests whether the LBUFFER
variable matches the expression *.., which actually means "has the user typed
anything followed by two periods?". If that's the case, then append a /.. expression
to the buffer variable. Otherwise, just let the else statement handle it.

As per the else block, it'll just add an actual period to the buffer:

else
 LBUFFER+=.
fi

This might not seem a logical decision at first, until we move into the following lines:

zle -N rationalize-dot
bindkey . rationalize-dot

The first one is the standard widget declaration we've seen before, but the binding
immediately after it is what makes the rationalize-dot function require the else
statement to add a period. As it's called on each dot press (the keybinding it's being
assigned), this requires you to behave as an actual period key if the user hasn't typed
anything yet.

As before, you can go ahead and add this to your .zshrc (or any other module that
gets sourced by it) and take it out for a spin; just type ... and see what happens after
that third dot gets pressed.

As we'll see later in Chapter 5, Completion, you can also let the shell source functions
automatically by extending or adding them to your $fpath variable.

This is particularly useful in combination with the cd command and an unhealthy
dose of nested folders.

Want to go further? You'll find tons of predefined built-in widgets for customizing
your keybindings in the zshzle(1) manpage's STANDARD WIDGETS section. Just
type man zshzle to get started.

Chapter 3

[65]

Working with regions
Continuing the legacy of Emacs' inherited behavior, you can set regions in the
command line by holding Ctrl and pressing the Space bar. This will trigger a region
selection mechanism that you can expand with the arrow keys, which works just as if
you were clicking and dragging your mouse to highlight text.

So, why bother with regions? You could, for example, mark a region via the
Ctrl + Space bar sequence and then perform a command on top of it (similar to
capitalize-word we saw earlier), or even mix-in the previously mentioned
execute-command to call a function that has no keybind. Overall, these few niceties
straight from Emacs give ZLE (and of course, zsh) the versatility to behave almost
like a full-fledged editor.

Multiline editing
At this point, it should be no surprise to learn that zsh is smart enough to notice
when you aren't done with a line. Unlike most other shells though, zsh is also
capable of suggesting what might be missing, or even allowing you to use multiple
rows of lines for entering your commands. Unlike traditional continuation where
you put a \ character at the end of the line and press return to continue on the one
immediately below, ZLE will greet you with the $PS2 prompt and add more of
context information.

On most flavors of Bourne-derived shells, you can use the following line:

% ls \

Press return (notice there is absolutely nothing after the \ char).

> -a

Press return again, and it'll work just like the ls -a command. Zsh will give you a bit
more context as follows:

% echo " # press return immediately after the double quotes

dquote> _

The $PS2 prompt (the alternative/second prompt) is called in order to signal that the
shell is waiting for the rest of the double-quote assignment. Go ahead and wrap it up
as follows:

dquote> $HOME" # press return here

> /home/gfestari

Advanced Editing

[66]

There's more to multiline editing than alternative prompts though. You can use the
Esc + return shortcut to add a new continuation line:

% echo hello world # press Esc + return

echo goodbye world

And press return to see both the lines execute sequentially, just as though it were a
script. Keep in mind that you are not limited to just two lines and can add as many
lines as you want.

This sorcery owes its powers to the self-insert-unmeta command, whose job
consists simply of inserting a carriage return character into the line. So now you
know that each time you press Esc + return, you are actually using a shortcut to the
self-insert-unmeta command.

Besides the obvious "being different" feeling, what's really convenient about the Esc
+ return method is that you can move across lines as you please by using the arrow
keys. To top it off, each multiline entry is treated as a whole line. Just press the up-
arrow and you will see the block you previously typed come back to life for you
to edit. While we are at it, I'd like you to meet the push-line-or-edit command,
which allows you to convert a previously typed block of lines into a single block
whenever you are on a continuation (otherwise it'll behave like a normal push-line
command). It works more or less as follows:

Start entering your function in the command line, pressing return after the first
if line:

% if [[true = false]]; then # press return here

then> echo _

And stop right there. Realize you have made a terrible mistake with the condition
clause of the if statement (apart from the extremely simple logic… but hey, this is an
example). Unfortunately, you can't scroll back to the previous line with the up-arrow
button as you have already pressed return and that would trigger the history search
behavior, so what's next? Well, push-line-or-edit, of course. Hit Esc + X in order
to execute a command, and type push-line-or-edit (you can use the Tab key for
completion) and press return.

The prompt will change to a traditional one (ditching the then> indicator from the
continuation line), and you will have a new buffer filled with all your previously
typed lines which, of course, you can edit at will as follows:

% if [[true = false]]; then

echo_

Chapter 3

[67]

Seeing how much better a push-line push-line-or-edit is, it's of course advisable
to bind it to the default push-line shortcut, either ^q or \eq:

bindkey '^Q' push-line-or-edit

bindkey '\eQ' push-line-or-edit

And now you can either use the Ctrl + Q or Esc + Q shortcuts to edit a whole block as
if it were a single line. As with the history-search-forward binding we saw earlier
(which defaulted to Ctrl + S), Ctrl + Q will require the NO_FLOW_CONTROL option to be
set so as not to conflict with the terminal driver's behavior.

This whole thing started with push-line-or-edit, so it seems fair we got to discuss
the actual push-line bit. This will be the default behavior when you are not on a
continuation line. Just type your commands as usual, but do not press return:

% ls -a

Realize you are in the wrong directory, call our newly bound push-line-or-edit
command via Ctrl + Q, and the prompt will be cleared for you as follows:

push-line-or-edit

% _

Now use cd to go to the folder you were trying to list, and watch the buffer come
back to life:

% cd myfolder

myfolder % ls -a

As soon as you execute a line, the prompt gets populated with the line you were
editing prior to calling push-line.

Putting it all together
As we saw earlier, a peculiar aspect of ZLE is that it has access to the shell's history,
which of course means we can use some of the niceties we have learned in order to
further improve how we work with it.

A neat way of taking advantage of the up/down arrow keys is via the history-
beginning-search commands. We could define our own mappings in order to add
some extra kick to the default behavior as follows:

bindkey '\e[A' history-beginning-search-backward

bindkey '\e[B' history-beginning-search-forward

Advanced Editing

[68]

Note that the \e escape sequence could also be replaced by ^[, thus leaving the
bindings as ^[[A and ^[[B respectively.

Now, if you have an empty prompt and press the up-arrow key, it'll work by
retrieving the most recent entry in the history as usual. However, as soon as you
type something and press the up arrow key, it'll autocomplete with your most recent
entry that matches with what's typed.

As an example, type the following pressing return after each line:

% echo hello world

% ls

% echo bye world

Now go ahead and press the up-arrow key. The natural backwards-scrolling
sequence should be as follows:

> echo bye world

> ls

> echo hello world

Press Ctrl + G to exit the search mode. Now type ec and press the up arrow key:

% ec

> echo bye world

This comes in really handy during those times when you forget about a line
mid-sentence and don't want to perform a search or discard the current line. Just
remember to add your bindings into your startup files if you want to keep these
kinds of changes between sessions!

Summary
In this chapter we took a deep dive into what goes on between the prompt and the
shell by the time you press return. We discovered some new tricks to work with
history and tamed the default shortcuts by creating our own keymaps and bindings.
As if this wasn't enough, you now know we are no longer limited to just working
with one line, and that mistakes and distractions can easily be solved by a couple of
keystrokes without us re-typing the whole line.

Chapter 3

[69]

Okay, I'll admit it, we have been pretty busy in this chapter. So here's a chance to
catch your breath while we go over everything we've covered in this sprint. What we
have done is:

• Learned that zsh is made out of various modules, and got acquainted
with ZLE

• Used key maps for editing text and learned about various shortcuts to
improve our productivity in the command line

• Defined our own custom keymaps and worked with various regions and
multiline prompts

• Learned about widgets, special functions that carry out every little task in
the editor

• Written our first sample widgets to further extend the functionality of the
editor and improve our shell experience

• Learned about functions and control flow via the if statements
• Finally, we learned that both modules and functions have special access to

different parts of the shell, and we can do things such as hooking up ZLE
widgets to keybindings in order to search the history.

Not a bad day I'd say. Now, let's head into the next chapter, where we'll learn about
Globbing and filename generation, another of those features where zsh really shines.
If you thought you had learned how to type less with ZLE in this chapter, wait
until you see braces and qualifiers in action. Keep those elbows greased and that
confidence up though, as there's still much more waiting for us to right around
the corner.

Globbing
In this chapter, we will get to know one of the most powerful features of zsh:
filename generation. We will learn new ways of dealing with the system's files and
directories and even expand the functionalities of some of the more traditional
commands by applying parameter substitution and modifiers. The chapter also
serves as an introduction to zmv, a built-in function that provides a number of useful
functionalities to deal with both the mundane and the more complex tasks regarding
files. We will learn to use zmv for renaming, copying, and linking files based on our
newly learned patterns. Feeling excited already?

Quoting your strings
A safe way of declaring your string variables involves the usage of quotes. Think of
it as a way of telling the function "here starts and over here ends my string". Although
not necessary on this particular example, you can quote a phrase when using echo
as follows:

% echo 'this is a quoted phrase'

> this is a quoted phrase

Single quotes are treated as delimiters by the shell and as such, they are completely
ignored. The same rule applies to the print built-in function:

% print 'this is a quoted phrase'

> this is a quoted phrase

So, what's the point of using quotes then? Well, imagine for a moment that your
output looks something like the following:

% echo this is a backslash: \

~>

Globbing

[72]

Yes, that will trigger a continuation line, so there's seemingly no way around it, save
for using quotes. Let's try it again:

% echo 'this is a backslash: \'

> this is a backslash: \

So, as a rule of thumb, we use single quotes when there are special characters on our
string as follows:

% echo 'special characters like * # and \ need to be quoted'

> special characters like * # and \ need to be quoted

Now, what's it that makes these special? Well, earlier in this book, we saw that
comments are defined by a # sign; we can use the * character as a wildcard that
matches filenames and the \ character can be used for escaping sequences with
special meaning. Think of all these as special characters that will never literally mean
what the keyboard says, unless you quote them.

