

Mastering Linux

Mastering Linux

Paul S. Wang

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor and Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4398-0686-9 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Wang, Paul S.
Mastering Linux / Paul S. Wang.

p. cm.
Includes bibliographical references and index.
ISBN 978-1-4398-0686-9 (pbk. : alk. paper)
1. Linux. 2. Operating systems (Computers) I. Title.

QA76.76.O63W365143 2011
005.4’32--dc22 2010026042

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Preface

Linux is one of the great success stories of open-source, community-developed
software. It is increasingly used as Web and application servers, software devel-
opment platforms, personal workstations, and research machines. In computer
science and engineering departments, you’ll find Linux systems in classrooms,
programming labs, and computer centers, not just because Linux is free, but
also because it offers a rich computing environment for teaching and learning.

From its beginning in 1991, and with help from the GNU Project, Linux
has evolved quickly and has brought new powers and conveniences to users.
Competency on Linux will be important for any serious computer professional.

This book provides a comprehensive and up-to-date guide to Linux con-
cepts, usage, and programming. The text helps you master Linux with a well-
selected set of topics. Hands-on practice is encouraged; it is the only way to
gain familiarity with an operating system. A primer gets you started quickly.
The chapters lead you from user interfaces, commands and filters, Shell script-
ing, the file system, networking, to kernel system calls. There are many ex-
amples and complete programs ready to download and run. A summmary
and exercises of varying degrees of difficulty can be found at the end of each
chapter. A companion website provides appendices, information updates, an
example code package, and other resources for instructors as well as students.
See page 405 for details.

User Friendly and Comprehensive

There is both breadth and depth in this book’s presentation. Chapter 1 con-
tains a Linux primer to get the new user started as quickly as possible without
awkwardness or confusion. Being able to play and experiment with the system
adds to the user’s interest and motivation to learn more. Once introduced and
comfortable, the user is guided through a well-selected set of topics covering
the type of detailed material appropriate for a one-semester course at the
advanced undergraduate or beginning graduate level.

The first part of the textbook covers interactive use of Linux via the Graph-
ical User Interface (GUI) and the Command-Line Interface (CLI), including
comprehensive treatment of the Gnome desktop and the Bash Shell. Using dif-
ferent commands and filters, building pipelines, and matching patterns with
regular expressions are major focuses.

Next comes Bash scripting, file system structure, organization, and usage,
which bring us to about the middle of the book.

v

vi

Chapters 7 and 8 present networking, the Internet and the Web, and data
encryption, as well as Web hosting. The Linux Apache MySQL PHP (LAMP)
Web hosting combination is presented in depth. Such practical knowledge can
be valuable for many Linux programmers.

In Chapters 9–11, attention is then turned to C-level programming. Be-
cause the Linux kernel and most of its applications are implemented in it,
C is considered the native language of Linux. In-depth knowledge of Linux
requires understanding the Standard C Libraries and the system calls which
form the interface to the Linux kernel. Topics covered include the C compiler,
preprocessor, debugger, I/O, file manipulation, process control, inter-process
communication, and networking. Many complete example programs, written
in the standard ISO C99, are provided.

Chapter 12 deals with GUI programming in Ruby/GTK2, where we
present topics such as widgets, layout, event-driven programming, and ob-
ject orientation. Examples show how to build GUI applications for Linux.

Appendices and the bibliography for the book are kept on the book’s
website (http://ml.sofpower.com).

Flexible Usage

This book is for people who wish to learn Linux and to become good at using
it and writing programs in it. The book does not assume prior knowledge of
Linux or UNIX, but has the depth to satisfy even those with Linux experience.

Compared to other Linux books, this text is not a thick volume. However,
it presents many topics comprehensively and in depth. Many examples are
given to illustrate concepts and usage. It is well-suited for a one-semester
course. An instructor can cover all the chapters in sequence or choose among
them depending on the class being taught.

For an Introduction to Linux course, the chapters on C-level programming
and perhaps on Web hosting can be skipped.

For a system programming-oriented course, the Linux primer, interactive
use of Bash, and the GNU desktop material can be omitted or assigned for
reading at the beginning of the class. This will provide more time for the
hard-core topics on programming.

For an introduction to operating system principles course, this book is a
good supplement. Discussion of Linux subjects—the Shell, file system struc-
ture, concurrent process management, I/O structure, signals/interrupts, and
inter-process communication— provides concrete examples and adds to the
students’ understanding of the abstract operating system principles being
studied.

For a server-side Web programming course, the coverage of Bash, file sys-
tem, Internet and the Web, and Web hosting can make this book a great
supplemental text.

For courses on network programming, graphics, C programming, dis-
tributed computing, etc., the book can be a valuable supplement as well.

vii

For those who use Linux in school or at work, this book enables you to
apply the system’s capabilities more effectively, resulting in much increased
productivity. Ready-to-use examples provide many immediate practical appli-
cations.

Going beyond, you can learn how to write programs at the Shell and the
C levels. This ability enables you to build new capabilities and custom tools
for applications or R&D.

Appendices Online

The table of contents lists all the appendices, but to reduce the volume of
the book, we are keeping the appendices online at the book’s website. The
appendices in PDF are easier to use and search. The appendix “Secure Com-
munication with SSH and SFTP” is actually a Web page so we can supply
download and usage hyperlinks. This arrangement also allows us to add and
improve the appendices in the future.

Example Code Package

Throughout the book, concepts and usages are thoroughly explained with
examples. Instead of using contrived examples, however, every effort has been
made to give examples with practical value and to present them as complete
programs ready to run on your Linux system.

These programs are collected in an example code package ready to down-
load from the companion website (http://ml.sofpower.com). See page 405
for instructions on downloading and unpacking the example code package.
The description for each example program is cross-referenced to its file loca-
tion with a notation such as (Ex: ex05/argCheck.sh).

Easy Reference

You’ll find a smooth readable style uncharacteristic of a book of this type.
Nevertheless, it is understood that such books are used as much for reference
as for concentrated study, especially once the reader gets going on the system.
Therefore, information is organized and presented in a way that also facilitates
quick and easy reference. There are ample resource listings and appendices (at
the website) and a thorough and comprehensive index. The in-text examples
are also cross-referenced with files in the example code package. This book will
be a valuable aid for anyone who uses tools, accesses the Internet, or writes
programs, under Linux, even occasionally.

Acknowledgments

I would like to thank the editors Alan Apt, Sunil Nair, and David Tumarkin,
as well as others at CRC Press for their help and guidance throughout the
writing and production of this book. Their work is indeed much appreciated.

viii

During the planning and writing of this book, several reviews have been
conducted. Much appreciated are the input and suggestions from the review-
ers:

• Skona Brittain, Santa Barbara City College

• Rob Kolstad, Consultant at Delos Enterprises

• Bill Leahy, Georgia Tech

• Weidong Liao, Shepherd University

Several chapters from the book draft have been used in computer science
classes here at Kent State, and I would like to thank the students for reading
the materials and providing feedback.

My daughter, Deborah S. Wang, helped proofread the early drafts. I know
how busy young people can be, especially someone who just graduated from
college and started working full-time. Deb, you make your parents very proud.

Finally, I want to express my sincere gratitude to my wife, Jennifer, whose
support and encouragement have been so important to me through the years.

Paul S. Wang

Kent, Ohio

Contents

Preface v

Introduction 1

1 A Linux Primer 9
1.1 What Is an Operating System? 9
1.2 Getting Started: Login and Logout 10

Desktop Login . 10
Starting a Terminal Window 12
Remote Login . 13

1.3 Understanding the Shell . 14
Entering Commands . 15
Trying a Few Commands 16
Correcting Typing Mistakes 19
Aborting a Command . 19

Exercise A . 19
1.4 Using Files and Directories 20

Current Working Directory and Filenames 21
Handling Files and Directories 23
Standard Personal Directories 23

1.5 Protecting Files: Access Control 24
The Super User . 25
Examining the Permission Settings 25
Setting Permissions . 26

Exercise B . 26
1.6 Text Editing . 27
1.7 Getting Hard/Saved Copies 29
1.8 Communicating with Others 29

Who’s Who on the System: finger 29
Email . 30
Instant Messaging . 31

1.9 Browsing the Web . 32
Exercise C . 33
1.10 Creating and Running Your Own Program 33

ix

x

Compiling . 34
Exercise D . 35
1.11 Consulting Linux Documentation 35
Exercise E . 37
1.12 Rounding Up Useful Commands 38
1.13 Summary . 40

2 Interactive Use of the Shell 43
2.1 Bash . 43
2.2 Interacting with Bash . 44
2.3 Command-Line Editing and Command Completion 45
2.4 Bash Command Execution 47
2.5 Bash Input/Output Redirection 49

Standard Input and Output 49
I/O Redirection . 49
Pipes . 51

2.6 Bash Job Control . 51
2.7 Bash Shell Expansions . 55

History Expansion . 56
Alias Expansion . 59
Brace and Tilde Expansions 59
Variable Expansion . 60
Command Expansion . 61
Process Expansion . 62
Filename Expansion . 62

2.8 Bash Built-in Commands 64
2.9 Shell Variables . 64
2.10 Environment of a Program 65

Command Execution Environment 65
2.11 Examples of Bash Usage . 66

Customized Prompt . 67
Removing Files Safely . 67
Copy, Paste, and I/O Redirection 68
Setting Up Your Personal Web Folder 68

2.12 Default File Permissions . 68
2.13 Shell Startup and Initialization 69
2.14 Shell Special Characters and Quoting 71

Quoting in Bash . 72
2.15 Simple Functions . 74
2.16 For More Information . 75
2.17 Summary . 76
2.18 Exercises . 77

3 Desktops, Windows, and Applications 79
3.1 Desktop Overview: GNOME and KDE 79

xi

3.2 GNOME Desktop Components 80
3.3 Working with the GNOME Desktop 83

Time and Date . 83
Launching Application Programs 84
Desktop Appearance . 85
Using and Managing Desktop Objects 85
Multiple Workspaces . 86
Sessions . 87
Customizing the Panel . 88

3.4 Windows . 88
The X Window System 88
Window Manager . 89
Window Information . 90

3.5 Nautilus: the GNOME File Manager 91
Navigating the File Tree 92
Opening a File or Folder 92
Finding Files . 93
Managing Files and Folders 93
Access Control for Files and Folders 94
Writing CDs or DVDs . 95

3.6 Graphical Applications . 95
3.7 The GNOME Terminal . 97

Starting a GNOME Terminal 97
Terminal Window and the Shell 98
Select, Copy, and Paste 99
Web and Email Links . 99

3.8 Saving Energy . 100
3.9 Accessing Help and Documentation 100
3.10 Summary . 100
3.11 Exercises . 101

4 Filters and Regular Expressions 103
4.1 Commands and Filters . 103

Leading and Trailing Lines: head and tail 104
Character Translation: tr 105
Tab Expansion . 106
Folding Text Lines . 106
Sorting Text Lines . 107

4.2 The grep Command . 108
4.3 Regular Expressions . 110

Quoting in Search Patterns 112
4.4 Patterns for grep . 112
4.5 A Stream Editor: sed . 113
4.6 Building Pipelines . 117

Address Processing . 118

xii

4.7 Pattern Processing: awk . 119
awk Patterns . 120
awk Actions . 121
awk Expressions . 122
Index Preparation: An Example 123

4.8 For More Information . 124
4.9 Summary . 125
4.10 Exercises . 125

5 Writing Shell Scripts 127
5.1 Invoking Shell Scripts . 127
5.2 A First Shell Script . 128
5.3 Shell Script Execution . 130
5.4 Positional Parameters . 130
5.5 The for Command . 131
5.6 The if Command . 132
5.7 Test Expressions and Exit Status 135

Exit Status . 135
Test Expressions . 135

5.8 The shift Command . 136
5.9 The case Command . 137
5.10 The while and until Commands 138
5.11 Numerical Expressions . 139
5.12 The break and continue Commands 140
5.13 File Queries . 140
5.14 Variables . 141
5.15 Arrays . 142
5.16 Variable Modifiers . 143
5.17 The Here Document . 144
5.18 More on Functions . 146

Function Arguments . 147
Return Value of a Function 149

5.19 Redefining Bash Built-in Functions 150
5.20 Example Bash Scripts . 151

Example: Removing Unwanted Files 151
Example: Conditional Copy 153
Example: Total File Sizes 155
Example: Secure File Transfer 156
Example: Resizing Pictures 157

5.21 Debugging Shell Scripts . 158
5.22 Error and Interrupt Handling 159

Interrupt Handling . 159
5.23 The Perl Alternative . 160
5.24 For More Information . 161
5.25 Summary . 162

xiii

5.26 Exercises . 163

6 The File System 165
6.1 A File Location Road Map 165
6.2 File Types . 166

Ordinary Files . 167
Directories . 167
Special Files . 168
Links . 168
Symbolic Links . 169

6.3 More on File Access Control 170
Meaning of Permissions for a Directory 171
Default File Protection Settings: umask 171

6.4 File Status . 172
File Mode . 172
File Userid and Groupid 173
Access Control Enforcement 174
Set-userid Mode . 174
Establishing a Group . 175

6.5 File System Implementation 176
Mounted Filesystems . 177
Filesystem Super Block and Block Groups 178

6.6 The Filesystem Table . 179
6.7 File Storage Quotas . 179
6.8 Creating Special Files . 180
6.9 Network Filesystem . 180
6.10 Searching the File Tree: find 181
6.11 The locate Command . 183
6.12 Saving, Compressing, and Distributing Files 183

Packing Files with shar 184
6.13 More File-Related Commands 184
6.14 For More Information . 185
6.15 Summary . 186
6.16 Exercises . 186

7 Networking, Internet, and the Web 189
7.1 Networking Protocols . 190
7.2 The Internet . 191

Network Addresses . 192
Packet Switching . 193
Client and Server . 193

7.3 The Domain Name System 194
7.4 Networking in Nautilus . 195

Accessing Samba Shared Files 196
7.5 Networking Commands . 196

xiv

7.6 SSH with X11 Forwarding 198
No Password ssh, sftp, and scp 199
Remote File Synchronization 200

7.7 Public-Key Cryptography and Digital Signature 200
Setting Up GnuPG Keys 201
Encryption/Decryption with GnuPG 202

7.8 Secure Email with Mutt and GnuPG 203
7.9 Message Digests . 204

Message Signing with GnuPG 204
7.10 The Web . 205

Hypertext Markup Language 206
URLs . 206
Accessing Information on the Web 207

7.11 Handling Different Content Types 207
7.12 Putting Information on the Web 208
7.13 What Is HTML? . 209
7.14 Web Hosting . 210
7.15 Domain Registration . 211

Accessing Domain Registration Data 212
7.16 The DNS . 212

DNS Servers . 213
DNS Resolvers . 213

7.17 Dynamic Generation of Web Pages 214
Dynamic Server Pages . 215

7.18 HTTP Briefly . 215
7.19 A Real HTTP Experience 217
7.20 For More Information . 218
7.21 Summary . 218
7.22 Exercises . 219

8 Web Hosting: Apache, PHP, and MySQL 223
8.1 What Is a Web Server? . 223
8.2 URL and URI . 224
8.3 Request Processing . 225
8.4 Response and Content Types 226
8.5 The Apache Web Server . 226
8.6 Apache on Linux . 227

Controlling the Apache Server 228
8.7 Apache Run-Time Configuration 228

Apache Configuration File Basics 229
About Configuration Directives 229
Loading Modules . 230
Global Directives . 231
Container Directives . 231

8.8 Access Control under Apache 232

xv

What Is Access Control? 232
Access Control by Host 233

8.9 Requiring Passwords . 234
Setting Up User Login under Apache 234

8.10 How HTTP Basic Authentication Works 236
8.11 How HTTP Digest Authentication Works 236

Basic vs. Digest Authentication 237
8.12 Password Encryption . 237
8.13 Automatic File Deflation . 237
8.14 Installing Apache with Package Management 238

Sudo . 238
8.15 Manual Installation of Apache 239

Configure and Compile 240
8.16 What Is PHP? . 241
8.17 The PHP Module for Apache 242

Installing the PHP Module 243
8.18 Testing PHP . 244
8.19 PHP Configuration . 245
8.20 Database Support for the Web 246
8.21 MySQL . 246

Initializing, Starting, and Stopping MySQL 247
MySQL Run-Time Configuration 247
Administering MySQL . 248
Resetting the MySQL Root Password 250

8.22 Installing phpMyAdmin . 250
8.23 Installing MySQL . 251
8.24 Linux Package Management 252

YUM and RPM . 252
APT . 254

8.25 For More Information . 254
8.26 Summary . 255
8.27 Exercises . 256

9 C Programming in Linux 257
9.1 Command-Line Arguments 258

Exit Status . 259
Compile and Execute . 260

9.2 Linux Command Argument Conventions 260
9.3 The GCC Compiler . 261

The gcc Command . 262
Options for gcc . 262
The C Preprocessor . 263
Preventing Multiple Loading of Header Files 265
Compilation . 266
Assembly . 266

xvi

Linking and Loading . 266
9.4 The C Library . 267

I/O to Files . 269
I/O Redirection . 271

9.5 Creating Libraries and Archives 272
9.6 Error Handling in C Programs 274

Errors from System and Library Calls 274
Error Indications from Mathematical Functions 276

9.7 Error Recovery . 276
9.8 Debugging with GDB . 279

Interactive Debugging . 279
Basic gdb Commands . 281
A Sample Debugging Session with gdb 282

9.9 Examining Core Dumps . 285
9.10 For More Information . 287
9.11 Summary . 288
9.12 Exercises . 288

10 I/O and Process Control System Calls 291
10.1 System-Level I/O . 292
10.2 I/O Descriptors . 292
10.3 Reading and Writing I/O Descriptors 295

Moving the Current Position 296
10.4 Operations on Files . 297

Creating and Deleting a File 297
Linking and Renaming Files 298
Accessing File Status . 299
Determining Allowable File Access 302

10.5 Operations on Directories 302
Creating and Removing a Directory 302

10.6 Directory Access . 303
Current Working Directory 304

10.7 An Example: ccp . 305
10.8 Shell-Level Commands from C Programs 307
10.9 Process Control . 308

Virtual Address Space . 308
Process Life Cycle . 309

10.10 The Process Table . 310
The ps Command . 310

10.11 Process Creation: fork . 311
10.12 Program Execution: exec Routines 314

Example: A Simple Shell 316
10.13 Synchronization of Parent and Child Processes 318
10.14 Process Termination . 320
10.15 The User Environment of a Process 320

xvii

Example: Command Search 322
10.16 Interrupts and Signals . 323

Basic Concepts . 323
Sending Signals . 324
Signal Delivery and Processing 325
Signal Trapping . 325

10.17 For More Information . 328
10.18 Summary . 328
10.19 Exercises . 329

11 Inter-process and Network Communication 331
11.1 Opening a Process for I/O 331
11.2 IPC with pipe . 333

Pipe between Two Commands 335
11.3 Connecting a File Descriptor to a File Stream 337
11.4 Two-Way Pipe Connections 338
11.5 Network Communication . 340

Client and Server . 341
11.6 Sockets . 341

Creating Sockets . 342
Socket Address . 343
Local and Internet Socket Addresses 343

11.7 A TCP Echo Client . 346
11.8 Using Datagram Sockets . 348
11.9 Socket I/O System Calls . 351

Shutting Down Sockets 352
11.10 TCP-Based Servers . 352

Accepting a Connection 353
An Example TCP/IP Server 354

11.11 Network Library Routines 355
11.12 On-Demand Internet Services 357
11.13 Daemon Processes . 359

Programming a Daemon 360
11.14 Input/Output Multiplexing 360
11.15 TCP Out-of-Band Data . 363
11.16 For More Information . 365
11.17 Summary . 365
11.18 Exercises . 366

12 GUI Programming with Ruby/GTK2 369
12.1 Getting Started with Ruby/GTK2 369
12.2 GTK+ Event Handling Basics 371
12.3 A Ruby Primer . 372

Strings . 372
Arrays . 373

xviii

Functions . 374
12.4 GTK+ Widgets . 375

The Top-Level Window . 376
Layout Containers . 376
Atomic Widgets . 380
Button with Rollover . 380
A GUI for tar . 381
Decorator Containers . 385

12.5 More about Events . 387
12.6 OOP with Ruby/GTK2 . 390
12.7 A Tic-Tac-Toe Game . 393
12.8 Menu Bar . 396
12.9 Drag and Drop . 397
12.10 For More Information . 399
12.11 Summary . 400
12.12 Exercises . 400

Appendices Online 403
Secure Communication with SSH and SFTP
Introduction to vim
Text Editing with vi
Vi Quick Reference
The emacs Editor

Website and Example Code Package 405

Bibliography 407

Index 409

Introduction

The term Linux refers to a free and open-source operating system that works,
in most respects, exactly like UNIX. Linux became popular as a widely pre-
ferred server platform. However, with the introduction of the GNOME and
KDE desktop user interface environments, together with many important ap-
plications, Linux is also gaining ground as a home/office system. Because it is
free and open source,1 Linux is a very attractive teaching tool for computer
science and engineering departments. Also, because it is fast and reliable, cor-
porations often choose Linux to run their Web and application servers. Com-
panies in the United States such as Novell, Redhat, and Penguin Computing,
as well as many others worldwide, provide products, training, and support for
Linux, while the operating system itself remains free.

Lets take a brief look at the history of Linux, its versions and features,
and the topics involved in learning how to use Linux.

A Brief History of Linux

The beginning of Linux can be traced back to 1991 when Linus Torvalds,
a young student at the University of Helsinki, Finland, began to create an
operating system more powerful than MINIX (MIni-uNIX).2 Three years later,
version 1.0 of the Linux kernel, the central part of the new UNIX-like system,
was released.

The GNU open-source software movement would also later make many
contributions to Linux, as remarked upon by Richard Stallman:

When you are talking about Linux as a OS, you should refer to it
as GNU/Linux. Linux is just the kernel. All the tools that make
Linux an OS have been contributed by GNU movement and hence
the name GNU/Linux.

Linux has come a long way since its early days. Today, it is a prime example
of the success of open-source, community-developed software. Linux is used
on Web/network servers, desktop computers, laptops, and netbooks. Even
the Google Chrome operating system is based on the Linux kernel. Linux is

1Linux is distributed under the GNU General Public License.
2MINIX is the first open-source clone of UNIX for the IBM PC written by Professor

Andrew S. Tanenbaum in 1987

1

2

also going mobile with such open-source efforts as Moblin (moblin.org) and
Maemo (maemo.org). In 2010, Indian engineers designed a Linux-based tablet
PC, similar in functionality to the Apple iPad, which was reported to cost as
little as $35 USD—and the Indian government hopes to lower the price even
further, to perhaps $10.

Linux Versions

Unlike proprietary operating systems, Linux is a combination of open-source
programs, including the Linux kernel, GNU tools, desktop managers, and in-
stallation and package management systems, plus many other system-, server-,
and user-level applications. Anyone can create different combinations of these
components, perhaps also change or improve them, and create a Linux dis-
tribution with unique characteristics. Thus, it is not surprising that many
companies and groups all over the world have been distributing somewhat
different versions of Linux ready to install on your computer.

Top Linux versions, in terms of user base, include

• Ubuntu—“Ubuntu” means “humanity” in Zulu. Ubuntu Linux started
as a version of the popular Debian GNU/Linux. All versions of Ubuntu
Linux are free, and there is no charge for mailing a CD to you. Ubuntu
supports the GNOME Desktop environment, while another version,
Kubuntu, uses the KDE Desktop. Ubuntu is easy to install and very
user friendly, which has quickly made it the most popular version of
Linux. Ubuntu is sponsored by the U.K.-based Canonical Ltd., owned
by South African entrepreneur Mark Shuttleworth.

• Red Hat Enterprise Linux—The original Red Hat Linux started in 1994
and was discontinued by Red Hat Inc. in 2004. The company now focuses
on Red Hat Enterprise Linux (RHEL) for business environments and on
Fedora as a community-supported software project for home, personal,
and educational use.

• CentOS—RHEL largely consists of free and open-source software, but
the executables are made available only to paying subscribers. CentOS
(Community ENTerprise Operating System) is a completely free version
of RHEL (minus the Red Hat logos) made available to users as new
versions of RHEL are released.

• Fedora—Fedora is a Linux distribution where features and improve-
ments are tested before being included in RHEL/CentOS.

• openSUSE—This is a major retail Linux distribution supported world-
wide by Novell. Novell acquired the SuSE Linux (a German translation
of the original Slackware Linux) in 2004. In the following year, Novel de-

3

cided to make the SUSE Professional series more open as a community-
developed, open-source software and to rename it openSUSE.

• Debian—Debian Linux consists entirely of free and open-source soft-
ware. Its primary form, Debian GNU/Linux, is a popular and influen-
tial Linux distribution. Debian is known for an abundance of options.
Recent releases include over 26,000 software packages for all major com-
puter architectures. Ubuntu is a derivative of Debian.

There are many other Linux distributions, but all versions are very similar.
In fact, Linux is basically a brand of UNIX and can be studied and used as
such. This textbook addresses features common to most Linux systems and
indicates important differences where appropriate.

The UNIX/Linux Philosophy: Small Is Beautiful

The UNIX philosophy influenced not just the original operating system devel-
oped by Ken Thompson at Bell Labs (1969), but also the many UNIX clones
and UNIX-like systems created afterward. Taken together, these UNIX-like
systems are some of the very best operating systems developed to date.

The generally agreed-upon central tenants of the UNIX Philosophy can be
listed as

• Keep programs small—Write a program to do one well-defined task; do
it efficiently, and do it well.

• Avoid verbosity—Perform no unessential output from any programs; use
short names for commands and command options.

• Make programs modular—Build small, independent, and self-sufficient
program parts, with each serving a specific function. These program
parts can be combined flexibly to form larger programs. This principle
is reflected in the small kernel (core of the operating system) cooperating
with a large set of small commands which work well together.

• Compose programs through interfaces—Write programs that are easy to
interface with other programs. The famous UNIX pipe, which interfaces
the output of a program to the input of another, is a primary example
of this philosophy.

Keeping program input/output, configuration, and documentation to plain
text (character strings) as much as possible makes elements of the operating
system easy to interface, read, understand, and improve.

Linux systems have generally adhered to these principles of UNIX, but
have also introduced refinements and improvements.

4

Linux Features

Linux incorporates all the outstanding UNIX core features and adds graphical
user interface (GUI), package management, and many useful applications.
Important features of Linux include

• Multi-user and multi-processing—The ability to allow multiple users to
login at the same time and the ability to run many programs concur-
rently.

• Graphical user interface—Offering a desktop environment with windows,
icons, panels, and menus, making it easy to use point-and-click for op-
erations. Most Linux systems use the X Window system and allow the
user to choose between two popular desktop environments, GNOME and
KDE.

• Package management—A systematic way to find, install, upgrade, con-
figure, and remove the many software packages available. A package
contains the executable program and metadata specifying its title, ver-
sion, purpose, author/vendor, dependencies (on other packages), etc.
Packages are made available in repositories for downloading. The Red
Hat family Linux systems use the yum (Yellow dog Updater, Modified)
tool and the rpm package format, while the Debian varieties use the apt
(Advanced Packaging Tool) and the deb format.

• Shells—A Shell is a command-line interface (CLI) to the operating sys-
tem. It provides interactive processing and execution of user commands.
The standard (default) Shell for Linux is Bash (born-again Sh), but you
may easily choose to use a different Shell.

• Hierarchical file system—The entire file system is tree structured and is
anchored at a single directory called the root. The root directory contains
files and other directories that, in turn, contain more files and directories.
Each user has a home directory for his/her own files. The file system
tree is divided into volumes, which can be mounted or dismounted by
attaching them to a node in the file tree. A physical storage device can
contain one or several file system volumes.

• File access control—Each file in the file system is protected by a sequence
of bits whose value is specified by the owner of the file. Access to files
is controlled by the operating system. System-wide access is granted to
so-called super users, usually the system administrators.

• Compatible file, device, and inter-process I/O—I/O to physical devices
and I/O to a file look the same to a user program. A user can redirect
a program’s I/O so that without changing the program itself, input or
output can be directed to a terminal window, file, or even to another
program’s I/O. The ability to combine and connect existing programs
in this pipeline fashion provides great power and flexibility.

5

• Concurrent processes—Following UNIX, Linux provides a set of Shell
commands and C-language APIs to initiate and manipulate asyn-
chronous concurrent processes. This allows a user to maintain several
jobs at once and to switch between them. It is also critical for pipelining
several commands (processes) together.

• Networking and Web Hosting—As UNIX, Linux systems provide local
and wide area networking through sockets that support the Internet
Protocol (IPv4 and IPv6). The services icon on the desktop opens a
GUI which can be used to easily start/stop different network services.
Linux also works well with the Apache Web Server to deliver Web pages
to the World Wide Web. As a result, Linux is very popular as a network
server platform.

• Utilities—The Linux architecture encourages building self-contained
programs to add new facilities. Linux systems come with many util-
ity programs including text editors, document processors, email servers
and clients, Web browsers, raster and vector image editors, scripting
languages, language compilers, file manipulation tools, databases, mul-
timedia tools, GUI design and programming tools, software engineering
tools, and networking and other system facilities. These utilities usually
come in the form of a Linux package which can be downloaded, installed,
and managed easily with a package manager.

The Linux kernel, the central part of the operating system which provides a
programming interface to the hardware, is robust and highly efficient. Figure 1
shows how the Linux kernel relates to various elements on your computer. This
textbook covers many of these elements, and this organizational diagram helps
to tie them together.

The Linux Environment

Linux is a multi-user, time-sharing system that offers both a GUI (desktop
and application windows) as well as a CLI (the Shells). The desktop is the
first thing you see after login. The desktop displays one or more panels at the
top and/or bottom of your screen. A panel provides menus, launchers, and
workspace switchers which perform various tasks. Icons on the screen provide
access to Computer, Services, File System, and so on.

Application programs fall into two broad categories: GUI applications and
CLI applications. A GUI application displays its own graphical window with
which the user may interact via the mouse and the keyboard. In contrast, a
CLI application must run inside a terminal window and interacts with the
user only through the keyboard.

Launchers in panels or on the desktop make starting programs easy. How-
ever, any program can be invoked by typing a command inside a terminal

6

FIGURE 1: Elements of Linux

window. You can control and switch among multiple windows on the screen.
A command Shell helps you control and manage multiple jobs inside any single
terminal window.

The file system contains public files and programs for all users. Each user
also has a personal file directory known as the user’s home directory. Access
to files and directories is controlled by the file owner and group designations.

Linux allows a high degree of customization on a per-user basis. The Shell,
as well as important utilities such as the X Window System and text editors,
refers to initialization and configuration files. You can tailor these files to make
the utilities run according to your needs and preferences. You can even choose
among different Shells to serve as your CLI. Documentation for Linux and its
utilities can be conveniently accessed locally on your computer as well as on
the Web.

Learning Linux

Linux systems are used widely in colleges, universities, and companies, both
as servers and as workstations. Many users have Linux/Windows dual boot on
their personal machines. Knowledge of Linux is important for both learning
and employment.

This book covers a set of carefully selected topics that enable you to un-
derstand operating system concepts, to use Linux effectively, and to take full
advantage of your Linux computer.

7

The chapters are sequenced in a drill-down progression starting with a
primer to get you started quickly on Linux with hands-on learning and mean-
ingful tasks.

Next, we present the standard Linux CLI (the Bash Shell) and the interac-
tions with the Linux GUI (the Gnome desktop). Then we discuss how to use
commands and filters to build pipelines and how to use regular expressions
for pattern matching. All this paves the way for writing Bash programs called
Shell scripts.

Digging deeper, we discuss how to control files and folders and how Linux
organizes and manipulates files in a set of filesystems that is an important
part of the Linux kernel.

Computers are rarely used in isolation, and, like other modern operating
systems, Linux relies heavily on networking for many operations. With a good
foundation from the earlier chapters, we discuss networking, Web, Internet,
and Linux as a platform for Web hosting.

Attention then turns to C-level programming, kernel system calls, pro-
cesses, and inter-process communication. These topics shed light on the in-
ternals of Linux and provide a deeper understanding of concepts and topics
covered in earlier chapters. The material should prove especially important
for CS/CE majors.

Last, but not least, we cover GUI programming with Ruby/GTK2. Sub-
jects such as widgets, layout, event-driven programming, and object-oriented
programming with Ruby can be interesting to many.

Thus, you will find traditional as well as contemporary topics important
for the modern Linux environment. The material in this book applies to most
popular Linux systems. The knowledge gained will enable you to use any
Linux with ease. Major differences among Linux versions are noted where
appropriate.

Because Linux is best learned through frequent experimentation and prac-
tice, we begin with a primer that gets the new user started quickly. We offer
examples and practical ways to use Linux throughout the book. Many ex-
amples are provided to illustrate concepts and to demonstrate programming
techniques. This textbook also contains an example code package3 which pro-
vides complete programs ready to download and run on your computer. The
material is presented for smooth reading as a textbook, but also for convenient
reference later on.

3See page 405 for downloading instructions.

Chapter 1

A Linux Primer

If you are serious about computing and understanding how an operating sys-
tem works, Linux is the system of choice. To learn Linux you must use it, and,
of course, to use it you must learn it. Such a paradox is rather common—you
probably learned to drive a car this way. You just need some basic help and
pointers to get started. Here we present an overview of basics. Once you un-
derstand the material in this chapter, you will be able to use the operating
system to learn more in each successive chapter. At first, you need a learner’s
permit to drive a car. Consider this chapter your learner’s permit for Linux;
with a little practice you will be using Linux almost right away.

Learning Linux involves understanding how to use it from the user level
and how to program it from the system level. This primer provides basic
information and a selection of topics designed to get you started using Linux
quickly. As you read this chapter, try the different commands and features as
you come to them. In each case, you are given enough information to get you
on the system and learning.

1.1 What Is an Operating System?

The operating system controls a computer and makes it usable. It brings
life to the innate electronic hardware components and orchestrates all activi-
ties on a computer. The same hardware under a different operating system is
literally a different computer.

The operating system provides service and control functions to users, pro-
grams, files, operators, display monitors, printers, network connections, and
everything else on a computer system. A computer operating is one of the
most complicated and sophisticated objects humans ever built.

A modern operating system like Linux consists of two parts: a kernel and
a set of commands and applications. The kernel deals with central functions,
including concurrent program execution, memory management, input/output
(I/O), file services, and network interface. Commands and applications sup-
ply other operations such as Shells, language compilers, text editors, email
processors, Web browsers, software package managers, sound and video tools,
and so on.

A Shell is a special program that is very important in Linux. It is a com-

9

10 Mastering Linux

mand interpreter that allows users to type commands and run programs. We
will have much to say about the Shell.

1.2 Getting Started: Login and Logout

To access your Linux system, you must have a user account, identified by
a userid and a password, that have been created by a system administrator.
At most installations, your userid will be your last name or your first initials
and last name (often all lowercase).

Your password is a safeguard against unauthorized use of your computer
account. You need to choose a password of at least eight characters (your
local system may enforce other conventions as well, such as a minimum length
or that there be at least one numeral or symbol). Correctly spelled words or
names of relatives are bad choices for passwords. A sequence containing upper
and lower case characters, digits, symbols, and control characters is usually
better. Since you are the only one who knows your password, you must be
careful with it. Forgetting your password means the system administrator
must create a new one for you. Giving your password to the wrong person
could have even more dire consequences; you could be blamed for whatever
damage is caused, intentionally or otherwise, by the other person. The best
rule is do not tell anybody your password, but keep it written down somewhere
safe.

Once you have a userid and password, you can begin your Linux session.
The first step is the login procedure. Login protects the system against unau-
thorized use and authenticates the identity of the user. You can use Linux
from the console or across a network.

FIGURE 1.1: Linux Login Screen

Desktop Login

Find a computer displaying the Linux desktop login screen (Figure 1.1). This
can be the console where the keyboard, mouse, and display are directly con-

A Linux Primer 11

nected to the computer hardware running the Linux system. Or it can be a
different computer on the LAN (Local Area Network). Colleges, universities,
and companies often run computer labs with Windows or Mac stations that
can access Linux servers and display their desktop screens.

In any case, enter your correct password carefully. If you are a new user
and, after several careful tries, you are unable to log in, it may be that the
system administrator has not yet established your userid on the computer.
Wait a reasonable length of time and try again. If you still have a problem,
contact your system administrator.

After login, you’ll see your desktop displayed (Figure 1.2). The desktop
enables the use of full-GUI (Graphical User Interface) applications that allow
point-and-click operations with the mouse.

FIGURE 1.2: A Typical Desktop

Usually, you will be able to choose between two major desktop environ-
ments, GNOME or KDE, to control and manage your login session. From the
desktop, you can click on the start icon, usually a Linux distribution logo lo-
cated on the left end of your desktop Panel (normally a horizontal bar across
the top or bottom of your screen) to pull up the Start menu listing many
tasks you can do.

To log out from Linux, you may use the Start menu logout option. Some-
times, a logout icon is present on the desktop Panel to make logout easy.

More will be said about desktops in Chapter 3.

12 Mastering Linux

Starting a Terminal Window

From the desktop, you can conveniently initiate many operations including
starting a terminal window (Figure 1.3) that runs a Shell (Section 1.3). The
Shell provides you with a command-line interface (CLI) where you can enter
commands to perform almost any task on Linux quickly and efficiently.

FIGURE 1.3: A Terminal Emulation Window

To start a terminal window, go to the Start menu and click on the
System tools->Terminal option or the Accessories->terminal option, de-
pending on your Linux and desktop. For the GNOME desktop, the terminal
would be gnome-terminal, and for KDE it would be konsole. A terminal
window emulates a character-based computer terminal and allows you to use
Linux through a command interpreter called the Shell (Section 1.3).

As it starts, the Shell also positions you at your home directory (Sec-
tion 1.4), the file folder reserved for you as a user on Linux. The Shell indicates
its readiness to take your commands by displaying a prompt at the beginning
of a line.

When you are finished with a terminal window, you may close it by

exit (exits from Shell and closes the terminal window)
logout (same as exit)

The character ctrl+d (the character d typed while holding down the ctrl
key) typed alone on a command line often can be used in place of the exit
command. Exit with ctrl+d is convenient but dangerous, because one typing
error can close your terminal window. See Chapter 2 for how to disable exit
via ctrl+d.

By the way, we shall use the notation

ctrl+X

A Linux Primer 13

to denote a control character, where X is some character. Note also that
although the convention is to show an uppercase character, you do not need
to hold down shift when typing a control character.

Remember, you need a terminal window to use a Shell, which is your CLI to
interact with Linux. Thus, it is important to call up a terminal window quickly
and easily. You can create a keyboard shortcut to run a terminal window. Go
to the Start menu

Start->System->Preferences->Personal->Keyboard Shortcuts

to see all the defined keyboard shortcuts. Find Run a terminal and click on
that row. The key you type after seeing New accelerator will become the
keyboard shortcut.

Remote Login

Universities and other institutions often run large Linux servers for users to
access through a LAN or even the Internet. You can use TELNET, or more
likely SSH (Secure Shell), to access a Linux system from another computer,
which can be a PC, another Linux system, or any other platform. Figure 1.4
shows SSH access to a Linux host monkey.cs.kent.edu from MS Windows R©.

On Linux, the Shell-level command ssh provides SSH and is used to access
a remote Linux server from a Linux system. For example,

ssh pwang@monkey.cs.kent.edu
or
ssh -X pwang@monkey.cs.kent.edu

networks to the computer monkey.cs.kent.edu (the domain name of the
computer) and attempts to log in with the userid pwang. Remote login nor-
mally supports only CLI access. The -X (capital X) option allows the remote
computer to open the graphical display on the local Linux and therefore en-
ables you to also launch remote applications that require a GUI. Running GUI
programs remotely involves much heavier network traffic and can be slow.

Without the -X option you’ll be able to run only command-line applications
on the remote computer which is usually the efficient and sensible thing to
do. We will return to SSH in Chapter 7 (Section 7.6) where networking is
discussed. Download, installation, and usage information for SSH/SFTP can
be found appendices on the companion website (ml.sofpower.com).

Successful remote login via SSH results in your SSH window being con-
nected to a login Shell running on the remote Linux. After login, Linux will
record your login in a system log, display a message showing the time and
place for your last login, and initiate a Shell to take your commands.

When you see the prompt, you are ready to begin computing. After you
are done, you will need to log out from the remote Linux. To log out, first
close any programs that you have been running and then issue the Shell-
level command exit or logout. It is a good practice to first close all running

14 Mastering Linux

FIGURE 1.4: Login via SSH

programs manually instead of relying on the logout process to close them for
you. It is also good to turn off the power to the display to save energy.

1.3 Understanding the Shell

The Shell displays a prompt to signal that it is ready for your next com-
mand, which it then interprets and executes. On completion, the Shell re-
signals readiness by displaying another prompt.

There are several available Shells: the original Shell written by S. R. Bourne
known as the Bourne Shell or Sh, the C-Shell or Csh developed at UCB by
William Joy, and an enhanced Csh named Tcsh. The standard Shell for Linux
is the Bash (Bourne-Again Sh), which is a powerful and much improved version
of Sh. The default Shell on most Linux systems is Bash.

At the Shell prompt, enter the command

echo $0

to display the name of the Shell you are using. Here echo displays the value
of the Shell variable $0. Don’t worry, Chapter 2 explains how this works.

You can change the default Shell with the chsh (change Shell) command.
For security reasons, usually only approved Shells can be used. In this text
we will assume the Bash Shell, although basic features of all Shells are very
similar.

A Linux Primer 15

Entering Commands

In Linux, you can give commands to the Shell to start application programs,
manage files and folders, control multiple jobs (tasks that are running), redi-
rect I/O of programs from/to files, connect one program to another, and
perform many other tasks. Virtually anything you want done in Linux can be
accomplished by issuing a command to the Shell.

Many different commands are available, but some general rules apply to
all of them. One set of rules relates to command syntax—the way the Shell
expects to see your commands. A command consists of one or more words
separated by blanks. A blank consists of one or more spaces and/or tabs. The
first word is the command name (in this book the name of a command will
appear in boldface); the remaining words of a command line are arguments
to the command. A command line is terminated by pressing the return (or
enter) key. This key generates a newline character, the actual character
that terminates a command line. Multiple commands can be typed on the
same line if they are separated by a semicolon (;). For example, the command

ls folder

lists the names of files in a folder (directory) specified by the argument folder.
If a directory is not given, ls lists the current working directory (Section 1.4).

Sometimes one or more options is given between the command name and
the arguments. For example,

ls -F folder

adds the -F (file type) option to ls telling ls to display the name of each file,
or each filename, with an extra character at the end to indicate its file type:
/ for a folder, * for an executable, and so on.

At the Shell level, the general form for a command looks like

command-name [options] ... [arg] ...

The brackets are used to indicate optional parts of a command that can be
given or omitted. The ellipses (. . .) are used to indicate possible repetition.
These conventions are followed throughout the text. The brackets or ellipses
themselves are not to be entered when you give the command.

Command options are usually given as a single letter after a single hy-
phen (-). For example, the long listing option for the ls command is -l. Such
single-letter options can sometimes be hard to remember and recognize. Many
Linux commands also offer full-word options given with two hyphens. For ex-
ample, the --help option given after most commands will display a concise
description of how to use that particular command. Try

ls --help

to see a sample display.
After receiving a command line, the Shell processes the command line as

16 Mastering Linux

a character string, transforming it in various ways. Then, the transformed
command line is executed. After execution is finished, the Shell will display
a prompt to let you know that it is ready to receive the next command.
Figure 1.5 illustrates the Shell command interpretation loop. Type ahead is
allowed, which means you can type your next command without waiting for
the prompt, and that command will be there when the Shell is ready to receive
it.

Trying a Few Commands

When you see the Shell prompt, you are at the Shell level. Now type

echo Hello Linux

FIGURE 1.5: Command Interpretation Loop

Prompt

Display

Read Command Line Execute Command Line

Command Line

Process

You’ll see that the echo command displays what you type. Next, enter

echo -n "Hello Linux "; echo user

This command line contains two commands separated by the ; command
separator. (If you make a mistake typing these commands, glance ahead to
the next subheading on correcting typing mistakes.) The option -n causes
echo to omit a newline character at the end of its output, so the word user
appears on the same line as Hello Linux. Note also the use of quotation
marks for the string Hello Linux which has a trailing space.

One use of echo is to examine the value of a Shell variable. For example,
if you type

echo $HOME

you’ll see the value of the Shell variable HOME which is the location of your
home directory in the file system. Note that the value of a Shell variable is
obtained by prefixing the variable name with a dollar sign ($). More on Shell
variables can be found in Chapter 2.

A computer on a network is known as a host and is usually identified by a
hostname. To find out your Linux system’s hostname, give the command

A Linux Primer 17

hostname

To identify the operating system version running on your computer, enter the
command

uname --all

Another command is who. Type

who

to list current users signed in on the system. This gives you an idea of how
many people are sharing the computing facility.

The ls command will not list hidden files, any file whose name begins with
the period (.) character, unless the -a option is given.

ls -a

lists the names of all your files, including the hidden ones. Hidden files are
usually standard operating system or application files for configuration or
other prescribed purposes and ought not be mixed with other files created by
the user.

For the Bash Shell, one standard file is .bash_profile in a user’s home
directory. You can place in this file your personal initialization to be used
when bash starts as a login Shell.

If you are curious about what’s in the file bash_profile., type the com-
mand

more .bash_profile

to display its contents. Press space to continue to the next page or q to quit
from the more display. Don’t be discouraged by what you don’t understand
in this file. When you have progressed further in this book, the contents will
become clear.

The Linux system keeps track of the time and date precisely, as you would
expect any computer to do. The command

date

displays the current date and time as given by the following typical output
showing Eastern Daylight Time

Thu Dec 4 16:37:07 EST 2008

The Linux system has a dictionary of words for spell checking purposes. The
command

spell file

will display suspected misspellings for you. Or you can use

18 Mastering Linux

aspell -c file

to interactively spell check the given file. To look for words, you can use

look prefix

on most Linux systems, and all words in the dictionary with the given prefix
are displayed.

Another useful command is passwd. Type

passwd

to change your password. This command will prompt as follows

Changing password for your userid

Old password:

New password:

Retype new password:

pausing after each prompt to wait for input. Many Linux installations give out
new userids with a standard password, and the new user is expected to use
the passwd command to change to a personal password as soon as possible.

The command man consults the on-line manual pages for most commands.
Thus,

man command

will display the on-line documentation for the given command. Try

man passwd

just to see what you get. Learn about man with

man man

Details on the man command can be found in Section 1.11.
The man command documents regular commands (application programs),

but normally not commands built in to Shells or other application programs.
For Bash you can use

help builtin command

to see a summary of any particular Bash built-in command. Many Linux
systems add a Bash Builtins man page so the man command will work for
Bash built-in commands as well.

A Linux Primer 19

Correcting Typing Mistakes

As you entered the preceding commands, you may have made at least one
keystroke error, or you may wish to reissue a command you have entered pre-
viously. Linux Shells provide easy ways to correct typos and to reuse previous
commands. Basically, you can use the arrow keys to move the character cursor
left and right on a command line and up to a previous command or down to
the next command.

The delete (backspace) key deletes the character under (before) the
cursor. The enter (ret) key issues the command no matter where the cursor
is on the line.

The Bash Shell has great support for editing the command line. It actually
allows you to pick a text editor to help do the job. We will return to this in
Chapter 2, Section 2.3.

Aborting a Command

Apart from correcting typing mistakes, you can also exercise other controls
over your interaction with Linux. For instance, you may abort a command
before it is finished, or you may wish to halt, resume, and discard output to
the terminal window.

Sometimes, you may issue a command and then realize that you have made
a mistake. Perhaps you give a command and nothing happens or it displays
lots of unwanted information. These are occasions when you want to abort
execution of the command.

To abort, simply type the interrupt character, which is usually ctrl+c.
This interrupts (terminates) execution and returns you to the Shell level. Try
the following

1. Type part of a command.

2. Before you terminate the command, press ctrl+c.

It cancels the command and gives you a new prompt.

Exercise A

1. How do you start a terminal window?

2. What command and option should be used to list all the files in your
home directory?

3. Set up ctrl+alt+T as the keyboard shortcut for running a terminal
window.

4. What command is used to change your password? Can you change you
password to something like 123? Why? Make up a longer password and

20 Mastering Linux

change your password to it. Why did you have to type your password
twice this time?

5. Try input editing with the arrow keys under Bash. After doing a com-
mand ls -l, press up-arrow once and left-arrow twice. Where is
the cursor now? Now, press right-arrow once and the cursor should
be over the letter l which is the last character on the command line.
Can you press right-arrow again to move the cursor beyond l? If not,
can you find a way? (Hint: Limit yourself to using only the arrow keys.)

6. What is the hostname of your Linux computer? How do you obtain this
information?

1.4 Using Files and Directories

FIGURE 1.6: A Sample File Tree
/

root usrbin var

pwang ... jdoels lib

... Desktop.bashrc

homeetc sbin opt

bash bin

Desktop....bashrc note.txt

Like other modern operating systems, Linux stores files for users, appli-
cations, and the operating system itself on hard disks for ready access. The
structure used to store and manage such files is called a file system. Files un-
der Linux are organized into a tree structure with a root named by the single
character /.

A regular file stores a program or data. A directory or folder contains files
and possibly other directories. Internal nodes on the Linux file tree represent
directories; leaf nodes represent regular files. This hierarchical file structure is
widely used by different operating systems. A sample Linux file tree is shown
in Figure 1.6.

By clicking on the computer icon then the File System link, you can
launch a visual file browser (Figure 1.7) utility which allows you to navigate the
file system and perform operations on files and folders. The way to reach the
file browser may depend on the Linux version you use. While the file browser

A Linux Primer 21

makes moving about the file system more visual, many Linux users still find
dealing with files and folders via the Shell command line more efficient.

Current Working Directory and Filenames

FIGURE 1.7: Linux File Browser

When you get a userid and account on your Linux system, you are given
a personal file directory known as your home directory. Your home directory
will have your userid as its name, and it will usually be a child of a directory
called home. Your files and folders are kept in your home directory.

To access a file or directory in the file system from the command line, you
must call it up by its name, and there are several methods to do this. The
most general, and also the most cumbersome, way to specify a filename is to
list all the nodes in the path from the root to the node of the file or directory
you want. This path, which is specified as a character string, is known as
the absolute pathname, or full pathname, of the file. After the initial /, all
components in a pathname are separated by the character /. For example,
the file note.txt in Figure 1.6 has the absolute pathname

/home/pwang/note.txt

The full pathname is the complete name of a file. As you can imagine, however,
this name often can be lengthy. Fortunately, a filename also can be specified
relative to the current working directory (also known as the working directory
or current directory). Thus, for the file /home/pwang/note.txt, if the current
working directory is /home, then the name pwang/note.txt suffices. A relative
pathname gives the path on the file tree leading from the working directory to
the desired file. The third and simplest way to access a file can be used when
the working directory is the same as the directory in which the file is stored.
In this case, you simply use the filename. Thus, a Linux file has three names

22 Mastering Linux

• A full pathname (for example, /home/pwang/note.txt)

• A relative pathname (for example, pwang/note.txt)

• A (simple) name (for example, note.txt)

The ability to use relative pathnames and simple filenames depends on the
ability to change your current working directory. If, for example, your working
directory is /tmp and you wish to access the file note.txt, you may specify
the absolute pathname

/home/pwang/note.txt

or you could change your working directory to pwang and simply refer to the
file by name, note.txt. When you log in, your working directory is automat-
ically set to your home directory. The command

pwd (print working directory)

displays the absolute pathname of your current working directory. The com-
mand

cd directory (change working directory)

changes your working directory to the specified directory (given by a simple
name, an absolute pathname, or a relative pathname).

Two irregular files are kept in every directory, and they serve as pointers

File . is a pointer to the directory in which this file resides.
File .. is a pointer to the parent directory of the directory in which this

file resides.

These pointers provide a standard abbreviation for the current directory
and its parent directory, no matter where you are in the file tree. You also
can use these pointers as a shorthand when you want to refer to a directory
without having to use, or even know, its name. For example, the command

cd .

has no effect, and the command

cd ..

changes to the parent directory of the current directory. For example, if your
working directory is jdoe, and you want to access the file sort.c in the pwang
directory, you may use ../pwang/sort.c. Why does this work?

Your home directory already comes with a name, your userid. However,
you name your files and subdirectories when you create them. Linux is lenient
when it comes to restrictions on filenames. In Linux you may name your file
with any string of characters except the character /. But, it is advisable to
avoid white space characters and any leading hyphen (-).

A Linux Primer 23

Handling Files and Directories

Generally, there are two kinds of regular files: text and binary. A Linux text
file stores characters in ASCII or UNICODE and marks the end of a line with
the newline character.1 A binary file stores a sequence of bytes. Files may
be copied, renamed, moved, and destroyed; similar operations are provided
for directories. The command cp will copy a file and has the form

cp source destination

The file source is copied to a file named destination. If the destination file does
not exist, it will be created; if it already exists, its contents will be overwritten.
The mv (move) command

mv oldname newname

is used to change the file oldname to newname. No copying of the file content
is involved. The new name may be in a different directory—hence the name
“move.” If newname already exists, its original content is lost.

Once a file or subdirectory has outlived its usefulness, you will want to
remove it from your files. Linux provides the rm command for files and rmdir
for directories

rm filenamel filename2 ...
rmdir directoryname1 directoryname2 ...

The argument of rm is a list of one or more filenames to be removed. rmdir
takes as its argument a list of one or more directory names; but note, rmdir
only will delete an empty directory. Generally, to remove a directory, you must
first clean it out using rm.

To create a new directory, use the mkdir command, which takes as its
argument the name of the directory to be created

mkdir name

When specifying a file or directory name as an argument for a command,
you may use any of the forms outlined. That is, you may use either the full
pathname, the relative pathname, or the simple name of a file, whichever you
prefer.

Standard Personal Directories

It is easy to change to a home directory, just do

cd (goes to your home directory)
cd ~userid (goes to the home directory of userid)

1On Windows or DOS systems, end of line is indicated by return followed by newline.

24 Mastering Linux

In Linux, there are a number of standard folders under each user’s home
directory, usually including

• Desktop—Files in this folder appear as icons on your graphical desktop
display, including regular files and application launchers (with filename
suffix .desktop)

• Documents—Textual documents such as PDF files and those created
using tools such as openoffice.org

• Download—Files downloaded from the network

• Music—Sound and music files

• Pictures—Pictures from digital cameras

• public_html—Files under this folder are made available to the Web via
an HTTP server on your Linux system

• Videos—Files from video cameras and recorders

In addition to these, you may consider setting up a bin/ for your own executa-
bles, a tmp/ for temporary files, a templates/ for reusable files, a homework/\
for your classes, and so on.

1.5 Protecting Files: Access Control

Every file has an owner and a group designation. Linux uses a 9-bit code
to control access to each file. These bits, called protection bits, specify access
permission to a file for three classes of users. A user may be a super user, the
owner of a file, a member in the file’s group, or none of the above. There is
no restriction on super user access to files.

u (The owner or creator of the file)
g (Members in the file’s group)
o (Others)

The first three protection bits pertain to u access, the next three pertain to
g access, and the final three pertain to o access. The g type of user will be
discussed further in Chapter 8.

Each of the three bits specifying access for a user class has a different
meaning. Possible access permissions for a file are

r (Read permission, first bit set)
w (Write permission, second bit set)
x (Execute permission, third bit set)

A Linux Primer 25

The Super User

Root refers to a class of super users to whom no file access restrictions apply.
The root status is gained by logging in under the userid root (or some other
designated root userid) or through the su command. A super user has read
and write permission on all files in the system regardless of the protection
bits. In addition, the super user has execute permission on all files for which
anybody has execute permission. Typically, only system administrators and a
few other selected users (“gurus” as they’re sometimes called) have access to
the super user password, which, for obvious reasons, is considered top secret.

Examining the Permission Settings

The nine protection bits can be represented by a 3-digit octal number, which
is referred to as the protection mode of a file. Only the owner of a file or a
super user can set or change a file’s protection mode; however, anyone can see
it. The ls -l listing of a file displays the file type and access permissions. For
example,

-rw-rw-rw- 1 smith 127 Jan 20 1:24 primer
-rw-r--r-- 1 smith 58 Jan 24 3:04 update

is output from ls -l for the two files primer and update. The owner of primer
is smith, followed by the date (January 20) and time (1:24 A.M.) of the last
change to the file. The number 127 is the number of characters contained in
the file. The file type, access permissions, and number of links precede the file
owner’s userid (Figure 1.8). The protection setting of the file primer gives read
and write permission to u, g, and o. The file update allows read and write to
u, but only read to g and o. Neither file gives execution permissions. There are
ten positions in the preceding mode display (of ls). The first position specifies
the file type; the next three positions specify the r, w, and x permissions of u;
and so on (Figure 1.8). Try viewing the access permissions for some real files
on your system. Issue the command

ls -l /bin

to see listings for files in the directory /bin.

FIGURE 1.8: File Attributes
file user group other file
type access access access links userid size date time name
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
- rw- r-- r-- 1 smith 127 Jan 24 2:04 update

26 Mastering Linux

Setting Permissions

A user can specify different kinds of access not just to files, but also to direc-
tories. A user needs the x permission to enter a directory, the r permission to
list filenames in the directory, and the w permission to create/delete files in
the directory.

Usually, a file is created with the default protection

-rw-------

so only the file owner can read/write the file. To change the protection mode
on a file, use the command

chmod mode filename

where mode can be an octal (base 8) number (for example, 644 for rw-r--r--)
to set all 9 bits specifically or can specify modifications to the file’s existing
permissions, in which case mode is given in the form

who op permission op2 permission2 ...

Who represents the user class(es) affected by the change; it may be a combi-
nation of the letters u, g, and o, or it may be the letter a for all three. Op
(operation) represents the change to be made; it can be + to add permission, -
to take away permission, and = to reset permission. Permission represents the
type(s) of permission being assigned or removed; it can be any combination
of the letters r, w, and x. For example,

chmod o-w filename
chmod a+x filename
chmod u-w+x filename
chmod a=rw filename

The first example denies write permission to others. The second example
makes the file executable by all. The third example takes away write and
grants execute permission for the owner. The fourth example gives read and
write permission (but no execute permission) for all classes of user (regardless
of what permissions had been assigned before).

A detailed discussion on the Linux file system can be found in Chapter 6.

Exercise B

1. Go to your home directory and list all files (hidden ones included) to-
gether with the permission settings.

2. Using the ls command, list your files in time order (most recent first).

3. List the permission settings of your home directory. Use the chmod
command to make sure to forbid read and write from g and o.

A Linux Primer 27

4. Create a folder public html directly under you home directory and
make sure you open read and execute permissions on this folder.

5. Connect your digital camera to your Linux box and download pictures.
Where are the pictures placed. Can you find them under your Pictures
folder?

1.6 Text Editing

FIGURE 1.9: Gedit

Creating and editing text files is basic to many tasks on the computer.
There are many text editors for Linux, including gedit, nano, vim/gvim/vi,
and emacs.

The editor gedit (Figure 1.9) comes with the GNOME desktop. It requires
almost no instructions to use. Start it from the Start menu Text Editor or
the command

gedit file &

An editor window will display. Then you can type input; move the cursor
with the arrow keys or mouse; select text with the mouse; remove text with
the delete or backspace key; and find, cut, copy, and paste text with the
buttons provided or with the edit menu options. It is very intuitive.

The gedit is a GUI application. If you want a terminal-window–based
editor then consider nano, which is very easy to learn but is less powerful or
convenient than vim or emacs. Guides to vim and emacs can be found in
the appendices on the companion website (ml.sofpower.com).

Editing power aside, there is something to be said about an editor that
is easy and intuitive for simple tasks, especially if you are a beginner. In any
case, pick a text editor and learn it well. It can make life on Linux so much
easier.

To invoke the editor nano for editing file, type from the Shell level

28 Mastering Linux

FIGURE 1.10: Nano

nano file (starts nano)
nano -w file (starts nano without line wrapping)

If the file exists, nano displays it for editing. Otherwise, you are creating a new
file by that name. As you enter text, nano will start a new line automatically
when the text line gets close to the right edge of your editor window. The -w
option asks for no such automatic line wrapping. It is also advisable to always
use the -z option which allows you to suspend nano and get back to the Shell
level.

Once inside nano, you are working in a text-editing environment controlled
by nano, and you can create text, make changes, move text about, and so on.
Common operations are indicated by the nano editor window (Figure 1.10).
Here is a list to get you started.

• To save the file, type ctrl+o.

• To quite and terminate nano, type ctrl+x. You can then elect whether
to save the buffer or cancel to change your mind about quiting.

• To move the cursor, use the arrow keys.

• To cut and paste whole lines, ctrl+k cuts one line at a time and
ctrl+u pastes the lines cut.

• To cut and paste selected text, type ctrl+6, move the cursor to high-
light selected text, and then use ctrl+k and ctrl+u.

• To look for text in the editing buffer, type ctrl+w (where), the text
to find, and enter or return.

• To get help on operations, type ctrl+g.

A Linux Primer 29

1.7 Getting Hard/Saved Copies

To get a printed copy of a file use

lpr [options] filename

This command sends filename to a printer. Your printing request joins a queue
of such requests that are processed in order. Note that only text files (plain
text, postscript, or pdf) can be printed this way. Do not send a binary file,
such as a compiled program (.o file), or a compressed file to a printer this
way. The print option on the file menu of application programs, such as
your Web browser, PDF (Portable Document Format) reader, or document
editor (openoffice.org for example), can also be used.

Often, you can avoid wasting paper by using the print to file option.
You can easily save the resulting file (mostly in PDF) and share with others
by email or SFTP (Secure File Transfer Protocol, Chapter 5, Section 5.20).

1.8 Communicating with Others

As soon as you log in, you can potentially interact with others, whether
they are users on the same Linux computer or on other hosts (computers)
connected by networking. Commands such as who (who is logged in) and
finger help to identify members of your user community; email applications
allow the sending and receiving of messages and files; and instant messaging
(IM) programs enable immediate interaction among on-line users anywhere
on the Internet.

Who’s Who on the System: finger

If you are a new user, you may not know many people on the system, and
although the information provided by who and w is useful, you don’t know
who these users are. You only know their userids, which may not resemble
their actual names even faintly. The command finger will give you such data
as full name, office, address, and phone number for each user; this is sometimes
referred to as the finger database, because finger is used to look up information
from this database. The general form is

finger name ...

This command will display all entries in the finger database that contain a
userid and first, middle, or last name matching any of the given arguments.
For example, either finger smith or finger clyde will result in the entry
shown in Figure 1.11.

This multiline output includes a project field, which is the first line in the
.project file in the user’s home directory. The plan field these two files to
supply additional information about themselves for the finger database. The

30 Mastering Linux

FIGURE 1.11: A Sample finger Output

Login name: csmith In real life: Clyde Smith
(803) 555-5432
Directory:/user/grad/csmith Shell:/bin/bash
Last login Tue May 27 14:49 on ttyhd
Project: Automation Technology Research
No Plan.

no plan line in the example indicates that csmith has no .plan file. On some
systems, finger gives only a very short summary unless the -l option is given.

Used with an argument, finger will access information on any user known
to the system, whether that user is logged on or not. If finger is used without
an argument, an abbreviated finger entry is displayed for each user currently
logged in. The f command is sometimes available as a shorthand for finger.

FIGURE 1.12: Thunderbird Email Program

Email

Electronic mail gives you the ability to send and receive messages instantly.
A message sent via email is delivered immediately and held in a user-specific
mailbox for each recipient. You can send email to users on the same computer
or on other computers on the Internet.

Many utilities are available on Linux for email, including the popular
Mozilla Thunderbird (Figure 1.12), Evolution, and Kmail. These full-GUI
email programs are nice when you are at a Linux console. Command-line
email programs such as elm and mutt are useful from a terminal window.
Let’s explain how to use mutt.

A Linux Primer 31

mutt userid@host-address (Internet mail)
mutt userid (local mail)

Then just follow instructions and enter the message subject and type/edit
your message. Mutt lets you edit your message using your favorite text ed-
itor. For mutt and many other applications that need text editing, set your
favorite editor by giving a value to the environment variable EDITOR (Chap-
ter 2, Section 2.10).

EDITOR=vim or EDITOR=emacs
export EDITOR

When you finish editing your message, it will be sent out automatically.

mutt --help | more

displays more information on mutt usage. Here, the output is piped via the
| notation (Chapter 2, Section 2.5) to the more paginator which displays the
information one page at a time.

To receive email (to check your mailbox), type mutt with no argument
and follow instructions. Try to send yourself some email to get familiar with
the usage.

FIGURE 1.13: IM with Pidgin

Instant Messaging

Email is fast, but not instant or interactive. On Linux, you can do IM. For
example, you can use pidgin (Figure 1.13) to IM with friends and business
contacts who are online and available. Pidgin is a free IM application capable
of working with many different IM services, including AIM by AOL, GTalk
by Google, and MSN by Microsoft.

To get started, simply invoke pidgin:

32 Mastering Linux

pidgin &

and add your your screen name and password for each IM service you wish to
use. Then build up your buddies list and enjoy instant communication when-
ever you like. The final & character causes pidgin to run in the background so
you can use the Shell to perform other tasks.

1.9 Browsing the Web

FIGURE 1.14: Firefox Browser Accessing Linux Documentation

One of the most important tools on any computer system is the Web
browser. On Linux you have a choice of different Web browsers. The Mozilla-
family browsers include Mozilla, Netscape Navigator, and Firefox. Chrome is a
fast browser from Google. It is likely that your Linux comes with the Mozilla
browser. However, Firefox (Figure 1.14) is a very good browser preferred by
many because of its speed, efficiency, and adherence to open Web standards.
You can easily download and install Firefox from mozilla.com. Then you’ll
have the command firefox to use.

You can enter a URL (Uniform Resource Locator) in the browser Location
window to visit a specific Web address. A local file URL, taking the form
file://full pathname can be used to visit your local file system.

Normally, Web browsers are full-GUI programs used interactively, but
Linux also offers a command-line Web browser called lynx, a text-only browser
that does not display images. However, lynx can be used inside a terminal win-
dow to interactively browse the Web using the arrow keys or to download files
from the Web.

A Linux Primer 33

Exercise C

1. Try the mutt email program. Use it to send an email and attach a file.

2. Create a text file using nano.

3. Try the vi or emacs editor. Read the related appendix on the book’s
website.

4. If possible, set up Thunderbird as your email program and Firefox or
Chrome as your Web browser.

5. Download a file using lynx from the Web.

1.10 Creating and Running Your Own Program

Skip this section if you have no immediate interest in writing a program
in a general programming language. You can always return to this section
later. The Linux system offers many languages: C, C++, Java, Fortran 77/95,
Python, Ruby, and Perl, just to name a few. You can also write Shell scripts
(Chapter 5) to automate frequently used operations.

Linux follows a set of conventions for naming different kinds of files. Ta-
ble 1.1 illustrates some commonly used filename suffixes. A source code file
cannot be executed directly. The program usually must be compiled into ma-
chine code before execution can take place. An alternative to compilation is to
interpret a high-level language program directly using an interpreter. We shall

TABLE 1.1: File Name Suffixes
Suffix File Type Suffix File Type

.html HTML .c C source

.C .cpp C++ source .java Java source

.f77 .f95 Fortran source .jpg JPEG image

.pdf Portable Document Format .o Object code

.sh Sh or Bash script .bash Bash script

.tar Tar archive .so Shared library

follow an example of creating and running a simple C-language program. Use
your favorite text editor and create a C source file try.c (Ex: ex01/try.c)
with the code

#include <stdio.h>

int main()
{ printf("running my C program\n");

return 0;
}

34 Mastering Linux

This is a simple source program in C that displays the line “running my first
program.” The notation \n stands for the newline character.

Compiling

Before try.c can be run, it must be compiled. Compiling is the process of
translating a program written in a high-level language such as C or Pascal
into a low-level language for execution on a particular computer. On many
systems the compiler will output a file of object code, which must be linked
(combined with routines supplied by the system library) by a separate program
called a linker. Once linkage is complete, the file is considered executable and
is ready to be loaded into memory and executed.

Linux-based compilers will handle both the compiling and the linking of a
program unless you specifically tell them not to, and their output will be an
executable file. Available compilers include produce object files (.o).

gcc GNU C compiler
g++ GNU C++ compiler
javac Java compiler
gfortran GNU Fortran 77/95 compiler

Let’s try compiling the sample program in the file try.c

gcc try.c

This will produce an executable file a.out which can be invoked simply by
typing it as a command.

a.out

Note that in Linux the command to run a program is simply the pathname
of the executable file. Thus,

./a.out (runs the executable)

At some point, you probably will want to name your executable file something
other than a.out, especially since a.out will be overwritten the next time you
invoke a compiler in this working directory. We already know that the mv
command can be used to rename a file, but the -o option to gcc or g++ can
be used to provide a name to use instead of the default a.out. For example,

gcc -o mytry try.c

produces the executable mytry.
No matter which language program you run, you probably will want a

record of your results (to submit as a homework, for example). One way to
do this is to use output redirection. For example,

./a.out > results

A Linux Primer 35

The symbol > tells the Shell to redirect output of a.out from the terminal
screen into a new file named results. Thus, you will see no output in the
terminal window after the preceding command. Instead, you’ll find the output
in the file result. A full account of Shell I/O redirection can be found in
Chapter 2, Section 2.5.

Another way to do this is to use the script command

script record file

to record your terminal session into a record file. While script is active, all
I/O to and from your terminal window is written to the file you specified
(or to a file named typescript if you entered script without an argument).
Recording stops when you type ctrl+d at the beginning of a command line.
The file then can be viewed later with a text editor or emailed to someone. For
example, to run a C program with script, the following sequence of commands
may be used

script display_record
cc myprogram.c
a.out
ctrl+d

The script command requests that all subsequent I/O be recorded in the file
display_record. The ctrl+d on the last line stops the recording and gets
you out of script and back to the Shell level.

An advantage of using script over simply redirecting output is that the file
produced by script will contain both input to and output from the program.
The file created by redirecting output will contain only output.

Exercise D

1. Type in a simple program (in your favorite programming language) to
type out the message: Linux is nice once you know it. Compile it
and run it. Use script to get a display record of the program’s execution.

2. Use more or nano to view the file produced by script and then send
the file to someone by email.

1.11 Consulting Linux Documentation

The Linux Documentation Project website http://tldp.org (Figure 1.14)
provides comprehensive documentation for almost all aspects of Linux. You’ll
find FAQs, topic-specific step-by-step instructions called HOWTOs, guides,
and manual pages for commands. A search feature makes it easy to find what
you need.

36 Mastering Linux

You can also find documentation provided by your own Linux. The Help
menu on the tool bar of GUI applications, such as the File Browser, the Ter-
minal Emulation Window, and Pidgin, provides tool-specific documentation.

Command-line programs often provide brief and concise usage information
with the --help command option. For example, try

ls --help

The man command displays manual pages set in standard UNIX-defined
formats. Each manual page provides a concise description of a Linux com-
mand. The main body of the manual pages is divided into chapters. Although
the exact organization of the chapters may vary with the particular Linux
system, the following is a typical organization

1. User-level commands

2. Linux system calls in the C language

3. System library functions for C, Fortran, networking, and other purposes

4. Special files, related device driver functions, and networking support

5. Formats for executable and system database files

6. Miscellaneous useful information

7. Linux maintenance, operation, and management

You can use the command

man man

to see the organization of your manual pages. To display an introduction to
chapter n, type

man n intro

To display the manual for command name, type

man [n] command name

where the chapter number n is optional.
When an application or utility is added to your Linux by downloading

and installing it, a manual page for that new program is often also added
automatically. For example, after installing Firefox, you can do man firefox
to see its manual page.

A typical manual page contains the following information: NAME (and prin-
cipal purpose), usage SYNOPSIS, DESCRIPTION, OPTIONS, related FILES, and
SEE ALSO (related commands).

If the manual page is too large to fit on one screen, the program will display
one page at a time until the entire entry has been shown. You can type q to quit

A Linux Primer 37

man and return to the Shell prompt. This is especially useful if the man page
is large and you don’t want to see it all. The SYNOPSIS part of the manual page
gives a concise description of the command syntax. In the synopsis, certain
characters are to be typed literally when using the command; other characters
or strings are to be replaced by appropriate words or filenames supplied by the
user. Portions enclosed in brackets are optional, and the brackets themselves
are not part of the command. Ellipses (. . .) are used in the synopsis to indicate
possible repetitions. Most Linux commands receive options that modify the
behavior of the command. As mentioned earlier, an option is usually given as
a single character preceded by a dash (-), but more verbose options are also
possible.

The FILES section of the manual page gives the locations of files related
to the particular command. The SEE ALSO section gives related commands
that may be of interest. The BUGS section lists some known problems with the
command.

The command man also can perform a keyword search through the name
and purpose part of the manual pages, displaying each line containing any of
the given keywords. This is done by using the -k option

man -k keyword ...

This feature is useful when you want to do something, but can’t remember
the appropriate command. For example, to figure out how to copy a file, you
could try man -k copy. The keyword can be any character sequence. So you
can find a command if you remember only a part of its name or description.

There are also Web page versions of the Linux man pages (for example,
linuxmanpages.com) that can be much easier to use as a reference.

Exercise E

1. How do you ask a command to help you use it?

2. Access the man page for ls and read it from beginning to end.

3. Explain how to display the introduction section to the user commands
chapter of the Linux man pages.

4. Find and describe a way to do a key-word search of the Linux man
pages.

5. Where can you find documentation for a command built in to Bash?

6. Download the most recent Web page version of the Linux man pages
from www.tldp.org/manpages/man-html/ to your computer. It can be
much easier to use than the regular man pages. Hint: See Chapter 6,
Section 6.12.

38 Mastering Linux

1.12 Rounding Up Useful Commands

In this chapter, we have run into only a small number of the hundreds
of Linux commands. The richness and variety of Linux commands are major
strengths of the system. It is doubtful, however, that many users know all of
them; you learn the commands that accomplish what you need. This section
collects the commands that should be in a new user’s basic repertoire.

In Linux, both uppercase and lowercase characters are used, and they
are not interchangeable. All system-defined Linux commands are entered in
lowercase. Also, there are two kinds of commands: (1) built-in Shell commands
that are subroutines in the Shell and (2) regular commands that are initiated
as jobs controlled by the Shell. The importance of this distinction will become
clear. In the following listing of commands, user-supplied arguments are shown
in italics. Optional arguments are enclosed in square brackets []. Possibly
repeated arguments are indicated by ellipses (. . .). These conventions will
be followed throughout the book. Only the most common usages of these
commands are given. The information here is intended to get you started and
is by no means complete. Details are provided in later chapters, and you should
consult the on-line manual for full descriptions of each of these commands.

File-Related Commands
cat file . . . Displays on the terminal the contents of the file(s) specified

in the order they are specified.
more file Displays the file on your terminal, pausing after each com-

plete screenful and displaying --more--, at which point you
can press space for another screenful, return for another
line, or q to quit (the command less is similar).

cp filel file2 Makes a copy of file1 in file2, overwriting it if it exists and
creating it otherwise.

cp file . . . dir Makes a copy of the file(s) using the same name in the given
directory.

mv file1 file2 Renames file1 as file2 overwriting it if it already exists.
mv file . . . dir Moves the file(s) to the given directory.
rm file . . . Deletes the files specified.

Login-Related Commands
ssh [user@]host Remote login.
chsh Changes your default Shell.
passwd Changes your password.
exit or
logout

Terminates the Shell and closes the terminal window.

. A single dot at the beginning of a line quits the Shell, unless
disabled.

su [user] Enters a subshell as user or root.

A Linux Primer 39

Directory-Related Commands
cd dir Changes the current working directory to the given directory

(a Shell built-in command).
pwd Prints the absolute pathname of the current working direc-

tory.
mkdir dir Creates a new directory.
rmdir dir Deletes the directory which must be empty.
ls [op] [file . . .] Lists the filenames in the current working directory if no file

argument is given. For each file given, if file is a directory,
then the files in that directory are listed; if file is a regular
file, then that file is listed. The -l option causes the listing
to be in “long form.” Other options include: -a, which lists
all files, including those files whose names begin with the
period character (.); -d, which lists the directory entry itself
instead of the files in it; and -F, which indicates executable
files with a trailing asterisk (*) and directories with a trailing
slash (/). Options for ls can be combined, as in -ld.

Text Editors
gedit file Standard GUI editor from GNU.
nano file Simple and easy terminal-window editor.
vi file Full-featured original UNIX/Linux editor.
vim file Vi improved.
gvim file GUI version of Vim.
emacs file Flexible and powerful editor.

Informational Commands
date Displays the date and time of day.
finger name Consults the user database for anyone with the userid or

name given.
look prefix Displays all words from the on-line dictionary having the

given prefix.
man cmd Consults the on-line manual pages dealing with the specified

command.
who Displays a list of current users on the system. The command

w is the same, but gives more information on each user.

Compiling and Running Programs
cc prog Invokes the C compiler on the program (name ending in .c),

producing an executable file a.out.
g++ prog Invokes the C++ compiler on the program (name ending in

.C), producing an executable file a.out.
gfortran prog Compiles the given Fortran 77/95 program.
javac (java) Compiles (runs) Java programs.
a.out Runs the executable file a.out. In general, the file name of

an executable file is also the command to execute that file.

40 Mastering Linux

Communications and Web Commands
talk
userid[@host]

Initiates a chat.

mutt
userid@host

Sends email from command line.

pidgin Sends and receives instant messages.
thunderbird Sends and receives email.
firefox Recommended Web browser.
lynx Terminal-window–based Web browser.

Printing-Related Commands
lpr file or
(lp file)

Prints the file on a printer. Linux puts this printing request
in a spooling queue. Your file will be printed when it gets to
the front of the queue.

lpq (lpstat) Displays the printer queue and job numbers for your print
requests.

lprm job or
cancel job

Removes your printing request from the queue.

script file Records terminal I/O in the given file. The script command
creates a subshell to accomplish this task. To stop recording
and exit script, use exit.

1.13 Summary

Linux provides both full-GUI applications and command-line programs.
The GUI is visual and more intuitive to use, but many basic Linux utilities
are more convenient on the command line. A Shell (typically Bash) running in
a terminal window provides a CLI to enter and execute commands. Learning
to use both the GUI and the CLI effectively will make life much easier on
Linux. The CLI is especially important for remote access of Linux using SSH.

The desktop main menu leads to many useful operations. Chapter 3
presents the Linux desktop. The Shell executes commands you input from
the keyboard and displays results in your terminal window. Typing errors can
be corrected through input editing.

Both the system and the users store data in files managed by the Linux
file system, which has a tree structure. Each file can be referred to by a full
(absolute) pathname, a relative pathname, or a simple filename. Each user
has a home directory in which personal files and directories can be kept. Files
and directories can be created, moved, copied, listed, and destroyed. Read,
write, and execute permissions are used to control file access by u (owner),
g (group member), and o (others). The owner can set and change the access
permissions of a file.

You can communicate directly with other users by using talk to chat
directly, by email, and by instant messaging (pidgin).

A Linux Primer 41

Linux offers several text editors. The full-GUI gedit is a good choice. For
a terminal window, the simple and easy nano is good for beginners and light
editing tasks. Serious editing is more efficient with an editor such as vim.
Editing, compiling, and running of a simple C program have been presented.

Linux offers many facilities and a complete set of manuals. The man com-
mand can be used to consult the manual pages, and the Linux Documentation
Project website provides a variety of comprehensive Linux documentations.

Refer to the final section of this chapter for a list of useful commands for
Linux beginners.

Chapter 2

Interactive Use of the Shell

An important purpose of any operating system is to provide users with a
convenient interface to manage and achieve tasks on their computers. Linux
provides a GUI (graphical user interface) and a CLI (command-line interface)
in the form of a Shell.

A Shell normally runs inside a terminal window such as gnome-terminal
or konsole (Chapter 1, Section 1.2). It takes input from the user (keyboard)
and serves as a command interpreter to start applications and to perform all
other available operations.

When accessing a Linux system from another host, such as a PC (Win-
dows or Mac) or Linux box, through a remote login program such as SSH
(Chapter 1, Section 1.2) or Telnet, the full-GUI of a desktop (Chapter 3) is
hard to achieve, and the Shell is usually the only feasible user interface choice.

We already know that Linux offers a number of different Shells including
Sh (the original Bourne Shell), Ksh (the Korn Shell), Csh (the Berkeley C
Shell), Tcsh (TC Shell, an improved C Shell), and Bash (the Bourne-Again
Sh). A user can pick which Shell to use. Although these Shells are comparable,
Bash is the standard and preferred Shell on Linux systems.

We will present interactive use of Bash in this chapter. Programming in
Bash is presented in Chapter 4.

2.1 Bash

Developed in 1987 for the GNU Project (Free Software Foundation), Bash
is a freely available Shell based upon the original Sh (Bourne Shell, 1978).
The Bash Shell incorporates features from Sh, Ksh, Csh, and Tcsh; adds new
features such as Shell-defined functions; and conforms to the IEEE POSIX
(pronounced pahz-icks for Portable Operating System Interface) specification.

Today, Bash is the most popular Shell on Linux systems. Improved ver-
sions of Bash have been released regularly. Normally, your default Shell is
/bin/bash. If not, you can always set your default Shell to /bin/bash (rec-
ommended) with the command

chsh -s /bin/bash

In a Bash Shell, the command

echo $BASH_VERSION

43

44 Mastering Linux

displays its version information. It is a good idea to have your Bash ready for
experimentation when reading this chapter.

2.2 Interacting with Bash

Inside a terminal emulator window, Bash serves as your command inter-
preter and continually executes the command interpretation cycle:

1. Displays a prompt

2. Enables the user to type, edit, and enter the next command line

3. Breaks the command line into tokens (words and operators) and per-
forms well-defined Shell expansions, transforming the command line

4. Carries out (by calling Shell-level functions) or initiates (by starting
external programs) the requested operations

5. Waits for initiated operations to finish

6. Goes back to step 1

The default prompt for Bash is $, but it can be customized to become more
useful (Section 2.9).

A command line consists of one or more words separated by white space
or blanks (spaces and/or tabs). Pressing the enter (return) key completes
input typing and sends the Shell to the next step. The enter key (generating
a newline character) completes a command line unless preceded by a back-
slash character (\), in which case the enter is escaped (Section 2.14) and
becomes a blank. The first word in a command is the command name and
indicates the program to be executed; the other words are arguments to the
command. There are two types of commands: Shell built-in commands and
regular commands. A built-in command invokes either a routine that is part
of the Shell (cd, for example) or a function or alias defined by the user. To
execute a built-in command, the Shell simply calls up the appropriate sub-
routine within itself. A regular command is any other executable program in
Linux that is not built into the Shell. These include system commands such
as ls, rm, and cp, as well as your own executable programs such as a.out.

Each executing program is known as a process controlled and managed by
the operating system. Your interactive Shell is a process. The Shell spawns
(initiates) a separate child process, known as a subshell, to execute a regu-
lar command. The distinction between built-in and regular commands is an
important one, as you will discover.

A simple command is just the command name followed by its arguments.
Several commands can be given on a single command line if they are separated
by semicolons (;). The Shell will execute the commands sequentially, from

Interactive Use of the Shell 45

left to right. Two commands separated by a vertical bar (|) form a pipe
(Section 2.5). The or operator (||) and the and operator (&&) specify conditional
execution of commands:

cmd1 || cmd2 (executes cmd2 only if cmd1 fails)
cmd1 && cmd2 (executes cmd2 only if cmd1 succeeds)

These are examples of compound commands where several simple commands
are grouped together to form a single command. In Linux, a command returns
an exit status of zero when it succeeds and non-zero otherwise.

If you enclose one or more commands inside a pair of parentheses (), the
commands will be executed as a group by a subshell.

After issuing a command, it is not necessary to wait for a prompt before
typing in additional input. This feature is known as type ahead. What you
type ahead will be there for the Shell when it is ready to receive the next
command.

You also can instruct the Shell not to wait for a command to finish by
typing an ampersand (&) at the end of the command. In this case, the Shell
immediately returns to process your next command, while the previous com-
mand continues to run detached from the Shell. Such detached processes con-
tinue to execute and are said to be running in the background. For example,

firefox &

will start the browser and return you to the Shell level without waiting for
firefox to finish, which is not likely to be any time soon. Basically, the amper-
sand instructs the Shell to skip step 5 in the command interpretation cycle.
A background process also gives up read access to the keyboard, allowing you
to continue interacting with the Shell.

A background process can be reattached to the Shell—that is, brought to
the foreground—by the command

fg jobid

Please refer to Section 2.6 for job IDs and job control.
A foreground program receives input from the keyboard. If we bring the

firefox job to the foreground, we can type a ctrl+c to abort it, for example.
There can be only one running foreground program at any given time.

2.3 Command-Line Editing and Command Completion

Let’s look at typing input to Bash. We have seen in Chapter 1 (Section 1.3)
how the arrow keys together with delete and backspace can be used to cor-
rect input errors and to reuse previous commands. These and other command-
line editing features are provided by the readline library.

You, in fact, have a choice of using vi or emacs (see the appendices at the
companion website) for editing the command line with

46 Mastering Linux

set -o vi
set -o emacs

In case of vi mode, you would type esc to get into the vi command mode
and then use vi commands to do any editing. When you are done editing the
command line, press return (or enter) to issue the command.

While entering a command line, Bash helps you complete your typing in
various useful ways. Basically, you engage the completion feature by pressing
the tab key. If there is a unique completion, it will be done. If there are
multiple ways to complete your typing, a second tab will reveal the choices.

For example, if you enter un followed by two tabs, a list of choices

unalias uniq unlink unstr
uname uniqleaf unopkg . . .

will be displayed. The technique not only saves typing, but also shows you
all the Bash built-in and regular commands with a given prefix, which can be
very handy if you forgot the exact command name to use.

Some users prefer getting the choices listed directly with the first tab by
putting

set show-all-if-ambiguous on

in the readline init file ~/.inputrc
Standard completions performed are

• Command name completion—Completing Shell built-in commands,
aliases, functions, as well as regular commands; performed on the first
token of the command line

• Filename completion—Completing names for files; performed on argu-
ments to a command

• User name completion—Completing userids for all users on your Linux
system, performed on any word starting with a ~

• Hostname completion—Completing domain names; performed on any
word starting with @

• Variable name completion—Completing names for existing Shell vari-
ables; performed on any word staring with $

The bash-completion package can be installed (Chapter 8, Section 8.24) to
provide many additional useful completions.

yum install bash-completion
sudo apt-get install bash-completion

The bash-completion package enables you to TAB-complete common argu-
ments to often-used commands. For example, the argument to the ssh com-
mand

Interactive Use of the Shell 47

ssh pwang@mtab tab

displays

pwang@magicalmoments.info pwang@mapleglassblock.com
pwang@monkey.cs.kent.edu pwang@mathedit.org
pwang@monkey.zodiac.cs.kent.edu

On top of these completions, you can define your own with the Bash built-in
complete command which implements a programmable completion API. See
the complete documentation for details.

The readline escape character ctrl+v is used to quote the next character
and prevent it from being interpreted by readline. Thus, to get a tab into your
input instead of invoking the completion function, you would type ctrl+v
followed by tab. For example, you can define the ctrl+l alias with the
following:

alias ctrl+vctrl+l=clear

2.4 Bash Command Execution

The first word of a command line is the command name. It can invoke
a procedure within the Shell (in order): an alias (Section 2.7), a function
(Section 2.15), or a built-in command. If not, then the command name invokes
a regular command implemented by a program independent of the Shell.

In a regular command, the command name indicates an executable file
and can be in one of two forms. It can be the absolute or relative pathname
of the executable file, or if the executable file is on the command search path,
the simple filename itself will suffice. The procedure by which the Shell finds
the executable file is as follows:

1. If the command name is an absolute or relative pathname, then the
name of the executable file has been given explicitly and no search is
necessary.

2. If the command name is a simple filename (containing no / character),
the executable file is found by searching through an ordered sequence
of directories specified by the command search path. The first file found
along this search path is used.

If the executable file cannot be found, or if it is found but the execute permis-
sion on the file is not set, then an appropriate error message is displayed. The
error message most likely will be file not found or permission denied.

The Shell environment variable PATH (Section 2.10) defines the command
search path, a list of directories containing executable commands. The Shell
looks sequentially through these directories for any command you give on the

48 Mastering Linux

command line. The PATH usually includes the system folders /bin, /sbin,
/usr/bin, and /usr/sbin, where most system-supplied executable programs
can be found. The search path can be modified to include additional directo-
ries. For example,

export PATH=$PATH:/usr/local/bin:$HOME/bin

adds two directories at the end of PATH: a /local/bin where you install extra
applications to your Linux and a bin in your home directory.1 Now, you can
use a simple filename to run a program whose executable file resides in the
$HOME/bin directory.

Bash uses a hash table to speed up command search and only needs to
search through $PATH (and update the table) when a command is not found
in the table. The built-in hash command allows you to display and manipulate
this table (see help hash).

The special period symbol (.) is often placed at the end of the search path
to enable you to invoke any command in the current directory with a simple
filename.

export PATH=$PATH:.

The built-in export command tells the Shell to transmit this value to the
execution environment (Section 2.10) that will be inherited by subsequent
regular commands.

Because of aliasing (Section 2.7), user-defined functions (Section 2.15), and
command search, the command actually executed may not be exactly what
you intended. To be sure, you can check by issuing

which command name

to display the alias/function or the full pathname of the executable file invoked
by the command name. For example,

which gnome-terminal

displays

/usr/bin/gnome-terminal

Once an executable file has been found, the Shell spawns a child process to
run the program taking these three steps:

1. A new (child) process is created that is a copy of the Shell.

2. The child process is overlaid with the executable file. Then the command
name together with any arguments are passed to it.

1The value of the Shell variable $HOME is the filename of your home folder.

Interactive Use of the Shell 49

3. The interactive Shell waits for the child process to terminate before
returning to receive the next command, unless the command has been
given with a trailing ampersand (&).

4. If the command ends with &, the Shell returns without waiting, and the
command is run in the background.

2.5 Bash Input/Output Redirection

Until now, our use of Linux has been limited to issuing commands and ob-
serving their output. However, you certainly will want results in a more useful
form, either as hard copy or stored in a file. Furthermore, many instances will
arise when you want input to come from somewhere other than the keyboard,
such as a file, or perhaps even from another command or program running
concurrently. Linux provides an elegant solution: input/output redirection.

When processing a command line, the Shell arranges any I/O redirections
before executing commands contained in the command line.

Standard Input and Output

As an operating system, Linux provides input and output (I/O) services for
processes. For each process, a set of file descriptors numbered 0, 1, 2, and so
on is used for I/O transactions between the process and the operating system.
When a process opens a file or a device for I/O, a file descriptor is assigned
to the process to identify the I/O channel between the process and the open
file or device. When a new process is created, its first three file descriptors are
automatically assigned default I/O channels.

• File descriptor 0, the standard input or simply stdin, is connected to
the keyboard for input.

• File descriptor 1, the standard output or simply stdout, is connected to
the terminal window for output.

• File descriptor 2, the standard error or simply stderr, is connected to
the terminal window for error output.

Most CLI commands receive input from standard input, produce output
to standard output, and send error messages to standard error. The Shell-
provided I/O redirection can be used to reroute the standard I/O channels.

I/O Redirection

The special characters >, <, and | are used by the Shell to redirect the standard
I/O channels of any command invoked through the Shell. Let’s look at a simple
example. The command line

50 Mastering Linux

ls > filelist

creates in your current directory a file named filelist containing the output
of the ls command. The symbol > instructs the Shell to redirect the stdout
of ls away from the terminal screen to the file filelist. If a file by the same
name already exists, it will be wiped out and replaced by a new file with the
same name, unless you set the noclobber option with the Bash built-in set
command

set -o noclobber (turns on the noclobber option)
set +o noclobber (turns off the noclobber option)
set -o (displays all options)

When the noclobber option is on, redirecting output with > to an existing
file will result in an error. This feature protects against accidental loss of a file
through output redirection. If you do mean to wipe out the file, add a vertical
bar (|) after the >. For example,

ls >| filelist

Many users set the noclobber variable in their Bash initialization file
.bash_profile (see Section 2.13). One exception is that /dev/null is a spe-
cial data sink. Output redirected to it disappears without a trace. It is useful
when you wish to discard output from a command.

The symbol >> operates much the same as >, but it appends to the end of
a file instead of overwriting it. For instance,

cat file1 >> file2

appends file1 to the end of file2. If file2 does not exist, it will be created.
So far, we have only talked about redirecting the standard output. But

redirecting the standard error follows the same rules, except you need to use
2> and 2>> instead to explicitly indicate the file descriptor being redirected.
To redirect both standard output and standard error, use

someCommand > file 2>&1 (stderr joins stdout into file)
someCommand > file1 2>file2 (sends to different files)

Let’s look at another example.

cat > file

After giving this command, what you type on the keyboard (or copy and
paste) is put into file. Keyboard input is terminated by ctrl+d given at the
beginning of a line.

Next, let’s consider redirection of stdin. Using the operator <, a command
that takes interactive input from the keyboard can be instructed to take input
from a file instead. For example,

vi textfile < cmd-file

Interactive Use of the Shell 51

where cmd-file contains commands to the vi text editor. Let’s say cmd-file
contains

dd
ZZ

then the first line of textfile will be deleted. Many Linux commands take input
from a file if the file is given as an argument (sort file, for example); the usage
sort < file is correct but unnecessary.

Pipes

In addition to being able to redirect I/O to and from files, you also can redirect
the output of one program as input to another program. The vertical bar
symbol (|) is used to establish a pipe, which connects the output of the first
command to the input of the second. Thus,

ls -lt | more

pipes the standard output of ls -lt to the standard input of more. The re-
sulting command is called a pipeline. Sometimes, for new users, it is hard to
understand the difference between | and >. Just remember that the receiving
end of a pipe | is always another program and the receiving end of a > or
>> is always a file. You can pipe the standard error together with the stan-
dard output using &| instead of |. More elaborate examples of pipelines are
described in Chapter 4, Section 4.6.

Table 2.1 summarizes Bash I/O redirection. Optional parts in the notation
are enclosed in square brackets.

TABLE 2.1: Bash I/O Redirection

Notation Effect
cmd >[|] fileA Sends stdout to overwrite fileA
cmd 2>[|] fileB Sends stderr to overwrite fileB
cmd &>[|] file Combines stdout and stderr to overwrite file
cmd >> fileA Appends stdout to fileA
cmd 2>> fileA Appends stderr to fileA
cmd 2>&1 Joins stderr to redirected stdout
cmd < fileC Takes stdin from fileC
cmd1 | cmd2 Pipes stdout to stdin of cmd2
cmd1 &| cmd2 Pipes stdout and stderr to stdin of cmd2

2.6 Bash Job Control

On the desktop, we know we can run multiple applications, each in a
different window, and we can switch input focus from one window to another.

52 Mastering Linux

Within a single terminal window, the Shell also allows you to initiate and
control multiple commands (called jobs). At any time there is one job that
is in the foreground and connected to the keyboard input for the terminal
window. Other jobs are in the background. We already mentioned that if you
add a trailing & to a Shell-level command, the Shell will run the job in the
background. Here is another example.

xclock & (runs xclock in the background)

Then you may start another job, say, for text editing, by the command

nano -z notes.txt

This job is in the foreground, enabling you to control nano and perform
editing functions using the keyboard. At any time, you can type ctrl+z to
suspend the foreground job and get back to the Shell level. If you do that, then
you’ll see2

[2]+ Stopped nano -z notes.txt

and a new Shell prompt will appear in your terminal window to provide confir-
mation that the current job has been suspended and will be in the background
waiting to be resumed. Now you can issue any Shell-level command, including
one to start another job (which may itself be suspended with ctrl+z in the
same way).

Let’s say that you then start a third job,

gimp picture.jpg

to do image processing on a picture and then suspend it also. In this way, it
is possible to start then suspend or put in the background quite a few jobs,
and it is easy to see how this can become unmanageable quickly. Fortunately,
if you issue the Shell built-in command

jobs

you’ll see all your jobs displayed

[1] 13519 Running xclock &
[2]- 12656 Stopped nano -z notes.txt
[3]+ 13520 Stopped gimp picture.jpg

In this case, there are two suspended jobs with job numbers 2 and 3, and one
job running in the background with job number 1. The Shell also allows you
to resume a suspended job, pull a background job into the foreground, or kill
a job entirely.

To identify a job, a jobid is used, which can be given in a number of ways:
%job-number, %name-prefix, %+, and %-. For example, the jobids %3, %+, and

2Note that nano ignores ctrl+z unless given the -z option.

Interactive Use of the Shell 53

%g all refer to same job in the preceding example. The job %+ is always the
most recently suspended (the current job), and %- is always the next most
recently suspended (the previous job). The %- is useful when you are going
back and forth between two jobs. When using the name-prefix form, you need
just enough prefix of the command name to disambiguate it from other jobs.
For example, %vim, %vi, or %v all refer to job 2.

A job can be resumed (brought to the foreground) by the Shell-level com-
mand

fg jobid

You can abbreviate the command to just jobid. For example, %1 will bring
job 1 to the foreground, %+ (or simply fg by itself) resumes the current job,
and %- resumes the previous job. If no jobid is specified, the most recently
suspended job will be activated and run in the background.

If a background job produces output to stdout, it will be displayed in the
terminal window and interfere with output from any foreground job. Further,
if the background job requires input from the terminal, it will stop itself and
wait to be brought to the foreground to receive the input it needs. Thus, for
jobs to run efficiently in the background, redirecting standard I/O to files
usually is essential.

When a background job terminates, the Shell displays a message to notify
the user:

[jobnumber] Done command as given

The message is displayed after normal completion of a background process.
The following message is displayed when a background process terminates
abnormally:

[jobnumber] Exit 1 command as given

To switch a suspended job to run in the background, use the command

bg jobid

Suspending a job using ctrl+z is not the same as exiting or terminating
it. It is good practice to exit all jobs properly and close all windows before
you log out. Each job provides its own way for exiting (quitting); for example,
ctrl+x for nano, :q! or ZZ for vim, q for mutt, and exit for the Shell.

Sometimes you may need to force a program running in the foreground
to terminate. This can be done by typing the interrupt character, usually
ctrl+c, which aborts the executing job and returns you to the Shell level.
If the interrupt character does not stop your program for some reason, your
last resort is the kill command. Use ctrl+z to suspend the job and get to
the Shell level, then type

kill -9 jobid

54 Mastering Linux

In this will surely terminate the job. The -9 is optional, but it makes the
termination mandatory. A process number also can be used as an argument
to the kill command. The process number is displayed when a job is put in
the background, and it also can be recalled with the command

jobs -l

which gives the process numbers for all jobs. Occasionally, the kill command
will fail to terminate a job. In this case, the command

kill -9 jobid

will execute a mandatory kill on the process. The argument -9 instructs kill
to send a specific signal to the process, which forces it to terminate. Signals are
described further in Chapter 10, Section 10.16. The kill command discussed
here is built into Bash. There is also a regular command, /bin/kill, that can
be used. Among other differences, /bin/kill allows process specification only
by process number. Table 2.2 lists useful job control commands. To sum up,

TABLE 2.2: Job Control Commands
Command Action

jobs -l Lists all your jobs. If the -l option is given, the process num-
ber of each job is also listed.

fg jobid Resumes the given job in the foreground.
bg jobid Resumes the given job in the background.
kill
[-9] pid

Terminates the given job or process specified by a jobid or
process number. The -9 option makes the termination manda-
tory (otherwise, a job may refuse to be killed under certain
circumstances).

a job may be in one of three states: running in the foreground, running in
the background, or stopped (suspended). No more than one job can run in
the foreground at any time, but many jobs can run concurrently in the back-
ground. Many also may be stopped. To see the states of the jobs under control
of your Shell, use the command jobs. Use fg along with the jobid to bring a
particular job from suspension or from the background into the foreground.
Use the suspend character (usually ctrl+z) to suspend a foreground job.
Use the interrupt character (usually ctrl+c) to kill a foreground job. If a
job is stopped or running in the background, it can be killed by issuing the
command kill [-9] jobid.

If you give the exit (logout) command while there still are unfinished jobs,
the Shell will remind you of the fact. It is best to terminate all unfinished jobs
before exiting the Shell. However, if you insist by issuing an immediate second
exit command, the Shell will abort all your unfinished jobs, and your terminal
window will close.

Interactive Use of the Shell 55

2.7 Bash Shell Expansions

Each command line undergoes a number of transformations before it is
executed by the Shell. These transformations are called Shell expansions and
are designed to provide power and convenience to the user. For example, you
can use

ls -l *html

to see a listing of all files with a name that ends with html. This works because
of Filename Expansion. Let’s see how these expansions work.

FIGURE 2.1: Bash Expansions

H
is
to
ry

A
li
as

B
ra
ce

T
il
d
e

V
ar
ia
b
le

C
o
m
m
an
d

F
il
en
am

e

P
ro
ce
ss

S
tr
in
g

A
ri
th
m
et
ic

Bash transforms each command by applying the following expansions (Fig-
ure 2.1) in sequence:

1. History expansion—Allows reuse of parts of previous commands

2. Alias expansion—Replaces command aliases by their definitions

3. Brace expansion—Treats expressions within curly braces {}

4. Tilde expansion—Expands a ~ prefixed word to a certain directory name

5. Variable expansion—Replaces variables by their values

6. String expansion—Interprets standard escape characters, such as \n
(newline), \r (return), and \t (tab), in strings of the form $ ´xyz ´;
for example, $ ´Name\tAge\r\n ´

7. Command expansion—Inserts the output of a command into the com-
mand line

8. Arithmetic expansion—Includes results of arithmetic expressions in a
command (this feature is mostly used in Shell scripts and will be covered
in Chapter 5, Section 5.11)

9. Process expansion—Specifies output produced by a command to become
a filename argument for another command.

10. Filename expansion—Adds filenames to the command line by pattern
matching

56 Mastering Linux

After all transformations, the resulting command line gets executed. You are
encouraged to experiment with the expansions as you read their descriptions.
The built-in command echo which displays the after-expansion state of its
arguments can be very useful. By putting the echo in front of a command
line, the effects of all but alias expansion can be examined.

History Expansion

TABLE 2.3: Common History Expansions

Specification Meaning
!n The event with sequence number n
!-n The nth previous event
!! The last event (same as !-1)
!prefix The most recent event with the specified prefix
^bb^gg The last event, with the string bb replaced by gg
!* All the arguments of the last event
!$ The last argument of the last event
!^ The first argument of the last event
!:n The nth argument of the last event
event:s/xx/yy/ The given history event with the string xx replaced by yy

The Bash history mechanism is very similar to that of the Csh Shell. The
purpose is to record and allow easy reuse of previous commands. Each com-
mand line issued by you, whether successful or not and whether consisting of
one or more commands, is kept as an item in the history list, which can be
displayed using the built-in command history. Each item in the history list is
known as a history event, and each event is identified by a sequence number.
The total number of events kept on the history list has a limit (defaults to
500) which is set by

HISTSIZE=number

Normally, keeping 50 events or so is quite enough. Entering your own HISTSIZE
setting in the .bash_profile file (Section 2.13) makes good sense. We already
know from Chapter 1 that you can use the up and down arrow keys to go back
and forth on the history list and reuse previous commands. Furthermore,
history expansion enables you to substitute history events into the current
command line with just a few keystrokes. It also makes modifying and reissuing
past commands, or parts of them, easy to do.

History expansion is keyed (activated) by the exclamation point character
(!), and it works by recalling items from the history list. Items that can be
recalled from the list and substituted into the current command include any
history event, any word or words of any event, and parts of certain words.

Interactive Use of the Shell 57

These items also can be modified before their inclusion into the current com-
mand. Table 2.3 shows some common history expansions. Table 2.4 contains
some applications of history expansion in commands. Each example is de-

TABLE 2.4: History Examples

No. Last Event Current Command Effect
1 diff file1 file2 > file3 nano !$ or nano !:4 nano file3
2 ls -l name ^-l^-ld ls -ld name
3 srot file

(srot: not found)
^ro^or sort file

4 nano file
(file not found)

cd dir; !nano or !-1 cd dir; nano file

5 cd dir
(no such file or dir)

cd;!-1 cd ; cd dir

6 ls dir ^s^s -F ls -F dir

scribed here, and the numbers correspond to the numbers in Table 2.4.

1. Reuse the name file3.

2. Name turns out to be a directory.

3. Mistyped the command name sort.

4. The desired file is not in the current directory but in the directory dir.

5. The dir is not in the current directory but in the home directory.

6. Note that blanks are allowed in the string replacement.

Having seen a number of examples, you are ready to proceed to the general
form of a history expansion:

event [:word designator] [:modifier . . .]

The event is given in one of the following ways:

Event number !12 gives event 12 on the history list.
Relative position !-2 gives the second most recent event. A special case is

!!, which refers to the last event.
Command prefix !nano gives the most recent event prefix nano.
Matching string !?string? gives the most recent event containing string

anywhere within the event.
^str1^str2 Repeats the last command, but with str1 replaced by

str2.

58 Mastering Linux

Following the event are the optional word designators. The purpose of a word
designator is to choose certain words from the history event. If no word des-
ignators are used, the entire event will be selected. The following word desig-
nators can be used:
n Selects the nth word (the command name is word 0); for example,

!-3:2 gets the third word of the event !-3
$ Selects the last word; !$ gives the last word of the last event
^ Designates the first argument (second word); !^ gives the first argu-

ment of the last event
i-j Designates words i through j inclusive -j same as 0-j
i- Designates word i up to but not including the last word
* Indicates all argument words; !* gives all arguments of the previous

command
i* Same as i-$

An optional sequence of modifiers also can be used. One frequent usage is

event:s/xx/yy/

to substitute the string xx by yy in event. If a word is a long pathname,
it is sometimes convenient to use a modifier to extract a portion of it, but
most modifiers are seldomly used interactively. Writing programs in the Shell
language (Shell procedures) is discussed in Chapter 5, and at that point you
will be able to see why modifiers are needed. A number of modifiers are listed
in Table 2.5; refer to the Bash manual for a complete list. Once a command
line has gone through history expansion, it too becomes part of the history
list as the most recent event.

TABLE 2.5: History Modifiers

Modifier Meaning Example Value
:h head !$:h /usr/local/kent
:t tail !$:t prog.c
:r root !$:r /usr/local/kent/prog
:e extension !$:e .c
Note: !$ is /usr/local/kent/prog.c.

The Bash built-in command fc (fix command) puts a range of history items
into your favorite text editor, allows you to modify any parts at will, and then
executes the resulting commands automatically when you exit the editor.

fc first event last event

Finally, when you are finished interacting with it and exit, Bash saves
the command history to the history file specified by the environment variable
$HISTFILE , which defaults to .bash_history in your home folder. Next time
you start Bash, the saved history will be restored from the history file.

The history file feature can be disabled by

Interactive Use of the Shell 59

export HISTFILE=

Alias Expansion

The alias feature allows you to define shorthands for often-used commands,
making them easier to enter. To create an alias (any single word) and give it a
value (a character string), use the Bash built-in command alias. The notation

alias name=value . . .

defines the given name as an alias for the specified string value. Multiple name-
value definitions are allowed. The value part often requires quotes around it
to prevent unwanted Shell expansions (see Section 2.14 for when and how to
use quotes). Here are some simple but useful alias definitions.

alias dir="ls -l" back= ´cd $OLDPWD ´

alias monkey="ssh -l pwang monkey.cs.kent.edu"
alias append2end="cat >>"

With these aliases defined, the command dir works because it expands to
ls -l. The alias back works its magic because the Bash variable $OLDPWD
always holds onto the previous working directory.

Alias expansion means that if the first word of a simple command is an
alias, Bash will replace that first word with the alias value. The first word of
the replacement text is again tested for aliases, but a word that is identical
to an alias being expanded is not expanded a second time. This means the
following is correct and does not result in an infinite loop.

alias ls= ´ls -F ´

Thus, the ls command always is given with the -F option, which causes, among
other things, directory names to be marked with a trailing /, symbolic links to
be marked with a trailing @, and executable files (files with execute permission;
see Section 1.5) to be marked with a trailing *.

To display existing aliases, use

alias (displays all aliases)
alias name (displays the alias)

To remove alias definitions, use

unalias name . . .

Brace and Tilde Expansions

Brace expansion provides a shorthand for similar words on the command line.
With brace expansion, the command line

60 Mastering Linux

nano memo{Sep, Oct, Nov}2011.txt

becomes

nano memoSep2011.txt memoOct2011.txt memoNov2011.txt

and lpr chap{2..5}.pdf becomes

lpr chap2.pdf chap3.pdf chap4.pdf chap5.pdf

The sequence notation (..) works for numbers and single letters, for example
{a..z}.

The character tilde (~) expands to the user’s own home directory, ~userid
to the home folder of some other user, ~+ to the current folder, and ~- to the
previous folder.

Thus, the alias back earlier can also be defined as

alias back="cd ~-"

Variable Expansion

The Shell allows the use of variables. A variable’s value is a character string.
Some variables are reserved for Shell use. For example, USER, HOME, PATH,
and HISTSIZE are Shell variables having prescribed meaning in Bash (see
Section 2.9). In addition, you can also set and use your own user-defined
variables.

Generally speaking, a variable identifier can be any word whose first char-
acter is a letter and the rest consists of letters, digits, and underscore charac-
ters. Use

var=value (sets variable value)

to assign a value to a variable. The value can be a single word or multiple words
in quotes, and no white space is allowed immediately before or after the equal
sign (=). After being set, a variable can be used in subsequent commands. For
example,

ldir=/usr/local

gives the variable ldir a string value /usr/local. With this variable set, you
can input

cd $ldir

which is a command with a variable in it. After variable expansion, this com-
mand becomes

cd /usr/local

Interactive Use of the Shell 61

As you can see, variable expansion is keyed by the character $. That is, a word
that begins with a $ is a variable. If $ is followed by a blank or preceded by
a backslash (\), then it stands for itself. The echo command can be used to
display the value of a variable. For example,

echo $ldir

displays /usr/local. Use unset var to remove any variable var.
The extent of a variable name can be delineated by braces ({ and }). For

example,

x=abc
echo ${x}de

displays the string abcde, whereas

echo $xde

displays an empty line because the variable $xde has no value.
Variables often have string values. However, they may also have integer

values. Inside $((...)), you may perform integer arithmetic operations
(including + - * / +% ** ++ --) on variables using C-language syntax. For
example,

count=7
echo $((3*count)) (displays 21)
echo $((count%5)) (displays 2)
echo $((count++)) (displays 7, sets count to 8)

You can display variables (Shell built in and user defined) and function
definitions (Section 2.15) with

set (displays all variables and functions)
declare (displays all variables and functions)
declare -f(displays all functions)

Command Expansion

Command expansion makes it possible to use the standard output of a com-
mand as a string of words in another command. Either $(command) or
`command` (note the backquote) can be used for command expansion.
For example,

dir1=$(pwd) (or dir1=`pwd`)

assigns the output of the pwd (print working directory) command to the user
variable dir1. Another example,

files=$(ls)

62 Mastering Linux

assigns to files words produced by the ls command, namely, the file names
in the current directory. The substitute string of a command expansion also
can form part of a single word, as in

file1=$(pwd)/test.c

The substitute string is normally broken into separate words at blanks, tabs,
and newlines, with null words being discarded.

Process Expansion

Bash extends the ideas of I/O redirection one step further by allowing the
notation

<(command args ...)

to be used where a filename argument is expected for a command. Thus, the
notation <(...) produces a temporary file, with the output produced by the
command inside, which can be given to another command.

For example,

nano <(ls -l -F)

opens nano to view/edit the results produced by the given ls command. This
ability can be handy sometimes. It is possible to supply multiple files in this
way. For example,

diff -u <(ls -F /usr/bin) <(ls -F /usr/bin.old)

displays the differences between the two directory listings.

Filename Expansion

Because command arguments often refer to files, the Shell provides filename
expansion to make it easier to specify files. When a filename pattern or glob
pattern is used in a command line, the pattern is expanded to become all the
filenames matching the pattern. A pattern may match simple filenames, in the
current working directory, as well as full or relative pathnames. If a pattern
does not match any file, then it stands for itself and is not expanded. Glob
patterns are specified using the special characters *, ?, and []. The * matches
any sequence of zero or more characters. For example,

ls -l *.c

produces a listing of all files with a name ending in .c. The *.c is a pattern,
and it expands to match all filenames in the current working directory ending
with .c. The command

ls -l ../*.c

Interactive Use of the Shell 63

does the same for files in the parent folder. The command

ls ~/Pictures/2011*/*.jpg

conveniently displays a listing of all pictures, ending in .jpg, under folders
with a name prefix 2011, in the ~/Pictures directory.

Filename patterns are matched against existing filenames. Rules for file-
name patterns are as follows:

* Matches any character string of of length zero or more (the “wild-
card”).

? Matches any single character.
[. . .] Matches any one of the characters contained between [and] (a

range pattern). For instance, a[rxz]b Matches arb, axb, or azb.
The pattern chapter[0-9] Matches chapter0, chapter1, and so
on.

[^. . .] Matches any character not in [and]. The ! character can be
used instead of ^.

[:class:] Specifies a class of characters, in a range pattern. The class can
be alnum (alpha-numeric), alpha, digit, lower, or upper.

For example, in the command

ls [[:digit:]]*

the pattern matches all files whose name starts with a digit.

Filename expansion is also known as globbing. Filename expansion can be
deactivated with the Bash built-in command

set -f (or -o noglob, filename expansion off)
set +f (or +o noglob, filename expansion on)

Filename expansion should normally be on when using the Shell interactively.
The character . at the beginning of a filename must be matched explicitly

unless the dotglob option is set.

shopt -s dotglob (enables matching leading dot)
shopt -u dotglob (disables matching leading dot)
shopt (lists Bash options)

Hence, the command ls * normally does not list any files whose name be-
gins with a dot. Additionally, the character / in a filename must be matched
explicitly.

A filename pattern can contain more than one pattern character. When
more than one filename is matched, the pattern is expanded into a sorted
list of the matched filenames. Matching is case sensitive unless you do shopt
-s nocaseglob. If a pattern matches no filenames (match failure), then it is
not expanded (stays unchanged in the command line) unless

shopt -s failglob (match failure causes an error)
shopt -s nullglob (match failure expands to empty string)

64 Mastering Linux

2.8 Bash Built-in Commands

We have seen a number of Bash built-in commands. A few more are intro-
duced in this section. To see a list of all Bash built-in commands, you can use
the built-in help.

help (lists all built-in commands)
help commandName (describes the given command)
help help (tells you how to use help)

Bash maintains a directory stack that, by default, contains the current
working directory. The built-in pushd dir changes to the given directory and
pushes it onto the stack. The built-in popd changes to the top directory on
the stack after popping it off the stack. Thus, the sequence

pushd dir
popd

brings you back to where you were without changing the directory stack. The
built-in dirs lists the folders on the stack.

While interactive input usually comes from the keyboard, it is convenient
to save and edit commands in a file and then ask the Shell to execute those
commands from that file. The Bash built-in command source (or simply a
dot .) can read a file of Bash commands and process them one by one. A file
of Shell commands is known as a Shell script. Thus, either of

source script
. script

causes your interactive Bash to read commands from the given script as though
they were entered from the keyboard individually. Since source is a built-in
command, the script is not read by a subshell (Section 2.2).

2.9 Shell Variables

Bash uses a number of special variables, with all uppercase names, for specific
purposes. Setting special variables controls the way certain Bash operations
are carried out. For example, setting the CDPATH to a list of often-used di-
rectories enables you to use simple folder names with the cd command (cd
simpleFolderName). Bash will then search for the target folder under directo-
ries on the CDPATH. Be sure to include the . on the CDPATH. Some variables
that affect interactive use of the Shell are listed here. Other special variables
affecting the processing of Shell scripts are discussed in Chapter 5.

Interactive Use of the Shell 65

USER The userid
PWD The full pathname of the current directory
OLDPWD The full pathname of the previous directory
HOME Full pathname of home folder
SHELL The pathname of the Shell executable
HISTSIZE Number of history events to keep
HOSTNAME Name of the Linux host
PATH Command search path
CDPATH Search path for cd

PS1 Your primary Shell prompt string (see Section 2.11 for cus-
tomizing your prompt)

PS2 Your secondary Shell prompt tring (default >)

2.10 Environment of a Program

The exact manner in which a program works depends on the execution
environment within which it is supposed to do the job. For example, the text
editor nano or vim needs to know the capabilities of the terminal emulator it
is dealing with, and so does the command more. The current working direc-
tory is something almost all programs will want to know when they run. For
file access permission purposes, any program that accesses files needs to know
the userid of the user who invoked it. The execution environment of every
process consists of two parts: user defined and system defined. The userid,
current working directory, open files, etc. are determined by the system and
passed on from your Shell to any invoked application; whereas quantities such
as the home directory, the command search path, and the default editor are
defined by the user. These are known as environment variables. Many appli-
cations use certain specific environment variables of their own; for example,
DISPLAY for any GUI application, CLASSPATH, and JAVA_HOME for the Java
compiler, MOZILLA_HOME for Firefox, and EDITOR for mutt.

Command Execution Environment

A principal task of a Shell is to launch applications by interpreting user com-
mands. When Bash launches an application, it creates a child process (another
running program) and transmits to it an execution environment that includes
the following attributes:

• Standard I/O and other open files

• Current working directory

• File creation mask (Section 2.12)

66 Mastering Linux

• Environment variables already in the Shell’s own execution environment
and additional ones defined by the user

A child process (an application, for example) is said to inherit its initial envi-
ronment from its parent process (the Shell, for example). Any changes in the
environment of the child process does not affect that of the parent.

Let XYZ be any variable. You can make it part of the Shell’s environment
by

export XYZ

therefore making it available to any child process the Shell initiates later.
If a variable is unset, then it, of course, is also removed from the Shell’s
environment.

Instead of exporting and then unsetting a variable, you can add variables
to the environment on a per-command basis. When you issue any regular
command, you can set variables in front of the command name to add them
to the environment passed to the command without affecting the environment
of the Shell itself. For example, if we start a subshell with

YEAR=2011 bash

The subshell will have an environment variable YEAR set to the value 2011
while your Shell remains unchanged.

The environment variable TERM records the terminal type. For Linux users,
TERM is most likely set to xterm (X Terminal) by a terminal-window program
such as gnome-terminal (Chapter 3, Section 3.7). The command search path
is another environmental parameter whose value is contained in the environ-
ment variable PATH. Also, X Windows client programs use the setting of the
variable DISPLAY (Chapter 3, Section 3.4). The Bash built-in command print-
env (or env) displays all currently set environment variables and their values.
Here are a few more common environment variables.

TERM Type of terminal
EDITOR Default text editor
DISPLAY X server and physical display device designation
MANPATH Search path for the command man

Remember, in Bash any variable can become an environment variable by the
export command. However, it is good practice to use all uppercase names for
environment variables.

2.11 Examples of Bash Usage

By studying examples, you can gain a deeper understanding of how the
Shell works and how the various expansions can be used. Almost all examples
given here are of practical value, and you may consider adopting any or all of
them for your own use.

Interactive Use of the Shell 67

Customized Prompt

The Shell displays a prompt when it is ready for your next command.
For GNU Linux, the default Bash prompt is PS1= ´\s-\v\$ ´, meaning
-Shell base name-version$. For example,

-bash-3.2$

The trailing $ is automatically replaced by # if the user is root.
Many users choose to customize the prompt to display more information.

A good example is

PS1= ´\u@\h:\W{\!}\$ ´

which specifies userid@hostname:current folder{history number}$ and pro-
duces, for example, the prompt

pwang@acerwang:ch03{361}$

You may also set the special variable PROMPT_COMMAND to any command to
be executed before displaying each prompt. See the Bash documentation for
more information on setting the prompt.

Removing Files Safely

Deleting files accidentally is not unusual. This is especially true with the
powerful and terse notation of the Shell. It is entirely possible to mistype the
command

rm *.o (deletes all files with the .o suffix)
as
rm * .o (deletes all files and the file .o)

by accidentally typing an extra space in front of the .o.
It is recommended that you define an alias

alias rm="rm -i"

The -i option requires interactive confirmation before deleting any file. Con-
sider placing this alias in your .bash_profile (Section 2.13).

Some users prefer an even safer alternative, moving unwanted files to a
trash folder rather than actually deleting them. You should already have a
Trash folder in your home directory or you can create one with

mkdir ~/Trash

Now, define a function rm (Section 2.15) that uses mv to move any given files
to ~/Trash (see Exercise 20).

68 Mastering Linux

Copy, Paste, and I/O Redirection

You can combine copy-and-paste (using the mouse, see Chapter 3, Section 3.7)
with I/O redirection to make certain operations easier. For example, you can
mark and copy display text containing information you wish to save and enter
it directly into a file. Just type

cat > notes.txt

and paste the marked line followed by ctrl+d on a new line (to signal end
of input to cat). To mail some screen output to another user, simply do

cat | mail userid -s subject

and then paste the material.

Setting Up Your Personal Web Folder

Often, the Linux system at school or the office will also serve the Web. If so,
the Linux system often also supports per-user Web pages. This means you can
set up a public_html folder in your home directory in the following way:

cd (goes to home directory)
chmod a+x . (allows Web server access)
mkdir public_html (creates new folder)
chmod a+x public_html (allows Web server access)

Now you may create Web pages (filename.html) in your pulic_html and
make each one Web readable:

chmod a+r public_html/filename.html

You can then access them over the Web with the Web address

http://hostname/~your_userid/filename.html

2.12 Default File Permissions

File protection was described in Chapter 1, Section 1.5. When you create
a new file, Linux gives the file a default protection mode. Often, this default
setting denies write permission to g and o and grants all other permissions. The
default file protection setting is kept in a system quantity known as umask.
The Shell built-in command umask displays the umask value as an octal
number. The umask bit pattern specifies which access permissions to deny
(Section 10.4). The positions of the 1 bits indicate the denied permissions.
For example, the umask value 0022 (octal 022) has a bit pattern 000010010,
and it specifies denial of write permissions for g and o. The Shell built-in
command umask also sets the umask value. For example,

Interactive Use of the Shell 69

umask 0077

sets the umask to deny all permissions for g and o. If you find yourself using
chmod go-rwx a lot (Section 3.5), you might want to consider putting umask
0077 into your .bash_profile and .bashrc files (Section 2.13).

2.13 Shell Startup and Initialization

As mentioned, the Shell itself is a user program. The term user program
refers to programs not built into the Linux operating system kernel. Examples
of kernel routines are file system routines, memory management programs,
process management programs, and networking support. The commands ls,
nano, mail, and cat, as well as Shells bash, csh, and so on, are user programs.
In fact, all Linux commands are user programs.

The login Shell is selectable on a per-user basis and is specified in the
user’s password file entry in the password file /etc/passwd. This file contains
a one-line entry for each authorized user on the system. Each passwd entry
consists of the following fields:

• Login name (contains no uppercase letters)

• Encrypted password or x

• Numerical userid

• Numerical groupid

• User’s real name, office, extension, and home phone

• User’s home directory

• Program to use as the Shell

The fields are separated by colons (:). For example, a passwd entry may look
like the following:

pwang:x:500:500::/home/pwang:/bin/bash

The x password indicates that a shadow password file is used to better protect
and manage user passwords. The /bin/bash at the end specifies the user’s
login Shell.

Immediately after a login window starts, the user’s login Shell is invoked
(Chapter 3, Section 3.7). The login Shell specified in the passwd entry can be
changed using the command chsh (change Shell). For example,

chsh -s /bin/bash

will change your login Shell to /bin/bash. At the Shell level, the command

70 Mastering Linux

echo $0

displays the name of your current Shell.
When a Shell starts, it first executes commands in Shell initialization files,

allowing a Linux installation and individual users to customize the Shell to
suit their purposes. Exactly which initialization file Bash loads depends on
how it is invoked.

• Login Bash—If bash is invoked via a login window or given the option -l
or --login, then it is a login Shell. As a login Shell, Bash first loads the
system-wide initialization file /etc/profile which defines environment
variables such as PATH, USER, HOSTNAME, and TERM. Then it loads a per-
user initialization file which is the first of .bash_profile, .bash_login,
and .profile found in the user’s home directory. The per-user clean-up
file .bash_logout is executed when a login Bash exits.

• Non-login interactive Bash—When Bash is run from the command line,
it is an interactive Shell (with standard I/O connected to the termi-
nal window) but not a login Shell. Such a Bash loads the system-wide
/etc/bash.bashrc first and then loads the per-user ~/.bashrc.

• Non-interactive Bash—Bash started to run a command (bash -c cmd)
or a script (Chapter 5) is non-interactive. Such a Bash does not load
any init files by default. It will load a file specified by the environment
variable BASH_ENV.

There are some differences among Linux distributions on Shell initializa-
tion files. For example, CentOS/Fedora/Red Hat also provides the system-
wide /etc/bashrc file for users to load if desired with a conditional expres-
sion:

if [-f /etc/bashrc]; then
. /etc/bashrc

fi

Note that the . command is the same as source. Writing Bash programs is
the topic of Chapter 5.

Among other things, the /etc/bashrc usually sets the umask to a default
value (Section 2.12). It is a good idea to include /etc/bashrc if your system
provides one. Here is a sample .bashrc file.

Source system definitions
if [-f /etc/bashrc]; then

. /etc/bashrc
fi
set -o noclobber
umask 0007

Interactive Use of the Shell 71

FIGURE 2.2: A Sample .bash profile

if [-f ~/.bashrc]; then
. ~/.bashrc ## Loads my .bashrc

fi
umask 0007; set -o vi ## vi-style input editing
set -o noclobber; alias rm="rm -i"
defines environment variables
PS1="\u@\h:\W{\!}\\$" ## primary prompt
BASH_ENV="~/.bashrc"; SHELL=bash; USERNAME=pwang
IGNOREEOF=3; HISTSIZE=50; EDITOR=/bin/vi
UNAME="‘/bin/uname -s -r‘" ## system name string
DOCUMENT_ROOT="/var/www/html"
MOZILLA_HOME=/usr/local/firefox
JAVA_HOME=/usr/java/latest
. ~/.bashPATH ## source my PATH setting

The .bashrc is usually included in the .bash_profile, which adds other set-
tings important for interactive use of the Shell. Figure 2.2 shows a sample
.bash_profile (Ex: ex02/bash profile). A non-interactive Bash is a sub-
shell, and the execution of any Bash script (Chapter 5) involves a subshell
Bash. Therefore, the setting for aliases, functions, and PATH used for Shell
procedures ought to be placed in .bashrc instead of in .bash_profile.

2.14 Shell Special Characters and Quoting

The Shell uses many special characters in establishing the command lan-
guage syntax and as keys for the various expansions provided. Some often-seen
special characters are listed in Table 2.6.

Special characters help achieve many Shell functionalities. However, be-
cause the Shell interprets a special character differently from a regular char-
acter, it is impossible for a special character to stand for itself unless additional
arrangements are made. For example, if there is a file named f&g.c, how can
you refer to it in a Shell command? The solution to this problem is the use
of more special characters, known as quote characters. If you are getting the
impression that there are many special characters in Linux, you are absolutely
right. In fact, any character on the keyboard that is not alphabetic or numeric
is probably special in some way. Notable exceptions are the period (.) and
the underscore (_).

72 Mastering Linux

TABLE 2.6: Bash Special Characters

Characters Use Characters Use
>, <, &, | I/0 redirection |, & Pipe
$, :, =, [], - Variable expansion !, ^, /, : History expansion
[], *, ?, ~, {} Filename expansion &, ; Cmd termination
`, $() Cmd expansion (), {} Cmd grouping
newline Cmd line termination blank Word separation
\, ", ´ Quoting ctrl+v Literal next
tab, bs Cmd line editing del, arrows Cmd line editing
$(()) Arithmetic expr. ctrl+c,del Interrupt, abort
<() Process expansion .. in {} Sequence notation

Quoting in Bash

Bash provides the backslash (\) escape character, single quotes (´... ´), double
quotes ("..."), and ANSI-C quotes ($ ´... ´).

The character \ quotes or escapes the next character. For example,

nano f\&g.c

and

grep US\$ report.*

The characters & and $ lose their special meaning when preceded by \. Instead,
they stand for the literal characters themselves. If a space or tab is preceded
by a \, then it becomes part of a word (that is, it loses its special meaning to
delineate words). If the newline character is preceded by a \, it is equivalent
to a blank. Thus, using a \ at the end of a line continues the Shell command
to the next line. To get the \ character without escaping the next character,
use \\.

Whereas the \ escapes the next character, a pair of single quotation marks
(´) quotes the entire string of characters enclosed.

echo ´a+b >= c*d ´

When enclosed by single quotation marks, all characters are escaped. The
quoted string forms all or part of a word. In the preceding example, the quoted
string forms one word with the spaces included. The command

cat /user/pwang/ ´my>=.c ´

is used to type out a C program in the file /user/pwang/my>=.c. In this
example, the quoted string forms part of a word. To include a single quotation
mark in a string, the \ is used, as in

echo It\ ´s a good day

Interactive Use of the Shell 73

The following rules summarize quotation with single quotation marks:

1. All quoted characters, including \, are taken literally. Thus, escaping
the single quote with backslash within a single-quoted string does not
work.

2. The quoted string forms part or all of one word.

Sometimes it is desirable to allow certain expansions within a quoted string.
Quoting with double quotation marks (") serves this purpose. A pair of double
quotation marks functions the same as a pair of single quotation marks with
three differences:

• First, variable and history expansions are performed within double quo-
tation marks; that is, variable expansion keyed by the $ sign and history
expansions keyed by the ! sign work within double quotation marks. For
example,

echo "your host name is $HOST"
echo "Last command is !-1"

work as expected.

• Second, command expansions are allowed inside double quotation marks
and are treated slightly differently from normal command expansions.
Normally, the output of a command expansion, via $(...) or `...`
(Section 2.7), is broken into separate words at blanks, tabs, and new-
lines, with null words being discarded; this text then replaces the orig-
inal backquoted string. However, when command expansion is within
double quotation marks, only newlines force new words; blanks and
tabs are preserved. The single, final newline in command expansion
does not force a new word in any situation. For example,

date=`date`

and

datestring="`date`"

are different in that $date includes multiple words, but $datestring is
one word.

• Third, escaping " with backslash within a double-quoted string works.
Actually, within a double-quoted string, the backslash (\) escapes only
$, ‘, ", \, or newline. Within a double-quoted string, the combination
\! escapes history expansion, but the backslash is not removed from the
resulting string.

74 Mastering Linux

Now, we still need an easy way to include hard-to-keyboard characters in
strings. This is where the ANSI-C quotes are useful. A string in the form $ ´str

´allows you to use ANSI-C escape characters in str. For example, you can use
\b (backspace), \f (formfeed), \n (newline), and so on. For example,

alias $ ´\f ´=clear

defines a convenient alias, allowing you to clear your terminal screen by typing
ctrl+l as a command.

2.15 Simple Functions

You can take a hard-to-enter command or a sequence of commands for a
certain task and build a function to make the task easy. To define a function,
use the syntax

function fnName () {
command 1;
command 2;

...
command n;

}

A command in a function can be a Shell built-in command, a regular com-
mand, or a call to another function. Aliases don’t work inside a function. Each
command in the function definition must be terminated by a semicolon.

Once defined, you can use the function name as a command name and also
pass the function arguments. For example,

function office ()
{ /usr/bin/openoffice.org-2.0 $1; }

defines the function office. You can then invoke openoffice.org on a docu-
ment with the command

office note.doc

The special variable $1 in the function definition refers to the first argument
in the function call. In general, the positional parameters $1, $2, ... are used
to access arguments passed in a function call.

In fact, the keyword function is not necessary if the () are there. For
example,

dir ()
{

ls -lF --color=auto --color=always "$@" | less -r
}

Interactive Use of the Shell 75

gives you a DOS-like dir command.3 The special variable $@ refers to all the
arguments in the function call.

A function is normally not inherited by child Shells unless it is exported
with export -f functionName.

You can remove a function with

unset -f functionName

and display all functions with

declare -f

There is no built-in command to display a specific function, but the following
function will do the job

function which ()
{ (alias; declare -f) | \

/usr/bin/which --tty-only -i \
--read-functions $@;

}

The pair of parentheses around (alias; declare -f) groups commands just
like {}, except it calls for a subshell to execute the commands. The stdout of
that subshell is fed to the /usr/bin/which command.

With this function defined, the command which fname will now display
any alias or function definition for the given fname. If there is no such func-
tion or alias, it will also look for fname on $PATH. The special variable $@
evaluates to all the arguments passed to the function. Also note we used
/usr/bin/which instead of just which because it is not our intention to call
the function recursively.

Here is the display produced by which which.

which ()
{ (alias;

declare -f) | /usr/bin/which --tty-only -i \
--read-functions --show-tilde --show-dot $@;

}

More will be said about functions in Chapter 5, Section 5.18.

2.16 For More Information

You can use the Bash command

help | more

3Note that Linux already has a regular command dir for listing directories.

76 Mastering Linux

to get a listing of built-in commands and how to get more details on them.
The Bash man page

man bash

is a good reference on the Bourne-Again Sh Shell.
The Bash Manual from GNU can be found at

www.gnu.org/software/bash/manual.

2.17 Summary

Running in a terminal window, the Bash Shell provides a CLI to your Linux
system. You interact with the Shell via the input-processing-execution-prompt
cycle. The command line goes through a well-defined set of expansions before
getting executed. A Shell built-in command is carried out by the Shell itself. A
non-built-in or regular command involves locating an executable program in
the file system, running it in a child process, and passing to it any command-
line arguments and any environment values, including exported Shell variables
and functions.

A command name can be either a simple name or a pathname. In the for-
mer case, the command may invoke an alias or a function defined in the Shell.
Otherwise, the command is found by search through the command search
path—a list of directories given by the environment variable PATH.

I/O redirection enables you to direct the stdin, stdout, and stderr of
commands to/from files and other commands (forming pipes). Job control
makes it possible to start multiple tasks, suspend them, put them in the
background, or bring any to the foreground to reassert terminal control.

Entering of input is helped by input editing, TAB-completion, history sub-
stitution, and filename expansion.

Bash loads initialization files at start-up time. It is important to keep your
favorite settings in the appropriate init files .bashrc and .bash_profile.

The Shell uses many special characters, such as *, =, (), [], blanks, ;, and
so on. Quoting with single and double quotes and character escaping with
\ are necessary to counter the effects of such characters. This is especially
important to remember when issuing commands that require the use of such
characters.

Bash also supports function definition. A function becomes a new built-
in command. A function can take arguments and access them as positional
parameters. If you like Shell aliases, you’ll love functions. More about functions
can be found in Chapter 5.

Interactive Use of the Shell 77

2.18 Exercises

1. The command cd is built into the Shell. Why can’t it be implemented
as a regular command?

2. Consider the special directory symbol . and its inclusion on the command
search path ($PATH). What difference does it make if you do or do not
include .? If you do include ., where should it be placed relative to other
directory names on the search path? Why?

3. You have written a program that takes input from stdin and writes it
to stdout. How could you run this program if you wanted input to come
from a file named in and output to be stored at the end of a file named
out and any error to stderr be recorded in a file named errlog?

4. What if you wish to have stdout and stderr sent to the same file?

5. John wanted to append the file fb to the end of the file fa, so he typed

cat fa fb >| fa

What really happened here? How would you do it?

6. John then wanted to send a line-numbered listing of file fa to the printer.
He typed

cat -n fa > lpr

but no printout appeared. Why? What happened here?

7. John made a typo

srot file1 file2

Specify two ways using the Shell history mechanism to correct srot to
sort and reissue the command.

8. How does one set the editor used in Bash command-line editing? Show
the code.

9. Name at least two commands that are built in to Bash but also are
regular Linux commands.

10. Give a command to edit, using nano, every file in the current direc-
tory whose filename ends in .txt that contains the string Linux. (Hint:
consider the -l option of grep.)

11. What is a foreground job, background job, and suspended job? How
does one display a list of all jobs, or switch from one job to another?

78 Mastering Linux

12. How do you exit from your interactive Shell? Specify at least three ways.

13. What happens if you exit from your Shell and there are unfinished jobs?

14. Explain the difference between these two commands:

ls chap[0-9]
ls chap{0..9}

15. What is command expansion in Bash? Give the two notations used for
command expansion.

16. What is string expansion in Bash? Explain and give two examples.

17. Consider the two Bash initialization files: .bashrc and .bash_profile.
What initialization commands should be kept in which? Why?

18. What is the syntax for function definition in Bash? After defining a
function, can you undefine it? How?

19. In bash, what are positional parameters of a function? How do you export
a function into the environment? What good does it do?

20. Write a Bash function rm to move its argument files to the ~/Trash
folder. (Hint: Use mv -i.)

21. Find the Linux version running on your computer. (Hint: The uname
command.)

Chapter 3

Desktops, Windows, and Applications

In the beginning, Linux/UNIX systems were used exclusively through the
command-line interface (CLI) (Chapter 2). A graphical user interface (GUI)
employs a pixel-based graphical display and a pointing device such as a mouse,
in addition to the keyboard, to interact with the user. The first effective GUI
on an affordable personal computer1 was introduced by the Apple Lisa in the
early 1980s.

Linux offers several desktop environments (or simply desktop) for GUI,
providing workspaces, windows, panels, icons, and menus, as well as copy-
and-paste, drag-and-drop operations. Today, it is hard to imagine computer
users doing without a desktop GUI. Nevertheless, when you become more of a
Linux expert, you may find the CLI more convenient in many situations. The
right approach is to combine GUI and CLI to get the best of both worlds.

Many Linux application programs came from UNIX and were written be-
fore the graphical display became standard. Others chose not to use any GUI.
These command-line applications tend to be more efficient (less taxing on the
computer, easier to combine with other applications, and simple to access
across a network), but can be harder for novice users. GUI applications are
generally more intuitive to learn and use interactively, but they can be harder
to control or run within other programs.

We will discuss the Linux GUI in this chapter.

3.1 Desktop Overview: GNOME and KDE

After login at the console, the first thing you see is the desktop from which
you can launch applications, manage files, control your Linux system, and
perform many other tasks. A desktop provides a GUI to make operating your
computer more intuitive through a desktop metaphor by simulating physical
objects. Overlapping windows can be moved and shuffled like pieces of paper.
Buttons (icons) can be pushed (clicked) to initiate actions.

Unlike Microsoft Windows or the MAC OS, Linux offers a good number
of alternative desktops with a high degree of user customization. Included
with most Linux distributions are the most popular desktops: GNOME and
KDE. The KDE (K Desktop Environment) is derived from the CDE (Com-

1Cost about $10K in 1983.

79

80 Mastering Linux

mon Desktop Environment) developed by the X/Open Company (a joint effort
by HP, IBM, and Sun Microsystems). GNOME is part of the GNU Project.
Both are built on top of the X Windows System and offer a complete desktop
GUI together with a set of essential applications including a clock/calendar,
sound volume control, email client, Web/file browser, instant messenger, im-
age displayer, media player, address book, PDF reader, photo manager, pref-
erence/configuration editor, and more.

A good understanding of the desktop and how to use it effectively can
make life on Linux much easier. It is perhaps safe to assume that you already
have good working experience with MS Windows R© or MAC OS. A Linux
desktop is often more flexible, but works in very similar ways. Here, we will
focus on the GNOME desktop. The KDE follows the same principles.

3.2 GNOME Desktop Components

Even though a user need not invoke it, the actual command to run the
GNOME desktop is gnome-session, which serves as your Linux session man-
ager as well as GUI. The GNOME desktop displays the following components:

• Root Window—After login, the entire graphical display screen is covered
by the desktop which is the root window of GNOME. It is the space where
all other GUI objects (desktop components and application windows) are
placed and manipulated.