Some special characters need to be "escaped". This means that
they will have a different meaning other than the characters they
represent, unless there's a \ character before them, that is.

For example, echo *.rb will list all the files that have an .rb extension. If you
wanted to list a directory named *.rb—weird, I know—you would have to call echo
escaping the * special character as follows:

% echo *.rb

Also worth noting is that \ is actually a special character, so in cases where a literal
backslash is required, you will need to escape it too:

% echo \\

> \

As we saw in the previous chapter, a single backslash (\) will only trigger a
continuation line.

Chapter 4

[73]

You can make the shell output the raw string by supplying the (q)
argument:
% string="This is a *string* with various 'special'
characters"

% echo ${(q)string}

> this\ is\ a\ *string*\ with\ various\ \'special\'\
characters

Double quotes
Okay, so what happens when we need to use the niceties of the special
characters and also need them to appear as their literal representations? Enter
the double quotes.

The option RC_QUOTES allows you to use single quotes within a
single-quoted string:

% setopt rcquotes

% echo 'a single ''quoted'' string'

> a single ''quoted'' string

Double quotes work by allowing you to retain the value of any string and also
enabling parameter substitution and shell expansion within them.

Take a long, hard look at the following example:

% echo "My username is $(whoami) and my home folder is located at
'$HOME'."

> My username is gfestari and my home folder is located at '/Users/
gfestari'.

The shell works inside the double quotes by executing the command within the
$() construct before anything else. In this particular case, we are using the whoami
program to tell the current user ID—gfestari in this particular case—(if that's also
your name, then hello, long-lost brother).

The shell then moves on to expand the environment variable $HOME, which holds
the current user's home folder currently pointing at /Users/gfestari on my
system. Notice how the single quotes are treated like any other character within
double quotes.

Globbing

[74]

Getting started with Globbing
Filename Generation, popularly known as Globbing (as in, Global substitution), is
the ability of the shell to generate filenames from patterns. This is but the name for
the process that allows the shell to read a pattern and generate a series of filenames;
as a matter of fact, you might notice you have been using Globbing for quite a while
in this book, the only difference is, we're now formally introducing the feature. Also,
be aware that whenever we mention filenames in this text, it means both file and
folder names, as you can use pretty much the same patterns to match both.

The really important thing you need to remember when dealing with Globbing is
that filename substitution happens in the shell right before the line you typed is sent
to the command. In other words, you type, zsh does the substitution, and only then
sends the result, an expanded string and not whatever you just typed, to the function
or program. There are ways around this, but just be mindful.

If you'd like to take a deeper look at some of the features covered in
this chapter, you can always refer to the official documentation by
typing man zshexpn

Globbing with the stars
Globbing works by using a series of special characters known as operators, to create
a pattern that is later expanded by the shell into more complex, traditional strings
without you even noticing the extra effort required. Arguably, the most popular of
these operators is the asterisk or star (*). The star works as a wildcard, allowing you
to match any filenames, even if you provide no pattern at all:
% echo *

README.md todo.txt draft.txt new_file.txt

This will list any file and folder on your current directory. Notice how we only
needed a single star for this. However, if we want all files with a .txt extension, we
simply need to provide the appropriate pattern: anything that ends with the desired
extension.

% echo *.txt
todo.txt draft.txt new_file.txt

What happens is that zsh reads the *.txt pattern, transforms it into its literal
meaning (all the filenames with a txt extension), and only then passes the result as
the argument for echo, which in turn never deals with the actual pattern.

Arguably, the best thing the star has going on is its versatility. Just like a drunken
sailor, a star can get along with practically anything, not just files:

Chapter 4

[75]

% echo *folder

out_folder src_folder

You can use the NO_CASE_GLOB option if you want to make
Globbing case-insensitive (that is, treat upper and lowercase
characters as equals).

% setopt nocaseglob

% echo *.jpg

photo.jpg pic.JPG

It's not all sunshine and rainbows though. There's a fine print detail that you should
consider when using the star operator: hidden files. If you recall from Chapter 2, Alias
and History, we used an alias, la (or ls -a), in order to list the hidden files within a
directory; otherwise, the command wouldn't list them.

Because of how big a headache it could cause you to do things like rm * and end up
deleting a parent folder, most Unix shells will simply ignore hidden files for most
commands. The same rules apply to Globbing when using the wildcard operator. A
workaround for dealing with this behavior would be to explicitly use a pattern along
the lines of .*some_pattern in order to include hidden files just like the following:

% echo .*zsh*

.zsh_aliases .zsh_funcs .zsh_history .zsh_prompt .zshenv .zshrc

We use two stars in order to list all the files that start with a dot (traditional hidden
files in Unix) and contain a zsh pattern somewhere in their name. In other words,
our startup files.

The takeaway lesson here: you can use the star anywhere on a pattern, you don't have to
limit yourself with length or just extensions; be mindful of the hidden files though,
as a star won't show you any hidden files, you'll need something along the lines of
.*some_pattern for that to work.

You can always circumvent the "ignore files starting with dots" behavior
by setting the GLOBDOTS option; however, it's advisable you refrain from
setting it permanently on your startup files as it can lead to issues such as
you deleting the parent (.) directory and so on.
The most important thing to keep in mind when using this option on
your scripts or functions is ensuring a call to setopt NO_GLOBDOTS
right before exiting. Most times though, you'll do just fine by using the
.* pattern discussed previously.

Globbing

[76]

Questions for any single character
The question mark symbol works pretty much like the star, except it matches a single
character instead of many. For example, you can use ls ??? to list the contents of
any three-lettered directory, or get a bit more practical and use the following to list
any two-lettered extension file:

% echo *.??

script.sh

We can even view all files with an extension via the following, similar expression:

% echo main.?*

main.c main.o main.tmp

This is similar to the wildcard qualifier; however, you won't be able to match any
filenames with leading dots unless you explicitly declare so.

Brackets for a sequence of characters
You can use the square brackets construct to match a group of characters within a
pattern. For example, you can use [ML]* to match any filename that starts with either
an uppercase letter M or L.

% ls
Log.log Main.rb README.md script.sh
% echo [ML]*
Log.log Main.rb

Notice how we need to combine the character class operator with the wildcard in
order to denote the filenames that might have more than a single uppercase letter.

Even more useful is the use of a hyphen (or minus sign) in order to name ranges
of contiguous characters to match. For example, you can use the [A-Z]* pattern to
match any file that starts with an uppercase letter from the alphabet. Likewise, you
can use the same pattern for contiguous natural numbers:

% echo *.log_[1-9]

out.log_1 out.log_2 out.log_3

Simple enough, right? Remember you can declare your own character classes. Here's
an example that matches any filename starting with any number from one to five or
an uppercase M:

% echo [1-5M]*.*

Main.rb

Chapter 4

[77]

Just as before, a [.]* pattern won't work as you might expect; in fact, it won't work
at all.

A note about ranges
If your system is using a non-English alphabet or something other
than the ASCII character set, chances are you might expect things like
ü to match classes like [a-z]. This behavior, however, is ruled by the
LANG and LC_* family of environment variables and is very system
dependent, not to mention, beyond the scope of this book.

Using safer ranges on your scripts
Although nothing to write home about if you have been using any modern
shell lately, there's a series of shortcuts that save you from boredom when
working with the garden variety of character classes. You can access them via the
[[:shortcut:]] pattern.

So, for example, if you needed any letter from the alphabet (say, the range that
includes both uppercase and lowercase English characters [A-Za-z]), you could use
the alpha shortcut to list any filename that starts with a character from the alphabet
like so:

% echo [[:alpha:]]*

Feeling enthusiastic about character sets already? The following table lists some of
the popular ones:

Character set Description
ascii Anything from the ASCII character set (see man ascii)
lower Lowercase character
upper Uppercase character
alpha Letter
digit Number
alnum Alphanumeric character
print Any printable character
blank Space or tab character
space Space character (tab, carriage return, newline and co.)
punct Anything but an alnum nor a space

Globbing

[78]

You can combine multiple patterns and character sets; just remember that the
innermost brackets belong to the character set, and everything else goes between the
outermost brackets. For example, if we want all the files that start with either a digit
character or the lowercase b letter, we might roll with the following:

% echo [[:digit:]b]*.c

bindings.c

As you can see, the inner set of brackets declares the character set, while the b
character is there just as though we had typed [b].

Avoiding characters
Okay, we have been giving patterns a warm welcome so far, but what happens when
we want the thing that does not match whatever we're looking for? Turns out there's
also an easy way to tell zsh "I want the filenames that have nothing to do with this
particular pattern", so let's get to it.

Suppose we have the following files in a given directory:

% ls

bindings.c bindings.h bindings.o main.c main.o

And we just want to select the actual code files, the ones ending in .c and .h, and
avoid everything ending in .o. With what we have learned so far, we could get away
with something along the lines of the following:

% echo *.[hc]

bindings.c bindings.h main.c

But as you can see, the more complex our requirements, the more likely we end up
with a gigantic mess of a character class. Luckily, we can get the complement of a
class via the caret (^) operator:

% echo *.[^o]

bindings.c bindings.h main.c

What we did back there was told zsh to expand the class for those filenames that do
not match the o extension. Notice how the rest of the pattern remains unchanged and
the caret is immediately after the left bracket that does the actual negation. Feel free
to read this as "anything but whatever comes inside the brackets".

Chapter 4

[79]

You can negate a character set by using a caret before the inner
brackets. For example, if we wish to skip files that start with an
uppercase letter, we might as well do the following:

% echo [^[:upper:]]*

Handling mismatches
So far we have seen how to make the shell interpret our patterns and attempt to
match whatever filenames it can. During the remainder of this Globbing trip of ours,
we'll take a look at what happens with the unlucky patterns, those that fail to match
anything and how the shell deals with them.

Let's try listing some nonexistent zip files:

% ls

bindings.c bindings.h bindings.o main.c main.o

% echo *.zip

zsh: no matches found: *.zip

It seems that zsh defaults to an error message and aborts the execution of the
command. Luckily, there are plenty of things for us to do about it in the form
of options.

First, there's NULL_GLOB, which will make the shell discard any pattern without a
proper match. The following is an example, where a blank line gets printed when no
matches are performed:

% setopt null_glob

% echo *.zip

>

This comes in handy when passing multiple patterns, but can make you call some
programs without any arguments whatsoever, so consider that before updating your
startup files willy-nilly.

% echo *.c *.zip

bindings.c main.c

The first pattern (*.c) matches and lists all files with a .c extension; whereas the
second pattern (*.zip) doesn't match anything and is discarded (a null second entry
is passed to echo).

Globbing

[80]

Moving on, there's also the NOMATCH option, which you can unset to achieve a
behavior that pretty much emulates bash; any pattern that does not match is
passed as a literal argument to the command. This is relatively easy to test with the
following example:

% unsetopt nomatch

% echo *.zip

*.zip

What do you know? Seems the manpage was right and now the failing *.zip pattern
acts just as though we had called echo '*.zip'. This works differently from NULL_
GLOB, in that the pattern is also ignored by the shell, but passed as an argument to the
program regardless of it matching anything.

Remember you could also use setopt NO_NOMATCH
instead of unsetopt.

Lastly, there's an option which mimics the legacy behavior of csh, aptly named
CSH_NULL_GLOB. Yes, naming conventions spare no expenses. Anyway, here's what
happens when you set it:

% setopt csh_null_glob

% echo *.zip

zsh: no match

Seems it's back to the "error message and abort command" zone for us. Like the
curious learners we are, let's kick it up a notch and see what happens when dealing
with multiple patterns:

% echo *.c *.zip

bindings.c main.c

Ok, now that's a lot nicer. What happens is that CSH_NULL_GLOB will show you an
error message and abort the command line whenever any single pattern does not
match, but will go ahead and discard the failing patterns if there's at least one that
matches. Think of this as the product of that night of unrestrained passion between
zsh's default behavior and NULL_GLOB. And while we're at it, don't blame me for that
mental picture.

Before we move on to another subject though, there's another option you should
familiarize yourself with when dealing with patterns. But first, let's take a look at
what happens when we try to pass a wrong pattern to the shell:

% echo *[[:alpha:]

zsh: bad pattern: *[[:alpha:]

Chapter 4

[81]

Notice how we missed the closing bracket (])? The shell complains about the pattern
and we are left with the sour taste of failed scripting. Let's try that again, but now
we'll set the following option:

% setopt no_bad_pattern

% echo *[[:alpha:]

*[[:alpha:]

We turned on NO_BAD_PATTERN (or unset BAD_PATTERN, whatever floats your boat)
and guess what happened? That's right; the bad pattern is ignored by the shell
expansion mechanism and passed instead as an argument to the command. Pretty
handy if you don't want those pesky warnings while experimenting with your newly
learned patterns.

Extended Globbing
As you might have noticed at this point, when it comes to Globbing, zsh goes above
and beyond the call of duty and then some more. What we'll discuss next is the
more advanced aspects of Globbing, commonly referred to as extended Globbing.
Put simply, we'll learn a new set of characters and expressions that expand on what
we have been using to provide even more functionality to the shell's operations.
However, before we ride that horse, pry open that .zshrc file of yours and add the
following option:

setopt EXTENDED_GLOB

Or call it from your terminal if you plan on adding it later on. As we'll see in no time,
extended Globbing is there to give a special meaning to characters like #, which if
you recall, is typically used for comments. Now let's get our hands dirty.

Special patterns
Zsh's vast repertoire also includes a series of shortcuts or special patterns that aim to
make mundane tasks a bit more tolerable. We will get familiarized with them in
this section.

Recursive searching
Arguably, the most popular pattern out there is recursive searching. Accessible
through the **/ combination, this pattern tells zsh to perform a recursive search,
starting from the current directory and working its way inwards along the
directory tree.

Globbing

[82]

For example, here's how we look for all the markdown files (files which typically
have the .md extension) on the current working directory:

% echo **/*.md

README.md brew/README.md git/README.md scripts/README.md zsh/README.md

Then there's also the ***/ flavor, which tells the shell to follow symbolic links. Be
careful though, as it can lead to errors such as "file name too long", which is the
operating system's way of telling you that either the rabbit hole is too deep, or you
have a circular reference somewhere.

Keep in mind that specialized tools like find or The Silver Searcher
(https://github.com/ggreer/the_silver_searcher) will
run circles around the shell's directory recursion mechanism. Thus,
you should avoid relying on it for "serious" operations.

As for the caveats of using the recursive pattern expression, you might eventually
be greeted with an "argument list too long" warning from the system. This usually
means the shell is taking up too much memory space when expanding the **/
pattern into the directory structure, which in turn could happen if you have a
really complex tree to work on. A workaround, if you insist on using the recursive
expansion, is to pass each argument with the help of xargs as follows:

% find **/*.md | xargs echo

I know, this example is a bit dumb as the same could be accomplished just with
a simple find **/*.md for a multiple-row result. The idea here is that you get to
know how to pipe the results of the find into echo by splitting them with xargs, so
bear with me.

Lastly, there's somewhat of a hack you can use in case you want to exclude the
current directory from the pattern:

% echo */**/*.md

That way, only filenames that include base_dir/any_dir will match the pattern.

Alternate patterns
Having to choose between two options and then being given a third one clearly
inferior, can make a person rethink his decision... or so the story goes. Luckily, the
shell is not a complex creature like us, and we can provide it with a choice of patterns
to select should one fail. We do that by using the parentheses with a pipe construct,
like the following example:

Chapter 4

[83]

% echo [[:upper:]]*.(md|txt)

README.md README.txt

We continue on our search for the README files, using a named range to specify
the filename we want with an uppercase letter before defining either an md or a
txt extension. Simple, right? Well, not quite. Just be careful so as not to start the
command line with parentheses, as this might make them run in a subshell instead.
Zsh is smart enough to discriminate between intended usages, so you'll probably be
safe most of the time. Try not to push your luck though.

Before we move on, it bears mentioning you can't use a pattern that contains a /
character within the group alternatives we just learned. You have been warned!

Numeric ranges
You can make the shell match any series of digits it encounters with the <-> special
pattern. What makes this construct great though, is that it can match any series
of digits without a length restriction (this is because the shell processes each digit
independently and not as a whole integer).

Take, for example, the following directory:

% ls

log.txt log_002.txt log_010.txt log_031.txt

log_001.txt log_009.txt log_030.txt

We want to work with those files that match the log_xxx.txt pattern, where xxx is
a digit. Let's put what we just learned to good use:

% echo log_<->.txt

log_001.txt log_002.txt log_009.txt log_010.txt log_030.txt log_031.txt

What if we want those logfiles from 10 upwards? Zsh has you covered:

% echo log_<10->.txt

log_010.txt log_030.txt log_031.txt

As you can see, the <-> pattern can define a range with lower and upper bounds.
Let's try again, this time for files between 10 and 20:

% echo log_<10-20>.txt

log_010.txt

Globbing

[84]

Another cool feat of this expression is that it doesn't take into account leading zeroes,
allowing you to sort things such as 00010 and 00013. Speaking of which, there's
the NUMERIC_GLOB_SORT option, which you can also set in order to output a sorted
numeric match of any pattern matches (and that's any as in, not just the numeric
range pattern).

% setopt numericglobsort

% echo log_*

log_001.txt log_002.txt log_009.txt log_010.txt log_030.txt log_031.txt

Revisiting the caret operator
As we saw earlier, we use the caret (^) operator to negate patterns (remember:
"anything but what matches this"). Here's another way to use the caret:

% ls

README.md README.txt bindings.c bindings.h bindings.o main.c main.o

% echo b^*.o

bindings.c bindings.h

So basically, we're telling the shell to expand that pattern so as to match the
filenames that start with b but do not have an .o extension.

We can then safely say that the pattern^other_pattern expressions work by
matching the first pattern and avoiding matches on the other_pattern side of
the expression. A word of caution now that we are using special characters with
different meanings though is, remember to wrap names or expressions that you want
taken literally with single quotes, like in the following example:

% echo '^c'

Otherwise, you might be asking for trouble.

The tilde operator
Similar to the caret operator's second usage, the tilde (~) operator can be used to
define a pattern that consists of a part that should match and a second part
that shouldn't:

% ls

README.md README.txt bindings.c bindings.h bindings.o main.c main.o

% echo b*~*.o

bindings.c bindings.h

Chapter 4

[85]

Basically, this is just a combination of two patterns: b* and *.o, linked with the "do
not match what follows" operator: ~. Again, we can read that as "match everything
that starts with a lowercase b and does not match anything that ends with .o".

If you recall, we used b^*.o with the caret, so the tilde version seems a bit more
straightforward if I might say so. But don't take my word for it. Let's use the tilde to
exclude, for example, any files within a temporary directory:

% ls tmp

delete_me.sh out.txt

% echo **/*.sh~tmp/*

src/script.sh

What happens is that the shell runs the first pattern (**/*.sh) and recursively checks
for all files with the sh extension. The preliminary result is a list of possible filenames
that is then matched against the second pattern (tmp/*). The filenames that match
the latter are removed from the list, and we are left with the filenames we were
searching for.