FIGURE 3.1: A Typical Panel

Workspace
Switcher

Current

Workspace
Window
Button

Start
Menu Logout

Desktop
Show

Handle

Launchers:

RealPlayer

Firefox

Thunderbird

Terminal 1, 2

• Control Panel—The GNOME desktop displays a Task Bar, known as
a Control Panel (or simply Panel), usually in the form of a horizontal
bar along the top or the bottom edge of the root window. The Panel
displays icons called launchers to invoke specific applications such as
Firefox, RealPlayer, and a terminal emulator, as well as applets (small
applications) such as a clock or an audio volume control. See Figure 3.1
for a typical Panel. To add objects to the Panel, right click on any empty
space in your Panel and select the Add to Panel option to display a
dialog window (Figure 3.2).

Desktops, Windows, and Applications 81

FIGURE 3.2: Add to Panel Dialog

• Desktop Objects—In the vast space left open by the Panel on the root
window, you can place objects such as files, folders, and application
launchers for easy access. Figure 3.3 shows a sample collection of desktop
objects. Pre-installed desktop objects usually include the following:

– The Computer icon gives you access to the file systems on the hard
disk, CDs/DVDs drives, and removable media such as flash drives.
Nautilus from GNOME is the file manager/browser used.

– The Username’s Home accesses your home folder where all of your
personal files are kept. You can also open this folder from the Start
menu Places.

FIGURE 3.3: Desktop Objects

82 Mastering Linux

– Trash is a link to the .Trash folder in your home directory. Use it
to hold files and folders you wish to discard. You can recover items
moved to Trash and empty trash to finally get rid of what is in
Trash.

– The Printing object allows you to add, configure, and otherwise
control printers connected to your Linux system.

– The Services object is used to control and configure network ser-
vices on your Linux.

– A device icon object appears when you insert a CD/DVD or plug
in a flash drive, a music player, or a digital camera.

Click a desktop object to open the associated program or folder. Drag
(depress the left mouse button without releasing) an object to move it
anywhere you like on the desktop. Right click an object to select possible
operations on it.

• Application Program Windows—Displayed in the root window as child
windows. Multiple child windows can overlap. You can change the input
focus from one window to another, as well as move, resize, maximize,
minimize, unmaximize, or close each window as you like.

Often, parts of the desktop can be obscured by application win-
dows. There are two quick ways to reveal the desktop by minimizing
all windows: click on the Show Desktop icon on the Panel or press
ctrl+alt+d. Either action will also restore your windows to their pre-
vious state. If it is more convenient, you can switch to a less crowded
workspace to see the desktop.

• Start Menu—The Start menu (Figure 3.4) is exposed by clicking the
start icon (often in the form of a logo for GNOME, Red Hat, Fedora, or
Ubuntu depending on your Linux version) placed at the end of the Panel.
The keyboard shortcut for the Start menu is usually alt+f1. From the
Start menu, you can perform almost all operations and can access files,
the network, installed applications, commands, and preference options.
The Panel may display additional menus.

• Workspace Switcher—Enables you to work with multiple workspaces and
to switch your screen display from one workspace to another from the
Panel. A workspace is essentially a duplicate root window to provide
more space for placing additional application windows. With several
workspaces, you can spread out your application windows for easier use.
The workspace switcher (Figure 3.1) is an applet you may add to the
Panel and configure to provide several workspaces. Your root window can
display one workspace at a time. The workspace visible is your current
worksapce. Click on the switcher to change the current workspace.

Desktops, Windows, and Applications 83

FIGURE 3.4: The Start Menu

• Window List—Displays a button on the Panel (Figure 3.1) for each
window in a particular workspace. Clicking on a window list button
minimizes and restores the window. A different set of window list buttons
is displayed when you switch workspace.

• Notification Area—Part of the Panel and displays icons from various
applications to indicate activity in the particular applications; for ex-
ample, a system update available icon, an incoming email icon, a Skype
notification icon, a pidgin IM notification icon, and so on. Clicking on
a notification icon usually displays the application window, and right
clicking on the icon reveals a menu of operations. The notification area
is usually at the right end of the Panel next to the clock applet.

3.3 Working with the GNOME Desktop

One of the best ways to get familiar with the GNOME, or any other,
desktop is to learn how to achieve specific tasks with it. Here are some tasks
important for a new Linux user.

Time and Date

If you see time or date displayed on your Panel, the clock applet has already
been added. Otherwise, add it from the Add to Panel dialog. Select clock
and click the Add button (Figure 3.2). You’ll see the time/date display added
to the Panel. Once there, right click on the time display to set preferences

84 Mastering Linux

and to adjust the time or date (Figure 3.5). You can also copy the time or
date (into an internal clipboard) for pasting to another application. Using
the same procedure, you can add other applets, drawers, menus, and any
application launchers to your Panel. You may drag an icon to move it to a
different position in the Panel. Right click an icon to remove it from the Panel,
edit its properties, or lock it in position.

FIGURE 3.5: Time Adjustment

Launching Application Programs

Perhaps the single most important purpose of a desktop is to help you run
and manage application programs. Linux offers a large number of applications.
You’ll find many of them from the Start menu organized into several general
groups such as accessories, office, graphics, Internet, programming, multimedia,
games and so on. In addition, there are many character-terminal–oriented
applications that you can invoke directly from the command line in a terminal
window.

In fact, you have multiple ways to start applications:

• Single clicking a Panel launcher icon (You may add a launcher for any
application you like.)

• Single or double clicking a desktop object, depending on your preference
setting

• Selecting an application from the Start menu or a submenu thereof

• Adding a launcher to the Panel

• Issuing a command from the command widget on the Panel

• Issuing a command in a terminal window

Desktops, Windows, and Applications 85

Most users place additional launchers for a Web browser (say, Firefox), an
email agent (say, Thunderbird), and a media player (say, RealPlayer) on the
Panel.

To initiate a graphical application, say gedit, from the command line
without the Shell waiting for it to finish or the Shell job control mechanism
getting involved, use

(gedit filename &)

This way, a subshell puts the graphical application in the background, dis-
associates it from the terminal window, and gives you back your command
prompt.

Desktop Appearance

You can customize the look and feel of your desktop display. Either
right click on an empty spot on your desktop working area and choose
change desktop background or go to

Start->System->Preferences->Look and Feel->Appearance

to expose the appearance dialog (Figure 3.6). From this dialog you can choose
a scheme, fonts, button style, and a background image for your desktop. From

Start->System->Preferences->Look and Feel->ScreenSaver

you can chose different screen savers. When your computer goes idle for a
prescribed time, your session will be locked and the screen saver images will
be displayed. You’ll need your password to resume your session. To easily
activate screen-locking at any time manually, add the lock screen icon to
your Panel.

Using and Managing Desktop Objects

For the average user, the most useful object on your desktop is perhaps the
Home folder. Click on it and you’ll invoke the GNOME file browser Nau-
tilus (Section 3.5) to display files and folders in your own home directory.
Each user’s home directory often contains these standard folders: Documents,
Download, Music, Pictures, Videos, Desktop, and the hidden .Trash. If your
Linux serves the Web, each user may also have a folder public_html where
per-user Web pages reside. Other files and folders can be set up as you work
on your Linux computer.

From the Start menu you can select any items to place on the desktop. As
you gain more experience with Linux, you will undoubtedly place more objects
on your desktop. You can drag and reposition these icons on the desktop and
rearrange them in ways you see fit. desktop objects and other files can be
moved to Trash and then eventually discarded when you empty trash (from
File menu of Trash). It is also possible to retrieve items from Trash.

86 Mastering Linux

FIGURE 3.6: Desktop Appearance

Right click a desktop object to change its name, move it to Trash, add an
emblem (a small indicator icon), or otherwise manage it.

Multiple Workspaces

The desktop workspace can get crowed with multiple application windows
quickly when you work on your Linux. Fortunately, you can set up more than
one workspace and switch from one to another to work on different tasks. For
example, you may have one workspace for Web browsing, another for email
and instant messaging, yet another for text editing and word processing, and
so on.

To enable multiple workspaces, simply add the Workspace Switcher to
your Panel. This will give you four workspaces by default. Right click on the
switcher to customize it to your liking (Figure 3.7).

The current workspace is highlighted in the switcher. Switch from one
workspace to another by clicking on the switcher. As you go to a different
workspace, the window list buttons change in the Panel to show windows in
the new current workspace. Click on a window list button to show/hide the
corresponding window.

Desktops, Windows, and Applications 87

FIGURE 3.7: Workspace Switcher and Preferences

Sessions

A Linux session starts after you log in and ends when you log out. At any given
time, a session consists of the current state of all the application programs that
you are running. Your desktop (GNOME, KDE, or some other system) is your
session manager. Often, Linux lets you choose which desktop to use when you
log in. After login, your session manager (gonme-session in this case) will
automatically start designated applications after displaying the desktop, keep
track of your currently running applications, and remember any programs not
closed before logout so that they can be restored the next time you log in (the
restore application feature).

Go to Preferences->Personal->Sessions to customize your session
manager (Figure 3.8 left). It allows you to add/remove applications that auto-
matically start at login, to view a list of currently running applications under
session management, and to enable/disable the restore application feature.

To leave the computer for a moment or two, you can prevent unau-
thorized use by locking your session with the lock screen icon or the
Start->Lock Screen option.2 The screensaver displays and you’ll need your
password to unlock the screen when you return.

2For security reasons, screen locking is not available for the root user.

88 Mastering Linux

FIGURE 3.8: Session Preferences and Panel Customization

Customizing the Panel

The placement, size, and behavior of the Panel can be set according to your
preferences. Simply right click on any unoccupied spot on the Panel and dis-
play the Panel Properties dialog (Figure 3.8 right).

You may choose to position the Panel on one of the four sides of your
screen: top, bottom, left, or right. The Expand option controls whether the
Panel spans the entire width/height of the screen or not. If Autohide is se-
lected, the Panel will hide itself automatically and will reveal itself when the
mouse is moved to its edge of the screen.

3.4 Windows

The X Window System

In Linux/Unix, graphical applications use the X Window System (originally
developed at the Massachusetts Institute of Technology) to create GUIs. Win-
dowing software such as X enables pixel-based graphical displays and the use
of windows, menus, and the mouse to interact with application programs. The
X Window System works as a GUI server (the X server) that enables client
programs (X clients) to interact with users through GUIs. X clients can con-
nect to the local X server running on the same host or a remote X server
running on a host across the network. Furthermore, the X server can han-
dle multiple stations, each potentially with multiple displays. (Two or three
20-inch LCD displays for your Linux desktop computer, anyone?)

For Linux, the X server is basic and is started within the boot sequence.
If the X server is not running, no GUI programs will work. Figure 3.9 shows
the X Window System architecture.

When an X client starts, it needs to connect to an X server running on
the local host or a remote computer. The X server is always specified by the
display option. For example,

Desktops, Windows, and Applications 89

FIGURE 3.9: X Window System Architecture

X

S
e
r
v
e
r

D
e
v
i
c
e

L
i
b
r
a
r
y

Libraries

GNOMEKeyboard & Mouse

Display

Window Manager

Application

xclock -display hostname:s.m

says the xclock display will be rendered on hostname, station number s, and
monitor number m. A station on a computer consists of a keyboard, a pointing
device (mouse), and one or more graphical display monitors. A computer may
have one or more stations, each with one or more monitors.

If the X server is local (on the same host as the client), the hostname part
can be omitted. For a single-display computer, the monitor-station designation
would be :0.0 and can usually be omitted also.

The Shell environment variable DISPLAY specifies the default X server for
any client program started without an explicit -display option. Try the com-
mand

echo $DISPLAY

to see the value. Most likely, it will be the string :0.0.

Window Manager

You control windows displayed on your desktop through a window manager.
The window manager is the piece of software that controls the display windows
in the X Window System environment. The opening, closing, size, placement,
borders, and decorations of any window are managed by the window manager.
The X Window System calls for the window manager to be a client rather
than a built-in program. In this way X can work with many different kinds of
window managers. One of the original window managers is twm.

GNOME works with the window manager to display application win-
dows on your screen (Figure 3.9). The default window manager for GNOME
is Metacity, but any GNOME-compliant window manager can be used in-
stead. Examples of such window managers include Enlightenment, Icewm,

90 Mastering Linux

Window Maker, FVWM, and AfterStep. Let’s see how to control windows
under GNOME with Metacity.

A GNOME window under Metacity consists of a thin rectangular frame
enclosing a title bar and a display area for the application program using the
window. An application may use one or more windows. Figure 3.10 shows such
a window for the xclock application.

FIGURE 3.10: GNOME Window under Metacity

Window

Menu

Button

Title Area

Close Window

Maximize Window

Minimize Window

Rectangular

Window

Frame

Window Menu

You can easily minimize, maximize/unmaximize, or close a window using
the usual buttons on the title bar. If you close all the windows of an applica-
tion, then the application will be closed. Clicking the top-left button (often
an icon of the application), right clicking on the title area, or right clicking on
a window button in the Panel displays the Window Menu from which you can
control the window. A window can be moved by holding onto the title area
and dragging it and can be resized by holding onto and dragging a side or a
corner of the frame.

A window is in the workspace where it is created but can be moved to
another workspace any time you wish. You can also make a window (an xclock
window, for example) visible in every workspace.

Windows in a workspace may overlap. Clicking on a window or its Panel
button shifts input focus to it and brings it to the top.

In addition to regular windows, an application will sometimes display a
dialog window. Such popup windows are used to display alerts, to solicit user
confirmation, or to obtain user input. For example, an application may ask
if a user really wants to quit before closing. A dialog window can be modal
or transient. A modal dialog will not allow you to interact with the main
application window until the dialog is closed. Thus, you must deal with a
modal dialog and close it before you can resume working with the application.

Window Information

Under X Windows, all windows form a containment hierarchy with the root
window (desktop) sitting at the top. Each window has a unique window ID.

Desktops, Windows, and Applications 91

The root window’s ID is root. The command xwininfo displays the window
ID and many other items of information about any window. Run xwininfo
first, then click on any target window to get the information display. Here is
a sample on the Firefox window.

xwininfo: Window id: 0x12c4116 "Homepage - Mozilla Firefox"

Absolute upper-left X: 195
Absolute upper-left Y: 95
Relative upper-left X: 4
Relative upper-left Y: 24
Width: 1321
Height: 789
Depth: 24
Visual Class: TrueColor
Border width: 0
...
Corners: +195+95 -164+95 -164-166 +195-166
-geometry 1321x789+191+71

Note that the window ID is a hex number 0x12c4116.
Now let’s take a look at some useful GUI applications on Linux.

3.5 Nautilus: the GNOME File Manager

An important aspect of any operating system is the ability to store and
manage files. The Linux file system has a hierarchical structure. Either a
regular file, a directory (folder), or a hardware device (special file) is considered
a file in the Linux file system. A directory (folder) is a file that records the
names and attributes of files it contains. Any of the contained files can, in
turn, be folders as well.

The Linux file system is all encompassing because almost everything in
Linux has a representation in the file system. Chapter 6 discusses the Linux
file system in detail.

Nautilus (Figure 3.11) from GNOME is a powerful GUI application that
helps you navigate the Linux file system and manage your files. In fact, the
desktop launchers Computer, Home, and even Trash simply invoke the nau-
tilus command on different URIs (Universal Resource Identifier). For exam-
ple,

The Computer icon nautilus computer:///
The Home icon nautilus $HOME
The Trash icon nautilus $HOME/.Trash
The Network icon nautilus network:///

Nautilus enables you to interactively navigate the file system, manage files and

92 Mastering Linux

folders, access special places on your computer, use optical drives, and reach
available networking places. See the network part of Nautilus in Chapter 7,
Section 7.4.

Navigating the File Tree

You browse the file system by following the folder-subfolder path until you
find your target file(s). Thus, at any given time you are located at a current
directory. The contents of the current directory can be displayed in a list view
or an icon view, and you can switch between them easily. The icon view is
recommended for easier visual interactions.

Double click a folder to open it and see the files in it, and click on the up
button to move up to the parent folder of the current folder. The Location
box shows the pathname leading from the root directory / to the current
directory. Normally, any file whose name begins with a period (.) is hidden.
Select View->Show Hidden Files to reveal them.

FIGURE 3.11: Nautilus File Manager

Opening a File or Folder

Double click a folder to open it and display its contents. Double click an
ordinary file to open it with the default application, for example, PDF files
with evince, a .txt files with gedit, or .html files with your preferred Web
browser. Right click an ordinary file to open it with any application you choose
and that application will be remembered as a possibility to run that particular
type of file. By right clicking, you can also elect to remove a file/folder to Trash

Desktops, Windows, and Applications 93

or to change its properties, including access permissions and the open-with
application (see Section 3.5).

It is also possible to drag a file (a PDF file, for example) and drop it on a
desktop object (the Adobe Acroread, for example) to open the file using that
particular application.

Some users find double clicking difficult. In that case, you may go to
Edit->Preferences->Behavior and select single click open instead. This
means folders will open and files will execute by a single click. Hence, you need
a different way (a ctrl click) to select a file/folder without opening it. Since
icons displayed on your desktop are actually files/folders in your Desktop
folder, the single or double click to open behavior also applies to them.

Finding Files

By clicking on the Search button, you change the Location box into a Search
box. Type a string of characters in the name or contents of the file(s) you wish
to find and press enter. The search results will be displayed. If too many files
are found, you can narrow your search by file type and by location conditions
and use the + and the - buttons to add/remove such conditions. Click the
Reload button to see new search results (Figure 3.12).

FIGURE 3.12: File Search in Nautilus

Managing Files and Folders

From the file display area, you select one or more files to manage. Click (or
ctrl click) a file or folder to select it. Use ctrl click to select additional items.
The selected items are highlighted. In icon view you may drag a rectangle
around a group of icons to select them.

From the Edit menu you can easily select all displayed items or use the
Select Pattern option to give a string pattern to match the filenames to be

94 Mastering Linux

selected. Example patterns are *.html (all names ending in .html), where
the character * matches any string of zero or more characters. See Section 2.7
for more about such patterns.

Making a new selection cancels the previous selection. If you ctrl click
on a highlighted item or click on an empty spot in the file display area, the
selection is also canceled.

After making a selection, you can perform operations on the selected files.

• Open the Edit menu to select operations on the selected items.

• Drag and drop the selected items onto a folder (or the desktop which is
a folder anyway) to move them there.

• Grab the selection, then hold down alt, and drag to a new folder and
release the mouse. Then select the operation you wish, including move
here, copy here, or link here. A link is a shortcut or a pointer to an actual
file (Section 6.2).

• Right click on your selection to see the available operations. These in-
clude moving to trash, open with, copying, send to, and changing file
properties (name, permissions, list of applications to open files of this
type, and so on).

Access Control for Files and Folders

On Linux a file is owned by the user who created it. The file owner can set
the permissions for the file to control which users will have what accesses to
it.

Users are also organized into groups. A user can belong to multiple groups.
The file /etc/groups lists groups and group members. The file owner can also
set the group attribute to any group to which the owner belongs.

As a file owner, you can set the read (r), write (w), and execute (x) permis-
sions for three disjoint set of users: the file owner (u), other users in the file
group (g), and all others (o). Each permission is independent of other permis-
sions. For example, a file may have no permissions for u, but r and w for o. It
may not make much practical sense, but it does drive home the point of the
u, g, and o permissions being independent. The meaning of each permission
is as follows:

• r—Permission to open a file or to inspect contents of a folder

• w—Permission to modify a file or to create or delete files in a folder

• x—Permission to run a file as a program or to enter a folder to reach
files contained in it

You set/change file permissions by right clicking the file and selecting the
properties dialog (Figure 3.13 left).

The root users are system managers and have all permissions to all files in
the file system, regardless of any file permission settings.

Desktops, Windows, and Applications 95

FIGURE 3.13: File Permissions and Associated Applications

Writing CDs or DVDs

To create a data CD, click the CD/DVD Creator option on the go menu or
simply insert a blank disc into the optical drive. This leads to a special folder
(burn:///). Drag files and folders you wish to write to the disc into the burn
folder. When ready, click on the Write to Disc button.

To copy a CD/DVD, simply insert the disc in the optical drive, right click
on the resulting desktop icon (or find it from the Computer icon), and choose
Copy Disc.

3.6 Graphical Applications

An application is graphical if it employs a GUI for interacting with the
user. For example, xclock is a graphical analogue clock (Figure 3.10). Some
graphical applications allow you to specify the size and location of the window
by the geometry command option:

-geometry string

The geometry string is given in the form c x l x y, where c and l give the number
of characters and lines for the window and (x, y) gives the window position
on the screen. For example, -geometry 80x42+100+8 says the window is 80
columns and 42 lines with its upper left corner located 100 pixels from the
left edge and 8 pixels from the top edge of the screen. The coordinate -1-4
locates the lower right window corner measured from the right and the bottom
edges in the obvious way. Also -1+1 locates the upper right corner and so on.
Therefore, the command

96 Mastering Linux

xclock -geometry -0+0

displays an xclock window on the upper right corner of your screen.
Here is a list of some other useful graphical applications.

• The xfig command—A powerful diagramming program for interactive
authoring of figures and exporting the resulting figure to various graphics
formats.

• The gedit command—GNU desktop text editor.

• openoffice.org—A comprehensive word processing, presentation au-
thoring, and spreadsheet application that is free and open. It can process
Microsoft Word and other files.

• The evince command—A document viewer that supports multiple doc-
ument formats, including PDF, Postscript, tiff, and dvi.

• The eog command—The Eye Of Gnome image viewer to display most
image formats, including BMP, GIF, JPEG, PNG, SVG, and TIFF.

• The gimp command—The GNU Image Manipulation Program is a full-
function raster image authoring and editing tool similar to Adobe Pho-
toshop.

• ImageMagick—A set of tools for editing and converting raster and other
image formats. The display command in this tool set provides a GUI
for many operations on images.

• Screen Capture—The import command allows you to capture any vis-
ible window (by window ID) or rectangular area (by mouse operation)
and save the image in a designated format. The ksnapshot program
presents a visual interface for screen capture and also allows a delay
before the actual capture.

• The gcalctool command—A basic desktop calculator. Some may prefer
the command-line tool bc which takes infix notation input.

• Skype—A popular Internet telephony application for making phone calls
to and receiving phone calls from other Skype users online (free service),
as well as regular landline or cell phones (paid service).

• RealPlayer—A popular and free audio and video media player from Re-
alNetworks.

Desktops, Windows, and Applications 97

FIGURE 3.14: Starting a Terminal

3.7 The GNOME Terminal

Because Linux is based on UNIX and offers many programs that run under
character-based terminals, character terminal emulation programs are pro-
vided to run such applications. Linux commands requiring a terminal window
include bash (the default Linux Shell), vim (text editor), ssh (secure remote
login), sftp (secure file transfer), and many other command-line applications
such as ls (directory listing), rm, mv, more, man (displaying manual pages),
and so on.

The classic xterm terminal emulator is available on most Linux distribu-
tions, but most users prefer to use the gnome-terminal.

Starting a GNOME Terminal

A GNOME Terminal emulates a character-based computer terminal and al-
lows you to run a Shell or command-line applications. Here is how it works.
A GNOME Terminal emulates the xterm from the X Consortium which can,
in turn, emulate the various DEC (Digital Equipment Corp.) terminals such
as VT220 and VT320.

From the Start menu select System Tools->Terminal (Figure 3.14) to
get a GNOME Terminal which will run Bash by default. Without customiza-
tion, the terminal attributes are specified by a default profile. You can cus-
tomize the size, font, colors, and other attributes for the terminal window
from the Edit->Current Profile menu option.

By creating different terminal window profiles and giving them names,
you can use them for different instances of GNOME Terminals you run. Let’s
assume that you have saved your favorite window profile under the name main.

Because easy access to a terminal can be such a convenience, we recom-

98 Mastering Linux

mend that you add a terminal launcher on the Panel to start your customized
terminal window. Follow these steps:

1. Go to Start->System Tools->Terminal and right click on Terminal to
select Add to Panel, or you can right click on any empty space on the
Panel and select Add to Panel to find a launcher under System Tools.
After this step, you’ll have a terminal icon on your Panel which will
launch a default terminal window.

2. To customize this terminal window, right click on its Panel icon to expose
the Properties dialog (Figure 3.15) to customize this launcher. Now you

FIGURE 3.15: Terminal Launcher Properties

can modify the command entry to something suitable. For example,

gnome-terminal --geometry=80x30+130+200 \
--window-with-profile=main

This command invokes the program gnome-terminal to display an
80-character by 30-line terminal window whose upper left corner is po-
sitioned 130 pixels from the left edge and 200 pixels from the top edge
of the screen. The 80x30+130+200 notation is known as the geometry of
the window (Section 3.6). The window preferences come from the profile
main.

3. If you wish, you may also change the Panel icon for the launcher. When
you have several terminal launchers with different profiles (Figure 3.1),
placing distinct icons on the Panel makes good sense.

Terminal Window and the Shell

When you start a terminal window, your designated Shell (bash by default)
will be the application running in the window. The Shell can run in the window
as a regular Shell or a login Shell. The GNOME Terminal allows you to make

Desktops, Windows, and Applications 99

this choice as part of the window profile setting. The difference is that a regular
Shell reads only the Shell initialization file, whereas a login Shell will also read
the Shell login initialization file (Section 2.13).

In some situations, you may want to start a terminal window to run some-
thing other than a Shell. For example,

gnome-terminal -e "ssh -X pwang@monkey.cs.kent.edu"

gives an ssh command to run in the terminal window instead of the
Shell. The result is a GNOME Terminal connected to the remote host
pwang monkey.cs.kent.edu for the user pwang to log in.

The terminal window closes when the application, whether a Shell or some
other program, terminates.

Select, Copy, and Paste

It is generally a good idea to use what is already displayed on the screen
and avoid typing the information again to save time and preserve accuracy.
With the GNOME Terminal, and other text-displaying windows such as a
Web browser window or a text editor window, you can select, copy, and paste
text with ease.

• Select—Press the left mouse button, click a character, double click a
word, or triple click a line and then drag the mouse over a section of
text to highlight and select the desired text.

• Copy—Simply selecting the text copies it into a clipboard. You can also
right click the highlighted text (or use the Edit->Copy menu option) to
explicitly copy the text into a copy buffer. Any previous content in the
clipboard or copy buffer is lost.

• Paste—Go to the target application, position the input cursor where you
wish, and then click the middle mouse button to paste from the clip-
board. Or use the Edit->Copy option of the target application window
to paste from the copy buffer.

A GNOME Terminal remembers displayed text lines (500 by default). Use
the scroll bar to go back and forth on the text.

Web and Email Links

The GNOME Terminal recognizes Web and email addresses. For example, it
recognizes http://www.kent.edu and pwang@cs.kent.edu.

Move your mouse cursor over such an address and it will be automatically
underlined, signaling that the GNOME Terminal has recognized the address.
Right click and select the Open Link (Send Email To) option to launch a
Web browser (an email application) directly. This feature is very convenient.

The application launched in response to such usage is defined by your
Preferred Applications setting under the Start menu.

100 Mastering Linux

3.8 Saving Energy

We all need to make an effort to save energy in big and small ways.
GNOME provides power management that you can control. From the Start
menu, use Preferences->System->Power Management or simply run the
command

gnome-power-preferences

to set your power preferences. If you place a launcher for it on the desktop, it
can be even easier.

If your Linux is running as a network server and needs to be up all the
time, then you don’t ever want to put your computer to sleep. If it is not
running as a network server, set it to put the display and computer to sleep
after a reasonable period of inactivity. This can save a lot of energy and your
equipment in the long run.

When you leave your computer for the day, you can set the computer to
sleep and turn off the display by its physical power switch. It is a good work
habit to have.

If you will leave the computer for days, turning it off completely is more
than reasonable.

3.9 Accessing Help and Documentation

From the Start menu select System->Help to access the full manual for
your Linux system. You’ll find sections on the GNOME desktop, different
types of applications, as well as system tools. You can also browse the man
pages and other information.

You can also reach item-specific help/documentation. For example, right
clicking the Panel or an applet in the Panel also reveals a Help option that
leads to the part of GNOME documentation specific for that particular item.

In general, the Help button on the menu bar of any application program
will lead to documentation and user guides for that particular application.

3.10 Summary

GNOME and KDE are the two most widely used GUI environments for
Linux. They both rely on the X Window System for graphical display and
windowing support. Knowledge and skillful use of the GUI can make life on
Linux easier and you more productive.

As a modern GUI system, GNOME provides a graphical point-and-click
interface to your Linux computer. The GNOME session manager (gnome-
session) displays and controls the desktop which is the root window containing
launchers, windows, and the control Panel. Multiple workspaces make working

Desktops, Windows, and Applications 101

with many windows much easier. Metacity is the window manager for the
GNOME desktop.

The Start button on the Panel exposes an extensive menu for many oper-
ations, including logout/shutdown, adding/removing programs, setting pref-
erences, starting applications, administering the system, and so on. Other
objects on the Panel provide for workspace switching, minimized window
parking, quick launchers for important applications, a clock/calendar, and
a notification area. The Panel is also easily customizable.

In addition to the desktop, GNOME also manages your login session. It
automatically starts designated applications when you log in, keeps track of
your currently running applications, and remembers any programs not closed
before logout so they can be restored next time you log in.

Another advantage of the desktop environment is easy launching of appli-
cations. In addition to issuing Shell commands, you can also start applications
by clicking a Panel icon, a launcher, or an option from the Start menu.

GNOME comes with many useful GUI applications. The gnome-
terminal is important because it provides a terminal window for the Shell
and is your ticket to the command line. Cut-and-Paste of displayed text is sup-
ported with the clipboard and the copy buffer. Automatic recognition of Web
and email addresses enables you to use them directly. The gnome-terminal
can be customized and your settings can be saved in profiles for reuse. A
comfortable terminal window can make life on Linux much easier.

The GNOME Nautilus file browser provides a visual environment to nav-
igate the file tree and to manage files and folders as well as their attributes.
Other useful GUI applications include image processing, document prepara-
tion/viewing, audio-video playing, and creating CDs and DVDs.

3.11 Exercises

1. How do you move your Panel to the top or bottom of the root window?

2. How do you make your Panel span the entire width of the root window
or be centered at the top/bottom?

3. Do you have a logout icon on the Panel? If not, describe how to place
one on it.

4. Do you have a workspace switcher on your Panel? If not, describe how
to create one.

5. Is it possible to add/remove workspaces? How?

6. How does one place an analogue clock on the desktop?

7. Describe how to place a power management launcher on the desktop.

8. What is eog? Place a launcher for it on the desktop.

102 Mastering Linux

9. What is evince? Place a launcher for it on the desktop.

10. Setting up a terminal window correctly can make a big difference in
how comfortable you will be using the Linux command-line interface.
Consider the command

gnome-terminal --geometry=80x30+350+150
--window-with-profile=main

and explain its meaning. Create a named profile of color, font, and other
preferences for yourself. Make yourself a panel launcher to start your
customized gnome-terminal.

11. On Linux, which GUI application can be used for MS Word and Excel
documents? Install it on your computer and place an icon on the desktop.

12. Find out how to use xfig.

13. Find out how to use the commands gimp and display.

14. Burn a data CD and describe your procedure.

Chapter 4

Filters and Regular Expressions

One of the strengths of Linux is the richness of its command set with nearly
700 different commands. This richness is further enhanced by the ease with
which new commands can be crafted by combining existing ones.

Effective use of Linux involves knowing existing commands, learning how to
combine them into new commands, and selecting the right commands to apply.
Throughout this book, we will introduce many useful Linux commands and
demonstrate how they can be put to good use individually and in combination.

Many commands are filters. A filter usually performs a simple and well-
defined transformation of its input and follows certain conventions to make
it easy to connect to other programs. Filters can be strung together using
pipes (Chapter 2, Section 2.5) to become pipelines that can perform complex
functions on data. Many useful filters are presented in this chapter. Examples
show how to build pipelines in practice.

For instance, the command sort is a filter that orders its input lines. The
command tr translates specific characters in the input into other characters.
You can combine these two filters with others to create and maintain a simple
database of addresses.

Utilizing and processing human readable textual data have been an em-
phasis of Linux. Within textual data, we often need to identify the exact places
where transformations or manipulations must take place. Regular expressions
provide standard ways to specify patterns in textual data. It is important to
become familiar with regular expressions because they occur frequently and
are basic to programming. We explain the regular expression notations and
how they are used in applications such as grep, sed/vi, and awk.

4.1 Commands and Filters

Simply put, a filter is any command that produces output by transforming
its input by following a set of well-defined conventions. The conventions make
filters easy to combine with other programs in a pipeline (Figure 4.1).

A filter is distinguished from other commands by the following character-
istics:

1. A filter takes input from the standard input (stdin). Thus, when we
invoke a filter, it does not need a file argument.

103

104 Mastering Linux

FIGURE 4.1: A Filter

Input

Lines Lines

Output

Transformed

Filter

2. A filter sends its results to the standard output (stdout). Therefore, it
does not need an output file argument.

3. A filter performs a well-defined transformation on the input and pro-
duces the output with no header, trailer, label, or other formatting.

4. A filter does not attempt to interpret its input data in any way. Thus,
it never treats its input as instructions or commands.

5. With few exceptions, a filter does not interact with the user for addi-
tional parameters other than those supplied on the command line.

6. Any error or diagnostic output produced by a filter is sent to the stan-
dard error output (stderr). Hence, error messages are never mixed with
results produced.

These characteristics make a filter easy to fit into a pipeline. The overall
purpose is to make a program produce output that can be fed into another
program as input and that can be processed directly. Typically, such input
contains lines of text with no decorative labels, comments, or extra formatting.
A separate line is used for each data entry. For example, if the data entries are
words, then the input should be one word per line. For more complicated data
entries (for example, those produced by ls -l), the line may consist of several
fields separated by spaces, tabs, or colons (for example, /etc/passwd).

Many Linux commands are filters that can also work on files. The conven-
tion is If filenames are supplied as arguments, a command can use them for
input/output. Otherwise, if no files are given, the command acts as a filter.

The process expansion (Chapter 2, Section 2.7) feature of Bash makes it
possible to treat output from filters as input files to other commands.

Let’s look at some filters and then show how to build pipelines with them.

Leading and Trailing Lines: head and tail

The commands head and tail are available for displaying the leading and
trailing lines of a file, respectively. The command

head [-k] [file ...]

outputs the first k (default 10) lines of each given file to the standard output.
If no file argument is given, the standard input is used. The head command

Filters and Regular Expressions 105

is a quick way to examine the first few lines of a file, which are often all that
is needed.

The command tail is the opposite, displaying the last part of a file on the
screen:

tail [starting-point] [file ...]

outputs the last part (from starting-point to the end or, by default, the last
10 lines) of each given file. If no file is specified, the standard input is used.
The starting point is specified as

+k (line k from the beginning)
-k (line k from the end)

If the integer k is followed immediately by the characters b or c, tail will count
blocks or characters, respectively, instead of lines. The -f option instructs
tail to continue, even after the end of the file has been displayed, repeatedly
probing the file in case more lines are appended. This option provides a way
of monitoring a file as it is being written by another program.

In pipelines, head and tail are useful for selecting some lines from the
input and excluding others. The more (less) command can be used at the
end of a pipeline to manage long output.

Character Translation: tr

The command tr copies standard input to standard output, substituting or
deleting specified characters. For example,

tr A-Z a-z < file1 > file2

creates file2 as a copy of file1, with all uppercase letters translated to the
corresponding lowercase ones. Another example is

tr tab % < file1 > file2

where tab must be escaped by ctrl+v when typing this command. This
method allows you to see each tab in file1 as a % character in file2 (assuming
file1 does not contain any % characters). Generally,

tr string1 string2

translates string1 characters to the corresponding string2 characters, assuming
the two strings are of the same length. If string2 is shorter, it is treated as if it
were padded with enough repetitions of its last character to make it the same
length as string1. A range of characters can be given, as in x-y. A character
also can be given by its ASCII code in octal (for example, \040 for space,
\011 for tab, and \012 for newline). For example, to replace a string of
blanks with a newline, use

106 Mastering Linux

tr -s ´\040\011 ´ ´\012 ´

The -s (squeeze) option shortens all strings of consecutive repeated char-
acters in string1 to just one character. The -c (complement) option is used
to specify string1 by naming characters not in it. Thus,

tr -cs 0-9A-Za-z ´\012 ´

creates a list of all words (one per line) in the input. In this example, string1
is all characters except numerals and letters.

When the option -d (delete) is given, characters in string1 are deleted from
the output, and there is no need for string2. For example, to rid the input of
all cr characters, we can use

tr -d "\015" < file

Tab Expansion

Tabs often need to be expanded into an equivalent number of spaces or vice
versa. However, this transformation is not performed by tr because each tab
must be replaced by just enough spaces to move the output column position
to the next tab stop. Tab expansion and its inverse transformation are slightly
more complicated than simple character-for-character replacement. The filters

expand (substitutes spaces for tabs)
unexpand (substitutes tabs for spaces)

are used for these purposes. For example,

expand 6 < file

replaces each tab in file by spaces, assuming that tab stops are 6 (default 8)
spaces apart.

Folding Text Lines

It is sometimes necessary to make sure lines of text are within a certain length
for easy display, viewing, or printing. The fold filter breaks up long lines by
inserting a newline character where necessary.

fold < file

The default is to limit lines to a length of 80 characters. Useful options include

-c n (sets width to n columns)
-s (breaks lines only at spaces)

For example,

fold -w 72 -s report > new report

creates new report as a version of report with all lines folded at spaces to
within 72 characters.

Filters and Regular Expressions 107

Sorting Text Lines

Data often are sorted in some kind of order for easy access and manipulation.
You may want to alphabetize a list of names and addresses, combine several
such lists into one, look an entry up in a list, or compare two lists already in
order.

The sort command takes input lines and writes them to the standard
output in sorted order. The units being sorted are entire lines. Each line
may contain one or more fields, which are separated by one or more blanks
(spaces or tabs). For example, a file called students (Ex: ex04/students)
may contain the following lines:

F. Smith 21 3.75 Physics
J. Wang 23 2.00 Accounting
R. Baker 20 3.20 Chemical Engineering
S. Doe 24 3.20 Business
P. Wang 22 4.00 Computer Science

The first line contains five fields (separated by white space); the third line
contains six fields. The sort command allows you to use field positions to
specify sort keys for ordering the lines. A sort key is defined by a starting and
an ending field position in a line. The sort keys in different lines are compared
to order the lines.

Thus, if you specify the sort key as the second field to sort the file
students, then the lines will be ordered by last name using, by default, the
ASCII collating sequence. In the absence of any specification, the sort key is
the entire line. Multiple sort keys are given in order of importance. In com-
paring any two lines, sort uses the next sort key only if all previous sort keys
are found to be equal.

The command has the general form

sort [options] [--key=key . . .] [file . . .]

All lines in the given files are sorted together. A file named “-” is the standard
input. If no file is given, sort uses the standard input. It writes to the standard
output by default. Keys are given in order of significance. A key is given by
two field positions:

begin[,end]

which specify a sort key consisting of all characters between the begin and end
positions (field separators excluded). When omitted, end becomes the end of
line. Each position has the form

f [.c]

where f is a field number, and the optional c is a character number. For
example, the position 2.3 indicates the third character of the second field. If

108 Mastering Linux

TABLE 4.1: Sort Keys

Specification Key
2,3.0 Second field
4 Fourth field to end of line
2.3,4.7 Third character of second field to seventh charac-

ter of fourth field, inclusive

omitted, c is 1. Thus, the position 3 is the same as 3.1. Table 4.1 provides
some examples of sort key specifications.

Therefore, the command

sort --key=2,3.0 students

sorts the file students by last name. In this and many other cases, the ending
field can be omitted without affecting the search.

Sort keys are compared using ASCII ordering, unless one of several options
is used. A few important options are listed here:

f Treats all uppercase letters as lowercase letters
n Sorts by increasing magnitude using a leading numerical string in

the sort key where the numerical string may have leading blanks
and/or a sign followed by zero or more digits, with an optional
decimal point

r Reverses the sense of comparisons and sorts the lines in reverse
order

These option characters can be given globally, affecting all sort keys, or
immediately after a key specification to affect only that sort key. Note some
examples:

ls -l | sort -n --key=5,6.0 (sort by increasing byte count)
ls -l | sort --key=5,6.0nr (sort by decreasing byte count)

For multiple sort keys, consider

sort --key=4,4.4nr --key=5 students

which sorts by grade point average (4th field), highest first, and break ties
with the second key, the department name (field 5 to end of line). See man
sort for more information.

4.2 The grep Command

The grep command is a filter that provides the ability to search and iden-
tify files containing specific text patterns or to find all lines in given files that

Filters and Regular Expressions 109

contain a certain pattern. The command has many possible applications. You
may search for a name, a subject, or a phrase. You may search for something
contained in a file whose filename you have forgotten, or you can extract text
lines from files that pertain to a particular subject. The grep filter is often
useful in pipelines. For example,

look men | grep gitis

is a cute way to find the word “meningitis.”
The name grep comes from generalized regular expressions which are ex-

actly what grep uses to specify search patterns. The general form of the grep
command is

grep [options] [patterns] [files]

It searches for the given regular expression patterns (Section 4.3), using a
fairly efficient matching algorithm, in the given files and outputs to stdout
the matching lines and/or file names. Making it flexible, many options control
how exactly grep works . A grep command searches the specified files or

TABLE 4.2: Options of the grep Command

Option Description
-E Enables matching of extended regular expression patterns (same as

the egrep command)
-F Uses a fast algorithm for matching fixed-string patterns (same as

the fgrep command)
-c Displays only a count of the matching lines
-f file Takes patterns from file, one per line
-i Ignores the case of letters
-l Lists only names of files with matching content
-n Adds a line number to each output line
-s Displays nothing except errors (silent mode) and returns exit status

1 if no match
-v Displays all non-matching lines
-w Matches whole words only
-x Displays whole-line matches

standard input for lines that match the given patterns. A line matches a
pattern if it contains the pattern. Each matched line is copied to the standard
output unless specified otherwise by an option (Table 4.2). The output lines
are prefixed with a filename if multiple files are given as arguments. Generally
speaking, the grep command is used either to obtain lines containing a specific
pattern or to obtain the names of files with such lines.

For example, let’s say you have a file of phone numbers and addresses.
Each line in the file contains the name of the person, a phone number, and an
address. Let’s name this file contacts (Ex: ex04/contacts). A few typical
entries follow:

110 Mastering Linux

(330) 555-1242 Bob Smith C.S. Dept. Union College. Stow OH 44224
(415) 555-7865 John Goldsmith P.O. Box 21951 Palo Alto CA 94303
(415) 555-3217 Bert Lin 248 Hedge Rd Menlo Park CA 94025
(617) 555-4326 Ira Goodman 77 Mass. Ave. Cambridge MA 02139

Consider the command

grep -F string contacts

or equivalently

fgrep string contacts

If string is a name, then any line containing the given name is displayed. If
string is an area code, then all entries with the same area code are displayed.
If string is a zip code, then all lines with the same zip code are displayed.
Also,

fgrep -v MA contacts

displays all addresses except those in MA.
Here is an application dealing with multiple files. Let’s say you have a

directory named letters that you use to file away electronic mail for safekeeping
and later reference. Suppose you need to find a letter in this directory, but
you don’t remember the letter’s filename. All you recall is that the letter deals
with the subject “salary”. To find the letter, use

cd letters
fgrep -i -l salary *

The command searches all (non-hidden) files under the current directory for
lines containing the string salary (ignoring case differences) and displays only
the name of any file with matching lines. The Shell variable $? records the exit
status of a command (Chapter 5, Section 5.7). The grep command returns
exit status 0 if any matches are found, 1 if none, and 2 if error.

4.3 Regular Expressions

In the grep command and many other text processing situations, the
need to find a string of characters matching a particular pattern arises. For
example, testing if a file name ends in .pdf, checking if a particular user input
represents a number with an optional leading sign, or making sure that a line
of text has no trailing white spaces. In order to define patterns to match, we
need a notation to specify patterns for programs. A regular expression is a
pattern matching notation widely used and understood by programmers and
programs.

The simplest regular expression is a fixed string such as Ubuntu or CentOS.

Filters and Regular Expressions 111

Such a regular expression matches a fixed character string. However, regular
expressions are much more flexible and allow you to match strings without
knowing their exact spelling.

In Linux, the applications grep, vi/vim, sed, egrep, and awk, among
others, use largely the same regular expressions. Table 4.3 gives the basics
for regular expression notations that most programs understand. The grep
command accepts many additional pattern notations (see Section 4.4 and the
grep man page).

TABLE 4.3: Basic Regular Expressions

Pattern Meaning
x A character x with no special meaning matches itself.
\x Any x, quoted by \, matches itself (exceptions: newline, <,

>).
^ The character ^ matches the beginning of a line.
$ The character $ matches the end of a line.
. The character . matches any single character.
[string] A string of characters enclosed by square brackets matches

any single character in string.
[x-y] The pattern matches any single character from x to y.
[^string] The pattern matches any single character not in string.
pattern* It matches pattern zero or more times.
re1re2 Two concatenated re’s mean a match of the first followed by

a match of the second.
\< The notation matches the beginning of a word.
\> The notation matches the end of a word.

Consider editing, with vim, a recipe that contains many steps labeled
sequentially by Step 1, Step 2, and so on. In revising the recipe, you need
to add a few steps and renumber the labels. A search pattern can be specified
by the regular expression

Step [1-9]

where the notation [1-9] matches any single character 1-9.
In the vim editor (see appendices), you can search with the command

/Step [1-9]

and make the appropriate modification to the number. After that, you can
repeat the search using the vim search repeat command n, change another
number, search, and so on until all the changes have been made.

Let’s put the regular expression notations to use and look at some specific
patterns.

112 Mastering Linux

[A-Z] (any capitalized character)
[0-9]* (a sequence of zero or more digits)
\<[A-Z] (any word that begins with a capital)
^##* (one or more #’s starting in column one)
;;*$ (one or more ;s at the end of a line)
ing\> (any word ending in ing)
\<[A-Z][a-z]*\> (any capitalized word)

In a regular expression, the * character indicates an occurrence of zero or more
times of the previous character/pattern. In Table 4.3, we see regular expression
special characters: [,], *, ^, and $, each having a prescribed meaning as a
pattern specifier.

Quoting in Search Patterns

The use of special characters in any searching scheme inevitably leads to the
question of how to search for a pattern that contains a special character. Let’s
say that you are editing a report and you want to search for [9], which is
a bibliographical reference used in the report. Because the regular expression
[9] matches the single character 9, you need to quote the [and] so that
they represent themselves rather than pattern specifiers. The solution, ironi-
cally, is to introduce yet another special character, the backslash (\), to serve
as a quote character that prevents the immediate next character from being
treated as a pattern specifier and forcing it to stand for itself. Thus, the pat-
tern \[9\] matches [9], and the pattern \[[1-9]\] matches the strings [1]
through [9]. To match any such bibliographical reference, use the pattern
\[[1-9][0-9]*\]. Here are some more pattern examples:

\.\.\. (matches ..., namely three dots)
\/* (matches /*)
\\ (matches \)
[0-9A-z] (matches any of the indicated characters)

Quoting a character that does not need quoting usually causes no harm.

4.4 Patterns for grep

Most of the basic regular expression patterns listed in Table 4.3 work in
programs accepting regular expression patterns. The grep command also ac-
cepts extended regular expressions available via the -E option or through the
egrep command. Extended regular expressions add notations described in
Table 4.4 to the basic regular expressions.

In Table 4.4 re denotes any regular expression. The precedence of operators
used for extended regular expressions is (), [], ", +, ?, concatenation, and |.
Care should be taken when entering patterns on the command line because
many pattern characters are also special Shell characters. It is safest to always

Filters and Regular Expressions 113

TABLE 4.4: Extended Regular Expressions

Pattern Description
\w Matches an alpha-numerical char, same as [0-9A-Za-z].
\W Matches a non-alpha-numerical char, same as [^0-9A-Za-z].
re+ Matches re repeated one or more times.
re? Matches re zero or one time.
re{n} Matches re repeated n times.
re{n,} Matches re n or more times.
re{n, m} Matches re n to m times.
re1|re2 Matches either re1 or re2.
(re) Matches re. Parentheses delineate patterns. For example,

(cb)+ matches cbcb, but cb+ does not.

enclose the entire pattern in a pair of single quotation marks. Here are some
more examples:

grep ´\-s ´ (matches -s; the \ prevents -s from becoming a com-
mand option)

grep -i ´^linux ´ (matches linux at the front of a line, ignoring case)
grep ´ch[0-9]* ´ (matches ch followed by any number of digits)
egrep \.html?\> (matches a word ending in .htm or .html)
egrep ´\<\w+\.docx? ´ (matches any word followed by .doc or .docx)

The grep commands are often used in a pipeline with other commands
to filter output. More examples of grep within pipelines are discussed in
Section 4.6.

Information on regular expressions presented here forms a basis for learning
more elaborate regular expressions in languages such as Perl, Ruby, Javascript,
and Java.

4.5 A Stream Editor: sed

The sed program is a filter that uses line-editing commands to transform
input lines, from stdin or a file, and produces the desired output lines (Fig-
ure 4.2). Sed is a non-interactive, line-oriented editor. It applies prescribed

FIGURE 4.2: The Stream Editor sed

Input

Lines Lines

Output

Edited

sed

114 Mastering Linux

editing actions to lines matching given basic regular expression patterns.
In practice, sed is used for such chores as deleting particular lines, double

spacing a program listing, and modifying all occurrences of some pattern in
one or more text files.

In fact, sed and grep can perform many of the same functions. However,
sed is more powerful because it supplies text editing capabilities. The sed
program buffers one input line at a time, repeating the following steps until
there are no more input lines. Figure 4.3 shows the sed processing cycle.

1. If there are no more input lines, terminate. Otherwise, read the next
input line into the buffer, replacing its old content, and increment the
line count (initially 0) by 1.

2. Apply all given editing actions to the buffer.

3. Write the buffer out to the standard output.

4. Go to step 1.

FIGURE 4.3: The Editing Cycle of sed

Execute

commands

buffer
Increment

line count

Output

line
Read next

Each editing action may be applicable to all lines or to just a few. Therefore,
it is possible for some lines to pass through sed unchanged; at the same time,
others can be modified or deleted entirely. Frequently, sed is used in the simple
form

sed script [file] . . .

where script specifies one or more editing actions separated by semicolons.
For example,

sed ´s/Web site/website/ ´chapter1
sed ´s/Web site/website/g ´chapter1

The first command reads the input file chapter1, substitutes (the s action)
any first occurrence of Web site in each line with the string website,1 and

1The AP (Associated Press) style book recently made the change.

Filters and Regular Expressions 115

outputs all lines, changed or not, to the standard output. If any line contains
multiple instances of Web site, only the first instance in the line will be
replaced. To replace all occurrences, use the second command where the g
(global modifier) does the trick.

If no file is specified, sed edits lines from stdin. The single quotation marks
around script prevent the Shell from interpreting any special characters in the
script. The command

sed ´s/Red Hat/Fedora/g ; s/ubuntu/Ubuntu/g ´chapter1

applies two string replacement actions to each line of chapter1. The option
-f scriptfile file indicates a file containing the desired editing script. If a script
file double contains the two lines

s/$/\
/

then

sed -f double file

adds an empty line after each line in file, producing a double-spaced output.
As in grep, the pattern $ means the end of a line.

Each editing action can also be specified to act on a range of lines. Here
is the general form:

[address1] [, address2] action [args]

where the addresses specify the range of input lines to apply the given action.
An address can be a line number or a pattern.

• No address—The given action applies to every line.

• One address—The action applies to every line matching that address.

• Two addresses—The action is applied repeatedly to the next set of lines
beginning with a line that matches address1, up to and including the
first line that matches address2 (but not address1).

For example,

sed ´/^$/d ´file

applies the action d (delete line) to each line matching the single address
/^$/, an address obtained by searching for the next empty line. The output
will be the same as file, but with all empty lines deleted. Another version of
this example deletes all blank lines

sed ´/^[�.]*$/d ´file

116 Mastering Linux

We use the symbols � and . to stand for a space and a tab, respectively. The
address matches a line containing zero or more spaces and tabs and nothing
else.

Let’s look at an example involving a two-address action. Say that in your
HTML files tables are sandwiched between two lines

<table ... >

and

</table>

Suppose you wish to remove all tables from a given HTML document (Ex:
ex04/remove table). You may use

sed ´/<table .*>/,/<\/table>/d ´try.html > notables.html

The delete line action d is applied to all table lines.
A useful sed option is -n, which skips step 3 of the sed cycle. Hence, the

command

sed -n ´/pattern/p ´

with the output-line action p, is equivalent to grep ´pattern ´, and

sed -n ´12,20p ´file

outputs only lines 12–20 of the given file.
Hence, if you wish to extract all the tables from a given HTML document

(Ex: ex04/extract table). You may use

sed -n ´/<table .*>/,/<\/table>/p ´try.html > tables

to output lines between the beginning and the end of each table using the p
action and the -n option. Alternatively, you can use

sed ´/<table .*>/,/<\/table>/!d ´try.html > tables

The exclamation point (!) reverses the sense of the specified addresses; it
applies the specified action to every line except the lines matching the given
address.

Also, the y action

y/string1/string2/

when given two equal-length character strings, performs character transla-
tions. Thus,

sed ´y/abc/ABC/ ´file

functions the same as

Filters and Regular Expressions 117

tr abc ABC file

Simple scripts are easy to give on the sed command line. More complicated
scripts should be placed in files and applied with the -f option. Storing scripts
in files makes them easily reusable.

The sed command offers a number of other features and options. Please
refer to the sed man pages for additional information.

4.6 Building Pipelines

We have discussed a good number of filters and seen some pipelines already.
Let’s now see a few more examples.

Here is a pipeline to look up the correct spellings of words:

look prefix | fgrep string

All words in the dictionary /usr/dict/words with the specified prefix are
produced by look and fed to fgrep, which selects only those words that
contain the given string. For example,

look dis | fgrep sion

gives the following output:

discussion
dispersion
dissension

Another example is a pipeline that saves to a file those commands that you
have given to your Shell. The Bash command history displays a numbered
list of your most recent commands. To enter the last eight commands into a
file, you can use the following pipeline:

history | tail -8 | sed ´s/.*.// ´> file

where the sed command removes the leading sequence numbers (. is a tab).
A third example collects a list of directory names from the current working

directory:

ls -l | grep ^d | sed ´s/^d.*�// ´

Here the sed editing command deletes a maximal (longest) string starting
with the letter d at the beginning of a line and ending with a space (�) for
each line. Another way to accomplish the same task is

ls -F | grep ´/$ ´| sed ´s/\/$// ´

118 Mastering Linux

A final example has to do with maintaining an address list. Let’s assume
you have a file of addresses, myaddr, in human-readable form. Its entries are
multiline addresses, and a single empty line follows each entry. A typical ad-
dress entry would look like the following (Ex: ex04/myaddr):

Dr. John F. Doe
Great Eastern Co.
40 North Rd.
Cambridge, MA 02139

This form is easy for a user to read, but hard to maintain using filters.
However, you can transform this address file with the following pipeline (Ex:
ex04/toaddr):

sed ´s/^$/@/ ´myaddr | tr ´\012@ ´ ´:\012 ´\
| sed ´s/^://;s/:$// ´| sort -u -t: --key=1,2 >| addr

The first sed substitutes the character @ for each empty line. The tr command
translates every newline character into a colon and every @ into a newline.
At this point, each address entry is on a separate line with a colon separating
the fields within each address. The second sed removes any colon at the
beginning or the end of a line. The final sort command orders the address
entries using the first field and removes any duplicate entries.

Address Processing

Now your address file addr is sorted and contains one address per line in the
following form:

Dr. John F. Doe:Eastern Co.:40 North Rd.:Cambridge, MA 02139

You can extract an address by using (Ex: ex04/useaddr)

grep ´John F. Doe ´addr | tr ´: ´ ´\012 ´

You can delete any address by using

sed ´/John F. Doe/d ´ addr > temp.file
mv temp.file addr

You can insert one or more addresses by using

sort -u -t: -key=1,2 addr - > temp.file

which allows you to type in the entries from the standard input. You may
insert another address file, addr2, by using

sort -mu -t: --key=1,2 addr addr2 > temp.file
mv temp.file addr

Filters and Regular Expressions 119

In the preceding example, the first field contains the title and name of a
person. The sorted address file is not in alphabetical order with respect to
names, unless everyone has the same title. To avoid this problem, you may
want to modify the record format to (Ex: ex04/newaddr)

Doe:John:F:Dr.:Eastern Co.:40 North Rd.:Cambridge, MA 02139

and sort the address file using the first, second, and third fields as keys. Then
the following can be used to display an entry (Ex: ex04/usenewaddr):

look ´Doe ´ newaddr|
awk -F: ´{print $4, $2, $3".", $1;

print $5; print $6; print $7} ´

For large files, the look command, which uses a binary search method for
a line prefix, is much faster than the fgrep command. We will explain awk
next.

4.7 Pattern Processing: awk

The awk program is a powerful yet simple filter. It processes its input one
line at a time, applying user-specified awk pattern actions to each line. The
awk program is similar to, but more powerful than, sed. The awk mechanisms
are based more on the C programming language than on a text editor, allowing
for variables, arrays, conditionals, expressions, iteration controls, formatted
output, and so on. The awk program can perform operations not possible
with sed, such as joining adjacent lines and comparing parts of different lines.

The general form of the awk command is

awk [-Fc] script [file] . . .

The -F option specifies a character c to be the field separator (default white
space). The argument script is an awk script given on the command line or
in a file with the -f filename convention. The files are are processed in the
order given. If no files are given, standard input is used. If a dash (-) is given
as a file name, it is taken to mean standard input.

The awk processing cycle is as follows:

1. If there are no more input lines, terminate. Otherwise, read the next
input line.

2. Apply all awk pattern commands sequentially as specified in script to
the current line.

3. Go to step (1).

120 Mastering Linux

Note that unlike sed, awk does not write lines to the standard output auto-
matically.

An awk script consists of one or more pattern actions given on different
lines or separated by semicolons. Each pattern action takes the form

pattern {action}

If the current line matches the pattern, the action is taken. A missing pattern
matches every line, and a missing action outputs the line. Thus,

ls -l | awk ´/Linux/ ´

is the same as

ls -l | sed -n ´/Linux/p ´

Pattern and action are described more fully in the following subsections.
The concept of a field here is the same as that used for sort: awk delineates

each of its input lines into fields separated by white space or by a field separator
character specified with the -F option. In an awk action, the fields are denoted
$1, $2, and so on. The entire line is denoted by $0.

While it is impossible to rearrange the order of fields using sed, it is easy
with awk. For instance, the output of ls -l has eight fields:

-rw-rw---- 2 jsmith 512 Apr 23 21:44 report.tex
-rw-rw---- 1 jsmith 79 Feb 9 15:13 Makefile
-rw-rw---- 2 jsmith 1024 Feb 25 00:13 pipe.c

When the preceding lines are piped through awk,

ls -l | awk ´{print $8,$4,$5,$6} ´

The following output is produced:

report.tex 512 Apr 23
Makefile 79 Feb 9
pipe.c 1024 Feb 25

Note that, in this example, the pattern action contains no pattern. Also, ac-
tions are always enclosed between braces ({ and }).

awk Patterns

As with sed, the pattern determines whether or not awk takes an action
on the current line. In fact, a sed address, specified with one or two match
expressions, also will work as an awk pattern. If you are familiar with sed,
you already know many useful patterns. For instance,

Filters and Regular Expressions 121

/^first/ (first at the beginning of a line)
/last$/ (last at the end of a line)
/^$/ (an empty line)
/[�.][�.]*/ (a line with a string of one or more blanks)
/begin/,/end/ (all lines between a begin match and an end match)

are valid patterns in both sed and awk.
In awk, a pattern is an arbitrary Boolean expression involving regular

expressions and relational expressions. Boolean expressions are formed with
&& (and), || (or), ! (not), and parentheses. A regular expression in awk must
begin and end with a slash (/) and otherwise is defined the same as that for
egrep (Table 4.4). Relational expressions are formed using C-like operators >,
>= , <, <=, == (equal), and != (not equal). In addition, a relational expression
can be:

expression ~ re
expression !~ re

where ~ means “contains” and !~ means “does not contain.” For example, the
pattern

$1 ~ /GNU/ && $2 ~ /Linux/

is true if the first field contains the string GNU and the second field contains
the string Linux.

A pattern may contain two patterns separated by a comma, in which case
the action is applied to all lines beginning with a line matching the first pattern
up to and including the line matching the second pattern (the same as in sed).
Thus,

awk ´NR==14,NR==30 ´file

outputs lines 14-30 of file, because awk keeps a running line count in the
built-in variable NR. Other useful built-in variables are listed in Table 4.5.

The special patterns BEGIN and END in

BEGIN {action}
END {action}

specify actions executed before the first input line and after the last input line,
respectively. They are used for initialization and postprocessing when needed.

awk Actions

Now let’s turn to the question of how actions are specified. An action contains
a sequence of statements given on different lines or separated by semicolons.
Possible statements are as follows:

122 Mastering Linux

TABLE 4.5: Built-in awk Variables
Variable Meaning
NF Total number of fields on current line
NR Sequence number of current line
FS Input field separator character (default blanks)
RS Input record separator (default newline)
OFS Output field separator string (default space)
ORS Output record separator string (default newline)
OFMT Output format for numbers (default %g as in printf)

Assignment: var = expression

Output: print expression [, expression] . . .
printf(. . .) (as in C)

Flow control
(as in C):

if (conditional) statement [else statement]
for(expression; conditional; expression) statement
while (conditional) statement, break, continue

Additional flow
control:

next (skip remaining commands, start next awk cycle)
exit (exit awk)

In the preceding definitions, a statement can be a compound statement in the
form

{statement, statement, . . . }

The output statements use the standard output. However, they can be
followed by > "filename" to redirect the output into a file.

awk Expressions

Expressions in awk statements can be constants, variables, arrays, fields, or
any combinations of these using the following C operators:

+, -, *, /, %, ++, --, +=, -=, *=, %=

Numerical constants in awk statements are the same as in C. String constants
are placed in double quotation marks ("string") and variables are initialized
to the null string. An array element is denoted as a[i], where i can be an
integer or any string. A blank between two expressions concatenates them
into a string. Thus, for example,

awk ´{print $2 ":" $1} ´file

outputs field2:field1 of each line from the given file. Built-in functions (Ta-
ble 4.6 lists a few) can also be used in expressions. In awk, conditional ex-
pressions use C notation and may involve awk-defined relational expressions.
In Table 4.6, e is an expression, c is a character, s is a string, and i and j are
integers.

Filters and Regular Expressions 123

Index Preparation: An Example

The awk pattern processing program is powerful and involved. The best
way to learn it is through use and experimentation. In this section, we
present an example of awk usage to prepare an index for a document (Ex:
ex04/index.awk). Suppose you have several index files, each containing en-
tries such as (Ex: ex04/index.data)

bash:99
regular expression:155
bash:123
pipe:101
gnome:163
socket:415
pipe:23

where each line has two fields: an index item and a page number separated by
the . Your goal is to produce an overall index file in alphabetical order with
lines such as (Ex: ex04/index.file)

bash 99,123
gnome 163
pipe 23,101
regular expression 155
socket 415

The first step is to order the entries alphabetically and by page number, which
can be done with

sort -t: --key=1,2.0f --key=2n index.data >| index.tmp

in which the following sort keys are used:

1,2.0f (first key, field one ignoring case)
2n (secnd key, field two with numerical comparison)

TABLE 4.6: Built-in awk Functions
Function Meaning

int(e), length(s) Integer (floor), length of string s
gsub(re, s, t) Replaces matches of re in t with s
index(s1,s2) Position of string s2 in s1, zero if s2 not in s1
sprintf(...) Format conversion, same as in the C language
substr(s,i,j) Substring of s of length j from position i
split(s,a,c) Cuts s into substrings a[1] to a[i] at char c; returns i
getline() Inputs next line, returns 0 on end of file, otherwise 1

124 Mastering Linux

It then remains to collect repeated index items to form lines with multiple
page numbers. Since repeated items will be on consecutive lines, the awk
script index.awk (Figure 4.4) can be used. To apply the script use

awk -f index.awk index.tmp >| index.file

There are four pattern commands in index.awk. The first command sets the
variable i (used for initialization) to zero. The second command compares
$1 with the variable pre, which stands for the previous index item and is
initially null. If $1 is equal to pre (field one is the same as the previous index
item), then output the page number ($2), preceded by a comma. If $1 is not
equal to pre (a new index item), then output newline, $1, space, and $2
except for the very first line where the leading newline is not needed. The
conditional output is performed in the if of the third command which also
records the index item ($1) in the variable pre. At the end of the input file, a
final newline is output.

FIGURE 4.4: Program index.awk for Index Processing

BEGIN { i = 0; }

$1 == pre { printf(",%s", $2); }

$1 != pre { if (i > 0)
{ printf("\n%s %s",$1,$2); }
else
{ printf("%s %s",$1,$2); i = 1; }
pre = $1;

}

END { printf("\n"); }

4.8 For More Information

See the man pages for the commands and filters covered in this chapter.
For filters accepting regular expressions, their man pages will specify exactly
what patterns are recognized.

The current awk program on most Linux is usually gawk from GNU where
more information can be obtained.

Both sed and awk are facilities to extract data from a file and to trans-
form the information to a different form. On most Linux systems, there are also

Filters and Regular Expressions 125

more general scripting languages such as Perl (Practical Extraction and Re-
port Language, Chapter 5, Section 5.23) and Ruby (Chapter 12, Section 12.3).
Both run under Linux, Unix, Windows, and Macs. See their manual pages for
more information.

4.9 Summary

Filters produce output by performing a simple, well-defined transformation
on their input and follow a set of well-defined conventions so they can become
stages in pipelines that combine them to perform many varied tasks. Filters
and pipelines are concrete artifacts of the UNIX/Linux philosophy.

Linux filters range from simple character substitutions (tr and expand)
to finding string patterns in text lines (the grep commands), to ordering text
lines, and to complicated stream editing (sed) and pattern processing (awk).
How these commands work individually and in pipelines for realistic applica-
tions, such as creating, maintaining, and accessing an address database, have
been discussed.

Regular expressions are well-established notations for character string pat-
tern matching. They are used, in very similar ways, in many different programs
such as grep, egrep, sed/vim, and awk. In Chapter 5, you’ll see that the
Bash Shell also understands regular expressions. It is important to become
familiar with regular expression concepts.

Table 4.7 summarizes the commands described in this chapter.

TABLE 4.7: Commands Summary

Command Description Command Description
awk Pattern processing fold Line wrapping
expand tab-to-space conversion unexpand blank-to-tab conversion
fgrep/grep Fixed/basic re matching egrep Extended grep
head Beginning of file tail End of file
look Dictionary search sed Stream editing
sort Line ordering in files tr Character translation

4.10 Exercises

1. Consider how expand works. Write an algorithm for figuring out how
many spaces should be generated for a tab.

2. Write a pipeline, using ls and head, to list the ten most recent files in
the current directory.

126 Mastering Linux

3. How can you use grep to locate all lines in a file that do not contain
the pattern -option?

4. What is a Glob pattern? What is a regular expression pattern? What is
the difference? Give a pattern in each case to match a string ending in
.html.

5. Specify a regular expression to match (a) any word ending in .html;
(b) any image name ending in .jpg, .png, or .gif; (c) any empty line
(line with no characters in it whatsoever); (d) any blank line (line that
is empty or contains only white space characters); and (d) any number.

6. Explain the following regular expressions: (a) ^a+$, (b) http[s]*:\/\/
and (c) [^@]+@gmail\.com.

7. Consider the following sed command:

sed -n ´/begin/,/end/p ´file

Discuss its effect if file contains many lines with begin and or end in
them.

8. Consider building pipelines to manage an address file. Suppose you wish
to have an address, an email, and a phone nubmer on each address line.
How would you design the record format? Write a pipeline to extract a
desired email or phone number from the address file.

9. Following the previous exercise, write a pipeline to add/change a phone
number or email to an existing address entry.

10. Specify an sed command to replace any set of consecutive empty lines
in a file with just one empty line. An empty line is one with nothing in
it, not even blank characters.

11. Write an awk program to transform the file myaddr to addr so that a
single awk command can perform a task equivalent to that defined by
the pipeline (involving sed, tr, and sort) in Section 4.6.

12. Rot13 is a method to encode ASCII text files: each letter in the alphabet
A through z is replaced by another 13 positions away (A by N and n by A,
for example). Write a tr command to perform this encoding/decoding.

13. The y function of sed can perform most of the same translations as tr.
Is there anything tr can do that sed cannot? If so, discuss.

14. Take the index generation example from Section 4.7 and improve it so
that it can also handle index data enteries such as

Bash:78-82

Chapter 5

Writing Shell Scripts

The Shell is more than just an interactive command interpreter. It also de-
fines a simple programming language. A program written in this language is
known as a Shell procedure or Shell script, which, in its simplest form, is just
a sequence of commands in a file. The file, when executed, performs the tasks
as if each command in the script had been entered and executed individually,
but without all the typing. Shell scripts can save you a lot of time if you
find yourself repeating a sequence of commands over and over. The Shell lan-
guage also provides variables, control structures such as if-then-else, looping,
function definition, and means for input and output. If a particular task can
be achieved by combining existing commands, then consider writing a Shell
script to do the job.

As with other Linux commands, a Shell script can be invoked through
your interactive Shell and can receive arguments supplied on the command
line. Sometimes, scripts written by individual users also can be of general use.
Such scripts can be installed in a system directory accessible to all users.

This chapter covers Shell script writing and techniques for effective Shell-
level programming. We will focus on Bash scripts because Bash is currently
the most widely used and most advanced Shell. Csh and Sh scripts follow
many similar rules.

The presentations in this chapter are oriented toward script writing. How-
ever, most constructs discussed here can be used interactively as well. Some
topics (for example, command grouping) are as relevant to interactive use as
to script writing.

5.1 Invoking Shell Scripts

As mentioned, a Shell script is a program written in the Shell language.
The program consists of variables, control-flow constructs, commands, and
comments. The Shell script is kept in a text file whose file name is said to be
the name of the script.

There are two ways to invoke a Shell script: by explicit interpretation and
by implicit interpretation. In explicit interpretation, the command

bash file [arg . . .] (for Bash script)
csh file [arg . . .] (for Csh script)

127

128 Mastering Linux

sh file [arg . . .] (for Sh script)

invokes a specific Shell to interpret the script contained in file, passing to the
script any arguments specified.

In implicit interpretation, the script file containing the script is first made
readable and executable with the chmod command to turn on the appropriate
protection bits (Chapter 3, Section 3.5). Then the script can be invoked in the
same way as any other command: by giving the script name on the command
line followed by any arguments.

In either explicit or implicit interpretation of a Shell script, two Shells are
involved: (1) the interactive Shell (usually the login Shell) that interacts with
the user and processes the user’s commands and (2) the invoked Shell that
actually interprets the script. The invoked Shell is a process spawned by the
interactive Shell. Since the spawned process is also a Shell, it is referred to as
a subshell. The effect of this can be illustrated by the following experiment.

First create a file named try that contains the simple script

cd /usr/lib
pwd

To run this script, type

bash try

The script called try displays the string /usr/lib, which is the output of the
pwd contained in the script. However, once it is finished, if you type pwd
in your interactive Shell, your old working directory will appear. Obviously,
the cd command executed in the script has not affected the current working
directory of your interactive Shell. This is because cd is executed by a subshell.
To execute the commands in try with the interactive Shell, use instead

source try

5.2 A First Shell Script

Now let’s consider a simple Bash script. The purpose of this script is to
consult a list of email addresses that are kept in a file named myContactList
(Ex: ex05/myContactList) in a user’s home directory. Each line in the con-
tact list gives the name of a person, email address, phone number, and perhaps
some other information.

The script (Ex: ex05/contact one.sh) is

#!/bin/bash
consults myContactList
grep -i "$1" ~/myContactList

Writing Shell Scripts 129

We will use the suffix .sh for Bash scripts as a naming convention. The first
line is special. In Linux, the proper way to begin an executable text file is
#!, followed by the full pathname of an executable file together with any
arguments to it. This specifies the command to invoke an interpreter for the
remainder of the script. Make sure #! are the very first two characters in the
file, with no empty line, white space, or any other character before them.

The first line of contact.sh indicates a Bash script. Similarly, the line
#!/bin/csh begins a Csh script, and the line #!/bin/sh begins an Sh script.

The second line is a comment. In Shell scripts, the part of any line from
the first # to the end of line is ignored by the Shell.

The symbol $1 is called a positional parameter. The value of the positional
parameter $n is the nth command-line argument. Thus, if the first argument
is smith, then $1 has that value, and the script is equivalent to

grep -i smith ~/myContactList

Recall that ~ expands to your home directory. Now you should issue the
command

chmod +rx contact.sh

to make contact.sh readable and executable. Now the command

contact.sh smith

runs the contact.sh script (in the current directory). The preceding command
assumes that the special period symbol (.) is included in your command search
path (Section 2.4). Otherwise, you need to use

./contact.sh smith

If the contact.sh script is put in a directory whose name is on the command
search path, then

contact.sh smith

will work no matter what your current directory is, without having to specify
the contact.sh command with a pathname.

Usually, you would create a directory bin or cmd in your home directory to
hold all scripts and other executable commands written or obtained by you.
By including the line

PATH=$PATH:$HOME/cmd:.

in your .bash_profile, you can invoke executable files in your own cmd di-
rectory just like other Linux commands.

130 Mastering Linux

5.3 Shell Script Execution

A Shell script consists of a sequence of Shell built-in commands and regu-
lar Linux commands separated by newline or semicolon (;) characters. Com-
ments are introduced by #, as previously mentioned. Commands in a script
are executed in sequence. If the execution of a command results in an error,
script execution will be aborted if the offending command is a Shell built-in.
Otherwise, for a regular command, the default action is to skip the offending
command and continue with the next command in the script.

In describing the Shell languages, the term commandlist means a sequence
of zero or more commands separated by newline or semicolon (;) characters.
The term wordlist refers to zero or more blank separated words.

5.4 Positional Parameters

In Shell scripts, the variables $0, $1, $2, and so on are known as positional
parameters. The variable $0 refers to the first token of the command line which
invoked the script. Thus, $0 may have the value contact.sh or ./contact.sh
depending on the command given. The variables $1, $2, and so on refer to the
command-line arguments.

When a Bash script is invoked, the special variable $0 is set to the com-
mand name. The positional parameters $1, $2, etc. are set to the command-
line arguments (use ${n} for n bigger than 9); $* (and $@) is set to the list
of arguments given on the command line; and $# is set to the number of
positional parameters. The Bash script (Ex: ex05/myecho.sh)

#!/bin/bash
echoing Shell parameters

echo ’$0 = ’ $0
echo ’$1 = ’ $1
echo ’$2 = ’ $2
echo ’$3 = ’ $3
echo ’$# = ’ $#
echo ’$* = ’ $*
echo ’$@ = ’ $@

displays these parameter values. For example, the command

myecho.sh A B C D

produces the output

$0 = ./myecho.sh
$1 = A
$2 = B

Writing Shell Scripts 131

$3 = C
$# = 4
$* = A B C D
$@ = A B C D

Try it yourself.

5.5 The for Command

The for command is used to execute a set of commands repeatedly. The
general form is

for var in wordlist
do commandlist

done

The line breaks are needed unless you use the ; command separator as in

for var in wordlist ; do commandlist ; done

The commandlist is executed once for each word in wordlist as, each time
through, the control variable var takes the next word for its value. As an
example, let’s rewrite the contact one.sh script given in Section 5.2 as (Ex:
ex05/contacts.sh):

#!/bin/bash
consult my contacts for args given

for x in "$@" ## (0)
do grep -i "$x" ~/myContactList

done

Bash has two built-in variables, $* and $@, referring to the arguments given on
the command line. Each is a list of words from the command-line arguments.
Consider a command with three arguments:

somecmd a b "c d"

The $* and $@ in this case will both be the list a b c d with four words. The
quotation "$*" makes it one word, whereas the quotation "$@" makes it three
words a b and "c d". It is important to understand this difference. It turns
out also that line 0 can be written simply as for x, which means x will take
on successive command-line arguments. Now contact.sh can be used on one
or more names, as in

contact.sh "John Smith" "Paul Wang"

The for command can be used to go through each file in a directory. Try the
following script:

132 Mastering Linux

#!/bin/bash
example to go through all files in the current directory

for file in *
do echo $file

done

Execute this script, and you’ll see the filenames in the current directory dis-
played. Since the filename expansion does not match any filename that begins
with a period (.), those filenames will not be displayed. To get all files, use

for file in .* *
do echo $file

done

Bash supports another form of for loop that is similar to that of the C lan-
guage.

#!/bin/bash

for ((i = 0 ; i < 9 ; i++))
do echo $i

done

The iteration control involves numerical expressions (Section 5.11). Such loops
are useful for indexing through arrays (Section 5.14) and, of course, for nu-
merical computations.

5.6 The if Command

The if construct provides for conditional execution of commands. The
simple form of if is

if test-expr
then

commandlist1
else

commandlist2
fi

If the given test-expr is true, then commandlist1 is executed; otherwise,
commandlist2 is executed. The else part may be omitted.

For example, the test expression [[-f file]], known as an extended con-
ditional (Section 5.7), tests if file exists and is a regular file. We can improve
the contact.sh as follows (Ex: ex05/contact check.sh).

Writing Shell Scripts 133

#!/bin/bash
consult my contacts for args given

if [[-f ~/myContactList]] ## (A)
then

for x
do grep -i $x ~/myContactList

done
else

echo "File ~/myContactList not found."
fi

In a test expression, the space after [[and the space before]] are part of
the conditional notation (line A).

Within the if statement, the elif construct can be used. The general form
is

if test-expr1
then

commandlist1
elif test-expr2

then
commandlist2

else
commandlist3

fi

If test-expr1 is true, commandlist1 is executed. If test-expr1 is not true, and if
test-expr2 is true, then commandlist2 is executed. There can be any number of
elif constructs. If all test expressions are false, then the else part is executed.

Often, it is important for any program to check the arguments it receives,
and a Shell script is no exception. Here is some typical argument check code
(Ex: ex05/argCheck.sh).

#!/bin/bash
check and set command-line arguments
if [[$# > 2 || $# < 1]] ## (1)

then
echo usage: "$0 [from-file] to-file" ## (2)
exit 1; ## (3)

elif [[$# == 2]] ## (4)
then

from="$1"
to="$2"

else ## (5)
to="$1"

fi

134 Mastering Linux

The expression $# > 2 checks if the number of arguments is greater than
2. The || is logical or, whereas < is less than. This script expects one or
two arguments. If the number of arguments is incorrect, it displays an error
message (line 2) and terminates the script with an abnormal exit status 1
(line 3). If we have two arguments (line 4), we can set the variables from and
to. Otherwise, we have only one argument and it becomes the value of to.
Argument checking is critical at the beginning of every program.

FIGURE 5.1: The cmdsearch Script

#!/bin/bash
Finds a given command on the search path.
The pathname found or a failure message is displayed.

cmd="$1" ## the command to find ## (a)
path=$(echo $PATH | tr ":" " ") ## (b)
for dir in $path ## (c)

do
if [[-x "$dir/$cmd"]] ## (d)

then
echo "FOUND: $dir/$cmd"
exit 0

fi
done

echo "$cmd not on $PATH" ## (e)

Now let’s look at a complete script using for and if constructs. The script
(Figure 5.1) locates a command on the command search path ($PATH) and
displays its full pathname (Ex: ex05/cmdsearch.sh). The first (and lone)
argument is the target command name (line a). On line b, each : in $PATH
is replaced by a space with the tr command (Chapter 4, Section 4.1), and
the resulting multiword string is assigned to a variable path via command
expansion (Chapter 2, Section 2.7). For each $dir on $path (line c), we see
if $cmd is found (line d). The conditional expression [[-x file]] is true if
file exists and is executable (see Section 5.13 for more on file queries). If the
program ever reaches line e, then the target command is not found.

Here are some sample uses of cmdsearch.

cmdsearch gnome-terminal
cmdsearch vim
cmdsearch gcc

Writing Shell Scripts 135

5.7 Test Expressions and Exit Status

Exit Status

In Linux, a command indicates whether it has succeeded by providing an
integer exit status to its invoking environment. A zero exit status means okay,
and non-zero means error.

The Shell, being a command interpreter, is a primary invoking environment
for commands. After executing a command, the exit status is available in the
special Shell variable $?.

In a Shell script, use the built-in command exit n to terminate execution
and return n as the exit status.

Test Expressions

Test expressions are used in if as well as other constructs (while, until, etc.)
to produce true/false values by testing given conditions.

The truth value of a Bash test expression is really determined by its exit
status. A test expression is true if it returns a zero exit status; otherwise, it is
false. Now let’s take a look at the different forms of test expressions.

A test-expr can be a list of one or more of these expressions:

• A regular or built-in command (Section 5.7)

• An extended conditional expression [[]]

• A numerical expression (()), with 0 being false and non-zero being
true (Section 5.11)

• (test-expr), using () for precedence grouping

• ! test-expr “logical not” of test-expr

• test-expr1 && test-expr2 “logical and” of the two expressions

• test-expr1 || test-expr2 “logical or” of the two expressions

Here is an example that uses grep as a test expression (Ex:
ex05/condEdit.sh).

#!/bin/bash

for file in * ## for each file in current folder
do if grep -q "$1" $file ## if pattern $1 is in $file

then nano $file ## invoke nano on $file
fi

done

136 Mastering Linux

An extended conditional is enclosed by [[space on the left and space]] on the
right.1 Table 5.1 lists test expressions for strings. Within the [[conditional,
Glob patterns (Chapter 2, Section 2.7) are allowed on the right-hand sides of
== and !=. Furthermore, extended regular expressions (Chapter 4, Section 4.4)
following =~ are supported.

TABLE 5.1: Bash String Conditions

Condition True if:
[[var]] var is defined and not null
[[-z str]] str is zero length
[[str1==str2]] str1 and str2 are equal
[[str1!=str2]] str1 and str2 are unequal
[[str1<str2]] str1 is lexicographically before str2
[[str1>str2]] str1 is lexicographically after str2
[[str==pattern]] str matches the Glob pattern
[[str!=pattern]] str does not match the Glob pattern
[[str=~pattern]] str matches the egrep pattern

The extended conditionals also support numerical tests

[[arg1 rop arg2]]

to compare two integers arg1 and arg2 with a relational operator rop which
can be ==, !=, <, >, -le, or -ge.2 Often, programmers prefer to use numerical
tests provided by (()) (Section 5.11) instead.

Please refer to Table 5.2 for file-related test expressions and to Section 5.11
for numerical test expressions. Inside [[]] you can also use the logical oper-
ators ! (not), || (or), and && (and) on test expressions.

5.8 The shift Command

The Bash built-in command

shift

left shifts $2 to $1, $3 to $2, etc. In general,

shift n

shifts $n to $1, $n+1 to $2, etc.
The shift command is often useful after the first few positional parameters

have been processed and you want to use a loop such as (Ex: ex05/shift.sh)

1The earlier Bash construct [] can still be used but is superseded by the [[]].
2Unfortunately, inside [[]] the usual <= and >= are not recognized.

Writing Shell Scripts 137

for var
do echo $var

done

to go over the rest of the positional parameters.

5.9 The case Command

While the if-elif-else command enables logical branching in general, the
case command provides branching based on simple pattern matching. The
general form of case is

case (str) in
pattern1)

commandlist1
;;

pattern2)
commandlist2

;;
...

esac

The given expression str is successively matched against the case patterns.
Each case pattern can be one or a list of Glob patterns (Section 2.7) separated
by | and terminated by). Only the list of commands for the first match will
be executed. Nothing is executed if there is no match.

For example, the string ab.c matches the case pattern *.c or the pattern
a*c. As an example, a script for appending either the standard input or a file

FIGURE 5.2: The append Script

#!/bin/bash
append.sh
appends $1 to $2 or standard input to $1

case $# in
1) cat >> "$1"

;;
2) cat "$1" >> "$2"

;;
*) echo "usage: $0 [fromfile] tofile"
esac

138 Mastering Linux

to the end of another file is shown in Figure 5.2 (Ex: ex05/append.sh). The
command

append.sh file1 file2

appends file1 to the end of file2. The command

append.sh file
first line
second line
third line
^D

appends the three lines to the end of file. Note the catch-all pattern * as the
last case clause to process any unmatched cases.

5.10 The while and until Commands

In addition to the for command, the while and until commands control
iteration with an arbitrary condition. The general form of the while command
is

while test-expr
do

commandlist
done

The test-expr is evaluated. If it is true, then commandlist is executed, and test-
expr is retested. The iteration continues until the test-expr tests false. For an
infinite loop, use the Bash built-in command : (yes, the character colon) as
the test-expr. The : command does nothing other than expand any arguments
and give a 0 exit status.

In the following script (Ex: ex05/myfortune.sh), we continue to display
a fortune message until the user wishes to stop.

#!/bin/bash
displays fortune until the user quits

go="yes"

while [["$go" == "yes"]] ## (i)
do

/usr/bin/fortune ## (ii)
echo -n "**** More fortune? [yes/no]:" ## (iii)
read go ## (iv)

done

Writing Shell Scripts 139

The while condition is checked (line i). If true, the fortune command3 is
invoked (line ii), and a prompt is displayed (line iii) to see if the user wishes
to continue. The -n option tells echo not to output the usual line break after
the message. The user input is read into the variable go (line iv), whose value
is tested again.

If we replace the while test expression with the pattern condition

[["$go" == y*]]

then the user may enter anything starting with y to continue.
The until loop is the same as the while loop, except the iteration stops

as soon as the until condition is met.

5.11 Numerical Expressions

Since Shell variables are string-valued. We need to use the arithmetic ex-
pansion notation

$((arith-expr))

to perform integer arithmetic computation. The Shell built-in command let
can also be used to perform arithmetic operations.

let arith-expr1 arith-expr2 ...

Here are some examples (Ex: ex05/arith.sh).

#!/bin/bash

a=2
echo $((a + 3)) ## displays 5
let b=2*++a
echo $b ## displays 6
echo $((a * b)) ## displays 18
let c=-8
echo $((c > 0 ? c : -c)) ## displays 8

To compare numbers in numerical conditionals use, for example,

if (($a > $b)) (if a is greater than b)

The Bash command

help let

3If your Linux does not include the fortune command, you can get it by installing the
fortune-mod package (Section 8.24).

140 Mastering Linux

displays a full list of operators available for the numerical expressions for let
or inside (()).

Here is a loop that displays the command-line arguments in reverse order
(Ex: ex05/echoback.sh).

#!/bin/bash

output=""
until (($# == 0))
do output="$1 $output"

shift
done
echo $output

5.12 The break and continue Commands

The break command is used inside the iteration control structures for,
while, and until. When break is executed, control shifts to the first line after
the end of the nearest enclosing iteration. This command provides a means to
“break out” of an iteration loop before its normal completion.

The continue command is used in the same manner as the break com-
mand, except it transfers control to the beginning of the next iteration instead
of breaking out of the loop entirely. The example script clean.sh (see Sec-
tion 5.20) involves some typical applications of break and continue.

Within nested loops, break or continue can take an optional integer
argument (1, 2, 3, etc.) to break or continue out of the n th level of nested
loops.

5.13 File Queries

To make file and directory access and manipulation easy, Bash also pro-
vides a set of conditions to query status information for files. File queries are
in the form -x file, where x is a single character. Common file queries are
listed in Table 5.2. To get a complete listing use help test.

If the file does not exist or if it is inaccessible, all queries return false. For
example, the following code fragment is valid:

if [[-e $file && -f $file && -w $file]]
then

cat $1 >> $file
else

echo "access problem for $file"
fi

Writing Shell Scripts 141

TABLE 5.2: Bash File Queries

Expr True if file : Expr True if file :
-r file Is readable by the user -w file Is writable by the user
-x file Is executable by the user -e file Exists
-o file Is owned by the user -s file has non-zero size
-f file Is an ordinary file -d file Is a directory

In the file system, an ordinary file is one that stores application data and
not one that serves filesystem functions such as a directory (folder) or link
(shortcut). See Section 6.2 for more information on Linux file types.

5.14 Variables

There are different kinds of variables:

1. Positional parameters ($1, $2, ...) and special variables ($0, $#, ...).

2. Environment variables such as DISPLAY and SHELL

3. Ordinary variables and arrays of your own choosing

To assign value to a variable

var=value

Shell expansions and evaluations are performed on value, and the result is
assigned to the given variable. If value is omitted, then the variable has value
null. Variable attributes can be declared:

declare -i var1 var2 ... (holding integer values)
declare -r var1 var2 ... (read-only)
declare -a arr1 arr2 ... (arrays)
declare -x var1 var2 ... (exported to the environment)

To remove a variable use unset var. The special operator += performs addition
on integer variables and concatenation on string variables. For example (Ex:
ex05/varusage.sh),

#!/bin/bash

declare -i a b;
a=10; b=5
b+=$a; ## b is 15
declare -r b;
b=0 ## error, b is read-only

142 Mastering Linux

unset b ## error, b is read-only
name="John"; last="Doe"
echo ${#name} ## length of $name is 4
name+=$last ## name is JohnDoe

5.15 Arrays

To declare an array variable use

declare -a var

However, it is not necessary to first make such a declaration. For example, to
create an array fruits, you can use the assignment

fruits=("red apple" "golden banana")

or equivalently

fruits[0]="red apple"
fruits[1]="golden banana"

Thus, Bash indexed arrays are variables with zero-based indexing; that is, the
first element of an array has index 0 (${fruits[0]} for example), the second
element has index 1, and so on. However, the indices do not have to be consec-
utive. The following examples illustrate array usage (Ex: ex05/arrusage.sh).

#!/bin/bash

br=() # empty array
fruits=("red apple" "golden banana")
fruits+=("navel orange") # array concatenation (1)
echo ${fruits[1]} # value golden banana
echo ${#fruits[*]} or ${#fruits[@]} # length of array (2)
fruits[2]="green pear" # element assignment
fruits[6]="seedless watermelon" # gap in index allowed
br+=("${fruits[@]}") # br now same as fruits (3)

Note # (line 2) for the length of an array and the += operator (line 1 and 3)
for array concatenation.

To go through elements in an array with a loop, you may use

for el in "${br[@]}"
do

use $el for some task
done

or, if indexing is consecutive,

Writing Shell Scripts 143

for ((i=0; i < ${#br[@]}; i++))
do

do something with ${br[$i]}
done

The read built-in can also receive words input by the user into an array.

echo -n "Please input an array:"
read -a arr

If the user enters gg ff kk bb, then $arr gets four elements.

5.16 Variable Modifiers

Bash provides notations to make variable usage even more flexible for
advanced scripting. The value obtained from a variable can be modified before
it is introduced into a command or expression. You can

1. Specify the value returned in case a variable is unset (does not exist) or
null (Table 5.3).

2. Return a substring of the variable value (Table 5.4).

TABLE 5.3: Variable Testing Modifiers

Modifier If var is unset or null
${var:-word} Returns word
${var:=word} Sets var to word and returns word
${var:?word} Exits with standard error message or word
${var:+word} Returns nothing; otherwise returns word

For example, a script requiring one command-line argument may use

file=${1:?"Usage: $0 filename"}

Note that the : in Table 5.3 can be omitted from the notations in Table 5.3,
and it means the test is only for the existence of the variable and not for it
being null.

Bash also makes it easy to obtain a substring from the value of a variable
(Table 5.4).

Let’s look at some examples of substring modifiers (Ex: ex05/strModifier.sh).

file=/tmp/logo.jpg
${file:3} ## is p/logo.jpg
${file:3:5} ## is p/log
${file#*/} ## is tmp/logo.jpg

144 Mastering Linux

TABLE 5.4: Variable Substring Modifiers

Modifier Value
${var:offset:len} Substring of var, from offset to the end

or of length len if :len is given
${var#pattern}
${var##pattern}

var with the shortest (#) or longest
(##) prefix matching pattern deleted

${var%pattern}
${var%%pattern}

var with the shortest (%) or longest
(%%) suffix matching pattern deleted

${var/pattern/str} var with the longest substring match-
ing pattern replaced by str

${file##*/} ## is logo.jpg (tail)
${file%/*} ## is /tmp (dirname or head)
${file%.jpg} or ${file%\.*} ## is /tmp/logo (root)
${file##*\.} ## is jpg (extension)

When applied to the positional parameters ($* and $@) or to arrays
(${array[*]} and ${array[@]}), the first modifier in Table 5.4 produces
a list of words from a subarray. Whereas, the other modifiers in the table each
produces a list of words by acting on each value in the given array. Here is
how it works (Ex: ex05/arraymod.sh).

pictures=(a.jpg b.jpg c.jpg d.jpg)
echo ${pictures[*]:2} ## c.jpg d.jpg
echo ${pictures[*]%.jpg} ## a b c d
names=(${pictures[*]%.jpg}) ## is array (a b c d)

As another example of variable modifiers, consider the function

function latex ()
{

/usr/bin/pdflatex ${1%.tex}.tex && \
/usr/bin/acroread ${1%.tex}.pdf

}

The modifier ${1%.tex} makes it possible to use either of the following two
ways to invoke the latex function

latex pathname.tex
latex pathname

to create and view the pdf file created from the given LATEX file.

5.17 The Here Document

It is possible to include in a script input that is normally entered inter-
actively. In Shell script terminology, this type of input is known as a here

Writing Shell Scripts 145

document. For example, you may create a script (Ex: ex05/newyear.sh) that
contains the following:

mutt -s ´Happy New Year ´ <<ABC

Today is `date` and how time flies.
May I wish you a very happy and prosperous NEW YEAR.

signed ...
ABC

The purpose of this file is to invoke the mutt command (for email) and send
a message to each name on the alias list called friends. The here document
consists of all text between the first ABC and the second ABC on a line without
other characters or white space. Having set up this file, you then can issue

at 0010a Jan 1 happynewyear

to schedule the greeting to be sent out at 12:10 A.M. on New Year’s Day.
The here document is actually a form of input redirection. After the << is an
arbitrary word (in this case, EOF) followed by a newline that delimits the
beginning and end of the here document. The general form of a here document
is

command << word

zero or more

lines of input text

included here

word

The delimiter word is not variable, filename, or command substituted.
The last line must contain only the same word and no other characters. The
intervening lines are variable and command substituted, but space, tab, and
newline characters are preserved. The resulting text, up to but not including
the line with the end delimiter, is supplied as standard input to the command.

An example is the timestamp script (Figure 5.3).
The here document contains a variable substitution and two command sub-

stitutions. The hostname command displays the name of the host computer.
The date command displays the date and time (Ex: ex05/timestamp.sh).

Substitutions can be suppressed within a here document by quoting all or
part of the starting delimiter word with \, ", `, or ´, for example,

\EOF

´here ´

a"b"
`a`b

146 Mastering Linux

FIGURE 5.3: The timestamp Script

#!/bin/bash
script name: timestamp
usage: timestamp file
this script stamps date and time on a document

cat >> $1 << here

RECEIVED by $USER on `hostname`
`date`
here

Note that a corresponding end delimiter does not need any quotes.

If <<- is used instead of << for the here document, then any leading tabs
in front of the input lines and the delimiter line will be stripped away, making
indenting the script source code for easier reading possible.

Also, if the here document is a single string with no white space, you may
use instead (Ex: ex05/herestr.sh)

<<< any_string

5.18 More on Functions

We have already seen Bash functions in Chapter 2, Section 2.15. Each
function gives rise to a new Shell-level command that can be used just like
any other command—interactively on the command line or as part of a Shell
script. In a Shell script, you may call functions defined earlier in that script
as well as functions made available from the invoking Shell. If the invoking
Shell defines a function xyz, then it is made available for Shell scripts with
export -f xyz. It is recommended that you avoid this feature and make
each Shell script self-sufficient by including definitions of all the functions it
needs.

Unlike functions in general programming languages such as C or C++,
Bash functions have their own way of passing arguments and returning values,
as we will explain.

Writing Shell Scripts 147

Function Arguments

A Bash function is defined without any named parameter. Thus, the following
is impossible:

function compare(str1, str2) ## wrong, no parameters allowed
{ ... }

Instead, any arguments passed in a function call are accessed from within that
function using the positional parameters $1, $2, and so on. Thus, compare (Ex:
ex05/strcompare.sh) can be coded as follows:

function compare()
{ local str1="$1"; ## 1st argument

local str2="$2"; ## 2nd argument
if [[$str1 == $str2]]

then echo 0;
elif [[$str1 > $str2]]

then echo 1;
else echo -1;
fi

}

The keyword local declares variables local to the function (not accessible
from outside the function). Here is a sample call:

compare "apple" "orange";

Arrays can also be passed in function calls. The following function displays
any array that is passed to it (Ex: ex05/arrusage.sh).

function displayArray()
{ echo -n "(";

for el ## iterates over positional parameters (a)
do echo -n " \"$el\" "

done
echo ")";

}

Say that we have an array prime=(2 3 5 7 11 13 17), then we can pass all
the array elements in a call

displayArray "${prime[@]}"

resulting in the display

("2" "3" "5" "7" "11" "13" "17")

148 Mastering Linux

The function displArray works by iterating over the positional parameters
passed (line a).

Normally, arguments are passed by value when a copy of the value of
each argument is passed to the called function. However, it is also possible
to pass arguments by reference when the variable itself (a reference to its
value) is passed instead of its value. To illustrate pass by reference, consider
the function

function addOne()
{ let $1+=1; }

Here is a call to addOne with a reference argument n (instead of $n).

n=12;
addOne n; ## function call with reference argument
echo $n ## 13

When we use n, instead of $n, in the call to addOne, the $1 inside the function
evaluates to the symbol n. Thus, the code let $1+=1 is the same as let n+=1
which explains how n becomes 13 after the function call. If we wish to access
the value of n inside addOne, we can use the indirect reference evaluation
notation

${!1} ## means eval \$$1 or $n

Hence, we might improve the function as follows (Ex: ex05/addOne.sh):

function addOne()
{ echo ${!1}; ## displays $n

let $1+=1; ## let n+=1
echo ${!1}; ## displays $n again

}

In general, we have

x=y; y="abc"
echo $x ## displays y
echo ${!x} ## displays abc

Passing by reference can be useful in practice. For example, we can define
a function setenv to make setting of environmental variables (Chapter 2,
Section 2.10) easier (Ex: ex05/setenv.sh).

function setenv()
{ eval $1=\$2;

export $1;
}

With this function, you can set the command search path (Chapter 2, Sec-
tion 2.4) with one call:

Writing Shell Scripts 149

setenv PATH your desired path string

The indirect reference evaluation also allows you to pass an array by ref-
erence, as we will see in the next subsection.

Return Value of a Function

Let’s write a function sum that adds together all numbers in any given array
and returns the total (Ex: ex05/sum.sh).

function sum()
{ local total=0; ## local variable

for i
do let total+=$i ## or ((total+=$i))

done
echo $total ## return value (I)

}

s=$(sum ${prime[@]}) ## calling sum and get value (II)
echo $s ## 58

Note here that we return a value by echoing it (line I) and capture the returned
value with command substitution (line II).

Alternatively, we can pass the total back in a reference parameter myTotal.
To do that, we revise the function sum to newSum. While we are at it, we also
pass the prime array into the function by reference (Ex: ex05/newSum.sh).

function newSum()
{ local p="$1[@]"; ## $p is "prime[@]"

for i in "${!p}" ## evaluates ${prime[@]}
do let $2+=$i ## $2 is the symbol myTotal

done
}

myTotal=0
newSum prime myTotal ## passing two ref parameters
echo $myTotal

The three lines in newSum with comments deserve close study.
A predicate is a function that tests for a condition and returns true or false.

Here is a predicate that tests if a file is more recently modified than another
file (Ex: ex05/newer.sh).

function newer()
{ if [[$1 -nt $2]] ## if file $1 is newer than file $2

then return 0 ## exit status 0 means true
else

return 1 ## false

150 Mastering Linux

fi
}

The return statement in a function returns an exit status (a small integer less
than 256). The value of the exit status is available in the special variable $?
right after the function call. If a function does not call return, then its exit
status is that of the last statement executed before the function ended. A pred-
icate function, such as newer, can be used directly in conditional expressions.
Here is a call to newer.

if newer file1 file2
then ...

fi

However, as you may have realized, the predicate function can be simplified
to

function newer()
{ [[$1 -nt $2]] ## available also is -ot for older than
}

Finally, it is possible for a function to return a value by assigning it to
some global variable. Because there is always the danger of some other code
using/setting the same global variable for some other purpose, we do not
recommend this approach.

5.19 Redefining Bash Built-in Functions

If you define a function whose name coincides with a Bash built-in com-
mand or a regular command, then that name invokes the function instead.
However, the commands are still accessible:

builtin commandName args (invokes the built-in commandName)
command commandName args (invokes the regular commandName)

Here is a simple example that redefines cd to do a directory listing each time
it is called.

function cd ()
{ builtin cd "$1"

/bin/ls -l
}

Often, Shell scripts can be written as Shell functions with little change and no
impact on how they are called. By implementing a script as a function, you
can place it in your Shell initialization file (.bash_profile for example) and
make it part of your Shell.

Writing Shell Scripts 151

5.20 Example Bash Scripts

Now let’s consider some more substantial Bash scripts. You can find these
scripts in the example code package. Placed the scripts in a folder, $HOME/bin,
for example, and open up their execution permissions. Also, make sure that
the folder is on the command search PATH.

Example: Removing Unwanted Files

Modern operating systems such as Linux make it easy to create, download,
copy, and otherwise manipulate files. However, most users are hesitant about
removing files, and the clutter of obsolete files can be a nuisance let alone
wasting disk storage. One reason is the sheer tedium of looking through files
and discarding those that are no longer needed. Thus, although disk stor-
age is decreasing in cost, new supplies of additional disk space never seem
to quite match the demand. The clean.sh script provides some help (Ex:
ex05/clean.sh). The command

clean.sh directory

displays file names in the given directory, one at a time, and allows the user
to decide interactively whether or not to keep or delete the file. This script
is longer and will be explained in sections. The clean.sh script begins with
argument checking:

#!/bin/bash
bash script clean.sh
usage: clean.sh dir
helps to rm unwanted files from a directory

if (($# != 1)) ## number of args is not 1
then echo usage: $0 directory

exit 1
fi
dir="$1"
if ! [[-d "$dir" && -w "$dir"]] ## not a dir or not writable
then echo $dir not a writable directory

echo usage: $0 directory; exit 1
fi

cd "$dir";

After checking for correct input, the script changes the current working direc-
tory to the given directory.

A for loop is used to treat each file (*) in the current directory (line 1).
On any given iteration, if $file is not an ordinary file or not readable, then
it is skipped via continue (line 2). For a regular file, an infinite loop (line 3)

152 Mastering Linux

is used to handle its processing. We must break from this inner while loop to
get to the next file.

For each file, the file name is clearly listed with ls, and the user is prompted
with

***** Delete filename or not?? [y, n, e, m, t, ! or q] :

indicating seven possible (single-character) responses (terminated by re-
turn). User input is received via read (line 4) and treated with a case
construct (line 5).

for file in * ## (1)
do

if ! [[-f "$file" && -r "$file"]]
then continue ## (2)

fi
echo " " ## a blank line
/bin/ls -l "$file"
while : ## (3)
do

echo -n "*** Delete $file or not?? "
echo -n "[y, n, e, m, t, ! or q]:"
read c ## (4)
case $c in ## (5)

y) if [[! -w "$file"]]
then echo $file write-protected
else /bin/rm "$file"

if [[-e "$file"]]
then echo cannot delete $file
else echo "+++++ $file deleted"
fi

fi
break ;; ## to handle next file

n) echo "----- $file not deleted"
break ;;

e) ${EDITOR:-/bin/vi} "$file"; continue ;;

The cases for y, n are clear. Note the use of break to leave the while loop
and process the next file under for. The e case invokes the user’s favorite text
editor (set by the environment variable EDITOR) or vi.

The choices m and t offer the user a chance to examine the file before
deciding on its disposal. Note the use of continue to go back to the while
loop.

m) /bin/more "$file"; continue ;;
t) /bin/tail "$file"; continue ;;
!) echo -n "command: "

Writing Shell Scripts 153

read cmd
eval $cmd ;; ## (6)

q) break 2;; ## break 2 levels
*) ## help for user

echo clean commands: followed by RETURN
echo "y yes delete file"
echo "n don’t delete file, skip to next file"
echo "e edit/view file with ${EDITOR:-/bin/vi}"
echo "m display file with more"
echo "t display tail of file"
echo "! Shell escape"
echo "q quit, exit from clean"
;;

esac
done

done

In addition to calling on more and tail, the user may execute any command
(with !) to help make the decision. In this case, the script reads a command
string from the user and executes it as a Shell command using eval (line 6),
which executes the string as a line of command. Note that the variable $file
can be used in this command string and that there is no restriction as to what
command can be used. Some command strings the user may enter are

head $file
cp $file ...
mv $file ...

The q case quits from the script. For all other cases, we display a menu
of single-letter commands for clean.sh and proceed to another iteration of
while for the same $file. If the user mistypes and enters a character other
than those expected by the script, the while loop is restarted. Also, note
that the clean.sh script provides feedback, telling the user each action it has
taken.

Example: Conditional Copy

The ccp.sh (conditional copy) script creates a command that copies files from
a source directory to a destination directory using the following conditions on
any ordinary file to be copied:

1. If file is not in destination, copy.

2. If file is in destination but not as recent as that in source, copy.

3. Otherwise, do not copy.

The script (Ex: ex05/cpp.sh) begins with argument checking:

154 Mastering Linux

#!/bin/bash
bash script ccp.sh
usage: ccp.sh fromDir toDir [file ...]

(($# >= 2)) && [[-d "$1" && -d "$2"]] \
|| { echo usage: $0 fromDir toDir [file ...]; exit 1; } ## (A)

from=$1; to=$2
if (($# > 2)) ## files supplied
then filenames=${@:3} ## (B)
else ## all files in fromDir

pushd $from
filenames=(*) ## (C)
popd

fi

Unless we have at least two arguments, the first two being directories, we will
error out (line A). This works because the next operand of || (logical or) will
be evaluated only if the previous operand is false.

Given the correct arguments, the script proceeds to record the from and
to directories and to store the files to be processed in the filenames array.
If the files to be copied are given on the command line, they are picked up
(line B) with a variable modifier (Section 5.16). Otherwise, all files in the from
directory are included (line C).

Now the stage is set to process each file to be copied conditionally. A for
loop is used to go through each element in the array filenames (line D).

for file in "${filenames[@]}" ## (D)
do

echo $file;
if [[! -f "$from/$file"]] ## not a regular file

then continue ## skip
fi
if [[-f "$to/$file"]] ## $file in folder $to

then if [["$from/$file" -nt "$to/$file"]] ## (E)
then
echo /bin/cp \"$from/$file\" \"$to\"
/bin/cp "$from/$file" "$to"

fi
else ## $file not in folder $to

echo /bin/cp \"$from/$file\" \"$to\"
/bin/cp "$from/$file" "$to"

fi
done

If $file is present in $to, then we check to see if the version in $from is
newer (line E). Any file copying action is displayed to inform the user. Note

Writing Shell Scripts 155

the use of double quotes (") throughout the script to guard against multiword
file names.

Example: Total File Sizes

In this example (Ex: ex05/total.sh) we use a recursive Shell function to
compute the total number of bytes contained in all files in a certain file hier-
archy. The du command only provides a rough accounting in kilobytes. The
script total.sh recursively descends through a directory hierarchy and sums
the file sizes by extracting information provided by the ls command on each
file in the hierarchy.

#!/bin/bash
bash script : total.sh
compute total bytes in files
under any given directory hierarchy

[[$# == 1 && -d "$1"]] \
|| { echo usage: $0 directory; exit 1; }

After the checking command-line argument, we proceed to define a function
total which sums up the file sizes for all files in the current directory and
recursively descends the directory hierarchy.

function total()
{ local count=0 ## bytes used inside working dir

for file in .* * ## all files including hidden ones
do
if [[-f "$file"]]
then
fl=($(/bin/ls -ld "$file")) ## (a)
let count+=${fl[4]} ## (b)
continue

fi
if [["$file" == *\. || "$file" == *\.\.]] ## (c)
then
continue

fi

For a regular file, the ls -l output is captured in the array fl (line a), and
the byte size is added to the total byte count (line b). The special files . and
.." are excluded (line~\verbc+).

For a subdirectory, we temporarily change to that directory (line d), in-
clude the sum obtained by a recursive call to total (line e), and then change
the directory back (line f).

if [[-d "$file"]]

156 Mastering Linux

then
pushd "$file" >/dev/null ## (d)
y=$(total) ## (e)
let count+=$y
popd >/dev/null ## (f)

else
echo \"$file\" not included in the total >&2

fi
done
echo $count ## (g)

}

Note that we redirected echo output to stderr and output by pushd and
pupd to the data sink /dev/null. The only output to stdout allowed is the
total count (line g). This is the way the function total returns a value that
is picked up in a call with command substitution (lines e and h).

dir="$1"
cd $dir
echo "Total for $dir = " $(total) Bytes ## (h)

Example: Secure File Transfer

The need often arises to transfer files between computers. The sftp command
is commonly used for this purpose. We will a Bash script that helps file upload
and download with sftp. The script will work smoother if you have already
set up password-less SSH and SFTP between your local and remote hosts
(Chapter 7, Section 7.6).

The idea now is to set up a special directory for upload and download
on a remote computer (say, at work or school) and use the mput or mget
command to invoke the script (Ex: ex05/mput) to transfer files to and from
it. Here is the script.

#!/bin/bash
upload and download files using sftp
Usage: mput "*.jpg" or mget "*.pdf"

begin customizable: user, host, rdir
user=pwang ## (1)
host=monkey.cs.kent.edu ## (2)
rdir=tmp ## (3)
end customizable

if [[$0 == *mget*]] ## (4)
then action=mget
else action=mput

Writing Shell Scripts 157

fi

/usr/bin/sftp $user@$host <<HERE
cd $rdir
$action "$@"
HERE

Customizable parameters are user (user ID), host (remote host), and rdir
(remote folder) (lines 1-3).

The script is named mput with a hard link (Section 6.2) mget to it.

ln mput mget

So the script can be invoked as either mput or mget. The sftp action is set
according to the value of $0 (line 4).

These values being set, the sftp can be invoked with a here document] to
perform the desired uploading/downloading. For example,

mget memo.pdf (downloads memo.pdf)
mget*.pdf (downloads all pdf files)
mput*.jpg (uploads all jpg files)

Example: Resizing Pictures

Connect your digital camera to your Linux computer and download a set of
pictures to your Pictures folder. Often, you need to scale down the pictures
for emailing or posting on the Web. Here is a script that makes the task easy
(Ex: ex05/resize).

resize ’75

will reduce each .jpg file by 75% under the new names trip001.jpg etc.
The resize script first processes the command-line arguments.

#!/bin/bash
resize a set of pictures
Usage: $0 size-factor newName pic1.jpg pic2.jpg ...
scales all pics by size-factor into
newname1.jpg, newname2.jpg ...

(($# < 3)) \
|| { echo usage:"$0 \"50%\" newName pic.jpg ..."; exit 1; }

sz=$1; name="$2"; declare -i k=1

Then, we resize each picture (line i) and save it under sequential numbering
after the given new name using three-digit numbers (lines ii and iii). The
notation "${@:3}" produces a list of all names on the command line starting
from the fourth word (Section 5.16).

158 Mastering Linux

for pic in "${@:3}" ## (i)
do

if (($k < 10)) ## (ii)
then n="00$k"
elif (($k < 100)) ## (iii)
then n="0$k"

fi
echo "convert -resize $sz \"$pic\" \"$name$n.jpg\""
convert -resize $sz "$pic" "$name$n.jpg"
let k++

done

The convert command is part of the ImageMagick tool that is commonly
found on Linux systems. See man convert for more details on its usage.

5.21 Debugging Shell Scripts

When a Shell script fails because of syntax problems, the syntax error
will cause a display of some unexpected token. You usually will get an error
message stating the token and the line number containing the token. This
means your syntax problem is on or before that line. Take a close look at your
code, and you usually can find the problem or typo and fix it.

You can also place echo commands at appropriate places to show values
of variables to help you catch the bug. Such echo commands can be removed
after the debugging is done. Or you may use a conditional echo,

function dbecho()
{ [[${DEBUG:-off} == off]] || echo "$*" >&2
}

We see that the function dbecho produces output to the stderr unless the
variable DEBUG is null, not set, or set to off. Thus, you would place DEBUG=on
at the beginning of your script to enable dbecho output and comment the
DEBUG=on out to disable it.

If you still cannot find the problem, then placing the command

set -x (turns on tracing)
set +x (turns off tracing)

in your script will turn tracing on/off from selected places. Tracing will display
each command before it is executed.

More tracing information can be display with

bash -x script.sh

to run the script with trace turned on within Bash. This will show all com-
mands executed, including any init files.

Writing Shell Scripts 159

5.22 Error and Interrupt Handling

An error may occur during the processing of a Shell script at several dif-
ferent stages. A syntax or substitution error will result in the premature ter-
mination of the script. However, if a regular command invoked by the script
runs into an error, the interpretation of the script continues with the next
command in the script. Error messages are produced and sent to the standard
error output. To help debugging, the stderr can be redirected (Chapter 2,
Section 2.5) to a file.

In Linux, when a program terminates (because of either completion or
error), an exit status is set to a small integer value to provide an indication of
the circumstances under which execution was terminated. By convention, the
exit status is 0 if termination is normal and greater than 0 if termination is
abnormal. A Shell built-in command gives an exit status of 0 when successful
and an exit status of 1 when unsuccessful. The special Shell variable $? is set
to the exit status after the execution of each command. The value of $? is 0 if
the last command was successful and greater than zero (usually 1) if it failed.

To test whether a command has failed, the following construct often is
used:

if command
then

commands to execute if command succeeds
else

commands to execute if command fails
fi

Interrupt Handling

An interrupt is an asynchronous signal sent to a running program by another
process or through the keyboard by the user. The user can send an interrupt
signal to a Shell running a script by typing in the interrupt character, normally
^C or delete. There are various system-defined signals that can be sent to
an executing program using the kill command. Signals will be discussed in
Chapter 10, Section 10.16. For now, it is sufficient to state that

kill -2 pid

sends the interrupt signal 2 to the process pid, which causes it to terminate.
The process pid can be given either as a jobid or as a process number. If this
does not terminate the process, use

kill -9 pid

which sends signal 9, unconditionally terminating pid.
The default response of a Shell executing a script is to terminate if it

receives an interrupt signal, but this can be modified. The Bash built-in com-
mand trap controls the action of the Shell when specific interrupt signals are
received or when specific events take place.

160 Mastering Linux

trap command sig

The given command (given as a string in quotes) will be executed when the
Shell receives the indicated signal or event. The sig is a signal number or signal
name (see man 7 signal). If sig is DEBUG, then the command is executed after
each command in the script. If sig is EXIT, the command is executed after the
Shell script is done. Without any arguments, trap displays a list of trapped
signals.

Often, a Shell script will create a temporary file that will be removed at
the end of the script. For example,

...
spell $file >| /tmp/badwords$$
...
...
at end of script
/bin/rm -f /tmp/badwords$$

The value of the special variable $$ is the process number of the running
script, and its use here makes the temporary file name unique to the process.
However, that file can be left unremoved if the script terminates due to a
signal instead of completing all commands. To fix that problem simply add
(Ex: ex05/trap.sh)

trap "/bin/rm -f /tmp/badwords$$" EXIT

before creating the temporary file. The action places the given rm command as
something to execute upon normal or error exit of the script. As a consequence,
the rm command at the end of the script is no longer necessary.

5.23 The Perl Alternative

Shell scripting is not the only way to write scripts to automate tasks. For
more complicated tasks or for problems involving structured data files, many
prefer to use Perl, the Practical Extraction and Report Language, over simple
Shell scripts. The Perl language is outside of the scope of this text, and there
are many books dedicated to Perl. We will give only a brief introduction here.

Perl is a portable, command-line–driven, interpreted programming/
scripting language. Written properly, the same Perl code will run identically
on Linux/UNIX, Windows, and Mac operating systems. Most likely, you’ll
find Perl pre-installed on your Linux system.

The Perl scripting language is usually used in the following application
areas:

• DOS, Linux/UNIX command scripts

• Web CGI programming (Chapter 7, Section 7.17)

Writing Shell Scripts 161

• Text input parsing

• Report generation

• Text file transformations and conversions

Perl 1.0 was released December 18, 1987, by Larry Hall with the following
description:

Perl is an interpreted language optimized for scanning arbitrary
text files, extracting information from those text files, and print-
ing reports based on that information. It’s also a good language
for many system management tasks. The language is intended to
be practical (easy to use, efficient, complete) rather than beautiful
(tiny, elegant, minimal). It combines (in the author’s opinion, any-
way) some of the best features of C, sed, awk, and sh, so people
familiar with those languages should have little difficulty with it.
(Language historians will also note some vestiges of csh, Pascal,
and even BASIC—PLUS.) Expression syntax corresponds quite
closely to C expression syntax. If you have a problem that would
ordinarily use sed or awk or sh, but it exceeds their capabilities
or must run a little faster, and you don’t want to write the silly
thing in C, then Perl may be for you. . . .

Perl 5.0, a complete rewrite of Perl adding objects and a modular organization,
was released in 1994. The modular structure makes it easy for everyone to
develop Perl modules to extend the functionalities of Perl.

The Comprehensive Perl Archive Network (CPAN; www.cpan.org) was
established to store and distribute Perl and Perl-related software.

5.24 For More Information

At the book’s companion website (http://ml.sofpower.com), you’ll find
a complete example code package containing ready-to-run code files for the
examples in this book. The Shell script examples in this chapter are, of course,
part of this package.

You can get a quick reference for Bash by

man bash

and you’ll see many details including a list of built-in functions.
On the GNU Bash home page (www.gnu.org/software/bash/) you can

find the Bash Manual which is a complete reference for Bash. You’ll also be
able to download the latest release of Bash.

POSIX defines standards for utilities, the Shell programming language,
the Shell command interface, and access to environment variables. Scripts
following the POSIX standard can be much more portable. For additional

162 Mastering Linux

information, see Portable Operating System Interface (POSIX) – Part 2: Shell
and Utilities, published by IEEE (IEEE Std 1003.2-1992).

5.25 Summary

Bash provides many features for writing scripts to automate tasks for
yourself and others. Proficiency in script writing can make you more efficient
and effective on Linux.

A Bash script is an executable text file whose first line must follow a special
convention. Such a file can be invoked via explicit or implicit interpretation
and is executed by a subshell of the invoking Shell. Arguments are passed into
the script and are available in the script as positional parameters. Other values
can be transmitted to the script by environment variables. Upon termination,
a Shell script returns an exit status to the invoking Shell which can access
this value via the special variable $?. A zero exit status indicates successful
completion of the script.

Bash provides a good number of constructs for script writing.

• Looping constructs: for, while, and until

• Decision making constructs: case ... esca, if ... then ... else
... fi

• Test expressions: [[...]], ((...)), and any command exit status

• Logical operators: &&, ||, !

• Arithmetic expressions: let, ((...))

• Glob pattern matching: ==, !=, and case

• Regular expression pattern matching: =~

• Arrays and functions

• Variable modifications: with :, %, #, %%, and ## (inside ${})

Functions are invoked just like commands. A function takes positional
parameters and produces an exit status. Arguments can be passed by value
or by reference. A value can be returned by echoing it to stdout, setting a
return-value reference parameter, or setting the exit status.

Many practical scripts have been given as examples. Debugging techniques
as well as error trapping for Shell scripts have been discussed.

Writing Shell Scripts 163

5.26 Exercises

1. What is the difference between these two ways of invoking a script
abc.sh:

bash abc.sh
abc.sh

2. Bash allows the use of $0, $1, $2, and so on to refer to positional pa-
rameters. Is it possible to use $10, $15, and so on? Explain.

3. The character * is a special character in Bash.

(a) Explain how it is used for filename expansion.

(b) List at least two situations in Bash syntax where the character * is
not quoted, but does not serve the function of filename expansion
or globbing.

4. Using the cmdsearch example in Section 5.6 as a guide, write a Bash
script cmdfind.

cmdfind pattern

The script takes a regular expression pattern argument and finds all
commands on PATH that match the given pattern.

5. The character @ is a special character in Bash.

(a) Explain the meaning of $*, $@, "$*", and "$@".

(b) How about $arr[*], $arr[@], "$arr[*]", and "$arr[@]"?

6. Explain how the character # is used in Bash scripts: as a comment
character, as the number of positional parameters, and as the number
of array elements.

7. Refer to the section on variable modifiers (Figure 5.16) and see if it gives
a way to change the case of characters in a variable. If not, find out what
Bash parameter expansion notations does that.

8. Bash also supports conditional expressions using [...]. Explain the
difference between that and the [[...]] conditionals. What about
the ((...)) conditionals?

9. Can you suggest ways to improve clean? What about cleaning out only
old files? Is an undo or undelete feature desirable? What about recur-
sively cleaning out subdirectories as an option? How would you imple-
ment the improvements?

164 Mastering Linux

10. Write a Shell script to change the names of all files of the form *.JPG
in a directory (supplied as argument 1) so that they have the same root
as before but now end in .jpg. Generalize this script so that any two
extensions could be used.

11. Write a Shell script delete that mimics the way rm operates, but rather
than erasing any files, it would put them in a user’s .Trash folder. Write
an additional Shell script undelete to make these files reappear where
they were deleted.

12. Reimplement the delete script of the previous exercise as a Bash func-
tion. Discuss the pros and cons of Shell scripts vs. functions.

13. Write a Shell predicate function evenp that takes a integer argument
and tests if it is an even number or not.

14. Write a Shell function findfile so that

findfile name dir1 dir2 . . .

searches the named file in the directories specified. If the file is found in
one of the directories, the current directory is changed to it. Why do we
need to implement it as a function in the interactive Shell rather than
a regular Shell script?

15. Improve the mget/mput script so that it can also be invoked as rv and
will allow you to view a remote PDF (.pdf) or MS Word (.doc) file
locally. No copy of the remote file will be left on the local file system.

16. Recent versions of Bash also supports associative arrays. Find out how
it works and experiment with (Ex: ex05/asso.sh).

Chapter 6

The File System

Storing data as files that can be accessed immediately by programs is essential
for modern operating systems. Files are identified by their filenames and may
contain many kinds of data. For example, a file may contain a letter, a report,
a program written in a high-level language, a compiled program, an organized
database, a library of mathematical routines, a picture, or an audio/video clip.

The operating system provides a consistent set of facilities allowing the
user to create, store, retrieve, modify, delete, and otherwise manipulate files.
The physical storage media (usually high-speed magnetic disks) are divided
into many blocks of logical storage areas. A file uses one or more of these
blocks, depending on the amount of data in the file. Blocks are used and freed
as files are created and deleted. The program that creates, stores, retrieves,
protects, and manages files is the file storage system (or simply file system)
which is part of the kernel of any modern operating system.

Historically, the UNIX operating system evolved from a project to design
a new computer data storage system at the then Bell Laboratories. This hi-
erarchical file storage system is a hallmark of UNIX. As UNIX evolved, so
did the implementation of its file storage system. Linux basically adopted the
same UNIX file storage system implementation. The file system usually con-
sists of one or more self-contained file management units, each is known as a
filesystem. Also, the Linux file hierarchy usually follows the File System Stan-
dard (FSSTND), allowing users to find important system files at the same file
locations on any compliant Linux system.

The file system affects almost every aspect of the operating system. In this
chapter, the file system is discussed in detail, including such topics as type and
status of files, access protection, filesystem structure, implementation, quotas,
special files, and networked filesystems. A clear understanding of how Linux
treats files will be helpful for any Linux user.

6.1 A File Location Road Map

The file system in Linux is much more than a place to store user files. It
contains the operating system itself, application programs, compilers, network
servers, shared libraries, documentation, system configuration and administra-
tion data files, media mount points, log files, temporary scratch areas, and so

165

166 Mastering Linux

on. In other words, almost every bit of data and programming that is needed
to boot the computer and keep it working must be saved in the file system.

Linux systems generally follow the FSSTND in organizing the file system
hierarchy. This makes it easy for Linux users to find their way on different
Linux systems. Table 6.1 shows a typical organization of the root folder (/) of

TABLE 6.1: The Root Directory: /

Where What
bin/ Essential commands—cat, cp, rm, sh, bash, vi, mount, etc.
sbin/ Commands for system maintenance
boot/ Everything required at system boot time
dev/ All special files (devices)
etc/ System configuration, data, and maintenance files such as the

password file (passwd), the filesystem tables (fstab, mtab),
email, printer, X-windows, and network services configuration,
and the run-level initialization script folder (rc.d/)

home/ Home directories for users
lib/ Kernel modules, shared libraries for essential commands
tmp/ Folder for temporary files by system and users
media/ Mount points for removable media—CD, DVD, USB devices
mnt/ Generic mount points for filesystems and devices
opt/ Optional additions to the Linux distribution
proc/ Kernel run-time data files, off limits for users
usr/ All application programs and their files
var/ Variable data files—mail and printer spool folders, logs, locks

the file tree. From your desktop, clicking on the Computer icon then selecting
the File System link brings you to the root directory. On the command line,
cd / will do. We already know that files and folders form a tree hierarchy
rooted at /. Each file on this file tree is uniquely identified by its full pathname,
as we already mentioned in Chapter 1, Section 1.4.

Inside each user’s home directory, you’ll often find these standard folders:
Documents, Download, Music, Pictures, Videos, Desktop, and the hidden
.Trash.

When files and folders accumulate, it can become harder to locate a file
that you need. See Section 6.10 and Section 6.11 for helpful commands.

6.2 File Types

The file tree contains different types of files.

1. An ordinary file that contains text, programs, or other data

2. A directory that contains names and addresses of other files

The File System 167

3. A special file that represents an I/O device or a filesystem partition

4. A symbolic link that is a pointer to another file

5. A socket (or domain socket) that is used for inter-process communication

6. A named pipe that is a way for inter-process communication without the
socket semantics

The first character in an ls -l listing of a file is a file type symbol. Table 6.2
lists the different file type symbols.

TABLE 6.2: File Type Symbols

Symbol Meaning Symbol Meaning
- Regular file d Directory
l Symbolic Link c Character special file
b Block special file s Socket
p Named pipe

Now, let’s describe five of the file types in turn. The socket and named
pipe will be discussed later in Chapter 11, Section 11.6.

Ordinary Files

An ordinary file stores data of various content types. The entire file storage
system is designed to store, retrieve, and manage ordinary files. Your home
directory is normally where you store your own files.

Filenames are character strings (it is best not to use any white space).
Although Linux filenames do not require them, files of different content types
often use different extensions. For example, a picture might use the .jpg
extension.

The Multipurpose Internet Mail Extensions (MIME) provides a standard
classification and designation for file content types. Files of different content
types often use well-known filename extensions for easy recognition and pro-
cessing. There are hundreds of content types in use today. Many popular types
are associated with standard file extensions. Table 6.3 gives some examples.

For a more complete list of content types and file suffixes, see the
/etc/mime.types file on your Linux system.

Directories

Files are stored in directories, and that is why they are also known as file
folders. A directory is a file whose content consists of directory entries for the
files placed in the directory. There is one directory entry for each file. Each
directory entry contains the filename and the location of its file information
node (i-node).

168 Mastering Linux

TABLE 6.3: Content Types and File Suffixes

Content Type File Suffix Content Type File Suffix
text/plain txt sh c ... text/html html htm
application/pdf pdf application/msword doc, docx
image/jpeg jpeg jpg jpe audio/basic au snd
audio/mpeg mpga mp2 mp3 application/x-gzip gz tgz
application/zip zip audio/x-realaudio ra
video/mpeg mpeg mpg mpe video/quicktime qt mov

A filename is a sequence of characters not containing /. The maximum
sequence length is dependent on the version of the Linux system. It can be
up to 255 characters on most systems, but can be no more than 14 charac-
ters on some older versions. The i-node location is an integer index, called
the i-number, to a table known as the i-list. Each entry in the i-list is an
i-node, which contains status and address information about a file or points
to free blocks yet to be used. The entire file system may involve several inde-
pendent and self-contained parts, each known as a filesystem. Each individual
filesystem has its own i-list.

Special Files

By representing physical and logical I/O devices such as graphical displays,
terminal emulators, printers, CD/DVD drives, and hard drives as special files
in the file system, Linux achieves compatible file I/O and device I/O. This
means that an application program can treat file and device I/O in the same
way, providing great simplicity and flexibility. Under FSSTND, all Linux spe-
cial files are under the directory /dev. There are two kinds of special files: a
character special file and a block special file. A character special file represents
a byte-oriented I/O device such as a display or a printer. A block special file
represents a high-speed I/O device that transfers data in blocks (many bytes),
such as a hard drive. Typical block sizes are 1024 bytes and 2048 bytes.

Special files usually are owned by the super user (root). The ownership
of a terminal emulator special file (under /dev/pts/) is set to the user of the
terminal for the duration of the terminal session.

Links

Linux allows a directory entry to be a pointer to another file. Such a file pointer
is called a link. There are two kinds of links: a hard link and a symbolic link.
A regular file is an entry in a directory with a name and an i-number. A hard
link, or simply a link, is an entry in a directory with a name and some other
file’s i-number. Thus, a hard link is not distinguishable from the original file.
In other words, after a hard link is made to a file, you cannot tell the file
from the link. The net result is that you have two different directory entries

The File System 169

referring to the same i-node. A file may have several links to it. A hard link
cannot be made to a directory or to a file on another filesystem.

Thus, hard links allow you to give different names to the same file within
the same filesystem. For example, you may have a file called report and you
enter

ln report report.txt

then the report is also under the filename report.txt.
The regular command ln is used to make links. The general forms of the

ln command are as follows:

ln file makes a link to file in the current folder
ln file linkname establishes linkname as a link to existing file
ln file1 . . . dir makes links in dir to the given file(s)

By default ln forms hard links. It is permitted to establish a link to a file
even if you are not the owner of the file. When deleting a file (with the rm
command), the directory entry of the file is deleted. For rm file to succeed,
you need write permission to the parent directory of file, not the file itself. A
file is only physically deleted from the filesystem when the last link of it is
rmed. The total number of hard links to a file is kept as part of the file status
(Section 6.4).

Symbolic Links

A symbolic link is a directory entry that contains the pathname of another
file. Thus, a symbolic link is a file that serves as an indirect pointer to another
file. For most commands, if a symbolic link is given as an argument, the file
pointed to is to be used. For example, if the file abc is a symbolic link to the
file xyz, then

cat abc

displays the contents of xyz. There are some exceptions:

rm abc

removes the directory entry abc (even if it is a symbolic link). As well,

ls -l abc

displays status information for abc (not xyz). If you give the command

rm xyz

then the symbolic link abc points to a non-existent file. If abc were a hard
link, this situation could not occur.

A symbolic link is distinguishable from the file itself, may point to a di-
rectory, and can span filesystems. The -s option causes ln to create symbolic
links:

170 Mastering Linux

ln -s filename linkname

Unlike a hard link, here filename does not even have to be an existing file.
The command ls -F displays a symbolic link with a trailing @. The ls -l

command displays a symbolic link in the form

lrwxrwxrwx 1 user 7 Apr 16 17:40 abc@ -> xyz

Let’s look at an application of symbolic links. Suppose you have the
clean.sh Shell script in your own home directory, and you wish to make
it available to all others on your Linux system. One way to achieve this is to
make a link in a system directory to your program. For example, you can issue
the following command:

ln -s $HOME/cmd/clean.sh /usr/local/bin/clean

This establishes the command clean as a symbolic link in the system directory
/usr/local/bin to your clean.sh. Assuming the directory /usr/local/bin
is on users’ command search path, then once this link is in place, a new com-
mand clean is made available to all users. Note that because of file protection,
system directories such as /usr/local/bin are usually writable only by a su-
per user.

6.3 More on File Access Control

From Chapter 1, we know that files have access control, and the file type
and access permissions can be displayed either by the File Browser tool
or, by using the ls -l command. Also, you can change permissions of your
own files and folders using the chmod command (Chapter 1, Section 1.5 and
Figure 1.8) or the File Browser (Chapter 3, Section 3.5).

In the following sample ls display

-rw-r----- 1 pwang faculty 46433 2009-03-06 15:35 report

the four file mode parts (- rw- r-- ---) show regular file type, read and
write permission to u (the file owner), read permission for g (anyone in the
faculty group), and no access for o (all others). There are ten positions in
the file mode:

Position 1 file type: see Table 6.2
Positions 2-4 r (read), w (write), and x (execute) permission for the

owner (u), a - is no permission; the letter s is used in-
stead of x for an executable file with a set-userid bit that
is on (Section 6.4)

Positions 5-7 r, w, and x permission for g, a - is no permission; the
letter s is used instead of x for an executable file with a
set-groupid bit that is on (Section 6.4)

Positions 8-10 r, w, and x permission for o, a - is no permission

The File System 171

Meaning of Permissions for a Directory

The meaning of read, write, and execute permissions is obvious for a regular
file. For a directory, their meanings are different. To access a directory, the
execute permission is essential. No execute permission for a directory means
that you cannot even perform pwd or cd on the directory. It also means that
you have no access to any file contained in the file hierarchy rooted at that
directory, independent of the permission setting of that file. The reason is
that you need execute permission on a directory to access the filenames and
addresses stored in the directory. Since a file is located by following directo-
ries on the pathname, you need execute permissions on all directories on the
pathname to locate a file. After locating a file, then the file’s own access mode
governs whether a specific access is permitted.

To access a directory, you normally need both read and execute permis-
sions. No read permission to a directory simply means that you cannot read
the content of the directory file. Consequently, ls, for example, will fail, and
you cannot examine the filenames contained in the directory. Any filename
expansion attempt also will fail for the same reason. However, files in such a
directory still can be accessed using explicit names.

The write permission to a directory is needed for creating or deleting files in
the directory. This permission is required because a file is created or removed
by entering or erasing a directory entry. Thus, write permission on the file itself
is not sufficient for deleting a file. In fact, you don’t need write permission on
a file to delete it from the directory! On the other hand, if you have write
permission on a file, but no write permission for its directory, then you can
modify the file or even make it into an empty file, but you cannot delete the
file.

Default File Protection Settings: umask

When you create a new file, the system gives the file a default protection
mode. For most systems, this default setting denies write permission to g and
o and grants all other permissions. The default file protection setting is kept
in a system quantity known as umask. The Shell built-in command umask
displays the umask value as an octal number. The umask bit pattern specifies
which access permissions to deny. The positions of the 1 bits indicate the
denied permissions. For example, the umask value 022 (octal 22) has a bit
pattern 000010010, and it specifies denial of write permissions for g and o.
The command umask also sets the umask value. For example,

umask 077

sets the umask to deny all permissions for g and o. If you find yourself using
chmod go-rwx a lot, you might want to consider putting umask 077 into
your .bash_profile file.

172 Mastering Linux

6.4 File Status

For each file in the Linux file system, a set of file status items is kept in the
i-node of the file and is maintained by the operating system. The i-node of a
file is a data structure that records file meta information (information about
the file) that is used by Linux to access and manipulate the file. File status
items include

mode 16-bit integer quantity used to represent the file mode
number of links total number of hard links to this file
owner user identification of the owner of this file
group group identification of this file
size total size in bytes of the data contained in this file
last access time when this file was last read or written
last content change time when the contents of this file were last modified;

this time is displayed by the ls -l command
last status change time when any status item of this file was changed
i-number the index number of this i-node
device hardware device where the file is stored
block size optimal block size to use for file I/O operations
block count total number of file blocks allocated to this file

The command

ls -l file

displays many status items of a given file. The system call stat (Chapter 10)
can be used in a C program to access file status information.

Many Linux systems also implement the Second Extended Filesystem
(ext2) or an extension of it (ext3, for example). In an ext2 filesystem, op-
erating system administrators can set additional ext2 file attributes kept in
the i-node. For example, if the immutable (i) attribute is set, then the file
cannot be altered or deleted, even by a super user.

File Mode

The file mode consists of 16 bits. The four high bits (C-F in Figure 6.1) of the
file mode specify the file type. The next three bits define the manner in which
an executable file is run. The lowest nine bits of the file mode specify the
read, write, and execution permissions for the owner, group, and other. The
file type is fixed when a file is created. The run and access bits are settable

FIGURE 6.1: File Mode Bits
← Run →

F E D C B A 9 8 7 6 5 4 3 2 1 0
← Type → ←− Access −→

The File System 173

by the file owner. You already know how to set the nine access bits with the
chmod command. The run bits can be set together with the access bits by
the chmod command using a numerical mode setting, as in

chmod mode file

The numerical mode is an octal number that is the logical-or of any number
of the settable file modes (Table 6.4). For set-id-on-execution, the symbolic
u+s and g-s modes are also available. Only the owner of a file or a super user
may change the mode of a file. On most Linux systems, the -R option causes
chmod to perform the requested mode setting on all files under the given file
directories.

TABLE 6.4: Settable File Modes
Mode Meaning Mode Meaning Mode Meaning
0001 x for o 0002 w for o 0004 r for o
0010 x for g 0020 w for g 0040 r for g
0100 x for u 0200 w for u 0400 r for u
1000 sticky bit 2000 set g (run) 4000 set u (run)

File Userid and Groupid

In Linux, each file has a userid and a groupid. The file userid is the userid of
the owner who created the file. Each user may belong to one or more (up to
a reasonable limit, say, eight) groups of users. Each group has a name. The
password file (/etc/passwd) entry of each user contains a group affiliation. By
default, a new user belongs to a group with a groupid the same as the userid.
If a user belongs to more than one group, then the additional group affiliations
are specified in the file /etc/group. The groupid of a file can be set to any
group to which the file owner belongs. The group permissions control access
to the file by members of the specified group. When a file is first created, it is
given by default the groupid of the directory that contains it. The command

chgrp groupid filename ...

is used to assign a specified groupid to the named files. For example, if
research is a group name, then

chgrp research *

will change the groupid of each file in the current directory to research. The
userid of a file can be changed only by the super user. The command

chown ownerid filename ...

is used to change the ownership of the named files. For example, the command

174 Mastering Linux

chown -R pwang .

changes the ownership of all files in the hierarchy (rooted at .) to pwang. Both
chgrp and chown take the -R option to process files and folders recursively.

Bash provides a set of queries to determine the file type, access permissions,
and so on of a file (Chapter 5, Section 5.13). In addition, the regular Linux
command test can be used to obtain information about the type and mode
of a file. The test command is a general conditional command often used in
Shell scripts (especially in Sh scripts).

Access Control Enforcement

A file always is accessed through a process, for instance, ls, cat, rm, vim,
or your Shell (to cd, for example). To enforce access control, Linux uses the
userid and groupid of a process to grant or deny access to a file according to
the file’s access mode. The userid and groupid of a process are usually that of
the user who invoked the process. A user may belong to more than one group;
thus, a process also keeps a supplementary groupid list.

Specifically, if the userid of the process is the same as the userid of the file,
then the access permissions for u apply. Otherwise, if the groupid of the file
matches a groupid of the process, then the g permissions apply. Otherwise,
the o settings apply.

Set-userid Mode

To understand the function of the set-userid mode, first consider an interesting
problem created by controlled access to files. To illustrate, suppose you want
to send a piece of electronic mail to another user on the system. To do so, you
can use the mail command. Your message will be put in a mailbox file that
belongs to another user in the mail spool directory. However, the other person’s
mailbox file is protected against your read or write access. The question is how
can you be permitted access to the mailbox through mail, but not through
vi. The answer is in the set-userid bit.