Just for academic purposes, it might be a good time to mention that **/ is equivalent
to the (*/)# pattern. As it stands, the special operator # will match a single repeating
character (in parentheses), or a recurrent expression (in brackets).

Glob qualifiers
Besides operators, zsh boasts qualifiers, which are essentially a sort of filters you
apply to your pattern in order to restrict things like matching only files or folders,
type of permissions for those filenames, or even the owner of such entries.

So in the following example, we'll list all the directories that match the *tmp pattern.
Notice the (/) construct, that's what intuitively sets files and folders apart:

% echo *tmp(/)

tmp

What about matching only vanilla files then? Fair enough, (.) is your designed
qualifier for files-only restrictions.

% ls -F

README.txt script.zsh zsh/ src/

Suddenly, a wild filename appears:

% echo *zsh(.)

script.zsh

Globbing

[86]

We have a zsh directory and a script file with a .zsh extension. Typically, we would
roll with an echo *zsh construct to list both of them, or a more restrictive echo
*.zsh construct if we were just looking for files with an extension; however, the (.)
qualifier is arguably better suited for complex tree searches or when dealing with lots
of similar filenames and directories.

What follows is a "cheatsheet" for the most common qualifiers:

• (N): Remove argument if no matches are found, silently ignore errors. Acts
as a per-command NO_GLOB option.

• (@): Symlink qualifier. Used for only selecting symbolic links.
• (-@): A special variation of the previous one. Use this to find any broken

symlinks.
• (/): Directories only.
• (.): Files only. Whatever is not either a link, directory, or any of the previous

will be selected by this.
• (*): Executable files. Directories need not apply. Think of this as (.) for

those files with +x permissions.
• (r): File is readable by the current shell user.
• (w): File is writable by the current shell user.
• (x): File is executable by the current shell user.
• (U): File is owned by the current shell user.
• (R): File is readable by anyone.
• (W): File is writable by anyone.
• (X): File is executable by anyone.
• (u:root:): File is owned by the user root. You can replace the : character

with any another pair of symbols such as curly braces: (u{root}). Just
refrain from using pipes (|).

• (on): Sort filenames by name. The echo *(on) construct will be analogous
to ls.

• (On): Reverse-sort filenames by name.
• (oL): Sort filenames by file size.
• (OL): Reverse-sort filenames by file size.
• (om): Sort filenames by modification date.
• (Om): Reverse-sort filenames by modification date.

Chapter 4

[87]

As always, feel free to mix and match to spice up things. Like poking with (*r^w)
for regular files that are readable but not writable by your user, or (@,/) for either
symlinks or directories.

Eager to find out more about qualifiers and what have you? Fret not dear
reader, and embrace the mystical powers of... never mind, we'll just resort
to context completion.

Type the following, and remember to press Tab right after the opening
parentheses:

% echo *zsh<Tab>

This will yield context completion for the glob qualifiers listed here (and
many more!).

What follows are the more complex batch of qualifiers, such as timestamps and file
size, which require a bit more explaining before delving right into their usage.

Timestamp qualifiers
Unix systems typically record three timestamps on their filesystems: modification,
access, and change times. With that in mind, you can use the following construct for
Globbing filenames:

% echo *(mh-1)

This will provide you with the files modified in the last hour. You can easily check
this result via an ls -l qualifier. The m there is the modification time, which is the
most common type of timestamp you'll be interested in. Nevertheless, you could also
check for either access ((ah-1)) or creation ((ch-1)) qualifiers within the last hour.

Regarding that "last hour" bit, it's represented by the h-1 qualifier, where h stands
for hour (yes, yes, I know) and could be replaced by either minutes (m), weeks (w), or
Months (an uppercase "M"). Note that the default unit for this qualifier is days, so (m-
1) will mean a day ago or, more precisely, up to 24 hours before the current system
time.

Similarly, the plus operator can be translated as "more than", allowing you to
describe such patterns as (mw+3), which is a concise way of saying "more than three
weeks from today". Finally, you can also specify a range by combining the two
operators:

% echo *(m-5mh+2)

This will provide the files modified between five and two hours.

Globbing

[88]

File size qualifiers
The last qualifier you'll get to know today is the file size. As you might have guessed
already, we can query filenames on the basis of their size on the disk:

• (Lm+size): The file size is larger than size megabytes. For example:
(Lm+5)—larger than five megabytes.

• (Lm-size): The file is smaller than size megabytes. For example: (Lm-2)—
smaller than two megabytes.

• (Lk+size): The file size is larger than size kilobytes. For example:
(Lk+5000)—larger than 5000 kilobytes.

• (Lk-size): The file is smaller than size kilobytes. For example: (Lm-
2000)—smaller than 2000 kilobytes.

The zmv function
In the previous chapter, we learned about zle; zsh's module in charge of the
command line. It's time we take advantage of our newly learned Globbing skills and
get acquainted with zmv, a function that was created to make copying, moving, and
linking files a breeze.

So, you ask, what's the deal with zmv? What's special about this built-in function in
comparison to, say vanilla cp, is that zmv works its magic based on patterns. Further,
as we'll see in this section, zmv is designed to be safe by default, which means it
will ask you for a confirmation before taking on any kind of risky operation such as
overwriting files.

Before we get started though, you should add the following to your .zshrc file,
remembering to source it or restarting your terminal emulator of choice:

autoload zmv

This will make zsh load the function on startup, making it available to your session.
You can now just type zmv and you'll be greeted with a fairly straightforward set
of instructions. Basically, the zmv syntax expects two patterns: one for matching
filenames and a second one into which the results will be converted:

zmv [OPTIONS] old_pattern new_pattern

As you might have guessed, zmv goes along with a great deal of Globbing, which is
why we are only getting acquainted with it now. Here's how we can use it to rename
our .txt files into markdown (.md):

% zmv -Wv '*.txt' '*.rb'

mv -- README.txt README.md

Chapter 4

[89]

We used the verbose -v option flag, so we can learn more from the output. The
zmv function works by expanding both patterns and then delegating the actual
functionality to a more capable command such as cp, ln, or in this particular case, mv.

You can use the -W option to allow automatic conversion of the wildcards. Combined
with noglob, you can add a brand new functionality to the mv command, which
resembles the special behavior of the Windows systems' cmd variant:

alias mmv='noglob zmv -W'

You can now move files and rename them on the same call:

% mmv *.c.orig orig/*.c

As for the rest of the option flags that apply to zmv, here's a handful of the most
relevant:

• -f: Force overwriting of destination files
• -i: Interactive prompt for each operation
• -n: No execution, just print what happens
• -v: Verbose—print a line as it is executed
• -w: Implicitly add parenthesis to wildcards in the pattern
• -W: Like -w, but turn wildcards in replacement patterns into references

However, don't even think you'll need to remember these. As we'll see in the next
chapter, you can always use Tab for context completion or, in zmv's particular case,
you can get the full list by simply typing zmv and pressing Return on your terminal.
Just know there are at least a couple of options available to you.

You can do what's popularly known as a dry run by passing the -n
flag. This will make zmv only print out what will be done without
actually doing it. This is by far the best way of testing and debugging
your scripts before… well, you know, panic ensues.

% ls foo

% zmv -n '(*)' '${(U)1}''mv -- foo FOO

Should you require more advanced usage, you could use several expressions such
as the old_pattern parameter. Filenames that match these will in turn be grouped
and accessible by the new_pattern expression following the $1, $2, … pattern. For
example, we can use the following for recursively renaming pictures on a folder tree
so that their extensions are all lowercase:

% zmv '(**/)(*).(#i)jpg' '$1$2.jpg'

Globbing

[90]

Summing up, with a bit of Globbing and practice, you can get a lot of mileage out
of your zmv usage. You just need an appropriate pattern to match and a string to
actually use that pattern. zmv will actually ignore any file whose name is not changed
during expansion and it doesn't even care if the target is supposed to be a directory
or a simple file.

You can access zmv's advanced documentation by typing man
zshcontrib.

Summary
This is the part of our journey that requires us to pack up our things and wrap up
the chapter. On this occasion though, we went from using Globbing as something
we thought was "quite like a regular expression" to understanding what is actually
a whole different beast. Luckily for us, that beast was pretty easy to tame once we
learned the behavior of the most popular operators and qualifiers. We then expanded
on those constructs with more special patterns and got to know zmv in order to make
most of our daily tasks a breeze. Summing up, we can say that we:

• Learned about quotes, escaping symbols, and double quotes together with
shell expansion within them

• Got started with Globbing and parameter substitution within the
command line

• Kicked it up a notch and dove headfirst into extended Globbing, learning
about recursive searching, and operators for negating and excluding patterns

• We learned about glob qualifiers, how to use them to discriminate files by the
system time and size

• And finally discovered zmv, which lets us put all of the preceding things
together to make working with complex filenames something like a walk in
the park

Seems like we have seen a whole lot so far, which will cater to most of our needs.
Not a bad deal, if I might say so. Actually, I might, as that's one of the advantages of
wearing the writer's hat.

The next chapter covers completion. And we have come together quite well so far, so
I won't lie to you (again); completion is actually what makes most people never look
back once they try zsh. You have tasted a sample of it so far, but there's plenty more
waiting for you, right around this page.

Next up then is Chapter 5, Completion. Hurry up!

Completion
This is what most users switch to zsh for: completion. In this chapter, we'll meet one
of the best features of zsh: compsys. Known as "the new" completion mechanism, this
chapter focuses on its various functions and configuration. We will learn to tweak
the completion behavior so that it's no longer restricted to filenames and bump it up
using styles and our own functions. When we're done, you should be able to read
most zsh scripts as well as tweak many of the existing functions.