If the set-userid bit is turned on for an executable file, then it effectively
assumes the userid of the file owner when it executes. This means that when a
user executes a set-userid program, the process is granted the access privileges
of the owner of the executable file while running the particular program. The
mail program is owned by the super user root and has its set-userid bit turned
on. When a user sends mail by invoking the mail program, the user’s process
assumes the effective userid root for the duration of the mail program’s
execution. This configuration allows you access to another user’s mailbox file
through mail. The set-groupid bit works in exactly the same way on the
groupid of a process.

The sticky bit, used on older systems to make certain programs load faster,
is largely obsolete. In some Linux systems, this bit becomes the restricted
deletion flag for directories. When set, it prevents a unprivileged user from

The File System 175

removing or renaming a file in the directory unless the user is the owner of
the directory or the file. In an ls listing, a t (T) in the 10th permission position
means the sticky bit is on and x for o is on (off).

Establishing a Group

As an example application of the file access control facilities, let’s consider
establishing a group whose members can collaborate on a project by accessing
selected files of one another. To establish the group, you first decide on a
name. In this example, the groupid is projectx. Next, you must decide who
will be members of the group. In this example, the group members are pwang,
rsmith, jdoe, sldog, and yourself. Now ask your system administrator to
create group projectx. A system administrator can either edit /etc/group
directly or use a command such as groupadd or system-config-users to set
up a new group. As soon as this is done, projectx exists on your system as a
valid group. Once projectx is established, members can assign desired access
permissions to selected files to allow sharing within the group. One simple
way for you to do this is as follows:

1. Establish a directory, alpha, say, under your home directory. All files in
alpha are to be shared with others in projectx.

2. Change the groupid of alpha to projectx by

chgrp projectx alpha

3. Now set the group access permissions for the alpha directory. Depending
on the access you wish to give, use one of the following:

chmod g=rwx alpha
chmod g=rx alpha
chmod g=x alpha

The difference between these permissions is described in Section 6.4.

4. Optionally, use

chmod +t alpha

to set the restricted deletion flag for the alpha folder.

5. You must make sure that each file in alpha carries the groupid projectx,
especially files established through cp or mv. As mentioned, the groupid
of a file is displayed with ls -gl. Depending on the nature of a file,
you should assign appropriate group permissions. Give the group write
permission only if you allow others in projectx to modify a file.

176 Mastering Linux

6.5 File System Implementation

As stated earlier in this chapter, a file system is a logical organization
imposed on physical data storage media (usually hard disks) by the oper-
ating system. This organization, together with the routines supplied by the
operating system, allows for systematic storage, retrieval, and modification of
files.

Typically for Linux, the entire file system consists of one or more filesys-
tems. Each filesystem is a self-contained unit consisting of a group of data
blocks on a particular hard disk. A file can be viewed as a one-dimensional
array of bytes. These bytes are stored in a number of data blocks from a given
filesystem.

Modern disk drives offer sizable storage for data. Typical data block sizes
are 1024, 2048, and 4096 bytes. A filesystem can gain speed by employing a
larger block size. The block size is determined at filesystem creation time.

For each filesystem, the addresses (locations) of the data blocks, the sta-
tus, and perhaps also the attribute information of a file are stored in a data
structure known as the i-node (index node). All the i-nodes of a filesystem are
stored in a linear list called the i-list (or i-table), which is stored at a known
address on the physical storage medium. I-node and i-list were mentioned in
Section 6.4.

The i-node (Figure 6.2) stores meta information for a file including file
length (in bytes), device, owner, and group IDs, file mode, and timestamps.
The i-node also contains pointers (addresses) to the file’s data blocks. For
example, an ext2 filesystem allows 12 direct pointers, a single-indirect pointer,
a double-indirect pointer, and a triple-indirect pointer.

FIGURE 6.2: The i-Node

Double−indirect

Indirect Pinter

Triple−indirect
Pointer

Pointer

File Meta Info

Direct Pointers

Blocks
Addr

i−node
Blocks
Data

A direct pointer is the address of a block storing the content data of the
file. An indirect pointer points to a block of direct pointers. A double indirect
pointer points to a block of indirect pointers. A triple indirect pointer points
to a block of double indirect pointers. With this arrangement, very large files
can be accommodated.

The i-node contains all the vital meta information of a file. Therefore,
the implementation of a filesystem centers around access to the i-node. The

The File System 177

i-number in a directory entry is used to index the i-list and access the i-node
of the file. Thus, a file pathname leads, through a sequence of i-nodes, to the
i-node of the file. Figure 6.3 shows how the pathname /bin/ls leads from the
root directory / to the file ls through a sequence of i-nodes and directory
entries.

FIGURE 6.3: File Address Mapping

 . . .

/bin/

directory /

.. 2

 . . .

. 2

.. 2

. . .

i−node

i−node

i−node

i−list

i−node

.

.

.

i−node

for /bin/ls

Data blocks

ls 1796881

. 1796865

bin 1796865

A hard link to a file can be seen as simply another directory entry con-
taining the same i-number. Once the i-node of a file is located, it is read into
primary memory and kept on the active i-node table until access to the file is
closed. The i-list also contains free i-nodes that are used to create new files.

Mounted Filesystems

In Linux, a filesystem refers to the logical storage device represented by a single
i-list. The complete Linux file system may contain one or more filesystems.
One of these is the root filesystem; the others are mounted filesystems. The
location of the i-list of the root filesystem is always known to the operating
system. A mounted filesystem is attached (mounted) to the root filesystem at
any directory in the root filesystem. A mounted filesystem can be removed by
unmounting it with the umount command.

A super user may use the command

mount [-r] devfile directory

to mount the filesystem stored on the block special file devfile at the the given
directory, which is usually an empty directory created for this purpose. This
directory is called the root directory of the mounted filesystem. If the option
-r is given, the filesystem is mounted as read-only. The mount command
without any arguments displays the names of all mounted filesystems and the

178 Mastering Linux

points on the file tree where they are mounted. The command df displays file
system space usage and the free disk spaces on all the filesystems. Here is a
typical df display.

df -h

Filesystem Size Used Avail Use% Mounted on
/dev/sda6 140G 18G 115G 14% /
/dev/sda3 99M 20M 75M 21% /boot
tmpfs 376M 68K 376M 1% /dev/shm
/dev/sda2 146G 32G 115G 22% /media/ACER

showing a Linux/Windows R© dual-boot computer with four filesystems.
The /media/ACER is the mount point of an NTFS (NT Filesystem) for the

Windows R© side. Most Linux systems have built-in support for NTFS so files
and folders in an NTFS partition are usable from either Linux or Windows R©.
This can be very convenient. Do a man -k ntfs to see Linux support for
NTFS on your system.

Filesystem Super Block and Block Groups

A Linux ext2 filesystem consists of a number of block groups. Each block
group also contains a duplicate copy of crucial filesystem control information
(super block and group descriptors) in addition to the block group’s own block
bitmap, i-node bitmap, i-list, and, of course, data blocks.

The super block defines a filesystem. It records vital information about the
configuration, organization, and operations of a filesystem:

• The filesystem type and a block device reference

• The overall size and block size of the filesystem

• The length of the i-node list

• Free blocks and free i-nodes

• Read, write, and other methods for i-nodes

The group descriptor stores the location of the block bitmap, i-node bitmap
and the start of the i-node table for every block group; and these, in turn, are
stored in a group descriptor table. The super block and the group descriptor
table are critical for a filesystem, and they are stored at the beginning of each
block group to provide redundancy.

The File System 179

6.6 The Filesystem Table

Each different filesystem on Linux has its own block-type special file. The
names of the these special files, together with other information for control and
management of the entire file system, are kept in the filesystem table (typically,
/etc/fstab). This file contains one line for each filesystem specifying the block
special filename, the directory name where mounted, the filesytem type (local,
NFS,1 or for memory swapping), mount/swap options, and other information.

Of all the filesystems contained in the filesystem table, all or a subset may
be mounted at any given time. The mount table (/etc/mtab) contains a list of
currently mounted filesystems. The mount table is modified by the commands
mount and umount.

6.7 File Storage Quotas

The file quota mechanism is designed to allow restrictions on disk space
usage for individual users and/or groups. A separate quota can be set for each
user/group on each filesystem. Quotas can be enforced on some filesystems and
not on others. For example, in a computer science department, one filesystem
for students may have quota enforced; at the same time, another filesystem
for professors may have no quota enforced. The quota specifies limits on the
number of files and disk blocks a user may occupy. There are two kinds of
limits: soft limits and hard limits. If a user-initiated operation causes the soft
limit to be exceeded, a warning appears on the user’s terminal. The offending
operation is allowed to continue if the hard limit is not exceeded. The idea
is to encourage users to stay within their soft limits between login sessions.
In other words, exceeding the soft limit temporarily is all right, as long as
the user releases file space and returns within the soft limit before logout. At
login time, a warning is provided if any soft limits still are violated. After a
few such warnings, the user’s soft limits can be enforced as hard limits.

The filesystem table indicates which filesystems need to support quo-
tas. The quotas for users and groups are kept in files (aquota.user and
aquota.group, for example) located in the root directory of the filesystem.
For a mounted filesystem, its root directory is its mount point on the file tree.
The command edquota is used to set and change quotas. Only a super user
can invoke edquota. The command quota displays your disk usage and your
quota limits. A super user can give this command an optional userid to display
the information of a specific user. A super user also can turn on and off quota
enforcing for an entire filesystem using the commands

quotaon filesys . . .
quotaoff filesys . . .

1See Section 6.9.

180 Mastering Linux

6.8 Creating Special Files

As previously mentioned, the Linux system uses special files to represent
physical and logical I/O devices, and achieves uniform file I/O and device
I/O. Special files normally are created exclusively under the system directory
/dev. The command

mknod filename [b or c] major minor

is used to establish a special file by the given filename. The character b is used
if the device is a block I/O device (hard disk). The character c is used for a
character I/O device such as a terminal emulator or a printer. Each physical
I/O device on Linux is assigned a major device number according to the type
of device it is and a minor device number indicating the unit number within
the same type of devices. These numbers are integers. For example, the two
printers lp0 and lp1

crw-rw---- 1 root lp 6, 0 2009-03-06 11:48 lp0
crw-rw---- 1 root lp 6, 1 2009-03-06 11:48 lp1

have major device number 6 and minor device numbers 0 and 1, respectively.
Only a super user can create special files.

6.9 Network Filesystem

Many Linux systems allow file operations not only on local filesystems
stored on the host computer, but also on remote filesystems stored on other
computers connected by a network. The Network Filesystem (NFS) allows
transparent access to remote files. In other words, there is no difference be-
tween user requests for operations on remote and local files. NFS brings many
advantages to file organization for businesses and organizations. For exam-
ple, duplicate storage of the same files on different hosts can be avoided by
centralizing them on file server machines accessible via NFS.

To make things even more convenient, NFS can work with different hard-
ware and operating systems. A filesystem on a local host is made remotely
accessible by exporting it. The file /etc/exports specifies local filesystems
that can be exported and any restrictions on each filesystem. The command
exportfs must be run after modifying /etc/exports.

The file /var/lib/nfs/etab (or xtab) lists the filesytems currently being
exported. A filesystem can be exported to a list of allowed clients or to all and
can allow read-only or read-write access.

A client host makes a remote filesystem accessible by the mount command

mount remote-filesystem local-directory

which mounts a remote filesystem, specified by host:directory, onto a local
directory of choice.

The File System 181

On most Linux systems, even the mounting and unmounting of remote
filesystems are automated through the autofs mechanism assisted directly by
the Linux kernel. The kernel calls the automount program to mount a remote
filesystem when an actual file access to its mount point occurs. Automounted
filesystems are dismounted after a time period with no access.

6.10 Searching the File Tree: find

We know the Linux file system is organized into a tree structure. It is
sometimes necessary to search a part of this tree and visit all nodes in a
subtree. This means visiting all files in a given directory and, recursively, all
files contained in subdirectories of the given directory. The find command
provides just such a tree searching mechanism.

The find command visits all files in a subtree and selects files based on
given Boolean expressions. The selection feature allows us to find the desired
files and apply operations to them. Any file in the subtree for which the given
Boolean expressions evaluate to true will be selected.

The find command can be used to locate (display the pathname of) files
whose names match a given pattern in the subtree. For example,

find . -name *.c -print

In this example, the find command is given two Boolean expressions, -name
*.c and -print. The command searches the subtree rooted at the current
directory visiting each file. The file that currently is being visited is referred
to as the current file. If the name of the current file matches the pattern *.c
(the filename ends in .c), then the next expression (-print) is evaluated.
The -print expression simply displays the pathname of the current file on
the standard output. Thus, the effect of the preceding example is to find all
C source files under the current directory and display their pathnames.

The general form of the find command is

find filename . . . expression . . .

The command name is followed by one or more filenames, each either an
ordinary file or a directory, and then by one or more expressions. The tree
search is conducted on each file and directory given. Each expression is a
predicate on the current file and always produces a true/false value, although
the expression also may have other effects. An expression is evaluated only if
all preceding expressions are true. In other words, expression evaluation for
the current file terminates on the first false expression, and the search process
then goes on to the next file in the subtree.

The expressions used in find are primary expressions or a Boolean com-
bination of primary expressions. Some important primary expressions are ex-
plained here. The effect and the Boolean value of each also is described. (Since
some expressions may involve concepts and features we have not covered yet,

182 Mastering Linux

you may skip those expressions for now if you wish.) In the descriptions, the
argument n is used as a decimal integer that can be specified in one of three
ways: an integer, an integer preceded by +, or an integer preceded by −. Spec-
ifying +n means more than n, −n means less than n, and n means exactly
n.

-atime n True if the file has last been accessed in n days
-name pattern True if the name of the current file matches the given

Glob pattern (for example, -name ´chapter.* ´)
-newer file True if the current file has been modified more recently

than the given file
-print Always true; causes the pathname of the current file to

be displayed
-exec cmd args ; Executes the given Shell command cmd and returns

value true if cmd returns a zero exit status, (for cmd,
an argument {} stands for the current file and the last
argument must be ;)

-type t True if the type of the file is t, where t can be b (block
special), c (character special), d (director), f (regular
file), l (symbolic link), p (named pipe), and s (socket)

-user userid True if the file belongs to the user userid (login name
or numeric userid)

The following Boolean operations (in order of decreasing precedence) can be
used to combine any valid expressions e1 and e2.

(e1) True if e1 is true (the parentheses enforce precedence)
! e1 True if e1 is not true (the not operation)
e1 e2 True if e1 and e2 are both true (the and operation)
e1 -o e2 True if at least one of e1 and e2 is true (the Boolean or opera-

tion)

Here are some additional examples. To remove all files, under your home
directory, named either a.out or *.o that have not been accessed for at least
four weeks, type in (Ex: ex06/findrm)

find ~ \(-name a.out -o -name ´*.o ´\) -atime +28 \
-exec rm ´{} ´ \;

You can avoid the line continuation by entering everything on one command
line.

Consider another example. To display the names of all files not owned by
smith under the current directory, type in

find . \! -user smith -print

Note that many characters used in these examples have been quoted to avoid
Shell interpretation.

The File System 183

Now, for a third example (Ex: ex06/findstr), suppose you have several
HTML files under your personal Web space ($HOME/public_html) that con-
tain the word Linux, but you are not sure exactly which files. You can use
find to apply fgrep to each HTML file.

find public_html -name ´*.html ´ -exec fgrep Linux \{\} \; -print

6.11 The locate Command

While find is nice and powerful, the locate command can be easier to
use and faster. You give locate a Glob pattern or a regular expression and it
can display all pathnames, in the file tree, that contain a node whose name
matches. For example,

locate gnome (pathname containing gnome)
locate -b \gnome (base filename exactly gnome)
locate --regex \.html$ (filename ending in .html)

The locate command runs faster because it searches a database of files and
folders on your system called an udpatedb which is regularly updated auto-
matically daily.

6.12 Saving, Compressing, and Distributing Files

Sometimes the need arises to pack a number of files into a neat package
and send them to another computer. The tar command is used to collect
a set of files onto a single file, called a tar file (the name came from tape
archive). The tar command copies entire directory hierarchies. A directory
hierarchy refers to all files and directories contained in a subtree of the file
tree. It works by packing multiple files into a single file in the tar format
which can later be unpacked by tar preserving the original file and folder
structure. The tar file can be saved as a backup or transferred easily by email
or ftp (Chapter 7, Section 7.6). The tar command is often used together with
common file compression schemes such as gzip (GNU Zip) and bzip2. The
latter generally provides better compression.

Let’s first look at the simplest uses of tar.

tar cvf tarfile.tar name1 name2 . . . (A)
tar zcvf tarfile.tgz name1 name2 . . . (B)
tar jcvf tarfile.tbz name1 name2 . . . (C)

saves the named file hierarchies to the given tarfile with no compression (A),
gzip compression (B), or bzip2 compression (C). The options are c (create
tarfile), v (verbose), f (tarfile name follows), z (use gzip), and j (use bzip2).

The corresponding commands

184 Mastering Linux

tar xvf tarfile.tar
tar zxvf tarfile.tgz
tar jxvf tarfile.tbz

extract the files contained in tarfile. If you wish to preserve the file permissions
and other attributes, use the p option when packing and unpacking with tar.
Many software packages in tar format are available for download to your Linux
system.

The ZIP utility commonly used on Windows platforms is also available on
Linux. The zip and unzip commands make it convenient to exchange archive
files with other platforms.

zip -r archive.zip name1 name2 . . .

packs files and folders into the given archive, while unzip unpacks.
When providing an archive file for downloading, it is good practice to also

provide a finger print file to check the integrity of the download. Creating an
MD5 (Message-Digest algorithm 5) finger print for your archive file is simple.
The command

md5sum archivefile > archivefile.md5

places the name of the archive file and its MD5 finger print in the finger print
file archivefile.md5.

Packing Files with shar

The tar is the regular command for saving and retrieving files because it
restores all file attributes such as ownership and access protection modes. The
shar command is another way to pack multiple files into one which does not
worry about retaining file attribute information, and it can be easier to use.

Basically, shar packs the files into a single file of sh commands. The packed
file is unpacked by letting sh process the file.

The command

shar file1 file2 . . . > outfile.sh

packs the named files (including directories) into one file and sends that to
standard output. The resulting outfile.sh sent by email or uploaded to another
Linux/UNIX computer.

To unpack simply do

sh < outfile.sh

6.13 More File-Related Commands

Some additional commands that are useful in dealing with files and manag-
ing the filesystem are listed here. The function of each command is indicated,

The File System 185

but no full explanations are given. For more detailed information and options
on these commands, refer to the respective manual pages.

• basename removes prefixes and suffixes from a filename.

• cmp compares two files to see if they are identical.

• comm selects or rejects lines common to two sorted files.

• df displays disk space free on all filesystems.

• diff compares two files or directories and outputs the differences.

• du displays all file sizes in kilobytes in a directory hierarchy.

• size displays the size of an object file.

• split splits a file into pieces.

• touch updates the last modified time of a file; if a file does not exist, it
creates an empty one.

• uniq reports repeated lines in a file.

• wc counts the number of words, lines in given files.

6.14 For More Information

For the File System Standard (FSSTD), see the Linux Journal article by
Daniel Quinlan available on the Web from ACM:

portal.acm.org/citation.cfm?id=324517

For complete information on the Linux file hierarchy, see the Linux Docu-
mentation Project online article:

tldp.org/LDP/Linux-Filesystem-Hierarchy/html

For more details on filesystem internals and implementations, refer to De-
sign and Implementation of the Second Extended Filesystem and to Linux
NFS-HOWTO at Source Forge SourceForge.net.

For NFS, see the following Redhat document:

www.redhat.com/docs/manuals/linux/RHL-9-Manual/ref-guide/ch-nfs.html

186 Mastering Linux

6.15 Summary

The file system is central to any operating system and is part of the Linux
kernel. The Linux file system hierarchy contains files and directories arranged
in a tree structure that grows down from the root directory /. The Linux file
hierarchy largely follows the FSSTND.

Different file types are directories, special files, links, regular files, sockets,
and named pipes. There are two kinds of links: hard links and symbolic links.
A symbolic link can link to a directory and can span filesystems. Access to
files and directories is governed by rwx permissions for the file owner (u), for
users in the file group (g), and for others (o).

The set-userid bit for executable files is an important concept. When a
process executes a set-userid file, its effective userid becomes that of the file
owner.

The entire file system consists of a root filesystem and possibly additional
mountable filesystems. Linux supports different filesystem implementations,
including ext2 and its extensions. Each filesystem is organized by an i-list,
which is a list of i-nodes that contains status and address information for each
file and all free space in the filesystem. File status information includes userid,
access groupid, mode, timestamps, and disk addresses. Part of the file mode
specifies file access permissions.

The NFS allows transparent access to remote (NFS) and local filesystems,
making it easy to share files across a network.

To do a systematic search through a file hierarchy, use the find command.
To quickly locate files/folders based on their names, use the locate command.
Use the simple shar command or the more efficient tar command (with gzip
or bzip2 file compression) to pack and compress multiple files into an archive
for easy transport. Use zip to manage archive files across different computer
systems.

6.16 Exercises

1. Try the umask command. What does it tell you about the files you
create? Try setting the umask value and then creating some files. Look
at their protection bits.

2. If you have not done it yet, download the most recent HTML version of
the Linux man pages from www.tldp.org/manpages/man-html/ to your
computer. Unpack it so that you can use it with your Web browser.

3. How many mountable filesystems are there in the system you use? How
many are mounted at this time? How much free space is there in the file
structure where most of your files are stored? How does the filesystem
table file correspond to the actual files mounted on the system?

The File System 187

4. The term filesystem is different from the phrase “file system.” Can you
clearly specify their meaning?

5. Why is a hard link indistinguishable from the original file itself? What
happens if you rm a hard link? Why is it not possible to have a hard
link to a file in a different filesystem?

6. Clearly state the meaning of the rwx permissions for a directory. What
would happen if you perform ls dir with read permission to dir but no
execute permission? Why?

7. Write a Shell script forweb which takes the name of a folder fname and
makes all files o+r and all folders o+rx in the file hierarchy rooted at
fname.

8. How would you go about figuring out the size of the largest file a Linux
file system can accommodate with its i-node structure?

9. What command displays the i-number of a file/directory?

10. It is clear how commands rm and ls work on ordinary files. Describe how
they work on symbolic links. Must a symbolic link point to an existing
file? What happens if the actual file of a symbolic link is deleted? Is it
possible for a symbolic link to point to another symbolic link?

11. Consider the . and .. special files. Is it correct to say that these files
are system-created hard links to directories?

12. Consider the Bash script clean.sh (Chapter 5, Section 5.20). Does the
script still work correctly if there are symbolic links in the directory it
is trying to clean? If there is a problem, how would you fix it?

13. Try to rm a file to which you have no write permission. What message
does rm give? How did you respond? Were you able to delete the file?
Why?

14. When an executable file is invoked, does the new process always assume
the userid of its invoker? Explain.

15. You are looking for a file somewhere under your home directory that
contains the string zipcode in it. Describe how you can locate the file
if you do/don’t know which directory contains the file. What if the file
may be a hidden file whose name begins with a dot.

16. How exactly does one create a .tgz file? How does one extract from a
.tgz file? What about .tbz files?

17. Compare the pros and cons of the three file compression schemes: ZIP,
gzip, and bzip2.

Chapter 7

Networking, Internet, and the Web

Early packet-switched computer networking, involving a few research insti-
tutions and government agencies, started in the late 1960s and early 1970s.
Today, it is hard to tell where the computer ends and the network begins. The
view “The Network is the Computer” is more valid than ever. Most people
cannot tolerate even a few minutes of Internet connection outage.

A computer network is a high-speed communications medium connecting
many, possibly dissimilar, computers or hosts. A network is a combination
of computer and telecommunication hardware and software. The purpose is
to provide fast and reliable information exchange among the hosts. Typical
services made possible by a network include

• Electronic mail

• On-line chatting and Internet phone calls

• File transfer

• Remote login

• Distributed databases

• Networked file systems

• Audio and video streaming

• Voice and telephone over a network

• World Wide Web, E-business, E-commerce, and social networks

• Remote procedure and object access

In addition to host computers, the network itself may involve dedicated com-
puters that perform network functions: hubs, switches, bridges, routers, and
gateways. A network extends greatly the powers of the connected hosts.

A good understanding of basic networking concepts, commands, infor-
mation security, and how the Web works will be important for any Linux
user/programmer.

189

190 Mastering Linux

7.1 Networking Protocols

For programs and computers from different vendors, under different op-
erating systems, to communicate on a network, a detailed set of rules and
conventions must be established for all parties to follow. Such rules are known
as networking protocols. We use different networking services for different pur-
poses; therefore, each network service follows its own specific protocols. Pro-
tocols govern such details as

• Address format of hosts and processes

• Data format

• Manner of data transmission

• Sequencing and addressing of messages

• Initiating and terminating connections

• Establishing services

• Accessing services

• Data integrity, privacy, and security

Thus, for a process on one host to communicate with another process on a
different host, both processes must follow the same protocol. The Open System
Interconnect (OSI) Reference Model (Figure 7.1) provides a standard layered
view of networking protocols and their interdependence. The corresponding
layers on different hosts, and inside the network infrastructure, perform com-
plementary tasks to make the connection between the communicating pro-
cesses (P1 and P2 in Figure 7.1).

FIGURE 7.1: Networking Layers

Application

Presentation

Session

Transport

Network

Physical

Host A Host B

DataLink

Network

P1 P2

Networking, Internet, and the Web 191

Among common networking protocols, the Internet Protocol Suite is the
most widely used. The basic IP (Internet Protocol) is a network layer protocol.
The TCP (Transport Control Protocol) and UDP (User Datagram Protocol)
are at the transport layer. The Web is a service that uses an application layer
protocol known as HTTP (the Hypertext Transfer Protocol).

Networking protocols are no mystery. Think about the protocol for making
a telephone call. You (a client process) must pick up the phone, listen for the
dial tone, dial a valid telephone number, and wait for the other side (the server
process) to pick up the phone. Then you must say “hello,” identify yourself,
and so on. This is a protocol from which you cannot deviate if you want the
call to be made successfully through the telephone network, and it is clear why
such a protocol is needed. The same is true of a computer program attempting
to talk to another computer program through a computer network. The design
of efficient and effective networking protocols for different network services is
an important area in computer science.

Chances are your Linux system is on a Local Area Network (LAN) which
is connected to the Internet. This means you have the ability to reach, al-
most instantaneously, across great distances to obtain information, exchange
messages, upload/download files, interact with others, do literature searches,
and much more without leaving the seat in front of your workstation. If your
computer is not directly connected to a network but has a telephone or cable
modem, then you can reach the Internet through an Internet service provider
(ISP).

7.2 The Internet

The Internet is a global network that connects computer networks us-
ing the Internet Protocol (IP). The linking of computer networks is called
internetworking, hence the name Internet. The Internet links all kinds of or-
ganizations around the world: universities, government offices, corporations,
libraries, supercomputer centers, research labs, and individual homes. The
number of connections on the Internet is large and growing rapidly.

The Internet evolved from the ARPANET,1 a U.S. Department of Defense
Advanced Research Projects Agency (DARPA) sponsored network that devel-
oped the IP as well as the higher level Transmission Control Protocol (TCP)
and User Datagram Protocol (UDP) networking protocols. The architecture
and protocol were designed to support a reliable and flexible network that
could endure wartime attacks.

The transition of ARPANET to the Internet took place in the late 1980s as
NSFnet, the U.S. National Science Foundation’s network of universities and
supercomputing centers, helped create an explosive number of IP-based local

1The ARPANET was started in the late 1960s as an experimental facility for reliable
military networking.

192 Mastering Linux

and regional networks and connections. The Internet is so dominant now that
it has virtually eliminated all historical rivals such as BITNET and DECnet.

The Internet Corporation for Assigned Names and Numbers (ICANN;
www.icann.org) is a nonprofit organization responsible for IP address space
allocation, protocol parameter assignment, domain name system management,
and maintaining root server system functions.

Network Addresses

An address to a host computer is like a phone number to a telephone. Every
host on the Internet has its own network address that identifies the host for
communication purposes. The addressing technique is an important part of
a network and its protocol. An Internet address (IP address) is represented
by 4 bytes in a 32-bit quantity. For example, monkey, a host at Kent State,
has the IP address 131.123.41.83 (Figure 7.2). This dot notation (or quad

FIGURE 7.2: IP Address

11 0 0 0 0 0 1 10 1 1 1 1 0 1 00 0 1 0 1 0 1 10 1 0 1 0 0

123131 8341

1

notation) gives the decimal value (0 to 255) of each byte.2 The IP address is
similar to a telephone number in another way: the leading digits are like area
codes, and the trailing digits are like local numbers.

Because of their numerical nature, the dot notation is easy on machines but
hard on users. Therefore, each host may also have a domain name composed of
words, rather like a postal address. For example, the domain name for monkey
is monkey.cs.kent.edu (at the Department of Computer Science, Kent State
University). The Linux command host displays the IP and domain name of
any given host. For example,

host monkey.cs.kent.edu

displays

monkey.cs.kent.edu is an alias for monkey.zodiac.cs.kent.edu.
monkey.zodiac.cs.kent.edu has address 131.123.41.83

With domain names, the entire Internet name space for hosts is recursively
divided into disjoint domains in a hierarchical tree (Figure 7.3). The address
for monkey puts it in the cs local domain, within the kent subdomain, which
is under the edu top-level domain (TLD) for U.S. educational institutions.

2To accommodate the explosive growth, the Internet is moving to IPv6, which supports
128-bit addresses.

Networking, Internet, and the Web 193

FIGURE 7.3: The Domain Name Hierarchy

cs vcd

net org edu ... au ca cncom

(root)

gov

mitkentwhitehouse google icann apache w3

journalism lci

Other TLDs include org (nonprofit organizations), gov (U.S. government of-
fices), mil (U.S. military installations), com (commercial outfits), net (network
service providers), uk (United Kingdom), cn (China), and so forth. Within a
local domain (for example, cs.kent.edu), you can refer to machines by their
hostname alone (for example, monkey, dragon, tiger), but the full address
must be used for machines outside. Further information on Internet domain
names can be found in Section 7.16.

The ICANN accredits domain name registrars, which register domain
names for clients so they stay distinct. All network applications accept a host
address given either as a domain name or as an IP address. In fact, a domain
name is first translated to a numerical IP address before being used.

Packet Switching

Data on the Internet are sent and received in packets. A packet envelops
transmitted data with address information so the data can be routed through
intermediate computers on the network. Because there are multiple routes
from the source to the destination host, the Internet is very reliable and can
operate even if parts of the network are down.

Client and Server

Most commonly, a network application involves a server and a client (Fig-
ure 7.4).

• A server process provides a specific service on a host machine that of-
fers such a service. Example services are email (SMTP), secure remote
host access (SSH), secure file transfer (SFTP), and the World Wide Web
(HTTP). Each Internet standard service has its own unique port number
that is identical on all hosts. The port number together with the Internet

194 Mastering Linux

FIGURE 7.4: Client and Server

Internet
Client
Program

Server
Program

Server
Program

port

port

Server Host
Client Host

address of a host identifies a particular server program (Figure 7.4) any-
where on the network. For example, SFTP has port number 115, SSH has
22, and HTTP has 80. On your Linux system, the file /etc/services lists
the standard and additional network services, indicating their protocols
and port numbers.

• A client process on a host connects with a server on another host to
obtain its service. Thus, a client program is the agent through which a
particular network service can be obtained. Different agents are usually
required for different services.

A Web browser such as Firefox is an HTTP client. It runs on your computer
to access Web servers on any Internet hosts. The Linux wget command is
another useful client that can download files from the Internet using the HTTP
or the FTP protocol.

7.3 The Domain Name System

As stated in Section 7.2, every host on the Internet has a unique IP ad-
dress and a domain name. The network name space, the set of all domain
names with their associated IP addresses, changes dynamically with time due
to the addition and deletion of hosts, regrouping of local work groups, recon-
figuration of subparts of the network, maintenance of systems and networks,
and so on. Thus, new domain names, new IP addresses, and new domain-
to-IP associations can be introduced in the name space at any time without
central control. The domain name system (DNS) is a network service that
supports dynamic update and retrieval of information contained in the dis-
tributed name space (Figure 7.5). A network client program (for example, the
Firefox browser) will normally use the DNS to obtain IP address information

FIGURE 7.5: Domain to IP

IP addressdomain name DNS Server

Networking, Internet, and the Web 195

for a target host before making contact with a server. The dynamic DNS also
supplies a general mechanism for retrieving many kinds of information about
hosts and individual users.

Here are points to note about the DNS name space:

• The DNS organizes the entire Internet name space into a big tree struc-
ture. Each node of the tree represents a domain and has a label and a
list of resources.

• Labels are character strings (currently not case sensitive), and sibling
labels must be distinct. The root is labeled by the empty string. Im-
mediately below the root are the TLDs: edu, com, gov, net, org, info,
and so on. TLDs also include country names such as at (Austria), ca
(Canada), and cn (China). Under edu, for example, there are subdo-
mains berkeley, kent, mit, uiuc, and so on (Figure 7.3).

• A full domain name of a node is a dot-separated list of labels leading
from the node to the root (for example, cs.kent.edu.).

• A relative domain name is a prefix of a full domain name, indicating
a node relative to a domain of origin. Thus, cs.kent.edu is actually a
name relative to the root.

• A label is the formal or canonical name of a domain. Alternative names,
called aliases, are also allowed. For example, the main Web server host
info has the alias www, so it is also known as www.cs.kent.edu. To move
the Web server to a different host, a local system manager reassigns the
alias to another host.

See Section 7.16 for more information on the DNS and name servers.

7.4 Networking in Nautilus

We first introduced the GNOME Nautilus file manager in Chapter 3, Sec-
tion 3.5. By the command

nautilus network:///

or by simply clicking on the Networking icon (or the Go->Networking menu
option), you can bring up a list of all systems on your network and access files
on them. Linux systems are listed individually. Systems running other operat-
ing systems are grouped under different icons such as the Windows Network
icon. Of course, you can browse only machines with permission. Normally,
login will be required unless you have arranged a no-password login (Sec-
tion 7.6).

For example, these Locations work:

196 Mastering Linux

• sftp://pwang@monkey.cs.kent.edu—Secure FTP, home directory of
pwang on monkey.cs.kent.edu)

• ssh://pwang@monkey.cs.kent.edu—Secure FTP, same as above

• sftp://pwang@monkey.cs.kent.edu/Pictures—Secure FTP, Pictures
folder of pwang (Figure 7.6)

• ftp://pwang@monkey.cs.kent.edu—Regular FTP

FIGURE 7.6: SFTP via Nautilus

Accessing Samba Shared Files

Usually, you’ll find Linux and MS Windows R© systems on the same in-house
network. Nautilus makes it easy to access shared files from MS Windows R©.
Just enter the Location

smb://host/share folder

to reach the target shared folder via the Common Internet File System proto-
col, the successor of Server Message Block (SMB). Linux systems use SaMBa,
a free, open-source implementation of the CIFS file sharing protocol, to act
as server and client to MS Windows R© systems. Use an IP for the host to be
sure. Here ae some Location examples on a home network.

smb://192.168.2.102/SharedDocs
smb://192.168.2.107/Public

7.5 Networking Commands

Linux offers many networking commands. Some common ones are de-
scribed here to get you started. In earlier chapters, we mentioned briefly
several networking commands. For example, we know that

Networking, Internet, and the Web 197

hostiname

displays the domain name of the computer you are using. If given an argument,
this command can also set the domain name (when run as root), but the
domain name is usually only set at system boot time. To get the IP address
and other key information from the DNS about your computer or another
host, you can use

host $(hostname) (for your computer)
host targetHost (for target host)

For example, host google.com produces

google.com has address 74.125.45.100
google.com has address 74.125.67.100
google.com has address 209.85.171.100
google.com mail is handled by 10 smtp4.google.com.
google.com mail is handled by 10 smtp1.google.com.
google.com mail is handled by 10 smtp2.google.com.
google.com mail is handled by 10 smtp3.google.com.

For any given host, its DNS data provide IP address, canonical domain name,
alias domain names, DNS server hosts, and email handling hosts. Other com-
mands that help you access the DNS data from the command line include
nslookup and dig (DNS Information Groper). For example,

dig monkey.cs.kent.edu

gives

; <<>> DiG 9.5.0-P2 <<>> monkey.cs.kent.edu

;; QUESTION SECTION:
;monkey.cs.kent.edu. IN A

;; ANSWER SECTION:
monkey.cs.kent.edu. 1800 IN CNAME monkey.zodiac.cs.kent.edu.
monkey.zodiac.cs.kent.edu. 43200 IN A 131.123.41.83

;; AUTHORITY SECTION:
zodiac.cs.kent.edu. 300 IN NS ns.cs.kent.edu.
zodiac.cs.kent.edu. 300 IN NS ns.math.kent.edu.

;; Query time: 152 msec
;; SERVER: 192.168.2.1#53(192.168.2.1)

The desired information (ANSWER section) together with the identity of the
name server (SERVER) that provided the data is displayed.

198 Mastering Linux

The command dig is very handy for verifying the existence of hosts and
finding the IP address or domain name aliases of hosts. Once the name of
a host is known, you can also test if the host is up and running, as far as
networking is concerned, with the ping command.

ping host

This sends a message to the given remote host requesting it to respond with
an echo if it is alive and well.

To see if any remote host is up and running, you can use ping, which
sends an echo Internet control message to the remote host. If the echo comes
back, you’ll know that the host is up and connected to the Internet. You’ll
also get round-trip times and packet loss statistics. When successful, the ping
commands continues to send echo packets. Type ctrl+c to quit.

7.6 SSH with X11 Forwarding

Networking allows you to conveniently access Linux systems remotely.
Most Linux distributions come with OpenSSH installed. As mentioned in
Chapter 1, Section 1.2, you can ssh to a remote Linux and use it from the
command line. Furthermore, you can

ssh -X userid @remoteHostname

to log in to the given remote host with X11 forwarding/tunneling, which allows
you to start any X applications, such as gedit or gnome-terminal, on the
remote host and have the graphical display appear on your local desktop.

This works if your local host is a Linux/UNIX/MacOS system. It can also
work from MS Windows R©. Follow these steps:

1. Obtain and install an X11 server on Windows, such as the Xming or the
heavier duty Cygwin.

2. Assuming you have downloaded and installed Xming, click the Xming
icon to launch the X11 server. The X11 server displays an icon on your
start panel so you know it is running.

3. Set up SSH or Putty on your Windows R© system:

• Putty Settings—Go to Connection->SSH->X11 and check the
Enable X11 forwarding box. Also set X display location to
127.0.0.1:0.0.

• SSH Settings—Check the Tunneling->Tunnel X11 Connections
box. Also check the Authentication->Enable SSH2 connections
box.

Networking, Internet, and the Web 199

4. Use either Putty or SSH to connect to a remote Linux/Unix computer.
Make sure your remote account login script, such as .bash profile,
does not set the DISPLAY environment variable. It will be set for you
to something like localhost:10.0 automatically when you connect via
SSH.

5. Make sure your X11 server (Xming for example) is running. Now, if
you start an X application on the remote Linux system, that graphical
application will then SSH tunnel to your PC and use the X11 server on
your PC to display a graphical user interface (GUI). For example, you
can start gedit, nautilus --no-desktop, or even firefox.

Note, using an application with a remote GUI can be slow due to much heavier
networking load as compared a remote CLI.

No Password ssh, sftp, and scp

The commands ssh, sftp, and scp are for remote login, secure ftp, and secure
remote cp, respectively. When using any of these you usually need to enter
the password for the remote system interactively. When you need to perform
such tasks frequently, this can be a bother. Fortunately, you can easily avoid
having to enter the password. Just follow these steps.

Most Linux systems come with OpenSSH installed. This means you already
have the SSH suite of commands. These enable you to securely communicate
from one computer (as user1 on host1) to another (as user2 on host2). We
will assume you are logged in as user1 on host1 (this is your local host), and
you wish to arrange secure communication with your account user2 on host2,
which we will refer to as the remote host.

SSH can use public-key encryption for data security and user authentica-
tion (Section 7.7). If you have not done it yet, the first step in arranging for
password-less login is to generate your own SSH keys. Issue the command

ssh-keygen

You’ll be asked for a folder to save the keys and a passphrase to access them.
In this case, don’t provide any input in response to these questions from ssh-
keygen. Simply press the enter key in response to each question.

Key generation takes a little time. Then you’ll see a message telling you
that your identity (private key) is id_rsa and your public key is id_rsa.pub
saved under the standard folder .ssh. in your home directory.

The second step is to copy your id_rsa.pub to your account on the desired
remote-host. Issue the command

ssh-copy-id -i ~/.ssh/id_rsa.pub your userid @ remote-host

to append your public SSH key to the file ~userid/.ssh/authorized_key on
the remote-host.

Now you are all set. You can log in to remote-host without entering a
password.

200 Mastering Linux

ssh userid @ remote-host

The same setup avoids a password when you use sftp or scp.

Remote File Synchronization

The rsync command makes it easy to keep files in sync between two hosts.
It is very efficient because it uses a remote-update protocol to transfer just
the differences between two sets of files across the network connection. No
updating is performed for files with no difference. With the commands

rsync -az userid @host:source destDir (remote to local sync)
rsync -az source userid @host:destDir (local to remote sync)

the given source file/folder is used to update the same under the destination
folder destDir. When source is a folder, the entire hierarchy rooted at the
folder will be updated.

The -az option indicates the commonly used archive mode to preserve
file types and modes and gzip (Chapter 6, Section 6.12) data compression to
save networking bandwidth. The rsync tool normally uses ssh (Section 7.6)
for secure data transfer and does not require a password if you have set up
password-less SSH between the two hosts (Section 7.6). For example,

rsync -az pwang@monkey.cs.kent.edu:~/linux book ~/projects/

updates the local folder ~/projects/linux_book based on the re-
mote folder ~/linux_book by logging in as pwang on the remote host
monkey.cs.kent.edu. See the rsync man page for complete documentation.

7.7 Public-Key Cryptography and Digital Signature

Security is a big concern when it comes to networking. From the user’s
viewpoint, it is important to keep data and network transport secure and
private. Public-key cryptography is an essential part of the modern network
security infrastructure to provide privacy and security for many networking
applications. Before the invention of public-key cryptography, the same se-
cret key had to be used for both encryption and decryption of a message
(symmetric-key cryptography). Symmetric-key is fine and efficient, and re-
mains in widespread use today. However, a secret key is hard to arrange among
strangers never in communication before; for example, parties on the Inter-
net. The public-key cryptography breakthrough solves this key distribution
problem elegantly.

GnuPG (GNU Privacy Guard), part of OpenGP, supports public-key cryp-
tography. The Linux command for GnuPG is gpg or the largely equivalent
gpg2. With gpg, you can generate a public key that you share with others
and a private key you keep secret. You and others can use the public key to

Networking, Internet, and the Web 201

encrypt files and messages which only you can decrypt using the private key
(Figure 7.7).

FIGURE 7.7: Public-Key Cryptography

Clear

Text

Cipher

Text

Private Key

of receiver
Public Key

of receiver

Using your private key, you can also attach a digital signature to any
message/file. A receiver can verify the integrity (not altered) and authenticity
(really from the sender) of the the signed message. To do all that, make sure
you first set up GnuPG and your personal keys.

If your Linux distribution does not already provide gpg, you can easily in-
stall the gnupg package (Section 8.24) with either of the following commands:

sudo apt-get install gnupg (Ubuntu/Debian)
sudo yum install gnupg (CentOS/Fedora)

If you like to use a GUI for gpg, install also the gpa package. However, the
command-line interface is entirely adequate.

Setting Up GnuPG Keys

To use gpg, you first need to generate your public-private key pair.

gpg --gen-key

You’ll be prompted to enter your choices for keytype (pick the default), keysize
(pick 2048), and a passphrase (pick something you won’t forget, but will be
very hard for anyone to guess). The passphrase is required each time you
access your private key, thus preventing others from using your private key.

You’ll get a keyid displayed when your key pair is generated. Your keys
and other info are stored by default in the folder $HOME/.gnupg. Use

gpg --list-public-keys

to display your public keys. For example,

202 Mastering Linux

pub 1024D/FCF2F84D 2009-07-25
uid Paul Wang (monkeykia) <pwang@cs.kent.edu>
sub 1024g/B02C4B40 2009-07-25

The pub line says that Paul’s public master key (for signature) is a 1024-bit
DSA key with id FCF2F84D and that his public subkey (for data encryption)
is a 1024-bit ElGama key.

To enable others to encrypt information to be delivered for your eyes only,
you should send your public keys to a public key server. The command

gpg --send-keys your keyid

sends your public key to a default gpg key server, such as

hkp://subkeys.pgp.net

Also, you can send your public keys to anyone by sending them an ASCII
armored file generated by

gpg --armor --export your keyid > mykey.asc

The .asc suffix simply indicates that a file is an ASCII text file. The
mykey.asc contains your key encoded using base64, a way to use 64 ASCII
characters (AZ, az, 09 and +/) to encode non-ASCII files for easy communica-
tion over networks, especially via email. The Linux base64 command performs
this encoding/decoding on any file. See man base64 for more information.

Such ASCII armored key files can be emailed to others or sent to another
computer and imported to another GnuPG key ring with a command such as

gpg --import mykey.asc

Also, edit your $HOME/gnupg/gpg.conf file and append the line

default-key your keyid

Encryption/Decryption with GnuPG

To encrypt a file using a public key of uid,

gpg --encrypt -r uid

resulting in an encrypted file filename.gpg that can be sent to the target user
who is the only one that can decrypt it.

Even if you are not going to send a file to anyone, you can still keep secrets
in that file of yours protected in case someone gains unauthorized access to
your computer account. You can

gpg --encrypt -r "your uid" filename
rm filename

Networking, Internet, and the Web 203

generating the encrypted filename.gpg and removing the original filename.
You can easily view the encrypted version with

nano < (gpg –decrypt filename.gpg)

Note that the Bash process expansion (Chapter 2, Section 2.7) is handy here.
To make maintaining an encrypted file even easier, you may configure

vi/vim to work transparently with gpg, allowing you to use vim to view and
edit clear as well as gpg encrypted files. The VIM extension tGpg (yet another
plug-in for encrypting files with gpg) is a good choice for this purpose.

7.8 Secure Email with Mutt and GnuPG

The Linux email client mutt works well with GnuPG (Section 7.7) to
support s/mime (Secure/Multipurpose Internet Mail Extensions), allowing
you to send and receive encrypted/signed email.

Assuming that you have arranged for your keys and sent your public keys
to a key server as described in Section 7.7 and that your email correspondents
are also set up with GnuPG or some other public-key system for their s/mime,
you can easily use mutt to exchange emails securely with them.

Follow these steps to set up mutt.

1. Locate the file gpg.rc for mutt on your Linux. Usually, you’ll find it at

/usr/share/doc/mutt-version/gpg.rc

2. Edit your mutt configuration file $HOME/.muttrc and add at the end a
line to include the gpg.rc

source /usr/share/doc/mutt-version/gpg.rc

3. Import your secure email correspondents’ keys into your GnuPG key
ring. Get your email correspondent to send you an ASCII armored key
file or search for the key on the key server the --search-keys option:

gpg --import someKey.asc
gpg --search-keys targetEmailAddress

Now, you can encrypt/sign email after composing the email message by using
the p key within mutt to select from the following options:

* encrypt
* sign
* both
* sign as

Receiving encrypted/signed email with mutt is just a matter of following
on-screen instructions.

The popular email client Thunderbird also works with GnuPG if you install
the Enigmail extension (via the tools->add-ons).

204 Mastering Linux

7.9 Message Digests

A message digest is a digital fingerprint of a message or file. Various algo-
rithms have been devised to take a message (file) of any length and reduce it
to a short fixed-length hash known as the digest of the original message or file
(Figure 7.8).

FIGURE 7.8: MD5 Message Digest

69f14f1500b65528141b1621666b00a0

32−Hex−Digit Digest

abcd efgh ijkl
xyz 1234 9876

Mor
e t

ext

Te
xt
 C
ha
ra
ct
er
 S
tr
in
gs

G
e
t
t
i
n
g

h
a
s
h
e
d

i
n

MD5

These algorithms are designed to produce a different digest if any part of
the message is altered. It is almost impossible to deduce the original message
from knowledge of the digest. However, because there are an infinite number of
possible messages but only a finite number of different digests, vastly different
messages may produce the same digest.

Message digests are therefore useful in verifying the integrity (unaltered-
ness) of files. When software is distributed online, a good practice is to display
a fingerprint for the file, allowing you to check the integrity of the download
and to avoid any Trojan horse code.

MD5 is a popular algorithm producing 128-bit message digests. An MD5
hash is usually displayed as a sequence of 32 hexadecimal digits. On Linux,
you can produce an MD5 digest with the md5sum command

md5sum filename > digestFile

You’ll get a digestFile file containing only the hash and the name filename.
After downloading both filename and digestFile, a user can check file in-
tegrity with

md5sum digestFile

Other digest algorithms in wide use include SHA-1 and others. The Linux
command sha1sum is an alternative to md5sum.

Message Signing with GnuPG

To digitally sign a particular message, a message digest is created first. The
message digest is then encrypted using your private key to produce a digital

Networking, Internet, and the Web 205

FIGURE 7.9: Digital Signature

Signed

Text

Private Key
of sender

Clear

Text +

Digest

of sender
Public Key

signature which is attached to the message. Any receiver of a signed message
can generate a message digest from the received message and check it against
the digest obtained by decrypting the digital signature with the signer’s public
key. A match verifies the integrity and the authenticity of the received message.

Here is how to use gpg for digital signature (Figure 7.9).

gpg --sign file (produces signed binary file.gpg)
gpg --clearsign file (produces signed ASCII file.asc)

The --decrypt option automatically verifies any attached signature.

7.10 The Web

Out of all the networking applications, the Web is perhaps one of the most
important and deserves our special attention.

There is no central control or administration of the Web. Anyone can
potentially put material on the Web and retrieve information from it. The
Web consists of a vast collection of documents that are located on comput-
ers throughout the world. These documents are created by academic, profes-
sional, government, and commercial organizations, as well as by individuals.
The documents are prepared in special formats and delivered through Web
servers, programs that return documents in response to incoming requests.
Linux systems are often used to run Web servers. An introduction to the Web
is provided in this chapter. Chapter 8 discusses serving the Web.

Primarily, Web docuemnts are written in Hypertext Markup Language
(HTML, Section 7.10). Each HTML document can contain (potentially many)
links to other documents served by different servers in other locations and
therefore become part of a web that spans the entire globe. New materials are

206 Mastering Linux

put on the Web continuously, and instant access to this collection of informa-
tion can be enormously advantageous. As the Web grew, MIT (Massachusetts
Institute of Technology, Cambridge, MA) and INRIA (the French National
Institute for Research in Computer Science and Control) agreed to become
joint hosts of the W3 Consortium, a standards body for the Web community.

A Web browser is a program that helps users obtain and display infor-
mation from the Web. Given the location of a target document, a browser
connects to the correct Web server and retrieves and displays the desired doc-
ument. You can click links in a document to obtain other documents. Using a
browser, you can retrieve information provided by Web servers anywhere on
the Internet.

Typically, a Web browser, such as Firefox, supports the display of HTML
files and images in standard formats. Helper applications or plug-ins can aug-
ment a browser to treat pages with multimedia content such as audio, video,
animation, and mathematical formulas.

Hypertext Markup Language

A Web browser communicates with a Web server through an efficient HTTP
designed to work with hypertext and hypermedia documents that may contain
regular text, images, audio, and video. Native Web pages are written in the
HTML (Section 7.13) and usually saved in files with the .html (or .htm)
suffix.

HTML organizes Web page content (text, graphics, and other media data)
and allows hyperlinks to other pages anywhere on the Web. Clicking such a
link causes your Web browser to follow it and retrieve another page. The
Web employs an open addressing scheme that allows links to objects and
services provided by Web, email, file transfer, audio/video, and newsgroup
servers. Thus, the Web space is a superset of many popular Internet services.
Consequently, a Web browser provides the ability to access a wide variety of
information and services on the Internet.

URLs

The Web uses Uniform Resource Locators (URLs) to identify (locate) re-
sources (files and services) available on the Internet. A URL may identify
a host, a server port, and the target file stored on that host. URLs are used,
for example, by browsers to retrieve information and by HTML to link to
other resources.

A full URL usually has the form

scheme://server:port/pathname

The scheme part indicates the information service type and therefore the pro-
tocol to use. Common schemes include http (Web service), ftp (file transfer

Networking, Internet, and the Web 207

service), mailto (email service), file (local file system), https (secure Web
service), and sftp (secure file transfer service). For example,

sftp://pwang@monkey.cs.kent.edu/users/cs/faculty/pwang

gets you the directory list of /users/cs/faculty/pwang. This works on Fire-
fox and on the Linux file browser nautilus, assuming that you have set
up your SSH/SFTP (Section 7.6). Many other schemes can be found at
www.w3.org/addressing/schemes.

For URLs in general, the server identifies a host and a server program.
The optional port number is needed only if the server does not use the default
port (for example, 21 for FTP and 80 for HTTP). The remainder of the URL,
when given, is a file pathname. If this pathname has a trailing / character, it
represents a directory rather than a data file. The suffix (.html, .txt, .jpg,
etc.) of a data file indicates the file type. The pathname can also lead to an
executable program that dynamically produces an HTML or other valid file
to return.

Within an HTML document, you can link to another document served by
the same Web server by giving only the pathname part of the URL. Such
URLs are partially specified. A partial URL with a / prefix (for example,
/file xyz.html) refers to a file under the server root, the top-level directory
controlled by the Web server. A partial URL without a leading / points to a
file relative to the location of the document that contains the URL in question.
Thus, a simple file abc.html refers to that file in the same directory as the
current document. When building a website, it is advisable to use a URL
relative to the current page as much as possible, making it easy to move
the entire website folder to another location on the local file system or to a
different server host.

Accessing Information on the Web

You can directly access any Web document, directory, or service by giving its
URL in the Location box of a browser. When given a URL that specifies a
directory, a Web server usually returns an index file (typically, index.html)
for that directory. Otherwise, it may return a list of the filenames in that
directory.

You can use a search engine such as Google to quickly look for information
on the Web.

7.11 Handling Different Content Types

On the Web, files of different media types can be placed and retrieved.
The Web server and Web browser use standard content type designations to
indicate the media type of files in order to process them correctly.

The Web borrowed the content type designations from the Internet email

208 Mastering Linux

system and uses the same MIME (Multipurpose Internet Mail Extensions) de-
fined content types. There are hundreds of content types in use today. Many
popular types are associated with standard file extensions. Chapter 6, Ta-
ble 6.3 gives some examples.

When a Web server returns a document to a browser, the content type
is indicated. The content type information allows browsers to decide how to
process the incoming content. Normally, HTML, text, and images are handled
by the browser directly. Others types such as audio and video are usually
handled by plug-ins or external helper programs.

7.12 Putting Information on the Web

Now let’s turn our attention to how information is supplied on the Web.
The understanding sheds more light on how the Web works and what it takes
to serve up information.

The Web puts the power of publishing in the hands of anyone with a
computer connected to the Internet. All you need is to run a Web server on
this machine and establish files for it to service.

Major computer vendors offer commercial Web servers with their com-
puter systems. Apache is a widely used open-source Web server that is freely
available from the Apache Software Foundation (www.apache.org).

Linux systems are especially popular as Web hosting computers because
Linux is free, robust, and secure. Also, there are many useful Web-related ap-
plications such as Apache, PHP (active Web page), MySQL (database server),
and more available free of charge.

FIGURE 7.10: Web Server Function

Request
HTTP

Server
Program

Server Host

Browser

Client Host

HTTP
Response

Once a Web server is up and running on your machine, all types of files
can be served (Figure 7.10). On a typical Linux system, follow these simple
steps to make your personal Web page.

1. Make a file directory in your home directory (~userid/public html) to
contain your files for the Web. This is your personal Web directory. Make
this directory publicly accessible:

chmod a+x ~userid/public html

Networking, Internet, and the Web 209

When in doubt, ask your system managers about the exact name to use
for your personal Web directory.

2. In your Web directory, establish a home page, usually index.html, in
HTML. The home page usually functions as an annotated table of con-
tents. Make this file publicly readable:

chmod a+r ~userid/public html/index.html

3. Place files and directories containing desired information in your per-
sonal Web directory. Make each directory and each file accessible as
before. Refer to these files with links in the home page and other pages.

4. Let people know the URL of your home page, which is typically

http://your-sever/~your-userid/

In a Web page, you can refer to another file of yours with a simple link con-
taining a relative URL (), where filename can be either
a simple name or a pathname relative to the current document.

Among the Web file formats, hypertext is critical because it provides a
means for a document to link to other documents.

7.13 What Is HTML?

HTML (the Hypertext Markup Language) is used to markup the content
of a Web page to provide page structure for easy handling by Web clients on
the receiving end. Since HTML 4.0, the language has become standardized.
XHTML (XML compatible HTML) is the current stable version. However, a
new standard HTML5 is fast approaching.

A document written in HTML contains ordinary text interspersed with
markup tags and uses the .html filename extension. The tags mark portions
of the text as title, section header, paragraph, reference to other documents,
and so on. Thus, an HTML file consists of two kinds of information: contents
and HTML tags. A browser follows the HTML tags to layout the page content
for display. Because of this, line breaks and extra white space between words
in the content are mostly ignored. In addition to structuring and formatting
contents, HTML tags can also reference graphics images, link to other doc-
uments, mark reference points, generate forms or questionnaires, and invoke
certain programs. Various visual editors or page makers are available that
provide a GUI for creating and designing HTML documents. For substantial
website creation projects, it will be helpful to use integrated development en-
vironments such as Macromedia Dreamweaver (Chapter 11). If you don’t have
ready access to such tools, a regular text editor can create or edit Web pages.

210 Mastering Linux

TABLE 7.1: Some HTML Tags

Marked As HTML Tags
Entire document <html>...</html>
Header part of document <head>...</head>
Document title <title>...</title>
Document content <body>...</body>
Level n heading <hn>...</hn>
Paragraph <p>...</p>
Unnumbered list ...
Numbered list ...
List item ...
Comment <!--...-->

An HTML tag takes the form <tag>. A begin tag such as <h1> (level-one sec-
tion header) is paired with an end tag, </h1> in this case, to mark content in
between. Table 7.1 lists some frequently used tags.

The following is a sample HTML page (Ex: ex07/Fruits):

<html>
<head> <title>A Basic Web Page</title> </head>
<body>

<h1>Big on Fruits</h1>
<p>Fruits are good tasting and good for you ...</p>
<p> There are many varieties, ...
and here is a short list: </p>

 Apples
 Bananas
 Cherries

</body></html>

Figure 7.11 shows the Big on Fruits page displayed by Firefox.

7.14 Web Hosting

Web hosting is a service to store and serve ready-made files and programs
so that they are accessible on the Web. Hence, publishing on the Web involves

1. Designing and constructing the pages and writing the programs for a
website

2. Placing the completed site with a hosting service

Networking, Internet, and the Web 211

FIGURE 7.11: A Sample Web Page

Colleges and universities host personal and educational sites for students and
faculty without charge. Web hosting companies provide the service for a fee.

Commercial Web hosting can provide secure data centers (buildings), fast
and reliable Internet connections, specially tuned Web hosting computers
(mostly Linux boxes), server programs and utilities, network and system se-
curity, daily backup, and technical support. Each hosting account provides an
amount of disk space, a monthly network traffic allowance, email accounts,
Web-based site management and maintenance tools, and other access such as
FTP and SSH/SFTP.

To host a site under a given domain name, a hosting service associates
that domain name to an IP number assigned to the hosted site. The domain-
to-IP association is made through DNS servers and Web server configurations
managed by the hosting service.

7.15 Domain Registration

To obtain a domain name, you need the service of a domain name registrar.
Most will be happy to register your new domain name for a very modest
yearly fee. Once registered, the domain name is property that belongs to the
registrant. No one else can register for that particular domain name as long
as the current registrant keeps the registration in good order.

ICANN accredits commercial registrars for common TLDs, including .com,
.net, .org, and .info. Additional TLDs include .biz, .pro, .aero, .name,
and .museum. Restricted domains (for example, .edu, .gov, and .us) are
handled by special registries (for example, net.educause.edu, nic.gov and

212 Mastering Linux

nic.us). Country-code TLDs are normally handled by registries in their re-
spective countries.

Accessing Domain Registration Data

The registration record of a domain name is often publicly available. The
standard Internet whois service allows easy access to this information. On
Linux systems, easy access to whois is provided by the whois command

whois domain_name

which lists the domain registration record kept at a registrar. For example,

whois kent.edu

produces the following information

Registrant:
Kent State University
500 E. Main St.
Kent, OH 44242
UNITED STATES

Technical Contact:
Administrative Contact:

Bob Hart
Mgr., Network & Telecomm
Kent State University
120 Library Bldg
Kent, OH 44242
UNITED STATES
(330) 672-0385
pki-admin@kent.edu

Name Servers:
NS.NET.KENT.EDU 131.123.1.1
DHCP.NET.KENT.EDU 131.123.252.2

Domain record activated: 19-Feb-1987
Domain record last updated: 17-Mar-2009
Domain expires: 31-Jul-2009

On Linux systems, the whois command is sometimes called jwhois.

7.16 The DNS

DNS provides the ever-changing domain-to-IP mapping information on the
Internet. We mentioned that DNS provides a distributed database service that

Networking, Internet, and the Web 213

supports dynamic retrieval of information contained in the name space. Web
browsers and other Internet client applications will normally use the DNS to
obtain the IP of a target host before making contact with a server over the
Internet.

There are three elements to the DNS: the DNS name space (Section 7.2),
the DNS servers, and the DNS resolvers.

DNS Servers

Information in the distributed DNS is divided into zones, and each zone is
supported by one or more name servers running on different hosts. A zone is
associated with a node on the domain tree and covers all or part of the subtree
at that node. A name server that has complete information for a particular
zone is said to be an authority for that zone. Authoritative information is au-
tomatically distributed to other name servers that provide redundant service
for the same zone. A server relies on lower level servers for other information
within its subdomain and on external servers for other zones in the domain
tree. A server associated with the root node of the domain tree is a root server
and can lead to information anywhere in the DNS. An authoritative server
uses local files to store information, to locate key servers within and without
its domain, and to cache query results from other servers. A boot file, usually
/etc/named.boot, configures a name server and its data files.

The management of each zone is also free to designate the hosts that
run the name servers and to make changes in its authoritative database. For
example, the host ns.cs.kent.edu may run a name server for the domain
cs.kent.edu.

A name server answers queries from resolvers and provides either definitive
answers or referrals to other name servers. The DNS database is set up to
handle network address, mail exchange, host configuration, and other types
of queries, with some to be implemented in the future.

The ICANN and others maintain root name servers associated with the
root node of the DNS tree. In fact, the VeriSign host a.root-servers.net
runs a root name server. Actually, the letter a ranges up to m for a total of 13
root servers currently.

Domain name registrars, corporations, organizations, Web hosting compa-
nies, and other Internet service providers (ISPs) run name servers to associate
IPs to domain names in their particular zones. All name servers on the Internet
cooperate to perform domain-to-IP mappings on the fly.

DNS Resolvers

A DNS resolver is a program that sends queries to name servers and obtains
replies from them. On Linux systems, a resolver usually takes the form of a
C library function. A resolver can access at least one name server and use

214 Mastering Linux

that name server’s information to answer a query directly or pursue the query
using referrals to other name servers.

Resolvers, in the form of networking library routines, are used to translate
domain names into actual IP addresses. These library routines, in turn, ask
prescribed name servers to resolve the domain names. The name servers to use
for any particular host are normally specified in the file /etc/resolv.conf
or /usr/etc/resolv.conf.

The DNS service provides not just the IP address and domain name infor-
mation for hosts on the Internet. It can provide other useful information as
well. Table 7.2 shows common DNS record and request types.

TABLE 7.2: DNS Record/Request Types

Type Description
A Host’s IP address
NS Name servers of host or domain
CNAME Host’s canonical name, and an alias
PTR Host’s domain name, IP
HINFO Host information
MX Mail exchanger of host or domain
AXFR Request for zone transfer
ANY Request for all records

7.17 Dynamic Generation of Web Pages

Documents available on the Web are usually prepared and set in advance
to supply some fixed content, either in HTML or in some other format such
as plain text, PDF, or JPEG. These fixed documents are static. A Web server
can also generate documents on the fly that bring these and other advantages:

• Customizing a document depending on when, where, who, and what
program is retrieving it

• Collecting user input (with HTML forms) and providing responses to
the incoming information

• Enforcing certain policies for outgoing documents

• Supplying contents such as game scores and stock quotes, which are
changing by nature

Dynamic Web pages are not magic. Instead of retrieving a fixed file, a
Web server calls another program to compute the document to be returned.
As you may have guessed, not every program can be used by a Web server in
this manner. There are two ways to add server-side programming:

Networking, Internet, and the Web 215

• Load programs directly into the Web server to be used whenever the
need arises.

• Call an external program from the server, passing arguments to it (via
the program’s stdin and environment variables) and receiving the re-
sults (via the program’s stdout) thus generated. Such a program must
conform to the Common Gateway Interface (CGI) specifications govern-
ing how the Web server and the external program interact (Figure 7.12).

FIGURE 7.12: Common Gateway Interface

Server

response

HTTP

stdout

stdin

CGI Program

Host

Browser

request

Dynamic Server Pages

The dynamic generation of pages is made simpler and more integrated with
Web page design and construction by allowing a Web page to contain active
parts that are treated by the Web server and transformed into desired content
on the fly as the page is retrieved and returned to a client browser.

The active parts in a page are written in some kind of notation to distin-
guish them from the static parts of a page. The ASP (Active Server Pages,
JSP (Java Server Pages), and the popular PHP (Hypertext Preprocessor; Sec-
tion 8.16) are examples.

Because active pages are treated by modules loaded into the Web server,
the processing is faster and more efficient compared to CGI programs. Active
page technologies such as PHP also provide form processing, HTTP sessions,
and easy access to databases. Therefore, they offer complete server-side sup-
port for dynamic Web pages.

Both CGI and server pages can be used to support HTML forms, the
familiar fill-out forms you often see on the Web.

7.18 HTTP Briefly

On the Web, browser-server communication follows HTTP. A basic under-
standing of HTTP is important for Linux programmers because Linux systems
are very popular Web server hosts.

The start of HTTP traces back to the beginning of the Web in the early
1990s. HTTP/1.0 was standardized early in 1996. Improvements and new
features have been introduced and HTTP/1.1 is now the stable version.

216 Mastering Linux

Here is an overview of an HTTP transaction:

1. Connection—A browser (client) opens a connection to a server.

2. Query—The client requests a resource controlled by the server.

3. Processing—The server receives and processes the request.

4. Response—The server sends the requested resource back to the client.

5. Termination—The transaction is finished, and the connection is closed
unless another transaction takes place immediately between the client
and server.

HTTP governs the format of the query and response messages (Fig-
ure 7.13).

FIGURE 7.13: HTTP Query and Response Formats

initial line (different for query and response)
HeaderKey1: value1 (zero or more header fields)
HeaderKey2: value2

(an empty line with no characters)
Optional message body contains query or response data.
Its data type and size are given in the headers.

The header part is textual, and each line in the header should end in
return and newline, but it may end in just newline.

The initial line identifies the message as a query or a response.

• A query line has three parts separated by spaces: a query method name,
a local path of the requested resource, and an HTTP version number.
For example,

GET /path/to/file/index.html HTTP/1.1

or

POST /path/script.cgi HTTP/1.1

The GET method requests the specified resource and does not allow a
message body. A GET method can invoke a server-side program by spec-
ifying the CGI or active-page path, a question mark, and then a query
string:

Networking, Internet, and the Web 217

GET /cgi-bin/newaddr.cgi?name=value1&email=value2 HTTP/1.1
Host: monkey.cs.kent.edu

Unlike GET, the POST method allows a message body and is designed to
work with HTML forms for collecting input from Web users.

• A response (or status) line also has three parts separated by spaces: an
HTTP version number, a status code, and a textual description of the
status. Typical status lines are

HTTP/1.1 200 OK

for a successful query or

HTTP/1.1 404 Not Found

when the requested resource cannot be found.

• The HTTP response sends the requested file together with its content
type (Section 7.11) and length (optional) so the client will know how to
process it.

7.19 A Real HTTP Experience

Let’s manually send an HTTP request and get an HTTP response. To do
that we will use the nc commnad. The command nc provides command-line
(and scripting) access to the basic TCP and UDP (Section 7.2) and therefore
allows you to make any TCP connections or send any UDP packets. Such
abilities are usually reserved to programs at the C-language level that set up
sockets (Chapter 11, Section 11.6) for networking.

For example, the simple Bash pipeline (Ex: ex07/poorbr.sh)

echo $ ´GET /WEB/test.html HTTP/1.0\n ´ |
nc monkey.cs.kent.edu 80

retrieves the Web page monkey.cs.kent.edu/WEB/test.html. In this exam-
ple, we applied the Bash string expansion (Chapter 2, Section 2.7).

Note the HTTP get request asks for the file /WEB/test.html under the
document root folder managed by the Web server on monkey. The request is
terminated by an empty line, as required by the HTTP protocol.

Try this and you’ll see the result display.

HTTP/1.1 200 OK
Date: Tue, 07 Apr 2009 19:45:03 GMT
Server: Apache/2.0.54 (Fedora)
X-Powered-By: PHP/5.0.4

218 Mastering Linux

Cache-Control: max-age=86400
Expires: Wed, 08 Apr 2009 19:45:03 GMT
Vary: Accept-Encoding
Content-Length: 360
Connection: close
Content-Type: text/html; charset=UTF-8

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 //EN">
<html> AND THE REST OF THE HTML PAGE
</html>

As you can see from the HTTP response, the Web server on monkey is Apache
version 2 running under Fedora, a Linux system.

For downloading from the Web, you don’t need to rely on our little pipeline.
The wget command takes care of that need nicely. Wget supports HTTP,
HTTPS, and FTP protocols and can download single files or follow links in
HTML files and recursively download entire websites for offline viewing. The
wget command can continue to work after you log out so you can download
large amounts of data without waiting.

7.20 For More Information

• IPv6 is the next-generation Internet protocol. See www.ipv6.org/ for
an overview.

• The official website for Gnu Privacy Guard is www.gnupg.org, and for
OpenSSH, is www.openssh.com.

• Public-Key Cryptography Standards (PKCS) can be found at RSA Lab-
oratories (www.rsa.com/rsalabs).

• HTML5 is the new and coming standard for HTML. See the specification
at W3C.

• The DNS is basic to keeping services on the Internet and Web running.
Find our more about DNS at www.dns.net/dnsrd/docs/.

• HTTP is basic to the Web. See RFC 1945 for HTTP 1.0 and RFC 2068
for HTTP 1.1.

7.21 Summary

In the modern computing environment, computers and networks are insep-
arable. Networking is an important aspect of any operating system, especially

Networking, Internet, and the Web 219

Linux because the Internet has its origins in UNIX/Linux, and Linux systems
are excellent server hosts.

On the Internet, each host computer is identified by its IP address as well
as by its domain name. The TCP/IP and UDP/IP protocols are basic to
the Internet. Network-based services often follow the client-and-server model,
where client programs (such as Web browsers) communicate with server pro-
grams (such as Web servers) using well-defined protocols (such as HTTP). A
particular server program running on a specific host is identified by the host’s
IP or domain name together with the server program’s port number (such as
80 for Web servers).

The ICANN manages the IP address space and the DNS. The distributed
Domain Name Service is a fundamental networking service because it dy-
namically maps domain names to IP addresses and also provides important
information for sending/receiving email. The commands host, nslookup, and
dig can be used to obtain DNS data for target hosts.

With networking you can upload/download files with ftp and sftp; log
in to remote computers with telnet and ssh; copy and synch files with rcp,
scp, and rsync; check if a remote system is alive/connected with ping; test
protocols with nc; access the Web; send and receive emails, and perform many
other operations.

When it comes to networking, security and privacy are important con-
cerns. Increasingly, computer systems require SSH, SFTP, and SCP for better
protection. Automatic file sync can also use SSH for data transfer. The Gnu
Privacy Guard (GnuPC) supports secure email, and digital signature, as well
as data/file encryption, with public-key cryptography. Message digest algo-
rithms such as MD5 can produce digital fingerprints for data/programs to
guard their integrity.

Linux systems are often used to run Web servers and to provide Web
hosting for individuals and organizations. Basic Web documents are coded in
HTML. Hyper references use URLs to link to other documents. MIME content
types indicate the media type served on the Web.

The stateless HTTP is a request-response protocol whose messages may
have a number of headers and an optional message body.

7.22 Exercises

1. What is a computer network? Name the major components in a com-
puter network.

2. What is a networking client? What is a networking server? What is a
networking protocol?

3. What addressing scheme does the Internet use? What is the format of
an IP address? What is the quad notation?

220 Mastering Linux

4. Consider the IP address

123.234.345.456

Is there anything wrong with it? Please explain.

5. Refer to Section 7.6 and set up your own password-less SSH and SFTP.

6. You can schedule commands to be executed automatically by Linux at
regular intervals. Find out about the crontab and the crontab com-
mand. Then set up your crontab to rsync some important folder from
one system to another. Show your crontab code in full and explain.

7. Refer to Section 7.7 and set up you your GnuPG keys.

8. Write a script that will encrypt/decrypt with gpg a file and leave it in
the same place as before (with the same filename).

9. What is DNS? Why do we need it?

10. What do name servers do? Why do we need them?

11. What is the relation between the Web and the Internet? What is the
relation between HTTP and TCP/IP?

12. What are the major components of the Web? Why is HTML central to
the Web?

13. What is the difference between a Web server and a Web browser? Is the
Web server a piece of hardware or software? Explain.

14. How does a Web page get from where it is to the computer screen of a
user?

15. What is a URL? What is the general form of a URL? Explain the dif-
ferent URL schemes.

16. What are content types? How are they useful?

17. What is the difference between a static Web page and a generated Web
page?

18. What is an HTTP transaction? What is an HTTP query? What is an
HTTP response?

19. Take the domain name sofpower.com and write the full URL that will
access its Web server. Add /linux to the end of that URL. Where does
that lead?

20. Take the domain name sofpower.com and find its IP address. Use this
IP address instead of the domain name to visit the site. Write the bit
pattern for this IP address.

Networking, Internet, and the Web 221

21. Search on the Web for ICANN. Visit the site and discover its mission
and services.

22. Find the domain record for sofpower.com. Who is the owner of this
domain name? Who are the administrative and technical contacts?

23. Find the DNS record for sofpower.com.

24. Find out and describe in your own words what the special domain
in-addr.arpa is.

25. Refer to Section 7.19. Explain the notation

$ ´GET /WEB/test.html HTTP/1.0\n ´
26. Refer to Section 7.19. Use the nc command to write a poor man’s Web

browser script poorman.sh.

poorman.sh path host

retrieves the page http://host/path.

Chapter 8

Web Hosting: Apache, PHP, and
MySQL

Started in the early 1990s as a file sharing system among physicists, the World
Wide Web (WWW or simply Web) has grown rapidly to a globe-spanning
information system that modern societies won’t do without even for a short
while. In a real sense, the Web has leveled the playing field and empowered
individuals all over the world.

A key factor for this great success is the low cost of putting information
on the Web. You simply find a Web hosting service to position your files and
programming for your website on the Web. Any Internet host can provide
Web hosting if it has a good Internet connection and runs a Web server and
other related programs.

According to netcraft.com’s March 2009 survey, among all Web servers,
a full 66.65% are Apache, and a majority of Apache servers run on Linux
systems. A Linux-Apache Web hosting environment usually also supports PHP
for active pages and MySQL for database-driven websites. The Linux, Apache,
MySQL, and PHP combination (known as LAMP) works well to support Web
hosting. An introduction to these programs, together with their configuration,
and operation is presented.

In addition to understanding the big picture and the underlying principles,
a practical hands-on approach guides you through the installation, configu-
ration, testing, and administration of Apache, PHP, and MySQL so you can
learn Linux Web hosting through doing. Root access on your Linux is conve-
nient, but not necessary.

8.1 What Is a Web Server?

A Web server is a piece of software that runs on a particular host to supply
documents to the Web. The host computer is called a server host and often
provides many network-based services including the Web. Linux systems are
widely used to run Web servers, and it is important for Linux programmers
to become familiar with operations related to the Web server.

A Web server listens to a specific networking port on the host and follows
the Hypertext Transfer Protocol to receive HTTP requests and send HTTP

223

224 Mastering Linux

responses. The standard port is 80, but can be some other designated port
such as 8080.

In response to an incoming request, a server may return a static document
from files stored on the server host, or it may return a document dynamically
generated by a program indicated by the request (Figure 8.1).

FIGURE 8.1: Web Server Overview

CGI program

Plugin

Web

Browser

End User

Net
work

H
 T

 T
 P

Web

Server

Documents

Web

Server Host

A single-thread server handles one HTTP request at a time, while a multi-
thread server can handle multiple concurrent requests. A server host may have
multiple copies of a Web server running to improve the handling of requests.

Many different brands of Web servers are available from companies and
from open-source organizations. GlassFish is a free Web server that comes
with the Java EE distribution from java.sun.com. The Apache Web server,
available free from the Apache Software Foundation (apache.org), is widely
used on Linux systems. The popular Apache usually comes pre-installed on
Linux distributions.

8.2 URL and URI

An important cornerstone of the Web is the Universal Resource Locator
(URL, Chapter 7, Section 7.10) that allows Web clients to access diverse
resources located anywhere on the Web. For example, the HTTP URL

http://ml.sofpower.com

leads to the companion website for this textbook. An HTTP URL (Figure 8.2)
identifies a Web server running on a particular host computer and provides
the following information:

• A Universal Resource Identifier (URI) that corresponds to a local path-
name leading to a target resource (a file or program) stored on the server
host

• An optional pathinfo indicating a target file/folder location as input data
to the target resource

Web Hosting: Apache, PHP, and MySQL 225

• An optional query string providing key=value pairs as input data to the
target resource

FIGURE 8.2: HTTP URL Structure

URI

http://host:port/folder/.../file/path−info?query−string

The part of the URL immediately after the host:port segment (Figure 8.2)
is referred to as the URI. The Web server uses the URI to locate the target
resource, which can be a static page, an active page, or an executable program.
A static page is returned directly in an HTTP response. Any pathinfo and
query string is made available, as input, to an active page or an executable
program. The resulting output is then returned in an HTTP response.

The set of files and directories made available on the Web through a Web
server is known as its document space. The document root is the root directory
for the document space, and it corresponds to the URI /. In addition to
the document root hierarchy, there can be other files and directories in the
document space, for example, the /cgi-bin and the ~userid usually map to
directories outside the document root hierarchy.

A Web server also works with other special directories (outside of its doc-
ument space) for server configuration, passwords, tools, and logs. An URI is
interpreted relative to the document root, cgi-bin, or another directory, as
appropriate. The Web server can enforce access restrictions, specified in the
Web server configuration files, on any file/folder in the document space.

8.3 Request Processing

For each incoming HTTP request, a Web server executes the following
request processing cycle:

1. Accepts client connection (via TCP/IP Section 7.2)

2. Processes request (fetches and processes page or invokes program)

3. Sends response

4. Closes connection (or keeps it alive under HTTP1.1)

While processing a request, a busy website often will receive many new re-
quests. It is normal to use multiple servers (multiprocessing) and/or multiple
threads within the same server (multithreading) to handle concurrent requests.

226 Mastering Linux

8.4 Response and Content Types

For each incoming HTTP request, the Web server sends back an HTTP
response containing the requested resource or an indication of error or some
other condition.

An HTTP response has two parts: the headers and the body. The server
specifies the Content-Type header to indicate the media type of the response
body. Standard MIME (Multipurpose Internet Mail Extensions) content types
(Chapter 6, Table 6.3) are used. The most common content type is text/html,
but there are many other types. For a static file, the Web server uses the
filename extension to infer its media type using a list often found in the file
/etc/mime.types. The location of this content type list is configurable.

In case of dynamic content, those generated by server-side programs, the
Web server relies on that program to set content type.

8.5 The Apache Web Server

Apache is the most popular Web server, especially on Linux systems. You
can download and install the Apache HTTP server (Apache) from the Apache
Software Foundation (apache.org) free of charge (Section 8.14).

However, your Linux will most likely have Apache already installed.
Apache is derived from the NCSA1 httpd project and evolved through a series
of code patches (thus, a patchy server). Apache, written in the C language, is
open source and runs on almost all platforms. Apache is fast, reliable, multi-
threaded, full-featured, and HTTP/1.1 compliant. Although Apache 1.3 is still
available, the most recent stable Apache 2 version is the one to use.

Apache has many components, including

• Server executable—The runnable program httpd

• Utilities—For server control, passwords, and administration

• Files—Including server configuration files, log files, password files, and
source code files

• Dynamic loadable modules—Pre-compiled library modules that can be
loaded into the httpd at run-time

• Documentation

1National Center for Supercomputing Applications at the University of Illinois, Urbana-
Champaign.

Web Hosting: Apache, PHP, and MySQL 227

8.6 Apache on Linux

Because of its importance, most popular Linux distributions come with
Apache already installed. Networking servers, the Web server included, are
automatically started as Linux boots and stopped as Linux shuts down.
The boot-time init scripts for these services are normally kept in the folder
/etc/init.d/. For Apache, the script is /etc/init.d/httpd. The system-

FIGURE 8.3: Service Control/Configuration Tool

config-services is a tool (Figure 8.3) to turn network services on/off as well
as to start/stop/restart any particular service. You’ll find httpd among the
service entries listed. The same operations can also be done with the service
command from a Command Line Interface (CLI). For example,

service httpd start
service httpd graceful (restarts without service interruption)
service httpd stop

Both system-config-services and service invoke the proper /etc/init.d/
scripts to do the job.

On Ubuntu/Debian, you may have to first install this package (Sec-
tion 8.24) to use the service command.

sudo apt-get install sysvconfig

The command apt-get is the automatic software package installer/updater on
Ubuntu/Debian. Normally, it can only be run by root. The sudo command
is a way of accessing commands normally off limits (see Section 8.14 for more
information).

On CentOS/Fedora, you can add/delete any program to this services list
with

228 Mastering Linux

chkconfig --add serviceName
chkconfig --del serviceName

On Debian/Ubuntu, use sysv-rc-conf instead.
You’ll usually find the document root at /var/www/html/ and the Apache

main configuration file at

/etc/httpd/conf/httpd.conf (CentOS/Fedora)
/etc/apache2/apache2.conf (Ubuntu/Debian)

Often, the main configuration file will include other component configuration
files such as php.conf and ssl.conf.

To check if httpd, or any other process, is running, you can use

pidof httpd
pidof process Name

and see if one or more process ids are found.

Controlling the Apache Server

The command apachectl (CentOS/Fedora) or apache2ctl (Ubuntu/Debian),
usually found in /usr/sbin, can be used to control the httpd

apachectl action
apache2ctl action

Possible actions are listed in Table 8.1. The init script /etc/init.d/httpd

TABLE 8.1: Actions of apachectl

Action Meaning
start Starts httpd if not already running
stop Stops httpd if running
restart Starts/restarts httpd
graceful Restarts httpd, respecting ongoing HTTP requests
configtest or -t Checks the syntax of configuration files

checks a few things before it actually calls apachectl to take care of business.

8.7 Apache Run-Time Configuration

Features and behaviors of the Apache httpd can be controlled by directives
kept in configuration files. The main configuration file is usually httpd.conf
(or apache2.conf). When httpd starts, it reads the configuration files first.
After making changes to the configuration, the httpd needs to be restarted
before the new configuration takes effect. Unless you have installed your own
Apache as an ordinary user (Section 8.15), you’ll need root privilege to modify
the Apache configuration or to restart it.

Web Hosting: Apache, PHP, and MySQL 229

Apache Configuration File Basics

An Apache configuration file (httpd.conf, for example) is a text file that
contains configuration directives. Each directive is given on a separate line
which can be continued to the next line by a \ character at end of the line.

Lines that begin with the char # are comments and are ignored. A com-
ment must occupy the entire line. No end-of-line comments are allowed. There
are many different directives. Directive names are not case sensitive, but their
arguments often are. A directive applies globally unless it is placed in a con-
tainer which limits its scope. When in conflict, a local directive overrides a
global directive.

The main configuration file is httpd.conf, and other component config-
uration files may exist and are included by the main file with the Include
directive. For example, on many Linux systems the configuration directory
/etc/httpd/conf.d/ stores component configuration files such as ssl.conf
for SSL (secure socket layer to support HTTPS, Chapter 7, Section 7.10) and
php.conf for PHP (Section 8.16). The directive

Include conf.d/*.conf

is used to include all such component configuration files.
To test your Apache configuration for syntax errors, use either one of the

following commands:

service httpd configtest
apachectl configtest
httpd -t

In addition to the central (main and component) configuration files, there
are also in-directory configuration files known as access files. An access file, of-
ten named .htaccess, is placed in any Web-bound folder (your public_html,
for example) to provide configuration settings applicable for the file hierarchy
rooted at that particular folder. Directives in an access file override settings
in the central configuration files. The possibility of an access file and what
directives it may contain are controlled by the AllowOverride directive in
the main configuration file. The .htaccess files are especially useful for in-
dividual users to configure their own Web spaces, usually the public_html
under their home directories.

About Configuration Directives

Configuration directives control many aspects of the Apache Web server. The
httpd.conf file has three main parts: Global Environment, main server con-
figurations, and virtual hosts configurations. Comments are provided for each
configuration directive to guide its usage. Apache has reasonable and practi-
cal default settings for all the directives, making it easy to configure a typical
server. Additional directives specify how loaded components work. Commonly
used directives include

230 Mastering Linux

• Server properties: host identification (ServerName name), file loca-
tions (ServerRoot, DocumentRoot, ScriptAlias), network parame-
ters (Listen [IP:]port), and resource management (StartServers,
KeepAlive)

• Enabling optional server features (Options) and in-directory configura-
tion overrides (AllowOverride)

• Access restrictions and user authentication (Allow, Deny, Require,
Satisfy, AuthName, AuthType, AuthFile)

• Content handling (AddHandler, AddType, AddOutputFilter)

• HTTP caching and content deflation (ExpiresActive, ExpiresByType,
DeflateCompressionLevel, AddOutputFilterByType DEFLATE)

• Virtual hosts (NameVirtualHost)

For example, the directive

DirectoryIndex index.html index.php

says index.html (or index.php) is the directory index file which is displayed if
the folder containing it is the target resource of an incoming URI. Without an
index file, a listing of filenames in that folder is generated (index generation)
for display only if the Indexes option has been enabled. Otherwise, an error
is returned.

Loading Modules

Apache is a modular server. Only the most basic functionalities are included
in the core httpd. Many extended features are implemented as dynamically
loadable modules (.so) that can be selectively loaded into the core server
when it starts. This organization is very efficient and flexible.

The loadable modules are placed in the modules folder under the server
root directory, which is defined in the main configuration file with the
ServerRoot directive. To load a certain module, use the directive

LoadModule name_module modules/moduleFileName.so

For example,

LoadModule dir_module modules/mod_dir.so (loads module dir)
LoadModule php5_module modules/libphp5.so (loads module php5)

The dir module enables Apache to generate a directory listing. The php5
module supports dynamic Web pages using the PHP scripting language (Sec-
tion 8.16).

Configuration directives may be included conditionally, depending on the
presence of a particular module, by enclosing them in an <IfModule> con-
tainer. For example,

Web Hosting: Apache, PHP, and MySQL 231

<IfModule mod_userdir.c>
UserDir public_html
</IfModule>

says if we are using the userdir module, then the Web folder for each Linux
user is public_html.

Global Directives

Table 8.2 shows some more directives relating to how the Apache server works
globally (Ex: ex08/apacheGlobal.conf). The Alias and ScriptAlias direc-
tives map an incoming URI to a designated local folder.

TABLE 8.2: Apache Global Directives

Directive Effect
ServerRoot "/etc/httpd"
KeepAlive On Keeps connection for next request
MaxKeepAliveRequests 100
KeepAliveTimeout 15
User apache Server userid is apache
Group apache Server groupid is apache
ServerName monkey.cs.kent.edu Domain name of server host
ServerAdmin pwang@cs.kent.edu Email of administrator
DocumentRoot "/var/www/html" Server document space root
UserDir public_html Folder name of per-user Web space
AccessFileName .htaccess In-directory configuration file name
TypesConfig /etc/mime.types MIME types file
ScriptAlias /cgi-bin/

"/var/www/cgi-bin/" CGI program folder
Alias /special/ "/var/www/sp/" Special URI-to-folder mapping

Container Directives

Configuration directives can be placed inside a container directive to subject
them to certain conditions or to limit their scope of applicability to particular
directories, files, locations (URLs), or hosts. Without being limited, a directive
applies globally.

For example,

<IfModule mod_userdir.c>
UserDir public_html

</IfModule>

enables the per-user Web space (Ex: ex08/peruser.conf) and designates the
user folder to be public_html only if the userdir module is loaded.

232 Mastering Linux

Also, consider these typical settings (Ex: ex08/docroot.conf) for the
document root /var/www/html:

<Directory "/var/www/html">
Options Indexes FollowSymLinks (1)
Order allow,deny (2)
Allow from all (3)
AllowOverride None (4)

</Directory>

Within the directory /var/www/html, we allow index generation and the fol-
lowing of symbolic links (line 1). The order to apply the access control direc-
tives is allow followed by deny (line 2), and access is allowed for all incoming
requests (line3+) unless it is denied later.

The AllowOverride (line 4) permits certain directives in .htaccess files.
Its arguments can be None, All, or a combination of the keywords Options,
FileInfo, AuthConfig, and Limit. We’ll return to this topic when we discuss
access control in detail (Section 8.8).

You’ll also find the following typical setting (Ex: ex08/htprotect.conf)
in your httpd.conf:

<Files ~ "^\.ht">
Order allow,deny
Deny from all

</Files>

It denies Web access to any file whose name begins with .ht (Chapter 4,
Section 4.3). This is good for security because files such as .htaccess are
readable by the Apache Web server, but we don’t want their contents exposed
to visitors from the Web.

As <Directory> and <Files> work on the file pathnames on your
computer, the <Location> container works on URIs. We also have
<DirectoryMatch>, <FileMatch>, and <LocationMatch> that use regular ex-
pressions as defined for egrep (Section 4.3).

8.8 Access Control under Apache

What Is Access Control?

Running a Web server on your Linux system means that you can make certain
files and folders accessible from the Web. However, you also want to control
how such files can be accessed and by whom.

To make a file/folder accessible from the Web, you must place it somewhere
in the document space configured for your Web server. This usually means
placing a file/folder under the document root or inside your own public_html
and also making the file readable (the folder readable and executable) by the

Web Hosting: Apache, PHP, and MySQL 233

Web server via chmod a+r file (chmod a+rx folder). Files on your system
not placed under the server document space or not having the right access
modes (Chapter 6, Section 6.4) will not be accessible from the Web.

The Web server can be configured to further limit access. Access control
specifies who can access which part of a website with what HTTP request
methods. Access control can be specified based on IP numbers, domains, and
hosts, as well as passwords. Access restrictions can be applied to the entire
site, to specific directories, or to individual files.

Apache access control directives include Allow, Deny, Order, AuthName,
AuthType, AuthUserFile, AuthGroupFile, Require, Satisfy, <Limit>, and
<LimitExcept>.

Access Control by Host

If a file in the server document space has no access control, access is granted.
The order directive specifies the order in which allow and deny controls are
applied. For example,

order allow,deny

only access allowed but not denied are permitted. In the following, if access
is first denied then allowed, it is allowed.

order deny,allow
deny from all
allow from host1 host2 . . .

On monkey.cs.kent.edu, we have a set of pages reserved for use inside
our departmental local area network (LAN). They are placed under the folder
/var/www/html/internal. Their access has the following restriction (Ex:
ex08/folderprotect.conf):

<Location /internal>
order deny,allow
deny from all
allow from .cs.kent.edu

</Location>

Thus, only hosts in the .cs.kent.edu domain are allowed to access the loca-
tion /internal. The IP address of a host can be used. For example,

allow from 131.123

grants access to requests made from any IP with the prefix 131.123.
To enable users to control access to files and folders under their per-

user Web space (public_html), you can use something such as (Ex:
ex08/htaccess.conf)

234 Mastering Linux

<Directory /home/*/public_html>
AllowOverride All
Order allow,deny
Allow from all

</Directory>

in httpd.conf. This means users can place their own access control and other
directives in the file ~/public_html/.htaccess.

8.9 Requiring Passwords

Allowing access only from certain domains or hosts is fine, but we still need
a way to restrict access to registered users either for the whole site or for parts
of it. Each part of a site under its own password control is known as a security
realm. A user needs the correct userid and password to log in to any realm
before accessing the contents thereof. Thus, when accessing a resource inside
a realm, a user must first be authenticated or verified as to who the user is.
The Apache Web server supports two distinct HTTP authentication schemes:
the Basic Authentication and the Digest Authentication. Some browsers lack
support for Digest Authentication which is only somewhat more secure than
Basic Authentication.

Let’s look at how to set user login.

Setting Up User Login under Apache

To illustrate how to password protect Web files and folders, let’s look at a
specific example where the location /WEB/csnotes/ is a folder we will protect.

We first add the following authentication directives to the httpd.conf file
(Ex: ex08/validuser.conf):

<Location "/WEB/csnotes/">
AuthName "WDP-1 Notes"
AuthType Basic
AuthUserFile /var/www/etc/wdp1p
require valid-user

</Location>

The AuthName gives a name to the realm. The realm name is displayed
when requesting the user to log in. Thus, it is important to make the realm
name very specific so that users will know where they are logging into. The
AuthType can be either Basic or Digest. The AuthUserFile specifies the full
pathname of a file containing registered users. The optional AuthGroupFile
specifies the full pathname of a file containing group names and users in those
groups. The Require directive defines which registered users may access this
realm.

Web Hosting: Apache, PHP, and MySQL 235

valid-user (all users in the AuthUserFile)
user id1 id2 id3 ... (the given users)
group grp1 grp2 ... (all users in the given groups)

The AuthUserFile lists the userid and password for each registered user, with
one user per line. Here is a sample entry in /var/www/etc/wdp1.

PWang:RkYf8U6S6nBqE

The Apache utility htpasswd (htdigest) helps create password files and add
registered users for the Basic (Digest) authentication scheme. (See the man
page for these utilities for usage.) For example,

htpasswd -c /var/www/etc/wdp1 PWang

creates the file and adds an entry for user PWang, interactively asking for
PWang’s password. If you wish to set up a group file, you can follow the format
for /etc/group, namely, each line looks like

group-name: userid1 userid2 ...

It is also possible to set up login from an .htaccess file. For example, put
in .htaccess under user pwang’s public_html

AuthUserFile /home/pwang/public_html/.htpassword
AuthName "Faculty Club"
AuthType Basic
Require valid-user

Then, place in .htpassword any registered users.
If more than one Require and/or allow from conditions is specified for

a particular protected resource, then the satisfy any (if any condition is
met) or satisfy all (all conditions must be met) directive is also given. For
example (Ex: ex08/flexibleprotect.conf),

<Location /internal>
order deny,allow
deny from all
allow from .cs.kent.edu
AuthName "CS Internal"
AuthType Basic
AuthUserFile /var/www/etc/cs
require valid-user

satisfy any
</Location>

means resources under the /internal can be accessed by any request origi-
nating from the cs.kent.edu domain (no login required) or a user must log
in.

236 Mastering Linux

8.10 How HTTP Basic Authentication Works

Upon receiving an unauthorized resource request to a realm protected by
Basic Authentication, the Web server issues a challenge :

HTTP/1.0 401 Unauthorized
WWW-Authenticate: Basic realm="CS Internal"

Upon receiving the challenge, the browser displays a login dialog box request-
ing the userid and password for the given realm. Seeing the login dialog, the
user enters the userid and password. The browser then sends the same resource
request again with the added authorization HTTP header

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

where the base64 (Chapter 7, Section 7.7) encoded basic cookie decodes to
userid:password. From this point on, the browser automatically includes the
basic cookie with every subsequent request to the given realm. This behavior
persists until the browser instance is closed.

8.11 How HTTP Digest Authentication Works

Unless conducted over a secure connection, such as SSL (secure socket
layer) used by HTTPS, the Basic Authentication is not very secure. The
userid and password are subject to easy eavesdropping over HTTP. The Digest
Authentication is an emerging HTTP standard to provide a somewhat more
secure method than Basic Authentication.

With Digest Authentication, the server sends a challenge (on a single line)

HTTP/1.1 401 Unauthorized WWW-Authenticate:
Digest realm="Gold Club" nonce="3493u4987"

where the nonce is an arbitrary string generated by the server. The recom-
mended form of the nonce is an MD5 hash (Chapter 7, Section 7.9), which
includes the client’s IP address, a timestamp, and a private key known only
to the server.

Upon receiving the challenge, the browser computes

str1 = MD5(userid + password)
str2 = MD5(str1 + nonce + Resource_URI)

The browser then sends the authorization HTTP header (on one line)

Authorization: Digest realm="Gold Club", nonce="...",
username="pwang", uri="/www/gold/index.html",
response="str2"

The server verifies the response by computing it using the stored password.
From this point on, the browser includes the Digest Authentication header

with every request to the same realm. The server may elect to rechallenge with
a different nonce at any time.

Web Hosting: Apache, PHP, and MySQL 237

Basic vs. Digest Authentication

Basic Authentication is simple and works with all major browsers. Digest Au-
thentication is somewhat more secure, but browser support is less complete.
Web servers, including Apache, tend to support both authentication schemes.
When security is a concern, the best practice is to move from Basic Authen-
tication over HTTP directly to Basic Authentication over HTTPS (Secure
HTTP over SSL).

8.12 Password Encryption

The Apache-supplied htpasswd tool uses the same Linux/UNIX pass-
word/data encryption method as implemented by the C library function
crypt. In this encryption scheme, a key is formed by taking the lower 7 bits of
each character from the password to form a 56-bit quantity. Hence, only the
first 8 characters of a password are significant. Also, a randomly selected 2-
character salt from the 64-character set [a-zA-Z0-9./] is used to perturb the
standard Data Encryption Algorithm (DEA) in 4096 possible different ways.
The key and salt are used to repeatedly encrypt a constant string, known
only to the algorithm, resulting in an 11-character code The salt is prepended
to the code to form a 13-character encrypted password which is saved in the
password file for registered users. The original password is never stored.

When verifying a password, the salt is extracted from the encrypted pass-
word and used in the preceding algorithm to see if the encrypted password is
regenerated. If so, the password is correct.

8.13 Automatic File Deflation

Apache takes advantage of many HTTP 1.1 features to make Web pages
faster to download. One such feature is automatic compression of a page before
network transfer, resulting in significantly reduced file size and delivery time.
This is especially true for textual pages whose compression ratio can reach 85%
or more. A compressed page is uncompressed by your browser automatically.

The mod_deflate module for Apache 2.0 supports automatic (dynamic)
file compression via the HTTP 1.1 Content-Encoding and Accept-Encoding
headers. These two configuration directives (Ex: ex08/deflate.conf)

DeflateCompressionLevel 6
AddOutputFilterByType DEFLATE text/html text/plain \

text/xml text/css application/x-javascript \
application/xhtml+xml application/xslt+xml \
application/xml application/xml-dtd image/svg+xml

indicate a list of content types for dynamic compression (using zlib) at the

238 Mastering Linux

indicated compression level. Deflation adds a bit of processing load on the
server side and the higher the compression level, the heavier the processing
load.

Compression will only take place when the incoming HTTP request in-
dicates an acceptable compression encoding. The detection of browser com-
pression preferences and the sending of compressed or uncompressed data are
automatic. Of course, any compressed outgoing page will carry an appropriate
Content-Encoding response header.

The AddOutputFilterByType directive needs AllowOverride FileInfo
to work in .htaccess.

8.14 Installing Apache with Package Management

We have mentioned that most Linux distributions come with Apache in-
stalled. With root access, you can use the Linux package management (Sec-
tion 8.24) commands

CentOS/Fedora:
yum install httpd
yum update httpd

Ubuntu/Debian:
sudo apt-get install apache2
sudo apt-get update apache2

to install/update your Apache server.
If you wish to have the very latest Apache release, or if you don’t have

root access, you can install Apache manually as described in Section 8.15.

Sudo

Linux administration tasks such as setting up new user accounts, installing and
updating system-wide software, and managing network services must usually
be performed by privileged users such as root. This is secure but not very
flexible.

Sudo is a method to allow regular users to perform certain tasks temporar-
ily as root or as some other more privileged user. The command name sudo
comes from the command su (substitute user) which allows a user to become
another user. Putting sudo in front of a complete command you wish to ex-
ecute says: “allow me enough privilege to execute the following command.” If
the given command is allowed, sudo sets the real and effective uid and gid
(Chapter 6, Section 6.4) to those of a specific privileged user for the duration
of the execution of the given command. All sudo commands are logged for
security.

Web Hosting: Apache, PHP, and MySQL 239

The file /etc/sudoers contains data governing who can gain what privi-
leges to execute which commands on exactly what host computers and whether
your password is required or not. Thus, the same sudoers file can be shared
by many hosts within the same organization. The file can only be modified
via the privileged command sudoedit. You can read about sudoers and its
syntax rules by

man 5 sudoers

The general form of a user entry in sudoers is

r user hosts=(s user) commands

meaning r user can execute the given commands as s user on the listed hosts.
The (s user) part can be omitted if s user is root.

Here are some example sudoers entries.

pwang localhost=/sbin/shutdown -h now

pwang localhost=/sbin/service httpd start, \
/sbin/service httpd start, \
/sbin/service httpd restart, \
/sbin/service httpd graceful

pwang localhost=/sbin/apt-get update apache, \
/sbin/apt-get install apache, \
/sbin/apt-get remove apache

root ALL=(ALL) ALL

Each entry must be given on one line. The root entry is always there to give
root the ability to sudo all commands on hosts as any user.

Even if you log in (or su) as root, you may prefer to use sudo so as to
leave log entries for the tasks performed.

8.15 Manual Installation of Apache

If you prefer not to install Apache with package management, you may in-
stall Apache manually. The installation procedure follows the standard Linux
configure, make, install sequence.

If you have root access, you will be able to install Apache in a system
directory such as /usr/local and assign port 80 to it. If not, you still can
install Apache for yourself (for experimentation) in your own home directory
and use a non-privileged port, such as 8080. Let $DOWNLOAD be the download
folder, for example, either /usr/local/apache_src or $HOME/apache_src,
and let $APACHE be the installation folder, for example, /usr/local/apache
or $HOME/apache.

240 Mastering Linux

To download and unpack the Apache HTTP server distribution, follow
these steps.

1. Download—Go to httpd.apache.org/download.cgi and download the

httpd-version.tar.gz

or the .tar.bz2 file, as well as its MD5 fingerprint file, into your
$DOWNLOAD folder.

2. Integrity check—Use md5sum on the fingerprint file to check the down-
loaded file.

3. Unpack—From the $DOWNLOAD folder unpack with one of these com-
mands.

tar zxvpf httpd-version.tar.gz
tar jxvpf httpd-version.tar.bz2

You’ll find a new Apache source folder, httpd-version, containing the
unpacked files.

Configure and Compile

Now you are ready to build and install the Apache Web server. Follow the
INSTALL file and the Compiling and Installing section of the Apache docu-
mentation httpd.apache.org/docs/version-number. You’ll need an ANSI C
compiler (gcc preferred) to compile, Perl 5 to make tools work, and DSO
(Dynamic Shared Object) support. These should already be in place on newer
Linux distributions.

From the Apache source folder, issue the command

./configure options

to automatically generate the compilation and installation details for your
computer. The INSTALL file has good information about configuration. To see
all the possible options, give the command

./configure --help.

For example, the --prefix=serverRoot option specifies the pathname of the
server root folder, and the option --enable-mods-shared=all elects to com-
pile all Apache modules into dynamically loadable shared libraries.

The recommended method (Ex: ex08/makeapache.bash) to configure and
compile is

./configure --prefix=$APACHE --enable-mods-shared=all \
otherOptions

make
make install

Web Hosting: Apache, PHP, and MySQL 241

Here the Apache server root folder has been set to your installation folder
$APACHE as the destination for the results of the installation. The recom-
mended otherOptions are

--enable-cache --enable-disk-cache \
--enable-mem-cache --enable-proxy \
--enable-proxy-http --enable-proxy-ftp \
--enable-proxy-connect --enable-so \
--enable-cgi --enable-info \
--enable-rewrite --enable-spelling \
--enable-usertrack --enable-ssl \
--enable-deflate --enable-mime-magic

Each of the preceding three commands will take a while to run to completion.
After successful installation, it is time to customize the Apache configura-

tion file $APACHE/conf/httpd.conf. Follow these steps:

1. Check the ServerRoot and DocumentRoot settings. These should be the
full pathnames as given by $APACHE and $APACHE/htdocs, respectively.

2. Set the listening port:

Listen 80 (requires root privilege)
Listen 8080 (no need for root privilege)

3. Make any other configuration adjustments as needed.

Now you can start the Apache server with

$APACHE/bin/apachectl start

If the start is successful, you can then use a Web browser on the same host
computer to visit

http://localhost.localdomain:port

and see the Apache welcome page, which is the file

$APACHE/htdocs/index.html

It is recommended that you install PHP together with Apache. See Sec-
tion 8.17 for details.

8.16 What Is PHP?

PHP, a recursive acronym for PHP: Hypertext Preprocessor, represents a
powerful and widely used program for generating dynamic Web content. It
evolved from an earlier project by Rasmus Lerdorf, and PHP 3.0 was released

242 Mastering Linux

in mid-1998. PHP has matured as an important server-side tool and is march-
ing toward version 6 at the time of this writing. In addition to serving the
Web, PHP can also be used as a Linux command for general-purpose text
processing.

Although PHP runs on multiple platforms, we will focus on PHP as an
Apache server module on Linux. As such, PHP executes as part of Apache
and interprets code embedded in Web-bound pages to dynamically generate
content for those pages. For example, an HTML document containing

<p>It is <?php echo(date("l M. d, Y")); ?>,

do you know where your project is?</p>

generates the text

It is Thursday June. 18, 2009,
do you know where your project is?

The date displayed depends on the exact time of access.
Any PHP code is given within the PHP bracket <?php ... ?> and inter-

leaved (embedded) within normal HTML code, or other types of code as the
case may be. Pages containing such embedded codes are often called active
(or dynamic) pages, because they are not static and contain information gen-
erated on the fly by the embedded code. The embedded code is never seen by
the receiver of the resulting document; it gets replaced by any information it
generates (Figure 8.4).

FIGURE 8.4: PHP Code Interpretation

Fixed
Content

Generated

Document

PHP CODE

PHP
ModuleBrowser

file.php

Server Host

Apache

8.17 The PHP Module for Apache

An Apache server is generally expected to support PHP, and it is not hard
to add the PHP module for Apache. With the PHP module, the Apache Web

Web Hosting: Apache, PHP, and MySQL 243

server will be able to interpret PHP codes embedded in textual documents
of any type as they are being delivered to the Web (Figure 8.4). Most Linux
distributions will have Apache installed with PHP already. For example, you
may find the PHP module libphp5.so already in the Apache modules folder
(usually /etc/httpd/modules).

You can also use the Linux package management facility to install/update
Apache+PHP:

yum install httpd php (CentOS/Fedora)
yum update httpd php (CentOS/Fedora)
sudo apt-get install apache2 php5 \

libapache2-mod-php5 (Ubuntu/Debian)
sudo apt-get update apache2 php5 \

libapache2-mod-php5 (Ubuntu/Debian)

Installing the PHP Module

This section describes how to install the PHP module manually and add it to
your Apache server. If you already have Apache+PHP installed, please skip
this section.

First, download the current PHP release (php-version.tar.gz or
.tar.bz2) from www.php.net/downloads.php, check the MD5 fingerprint,
and unpack into your $DOWNLOAD folder as before (Section 8.15).

Next, go to the the PHP source code folder $DOWNLOAD/php-version to
configure the PHP module. For example (Ex: ex08/makephp.bash),

cd $DOWNLOAD/php-version
./configure --with-apxs2=$APACHE/bin/apxs \
--prefix=$APACHE/php --enable-shared=all \
--with-gd --with-config-file-path=$APACHE/php \
--enable-force-cgi-redirect --disable-cgi \
--with-zlib --with-gettext --with-gdbm \
> /tmp/conf.output 2>&1

Then check the conf.output to see if you get these lines:

checking if libtool supports shared libraries... yes
checking whether to build shared libraries... yes
checking whether to build static libraries... no

If you need to redo the configuration step, please first clean things up with

make distclean

After successful configuration, you are ready to create the PHP module. Enter
the command

make

244 Mastering Linux

It will take a while. After it is done you should check the .libs/ folder to
see if the PHP module libphp5.so has been created. If so, then issue the
command

make install

The install directory is $APACHE/php as specified by the --prefix option. The
install process also moves libphp5.so to the folder $APACHE/modules/ and
modifies $APACHE/conf/httpd.conf for the httpd to load the PHP module
when it starts by adding the Apache configuration directive

LoadModule php5_module modules/libphp5.so

In addition, you also need to add a few other directives to tell Apache what
files need PHP processing:

AddHandler php5-script .php
AddType text/html .php
DirectoryIndex index.php index.html

As stated, any time a change is made to the configuration, you need to
restart Apache (Section 8.6) in order to get the new configuration to take
effect.

8.18 Testing PHP

To test your Apache+PHP installation, you can create the page info.php
(Ex: ex08/info.php)

<html><head><title>php info</title></head>
<body> <?php phpinfo(); ?>
</body></html>

and place it under the document root folder. Then, visit

http://localhost.localdomain/info.php

from your Web browser. The phpinfo() function generates a page of detailed
information about your PHP installation, including version number, modules
loaded, configuration settings, and so on.

As Apache starts, it loads the PHP module and also any PHP-specific
configuration in a file usually named php.ini. The location of this file (usually
/etc/php.ini) is given as the Loaded Configuration File in the phpinfo()
generated display.

Web Hosting: Apache, PHP, and MySQL 245

8.19 PHP Configuration

The configuration file (php.ini) is read when the PHP module is loaded
as the Web server (httpd) starts. Any changes made to php.ini will only
take effect after Apache is restarted (Section 8.6).

PHP has toggle (on/off) and value configuration directives. You edit the
php.ini, which contains a set of reasonable defaults, to make any adjustments.

For example, if you are running a Web development site where seeing
error messages will help debugging PHP scripts, then you would set (Ex:
ex08/php.ini)

;;;; Enables error display output from PHP
display_errors = On
display_startup_errors = On

For a production Web server, you would definitely want to change these to

display_errors = Off
display_startup_errors = Off
log_errors = On
;;;; Enables all error, warning, and info msg reporting
error_reporting = E_ALL
;;;; Sends msgs to log file
error_log = <pathname of a designated error.txt file>

PHP also allows you to open any local or remote URL for generating page
content. However, if your site has no need for opening remote URLs from
PHP, you may increase security by setting

allow_url_fopen = Off

PHP also has very good support for HTTP file uploading. If you wish to
allow that, then use

file_uploads = On

;;;; Use some reasonable size limit
upload_max_filesize = 2M

PHP extensions provide optional features for many different purposes.
For example, the gd extension supports manipulation of fonts and graph-
ics from PHP, and the mysql extension provides a PHP interface to MySQL
databases. Dynamically loadable extensions are collected in a PHP modules
folder (usually /usr/lib/php/modules), but are set in the php.ini by the
extension_dir directive. On many Linux systems, the extensions are loaded
by default through extension-specific .ini files in the folder /etc/php.d/. By
editing these files you control which extensions are loaded when Apache+PHP
starts.

To examine the setting of all PHP configurations directives, you can simply
look at the phpinfo() display (Section 8.18).

246 Mastering Linux

8.20 Database Support for the Web

A computer database is a system for conveniently storing, retrieving, up-
dating, and inquiring information for concurrent access by many users. Mod-
ern databases are relational; information is stored in multiple tables (Fig-
ure 8.5) that are interrelated.

FIGURE 8.5: The EMPLOYEES Table

f1 f2 f3 f5f4

SS Last First Hiredate Email

A database system is SQL-compliant if it supports the Structured Query
Language standard API (Application Programming Interface). For example,
the following SQL SELECT query retrieves all rows from table EMPLOYEES where
the field LAST is Wang:

SELECT * FROM EMPLOYEES WHERE LAST = "Wang";

Programs written in SQL can access and manipulate any SQL-compliant
database. Databases can be used for decision support, online transaction pro-
cessing, personnel records, inventory control, user accounts, multi-user online
systems, and many other purposes.

A database can also make websites easier to construct, maintain, and up-
date. On the other hand, the Web can make databases accessible from any
computer connected to the Internet.

PHP provides excellent support for using databases for and from the Web.
The SQLite extension of PHP is a fast SQL interface to a flat file database
that comes with PHP (version 5 or later). For many simple Web applications,
SQLite is just the right solution.

8.21 MySQL

More complicated websites with larger data loads will need heavier duty
database systems than SQLite. For that, the free MySQL is often the right
choice, especially in combination with Linux and PHP because PHP also has
excellent built-in support for connecting and querying MySQL databases.

MySQL is a freely available open-source relational database management
system that supports SQL. It runs on Linux, MS Windows R©, Mac OS X R©, and

Web Hosting: Apache, PHP, and MySQL 247

other systems and can be used from many programming languages, includ-
ing C/C++, Eiffel, Java, Perl, PHP, Python, and Tcl. The MySQL database
server supports both local and network access. It supports a privilege and
password system to specify who can access/modify what in the database sys-
tem.

Most Linux distributions come with MySQL installed. If you can locate the
command mysql (often in /usr/bin) on your system, then you have MySQL
already. If not, or if you wish to install the latest version of MySQL, please
refer to Section 8.23.

Initializing, Starting, and Stopping MySQL

MySQL uses a default database named mysql for its own purposes, such
as recording registered users (userid and password), managing databases, and
controlling access privileges. The command mysql install db (in usr/bin/)
is run once to initialize the MySQL default database (usually located in
/var/lib/mysql/mysql/) and is done automatically when the MySQL server
mysqld is started for the very first time. The mysql install db script con-
tains many initialization settings for MySQL, and adjusting these settings
allows you to customize various aspects of MySQL.

Starting mysqld can be done with the system-config-services GUI tool
or the command

service mysqld start

The same GUI and command-line tools can be used to stop/restart the
mysqld.

With mysqld started, MySQL client programs can communicate with it
to access/manipulate databases served by it (Figure 8.6).

FIGURE 8.6: MySQL Server and Clients

base
Data

base
Data

base
Datamysql

MySQL

server

phpMyAdmin

PHP

MySQL Run-Time Configuration

As mysqld (the database server) starts, it reads configuration values in
my.cnf (usually kept in /etc or /etc/mysql). Specified are the data

248 Mastering Linux

folder, the socket (Chapter 11, Section 11.6) location, the userid of
mysqld, and possibly many other settings. Edit my.cnf, and delete the line
bind-address = 127.0.0.1 if present.

It is also recommended that you consider running a local-access-only
MySQL server rather than one that is network enabled. The latter allows
MySQL clients to access the server via a network which can mean security
problems. The former will limit access to MySQL clients on the same host,
making it much more secure. To do this, add the configuration setting

skip-networking

to both the [mysqld] and the [mysqld_safe] sections in my.cnf. You need
to restart mysqld after making changes to the configurations. See the MySQL
documentation for details about MySQL configuration.

After starting mysqld, you can use netstat, a command to display net-
working status and activity on your system, to double check. Run the com-
mand

netstat -tap | grep mysqld

If you see a display, it means mysqld is allowing network access. If you see
no display, then only local clients are allowed access. The -tap option tells
netstat to display all information related to TCP with names of programs
involved.

Administering MySQL

MySQL protects databases by requiring a userid and password, and, depend-
ing on what privileges the user has, various operations/accesses are allowed
or denied.

At the beginning, MySQL has an administrator (root) and a blank pass-
word. The very first administrative task is to set a password for root.2

mysqladmin -u root password new password

The option -u specifies the MySQL userid root and the admin operation
is password setting. Make sure you save the password for future use. Let’s
assume the root password is foobar.

The MySQL root is the user who can create new databases, add users,
and set privileges for them. Let’s create a new database lxux.

mysqladmin -h localhost -u root -pfoobar create lxux

The commandindexRegular command!mysqladmin@mysqladmin takes the
hostname, userid, and password information and carries out the creat-
ing new database operation. The new database lxux is usually placed in
/var/lib/mysql.

2Not to be confused with the Linux super user which is also root.

Web Hosting: Apache, PHP, and MySQL 249

Now we can add pwang as a user with all privileges to use lxux. One way
is to use the mysql tool which is a command-line interface to the MySQL
database server. Give the command

mysql -h localhost -u root -pfoobar

then you are working within mysql, and you may enter SQL queries. Do the
following (Ex: ex08/adduser.sql):

mysql> USE mysql; (setting database name to mysql)
mysql> SHOW TABLES; (listing names of tables)
+-----------------+
| Tables_in_mysql |
+-----------------+
| columns_priv |
| db |
| func |
| host |
| tables_priv |
| user |
+-----------------+
mysql> INSERT INTO user (Host, User, Password, Select_priv)

-> VALUES (’’, ’pwang’, password(’thePassword’), ’Y’);
mysql> FLUSH PRIVILEGES;
mysql> GRANT ALL PRIVILEGES ON lxux.* TO pwang

-> IDENTIFIED BY ’thePassword’;
mysql> FLUSH PRIVILEGES;
mysql> quit

Then inform user pwang about his userid, password, and database name. See
the MySQL documentation for more information on setting user privileges.
To reset the password for pwang use the SQL

mysql> USE mysql;

mysql> update user set Password=PASSWORD(’newOne’)
-> WHERE User=’pwang’;

Because PHP is often available on the same host, the free phpMyAdmin
tool (phpmyadmin.net) is often also installed to enable MySQL administration
over the Web. PhpMyAdmin (Section 8.22) supports a wide range of operations
with MySQL. The most frequently used operations are supported by the Web
browser supplied GUI (managing databases, tables, fields, relations, indexes,
users, permissions, and so on). Other operations are always doable via direct
SQL statements. Both the root user and any user for a specific database can
do database administration through phpMyAdmin from anywhere on the Web.

250 Mastering Linux

Resetting the MySQL Root Password

It is important to not forget the MySQL root password. However, if you find
yourself in a such a situation, you can reset it. As Linux root, first stop the
mysqld:

service mysqld stop

Then run mysqld in safe mode without security checking:

/usr/bin/mysqld safe --skip-grant-tables &

Then run mysql on the default database mysql:

mysql -u root mysql

Then update the password for root:

mysql> update user set Password=PASSWORD(’anything’)
-> WHERE User=’root’;

Query OK, 2 rows affected (0.04 sec)
Rows matched: 2 Changed: 2 Warnings: 0

mysql> flush privileges; exit;

Now kill the mysqld safe process and restart the mysqld.

8.22 Installing phpMyAdmin

First, download the latest version from phpmyadmin.net and unpack in
your Web document root folder (usually /var/www/html). For example (Ex:
ex08/myadmin.install),

cd /var/www/html
tar jxvpf phpMyAdmin-3.3.4-english.bz2
rm phpMyAdmin-3.3.4-english.bz2
mv phpMyAdmin-3.3.4-english phpMyAdmin

The resulting phpMyAdmin folder is now in place under the Web document
root and you can display installation instructions and other documentation
with the URL

http://localhost.localdomain/phpMyAdmin/Documentation.html

To install phpMyAdmin, you only need to do a few things. In the phpMyAdmin
folder create a configuration file config.inc.php by copying and editing the
sample file config.sample.inc.php.

It is recommended that you pick the cookie authentication method and
set up a control user, as indicated by the sample configuration file, on your

Web Hosting: Apache, PHP, and MySQL 251

MySQL server so anyone who has a MySQL login can use phpMyAdmin to
manage databases accessible to that particular user. See the phpMyAdmin doc-
umentation for configuration details.

After installation, the URL

http://host/phpMyAdmin

reaches the on-Web MySQL admin tool for any valid user to manage the
database server. (Figure 8.7).

FIGURE 8.7: phpMyAdmin Tool

8.23 Installing MySQL

MySQL comes with most Linux distributions. In case there is a need,
the Linux package management system makes installation/update easy. For
CentOS/Fedora, do as root one of

yum install mysql-server mysql
yum update mysql-server mysql

For Ubuntu/Debian, do one of

sudo apt-get install mysql-server
sudo apt-get update mysql-server

Now proceed to edit the my.cnf file (Section 8.21) and then start/restart the
mysqld (Section 8.21).

If you wish to install/update Apache+PHP+MySQL to achieve LAMP all
at once, use these commands.

CentOS/Fedora:
yum install httpd php mysql-server mysql
yum update httpd php mysql-server mysql

252 Mastering Linux

Ubuntu/Debian:
sudo
apt-get install apache2 php5 libapache2-mod-php5 mysql-server
sudo
apt-get update apache2 php5 libapache2-mod-php5 mysql-server

It may be even easier if you install XAMPP for Linux, which is LAMP made
easier to install on Linux. Remember these installations are very nice as devel-
opmental systems, but not secure enough as production systems. Enterprise
editions of Linux will most likely include a production Web server with LAMP
and more. What you learn here will apply directly to such production servers.

Refer to dev.mysql.com/downloads/ at the MySQL site for manual in-
stallation.

8.24 Linux Package Management

A package management system automates the installation and mainte-
nance of software applications for any given operating system. For Linux we
have two major systems: the Advanced Packaging Tool (apt) for the the De-
bian family and the Yellow dog Updater, Modified (yum) for the Red Hat
family.

Using the package management tools, you can easily install/remove, con-
figer, and update packages made available by developers in on-line repositories.
The checking of software dependencies and placement/replacement of files and
commands are performed automatically.

We have used YUM and APT commands to install/update packages, es-
pecially in this chapter. Let’s give a brief summary of package management
commands here.

YUM and RPM

On CentOS/Fedora, the yum command is used for package management. It
is basically a front end for the lower level rpm tool.

• yum install package-name ...—Installs the specified packages along
with any required dependencies.

• yum groupinstall group-name ...—Installs the specified package
groups along with any required dependencies.

• yum erase package-name ...—Removes the specified packages from
your system.

• yum search string—Searches the list of packages for names and descrip-
tions that contain the fixed string and displays the matching package

Web Hosting: Apache, PHP, and MySQL 253

names, with architectures and a brief description of the package con-
tents.

• yum deplist package-name—Displays a list of all libraries and modules
on which the given package depends.

• yum check-update–Checks and lists available updates to installed
packages.

• yum info package-name—Displays the name, description, version, size,
and other useful information of the software.

• yum reinstall package-name ...—Removes and then installs a new
copy of each given package.

• yum localinstall local-rpm-file—Installs without having to down-
load.

• yum update package-name ...—Downloads and installs all updates in-
cluding bug fixes, security releases, and upgrades, as provided by the
distributors of your Linux. If no package name is given, all packages will
be updated.

• yum groupupdate group-name ...—Downloads and installs all updates
for the named group.

• yum upgrade–Upgrades all packages installed in your system to the
latest release.

FIGURE 8.8: GUI for YUM

The command pirut provides a GUI (Figure 8.8) for yum and can be easier
to use.

254 Mastering Linux

APT

On Ubuntu/Debian, use the apt-get command for package management.

• sudo apt-get install package-name ...—Installs the given pack-
ages, along with any dependencies.

• sudo apt-get remove package-name ...—Removes the packages
specified, but does not remove dependencies.

• sudo apt-get autoremove—Removes any dependencies which remain
installed but are not used by any applications.

• sudo apt-get clean–Removes downloaded package files for software
already installed.

• sudo apt-get purge package-name ...—Combines the functions of
remove and clean for specified packages. Also removes their configura-
tion files.

• sudo apt-get update—Reads the /etc/apt/sources.list file and up-
dates the system’s database of packages available for installation. Run
this after editing sources.list.

• sudo apt-get upgrade—Upgrades all packages if there are updates
available. Run this after the command apt-get update.

The aptitude command is an interactive command-line front end for apt-
get and can be more convenient to use.

8.25 For More Information

• Complete information for the Apache Web server can be found at
httpd.apache.org/.

• The latest releases and documentation for PHP are at php.net/index.php.

• The site www.mysql.com contains all current releases and other infor-
mation for MySQL.

• There is also a site for building LAMP servers at www.lamphowto.com.

• Linux package repositories can be easily found on the Web. For example,
see

http://rpm.pbone.net

for RPM packages and

Web Hosting: Apache, PHP, and MySQL 255

http://www.debian.org/distrib/packages

for APT packages.

• There are many textbooks on website development and design. An Intro-
duction to Web Design and Programming, by Paul S. Wang and Sanda
Katila, is particularly good because it combines Web programming with
graphical design.

8.26 Summary

A Web server follows HTTP to receive requests and send responses. Its
main function is to map incoming URIs to files and programs in the document
space designated for the Web.

The Apache httpd Web server supports dynamic module loading and run-
time configuration, making it very easy to customize and fit the requirements
of a wide range of Web hosting operations. Configuration directives can be
placed in central files and in access files under individual folders within the
document space.

In addition to controlling features and behaviors of httpd, Apache con-
figurations can specify access limitations to parts of the document space and
can require login with HTTP Basic or Digest Authentication.

PHP is a popular active page language that can generate dynamic Web
pages. PHP scripts are embedded in textual files within any number of
<?php ... ?> brackets. PHP can be installed as an Apache module and will
interpret embedded PHP scripts as the Apache httpd delivers a response
page. PHP can be dynamically configured via the php.ini file.

PHP supplies a wide range of capabilities for the Web, including file in-
clusion, form processing, local/remote file operations, file uploading, image
processing, session control, cookie support, and database access.

PHP has a built-in lightweight database, but also works well with the
heavy-duty MySQL database system. MySQL supports multiple databases
protected by userid and password. Different database users may have dif-
ferent access privileges and can be managed easily using Linux commands
(mysqladmin, mysql, and so on) or the Web-based phpMyAdmin tool.

The combination Linux, Apache, MySQL, and PHP (LAMP) forms a pop-
ular and powerful Web hosting environment. The freely available LAMP makes
a great developmental system, but should not be used as part of a production
Web server for security reasons.

The YUM/APT package management tools are handy for installing and
maintaining Linux software packages.

256 Mastering Linux

8.27 Exercises

1. Assuming your Linux is running the Apache Web server, find the version
of Apache server, the httpd.conf file, and the document root folder.

2. How does one go about finding out if your Linux system supports per-
user Web space?

3. Install your own Apache server with PHP support under your home
directory (Hint: use a non-privileged port). After installation, start your
own httpd and test it.

4. How does one find out if your Apache has PHP support? If so, where is
the file php.ini and for what purpose?

5. Set up your Apache to automatically deflate .html, .css, and .js files.

6. Look at your php.ini and figure out how to enable/disable php error
output.

7. Configure your Apache to require a password on some Web folder. Create
some valid users and test your setting to make sure that it works.

8. Set up some database tables using the PHP built-in SQLite. Test your
set up with PHP code in a Web page.

9. Install your own MySQL under your home directory. You’ll be the root
database user. Create a new test database and some tables using the
mysql tool.

10. Install the phpMyAdmin tool. Use it to manage your MySQL database.

11. Set up some database tables for the Web in your MySQL using your
phpMyAdmin tool. Test your set up with PHP code in a Web page.

12. Find out about the PEAR library for PHP. Install it if it is not already
installed.

Chapter 9

C Programming in Linux

With a basic understanding of commands, Shell usage and programming,
structure of the file system, networking, and Web hosting, you now are ready
to explore Linux system programming itself, which is the subject of Chapters
9, 10, and 11.

Early on, in Chapter 1 (Section 1.10), we briefly mentioned creating, com-
piling, and running a program written in C. Linux supports C, C++,1 Java,
Fortran, and other languages, but C remains special for Linux.

The Linux system and many of its commands are written in the C lan-
guage. C is a compact and efficient general-purpose programming language
that has evolved together with UNIX and Linux. Thus, C is regarded as the
native language for Linux. The portability of Linux is due, in large part, to
the portability of C.

Because of its importance, C has been standardized by the American Na-
tional Standards Institute (ANSI) and later by the International Organization
for Standardization (ISO). The latest standard is known as ISO C99. The C99
standard specifies language constructs and a Standard C Library API (Ap-
plication Programming Interface) for common operations, such as I/O (in-
put/output) and string handling. Code examples in this book are compatible
with ISO C99.

On most Linux distributions, you’ll find

• gcc (or g++)—The compiler from GNU that compiles C (or C++)
programs. These include support for ISO C99 and ISO C++ code.

• glibc—The POSIX2-compliant C library from GNU. A library keeps
common code in one place to be shared by many programs. The glibc
library package contains the most important sets of shared libraries:
the standard-compliant C library, the math library, as well as national
language (locale) support.

On Linux, it is easy to write a C program, compile it with gcc, and run
the resulting executable. For creating and editing short programs, such as
examples in this book, simple text editors like gedit and nano are fine. More
capable editors such as vim and emacs have C editing modes for easier
coding. Integrated Development Environments (IDEs) for C/C++ on Linux,

1C++ is a super set of C that supports Object-Oriented Programming (OOP).
2Portable Operating System Interface for UNIX.

257

258 Mastering Linux

such as kdevelop, Anjula, and Borland C++, are also available to manage
larger programming projects.

In this and the next two chapters, we will look at facilities for programming
at the C-language level and write C code to perform important operating
system tasks including I/O, file access, piping, process control, inter-process
communications, and networking. The material presented will enable you to
implement new commands in C, as well as control and utilize the Linux kernel
through its C interface.

A collection of basic topics that relates to writing C code under Linux is
explored in this chapter:

• Command-line argument conventions

• Actions of the C compiler

• Standard C Libraries

• Use and maintenance of program libraries

• Error handling and recovery

• Using the gdb debugger

9.1 Command-Line Arguments

Commands in Linux usually are written either as Shell scripts or as C pro-
grams. Arguments given to a command at the Shell level are passed as char-
acter strings to the main function of a C program. A main function expecting
arguments is normally declared as follows:

int main(int argc, char *argv[])

The parameter argc is an integer. The notation

char *argv[]

declares the formal array parameter argv as having elements of type char *
(character pointer). In other words, each of the array elements argv[0],
argv[1], ..., argv[argc-1] points to a character string. The meanings of
the formal arguments argc and argv are as follows:

argc—The number of command-line arguments, including the command
name
argv[n]—A pointer to the nth command-line argument as a character string

If the command name is cmd, and it is invoked as

cmd arg1 arg2

C Programming in Linux 259

then

argc is 3
argv[0] points to the command name cmd
argv[1] points to the string arg1
argv[2] points to the string arg2
argv[3] is 0 (NULL)

The parameters for the function main can be omitted (int main()) if they
are not needed.

Now let’s write a program that receives command-line arguments (Ex:
ex09/echo.c). To keep it simple, all the program does is echo the command-
line arguments to standard output.

/****** the echo command ******/
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[])
{ int i = 1; /* begins with 1 */

while (i < argc)
{ printf("%s", argv[i++]); /* outputs string */

printf(" "); /* outputs SPACE */
}
printf("\n"); /* terminates output line */
return EXIT_SUCCESS; /* returns exit status */

}

The program displays each entry of argv except argv[0], which is actually
the command name itself. The string format %s of printf is used. To separate
the strings, the program displays a space after each argv[i], and the last
argument is followed by a newline.

Exit Status

Note that main is declared to return an int and the last statement in the
preceding example returns a constant defined in <stdlib.h>

return EXIT_SUCCESS;

When a program terminates, an integer value, called an exit status (Chapter 5,
Section 5.7), is returned to the invoking environment (a Shell, for example) of
the program. The exit status indicates, to the invoker of the program, whether
the program executed successfully and terminated normally. An exit status
EXIT_SUCCESS (0 on Linux) is normal, while EXIT_FAILURE (1 on Linux), or
any other small positive integer, indicates abnormal termination. At the Linux
Shell level, for example, different actions can be taken depending on the exit
status (value of $?) of a command. For a C program, the return value of main,

260 Mastering Linux

or the argument to a call to exit, specifies the exit status. Thus, main should
always return an integer exit status even though a program does not need
the quantity for its own purposes. (See Chapter 10, Section 10.14 for more
discussion on the exit status.)

Compile and Execute

To compile C programs, use gcc. For example,

gcc echo.c -o myecho

Here, the executable file produced is named myecho, which can be run with

myecho To be or not to be

producing the display

To be or not to be

The argv[0] in this case is myecho.
The command gcc runs the GNU C Compiler (GCC). See Section 9.3 for

more information on GCC.

9.2 Linux Command Argument Conventions

Generally speaking, Linux commands use the following convention for spec-
ifying arguments:

command [options] [files]

Options are given with a single or double hyphen (-) prefix.

-char
--word

where char is a single letter and word is a full word. For example, the ls
command has the single-letter -F and the full-word --classify option. A
command may take zero or more options. When giving more than one option,
the single-letter options sometimes can be combined by preceding them with
a single -. For example,

ls -l -g -F

can be given alternatively as

ls -lgF

C Programming in Linux 261

Some commands such as ps and tar use options, but do not require a leading
hyphen. Other options may require additional characters or words to complete
the specification. The -f (script file) option of the sed command is an example.

A file argument can be given in any one of the three valid filename forms:
simple name, relative pathname, and full pathname. A program should not
expect a restricted filename or make any assumptions about which form will
be supplied by a user.

9.3 The GCC Compiler

To program in C, it is important to have a clear idea of what the C compiler
does and how to use it. A compiler not only translates programs into machine
code to run on a particular computer, it also takes care of arranging suitable
run-time support for the program by providing I/O, file access, and other
interfaces to the operating system. Therefore, a compiler is not only computer
hardware specific, but also operating system specific.

On Linux, the C compiler will likely be GCC, which is part of the GNU
compiler collection. The C compiler breaks the entire compilation process into
five phases (Figure 9.1).

FIGURE 9.1: Linux C Compilation Phases

(optional)

Preprocessing Compilation

Optimization

Linking/Loading

Assembly

Executable File

1. Preprocessing—The first phase is performed by the cpp (C preprocessor)
program (or gcc -E). It handles constant definition, macro expansion,
file inclusion, conditionals, and other preprocessor directives.

2. Compilation—Taking the output of the previous phase as input, the
compilation phase performs syntax checking, parsing, and assembly code
(.s file) generation.

3. Optimization—This optional phase specializes the code to the com-
puter’s hardware architecture and improves the efficiency of the gen-
erated code for speed and compactness.

4. Assembly—The assembler program as takes .s files and creates object

262 Mastering Linux

(.o) files containing binary code and relocation information to be used
by the linker/loader.

5. Linking—The collect2/ld program is the linker/loader which combines
all object files and links in necessary library subroutines as well as run-
time support routines to produce an executable program (a.out).

The gcc command can automatically execute all phases or perform only
designated phases.

The gcc Command

Because of the close relationship between C and Linux, the gcc command is
a key part of any Linux system. The gcc supports traditional as well as the
standard ISO C99.

Typically, the gcc command takes C source files (.c and .h), assembly
source files (.s), and object files (.o) and produces an executable file, named
a.out by default. The compiling process will normally also produce a corre-
sponding object file (but no assembly file) for each given source file.

Once compiled, a C program can be executed. The command name is
simply the name of the executable file (if it is on the command search PATH).
For all practical purposes, an executable file is a Linux command.

Options for gcc

You can control the behavior of gcc by command-line options. A select subset
of the available options is described here.

Please note that some options, such as -D and -I, have no space between
the option and the value that follows it.

-E Performs preprocessing only, outputs to stdout.
-S Produces assembly code files (.s).
-c Produces object (.o) files. No linking or a.out is done. This

option is used for separate compilation of component mod-
ules in a program package.

-g or -ggdb Includes debugging information in object/executable code
for gdb and other debuggers.

-o filename Names the executable file filename instead of a.out.
-O, -O2, -O3 Activates the optimization phase and performs level 1, 2, or

3 optimization. The generated code will have increasingly
improved speed and, most likely, also a smaller size. Opti-
mization algorithms slow the compiler down considerably.
Apply this option only after your code has been tested and
debugged and the code is ready for production use.

C Programming in Linux 263

-llibname Specifies libname as a library file to use when linking and
loading the executable file. This option is passed by gcc to
the linker/loader.

-Ldir Adds dir to the library search path.
-std=standard Uses the given standard for C such as ansi or c99.
-v Displays the names and arguments of all subprocesses in-

voked in the different phases of gcc. (The verbose mode.)
-Dname=str Initializes the cpp macro name to the given string str.

This command-line option is equivalent to inserting #define
name str at the beginning of a source file. If =str is omitted,
name is initialized to 1.

-Idir Adds the directory dir to the directory list that gcc searches
for #include files. The compiler searches first in the di-
rectory containing the source file, then in any directories
specified by the -I option, and then in a list of standard
system directories. Multiple -I options establish an ordered
sequence of additional #include file directories.

-pg Prepares to generate an execution profile to be used with
the Linux gprof utility.

The C Preprocessor

The C preprocessor (the cpp command) performs the first phase of the com-
pilation process. The preprocessor provides important facilities that are espe-
cially important for writing system programs. Directives to the C preprocessor
begin with the character # in column one. The directive

#include

is used to include other files into a source file before actual compilation begins.
The included file usually contains constant, macro, and data structure defini-
tions that usually are used in more than one source code file. The directive

#include "filename"

instructs cpp to include the entire contents of filename (note that the " marks
are part of the command). If the filename is not given as a full pathname,
then it is first sought in the directory where the source code containing the
#include statement is located; if it is not found there, then some standard
system directories are searched. If you have header files in non-standard places,
use the -I option to add extra header search directories. The directive

#include <filename>

has the same effect, except the given filename is found in standard system
directories. One such directory is /usr/include. For example, the standard
header file for I/O is usually included by

264 Mastering Linux

#include <stdio.h>

at the beginning of each source code file. As you will see, an important part
of writing a system program is including the correct header files supplied by
Linux in the right order.

The cpp directive #define is used to define constants and macros. For
example, after the definitions

#define TRUE 1
#define FALSE 0
#define TABLE SIZE 1024

these names can be used in subsequent source code instead of the actual
numbers. The general form is

#define identifier token . . .

The preprocessor will replace the identifier with the given tokens in the source
code. If no tokens are given, identifier is defined to be 1. Macros with param-
eters also can be defined using the following form:

#define identifier(arg1, arg2, ...) token ...

For example,

#define MIN(x,y) ((x) > (y) ? (y) : (x))

defines the macro MIN, which takes two arguments. The macro call

MIN(a + b, c - d)

is expanded by the preprocessor into

((a+b) > (c-d) ? (c-d) : (a+b))

The right-hand side of a macro may involve symbolic constants or another
macro. It is possible to remove a defined identifier and make it undefined by

#undef identifier

The preprocessor also handles conditional inclusion, where sections of source
code can be included in or excluded from the compiling process, depending
on certain conditions that the preprocessor can check. Conditional inclusion
is specified in the general form

#if-condition
source code lines A

[#else
source code lines B]

#endif

C Programming in Linux 265

TABLE 9.1: Conditional Inclusion
If Condition Meaning

#if constant-expression True if the expression is non-zero
#ifdef identifier True if identifier is #defined
#ifndef identifier True if identifier is not #defined

If the condition is met, source code A is included; otherwise, source code B
(if given) is included. The possible conditions are listed in Table 9.1.

Conditional inclusion can be used to include debugging code with some-
thing like

#ifdef DEBUG
printf(...)