Getting started with completion
Nobody really likes to type boring filenames, and that's what got completion started
back in the day—type a few letters of a filename, press Tab, and the shell will do the
rest for you. Zsh goes the extra mile though and actually allows you to complete
almost anything. By default, the Tab key is bound to a completion command in zsh.

Like Bash, zsh defaults to filename completion. Unlike anything else, however, zsh
can enable the completion for practically everything that dares to rear its head in
the command line—paths, external and built-in commands, aliases, functions, and
options; you name it. And even if you can't name it, you can program it, as we will
learn shortly.

Originally, zsh used a built-in module with a special syntax in order to provide
completion. Luckily for us, this was eventually replaced by an even simpler
mechanism. We'll focus on the new completion system that is entirely based on
shell functions.

Go ahead and pop open that .zshrc file of yours, and add the following in order to
activate shell completion:

autoload -U compinit
compinit

Completion

[92]

This addition will make the shell load the completion system and start it
automatically. The -U flag tells the shell to avoid expanding any aliases. This will
make double tapping Tab trigger the completion mode.

compinit is an essential part of the completion system. As such, you
won't be able to test anything from here on until you have updated and
sourced your .zshrc file or at least run autoload -U compinit &&
compinit in your terminal.

Remember to source your files, and then let's go ahead and try our newly enabled
completion. Type ec and press Tab:

% ec <Tab>

% echo

The shell automatically completes the external command as echo. How nice of zsh,
isn't it?

As we have previously noted, zsh has two ways of performing
completions in the command line. You can learn more about "the
old way" of doing things by typing man zshcompctl, for academic
purposes, of course.

Completion can also be applied to environment variables, for example:

% echo $HOM <Tab>

% echo $HOME

By default, zsh enables the AUTO_LIST option that handles the resolution of
ambiguous matches, providing you with all the possible completions. To see this
in action, let's go back to the previous example; only this time, we will make the
completion less obvious by typing only HO as follows:

% echo $HO<Tab>

Completing parameter

HOME HOST

The shell doesn't know for sure what we mean, so it presents us with a list of
possible matches below the prompt instead. This list will be updated if the criteria
changes, so we need to only worry about hitting the Tab key.

Now, let's try option completion with ls, as follows:

% ls -<Tab>

Chapter 5

[93]

The following screenshot shows you how completion is triggered for the
ls command:

Menu selection in action

Seeing that there are actually a couple of viable options to pick from, zsh presents
you with a menu that you can cycle through by repeatedly hitting the Tab key or
using the arrow keys.

Finally, you can also use completion for expanding commands as follows:

% echo `which zsh`<Tab>

% echo /usr/local/bin/zsh

You can see where this is going—completion is awesome enough for us to want it to
be applied everywhere, and not just in the word that's being typed. Before we start
writing our own functions however, we will take a look at zsh styles, the options by
which we can configure the behavior of the zstyle built-in.

Getting assertive with zstyle
Unlike the shell options that we have been setting—and unsetting—throughout this
book, zstyles demand a bit more complex syntax as a trade-off for enabling a context-
sensitive completion.

Completion

[94]

Zstyles are defined via the zstyle keyword, followed by a colon-delimited list
of arguments:

:completion:function:completer:command:argument:tag

The first argument, completion, is used for defining a context, as any given style
could behave differently in different contexts. Nothing to write home about though,
as we'll get to see in no time.

The second argument is the name of the style by which it will be referenced by
the built-in. The remainder of the arguments are what give the style their unique
behavior for completion.

Patterns make a comeback here as well, so you can use them as tokens for each of
the subsequent arguments when defining a style. As usual, order matters when you
want to define your styles, so try to put the less-specific or general-purpose styles
at the bottom of your definitions, otherwise you'll end up overriding your more-
specific functions.

The most general type of style you can define is :completion:*, which will apply to
almost anything, so be careful when ordering something that resembles it.

As you might have imagined, zsh has a few tricks up its sleeve, such as being capable
of displaying some useful messages with the list of matches. For this to work though,
we need to enable the following style:

zstyle ':completion:*' format %d

By adding this to your .zshrc file, you can now get a bit more information whenever
zsh is performing a completion. For example:

% true<Tab>

no argument or option

The astute reader might have noticed the %d pattern lying within the style format.
That's right, we can use the same escape sequences as that we used when defining
our prompts.

Tired of hearing beeps already? That's zsh's way of telling us
that an ambiguous completion was attempted. You can put off
this rather annoying attitude towards ambiguity by unsetting
the LIST_BEEP option in your .zshrc file:

unsetopt LIST_BEEP

Chapter 5

[95]

As we mentioned earlier, you can also narrow down the behavior of your styles to a
more specific context. For example, you could use any of the following:

zstyle ':completion:*:descriptions' format '%B%d%b'
zstyle ':completion:*:messages' format %d
zstyle ':completion:*:warnings' format 'No matches for: %d'

This is just to set a custom pattern for the messages belonging to warnings,
messages, and descriptions groups. As you can see, warnings will now be
reported as No matches for: <argument>, which is a bit less dronish.

You could also add a little more flair to your results with something along the
following lines:

zstyle ':completion:*' group-name ''

This will display all the different types of matches separately. If no tag or group is
defined for a particular match, it'll get displayed under the default group.

Did the menu selection tickle your fancy? Here's how we make it
available for all of your matches:

zstyle ':completion:*' menu select=1

Getting comfortable with the styles? Glad to hear. As you can see from the examples,
there's no arcane magic involved here—just some documentation and creativity to
fill the gap between you and your custom styles.

Command correction
Completion can also correct any misspelled commands that you might have typed.
We'll use the following format for our style:

zstyle ':completion:*' completer _expand _complete _correct

And we'll test the autocorrect functionality with the following:

% prnti<Tab>

corrections (2 errors)

print printf

original

prnti

Completion

[96]

Zstyle noticed that we misspelled print and is being quite verbose regarding this.
Remember you can use the Tab key to cycle through the list of available options.

Alternatively, you could use the correct option if you want a more "hold me by
the hand" approach. Specifically, this option will make zsh ask you for confirmation
every time it suggests a correction:

% setopt correct

% prnti<Tab>

zsh: correct 'prnti' to 'print' [nyae]?

This peculiar nyae acronym stands for No, Yes, Abort, and Edit, and works in the
following way:

• n: This will force the shell to execute whatever you typed in the command
line (prnti in this particular case).

• y: This will execute the correction (effectively, changing prnti to print in
this example).

• a: This will abort and allow you to type a completely different command.
Think of it as a panic button.

• e: This will allow you to edit the current text in the command line. Use this
for a more fine-grained control in case suggestions made by the shell are
completely off.

What about command options? You know, those flags we pass around all the time?
Well, turns out there is a style for that too. The following will make the commands
show the descriptions for their options:

zstyle ':completion:*' verbose yes

These can be easily accounted for; now, go ahead and type the following:

% print -<Tab>

-- option --

-C -- print arguments in specified number of columns

-D -- substitute any arguments which are named directories using ~
notation

-N -- print arguments separated and terminated by nulls

-O -- sort arguments in descending order

(list goes on...)

Chapter 5

[97]

Not too shabby, right? Remember how I mentioned we wouldn't be in such a dire
need for manpages after we learned some styles? No? Well, we won't be in such...
never mind.

Completers
The third entry on the zstyle is reserved for completers. These are the functions that
handle the different types of completions available. By default, the list of completers
consists of a single function, _complete, but each member of the completers family
will add its own unique behavior to your styles.

zstyle ':completion:*' completer _expand _complete _correct

Used in your .zshrc file, this completer will use globbing for expanding the input
and match it against the _complete and _correct completers. The _correct
completer is used here for correcting any typos and spelling mistakes. We're leaving
it at the end of the argument list so that _complete takes precedence.

When used within a style, completer names omit the leading underscore:

zstyle ':completion::complete:*' use-cache on

This style configures the _complete completer by enabling a cache
layer for any completions that require it, improving the overall
responsiveness of such functions.

Similar to _correct, _approximate will carry out the same tasks with the added
benefit of allowing a few extra characters to be misspelled at the cursor position.
Notice that you will need to put _approximate before _correct, should you need to
use both in your style.

As a function, zstyle also uses flags. Of particular interest to us is the -e option,
which tells zstyle to evaluate the final string as an argument on each call. This allows
us to use more dynamic styles such as the following:

One error for every three characters
zstyle -e ':completion:*:approximate:*' max-errors 'reply=($((
 ($#PREFIX+$#SUFFIX)/3)) numeric)'

This configures the approximate completer to evaluate the argument for the
max-errors parameter dynamically, each time it is invoked. The reply=($((
($#PREFIX+$#SUFFIX)/3)) numeric) string uses the reply hook for displaying
the results within the line editor and sets its value as the expression, (PREFIX +
SUFFIX)/3. This is our way of saying "one error for every three characters". Both
PREFIX and SUFFIX are variables that contain the values before and after the cursor
position, respectively.

Completion

[98]

Ignoring matches
Sometimes, some matching suggestions jump out at you as being completely out of
place. Luckily for us, the developers of zsh have included an _ignore completer.

Take the following directory tree as an example:

zsh
├── README.md
├── Completion/
├── Misc/
├── Scripts/
└── Util/

When working on any of the subdirectories mentioned previously—for example, the
Completion folder—see what happens when we try to change directory, using cd, to
another at the same level:

% cd ../ <Tab>

directory

Completion/

Misc/

Scripts/

Util/

Having the Completion mechanism display the folder we're currently located in is
a bit awkward, and it makes the whole cd deal a bit pointless. In order to make the
shell a bit more context-sensitive, we can alter the completion behavior for the cd
command using the ignore-parents, parent, and pwd options:

zstyle ':completion:*:cd:*' ignore-parents parent pwd

The following will remove the respective matches from the completion results.
Notice how Completion is now missing from the results:

% cd ../ <Tab>

directory

Misc/

Scripts/

Util/

Chapter 5

[99]

While we're at it, you can use the following style to remove the trailing slash when
using a directory as an argument:

zstyle ':completion:*' squeeze-slashes true

Function definitions
Finally, we will turn our attention to compsys, zsh's completion system. This is one
of the most complex parts of the shell for users and developers alike. Before we dive
into compsys, however, we need to make a quick stop and meet an actual function in
the wild.

As usual, you can learn more about compsys via the manpages. Of
particular interest are man zshcompsys and man zshcompwid.

Here's what one of these looks like:

hi() {
print 'Hello, world'
}

Here, we have defined the hi function, which is how we'll call it again later when we
need it. This will, in turn, print Hello, world every time we use it. So let's get to it,
shall we?

Open your terminal emulator of choice, and type the following (one line at a time):

% hi() {

function> print 'Hello, World!'

function> }

Notice how zsh realized this was indeed a function we were trying to define and
immediately used the continuation prompt (function>), allowing you to continue
working on it? How nice of zsh to wait for us until we properly close our curly braces.

Now, go ahead and test your first function:

% hi

Hello, World!

They grow so fast!

Completion

[100]

And, now for the sad part—this was defined for your current session only, just
like when we defined aliases back in Chapter 2, Alias and History, at the beginning
of our zsh adventure. If you want hi(), or any other function to tag along in each
interactive session of yours, you'll need to add it to your startup files.

A word of advice though: once you start with the completion and functions, these
startup files will get pretty crowded. So, it's probably best that you start relocating
your functions into a more comfy space like their own .zsh_functions file. Fret not,
as the process is easy.

First, we create a hidden file; you can name it whatever you fancy, but we'll go with
.zsh_functions (see the leading dot, so we can tell the system that it can hide it).

% touch ~/.zsh_functions

Once you have created the file in your $HOME directory, it's simply a matter of adding
your functions in here. You can use your favorite editor; we'll just roll with cat here
for convenience:

% cat >> ~/.zsh_functions

greet() {

 print 'Hello, World!'

}

Press Ctrl + D to close the file.

Now, as we learned previously, this wouldn't do anything by itself unless we source
the file. And since sourcing the file manually in each session would be a pain in the
neck, we just need to go a step further and add the .zsh_functions sourcing to our
startup files. So, go ahead and open your .zshrc file, and add the following:

[[-f ~/.zsh_functions]] && source ~/.zsh_functions

This is a conditional statement. The double square braces ([[) shown here are known
as the test command (or new test if you have been around the command line for a
while), and they help you compare strings and test for file attributes. The -f switch
is for regular files and succeeds only if the file exists. So we're literally trying to say
"test whether the ~/.zsh_functions file exists". If the test passes, the following part
of the command will get chained and we'll finally source our functions file.

As a side note, this expression supports filename globbing, so all the tricks we
learned in Chapter 4, Globbing, still apply here.

Chapter 5

[101]

You can source as many files as you like with this same mechanism; just remember to
add the line into your .zshrc file, and don't forget about the test fail-switch, which
will avoid sourcing files that do not exist in the system (and of course, errors).

As always, you can scuba dive into the test command simply by typing man [in
your terminal. For more details regarding the [[compound command, check the
CONDITIONAL EXPRESSIONS section under the zshmisc(1) manual entry.

Okay, I hear you. So what do functions have to do with completion? Well,
everything! See, compsys is entirely made out of functions: functions that will be
called automatically whenever you hit the Tab key. The difference lies in how these
set of functions use some other special commands to interact with our old pal, ZLE,
in order to show the available completions. Don't worry though; contrary to popular
belief, there's no arcane magic in here.

The path of the function
So, functions. A truckload of them to be more precise (well, you be the judge of
this). How does zsh know where to look? It is easier than it sounds; the shell will
load anything that belongs to its function path or $fpath, a series of directories that
contain the files with the functions required for completion. Go ahead and have a
look at it:

% print -l $fpath

All the directories that show up in your function path list will be scanned and loaded
by the shell during startup, provided you call compinit first. So remember to call
autoload –U compinit in your .zshrc file. Note, however, that call will load
anything that resides in your $fpath. If you happen to have a special requirement
for a single function, you could call it explicitly via autoload. If you save the
previous function as a file named _greet and put it into one of the directories within
your $fpath, you could then use the following inside your startup files for loading
the function into the shell automatically:

% cat >> _greet

echo 'Hello world!'

autoload -Uz _greet

See that -Uz flag? The -U flag works by telling the shell to use the name _greet to
refer to the function we just created, whereas the -z flag tells zsh to load the function
in the native mode. Both -U and -z flags are always added implicitly whenever you
call autoload, but I'm leaving it there for you to be aware of them.

Completion

[102]

Okay, so it's all fun and single-line functions until someone needs something a bit
more complex. Single functions within a file will be loaded without any problem
whatsoever. So, how do we use helper functions (auxiliary methods for our main
functionality) in our files? The zsh way states that we should define a function and
name it just like the file and call it in the last line of the file:

_greet() {
 echo "Hello, World!"
}

_meet() {
 _greet
 echo "Ohai there $@"
}

_meet "$@"

That last line in the file takes care of calling the function named _foo inside the
file, and passing it the same arguments used. So if you called it meet John, the
arguments will be passed to the meet function.

Save the file as meet (no extension) inside any of your $fpath folders; restart your
shell and call the following:

% meet John

Hello, World!

Ohai there john

Extending your fpath

If you don't want to be messing around with copies or links to your
functions, you can easily extend fpath with more folders by setting
the variable as follows:

fpath=(~/my_folder $fpath)

This will prepend the folder, my_folder, to the shell's fpath,
effectively extending it with whatever lies inside your folders. This
is particularly useful for those times when you lack the appropriate
permissions on a given system. Note that we are using the absolute
path to the folder.

Chapter 5

[103]

So let's take a look at a formal completion function. Don't worry, we'll start with an
easy one, such as _md5sum, which is typically located under your $ZSH_INSTALL_
DIR/functions/ folder. Here it lies in all its glory:

#compdef md5sum

_arguments -S \
 '(-b --binary)'{-b,--binary}'[read in binary mode]' \
 '(-c --check)'{-c,--check}'[read MD5 sums from the FILEs and check
them]' \
 '(-t --text)'{-t,--text}'[read in text mode]' \
 '--status[no output, status code shows success]' \
 '(-w --warn)'{-w,--warn}'[warn about improperly formatted checksum
lines]' \
 '--help[display help and exit]' \
 '--version[output version information and exit]' \
 '*:files:_files'

Go ahead and test this by typing md5sum - followed by pressing the Tab key, and
you'll be prompted with the options from arguments.

Your very first line of code in any completion function must be the #compdef clause,
followed by the name of the program to be completed by the function (md5sum, in
this particular case).

Next up is a call to the internal _arguments function, which does the actual handling
of the options to be formatted and displayed on screen. This function is typically
used when specifying the completion of commands whose arguments follow
standard Unix conventions in their options and arguments' lists. Using the -S option,
we declare that no option will be completed after -- shows up on the line. This is the
delimiter used to end the parsing of the option, so this argument would be typically
ignored unless we explicitly say otherwise.

If you look closely though, you'll notice that each of the argument entries (split into
continuation lines via \) follows the same pattern:

'(optional exclusion list)'{options}'[help text in brackets]'

Note that the curly braces around the option and its verbose variant are there to
group them together, otherwise they are optional.

The exclusion list works by explicitly telling zsh what should not be included in the
results. In other words, whenever the option parameter is typed, hide all the other
options from (exclusions). Take for example the following line:

'(-t --text)'{-t,--text}'[read in text mode]'

Completion

[104]

If -t or --text appears in the command line, do not show the -t or --text options
as completions.

This makes even more sense for commands such as ln, where you want to avoid
offering some potentially misguiding options:

'(-L -P)-H[with -R, follow symlinks on the command line]'

Hide the options -L and -P if -H is being used; this is because both the options
are used for "always follow symbolic links" and "never follow symbolic links",
respectively.

Finally, there's the last line of the _md5sum function:

'*:files:_files'

This uses the _files helper function that is somewhat the standard tool for
completing filenames. With this line, we make sure that filenames are completed
even if no other options' flags are suggested.

Moreover, _files uses an additional function, _path_files, and passes its
arguments to the latter. On its own, _path_files is the de facto function for
completing filenames within the completion system. As if it wasn't enough, _path_
files has some really handy tricks up its sleeve such as completion of partial paths,
which enables things such as /u/bi/zs to be completed to /usr/bin/zsh.

Then, there are also helper functions such as _call_program, which are used to
execute any kind of commands available to the system. A common practice when
using _call_program is to redirect the standard error to /dev/null (this is a nice
way of saying it's silencing any error-induced screams) and allows us to save the
output of the command into a variable.

And that's all there's to it. Well, at least for getting started with the completion
mechanism and custom-made functions. Although, on some occasions, getting your
hands dirty and extending the completion system with your own functions will
only get you so far, this quick fly-by should be enough to get you excited about the
possibilities lying there. Again, it's advisable that you try not to reinvent the wheel—
as we'll see in the next chapter, there are many other projects out there that can give
you a nice boost in the completion department.

You can now go ahead and take a deep dive into the functions folder of your zsh
installation to start getting familiarized with the thousands of lines of code there.
Who knows? Perhaps the starting template for the next completion function is just
waiting there for you.