#endif

To activate such conditional debug statements, you can either add the line

#define DEBUG

at the beginning of the source code file or compile the source code file with

gcc -DDEBUG file

Preventing Multiple Loading of Header Files

In larger C programs, it is common practice to have many source code and
header files. The header files often have #include lines to include other head-
ers. This situation often results in the likelihood of certain header files being
read more than once during the preprocessing phase. This is not only waste-
ful, but can also introduce preprocessing errors. To avoid possible multiple
inclusion, a header file can be written as a big conditional inclusion construct.

/* A once only header file xyz.h */
#ifndef __xyz_SEEN__
#define __xyz_SEEN__
/* the entire header file*/

.

.

.
#endif /* __xyz_SEEN__ */

The symbol __xyz_SEEN__ becomes defined once the file xyz.h is read by
cpp (Ex: ex09/gcd.h). This fact prevents it from being read again due to
the #ifndef mechanism. This macro uses the underscore prefix and suffix to
minimize the chance of conflict with other macros or constant names.

266 Mastering Linux

Compilation

The compiling phase takes the output of the preprocessing phase and performs
parsing and code generation. If a -O option is given, then the code generation
invokes code optimization routines to improve the efficiency of the generated
code. The output of the compilation phase is assembly code.

Assembly

Assembly code is processed by the assembler as to produce relocatable object
code (.o).

Linking and Loading

Linking/loading produces an executable program (the a.out file) by combin-
ing user-supplied object files with system-supplied object modules contained
in libraries (Section 9.5) as well as initialization code needed. GCC uses col-
lect2 to gather all initialization code from object code files and then calls the
loader ld to do the actual linking/loading. The collect2/ld program treats
its command-line arguments in the order given. If the argument is an object
file, the object file is relocated and added to the end of the executable binary
file under construction. The object file’s symbol table is merged with that of
the binary file. If the argument is the name of a library, then the library’s
symbol table is scanned in search of symbols that match undefined names
in the binary file’s symbol table. Any symbols found lead to object modules
in the library to be loaded. Such library object /bin/bash: inking: command
not found the same way. Therefore, it is important that a library argument
be given after the names of object files that reference symbols defined in the
library.

To form an executable, run-time support code (such as crt1.o, crti.o,
crtbegin.o, crtend.o in /usr/lib/ or /usr/lib64/) and C library code
(such as libgcc.a) must also be loaded. The correct call to collect2/ld is
generated by gcc.

After all object and library arguments have been processed, the binary file’s
symbol table is sorted, looking for any remaining unresolved references. The
final executable module is produced only if no unresolved references remain.

There are a number of options that collect2/ld takes. A few important
ones are listed:

-lname Loads the library file libname.a, where name is a character
string. The loader finds library files in standard system direc-
tories (normally /lib, /usr/lib, and /usr/local/lib) and
additional directories specified by the -L option. The -l op-
tion can occur anywhere on the command line, but usually
occurs at the end of a gcc or collect2/ld command. Other
options must precede filename arguments.

C Programming in Linux 267

-Ldir Adds the directory dir in front of the list of directories to find
library files.

-s Removes the symbol table and relocation bits from the exe-
cutable file to save space. This is used for code already de-
bugged.

-o name Uses the given name for the executable file, instead of a.out.

9.4 The C Library

The C library provides useful functions for many common tasks such as
I/O and string handling. Table 9.2 lists frequently used POSIX-compliant
libraries. However, library functions do depend on system calls (Chapter 10)
to obtain operating system kernel services.

TABLE 9.2: Common C Library Functions

Functions Header Library File
I/O: fopen, putc, fprintf, fscanf, ... <stdio.h> standard
String: strcpy, strcmp, strtok, ... <string.h> standard
Character: isupper, tolower, ... <ctype.h> standard
Control: exit, abort, malloc, ... <stdlib.h> standard
ASCII conversion: atoi, atol, atod, ... <stdlib.h> standard
Error handling: perror, EDOM, errno, ... <errno.h> standard
Time/Date: time, clock, ctime, ... <time.h> standard
Mathematical: sin, log, exp, ... <math.h> -lm

An application program may call the library functions or invoke system
calls directly to perform tasks. Figure 9.2 shows the relations among the Linux
kernel, system calls, library calls, and application programs in C. By using
standard library calls as much as possible, a C application program can achieve
more system independence.

FIGURE 9.2: Library and System Calls

Linux Kernel

C Libraries

System Calls

Programs

C Application

268 Mastering Linux

The program in Figure 9.3 implements a command lowercase, which
copies all characters from standard input to standard output while mapping
(a one-to-one transformation) all uppercase characters to lowercase ones. The
I/O routines getchar and putchar are used (Ex: ex09/lowercase.c). The
C I/O library uses a FILE structure to represent I/O destinations referred to
as C streams. A C stream contains information about the open file, such as
the buffer location, the current character position in the buffer, the mode of
access, and so on.

FIGURE 9.3: Source Code File lowercase.c

#include <stdlib.h>
#include <stdio.h>

int main()
{ int c;

while ((c = getchar()) != EOF)
putchar(tolower(c));

return EXIT_SUCCESS;
}

As mentioned before, when a program is started under Linux, three I/O
streams are opened automatically. In a C program, these are three standard
C stream pointers stdin (for standard input from your keyboard), stdout
(for standard output to your terminal window), and stderr (for standard error
to your terminal window). The header file <stdio.h> contains definitions for
the identifiers stdin, stdout, and stderr. Output to stdout is buffered until
a line is terminated (by \n), but output to stderr is sent directly to the
terminal window without buffering. Standard C streams may be redirected to
files or pipes. For example,

putc(c, stderr)

writes a character to the standard error. The routines getchar and putchar
can be defined as

#define getchar() getc(stdin)
#define putchar(c) putc(c, stdout)

Here is another example that displays the current local date and time (Ex:
ex09/timenow.c).

#include <stdlib.h>
#include <stdio.h>

C Programming in Linux 269

#include <time.h>

int main()
{ time_t now=time(NULL); /* gets current time */

printf(ctime(&now)); /* displays its string format */
printf("\n");
return EXIT_SUCCESS;

}

I/O to Files

The I/O library routine fopen is used to open a file for subsequent I/O:

FILE *fopen(char *filename, char *access_mode)

This function prototype describes the arguments and return value of fopen.
We will use the prototype notation to introduce C library and Linux system
calls.

To open the file passed as the second command-line argument for reading,
for example, you would use

FILE *fp = fopen(argv[2], "r");

The allowable access modes are listed in Table 9.3 The file is assumed to
be a text file unless the mode letter b is given after the initial mode letter (r,
w or a) to indicate a binary file. I/O with binary files can be very efficient for
certain applications, as we will see in the next section. Now let’s explain how
to use the update modes.

TABLE 9.3: fopen Modes

Mode Opens file for
"r" reading
"w" writing, discarding existing contents
"a" appending at end
"r+" updating (both reading and writing)
"w+" updating, discarding existing contents
"a+" updating, writing at end

Because the C stream provides its own buffering, sometimes there is a need
to force any output data that remains in the I/O buffer to be sent out without
delay. For this the function

int fflush(FILE *stream)

is used. This function is not intended to control input buffering.

270 Mastering Linux

File Updating

When the same file is opened for both reading and writing under one of the
modes r+, w+, and a+, the file is being updated in place; namely, you are
modifying the contents of the file. In performing both reading and writing
under the update mode, care must be taken when switching from reading
to writing and vice versa. Before switching either way, an fflush or a file-
positioning function (fseek, for example) must be called on the stream. These
remarks will become clear as we explain how the update modes work.

The r+ mode is most efficient for making one-for-one character substitu-
tions in a file. Under the r+ mode, file contents stay the same if not explicitly
modified. Modification is done by moving a file position indicator (similar to
a cursor in a text editor) to the desired location in the file and writing the
revised characters over the existing characters already there. A lowercase
command based on file updating can be implemented by following the steps
(Ex: ex09/lower.c):

1. Open the given file with the r+ mode of fopen.

2. Read characters until an uppercase letter is encountered.

3. Overwrite the uppercase letter with the lowercase letter.

4. Repeat steps 2 and 3 until end-of-file is reached.

/******** lower.c ********/
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#define SEEK_SET 0

int main(int argc, char *argv[])
{FILE *update;
int fpos; /* read or write position in file */
char c;
if ((update = fopen(argv[1], "r+")) == NULL)
{ fprintf(stderr, "%s: cannot open %s for updating\n",

argv[0], argv[1]);
exit(EXIT_FAILURE);

}
while ((c = fgetc(update)) != EOF)
{ if (isupper(c))
{ ungetc(c, update); /* back up 1 char (a) */
fpos = ftell(update); /* get current pos (b) */
fseek(update, fpos, SEEK_SET); /* pos for writing (c) */
fputc(tolower(c), update);
fpos = ftell(update);

C Programming in Linux 271

fseek(update, fpos, SEEK_SET); /* pos for reading (d) */
}

} /* (e) */
fclose(update);
return EXIT_SUCCESS;
}

After detecting an uppercase character, the file position is on the next char-
acter to read. Thus, we need to reposition the write indicator to the previ-
ous character in order to overwrite it. This is done here by backing up one
character with ungetc (line a), recording the current position (line b), and
setting the write position with fseek (line c) before putting out the lowercase
character. Having done that, we can continue to process the rest of the file.
However, we must set the read position with fseek (line d) before switching
back to reading again.

The general form of the file position setting function fseek is

int fseek(FILE *stream, long offset, int origin)

The function normally returns 0, but returns -1 for error. After fseek, a
subsequent read or write will access data beginning at the new position. For a
binary file, the position is set to offset bytes from the indicated origin, which
can be one of the symbolic constants

SEEK_SET (usually 0) the beginning of the file
SEEK_CUR (usually 1) the current position
SEEK_END (usually 2) the end of the file

For a text stream, offset must be zero or a value returned by ftell, which
gives the offset of the current position from the beginning of the file.

After end-of-file is reached, any subsequent output will be appended at the
end of the file. Thus, if more output statements were given after (line e) in
our example, the output would be appended to the file.

The w+ mode is used for more substantial modifications of a file. A file,
opened under w+, is read into a memory buffer and then reduced to an empty
file. Subsequent read operations read the buffer and write operations add to
the empty file. The mode a+ also gives you the ability to read and write the
file, but positions the write position initially at the end of the file.

I/O Redirection

The standard library function freopen

FILE *freopen(char *file, char *mode, FILE * stream)

connects an existing stream, such as stdin, stdout, or stderr, to the given
file. Basically, this is done by opening the given file as usual but, instead
of creating a new stream, assigning stream to it. The original file attached to
stream is closed. For example, the statement

272 Mastering Linux

freopen("mydata", "r", stdin);

causes your C program to begin reading "mydata" as standard input. A suc-
cessful freopen returns a FILE *.

For example, after the previous freopen, the code

char c = getc(stdin);

reads the next character from the file mydata instead of the keyboard.
A similar library function fdopen connects a file descriptor (Chapter 10,

Section 10.2), rather than a stream, to a file in the same way.
A Linux system provides the Standard C Library, the X Window System

library, the networking library, and more. The available library functions are
all described in section 3 of the man pages.

9.5 Creating Libraries and Archives

We have mentioned that collect2/ld also links in libraries while construct-
ing an executable binary file. Let’s take a look at how a library is created and
maintained under the Linux system. Although our discussion is oriented to-
ward the C language and C functions, libraries for other languages under
Linux are very similar.

A subroutine library usually contains the object code versions of functions
that are either of general interest or of importance for a specific project. The
idea is to avoid reinventing the wheel and to gather code that has already
been written, tested, and debugged in a program library, just like books in
an actual library, for all to use. Normally, the library code is simply loaded
together with other object files to form the final executable program.

On Linux, a library of object files is actually one form of an archive file,
a collection of several independent files arranged into the archive file for-
mat. A magic number identifying the archive file format is followed by the
constituent files, each preceded by a header. The header contains such infor-
mation as filename, owner, group, access modes, last modified time, and so
on. For an archive of object files (a library), there is also a table of contents
in the beginning identifying what symbols are defined in which object files in
the archive.

The command ar is used to create and maintain libraries and archives.
The general form of the ar command is

ar key [position] archive-name file ...

Ar will create, modify, display, or extract information from the given archive-
name, depending on the key specified. The name of an archive file normally
uses the .a suffix. Some more important keys are listed here.

C Programming in Linux 273

r To put the given files into the new or existing archive file, archive-
name. If a file is already in the archive, it is replaced. New files are
appended at the end.

q To quickly append the given files to the end of a new or existing
archive file, archive-name, without checking whether a file is already
in the archive. This is useful for creating a new archive and to add
to a very large archive.

ru Same as r, except existing files in the archive are only replaced if
they are older than the corresponding files specified on the com-
mand line.

ri or ra After ri or ra, a position argument must be supplied, which is the
name of a file in the archive. These are the same as r, except new
files are inserted before (ri) or after (ra) the position file in the
archive.

t To display the table of contents of the archive file.
x To extract the named files in the archive into the current directory.

This, of course, will result in one or several independent files. If no
list of names is given, all files will be extracted.

For example, the command (Ex: ex09/makelibme)

ar qcs libme.a file1.o file2.o file3.o

creates the new archive file libme.a by combining the given object files. The
c modifier tells ar to create a new archive and the s modifier causes a table
of contents (or index) to be included.

The command

ar tv libme.a

displays the table of contents of libme.a.

rw-rw-r-- 0/0 1240 Jul 9 16:18 2009 file1.o
rw-rw-r-- 0/0 1240 Jul 9 16:18 2009 file2.o
rw-rw-r-- 0/0 1240 Jul 9 16:18 2009 file3.o

If you do not wish or have permission to locate the libme.a file in a system
library directory, you can put the library in your own directory and give the
library name explicitly to gcc for loading. For example,

gcc -c myprog.c
gcc myprog.o libme.a

Note that myprog.c needs to include the header for libme.a, say, me.h, in
order to compile successfully.

274 Mastering Linux

9.6 Error Handling in C Programs

An important aspect of system programming is foreseeing and handling
errors that may occur during program execution. Many kinds of errors can
occur at run time. For example, the program may be invoked with an incorrect
number of arguments or unknown options. A program should guard against
such errors and display appropriate error messages. Error messages to the user
should be written to the stderr so that they appear on the terminal even if
the stdout stream has been redirected. For example,

fprintf (stderr, "%s: cannot open %s\n", argv[0], argv[i]);

alerts the user that a file supplied on the command line cannot be opened.
Note that it is customary to identify the name of the program displaying the
error message. After displaying an error message, the program may continue
to execute, return a particular value (for example, -1), or elect to abort. To
terminate execution, the library routine

exit(status);

is used, where status is of type int. For normal termination, status should
be zero. For abnormal terminal, such as an error, a positive integer status
(usually 1) is used. The routine exit first invokes fclose on each open file
before executing the system call exit, which causes immediate termination
without buffer flushing. A C program may use

exit(status);

directly if desired. See Chapter 10, Section 10.14 for a discussion of exit.

Errors from System and Library Calls

A possible source of error is failed system or library calls. A system call is
an invocation of a routine in the Linux kernel. Linux provides many system
calls, and understanding them is a part of learning Linux system program-
ming. When a system or library call fails, the called routine will normally not
terminate program execution. Instead, it will return an invalid value or set
an external error flag. The error indication returned has to be consistent with
the return value type declared for the function. At the same time, the error
value must not be anything the function would ever return without failure.
For library functions, the standard error values are

• EOF—The error value EOF, usually -1, is used by functions normally
returning a non-negative number.

• NULL—The error value NULL, usually 0, is used by functions normally
returning a valid pointer (non-zero).

• nonzero—A non-zero error value is used for a function that normally
returns zero.

C Programming in Linux 275

It is up to your program to check for such a returned value and take
appropriate actions. The following idiom is in common use:

if ((value = call(...)) == errvalue)
{ /* handle error here */

/* output any error message to stderr */
}

Failed Linux system calls return similar standard errors -1, 0, and so on.
To properly handle system and library call errors, the header file

<errno.h> should be included.

#include <errno.h>

This header file defines symbolic error numbers and their associated standard
error messages. For Linux systems, some of these quantities are shown in
Table 9.4. You can find all the error constants in the standard C header files,
usually under the folder /usr/include.

TABLE 9.4: Basic Linux Error Codes
No. Name Message No. Name Message
1 EPERM Not owner 27 EFBIG File too large
2 ENOENT No such file/dir 28 ENOSPC No space on device
3 ESRCH No such process 29 ESPIPE Illegal seek
4 EINTR Interrupted system call 30 EROFS Read-only file system
5 EIO I/O error 31 EMLINK Too many links
6 ENXIO No such device/addr 32 EPIPE Broken pipe
7 E2BIG Arg list too long . . .

The external variable errno is set to one of these error numbers after a
system or library call failure, but it is not cleared after a successful call. This
variable is available for your program to examine. The system/library call

perror(const char *s)

can be used to display the standard error message. The call perror(str)
outputs to standard error:

1. The argument string str

2. The colon (´: ´) character

3. The standard error message associated with the current value of errno

4. A newline (´\n ´) character

The string argument given to perror is usually argv[0] or that plus the
function name detecting the error.

276 Mastering Linux

Sometimes it is desirable to display a variant of the standard error message.
For this purpose, the error messages can be retrieved through the standard
library function

char *strerrpr(int n) /* obtain error message string */

which returns a pointer to the error string associated with error n. Also, there
are error and end-of-file indicators associated with each I/O stream. Standard
I/O library functions set these indicators when error or end-of-file occurs.
These status indicators can be tested or set explicitly in your program with
the library functions

int ferror(FILE *s) returns true (non-zero) if error indicator is set
int feof(FILE *s) returns true if eof indicator is set
void clearerr(FILE *s) clears eof and error indicators

Error Indications from Mathematical Functions

The variable errno is also used by the standard mathematical functions to in-
dicate domain and range errors. A domain error occurs if a function is passed
an argument whose value is outside the valid interval for the particular func-
tion. For example, only positive arguments are valid for the log function. A
range error occurs when the computed result is so large or small that it cannot
be represented as a double.

When a domain error happens, errno is set to EDOM, a symbolic constant
defined in <errno.h>, and the returned value is implementation dependent.
On the other hand, when a range error takes place, errno is set to ERANGE,
and either zero (underflow) or HUGE_VAL (overflow) is returned.

9.7 Error Recovery

A run-time error can be treated in one of three ways:

1. Exiting—Display an appropriate error message, and terminate the exe-
cution of the program.

2. Returning—Return to the calling function with a well-defined error
value.

3. Recovery—Transfer control to a saved state of the program in order to
continue execution.

The first two methods are well understood. The third, error recovery, is
typified by such programs as vi, which returns to its top level when errors
occur. Such transfer of control is usually from a point in one function to
a point much earlier in the program in a different function. Such non-local
control transfer cannot be achieved with a goto statement which only works

C Programming in Linux 277

inside a function. The two standard library routines setjmp and longjmp are
provided for non-local jumps. To use these routines, the header file setjmp.h
must be included.

#include <setjmp.h>

The routine setjmp is declared as

int setjmp(jmp buf env) /* set up longjmp position */

which, when called, saves key data defining the current program state in the
buffer env for possible later use by longjmp. The value returned by the initial
call to setjmp is 0. The routine longjmp uses the saved env to throw control
flow back to the setjmp statement.

void longjmp(jmp buf env, int val)

FIGURE 9.4: Long Jump

...

setjmp(env);

Function_1

Function_n

longjmp(env, val);

Function_2

Function_3

When called with a saved env and an integer val (must be nonzero), longjmp
will restore the saved state env and cause execution to resume as if the original
setjmp call has just returned the value val. For this backtracking to happen
correctly, longjmp must be called from a function in a sequence of nested
function calls leading from the function that invoked setjmp (Figure 9.4). In
other words, setjmp establishes env as a non-local goto label, and longjmp
is used to transfer control back to the point marked by env.

After the longjmp operation, all accessible global and local data have
values as of the time when longjmp was called. The ANSI standard states
that data values are not saved by the setjmp call.

Because of the way it works, setjmp can either stand alone or occur
in the test condition part of if, switch, or while, and so on. The follow-
ing is a simple example that shows how to use setjmp and longjmp (Ex:
ex09/longjumptest.c).

#include <stdio.h>
#include <errno.h>
#include <setjmp.h>
jmp_buf env;

void recover(int n)

278 Mastering Linux

{ /* adjust values of variables if needed */
longjmp(env, n);

}

void func_2(int j)
{ /* normal processing */

recover(j);
}

void func_1(int i)
{ /* normal processing */

func_2(i * 2);
}

int main()
{ /* initialize and set up things here */

/* then call setjmp */
int err=0;
if ((err = setjmp(env)) != 0)
{ /* return spot for longjmp */
/* put any adjustments after longjmp here */
printf("Called longjmp\n");
printf("Error No is %d\n", err);
return err;

}

/* proceed with normal processing */

printf("After initial setjmp()\n");
printf("Calling func_1\n");
func_1(19);

}

In this example, the function main sets up the eventual longjmp called by
the function recover. Note that recover never returns. It is possible to mark
several places env1, env2, ... with setjmp and use longjmp to transfer
control to one of these marked places.

In addition to error recovery, a non-local jump can also be used to return
a value directly from a deeply nested function call. This can be more efficient
than a sequence of returns by all the intermediate functions. However, non-
local control transfers tend to complicate program structure and should be
used only sparingly.

C Programming in Linux 279

9.8 Debugging with GDB

While the C compiler identifies problems at the syntax level, you still
need a good tool for debugging at run time. GDB, the GNU debugger, is
a convenient utility for source-level debugging and controlled execution of
programs. Your Linux distribution will usually have it installed. The command
is gdb.

GDB can be used to debug programs written in many source languages
such as C, C++, and f90, provided that the object files have been compiled
to contain the appropriate symbol information for use by gdb. This means
that you use the -g or better the -ggdb option of gcc (Section 9.3).

Insight (sourceware.org/insight/) is a graphical user interface (GUI)
front end for GDB. You can download and install it on your Linux if you
prefer a window-menu–oriented environment for using gdb.

Other common debuggers include dbx and sdb. These are generally not
as easy to use as gdb. We will describe how to use gdb to debug C programs.
Once learned, gdb should be used as a routine tool for debugging programs.
It is much more efficient than inserting fprintf lines in the source code. The
tool can be used in the same way for many other programming languages.

Interactive Debugging

GDB provides an interactive debugging environment and correlates run-time
activities to statements in the program source code. This is why it is called a
source-level debugger. Debugging is performed by running the target program
under the control of the gdb tool. The main features of gdb are listed below.

1. Source-level tracing—When a part of a program is traced, useful infor-
mation will be displayed whenever that part is executed. If you trace a
function, the name of the calling function, the value of the arguments
passed, and the return value will be displayed each time the traced func-
tion is called. You can also trace specific lines of code and even individual
variables. In the latter case, you’ll be notified every time the variable
value changes.

2. Placing source-level breakpoints—A breakpoint in a program causes ex-
ecution to suspend when that point is reached. At the breakpoint you
can interact with gbx and use its full set of commands to investigate
the situation before resuming execution.

3. Single source line stepping—When you are examining a section of code
closely, you can have execution proceed one source line at a time. (Note
that one line may consist of several machine instructions.)

4. Displaying source code—You can ask gbx to display any part of the
program source from any file.

280 Mastering Linux

5. Examining values—Values, declarations, and other attributes of identi-
fiers can also be displayed.

6. Object-level debugging—Machine instruction-level execution control
and displaying of memory contents or register values are also provided.

To debug a C program using gdb, make sure each object file has been
compiled and the final executable has been produced with gcc -ggdb. One
simple way to achieve this is to compile all source code (.c) files at once using
the

gcc -ggdb source files

command. This results in an executable a.out file suitable to run under the
control of gdb. Thus, to use gdb on lowercase.c, you must first prepare it
by

gcc -g lowercase.c -o lowercase

Then, to invoke gdb, you simply type

gdb lowercase

to debug the named executable file. If no file is given, a.out is assumed. When
you see the prompt

(gdb)

the debugger is ready for an interactive session. When you are finished simply
type the gdb command

quit

to exit from gdb. A typical debugging session should follow these steps:

1. Invoke gdb on an executable file compiled with the -ggdb option.

2. Put in breakpoints.

3. Run the program under gdb.

4. Examine debugging output, and display program values at breakpoints.

5. Install new breakpoints to zero in on a bug, deleting old breakpoints as
appropriate.

6. Resume or restart execution.

7. Repeat steps 4-7 until satisfied.

Having an idea of what gdb can do, we are now ready to look at the actual
commands provided by gdb.

C Programming in Linux 281

Basic gdb Commands

As a debugging tool, gdb provides a rich set of commands. The most com-
monly used commands are presented in this section. These should be sufficient
for all but the most obscure bugs. The complete set of commands are listed
in the gdb manual page.

To begin execution of the target program within gdb, use

(gdb) run [args] [< file1] [> file2] (start execution in gdb)

where args are any command-line arguments needed by the binary file. It
is also permitted to use > and < for I/O redirection. If lowercase is being
debugged, then

(gdb) run < input file > output file

makes sense.
However, before running the program, you may wish to put in breakpoints

first. Table 9.5 lists commands for tracing.

TABLE 9.5: Simple GDB Break Commands

Command Action
break line Stops before execution of line
break function Stops before call to function
break *address Stops at the address
display expr Displays the C expression at a break

The break command can be abbreviated to br. Lines are specified by line
numbers which can be displayed by these commands.

list displays the next 10 lines.
list line1,line2 displays the range of lines.
list function displays a few lines before and after function

When program execution under gdb reaches a breakpoint, the execution is
stopped, and you get a (gdb) prompt so you can decide what to do and what
values to examine. Commands useful at a breakpoint are in Table 9.6, where
the command bt is short for backtrace which is the same as the command
where. After reaching a breakpoint you may also single step source lines with
step (execute the next source line) and next (execute up to the next source
line). The difference between step and next is that if the line contains a call
to a function, step will stop at the beginning of that function block but next
will not.

As debugging progresses, breakpoints are put in and taken out in an at-
tempt to localize the bug. Commands to put in breakpoints have been given.
To disable or remove breakpoints, use

282 Mastering Linux

TABLE 9.6: GDB Commands within Breakpoints

Command Action
bt Displays all call stack frames
bt n Displays n innermost frames
bt -n Displays n outermost frames
bt full Displays all frames and local variable values
print expr Displays the expression expr
whatis name Displays the type of name
cont Continues execution
kill Aborts execution

disable number ... (disables the given breakpoints)
enable number ... (enables disabled breakpoints)
delete number ... (removes the given breakpoints)

Each breakpoint is identified by a sequence number. A sequence number is
displayed by gdb after each break command. If you do not remember the
numbers, enter

info breakpoints (displays information on breakpoints)

to display all currently existing breakpoints.
If you use a set of gdb commands repeatedly, consider putting them in a

file, say, mycmds, and run gdb this way

gdb -x mycmds a.out

A Sample Debugging Session with gdb

Let’s show a complete debugging session using the source code low.c which
is a version of lowercase.c that uses the Linux I/O system calls read and
write (Chapter 10, Section 10.1) to perform I/O (Ex: ex09/low.c).

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#define MYBUFSIZ 1024

int main(int argc, char* argv[])
{ char buffer[MYBUFSIZ];
void lower(char*, int);
int nc; /* number of characters */

while ((nc = read(STDIN_FILENO, buffer, MYBUFSIZ)) > 0)
{ lower(buffer,nc);

C Programming in Linux 283

nc = write(STDOUT_FILENO, buffer, nc);
if (nc == -1) break;

}
if (nc == -1) /* read or write failed */
{ perror(argv[0]);

exit(EXIT_FAILURE);
}
return EXIT_SUCCESS; /* normal termination */

}

void lower(char *buf, int length)
{ while (length-- > 0)

{ if (isupper(*buf))
*buf = tolower(*buf);

buf++;
}

}

We now show how gdb is used to control the execution of this program. User
input is shown after the prompt (gdb). Output from gdb is indented.

We first compile lowercase.c for debugging and invoke gdb (Ex:
ex09/debug).

gcc -ggdb low.c -o low
gdb low

Now we can interact with gdb.

(gdb) list 10
5
6 int main(int argc, char* argv[])
7 { char buffer[MYBUFSIZ];
8 void lower(char*, int);
9 int nc; /* number of characters */
10 while ((nc = read(0, buffer, MYBUFSIZ)) > 0)
11 { lower(buffer,nc);
12 nc = write(1, buffer, nc);
13 if (nc == -1) break;
14 }
(gdb) br 10 (line containing system call read)
Breakpoint 1 at 0x400660: file low.c, line 10.
(gdb) br 12 (line containing system call write)
Breakpoint 2 at 0x400671: file low.c, line 12.
(gdb> br lower (function lower)
Breakpoint 3 at 0x4006ec: file low.c, line 23.
(gdb) run < file1 > file2 (run program)
Starting program: /home/pwang/ex/bug < file1 > file2

284 Mastering Linux

Breakpoint 1, main (argc=1, argv=0x7fff0f4ecfa8) at low.c:10
10 while ((nc = read(0, buffer, MYBUFSIZ)) > 0)
(gdb) whatis nc
type = int
(gdb) cont
Continuing.

Breakpoint 3, lower (buf=0x7fff0f4ecab0 "It Is Time for
All Good Men\n7", length=28) at low.c:23

23 { while (length-- > 0)
(gdb) bt
#0 lower (buf=0x7fff0f4ecab0 "It Is Time for All

Good Men\n7", length=28) at low.c:23
#1 0x0000000000400671 in main (argc=1, argv=0x7fff0f4ecfa8)

at low.c:11
(gdb) whatis length
type = int
(gdb) cont
Continuing.

Breakpoint 2, main (argc=1, argv=0x7fff0f4ecfa8) at low.c:12
12 nc = write(1, buffer, nc);
(gdb) bt
#0 main (argc=1, argv=0x7fff0f4ecfa8) at low.c:12
(gdb) cont
Continuing.

Program exited normally.
(gdb) quit

GDB offers many commands and ways to debug. When in gdb, you can use the
help command to obtain brief descriptions on commands. You can also look
for gdb commands matching a regular expression with apropos command
inside gdb. For example, you can type

(gdb) help break (displays info on break command)
(gdb) help (explains how to use help)

The GUI provided by insight can improve the debugging experience. For
one thing, you don’t need to memorize the commands because all the avail-
able controls at any given time are clearly displayed by the insight window
(Figure 9.5).

C Programming in Linux 285

FIGURE 9.5: Insight in Action

9.9 Examining Core Dumps

In our preceding example (low.c), there were no errors. When your ex-
ecutable program encounters an error, a core dump file is usually produced.
This file, named core.pid, is a copy of the memory image of your running
program, with the process id pid, taken right after the error. Examining the
core dump is like investigating the scene of a crime; the clues are all there if
you can figure out what they mean. A core dump is also produced if a process
receives certain signals. For example, you can cause a core dump by hitting
the quit character (ctrl+\) on the keyboard.

The creation of a core file may also be controlled by limitations set in
your Shell. Typing the Bash command

ulimit -c

will display any limits set for core dumps. A core dump bigger than the limit
set will not be produced. In particular,

ulimit -c 0

prevents core dumps all together. To remove any limitation on core dumps
use

ulimit -c unlimited

You can use gdb to debug an executable with the aid of a core dump by
simply giving the core file as an argument.

gdb executable corefile

Information provided by the given corefile is read in for you to examine. The
executable that produced the corefile need not have been compiled with the
-ggdb flag as long as the executable file passed to gdb was compiled with the
flag.

Among other things, two pieces of important information are preserved in
a core dump: the last line executed and the function call stack at the time of

286 Mastering Linux

core dump. As it starts, gdb displays the call stack at the point of the core
dump.

Let’s look at an example. Take the following code in file sample.c (Ex:
ex09/sample.c):

#include <stdio.h>

int main()
{ int a[10];

int i=0, j=7;
while (i <= 10)

a[i++] = -i*j;
printf("after while\n");

}

If you compile this file and run, you’ll find that it takes forever, and the
program is most likely stuck in some kind of infinite loop. However, the only
loop is the while and it does not seem to be obviously wrong. So you hit
ctrl+\ to produce a core file and use gdb to look into the problem.

gcc -ggdb sample.c -o bad
gdb bad core.12118

and perform a debugging session such as the following:

Core was generated by ‘bad’.
Program terminated with signal 3, Quit
#0 0x00000000004004ed in main () at sample.c:6
6 while (i <= 10)
(gdb) list
1 #include <stdio.h>
2
3 int main()
4 { int a[10];
5 int i=0, j=7;
6 while (i <= 10)
7 a[i++] = -i*j;
8 printf("after while\n");
9 }
(gdb) br 7
Breakpoint 1 at 0x4004d0: file sample.c, line 7.
(gdb) display i
(gdb) run
Starting program: /root/uxlx/source/09/ex/bad

Breakpoint 1, main () at sample.c:7
7 a[i++] = -i*j;

C Programming in Linux 287

1: i = 0
(gdb) c
Continuing.

Breakpoint 1, main () at sample.c:7
7 a[i++] = -i*j;
1: i = 1
<<< after several more continues >>>
(gdb) c
Continuing.

Breakpoint 1, main () at sample.c:7
7 a[i++] = -i*j;
1: i = 10 (Oops)
(gdb) c
Continuing.

Breakpoint 1, main () at sample.c:7
7 a[i++] = -i*j;
1: i = -69 (Aha!)

Clearly, it was looping infinitely, and the execution inside gdb had to be
stopped by ctrl+c. Tracing the value of the variable i shows that it became
-69 after reaching 10. Now we realize that the program goes beyond the last
element (a[9]), and the assignment to a[10] actually changes the value of i!
The bug is due to the common mistake of going over the declared bounds of
the array subscript. The fix is simple: change <= to < on line 6.

When debugging, be on the lookout for any behavior or value that you do
not expect based on your program. Find out why it has deviated, and you’ll
find your bug.

9.10 For More Information

For the official C99 standard, see the document ISO/IEC 9899:1999 from
www.iso.org/iso. For C99 features see, for example, this FAQ

www.comeaucomputing.com/techtalk/c99/#getstandard

On Linux, look for the c99 command to compile Standard C99 programs. Use
man gcc to display the many options for the GNU C/C++ compiler.

C library functions are documented in section 3 of the Linux manual pages.
You can obtain API information for any C library function using the command
man 3 function name.

For more information on GDB, refer to

• man gdb

288 Mastering Linux

• www.gnu.org/software/gdb

• sources.redhat.com/gdb/current/onlinedocs/gdb toc.html

9.11 Summary

The C language is native to Linux and is used to write both application
and system programs. Most Linux systems support C with the GCC compiler
and the POSIX run-time libraries glibc from GNU.

The gcc compiler goes through five distinct phases to compile a pro-
gram: preprocessing, compiling, optimizing (optional), assembly, and link-
ing/loading. GCC calls the preprocessor (cpp), the assembler (as), and the
linker/loader (collect2/ld) at different phases and generates the final exe-
cutable.

The Standard C Library is an ISO C99 API for headers and library rou-
tines. The GNU glibc contains Standard C Library implementations and
other POSIX-compliant libraries. In addition, Linux provides many other use-
ful libraries relating to networking, X Windows, etc.

A library is a type of archive file created and maintained using the ar
command. You can create and maintain your own libraries with ar.

Standard header files provide access to system and library calls. Includ-
ing the correct header files is important for C programs. Library functions,
documented in section 3 of the Linux man pages, make application C pro-
grams easier to port to different platforms, whereas system calls, documented
in section 2 of the man pages, access the Linux kernel directly.

Linux has well-established conventions for command-line arguments and
for the reporting and handling of errors from system and library calls. The gdb
debugger is a powerful tool for interactive run-time, source-level debugging
and for analysis of a core dump. The insight tool provides a nice GUI for
using gdb.

9.12 Exercises

1. Modify the echo implementation given in Section 9.1 so that using the
-n option eliminates the carriage return displayed, and using the -r
option echos the words in reverse order.

2. Write a C program char count that counts the number of characters
in stdin. Compare your program to the Linux command wc.

3. Write a version in C of the Shell script clean.sh (Chapter 5, Sec-
tion 5.20). When is it a good idea to rewrite scripts in C?

4. Implement a basic tr command in a C program.

C Programming in Linux 289

5. Compile several C source files into object (.o) files first. Then use gcc to
produce the file a.out from the .o files. This should produce a working
program. Give the -v option to gcc and see what call to the linker/loader
is used.

6. Your Linux system may have more than 64 error numbers. To find out,
write a C program to access the global external table sys_errlist.
Hint: See man 3 perror.

7. System header files for C programs are kept in a few system directories.
Find out which directories these are on your system.

8. Write four or five C source files containing small routines, and set up
some header files that are used by these source files. Establish a library
file libme.a of these routines using ar. Now write, compile, and run a
program that applies a few of these library routines in libme.a. Compile
and run your application program.

9. Write an efficient template C program for processing command-line op-
tions. The options can be given in any order anywhere on the command
line.

10. Revise the lowercase.c program (Section 9.4) so that it takes optional
filename arguments:

lowercase [infile] [outfile]

Also provide appropriate error checks.

11. Write a Linux command named fil. The usage synopsis is as follows:

fil [from] [to]

to transform text from the named file from to the named file to. If only
one file argument is supplied, it is assumed to be for the from file. A
hyphen (-) means standard input; a missing to means standard output.
The fil command works as follows:

• All tabs are replaced by an equivalent number of spaces.

• All trailing blanks at the end of each line are removed.

• All lines longer than 80 characters are folded, breaking lines only
at spaces.

12. Apply gdb to debug your fil program.

Chapter 10

I/O and Process Control System Calls

An operating system (OS) provides many tools and facilities to make a com-
puter usable. However, the most basic and fundamental set of services is the
system calls, specific routines in the operating system kernel that are directly
accessible to application programs. There are over 300 system calls in Linux
with a kernel-defined number starting from 1. Each system call also has a
meaningful name and a symbolic constant in the form SYS_name for its num-
ber. With a few exceptions, a system call name corresponds to the routine
sys_name in the Linux kernel source code.

A program under execution is called a process. When a process makes a
system call at run time, a software-generated interrupt, often known as an
operating system trap, triggers the process to switch from user mode to kernel
mode and to transfer control to the entry point of the target kernel routine
corresponding to the particular system call. A process running in kernel mode
can execute instructions that are not available in user mode. Upon system call
completion, the process switches back to user mode.

Higher level system facilities are built by writing library programs that
use the system calls. Because Linux is implemented in C, its system calls are
specified in C syntax and directly called from C programs.

Important Linux system calls are described here. These allow you to per-
form low-level input/output (I/O), manipulate files and directories, create and
control multiple concurrent processes, and manage interrupts. Examples show
how system calls are used and how to combine different system calls to achieve
specific goals.

Just like library functions, a system call may need one or more associated
header files. These header files are clearly indicated with each call described.

The set of system calls and their organization form the C-language in-
terface to the Linux kernel, and this interface is nearly uniform across all
major Linux distributions. The reason is because Linux systems closely fol-
low POSIX (Portable Operating System Interface), an open operating system
interface standard accepted worldwide. POSIX is produced by IEEE (Insti-
tute of Electrical and Electronics Engineers) and recognized by ISO (Interna-
tional Organization for Standardization) and ANSI (American National Stan-
dards Intitute). By following POSIX, software becomes easily portable to any
POSIX-compliant OS.

Documentation for any system call name can be found with

291

292 Mastering Linux

man 2 name

in section 2 of the man pages (Section 1.11).

10.1 System-Level I/O

High-level I/O routines such as putc and fopen, which are provided in the
Standard C Library (Chapter 9), are adequate for most I/O needs in C pro-
grams. These library functions are built on top of low-level calls provided by
the operating system. In Linux, the I/O stream of C (Chapter 9, Section 9.4)
is built on top of the I/O descriptor mechanism supported by system calls
(Figure 10.1).

FIGURE 10.1: I/O Layers

I/O System Calls

I/O DescriptorsFile or Process

I/O Library

Getting to know the low-level I/O facilities will not only provide insight
on how the library functions work, but will also allow you to use I/O in ways
not supported by the Standard C Library.

Linux features a uniform interface for I/O to files and devices, such as a
terminal window or an optical drive, by representing I/O hardware as special
files. We shall discuss I/O to files, understanding they apply also to devices,
which are nothing but special files. In addition to files, Linux supports I/O be-
tween processes (concurrently running programs) through abstract structures
known as pipes and sockets (Chapter 11). Although files, pipes, and sockets
are different I/O objects, they are supported by many of the same low-level
I/O calls explained here.

10.2 I/O Descriptors

Before file I/O can take place, a program must first indicate its intention
to Linux. This is done by the open system call declared as follows:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *filename, int access [, mode_t mode])

Arguments to open are

I/O and Process Control System Calls 293

filename character string for the pathname to the file
access an integer code for the intended access
mode the protection mode for creating a new file

The call opens filename, for reading and/or writing, as specified by access
and returns an integer descriptor for that file. The filename can be given in any
of the three valid forms: full pathname, relative pathname, or simple filename.
The open command is also used to create a new file with the given name.
Subsequent I/O operations will refer to this descriptor rather than to the
filename. Other system calls return descriptors to I/O objects such as pipes
(Section 11.2) and sockets (Section 11.6). A descriptor is actually an index
to a per-process open file table which contains necessary information for all
open files and I/O objects of the process. The open call returns the lowest
index to a currently unused table entry. Each table entry leads, in turn, to a
kernel open file table entry. All processes share the same kernel open file table
(Figure 10.2) and it is possible for file descriptors from different processes to
refer to the same kernel table entry.

FIGURE 10.2: Open File Tables

standard input0

Open File Table
Per Process

 . . .3

standard error2

standard output1

 . . .

 . . .

Kernel Open File Table

kernel I/O object

kernel I/O object

User Process Space Kernel Space

For each process, three file descriptors, STDIN_FILENO (0), STDOUT_FILENO
(1), and STDERR_FILENO (2), are automatically opened initially, allowing ready
access to standard I/O. The access code is formed by the logical or (|) of
header-supplied single-bit values including

O_RDONLY to open file for reading only
O_WRONLY to open file for writing only
O_RDWR to open file for reading and writing
O_NDELAY to prevent possible blocking
O_APPEND to open file for appending
O_CREAT to create file if it does not exist
O_TRUNC to truncate size to 0
O_EXCL to produce an error if the O_CREAT bit is on and file exists

294 Mastering Linux

Opening a file with O_APPEND instructs each write on the file to be appended
to the end. If O_TRUNC is specified and the file exists, the file is truncated to
length zero. If access is

(O_EXCL | O_CREAT)

and if the file already exists, open returns an error. The purpose is to avoid
destroying an existing file.

The third and optional argument to open is a file creation mode in
case the O_CREAT bit is on. The mode is a bit pattern (of type mode_t from
<sys/types.h> with symbolic values from <sys/stat.h>) explained in detail
in Section 10.4, where the creat system call is described.

If the open call fails, a -1 is returned; otherwise, a descriptor is returned.
A process may have no more than a maximum number of descriptors open
simultaneously. This limit is large enough in Linux to be of no practical con-
cern.

The following example (Ex: ex10/open.c) shows a typical usage of the
open system call. The third argument to open is unused because it is not
needed for the read-only (O_RDONLY) operation. In this case, any integer can
be used as the third argument.

/******* open.c *******/
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>

int main(int argc, char *argv[])
{ int fd; /* file descriptor */

/* open argv[1] for reading */
if ((fd = open(argv[1], O_RDONLY, 0)) == -1)
{ fprintf(stderr,"%s: cannot open %s\n",

argv[0], argv[1]);
perror("open system call");
exit(EXIT_FAILURE);

}

/* other code */
}

When a system or library call fails, you can use the code

perror (const char* msg) (displays system error)

to display the given message msg followed by a standard error message asso-
ciated with the error (Chapter 9, Section 9.6).

When a descriptor fd is no longer needed in a program, it can be deleted
from the per-process open file table using the call

I/O and Process Control System Calls 295

int close(int fd) (closes descriptor)

Otherwise, all open file descriptors will be closed when the program termi-
nates.

10.3 Reading and Writing I/O Descriptors

Reading and writing are normally sequential. For each open descriptor,
there is a current position which points to the next byte to be read or written.
After k bytes are read or written, the current position, if movable, is advanced
by k bytes. Whether the current position is movable depends on the I/O
object. For example, it is movable for an actual file but not for stdin when
connected to the keyboard.

The system calls read and write are declared as

#include <unistd.h>
ssize_t read(int fd, void *buf, size_t count);

ssize t read(int fd, void *buffer, size t k) (reads input from fd)
ssize t write(int fd, void *buffer, size t k) (writes output to fd)

where fd is a descriptor to read from or write to, buffer points to an array
to receive or supply the bytes, and k is the number of bytes to be read in or
written out. Obviously, k must not exceed the length of buffer. Read will
attempt to read k bytes from the I/O object represented by fd. It returns the
number of bytes actually read and deposited in the buffer. The type size_t
is usually unsigned int (non-negative) and ssize_t is usually int (can be
negative). If read returns less than k bytes, it does not necessarily mean that
end-of-file has been reached, but if zero is returned, then the end of the file
has been reached.

The write call outputs k bytes from the buffer to fd and returns the actual
number of bytes written out. Both read and write return a -1 if they fail.

As an example, we can write a readline function with low-level read
(Ex: ex10/readline.c).

int readline(char s[], int size)
{ char *tmp = s;

/* read one character at a time */
while (0 < --size && read(0, tmp, 1) != 0

&& *tmp++ != ’\n’); /* empty loop body */
tmp = ’\0’; / string terminator */
return tmp-s; /* number of characters before terminator */

}

296 Mastering Linux

The while loop control is intricate and warrants careful study. The size
argument is the capacity of the array s. The function returns the number of
characters read, not counting the string terminator.

For a complete program, the lowercase command (Chapter 9, Figure 9.3)
has been rewritten with I/O system calls (Ex: ex10/lowercase.c).

/******** lowercase.c with I/O system calls ********/
#include <ctype.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

void lower(char *buf, int length)
{ while (length-- > 0)

{ *buf = tolower(*buf);
buf++;

}
}

int main(int argc, char *argv[])
{ char buffer[BUFSIZ];

ssize nc; /* number of characters */
while ((nc = read(STDIN_FILENO, buffer, BUFSIZ)) > 0)
{ lower(buffer,nc);

nc = write(STDOUT_FILENO, buffer, nc);
if (nc == -1) break;

}
if (nc == -1) /* read or write failed */
{ perror("read/write call");

exit(EXIT_FAILURE);
}
return EXIT_SUCCESS;

}

Compared with the version in Chapter 9, Figure 9.3, which uses putchar, the
program shows the difference between implicit and explicit I/O buffering.

Moving the Current Position

When reading or writing an I/O object that is an actual file, the object can
be viewed as a sequence of bytes. The current position is moved by the read
and write operations in a sequential manner. As an alternative to this, the
system call lseek provides a way to move the current position to any location
and therefore allows random access to bytes of the file. The standard library
function fseek (Chapter 9, Section 9.4) is built on top of lseek. The call

#include <sys/types.h>

I/O and Process Control System Calls 297

#include <unistd.h>
off t lseek(int fd,

off t offset, int origin) (moves read/write position)

moves the current position associated with the descriptor fd to a byte position
defined by (origin + offset). Table 10.1 shows the three possible origins.

TABLE 10.1: The lseek Origins

Origin Position
SEEK_SET The beginning of a file
SEEK_CUR The current position
SEEK_END The end of a file

The offset can be positive or negative. The call lseek returns the current
position as an integer position measured from the beginning of the file. It
returns -1 upon failure. Several calls are illustrated in Table 10.2.

TABLE 10.2: Use of lseek
Call Meaning

lseek(fd, (off_t)0, SEEK_SET) Puts current pos at first byte.
lseek(fd, (off_t)0, SEEK_END) Moves current pos to end of the file.
lseek(fd, (off_t)-1, SEEK_END) Puts current pos at last byte.
lseek(fd, (off_t)-10, SEEK_CUR) Backs up current pos by 10 bytes.

It is possible to lseek beyond the end of file and then write. This creates
a hole in the file which does not occupy file space. Reading a byte in such a
hole returns zero.

In some applications, holes are left in the file on purpose to allow easy
insertion of additional data later. It is an error to lseek a non-movable
descriptor such as the STDIN_FILENO. See the example code package (Ex:
ex10/lowerseek.c) for an implementation of the lowercase program using
lseek and O_RDWR.

10.4 Operations on Files

System calls are provided for creating and deleting files, accessing file sta-
tus information, obtaining and modifying protection modes, and other at-
tributes of a file. These will be described in the following subsections.

Creating and Deleting a File

For creating a new file, the open system call explained in the previous section
can be used. Alternatively, the system call

298 Mastering Linux

int creat(char *filename, int mode) (creates a new file)

can also be used. If the named file already exists, it is truncated to zero length,
and ready to be rewritten. If it does not exist, then a new directory entry is
made for it, and creat returns a file descriptor for writing this new file. It is
equivalent to

open(filename, (O CREAT|O WRONLY|O TRUNC), mode)

The lower 9 bits of mode (for access protection) are modified by the file creation
mask umask of the process using the formula

(~umask) & mode

The mode is the logical or of any of the basic modes shown in Table 10.3.
The initial umask value of a process is inherited from the parent process

of a running program. We have seen how to set umask using the Bash umask
command (Chapter 2, Section 2.12). The default umask is usually 0022, which
clears the write permission bits for group and other (Chapter 6, Section 6.3).
A program can set umask with the system call

#include <sys/types.h>
#include <sys/stat.h>

mode_t umask(mode_t mask);

The returned value is the old umask. For example,

umask(0077);

will force file modes for newly created files to allow file access only for the
owner. The value of umask is inherited by child processes. After a file is created,
it can be read/written with the read, write calls.

Linking and Renaming Files

For an existing file, alternative names can also be given. The call link

#include <unistd.h>
int link(const char *file, const char *name) (a hard link)
int symlink(const char *file, const char *name) (a symbolic link)

establishes another name (directory entry) for the existing file. The new name
is a hard link and can be anywhere within the same filesystem (Chapter 6,
Section 6.5). To remove a link, the call

int unlink(const char *name) (deletes file link)

I/O and Process Control System Calls 299

is used. When the link removed is the last directory entry pointing to this file,
then the file is deleted.

Use a symbolic link (the symlink system call) for a directory or a file in
a different filesystem.

At the Shell level, renaming a file is done with the mv command. At the
system call level, use

#include <stdio.h>
int rename(const char* old name, const char* new name)

Both filenames must be within the same filesystem. When renaming a direc-
tory, the new name must not be under old name.

Accessing File Status

FIGURE 10.3: File Status Structure

struct stat
{ dev_t st_dev; /* ID containing file */
ino_t st_ino; /* i-number */
mode_t st_mode; /* file mode */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* special file ID */
off_t st_size; /* total bytes */
blksize_t st_blksize; /* filesystem blocksize */
blkcnt_t st_blocks; /* No. of blocks allocated */
time_t st_atime; /* last access time */
time_t st_mtime; /* last modification time */
time_t st_ctime; /* last status change time */

};

For each file, Linux maintains a set of status information such as file type,
protection modes, time when last modified and so on. The status information
is kept in the i-node (Chapter 6, Section 6.5) of a file. To access file status
information from a C program, the following system calls can be used.

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
int stat(const char *file, struct stat *buf) (of file)
int fstat(int fd, struct stat *buf) (of descriptor fd)

300 Mastering Linux

int lstat(const char *link, struct stat *buf) (of the symbolic link)

Note that fstat is the same as stat, except it takes a file descriptor that
has been opened already. This parallel exists for many other system calls. The
lstat is the same as stat, except the former does not follow symbolic links.
The status information for the given file is retrieved and placed in buf. Ac-
cessing status information does not require read, write, or execute permission
for the file, but all directories listed in the pathname leading to the file (for
stat) must be reachable.

The stat structure (Figure 10.3) has many members. Table 10.3 and Ta-
ble 10.4 list the symbolic constants for interpreting the value of the stat
member st_mode.

TABLE 10.3: Basic File Modes
Octal Bit Pattern Symbol Meaning
00400, 00200, 00100 S_IRUSR, S_IWUSR, S_IXUSR r, w, or x by u
00040, 00020, 00010 S_IRGRP, S_IWGRP, S_IXGRP r, w, or x by g
00004, 00002, 00001 S_IROTH, S_IWOTH, S_IXOTH r, w, or x by o
00700, 00070, 00007 S_IRWXU, S_IRWXG, S_IRWXO rwx by u, g, or o

There are three timestamps kept for each file:

• st atime (last access time)—The time when file was last read or mod-
ified. It is affected by the system calls mknod, utimes, read, and
write. For reasons of efficiency, st_atime is not set when a directory is
searched.

• st mtime (last modify time)—The time when file was last modified. It
is not affected by changes of owner, group, link count, or mode. It is
changed by : mknod, utimes, and write.

• st ctime (last status change time)—The time when file status was last
changed. It is set both by writing the file and by changing the infor-
mation contained in the i-node. It is affected by chmod, chown, link,
mknod, unlink, utimes, and write.

The timestamps are stored as integers, and a larger integer value represents
a more recent time. Usually, Linux uses GMT (Greenwich Mean Time). The
integer timestamps, however, represent the number of seconds since a fixed
point in the past, known as the POSIX epoch which is UTC 00:00:00, January
1, 1970. The library routine ctime converts such an integer into an ASCII
string representing date and time.

The mask S_IFMT is useful for determining the file type. For example,

if ((buf.st_mode & S_IFMT) == S_IFDIR)

I/O and Process Control System Calls 301

TABLE 10.4: File Status Constants
Symbol Bit Pattern Meaning
S_IFMT 0170000 File type bit mask
S_IFSOCK 0140000 Socket
S_IFLNK 0120000 Symbolic link
S_IFREG 0100000 Regular file
S_IFBLK 0060000 Block device
S_IFDIR 0040000 Directory
S_IFCHR 0020000 Character device
S_IFIFO 0010000 FIFO
S_ISUID 0004000 Set-UID bit
S_ISGID 0002000 Set-group-ID bit
S_ISVTX 0001000 Sticky bit

determines whether the file is a directory.
As an application, let’s consider a function newer (Ex: ex10/newer.c)

which returns 1 if the last modify time of file1 is more recent than that of
file2 and returns 0 otherwise. Upon failure, newer returns -1.

/******** newer.c ********/
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <stdlib.h>

/* test if file1 is more recent than file2 */
int newer(const char *file1, const char *file2)
{ int mtime(const char *file);

int t1 = mtime(file1), t2 = mtime(file2); /* timestamps */
if (t1 < 0 || t2 < 0) return -1; /* failed */
else if (t1 > t2) return 1;
else return 0;

}

int mtime(const char *file) /* last modify time of file */
{ struct stat stb;

if (stat(file, &stb) < 0) /* result returned in stb */
return -1; /* stat failed */

return stb.st_mtime; /* return timestamp */
}

The stb structure in the function mtime is a return argument supplied to the
stat system call to collect the status information of a file.

The newer function can be used in a main program such as

302 Mastering Linux

int main(int argc, char* argv[])
{ if (argc == 3)

{ if (newer(argv[1], argv[2]))
return EXIT_SUCCESS; /* exit status for yes */

else
return 1; /* exit status for no */

}
else
{ fprintf(stderr, "Usage: %s file1 file2\n", argv[0]);

return -1;
}

}

Note that the correct exit status is returned for logic at the Shell level via the
special variable $? (Chapter 5, Section 5.7).

Determining Allowable File Access

It is possible to determine whether an intended read, write or execute access
to a file is permissible before initiating such an access. The access system call
is defined as

#include <unistd.h>
int access(const char *file, int a mode) (checks access to file)

The access call checks the permission bits of file to see if the intended access
given by a mode is allowable. The intended access mode is a logical or of the
bits R_OK, W_OK, and X_OK defined by

#define R_OK 4 /* test for read permission */
#define W_OK 2 /* test for write permission */
#define X_OK 1 /* test for execute (search) permission */
#define F_OK 0 /* test for presence of file */

If the specified access is allowable, the call returns 0; otherwise, it returns -1.
Specifying a mode as F_OK tests whether the directories leading to the file

can be searched and whether the file exists.

10.5 Operations on Directories

Creating and Removing a Directory

In addition to files, it is also possible to establish and remove directories with
Linux system calls. The system call mkdir creates a new directory.

#include <sys/stat.h>
#include <sys/types.h>
int mkdir(const char *dir, mode t mode) (makes a new folder)

I/O and Process Control System Calls 303

It creates a new directory with the name dir. The mode works the same
way as in the open system call. The new directory’s owner ID is set to the
effective user ID of the process. If the parent directory containing dir has
the set-group-ID bit on, or if the filesystem is mounted with BSD (Berkeley
UNIX) group semantics, the new directory dir will inherit the group ID from
its parent folder. Otherwise, it will get the effective group ID of the process.

The system call rmdir

#include <unistd.h>
int rmdir(const char *dir) (removes a folder)

remove the given directory dir. The directory must be empty (having no
entries other than . and ..). For both mkdir and rmdir, a 0 returned value
indicates success, and a -1 indicates an error. The content of a directory
consists mainly of file names (strings) and i-node numbers (i-number). The
length limit of a simple fime name depends on the filesystem. Typically, simple
file names are limited to a length of 255 characters.

The system call getdents can be used to read the contents of a directory
file into a character array in a system-independent format. However, a more
convenient way to access directory information is to use the directory library
functions discussed in the next section.

10.6 Directory Access

In the Linux file system, a directory contains the names and i-numbers of
files stored in it. Library functions are available for accessing directories. To
use any of them, be sure to include these header files:

#include <sys/types.h>
#include <dirent.h>

To open a directory, use either

DIR *opendir(const char *dir) (opens directory stream)
or
DIR *fdopendir(int fd) (opens directory stream)

to obtain a directory stream pointer (DIR *) for use in subsequent operations.
If the named directory cannot be accessed, or if there is not enough memory
to hold the contents of the directory, a NULL (invalid pointer) is returned.

Once a directory stream is opened, the library function readdir is used to
sequentially access its entries. The function

#include <sys/types.h>
#include <dirent.h>
struct dirent *readdir(DIR *dp) (returns next dir entry from dp)

304 Mastering Linux

returns a pointer to the next directory entry. The pointer value becomes NULL
on error or reaching the end of the directory.

The directory entry structure struct dirent records information for any
single file in a directory.

struct dirent
{ ino_t d_ino; /* i-node number of file */

off_t d_off; /* offset to the next dirent */
unsigned short d_reclen; /* length of this record */
unsigned char d_type; /* file type */
char d_name[256]; /* filename */

};

Each file in a filesystem also has a unique i-node number (Chapter 6, Sec-
tion 6.5). The NAME_MAX constant, usually 255, gives the maxima length of a
directory entry name. The data structure returned by readdir can be over-
written by a subsequent call to readdir.

The function

closedir(DIR *dp) (closes directory stream)

closes the directory stream dp and frees the structure associated with the DIR
pointer.

To illustrate the use of these library functions, let’s look at a function
searchdir (Figure 10.4) which searches dir for a given file and returns 1
or 0 depending on whether the file is found or not (Ex: ex10/searchdir.c).
Note that the example uses knowledge of the dirent structure. Enumeration
constants FOUND and NOT_FOUND are used. The for loop goes through each
entry in dir to find file. Note the logical not (!) in front of strcmp.

Current Working Directory

The library routine

char *get current dir name(void); (obtains current directory)

returns the full pathname of the current working directory. The system call

int chdir(const char *dir) (changes directory)

is used to change the current working directory to the named directory. A
value 0 is returned if chdir is successful; otherwise, a -1 is returned. Because
the current directory is a per-process attribute, you will return to the original
directory after the program exits.

I/O and Process Control System Calls 305

FIGURE 10.4: Searching a Directory

#include <sys/types.h>
#include <sys/dir.h>
#include <string.h>

int searchdir(char *file, char *dir)
{ DIR *dp = opendir(dir); /* dir pointer */

struct dirent *entry; /* dir entry */
enum {NOT_FOUND, FOUND} flag = NOT_FOUND;

/* go through each entry in dir */
for (entry=readdir(dp) ;

entry != NULL ; entry=readdir(dp))
{ if (! strcmp(entry->d_name, file)) flag = FOUND;
}
closedir(dp);
return flag;

}

10.7 An Example: ccp

It is perhaps appropriate to look at a complete example of a Linux com-
mand written in C. The command we shall discuss is ccp (conditional copy),
which is used to copy files from one directory to another (Ex: ex10/ccp.c). A
particular file is copied or not depending on whether updating is necessary. A
version of ccp implemented as a Bash script has been discussed in Chapter 5,
Section 5.20.

The ccp command copies files from a source folder source to a destination
folder dest. The usage is

ccp source dest [file . . .]

The named files or all files (but not directories) are copied from source to dest
subject to the following conditions:

1. If the file is not in dest, copy the file.

2. If the file is already in dest but the file in source is more recent, copy
the file.

3. If the file is already in dest and the file in source is not more recent, do
not copy the file.

306 Mastering Linux

To check if a file is a directory, we call the isDir function (line 1). To com-
pare the recency of two files (line 2), we use the function newer presented in
Section 10.4.

/******** ccp : the conditional copy command ********/
#include <sys/param.h>
#include <stdio.h>
#include <stdlib.h>
#include <dirent.h>
#include <unistd.h>
#include <string.h>
#include <sys/stat.h>
#include "newer.h"

int isDir(const char *file)
{ struct stat stb;

if (stat(file, &stb) < 0) /* result returned in stb */
return -1; /* stat failed */

return ((stb.st_mode & S_IFMT) == S_IFDIR);
}

void ccp(const char* name, const char* d1, const char* d2)
{ char f1[MAXPATHLEN+1], f2[MAXPATHLEN+1];
strcpy(f1,d1); strcpy(f2,d2); strcat(f1,"/");
strcat(f2,"/"); strcat(f1,name); strcat(f2,name);
if (isDir(f1)==0) /* (1) */

if (access(f2,F_OK) == -1 || newer(f1,f2)) /* (2) */
printf("copy(%s,%s)\n", f1, f2);

else
printf("no need to copy(%s,%s)\n", f1, f2);

}

int main(int argc,char* argv[])
{ DIR *dirp1;
struct dirent *dp;
if (argc < 3) /* need at least two args */
{ fprintf(stderr, "%s: wrong number of arguments", argv[0]);

exit(EXIT_FAILURE);
}
else if (argc > 3) /* files specified */
{ int i;

for (i = 3; i < argc; i++)
ccp(argv[i],argv[1],argv[2]) ; /* (3) */

return EXIT_SUCCESS;
}

/* now exactly two args */

I/O and Process Control System Calls 307

if ((dirp1 = opendir(argv[1])) == NULL)
{ fprintf(stderr, "%s: can not open %s", argv[0], argv[1]);

exit(EXIT_FAILURE);
}
for (dp = readdir(dirp1); dp != NULL;

dp = readdir(dirp1)) /* (4) */
if (strncmp(dp->d_name,".", 1))

ccp(dp->d_name,argv[1],argv[2]);
return EXIT_SUCCESS;

}

If files are given on the command line, we call the function ccp on those files
(line 3). Otherwise, we go through all files whose names do not begin with a
period (line 4). To compile we use

gcc ccp.c newer.c -o ccp

10.8 Shell-Level Commands from C Programs

In the ccp.c example, we have not performed any actual file copying. We
simply used printf to indicate the copying actions needed. To carry out the
file copying, it is most convenient to invoke a Shell-level cp command from
within a C program. Allowing execution of Shell-level commands from within
C programs is very useful. With this ability, you can, for example, simply issue
a cp command to copy a file from a C program rather than writing your own
routines. The Linux library call system is used for this purpose.

#include <stdlib.h>
int system(const char *cmd str) /* issues Shell command */

The system call starts a new Sh process to execute the given string cmd_str.
The Shell terminates after executing the given command and system returns.
The returned value represents the exit status of the given command. Thus, to
copy file1 to file2, you can use

char cmd_string[80];
sprintf(cmd_string, "cp %s %s\n", file1, file2);
system(cmd_string);

The string is, of course, interpreted by the Shell before the command is in-
voked. Any substitution and filename expansion will be done. Also, the Shell
locates the executable file (for example, /bin/cp) on the command search
path for you. Use the full pathname of the command if you do not wish to
depend on the PATH setting. The system call waits until the command is
finished before returning.

One shortcoming of the system function is that it does not allow you to
receive the results produced by the command or to provide input to it. This
is remedied by the library function popen (Chapter 11, Section 11.1).

308 Mastering Linux

10.9 Process Control

A key operating system kernel service is process control. A process is a
program under execution, and in a multiprogramming system like Linux, there
will be multiple processes running concurrently at any given time.

We will look at process address space, states, control structures, creation
and termination, executable loading, and inter-process communication here
and in later sections.

Virtual Address Space

When created, each individual process has, among other resources, memory
space allocated for its exclusive use. This memory space is often referred to
as the virtual address space (or simply address space) of a process. The ad-
dress space consists of a kernel space which is the Linux kernel shared by all
processes and a user space which is off limits to other processes. A process
executing in user mode has no access to the kernel space except through sys-
tem calls provided by the kernel. Upon a system call, control is transferred to
a kernel address through a special signal (Chapter 10, Section 10.16) and the
process switches to kernel mode. While in kernel mode, the process has access
to both user space and kernel space. The process switches back to user mode
upon return of the system call.

The process user space is organized into shared, text, data, and stack regions
(Figure 10.5).

FIGURE 10.5: Memory Layout of a Process

Shared

Text

Data

Stack

Kernel

0xffffffff

0x00000000

• Stack—A last-in-first-out data structure used to manage function calls,
returns, parameter passing, and returned values. The memory used for
the stack will grow and shrink with the depth of nesting of function
calls.

• Data—The values of variables, arrays, and structures. Objects allocated
at compile time will occupy fixed memory locations in the data area.
Room for dynamically allocated space (through malloc) is also included
in the data area.

I/O and Process Control System Calls 309

• Text—The machine instructions that represent the procedures or func-
tions in the program. This part of a process will generally stay unchanged
over the lifetime of the process.

• Shared—Code from libraries that is not duplicated when shared with
other processes.

In addition to the address space, each process is also assigned system resources
necessary for the kernel to manage the process.

Process Life Cycle

Each process is represented by an entry in the process table which is manip-
ulated by the kernel to manage all processes. The kernel schedules the CPU
(Central Processing Unit) and switches it from running one process to the
next in rapid succession. Thus, the processes appear to make progress concur-
rently. On a computer with multiple CPUs, a number of processes can actually
run simultaneously or in parallel. A process usually goes through a number of
states before running to completion. Figure 10.6 shows the process life cycle.

FIGURE 10.6: Process Life Cycle

Ready Running Zombie

Waiting/

Blocked

The process states are

• Running—The process is executing.

• Waiting/Blocked—A process in this state is waiting for an event to occur.
Such an event could be an I/O completion by a peripheral device, the
termination of another process, the availability of data or space in a
buffer, the freeing of a system resource, and so on. When a running
process has to wait for such an event, it is blocked and waiting to be
unblocked so it can continue to execute. A process blocking creates an
opportunity for a context switch, shifting the CPU to another process.
Later, when the event a blocked process is waiting for occurs, it awakens
and becomes ready to run.

• Ready—A process in this state is then scheduled for CPU service.

310 Mastering Linux

• Zombie—After termination of execution, a process goes into the zombie
state. The process no longer exists. The data structure left behind con-
tains its exit status and any timing statistics collected. This is always
the last state of a process.

A process may go through the intermediate states many times before it is
finished.

From a programming point of view, a Linux process is the entity created by
the fork system call (Section 10.11). In the beginning, when Linux is booted
there is only one process (process 0) which uses the fork system call to create
process 1, known as the init process. The init process is the ancestor of all
other processes, including your login Shell. Process 0 then becomes the virtual
memory swapper.

10.10 The Process Table

A system-wide process table is maintained in the Linux kernel to control
all processes. There is one table entry for each existing process. Each process
entry contains all key information needed to manage the process, such as PID
(a unique integer process ID), UID (real and effective owner and group ID’s
of user executing this process), process status, and generally information dis-
played by the ps command. Linux provides a directory under /proc/ for each
existing process, making it easy to access information on individual processes
from the Shell level.

The ps Command

You can also obtain various kinds of information on processes with the com-
mand

ps (displays process status)

Because Linux is a multi-user system and because there are many system pro-
cesses that perform various chores to keep Linux functioning, there are always
multiple processes running at any given time. The ps command attempts to
display a reasonable set of processes that are likely to be of interest to you,
and you can give options to control what subset of processes are displayed.

The ps command displays information only for your processes. Give the
option -a display all interesting processes. Also, ps displays in short form
unless given the option -f to see a full-format listing. For example,

ps -af

displays, in full format, all interesting processes. Use the option -e (or -A)
to display all current processes, including daemon processes (those without a

I/O and Process Control System Calls 311

control terminal such as the cron process). See the ps man page for quite a
few other options.

Information provided for each process includes

PID—The process ID in integer form
PPID—The parent process ID in integer form
S—The single-letter state code from the ps man page
STIME or START—The process start time
TIME—CPU time (in seconds) used by the process
TT—Control terminal of the process
COMMAND—The user command which started this process

When you are looking for a particular process, the pipe

ps -e | grep string

can be handy.

FIGURE 10.7: Process Creation

pid
returns

child

Parent
returns

0

Parent
fork()

fork()
fork()

Child

10.11 Process Creation: fork

The fork system call is used inside a C program to create another process.

#include <sys/types.h>
#include <unistd.h>
pid t fork();

The process which calls fork is referred to as the parent process, and the
newly created process is known as the child process. After the fork call, the
child and the parent run concurrently.

The child process created is a copy of the parent process except for the
following:

• The child process has a unique PID.

• The child process has a different PPID (PID of its parent).

312 Mastering Linux

The fork is called by the parent, but returns in both the parent and the
child (Figure 10.7). In the parent, it returns the PID of the child process,
whereas in the child, it returns 0. If fork fails, no child process is created, and
it returns -1. Here is a template for using fork.

pit_t pid;
if ((pid = fork()) == 0)
{

/* put code for child here */
}
if (pid < 0)
{

/* fork failed, put error handling here */
}
/* fork successful, put remaining code for parent here */

The following simple program (Ex: ex10/simplefork.c) serves to illustrate
process creation, concurrent execution, and the relationships between the child
and the parent across the fork call.