Chapter 5

[105]

Summary
We are almost done with this adventure, and it seems you are now more ready than
ever to start tackling major annoyances like your favorite program not having a
set of completion definitions. Even better, you can tweak and improve the existing
functionality, which otherwise would make your work really frustrating.

Besides writing your own functions, we also learned how to tweak the shell behavior
and go a step above filename completion. With a bit of practice and further tweaking,
you can now become a real speed demon of the command line. Best of all, it only
takes a couple of Tab presses to get there.

Summing it up, here's what's covered in this chapter:

• The types of completion available to zsh—zstyles and functions, which
allow you to customize the behavior of the completion mechanism and
extend its functionality

• The different types of completers (particularly correct, approximate &
ignore) and their role when defining zstyles

• A few tips for creating and extending your our own completion functions

Okay then, before I get sentimental, we should hurry to the next chapter that has a
few suggestions before we're done with this journey of ours.

Tips and Tricks
So, this is where we part ways. We have come a long way since defining our first
alias, so there's really not much left for us to discover, at least not with the number of
pages left for us. Like a nosy neighbor though, I can't help but give you a few more
tips before our journey ends.

Main resources
Hold your horses there buddy. Before you start typing down tips and tweaking your
configuration, it's important that I point you towards zsh's official site once again.
Zsh's page is located at http://www.zsh.org, and you can take your browser there
to take a look at the Frequently Asked Questions section as well as other interesting
entries such as Scripts & contributions. Turns out this is our main source of
information for our new favorite shell, so I recommend you refer it to keep up with
changes between releases and the awesome user guides and manuals located there.

Perhaps the most feature-packed item on the list of recommendations is the zsh wiki
(http://zshwiki.org). There you will find a lot of useful information about zsh
together with tips and user-suggested configurations. Overall an excellent starting
point for stuffing your startup files to the gills. It's worth noting that this is a user-
maintained site, which means you can contribute to it by submitting your own
configurations and scripts as well as editing existing content.

No project with the magnitude of zsh is without its mailing list. You can find zsh's
located at http://www.zsh.org/mla and have a look at the thousands of interesting
discussions going on for more tips, tricks, and announcements that happen around
the project. Remember, you can also use this for any impending questions you have
regarding the shell and the project in general. Also an excellent starting point if you
are looking forward to contributing to the project.

Tips and Tricks

[108]

Finally, for those inclined to "group chat", there's an IRC channel hosted on freenode
(http://freenode.net) as #zsh. This is your go-to source to get help and discuss
zsh with lots of other users.

Helping tips
What follows is a list of "nice things to have" on your configuration files, aliases, and
functions. Think of these as a helping hand with some of the more boring tasks that
involve the command line.

Directory substitution
This is one of the cooler tricks you can pull with zsh, albeit a bit hidden from plain
sight. Did you know you can use cd for switching between parallel directories
without even typing the whole path? Let's work with an example.

Say you were located in the directory /zsh/completion/unix/; now, see the
following command:

% cd completion doc

This command would effectively move your current working directory to /zsh/doc/
unix/, provided both the directories have the same tree structure and are located on
the same branch level. I know, I too can't imagine myself living without it.

Remember, you can set the AUTOCD option to enable cd just by typing the name of
a directory, provided that the directory exists and is not an ambiguous match,
of course.

Magic space
It's safe to assume that you have been using the Tab key for completion so far, but the
shell also provides a magic-space functionality that is really worth being bound to
your space bar. Simply add the following code to your .zshrc file:

bindkey ' ' magic-space

And try typing something followed immediately by the space bar as follows:

% echo !!<Space>

You'll notice what that "magic" means right away, as pressing the space bar now
triggers history expansion on the current line.

Chapter 6

[109]

Random numbers
I've lost track of how many times I needed an actual random number in order to
fill in a form or make a completely arbitrary decision, just like those times you can't
decide between cappuccino or latte.

Let's borrow a helping hand from our friend $RANDOM and sprinkle some arithmetic
expansion on top. Putting everything together, we end up with the following alias:

alias rand='echo $(((RANDOM % 10) + 1))'

What this does is uses the $RANDOM internal function to get a pseudorandom number
for us. We then use the modulo operator (%) to get the remainder of the division by 10;
this way, we can get only numbers between 1 and 10. The 1 being added that you see
is there because the 1 to 10 range is actually interpreted by your computer as "0-9",
which includes the first 10 digits, but is a bit less human friendly.

The whole expression is wrapped with the arithmetic expansion construction $(())
that we learned about in Chapter 2, Alias and History, and allows us to operate with
numbers such as $RANDOM.

You can now go ahead and type rand every time you need an actual random number
output on your terminal window.

As a side note, keep in mind that, as with all things computer-generated, there's no
such thing as a purely "random" event—unless you are talking to my boss about
one of my bugs. Those are completely random phenomena—so don't rely on this for
security or sensitive operations.

zcalc
Most times, math just catches us with an unfairly low caffeine level. Attempting
algebra at those times usually calls for a quick calculator. Turns out zsh comes
packed with just one of those.

The way it works is similar to the tetris and zle modules; just add autoload -Uz
zcalc to your .zshrc and type zcalc on your terminal emulator whenever the need
arises. To exit zcalc just press Ctrl + D.

Change and list directory contents
Like many, many other users of shells out there, most of of the time with shell you
will be switching between directories and listing their contents. It's reasonable to
assume that during your normal workflow, you'll be calling cd and ls quite a lot.

Tips and Tricks

[110]

Look at the following example:

% cd some_dir

> ~/gfestari/somedir/

% ls

> file1.txt file2.txt

Fret not, dear reader, you are not alone. Most fellow shell users feel your pain.
Luckily, there's something we can do about it, which involves a simple function to
change our current working directory with cd and then calling ls to list the contents
of the new directory as shown in the following code snippet:

calls cd, and immediately list its contents
function cs {
 cd "$@" && ls -A
}

Our new cs function will perform just like cd, but will list the contents of any
directory we move to. The $@ string you see there is the current command arguments
we use when calling cs. These get passed in its entirety to cd, so we don't need to
worry about handling them with the same finesse as the actual program. We then use
the double ampersand logic operator && (read that as "and") to chain the ls command
with the -A option. This works as "execute cd and if it succeeds, call ls -A".

Put this on your startup files, and start changing directories by typing cs.

Finding your path through commands
We have used which many times already throughout this book, but it's time for you
to learn about yet another cool zsh feature, courtesy of the command substitution
mechanism: the =command shortcut.

Try the following command line, which should point you towards zsh's
binary location:

% echo $(which zsh)

> /usr/local/bin/zsh

And now, let's try using the equivalent shortcut:

% echo =zsh

> /usr/local/bin/zsh

This will work the same as which with a lot less typing as long as you remember to
follow that equals sign immediately with the name of any program on your system.

Chapter 6

[111]

Other projects
This section aims to point you towards some of the most interesting projects and
resources out there. The whole point of these is to have something of an "extra spice"
to add your zsh.

zsh-lovers
The zsh-lovers project (http://grml.org/zsh/zsh-lovers.html) is a collection
of useful tips, tricks, and examples that can be installed as a manual page and
accessed from the terminal. One of the more interesting features of the project is the
collection of examples for many of the "hidden"—or not so evident—features of zsh.
Worth every byte, if only for the hundreds of hours of online searching it'll save you.

zsh-users
The zsh users' repository on GitHub (https://github.com/zsh-users) packs a
lot of incredibly useful code. Of particular interest to any zsh user are the projects
zsh-syntax-highlighting (https://github.com/zsh-users/zsh-syntax-
highlighting) and zsh-history-substring-search (https://github.com/zsh-
users/zsh-history-substring-search).

As the name implies, zsh-syntax-highlighting offers syntax highlighting similar
to that available in the fish shell, whereas zsh-history-substring-search again
borrows a page from the fish's functionality and does a history search by allowing
you to type any part of a history entry and press the up or down arrow keys to cycle
through the matching commands.

Also available on the zsh users' repository is the zsh-completions project
(https://github.com/zsh-users/zsh-completions), a collection of community-
submitted completion functions for a lot of popular programs and tools such as
Node.js, Redis, and Vagrant.

oh-my-zsh
Unless you have been offline for the past couple of years, chances are you have
already heard about oh-my-zsh (https://github.com/robbyrussell/oh-my-
zsh). The community-driven project has helped zsh become incredibly popular by
simplifying the initial configuration and learning curve for zsh. The framework
packs more than a hundred plugins for tools like Ruby on Rails, Git, and Ant, and
another chock-full of prompt themes; so the command line never gets boring.

Tips and Tricks

[112]

Prezto
Prezto (https://github.com/sorin-ionescu/prezto) is another popular project
with some great configuration options. Like oh-my-zsh, Prezto packs what it
calls "sane defaults", a handful of interesting aliases and functions together with
autocompletion and—you guessed it—prompt themes.

Okay, I heard that. Does my shell really need a framework? Truth is you probably
don't need the whole package but just a particular functionality, be it a completion
function or prompt style. So why reinvent the wheel when someone has already
thought about the problem and come up with a—hopefully elegant—solution? What
I'm trying to say here is: look at the source code, see what you can bring into your
configuration, and if you feel like it, give it back to the community. The next guy will
surely appreciate it a lot.

Explain Shell
Although not purely zsh-related, the Explain Shell project (http://explainshell.
com) aims to lend a helping hand on those incredibly awkward commands by
providing a really neat interface in which to parse and explain them term-by-term.
This can prove really useful when experimenting with unfamiliar commands or
things found in the strangest depths of the web.

Your dotfiles
Noticed how your program's configuration files all are hidden by default? Even
your startup files and zsh-related configuration lay on your home directory tucked
away from plain sight by a leading dot on their filename. Commonly referred to
as dotfiles, there are a lot of really cool settings and configurations out there that
started as someone's clever attempt at fixing an annoyance. So go ahead and publish
your dotfiles for the world to see. Turns out sharing your configuration is a really
nice way of helping other users on their zsh adventures and getting feedback on
what you have been so passionately working on. Just be careful not to share any
passwords or credentials while you're at it!

If there's a book that should be on your radar after reading this, that should be From
Bash to Z Shell Conquering the Command Line by Oliver Kiddle, Peter Stephenson, and
Jerry Peek. An almost-instant classic for both beginners and power-users that will
definitely help you expand your knowledge of the command line.

Chapter 6

[113]

Summary
And that brings us to the end of this book. Notice how I wrote "book" and not
journey, as hopefully this first dip into zsh has gotten you excited enough about the
possibilities of the shell and how versatile a tool it really is.

What now, then? Well, fortunately, that's up to you, dear reader. There's plenty more
left on zsh for you to unravel and many more of those annoying and boring tasks
that are required of your scripts, so you can go back to those other, important things
on the backlog.

With a bit of spit and polish, particularly on the configuration side of things, zsh can
really shine and make your life easier—and why not, fun—on the command line. So
go ahead and get back to it. You'll be glad you did.

Index
A
advanced editing, ZLE

about 55
keymaps, defining 56-58
ZLE-related options 55

aliases
characters, quoting 29, 30
double quotes aliases 30
global aliases 33
hashes 34
single quotes aliases 30
working with 27, 28

Ant 111
arithmetic expansion 37, 38

B
bindkey command 57
brace expansion 39, 40
brackets

for sequence of characters 76

C
caret operator 84
Cartesian product 40
characters

avoiding 78
command correction, completion

about 95, 96
completers 97
ignore completer 98

command substitution 36, 37
completers 97
completion mechanism

about 91

command correction 95
context-sensitive completion, enabling with

zstyle 93, 95
function definitions 99, 100
function path 101-104
working 91-93

context-sensitive completion
enabling, with zstyle 94, 95

cs function 110

D
directory contents

listing 109, 110
modifying 109, 110

directory substitution 108
dotfiles 112
double quotes 73
double quotes aliases

working with 31, 33

E
echo command 71
Emacs keybinds 50
Emacs mappings 51
escape sequences

about 19
date and time options 21
directory options 20
for conditional expansion 22
login information options 20
shell state options 20
text formatting options 21
using 19

expansion
about 36

[116]

arithmetic expansion 37, 38
brace expansion 39, 40
command substitution 36
parameter expansion 36

Explain Shell project
about 112
URL 112

Extended Globbing
about 81
Glob qualifiers 85-87
special patterns 81

F
file size qualifiers 88
fish (friendly interactive shell) 111
freenode

URL 108

G
Git

about 111
installing 10

global aliases 33
Globbing

about 74
brackets, for sequence of characters 76
mismatches, handling 79, 80
question mark symbol, for single character

76
safer ranges, using on scripts 77, 78
with star operator 74, 75

Glob qualifiers
about 85
file size qualifiers 88
timestamp qualifiers 87

H
hashes 34
history

working with 41
history expansion

about 41
using 41-45

history logs, ZLE 54, 55

history-related options
EXTENDED_HISTORY 46
HIST_FIND_NO_DUPS 47
HIST_IGNORE_ALL_DUPS 47
HIST_REDUCE_BLANKS 47
INC_APPEND_HISTORY 47
SHARE_HISTORY 47

history substitution
about 46
using 46

I
ignore completer 98
installation

Zsh 7, 8

K
keymaps

working with 51

L
Linux

Zsh, installing 8, 9
login shells 12

M
magic-space functionality 108
mycoolmap keybind 56

O
oh-my-zsh project 111
operators 74
OS X

Zsh, installing 9

P
parameter expansion 36
parameter substitution 73
Prezto

about 112
URL 112

promptinit module 11

[117]

Q
qualifiers

(-@) 86
(.) 86
(@) 86
(*) 86
(/) 86
(N) 86
(oL) 86
(OL) 86
(om) 86
(Om) 86
(on) 86
(On) 86
(r) 86
(R) 86
(U) 86
(u*root*) 86
(w) 86
(W) 86
(x) 86
(X) 86

question mark symbol
for single character 76

quotes 71

R
ranges 77
recursive searching 81, 82
regions, ZLE

multiline editing 65, 66
working with 65

Ruby on Rails 111

S
safer ranges

using, on scripts 77, 78
shell expansion 73
shell options 13
shell prompt

about 16
conditional expressions 22
customizing 18
escape sequences, using 19

prompt command 17, 18
Silver Searcher

URL 82
single quotes 71
single quotes aliases

working with 30, 33
special patterns, Extended Globbing

aternate patterns 82
caret operator 84
numeric ranges 83, 84
recursive searching 81, 82
tilde operator 84

startup files
about 14, 15
zlogin 15
zprofile 15
zshenv 15
zshrc 15

strings
quoting 71, 72

T
tilde operator 84
timestamp qualifiers 87
tips, Zsh

directory content, listing 109, 110
directory content, modifying 109, 110
directory substitution 108
magic-space functionality 108
path, finding through commands 110
random numbers 109
zcalc 109

Transposing 52

U
Unix chsh command 13

W
wildcard 74
WORDCHARS shell variable 52

Y
Yanking 54

[118]

Z
zcalc 109
ZLE

about 49, 50
advanced editing 55
custom function, defining 62-64
custom widgets, defining 59, 60
history logs 54
keymaps, working with 50, 51
special variables 61

ZLE-related options 55
zmv function 88, 89
Zsh

about 7
aliases, working with 27
compiling, from source 10
completion mechanism 91
executing 10, 11
expansion 36
history, working with 41
installing 7, 8

installing, on Linux 8
installing, on OS X 9
making, login shell 12, 13
resources 107
shell options 13, 14
startup files 14
tips 108-110
URL, for official site 107

Z shell. See Zsh
Zsh line editor. See ZLE
zsh-lovers project

about 111
URL 111

zsh-users project
about 111
URL 111

zsh wiki
URL 107

zstyle
used, for enabling context-sensitive comple-

tion 93, 95

Thank you for buying
Learning Shell Scripting with Zsh

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Linux Shell Scripting Cookbook
ISBN: 978-1-84951-376-0 Paperback: 360 pages

Solve real-world shell scripting problems with over
110 simple but incredibly effective recipes

1. Master the art of crafting one-liner command
sequence to perform tasks such as text
processing, digging data from files, and lot more

2. Practical problem solving techniques adherent
to the latest Linux platform

3. Packed with easy-to-follow examples to
exercise all the features of the Linux shell
scripting language

Developing Applications with
Salesforce Chatter
ISBN: 978-1-78217-116-4 Paperback: 130 pages

Leverage the power of Chatter to boost collaboration
in your organization

1. Understand Salesforce Chatter and its
architecture

2. Configure and set up Chatter for your
organization

3. Improve Chatter features by utilizing Apex and
Visualforce pages

4. Discover the new Chatter REST API for
developers

Please check www.PacktPub.com for information on our titles

Mastering HTML5 Forms
ISBN: 978-1-78216-466-1 Paperback: 148 pages

Create dynamic and responsive web forms with this
in-depth, hands-on guide

1. Enhance the look and feel of your form

2. Optimize your user experience for any device

3. Utilize HTML5's brand new form elements

Learning Bing Maps API
ISBN: 978-1-78355-037-1 Paperback: 116 pages

Obtain geographical data from Bing Maps and
display them on the map

1. Display address information for any point
on the map through the location-based REST
services API

2. Embed a map on a web page with a
custom theme

4. Geocode with Spatial Data APIs and display
the information on the map

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Installing zsh
	Installing on Linux
	Installing on OS X
	Compiling from source

	First run
	Making zsh your login shell
	Shell options
	The startup files

	The shell prompt
	The prompt command
	Customizing the prompt
	Using escape sequences
	Conditional expressions
	Putting it all together

	Summary

	Chapter 2: Alias and History
	Working with aliases
	Quoting characters
	Single and double quoting aliases
	Global aliases
	Hashes
	Putting it all together

	Expansion
	Parameter expansion
	Command substitution
	Arithmetic expansion
	Brace expansion

	Working with history
	History expansion
	History substitution
	More useful options

	Summary

	Chapter 3: Advanced Editing
	Zsh Line Editor
	Getting to know ZLE
	Working with keymaps
	Basic editing
	Going back and forth with words
	Yanking and transposing text

	History revisited

	Advanced editing
	ZLE-related options
	Defining your own keymaps

	Don't call them widgets
	Defining your own widgets
	Your first function

	Working with regions
	Multiline editing
	Putting it all together

	Summary

	Chapter 4: Globbing
	Quoting your strings
	Double quotes

	Getting started with Globbing
	Globbing with the stars
	Questions for any single character
	Brackets for a sequence of characters
	Using safer ranges on your scripts
	Avoiding characters

	Handling mismatches

	Extended Globbing
	Special patterns
	Recursive searching
	Alternate patterns
	Numeric ranges
	The caret operator, revisited
	The tilde operator

	Glob qualifiers
	Timestamp qualifiers
	File size qualifiers

	The zmv function
	Summary

	Chapter 5: Completion
	Getting started with completion
	Getting assertive with zstyle

	Command correction
	Completers
	Ignoring matches

	Function definitions
	The path of the function

	Summary

	Chapter 6: Tips and Tricks
	Main resources
	Helping tips
	Directory substitution
	Magic space
	Random numbers
	zcalc
	Change and list directory contents
	Finding your path through commands

	Other projects
	zsh-lovers
	zsh-users
	oh-my-zsh
	Prezto
	Explain Shell
	Your dotfiles

	Summary

	Index