/******** simplefork.c ********/
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

int main()
{ pid_t child_id;

child_id = fork(); /* process creation (1) */
if (child_id == 0) /* child code begin (2) */
{ printf("Child: My pid = %d and my parent pid = %d\n",

getpid(), getppid());
_exit(EXIT_SUCCESS); /* child terminates (3) */

} /* child code end */
if (child_id < 0) /* remaining parent code */
{ fprintf(stderr, "fork failed\n");

exit(EXIT_FAILURE);
}
printf("Parent: My pid = %d, spawned child pid = %d\n",

getpid(), child_id);
return EXIT_SUCCESS;

}

After calling fork (line 1), you suddenly have two processes, the parent and the
child, executing the same program starting at the point where fork returns.

The child and parent execute different code sections in our example because
of the way the program is written. The child only executes the part under

I/O and Process Control System Calls 313

if (child_id==0) (line 2). At the end of the child code (line 3), it must
terminate execution. Otherwise, the child would continue into the code meant
only for the parent. The exit system call is slightly different from library
function exit and is explained in Section 10.14. Note also that a process can
use the system calls getpid() and getppid() to obtain the process ID of
itself and its parent, respectively. The above program produces the following
output.

Child: My pid = 19603 and my parent pid = 19602
Parent: My pid = 19602, spawned child pid = 19603

To further illustrate the use of fork, we can write a program where the parent
and child run concurrently (Ex: ex10/concurrent.c). The child computes
the partial sums, and the parent calculates the partial products, of an array
of integers.

/******** concurrent.c ********/
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#define DIM 8

int main()
{ pid_t pid;

int i, ans, arr[DIM]={1,2,3,4,5,6,7,8};
pid = fork();
if (pid == 0) /* child code begin */
{ ans = 0;

for (i = 0 ; i < DIM ; i++)
{ ans = ans + arr[i];

printf("Child: sum = %d\n", ans);
sleep(1); /* 1 sec delay */

}
_exit(EXIT_SUCCESS);

} /* child code end */
if (pid < 0)
{ fprintf(stderr, "fork failed\n");

return EXIT_FAILURE;
}
ans = 1;
for (i = 0 ; i < DIM ; i++)
{ ans = ans * arr[i];

printf("Parent: product = %d\n", ans);
sleep(2); /* 2 sec delay */

}

314 Mastering Linux

return EXIT_SUCCESS;
}

Both parent and child have access to their own copies of the array arr, the
variable ans, and so on. The fact that both processes are assigning values
to ans concurrently does not matter because the programs are running in
different address spaces. The child delays 1 second after each output line, but
the parent delays 2 seconds, giving each other a chance to grab the CPU and
run.

Here is one possible set of output by this program.

Child: sum = 1
Parent: product = 1
Child: sum = 3
Child: sum = 6
Parent: product = 2
Child: sum = 10
Parent: product = 6
Child: sum = 15
Child: sum = 21
Parent: product = 24
Child: sum = 28
Child: sum = 36
Parent: product = 120
Parent: product = 720
Parent: product = 5040
Parent: product = 40320

Depending on the relative speed of execution and other system load factors,
the output lines from the parent and the child can be interleaved in a different
way.

10.12 Program Execution: exec Routines

A process can load and execute another program by overlaying itself with
an executable file. The target executable file is read in on top of the address
space of the very process that is executing, overwriting it in memory, and
execution continues at the entry point defined in the file. The result is that
the process begins to execute a new program under the same execution envi-
ronment as the old program, which is now replaced.

This program overlay can be initiated by any one of the exec library func-
tions, including execl, execv, execve, and several others, each a variation of
the basic execv library function.

#include <unistd.h>
extern char **environ;

I/O and Process Control System Calls 315

int execv(const char *filename, char *const argv[]);

where filename is the full pathname of an executable file, and argv is the
command-line arguments, with argv[0] being command name.

This execv call overlays the calling process with a new executable pro-
gram. If execv returns, an error has occurred. In this case the value returned
is -1. The argument argv is an array of character pointers to null-terminated
character strings. These strings constitute the argument list to be made avail-
able to the new process. By convention, at least one argument must be present
in this array, and the first element of this array should be the name of the exe-
cuted program (i.e., the last component of filename). To the calling program,
a successful execv never returns.

Other exec functions may take different arguments but will work the same
way as execv. To avoid confusion, we will refer to all of them as an exec call.

An exec call is often combined with fork to produce a new process which
runs another program.

1. Process A (the parent process) calls fork to produce a child process B.

2. Process B immediately makes an exec call to run a new program.

An exec call transforms the calling process to run a new program. The new
program is loaded from the given filename which must be an executable file.
An executable file is either a binary a.out. or an executable text file containing
commands for an interpreter. An executable text file begins with a line of the
form

#! interpreter

When the named file is an executable text file, the system runs the specified
interpreter, giving it the named file as the first argument followed by the rest
of the original arguments. For example, a Bash script may begin with the line

#!/bin/bash

and an Sh script with

#!/bin/sh

As for an executable binary, Linux has adopted the standard ELF (Exe-
cutable and Linking Format) which basically provides better support for the
linking and dynamical loading of shared libraries as compared to the old UNIX
a.out format. The command

readelf -h a.out

displays the header section of the executable a.out. Do a

man 5 elf

316 Mastering Linux

to read more about the ELF file format.
The following attributes stay the same after an exec call:

• Process ID, parent process ID, and process group ID

• Process owner ID, unless for a set-userid program

• Access groups, unless for a set-groupid program

• Working directory and root directory

• Session ID and control terminal

• Resource usages

• Interval timers

• Resource limits

• File mode mask (umask)

• Signal mask

• Environment variable values

Furthermore, descriptors which are open in the calling process usually remain
open in the new process. Ignored signals remain ignored across an exec, but
signals that are caught are reset to their default values. Signal handling will
be discussed in Section 10.16.

Example: A Simple Shell

As an example, let’s write a program that is a very simple Shell (Ex:
ex10/myshell.c) performing the following tasks:

1. Displaying a prompt

2. Reading a command line from the terminal

3. Starting a background process to execute the command

4. Displaying another prompt and going back to step 1

This cycle is implemented by the main program:

/******** myshell.c ********/
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#define MAXLINE 80

I/O and Process Control System Calls 317

int main()
{ char cmd[MAXLINE];

void background(char *cmd);
for (;;)
{ printf("mysh ready%%"); /* Displays prompt */

fgets(cmd, MAXLINE, stdin); /* Reads command */
if (strcmp(cmd,"exit\n") == 0)

return EXIT_SUCCESS;
background(cmd); /* Starts background job */

}
return EXIT_FAILURE; /* Exits abnormally */

}

The function background prepares the argv array and starts a child process,
which then calls execv to perform the given cmd while background returns
in the parent process.

#define WHITE "\t \n"
#define MAXARG 20

void background(char *cmd)
{ char *argv[MAXARG];

int id, i = 0;
/* To fill in argv */
argv[i++] = strtok(cmd, WHITE);
while (i < MAXARG &&

(argv[i++] = strtok(NULL, WHITE)) != NULL);
if ((id = fork()) == 0) /* Child executes background job */
{ execv(argv[0], argv);

_exit(EXIT_FAILURE); /* execv failed */
}
else if (id < 0)
{ fprintf(stderr, "fork failed\n");

perror("background:");
}

}

After the program is compiled and named mysh, run it and enter a command
string as follows:

mysh
mysh ready% /bin/ls -l

The directory listing produced this way should match the one obtained in your
usual Shell. In fact, virtually any Linux command executed with full pathname
will behave the same. Type ctrl-d or the keyboard interrupt character to
quit from the mysh program.

318 Mastering Linux

The execl routine is a convenient alternative to execv when the filename
and the arguments are known and can be given specifically. The general form
is

int execl(const char *name, const char *arg0, ..., const char
*argn, NULL)

For example,

execl("/bin/ls","ls","-l",NULL);

Since fork copies the entire parent process, it is wasteful when used in
conjunction with an exec call to create a new execution context. In a virtual
memory system, the system call

int pid; pid = vfork();

should be used in conjunction with an exec call. Unlike fork, vfork avoids
much of the copying of the address space of the parent process and is there-
fore much more efficient. However, don’t use vfork unless it is immediately
followed by an exec call.

10.13 Synchronization of Parent and Child Processes

After creating a child process by fork, the parent process may run inde-
pendently or elect to wait for the child process to terminate before proceeding
further. The system call

#include <sys/types.h>
#include <sys/wait.h>
pid t wait(int *t status);

searches for a terminated child (in zombie state) of the calling process. It
performs the following steps:

1. If there are no child processes, wait returns right away with the value
-1 (an error).

2. If one or more child processes are in the zombie state (terminated) al-
ready, wait selects an arbitrary zombie child, frees its process table slot
for reuse, stores its termination status (Section 10.14) in *t_status if
t_status is not NULL, and returns its process ID.

3. Otherwise, wait sleeps until one of the child processes terminates and
then goes to step 2.

When wait returns after the termination of a child, the variable (*t status)
is set, and it contains information about how the process terminated (normal,
error, signal, etc.) You can examine the value of *t_status with predefined
macros such as

I/O and Process Control System Calls 319

WIFEXITED(*t_status) (returns true if child exited normally)
WEXITSTATUS(*t_status) (returns the exit status of child)

See man 2 wait for other macros and for additional forms of wait.
A parent process can control the execution of a child process much more

closely by using the ptrace (process trace) system call. This system call is
primarily used for interactive breakpoint debugging such as that supported by
the gdb command (Chapter 9, Section 9.8). When the child process is traced
by its parent, the waitpid system call is used, which returns when the specific
child is stopped (suspended temporarily).

Let’s look at a simple example of the fork and wait system calls (Ex:
ex10/wait.c). Here the parent process calls fork twice and produces two
child processes. Each child simply displays its own process ID and terminates.
The parent process calls wait twice to wait for the termination of the two child
processes. After each wait, the process ID and the wait status are displayed.

/******** wait.c ********/
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{ pid_t pid1, pid2, pid;

int status;
if ((pid1 = fork()) == 0) /* child one */
{ printf("child pid=%d\n", getpid());

_exit(EXIT_SUCCESS);
}
printf("forking again\n");
if ((pid2 = fork()) == 0) /* child two */
{ printf("child pid=%d\n", getpid());

_exit(EXIT_FAILURE);
}
printf("first wait\n");
pid = wait(&status);
printf("pid=%d, status=%d\n", pid, WEXITSTATUS(status));
printf("2nd wait\n");
pid = wait(&status);
printf("pid=%d, status=%d\n", pid, WEXITSTATUS(status));
return EXIT_SUCCESS;

}

Note that the second child in this example returns an exit status 1 on purpose.

320 Mastering Linux

10.14 Process Termination

Every running program eventually comes to an end. A process may termi-
nate execution in three different ways:

1. The program runs to completion and the function main returns.

2. The program calls the library routine exit or the system call exit.

3. The program encounters an execution error or receives an interrupt sig-
nal, causing its premature termination.

The argument to exit/exit is the process exit status and is part of the
termination status of the process. Conventionally, a zero exit status indicates
normal termination and non-zero indicates abnormal termination. The system
call

void exit(int status)

terminates the calling process with the following consequences:

1. All of the open I/O descriptors in the process are now closed.

2. If the parent process of the terminating process is executing a wait, then
it is notified of the termination and provided with the child termination
status.

3. If the terminating process has child processes yet unfinished, the PPIDs
of all existing children are set to 1 (the init process). Thus, the new
orphan processes are adopted by the init process.

Most C programs call the library routine exit which performs clean-up actions
on I/O buffers before calling exit. The exit system call is used by a child
process to avoid possible interference with I/O buffers shared by parent and
child processes.

10.15 The User Environment of a Process

The parameters argc and argv of a C program reference the explicit ar-
guments given on the command line. Every time a process begins, another
array of strings, representing the user environment, called the environment
list, is also passed to the process. This provides another way through which
to control the behavior of a process. If the function main is declared as

int main(int argc, char* argv[], char* arge[])

then arge receives additional values for the environment list which is always
available for a process in the global array environ:

I/O and Process Control System Calls 321

extern char **environ

Each environment string is in the form

name=value

Although direct access to environ is possible in a C program, it is simpler
to access environment values in a C program with the library routine getenv:

#include <stdlib.h>
char* getenv(const char* name)

This routine searches the environment list for a string, of the form name=value,
that matches the given name and returns a pointer to value or NULL if no match
for name is found.

With getenv we can write a simple test program (Ex: ex10/envtest.c).

/******** envtest.c ********/
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char* argv[], char* arge[])
{ char *s;

s = getenv("PATH");
printf("PATH=%s\n", s);
return EXIT_SUCCESS;

}

You can set environment values at the Shell level. With Bash, a variable is
exported to the environment as shown in Chapter 2, Section 2.10. Environment
variables and their values are contained in the environment list. Frequently
used environment variables include PATH, HOME, TERM, USER, SHELL, DISPLAY,
and so on (Chapter 2, Section 2.10).

In Bash, we can also pass additional environmental values to any single
command by simply listing them before the command. For example,

gcc envtest.c -o envtest
foo=bar/envtest

At the C level, the execl and execv library calls pass to the invoked
program their current environment. The system call

#include <unistd.h>
int execve(const char *file, char *const argv[], char *const
envp[]);

can be used to pass an environment array envp containing additional environ-
mental values to the new program (Ex: ex10/execve.c).

322 Mastering Linux

/* passing environment with execve */
#include <unistd.h>
#include <stdlib.h>
char* envp[3];

int main(int argc, char* argv[])
{ envp[0]="first=foo";

envp[1]="second=bar";
envp[2]=NULL;
execve("target-program", argv, envp);
exit(EXIT_FAILURE); /* execve failed */

}

Example: Command Search

The which command

which cmdname ...

locates the given command names (or aliases) on the command search path
defined by the environment variable PATH (Chapter 2, Section 2.10). It displays
the full pathname of each command when located or an error message. To
illustrate the use of system and library calls further, a simplified version of
the which command is implemented here.

The program mywhich that follows is the same as the which command,
except it takes only one command and no aliases (Ex: ex10/mywhich.c). The
appropriate header files are included at the beginning:

/* File: mywhich.c
* Usage: mywhich cmdname
*/
#include <stdio.h>
#include <sys/param.h> /* for MAXPATHLEN */
#include <unistd.h> /* for access */
#include <string.h> /* for strncpy */
#include <stdlib.h> /* for getenv */

int has_command(char* name, char* dir)
{ int ans=-1;

char wd[MAXPATHLEN+1];
getcwd(wd, MAXPATHLEN+1); /* 1 */
if (chdir(dir)==0) /* 2 */
{ ans = access(name, F_OK | X_OK); /* 3 */

chdir(wd); /* 4 */
}
return ans==0;

}

I/O and Process Control System Calls 323

Before changing, the current working directory is saved (line 1). Note that
getcwd is a library function and not a system call. If the directory is accessible
(line 2), the existence of an executable file, not directory, is tested (line 3).
The working directory is restored (line 4). The function has_command returns
1 if the command is found; otherwise, it returns 0 .

The main program extracts individual directories on the environment vari-
able PATH and calls has_command to locate the given command:

int main(int argc, char* argv[])
{ char* path=getenv("PATH"); /* 5 */

char dir[MAXPATHLEN+1];
int dir_len;
char* pt=path;
while (dir_len=strcspn(path, ":")) /* 6 */
{ strncpy(dir, path, dir_len); /* 7 */

dir[dir_len]=’\0’; /* 8 */
if (has_command(argv[1],dir))
{ printf("%s/%s\n", dir, argv[1]);

return EXIT_SUCCESS;
}
path += dir_len+1; /* 9 */

}
printf("%s not found on\n%s\n", argv[1], pt);
return EXIT_FAILURE;

}

The main program initializes path with the value of the environment variable
PATH (line 5). The first directory on path is copied as a string into the variable
dir (line 6-8) and is used in a call to has_command. If the command is not
found in this directory, path is advanced to the next directory (line 9) and
the iteration continues.

10.16 Interrupts and Signals

Basic Concepts

We already know that a program executes as an independent process. Yet,
events outside a process can affect its execution. The moment when such
an event would occur is not predictable. Thus, they are called asynchronous
events. Examples of such events include I/O blocking, I/O ready, keyboard
and mouse events, expiration of a time slice, as well as interrupts issued inter-
actively by the user. Asynchronous events are treated in Linux using the signal
mechanism. Linux sends a certain signal to a process to signify the occurrence
of a particular event. After receiving a signal, a process will react to it in a
well-defined manner. This action is referred to as the signal disposition. For

324 Mastering Linux

example, the process may be terminated or suspended for later resumption.
There is a system-defined default disposition associated with each signal. A
process normally reacts to a signal by following the default action. However,
a program also has the ability to redefine its disposition to any signal by
specifying its own handling routine for the signal.

TABLE 10.5: Some Linux Signals

Symbol Default action Meaning
SIGHUP Terminate Hangup (for example, terminal window closed)
SIGINT Terminate Interrupt (for example, ctrl+c from keyboard)
SIGQUIT Core dump Quit (for example, ctrl+\ from keyboard)
SIGILL Core dump Illegal instruction
SIGTRAP Core dump Trace/breakpoint trap
SIGABRT Terminate Abort (abort())
SIGBUS Core dump Memory bus error
SIGFPE Core dump Floating point exception
SIGKILL Terminate Force terminate
SIGSEGV Core dump Invalid memory reference
SIGALRM Terminate Time signal (alarm())
SIGPROF Terminate Profiling timer alarm
SIGSYS Core dump Bad argument to system call
SIGCONT Resume Continue if stopped
SIGSTOP Suspend Suspends process
SIGTSTP Suspend Stop (for example, ctrl+z) from terminal

There are many different signals. For instance, typing ctrl+\ on the
keyboard usually generates a signal known as quit. Sending the quit signal to
a process makes it terminate and produces a core image file for debugging.
Each kind of signal has a unique integer number, a symbolic name, and a
default action defined by Linux. Table 10.5 shows some of the many signals
Linux handles. A complete list of all signals can be found with man 7 signal.

Sending Signals

You may send signals to processes connected to your terminal window by
typing certain control characters such as ctrl+\, ctrl+c, and ctrl+z
typed at the Shell level. These signals and their effects are summarized below.

ctrl+c SIGINT terminates execution of foreground process
ctrl+\ SIGQUIT terminates foreground process and dumps core
ctrl+z SIGTSTP suspends foreground process for later resumption

In addition to these special characters, you can use the Shell-level command
kill to send a specific signal to a given process. The general form of the kill
command is

I/O and Process Control System Calls 325

kill [−sig no] process

where process is a process number (or Shell jobid). The optional argument
specifies a signal number sig no. If no signal is specified, SIGTERM is assumed
which causes the target process to terminate. Recall that we used kill in
Chapter 2, Section 2.6 where we discussed job control.

In a C program, the standard library function

int raise(int sig_no) (sends sig_no to the process itself)

is used by a process to send the signal sig_no to itself, and the system call

int kill(pid_t pid, int sig_no) (sends sig_no to process pid)

is used to send a specified signal to a process identified by the given numerical
pid.

Signal Delivery and Processing

When a signal is sent to a process, the signal is added to a set of signals pending
delivery to that process. Signals are delivered to a process in a manner similar
to hardware interrupts. If the signal is not currently blocked (temporarily
ignored) by the process, it is delivered to the process by the following steps:

1. Block further occurrences of the same signal during the delivery and
handling of this occurrence.

2. Temporarily suspend the execution of the process and call the handler
function associated with this signal.

3. If the handler function returns, then unblock the signal and resume
normal execution of the process from the point of interrupt.

There is a default handler function for each signal. The default action is usually
exiting or core dump (Table 10.5). A process can replace a signal handler with
a handler function of its own. This allows the process to trap a signal and deal
with it in its own way. The SIGKILL and SIGSTOP signals, however, cannot be
trapped.

Signal Trapping

After receiving a signal, a process normally (by the default signal handling
function) either exits (terminated) or stops (suspended). In some situations,
it is desirable to react to specific signals differently. For instance, a process
may ignore the signal, delete temporary files before terminating, or handle the
situation with a longjmp.

The system call sigaction is used to trap or catch signals.

326 Mastering Linux

#include <signal.h>
int sigaction(int signum,

const struct sigaction *new,
struct sigaction *old);

where signum is the number or name of a signal to trap. The new (old)
structure contains the new (old) handler function and other settings. The
handling action for signum is now specified by new, and the old action is
placed in old, if it is not NULL, for possible later reinstatment.

The struct sigaction can be found with man 2 sigaction, but you
basically can use it in the following way:

struct sigaction new;
new.sa handler=handler function;
new.sa_flags=0;

The handler function can be a routine you write or one that is defined by the
system. If handler function is SIG_IGN, the signal is subsequently ignored. If
it is SIG_DFL, then the default action is restored. The new handler normally
remains until changed by another call to sigaction. Default actions of some
signals are indicated in Table 10.5. The sa_flags control the behavior of the
signal handling. For example, sa_flags=SA_RESETHAND automatically resets
to the default handler after the new signal handler is called once.

We now give a simple example that uses the sigaction system call to trap
the SIGINT (interrupt from terminal) signal and adds one to a counter for
each such signal received (Ex: ex10/sigcountaction.c). To terminate the
program type ctrl+\ or use kill -9.

#include <signal.h>
#include <stdio.h>

void cnt(int sig)
{ static int count=0;

printf("Interrupt=%d, count=%d\n", sig, ++count);
}

int main()
{ struct sigaction new;

struct sigaction old;
new.sa_handler=cnt;
new.sa_flags=0;
sigaction(SIGINT, &new, &old);
printf("Begin counting INTERRUPTs\n");
for(;;); /* infinite loop */

}

If the signal handler function, such as cnt here, is defined to take an int

I/O and Process Control System Calls 327

argument (for example, sig), then it will automatically be called with the
signal number that caused a trap to this function. Of course, counting the
number of signals received is of limited application. A more practical example,
cleanup.c, has to do with closing and deleting a temporary file used by a
process before terminating due to a user interrupt (Ex: ex10/cleanup.c).

#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
FILE *tempfile=NULL;
char filename[32];

void onintr()
{ extern FILE* tempfile;

if (tempfile != NULL)
{ printf("closing and deleting %s\n", filename);

fclose(tempfile); unlink(filename);
}
exit(EXIT_FAILURE);

}

/* Installs onintr() handler, if SIGINT is not being ignored */
void sigtrap(int sig)
{ struct sigaction new;

struct sigaction old;
new.sa_handler=SIG_IGN;
new.sa_flags=0;
sigaction(SIGINT, &new, &old);
if (old.sa_handler != SIG_IGN)
{ new.sa_handler=onintr;

sigaction(sig, &new, &old);
}

}

int main()
{ extern char filename[32];

extern FILE* tempfile;
sigtrap(SIGINT); /* trap SIGINT */
sprintf(filename, "/tmp/%d", getpid()); /* temp file name */
/* open temporary stream for reading and writing */
tempfile = fopen(filename, "w+");
/* other code of the program */
for(;;) sleep(3);
/* remove temporary file before termination */
fclose(tempfile); unlink(filename);
return EXIT_SUCCESS;

328 Mastering Linux

}

In this example, trapping of SIGINT is done only if it is not being ignored.
If a process runs with its signal environment already set to ignore certain
signals, then those signals should continue to be ignored instead of trapped.
For example, the Sh arranges a background process to ignore SIGINT generated
from the keyboard. If a process proceeds to trap SIGINT without checking to
see if it is being ignored, the arrangement made by the Shell would be defeated.

Furthermore, as with interactive utilities such as the vi editor, it is of-
ten desirable to use the keyboard interrupt to abort to the top level within
a program. This can be easily done by combining signal trapping with the
longjmp mechanism (Chapter 9, Section 9.7).

Generally, when the signal handler function returns or when a process
resumes after being stopped by ctrl+z (SIGTTSP), a process resumes at the
exact point at which it was interrupted. For interrupted system calls, the
external errno is set to EINTR, and the system call returns -1. If interrupted
while reading input from the keyboard, a process may lose a partially typed
line just before the interrupt.

10.17 For More Information

For a list of Linux system calls, see the HTML version of the man page for
syscall, which is a system call used to make all system calls. You can find the
man page from the resources page on the book’s companion website. The
example code package for this book has an example (Ex: ex10/sysopen.c)
demonstrating how to use syscall.

The POSIX standard documentation can be purchased from IEEE.

10.18 Summary

All open I/O channels are represented by I/O descriptors. With I/O de-
scriptors, the Linux kernel treats file, device, and inter-process I/O uniformly.
This uniformity provides great flexibility and ease in I/O programming. For
I/O, a C program may use the low-level system calls or the higher level stan-
dard I/O library routines. I/O descriptors are identified by small integers.
Three pre-opened descriptors 0, 1, and 2 give each process access to the stan-
dard input, output, and error output, respectively.

In addition to a complete set of file manipulation calls, Linux also offers
a set of library functions for accessing directories. File- and directory-related
system calls are summarized in Table 10.6.

Linux supports multiprogramming. Processes are created with fork, ter-
minated with exit, overlaid with another executable program with exec,
and synchronized with wait. Interrupt signals can be sent from one process

I/O and Process Control System Calls 329

TABLE 10.6: File and Directory System Calls
Call Action

int open(const char *file,int a,mode t mode) Returns descriptor to file

ssize t read(int fd,void *b,size t k) Reads up to k bytes into b

ssize t write(int fd,const void *b,size t k) Writes k bytes from b to fd

int close(int fd) Closes descriptor fd

off t lseek(int fd,off t offset,int pos) Moves r/w position of fd
int access(const char *name,int a mode) Tests access permission
int chdir(const char *dir name) Changes working directory
int link(const char *file,const char *name) Creates link
int unlink(const char *name) Removes link
int mkdir(const char *name,mode t mode) Creates new directory
int rmdir(const char *dir name) Removes directory
int stat(const char *name,struct stat *buf) Accesses file status
int fstat(int fd,struct stat *buf) Accesses file status
mode t umask(mode t newmask) Sets file permission mask

to another by kill and trapped by sigaction. The *environ[] array contains
string-valued environment variables for a process which can be consulted with
getenv.

10.19 Exercises

1. What is the difference between a file descriptor and a C file stream?
Please explain.

2. Explain the effect of the umask values 077 and 022.

3. Do cat /proc/sys/fs/file-max to see the limit on the maximum num-
ber of open files for your system.

4. The Linux command pwd displays the current working directory. Write
your own version of this command.

5. Write a Linux command testaccess that takes an access flag (-r, -w,
and so on) and a filename as command-line arguments and returns an
exit status of 0 or 1 depending on whether the specified access is per-
mitted or not.

6. Write a Linux command rmold that takes a date string and removes all
files older than the given date in the current directory. If the command is
invoked with the -i flag, then the program will go into interactive mode
and asks the user at the terminal for approval before actually deleting
a file.

330 Mastering Linux

7. Write your own version of a simple cp program (file to file) using low-
level I/O.

8. Write a program which will print out the information given by the stat
system call for each file given as its argument.

9. How is a child process produced? How does a parent process obtain the
PID of a child process? How does a child obtain the PID of its parent?
How does the parent process learn about the termination of a child
process?

10. What is the difference between the C exit() function and the exit()
system call? Where should each be used?

11. Consider the simple Shell in Section 10.12. Add a wait call to the pro-
gram so that the Shell waits until the child process has finished before
displaying the next prompt.

12. Modify the simple Shell in the previous exercise so that it uses the
command search path.

13. Write your own version of the system library call.

14. Write a program that prints the value of the environment variables PATH,
HOME, USER, and TERM and other variables specified as arguments on the
command line.

15. Write a program nls which is similar to the ls command but which, by
default, displays regular files and directories separately.

16. Write a program, using a mixture of C and Shell commands if you wish,
to provide a facility which takes a C source program as input and gener-
ates a list of correctly formatted include statements for system header
files.

17. Linux provides the flock system call to aid the management of mutually
exclusive operations. Find out how this works and how it is used to
achieve mutual exclusion.

18. The Linux system calls semctl, semget, and semop support
semaphores. Find out how semaphores work and how they can be used
to achieve mutual exclusion.

Chapter 11

Inter-process and Network
Communication

The many applications discussed in Chapter 7 clearly illustrate the conve-
nience and the enormous potential networking can bring. Here we will describe
how to write C programs for networking and illustrate how some of the Linux
networking commands are actually implemented.

As mentioned before, a networking application usually involves a client
process and a server process, residing on different hosts or on the same host.
At the C program level, networking simply means communication between
such independent processes.

We consider two types of inter-process communication (ipc): ipc between
related processes and ipc between unrelated processes. For processes related by
fork, ipc can be arranged with I/O redirection and the pipe system call. Be-
tween unrelated processes, ipc is usually performed through the socket mech-
anism.

A processes communicates through its own socket with another socket
attached to a different process. Sockets belong to different address families,
and only sockets within the same address family can communicate with one
another. Within the same address family, different types of sockets support
different networking protocols. Familiarity with sockets is essential to network
programming. The topic is presented in detail, and many code examples help
illustrate how clients and servers work together.

11.1 Opening a Process for I/O

In the previous two chapters, we became familiar with I/O to/from files
using either C streams or Linux kernel file descriptors, but I/O between pro-
cesses is not very different. The simplest ipc involves a parent process and a
child process. The parent initiates the child to run some program and sends
input to or receives output from the child. The Standard C Library function
popen

#include <stdio.h>
FILE *popen(const char *cmd string, char *mode)

creates a child process to execute

331

332 Mastering Linux

sh -c cmd string

and establishes a read or write stream (FILE *) to the child. The stream
established is either for reading the standard output or writing the standard
input of the given command, depending on whether mode is "r" or "w".

Once opened, the stream can be used with any of the Standard C I/O
Library functions. Finally, the stream created by popen can be shut down by

int pclose(FILE *stream)

As an application of popen, let’s write a simple program that is a version
of ls, but lists only the names of subdirectories in a given directory (Ex:
ex11/lsdir.c):

/******** lsdir.c ********/
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[])
{ int i, count, total = 0;

size_t len=1024;
char* line=malloc(len);
if (argc > 1) chdir(argv[1]);
/* reads output of ls cmd */
FILE *in = popen("/bin/ls -ldF *\n", "r");
while(getline(&line, &len, in) > 0)
{ /* reads one line of input */

/* if a dir, displays line */
if (line[0] == ’d’) printf(line);

}
pclose(in); /* closes stream */
free(line) ;
return EXIT_SUCCESS;

}

The program uses the Linux command ls with the option -ldF to list the
current working directory. The output is read, one line at a time, using the
standard library function getline. If a line begins with the character d (a
directory), then it is displayed by the parent process. Otherwise, we ignore
the line and move on to the next. Here is a sample output.

drwx------ 2 pwang faculty 4096 2009-08-07 16:49 Art/
drwx------ 2 pwang faculty 4096 2009-08-08 20:31 ex/
drwx------ 2 pwang faculty 4096 2009-08-07 16:49 info/

The popen function relies on the basic pipe mechanism which is our next
topic.

Inter-process and Network Communication 333

11.2 IPC with pipe

A pipe is a direct (in memory) I/O channel between processes. It is often
used together with the system calls fork, exec, wait, and exit to make
multiple processes cooperate and perform parts of the same task. A pipe is a
flexible tool to arrange ipc among fork-related processes.

At the Shell level, you can connect commands into a pipeline. The pipe
can be thought of as a first-in-first-out character buffer (Figure 11.1) with
a read descriptor pointing to one end and a write descriptor pointing to the
other end. To create a pipe, the system call

#include <unistd.h>
int pipe(int fildes[2])

is used which establishes a buffer and two descriptors:

fildes[0] (for reading the pipe)
fildes[1] (for writing the pipe)

FIGURE 11.1: Pipe between Processes

Parent Hl elo Child

The pipe system call is used in conjunction with subsequent fork calls to
establish multiple processes having access to the same pipe, thereby allowing
them to communicate directly (Figure 11.2).

FIGURE 11.2: Pipe after fork()

Parent Child

Write End

Read End

P
ip
e

The pipe call returns 0 for success or -1 for failure. Consider the following
piece of code:

int fildes[2];
pipe(fildes); /* setting up the pipe */
if (fork() == 0)
{ close(fildes[1]); /* child will read fildes[0] */

.

.

.

334 Mastering Linux

_exit(0);
}
close(fildes[0]); /* parent will write fildes[1] */

After the fork, both parent and child have their copies of fildes[0] and
fildes[1] referring to the same pipe buffer. The child closes its write de-
scriptor and the parent closes its read descriptor because they are not needed
in this case. Now the child process can read what the parent writes into the
pipe.

To perform I/O through a pipe, you use the read and write system calls
on the pipe file descriptors. The call read removes characters from the buffer,
whereas write adds them. The capacity of the pipe buffer is usually 4096
characters, but the buffer size is system dependent. Writing into a full pipe
buffer causes the process to be blocked until more space is available in the
buffer. Reading more characters than there are in the buffer results in one of
the following:

1. Returning end-of-file (0) if the buffer is empty and the write end of the
pipe has been closed

2. Returning what is left in the pipe if the buffer is not empty and the
write end of the pipe has been closed

3. Blocking the reading process to await the arrival of additional characters
if at least one file descriptor to the write end of the pipe remains open

The example (Ex: ex11/p2cpipe.c) below shows a parent process writing
the message "Hello there, from me." to a child process through a pipe
(Figure 11.1).

/******** p2cpipe.c ********/
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/wait.h>

int main(int argc, char *argv[])
{ int p[2];

int i, status;
pid_t pid;
char buffer[20];
pipe(p); /* setting up the pipe */
if ((pid = fork()) == 0)

/* in child */
{ close(p[1]); /* child closes p[1] */

while ((i = read(p[0], buffer, 6)) != 0)

Inter-process and Network Communication 335

{ buffer[i] = ’\0’; /* string terminator */
printf("%d chars %s received by child\n", i, buffer);

}
_exit(EXIT_SUCCESS); /* child terminates */

}
/* in parent */
close(p[0]); /* parent writes p[1] */
write(p[1], "Hello there,", sizeof("Hello there,")-1);
write(p[1], " from me.", sizeof(" from me.")-1);
close(p[1]); /* finished writing p[1] */
while (wait(&status)!=pid); /* waiting for pid */
if (status == 0) printf("child finished\n");
else printf("child failed\n");
return EXIT_SUCCESS;

}

After the fork, both parent and child have the file descriptors p[0] and p[1].
In order to establish the parent as the sender and the child as the receiver
of characters through the pipe, the child closes its own p[1] and the parent
closes its own p[0]. The parent process writes to the pipe "Hello there"
and " from me." in two separate write calls and closes its write descriptor
(p[1]). In the meantime, the child reads the pipe and displays what it gets,
six characters at a time (just to show multiple read operations). The following
output is produced by this program:

6 chars :Hello : received by child
6 chars :there,: received by child
6 chars : from : received by child
3 chars :me.: received by child
child finished

By closing its p[1], the parent causes the pipe’s write end to be completely
closed—no processes can write to the pipe any more. This condition causes the
final successful read in the child process to return with the last 3 characters.
The next read by the child returns 0, indicating end of file.

Pipe between Two Commands

Now let’s show how a Shell may establish a pipe between two arbitrary pro-
grams by combining pipe, fork, and exec.

A command mypipeline takes as arguments two command strings sepa-
rated by a %. It sends the standard output of the first command to the standard
input of the second command. Thus,

mypipeline /bin/ls -l % /bin/grep pwang

should work as expected (same as ls -l | grep pwang). Of course, we shall

336 Mastering Linux

use a pipe between the two processes; one executing the first command and
the other the second. The key in this example is connecting stdout in the
first process to the write end of the pipe and connecting stdin in the second
process to the read end of the pipe. This can be accomplished by the dup2
system call (Figure 11.3).

FIGURE 11.3: Pipe and I/O Redirection

Hl elo

1

p[1] p[0]

0

dup2() dup2()

Child 1 Child 2

int dup2(int fd, int copyfd)

Dup2 duplicates an existing I/O descriptor, fd, which is a small non-
negative integer index in the per-process descriptor table. The duplicate entry
is made in the descriptor table at an entry specified by the index copyfd. If the
descriptor copyfd is already in use, it is first deallocated as if a close(copyfd)
had been done first. The value returned is copyfd if the call succeeded; oth-
erwise, the error value returned is -1.

After dup2, both fd and copyfd reference the same I/O channel. In the
following program (Ex: ex11/mypipeline.c), dup2 is used to identify de-
scriptor 1 (in child one) with the write end of a pipe and descriptor 0 (in child
two) with the read end of the same pipe.

/******** mypipeline.c ********/
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[])
{ int p[2];

int i,pid1,pid2, status;
argv++; /* lose argv[0] */
for (i = 1; i <= argc ; i++)

if (strcmp(argv[i],"%") == 0)
{ argv[i] = ’\0’; /* break into two commands */

break;
}

pipe(p); /* setting up the pipe */
if ((pid2 = fork ()) == 0) /* child one */

Inter-process and Network Communication 337

{ close(p[0]);
dup2(p[1],1); /* 1 becomes a duplicate of p[1] */
close(p[1]);
execv(argv[0],argv); /* this writes the pipe */
_exit(EXIT_FAILURE); /* bad error execv failed */

}
if ((pid1 = fork ()) == 0) /* child two */
{ close(p[1]);

dup2(p[0],0); /* 0 becomes a duplicate of p[0] */
close(p[0]);
execv(argv[i+1], &argv[i+1]); /* this reads the pipe */
_exit(EXIT_FAILURE); /* bad error execl failed */

}
/* parent does not use pipe */
close(p[0]); close(p[1]);
while (wait(&status)!=pid2); /* waiting for pid2 */
if (status == 0) printf("child two terminated\n");

else printf("child two failed\n");
return EXIT_SUCCESS;

}

Because open I/O descriptors are unchanged after an exec call, the re-
spective programs in the two stages of the pipeline execute as usual, reading
standard input and writing standard output, not knowing that these descrip-
tors have been diverted to a pipe. The same principles are used by the Shell
to establish a pipeline.

After compilation into mypipeline, we can run the command

./mypipeline /bin/ls -l % /bin/fgrep ’.c’

and it should be entirely equivalent to

ls -l | fgrep ’.c’

11.3 Connecting a File Descriptor to a File Stream

The dup2 system call redirects I/O at the file descriptor level. At the file
stream level, we have seen (Chapter 9, Section 9.4) the Standard C Library
function freopen, which reconnects an existing file stream to another file.

In addition to these two mechanisms, there is also the standard library
function fdopen, which establishes a stream that connects to an existing file
descriptor.

FILE * fdopen(int fd, char *mode)

338 Mastering Linux

The function fdopen establishes a file stream with the given file descriptor
fd. The mode must be compatible with that of the descriptor fd.

The fdopen call is useful when converting an fd into a stream for use
with Standard C I/O Library functions. For instance, a pipe descriptor can
be connected to a stream in this way.

11.4 Two-Way Pipe Connections

As an application, let’s see how a parent process can pass some input to a
child process and then receive the results produced. To the parent, the child
process simply produces a well-defined result based on the input given. The
desired ipc can be achieved by establishing a two-way pipe, an outgoing and
an incoming pipe, between the parent and child processes (Figure 11.4).

FIGURE 11.4: A Two-Way Pipe

Parent Child
Out Pipe

In Pipe

The outgoing pipe is used by the parent to send input to the child and
the incoming pipe is used to receive results returned by the child. The func-
tion pipe_2way (Ex: ex11/pipe2way.c) is defined for this purpose. Given
the command strings cmd, pipe_2way will establish a process to run the com-
mand and return the quantities piped[0] and piped[1], the read end of the
incoming pipe and the write end of the outgoing pipe, respectively.

int pipe_2way(char *cmd[], int piped[])
{ int pid, wt[2], rd[2];

pipe(rd); /* incoming pipe: read by parent */
pipe(wt); /* outgoing pipe: write to child */
if ((pid=vfork()) == 0)

/* in child */
{ close(wt[1]);
dup2(wt[0],0); /* 0 identified with wt[0] */
close(wt[0]); close(rd[0]);
dup2(rd[1], 1); /* 1 identified with rd[1] */
close(rd[1]);
execv(cmd[0],cmd); /* execute given command */
perror("execv failed"); /* normally not reached */
_exit(EXIT_FAILURE);

}
/* in parent */
close(wt[0]); piped[1] = wt[1];

Inter-process and Network Communication 339

close(rd[1]); piped[0] = rd[0];
return 0;

}

The return parameter, piped, is filled with the two proper descriptors before
the function returns. To test pipe_2way, let’s write a program that sends
characters to the command lowercase and receives the transformed string
back. The latter is performed by the readl function

int readl(int fd, char s[], int size)
{ char *tmp = s;

while (0 < --size && read(fd, tmp, 1)!=0 && *tmp++ !=’\n’);
tmp = ’\0’; / string terminator */
return(tmp - s);

}

Now the main program to test pipe_2way is

/******** pipe2way.c ********/
/* headers, readl, and pipe_2way functions */
#define SIZE 256

int main()
{ int pd[2];

char *str[2];
char test_string[] = "IPC WITH TWO-WAY PIPE.\n";
char buf[SIZE];
char *tmp = buf;
str[0] = "./lowercase";
str[1] = NULL;
pipe_2way(str, pd);
/* write to lowercase process */
write(pd[1], test_string, strlen(test_string));
readl(pd[0], buf, SIZE); /* read lowercase process */
printf("Received from lowercase process:\n%s", buf);
return EXIT_SUCCESS;

}

If you compile and run this program,

gcc lowercase.c -o lowercase
gcc pipe2way.c
./a.out

you’ll see the display

Received from lowercase process:
ipc with two-way pipe.

340 Mastering Linux

11.5 Network Communication

Inter-process communication so far works for processes related by fork.
Extending ipc to unrelated processes executing on different hosts achieves
true networking. For network communication, independent processes must be
able to initiate and/or accept communication requests in an asynchronous
manner, whether the communicating processes are on the same computer or
on different hosts in a network. The standard Linux ipc today was first intro-
duced by Berkeley UNIX in the 1980s. The scheme is centered on the socket
mechanism and supports the Internet protocols well. Its wide use contributed
to the explosive growth of the Internet.

Linux ipc provides access to a set of communication domains characterized
by their protocol family. Important ipc domains are

1. The Local domain uses the Linux socket-type file and the pipe mecha-
nism for communication between processes within the local Linux sys-
tem.

2. The Internet domains IPv4 and IPv6 use the corresponding Internet
protocols for local-remote communications.

Other domains, for example, the ATMPVC domain (Asynchronous Transfer
Mode Permanent Virtual Connection), exist.

The ipc communication domains are characterized by such properties as
addressing scheme, protocols, and underlying communications facilities. The
central mechanism is the socket. A socket is an endpoint of communication
within a specific communication domain. A socket may be assigned a name
(that is, an address) that allows others to refer to it. A process communicates
(exchanges data) through its own socket with another socket in the same
domain, belonging to a different process. Thus, communication is conducted
through a pair of cooperating sockets, each known as the peer of the other. In
the Local domain, sockets are named with file system pathnames, for example,
/tmp/soc. In the Internet domain, a socket address is more complicated. It
consists of an address family, an IP address, and a transport layer port number.
In the same domain, different types of sockets use different communications
protocols. Processes communicate through sockets of the same type.

Processes connected by sockets can be on very different computers that
may use different data representations. For example, an int is 32 bits on some
systems but 64 bits on others. Even when the data sizes agree, systems may
still use either the high or the low byte to store the most significant part of a
number. In this heterogeneous environment, data are sent and received, at the
socket level, as a sequence of bytes. Thus, a sequence of ASCII characters can
usually be sent and received directly through sockets. Other types of data need
to be serialized into a sequence of bytes before sending and to be deserialized
from a byte sequence into the local data type at the receiving end.

Inter-process and Network Communication 341

Client and Server

As stated in Chapter 7, a network service usually involves a server and a
client. A server process provides a specific service accessible through the net-
work communications mechanism. A client process provides user access to a
particular network service. A well-defined set of conventions must exist to gov-
ern how services are located, requested, accepted, delivered, and terminated.
This set of conventions comprises a protocol that must be followed by both
server and client.

Most Internet services use protocols sitting on top of the basic transport
layer protocol TCP/IP or UDP/IP. For example, HTTP (the Web protocol)
sits on top of TCP. Internet domain sockets support TCP and UDP.

11.6 Sockets

A socket is an abstraction that serves as an endpoint of communication
within a networking domain. A program accesses ipc through the socket. In
other words, the socket is the ipc mechanism’s interface to application pro-
grams. Each socket potentially can exchange data with any other socket within
the same domain. Each socket is assigned a type property. Different types of
sockets use different protocols. The following types of sockets are generally
supported:

• stream socket—Supports the bidirectional, reliable, sequenced, and
unduplicated flow of data without record boundaries. When put to use, a
stream socket is connected to another stream socket, and the connected
pair forms a two-way pipe across the network. Each socket in the pair is
called the peer of the other. Aside from the bidirectionality of data flow,
a pair of connected stream sockets provides an interface nearly identical
to that of a pipe. Within the Local domain, a pair of connected sockets
is used to implement a pipe. Stream sockets in the Internet domain use
the Transmission Control Protocol (TCP/IP).

• datagram socket—Provides bidirectional flow of data packets called mes-
sages. The communications channel is not promised to be sequenced,
reliable, or unduplicated. That is, a process receiving messages on a
datagram socket may find messages duplicated and, possibly, not in
the order in which they were sent. A datagram socket does not have
to be connected to a peer. A message is sent to a datagram socket by
specifying its address. Datagram sockets closely model the facilities of
packet-switched networks. Datagram sockets in the Internet domain use
the User Datagram Protocol (UDP/IP).

• raw socket—Gives access to the underlying communication protocols
that support socket abstractions. These sockets are normally datagram

342 Mastering Linux

oriented, although their exact characteristics are dependent on the in-
terface provided by the protocol. Raw sockets are not intended for the
general user, but for those interested in developing new communication
protocols or for gaining access to esoteric facilities of an existing proto-
col. Raw sockets in the Internet domain give direct access to the Internet
Protocol (IP).

The domains and standard socket types are defined in the header file
<sys/socket.h>. Some defined constants for sockets are given in Table 11.1.

TABLE 11.1: Socket Constants
Symbol Meaning

PF_UNIX, PF_LOCAL Local domain
PF_INET IPv4 domain
PF_INET6 IPv6 domain

SOCK_STREAM Stream socket type
SOCK_DGRAM Datagram socket type
SOCK_SEQPACKET Sequenced two-way datagram type
SOCK_RAW Raw socket type

Creating Sockets

The socket system call

#include <sys/types.h>
#include <sys/socket.h>
int socket(int domain, int type, int protocol)

is used to create a socket of the indicated type in the given domain. It returns
a descriptor that is used to reference the socket in other socket operations.
Defined constants (Table 11.1) are used to specify the arguments. If the proto-
col is left unspecified (with a 0 value), an appropriate protocol in the domain
that supports the requested socket type will be selected by the system. For
example,

s = socket(PF_LOCAL, SOCK_DGRAM, 0);

creates a datagram socket for use within the Local domain supported by UDP,
whereas the call

s = socket(PF_INET, SOCK_STREAM, 0);

creates an Internet stream socket supported by TCP.

Inter-process and Network Communication 343

Socket Address

Typically, a process that provides a specific network service first creates a
socket in an appropriate domain and of the appropriate type. Then an address
is assigned to the socket so that other processes can refer to it. The socket
address is important because a client process must specify the address of a
socket to send a message or make a connection. Therefore,

1. A server process must assign its socket an address and make it known
to all potential clients.

2. A client process must be able to obtain the correct socket address of any
server on any host.

Linux supports many different networking protocols and address families. Here
we will focus on local ipc and the Internet.

Local and Internet Socket Addresses

A local socket address is just a pathname for a socket-type file in the local file
system. An Internet socket address combines a host IP address (Chapter 7,
Section 7.16) and a transport layer port number. Standard network services
are assigned the same port numbers on each host. The file /etc/services
contains a list of services and their port numbers. It lists one line for each
service with four fields:

• An official name of the service

• A unique transport layer port number

• The protocol to use

• Any aliases (other names for the service)

For example, the entry

ssh 22/tcp

specifies that the Secure Shell service is at port 22 and uses the TCP protocol.
Sixteen bits (two bytes) are used for representing a port number. Standard

ports (below 1024) are privileged and their access restricted to widely used
server programs with the right privilege. Port numbers 1024 and higher are re-
ferred to as non-privileged ports and are used for other applications. For socket
programs written by regular users, we need to find a port that is not privileged
and not used by other well-known services as listed in /etc/services. The
Shell level command

/sbin/sysctl net.ipv4.ip_local_port_range

344 Mastering Linux

FIGURE 11.5: Local Domain Socket Address Structure

#define UNIX_PATH_MAX 108
struct sockaddr_un
{ sa_family_t sun_family; /* AF_LOCAL */

char sun_path[UNIX_PATH_MAX]; /* pathname */
};

displays local port numbers that you can use in socket programming exercises.

Data structures used for socket addresses are

• In the Local domain, a socket address is stored in a sockaddr_un struc-
ture usually defined in <sys/un.h> (Figure 11.5).

• In the Internet domain, a socket address is declared by the sockaddr_in
structure contained in <netinet/in.h> (Figure 11.6).

FIGURE 11.6: Internet Socket Address Structure

struct sockaddr_in
{ sa_family_t sin_family; /* AF_INET */

in_port_t sin_port; /* port no. */
struct in_addr sin_addr; /* IPv4 address */
char sin_zero[8];

};

In practice, Internet socket addresses are often used in very specific ways.

• A client must construct a destination socket address to be used ei-
ther in making a connection (connect()) to the server or in sending
(sendto()) and receiving (recvfrom()) datagrams without making a
connection. Here is a typical code sequence (minus error checking) for
building an Internet destination socket address.

1. struct sockaddr_in d—Creates socket addr structure d

2. memset(&d, 0, sizeof(d))—Zeros out the structure

Inter-process and Network Communication 345

3. d.sin_family = AF_INET—Sets IP address family

4. struct hostent* hep=gethostbyname(host)—Obtains host en-
try structure

5. memcpy(&d.sin_addr, hep->h_addr, hep->h_length)—Copies IP
address into d

6. d.sin_port=getservbyname(service,transport)->s_port—Sets
standard port number

The IP address of a target host is usually obtained by consulting the
domain name server (Chapter 7, Section 7.16) via the gethostby-
name call. The standard service port is retrieved with the getservby-
name call (Section 11.11). To use a non-standard port, set sin_port to
htons(port number).

• A server, on the other hand, must construct a service socket address
and bind it to a socket for the server to receive incoming connections or
datagrams. The typical code sequence for building an Internet service
socket address is

1. struct sockaddr_in s—Creates Internet socket addr structure s

2. memset(&s, 0, sizeof(s))—Zeros out the structure

3. s.sin_family = AF_INET—Sets IP address family

4. s.sin_port=getservbyname(service,transport)->s_port—Sets
port to standard port number

5. s.sin_addr.s_addr = INADDR_ANY—Sets server addr to any local
host IP address

The constant INADDR_ANY gets you the IP address of the local host.

To bind a socket address to a socket, the system call

bind(int soc, struct sockaddr *addr, int addrlen)

is used, where soc is a socket descriptor, addr is a pointer to the ap-
propriate address structure, and addrlen is the size of the address. The
parameter addr can receive pointers of type struct sockaddr_un * or
struct sockaddr_in *.

Let’s look at an example demonstrating Internet stream socket usage in a
client program.

346 Mastering Linux

11.7 A TCP Echo Client

The standard Internet echo service is useful in testing sockets. The echo
server can receive messages from any client connected to it and then sends
that same message back to where it came from. The echo service normally
uses TCP and port number 7.

The program tcp_echo.c is a client program that connects to the echo
server on any particular host and sends it a message. You might say that this
is our Hello World example of socket programming. The program is used in
the following way:

gcc tcp_echo.c -o tcpEcho
./tcpEcho host "Any Message"

The program starts with the necessary header files and a helper function
for exiting on error (Ex: ex11/tcp echo).

/******** tcp_echo.c ********/
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#define B_SIZE 1024

void Quit(const char *err)
{ perror(err);

exit(EXIT_FAILURE);
}

The main program first checks for correct command-line arguments and de-
clares variables.

int main(int argc, char* argv[])
{ if (argc != 3)

{ fprintf(stderr, "Usage: %s host \"message\"\n", argv[0]);
exit(EXIT_FAILURE);

}
int soc; /* socket descriptor */
char buf[B_SIZE];
struct sockaddr_in cl; /* client socket addr (local) */
memset(&cl, 0, sizeof(cl));
struct sockaddr_in sr; /* server socket addr (remote) */

Then, it fills each field in the server socket address structure sr by first ze-
roing out the structure (line A), assigning the address family (AF_INET for
IPv4, line B), finding and setting the standard port number (line C) via the

Inter-process and Network Communication 347

getservbyname library call, and copying the host Internet address obtained
by gethostbyname (line D) into the sin_addr field of the socket address
structure (line E). See Section 11.11 for information on the library calls.

memset(&sr, 0, sizeof(sr)); /* (A) */
sr.sin_family=AF_INET; /* (B) */
sr.sin_port=getservbyname("echo","tcp")->s_port; /* (C) */
hostent *hp = gethostbyname(argv[1]); /* (D) */
if (hp == NULL)
{ sprintf(buf, "%s: %s unknown host\n", argv[0], argv[1]);

Quit(buf);
}
memcpy(&sr.sin_addr, hp->h_addr, hp->h_length); /* (E) */

With the target remote server address completed, the program can now create
a local client-side socket (line F) in the PF_INET protocol family using the TCP
protocol and connect (line G) it to the server socket identified by the socket
address sr which was just filled in (lines A-E).

/* creates socket */
if ((soc=socket(PF_INET, SOCK_STREAM, /* (F) */

IPPROTO_TCP)) < 0)
{ Quit("Problem creating socket"); }

/* requests connection to server */
if (connect(soc, (struct sockaddr*)&sr, /* (G) */

sizeof(sr)) == -1)
{ close(soc);

Quit("client:connect\n");
}

FIGURE 11.7: TCP/IP Socket Connection

TCP/IP

read

write read

write

Server Client

Connection

Socket Socket

After successful connection of the local socket to the server socket, the program
can begin to read/write the local socket as a file descriptor (lines H and I).
Data written to the socket gets sent to the remote socket, and data sent by
the remote socket can be read from the local socket. Because we are connected
to the standard echo service, the program should read back whatever it had
sent on to the server in the first place.

348 Mastering Linux

write(soc, argv[2], strlen(argv[2])); /* (H) */
read(soc, buf, sizeof(buf)); /* (I) */
printf("SERVER ECHOED: %s\n", buf);
close(soc); return EXIT_SUCCESS;

}

We can use this program to access the echo service on an actual host.

./tcpEcho monkey.cs.kent.edu "Here is looking at you, kid."
SERVER ECHOED: Here is looking at you, kid.

Refer to the example code package for the complete tcp_echo.c Internet
client program.

11.8 Using Datagram Sockets

To further illustrate socket communication, let’s look at a simple example
involving a sender process and a receiver process using Internet datagram
sockets. The receiver is a server ready and waiting to receive datagrams from
any sender client on the Internet (Figure 11.8).

FIGURE 11.8: Datagram Socket Communication

Socket Socket

recvfrom sendto

UDP/IP

Server/Receiver Client/Sender

The receiver first creates a blank sender socket address. Then it builds its
own socket address self (line a) using port 8080 (line b) and the IP address
of the server host (INADDR_ANY line c). To run this server yourself, please
find a usable UDP port on your host and modify line b accordingly (Ex:
ex11/ireceiver.c).

/******** ireceiver.c ********/
/** Same headers and Quit() helper function **/
#define B_SIZE 1024

int main()
{ struct sockaddr_in sender;

memset(&sender, 0, sizeof(sender));
struct sockaddr_in self; /* (a) */
memset(&self, 0, sizeof(self));

Inter-process and Network Communication 349

self.sin_family=AF_INET;
self.sin_port=htons(8080); /* (b) */
self.sin_addr.s_addr = htonl(INADDR_ANY); /* (c) */

Now we can create a socket to receive datagrams (line d) and bind the address
self to it (line e).

soc = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP); /* (d) */
n = bind(soc, (struct sockaddr *)&self, /* (e) */

sizeof(self));
if (n < 0) Quit("bind failed\n");

In a loop, the receiver calls recvfrom (line f and Section 11.9) to wait for the
next incoming datagram. When it arrives, the message is received in buf, and
the sender socket address is stored in the sender structure. The recvfrom call
blocks until an incoming message is received. It returns the actual length of
the message or a negative number if something goes wrong. In case the buffer
space is too small for the incoming message, the rest of the message may be
discarded by recvfrom. To use it as a string, we place a string terminator at
the end of the message received (line g).

int soc, n, len=0;
char buf[B_SIZE], client[INET_ADDRSTRLEN];
while(1)
{ n = recvfrom(soc, buf, sizeof(buf)-1, /* (f) */

0, (struct sockaddr *)&sender, &len);
if (n < 0)
{ close(soc);

Quit("recvfrom failed\n");
}
buf[n] = ’\0’; /* (g) */
inet_ntop(AF_INET, &(sender.sin_addr), /* (h) */

client, INET_ADDRSTRLEN);
printf("Received from %d %s %d chars= %s\n", /* (i) */

sender.sin_addr, client, --n, buf);
if (strncmp(buf, "Stop", 4)==0) break; /* (j) */

}
close(soc);
return EXIT_SUCCESS;

}

In this receiver example, we used the inet ntop library function to convert the
sender IP address to a quad notation string in the character buffer client
(line h). The receiver displays the information received to standard output
(line i). In our example, if the message received starts with “Stop”, the re-
ceiver will terminate execution (line j).

We can compile and run the receiver on a selected server host, say,

350 Mastering Linux

dragon.cs.kent.edu, and experiment with it by sending messages to it using
the nc command (Chapter 7, Section 7.19):

gcc ireceiver.c -o ireceiver (on dragon)
./ireceiver

nc -u dragon.cs.kent.edu 8080 (on any other host)
Here is a test message.
Here is another test message.
Stop
ctrl+c

The display by the receiver looks like

Received from 1141709121 65.25.13.68 23
chars= Here is a test message.

As another experiment, we can write a client program (isender.c) that
uses the sendto call (Section 11.9) to send datagrams to the receiver. Make
sure the receiver is running, on dragon, say, and then experiment with the
sender as follows.

gcc isender.c -o isender
./isender dragon.cs.kent.edu 8080

Let’s look at the program isender.c (Ex: ex11/isender.c).

/******** isender.c ********/
/** headers and the Quit() helper functions **/

int main(int argc, char* argv[])
{ if (argc != 3)

{ fprintf(stderr, "Usage: %s host port\n", argv[0]);
exit(EXIT_FAILURE);

}
char buf[] = "Hello there, it is me.";
char end[] = "Stop.";
struct sockaddr_in receiver;
memset(&receiver, 0, sizeof(receiver)); /* (1) */
receiver.sin_family=AF_INET; /* (2) */
receiver.sin_port=htons(atoi(argv[2])); /* (3) */
struct hostent *hp = gethostbyname(argv[1]);
if (hp == NULL)
{ sprintf(buf, "%s: %s unknown host\n", argv[0], argv[1]);

Quit(buf);
}
memcpy(&receiver.sin_addr, hp->h_addr, /* (4) */

hp->h_length);

Inter-process and Network Communication 351

After checking the command-line arguments, the server socket address struc-
ture receiver is built (lines 1-4).

An Internet datagaram socket is created (line 5) and used to send the
message in buf to the receiver socket address (line 6).

int soc = socket(PF_INET, SOCK_DGRAM, 0); /* (5) */
int n = sendto(soc, buf, strlen(buf), 0, /* (6) */

(struct sockaddr *)&receiver,
sizeof(receiver));

if (n < 0) { Quit("sendto failed"); }
printf("Sender: %d chars sent!\n", n);
n = sendto(soc, end, strlen(end), 0,

(struct sockaddr *)&receiver,
sizeof(receiver));

close(soc);
return EXIT_SUCCESS;

}

11.9 Socket I/O System Calls

For connected sockets, the basic read and write calls can be used for
sending and receiving data:

read(soc, buffer, sizeof(buffer));
write(soc, buffer, sizeof(buffer));

Each process reads and writes its own socket, resulting in a bidirectional data
flow between the connected peers. The socket I/O calls

recv(soc, buffer, sizeof(buffer), opt);
send(soc, buffer, sizeof(buffer), opt);

are exclusively for stream sockets. If the argument opt is zero, then they are
the same as the write and read. If opt has the MSG_PEEK bit turned on, then
recv returns data without removing it so a later recv or read will return the
same data previously previewed.

The sendto and recvfrom system calls send and receive messages on
sockets, respectively. They work with any type of socket, but are normally
used with datagram sockets.

int sendto(int soc, char *buf, int k, int opt,
struct sockaddr *to, int tosize)

sends, via the socket soc, k bytes from the buffer buf to a receiving socket
specified by the address to. The size of to is also given. The to is a
pointer to any valid socket address, in particular, struct sockaddr_un or
struct sockaddr_in. Most current implementations of struct sockaddr

352 Mastering Linux

limit the length of the active address to 14 bytes. The opt parameter specifies
different options for sendto/recvfrom and works just like the opt argument
for send/recv. The sendto call returns the number of bytes sent or -1 to
indicate an error.

On the receiving end, the call

int recvfrom(int soc, char *buf, int bufsize, int opt,
struct sockaddr *from, int *fromsize)

receives, into the given buffer buf of size bufsize, a message coming from
another socket. If no messages are available, the call waits unless the socket
is non-blocking (set via the fcntl system call). The peer’s address structure is
returned in *from and its size in *fromsize. The argument from is a result
parameter that is filled with the address of the sending socket. The fromsize
is a value-result parameter; it initially should contain the amount of space in
*from. On return, *fromsize contains the actual size (in bytes) of the address
*from. The number of bytes received is the return value of recvfrom.

Shutting Down Sockets

The close system call can, of course, be used on a socket descriptor:

int close(int soc)

The read and write halves of a socket can also be independently closed with
the shutdown system call.

int shutdown(int soc, int flag)

closes the read portion if flag is 0, the write portion if flag is 1, and both
the read and the write if flag is 2. When shutdown is combined with the
socketpair call, which creates two connected sockets in the Local domain,
the pipe system call can be emulated exactly.

11.10 TCP-Based Servers

We have seen in Section 11.7 a TCP client that accesses the standard Echo
service.

TCP-based servers use stream sockets. A stream socket is connected with
its peer to form a two-way pipe between a client and a server. A client process
uses its socket to initiate a connection to a socket of a server process, and a
server process arranges to listen for connection requests and accepts a connec-
tion. After a connection is made, data communication can take place using the
read, write, recv, and send I/O system calls. Figure 11.7 illustrates server
and client stream socket connections.

A server process binds a published address to a socket. To initiate a con-
nection, a client process needs to

Inter-process and Network Communication 353

1. Find the correct address of the desired server socket.

2. Initiate a connection to the server socket.

as we have seen in Section 11.7.

Accepting a Connection

A server process with a stream socket takes the following steps to get ready
to accept a connection:

1. Creates a socket in the appropriate domain of type SOCK_STREAM.

2. Constructs the correct server socket address, and binds it to the socket.

3. Indicates a willingness to accept connection requests by executing the
listen system call.

4. Uses the accept call to wait for a connection request from any client
and to establish a connection (Figure 11.9).

FIGURE 11.9: Stream Socket Connections

The call

int listen(int soc, int n)

initializes the socket soc for receiving incoming connection requests and sets
the maximum number of pending connections to n. After the listen call, the
accept call

int accept(int soc, struct sockaddr *addr, socklen t *addrlen)

accepts connections on the stream socket soc on which a listen has been exe-
cuted. If there are pending connections, accept extracts the first connection
request on the queue, creates a new socket (say, ns) with the same proper-
ties as soc, connects the new socket with the requesting peer, and returns
the descriptor of this new socket. The connection listening socket soc remains
ready to receive connection requests. If no pending connections are present on
the queue and the socket is not marked as non-blocking (say, with the fcntl

354 Mastering Linux

system call), accept blocks until a connection request arrives. If the socket is
marked as non-blocking and no pending connections are present on the queue,
accept will return an error instead of blocking.

The accepted socket, ns, is used to communicate with its peer and may not
be used to accept additional connections. The argument addr is filled with the
address of the connected peer. Again, the addrlen is a value-result parameter.

An Example TCP/IP Server

Let’s look at an example server (Ex: ex11/inetserver.c) that uses TCP/IP
and forks child processes to take care of clients while the parent process con-
tinues to monitor incoming connection requests.

The program begins by checking command-line arguments and preparing
the peer and self socket address structures (lines up to I).

int main(int argc, char* argv[])
{ if (argc != 2)

{ fprintf(stderr, "Usage: %s port \n", argv[0]);
exit(EXIT_FAILURE);

}
int soc, ns;
struct sockaddr_in peer;
int peer_len=sizeof(peer);
memset(&peer, 0, sizeof(peer));
peer.sin_family=AF_INET;
struct sockaddr_in self;
memset(&self, 0, sizeof(self));
self.sin_family=AF_INET;
self.sin_addr.s_addr = htonl(INADDR_ANY);
self.sin_port=htons(atoi(argv[1])); /* (I) */

/* set up listening socket soc */
if ((soc=socket(PF_INET, SOCK_STREAM, 0)) < 0)
{ Quit("server:socket"); }
if (bind(soc, (struct sockaddr*)&self, sizeof(self)) == -1)
{ close(soc); Quit("server:bind"); } /* (II) */
listen(soc, 1); /* (III) */

/* accept connection request */
int pid;
while ((ns = accept(soc, (struct sockaddr*) /* (IV) */

&peer, &peer_len)) >= 0)
{ if ((pid=fork()) == 0) /* (V) */

action(ns, &peer);
}
close(soc);
Quit("server:accept");

}

Inter-process and Network Communication 355

After creating the server socket soc and binding the local address to it
(line II), we begin listening (line III) and accepting incoming connections
(line IV) on soc.

When accept returns, we fork a child process to perform the service
(line V), defined entirely by the action function. The parent calls accept
again for the next connection.

The action function repeatedly reads the incoming data, echos it back,
and displays the data received (line VI). When the child is done, it calls exit
(line VII).

/* Performs service */
int action(int ns, struct sockaddr_in* peer)
{ int k;

char buf[256];
char* client[INET_ADDRSTRLEN];
inet_ntop(AF_INET, &(peer->sin_addr),

client, INET_ADDRSTRLEN);
while ((k=read(ns, buf, sizeof(buf)-1)) > 0) /* (VI) */
{ buf[k]=’\0’;

printf("SERVER id=%d RECEIVED FROM %s: %s\n",
getpid(), client, buf);

write(ns, buf, k);
}
printf("Child %d Done.\n", getpid());
close(ns);
_exit(EXIT_SUCCESS); /* (VII) */

}

Run this program, say, on port 4900, by

gcc inetserver.c -o myecho
./myecho 4900

and connect to it with

nc localhost 4900
nc host 4900

The example code package contains the complete inetserver.c program.

11.11 Network Library Routines

Linus provides a set of standard routines in the Internet networking library
to support network address mapping. These routines, with the help of the DNS
and data files such as /etc/services and /etc/hosts, return C structures
containing the needed information. Routines are provided for mapping domain

356 Mastering Linux

names to IP addresses, service names to port numbers and protocols, network
names to network numbers, and so on. We have seen some use of these already.
Now we will describe these routines in more detail.

The header file <netdb.h> must be included in any file that uses these
networking library routines. For instance, the library function

#include <netdb.h>
struct hostent *?gethostbyname(const char *host)

consults the DNS and returns a pointer to a hostent structure for the host
as follows:

struct hostent
{ char *h_name; /* official name of host */

char **h_aliases; /* aliases */
int h_addrtype; /* address type: PF_INET */
int h_length; /* length of address */
char **h_addr_list; /* IP addresses (from name server) */

};

A NULL pointer is returned for error. The host argument can be given either
as a domain name or as an IP address. In the latter case, no DNS query is
necessary.

For example, to obtain the IP address of a host with the name
monkey.cs.kent.edu., use

struct hostent *hp;
hp = gethostbyname("monkey.cs.kent.edu.");

and the numerical IP address is in

hp->h_addr_list[0] /* IP address */

which can be copied into the sin_addr field of a sockaddr_in structure for
a target socket. If a partial domain name such as monkey is given, then it is
interpreted relative to the Local domain. The IP address is stored as bytes
in network byte order: byte 0 is the most significant and byte 4 is the least
significant. This order is commonly known as big endian. The network byte
order may or may not be the same as the host byte order used to store longs,
ints, and shorts on a particular computer system. There are big endian and
little endian CPUs. The library routine htonl (htons) is used to transform
an unsigned int (unsigned short) from host to network order. The routine
ntohl (ntohs) does the opposite.

To determine the port number for standard network services, use

struct servent *
getservbyname(const char *service, const char *proto)?

which returns the port number of the given service with the given protocol in
a servent structure:

Inter-process and Network Communication 357

struct servent
{ char *s_name; /* official name of service */

char **s_aliases; /* alias list */
int s_port; /* port no in network short byte order */
char *s_proto; /* protocol used */

};

A NULL pointer is returned for error. For example,

struct servent* sp;
sp = getservbyname("ssh", "tcp");

gets sp->s_port to be 22 (after conversion by ntohs), the designated port
for the SSH over TCP service.

Similar sets of library functions are provided to access the network and
protocol databases. Examples are getnetbyname and getprotobyname.

11.12 On-Demand Internet Services

Any program that uses standard I/O can be made into an Internet TCP
server without changing its code. Such servers are deployed under the control
of the Internet server daemon xinetd1 (Figure 11.10), which monitors all
designated ports and invokes registered server programs on-demand.

If your distribution does not have xinetd, install it easily (Section 8.24)
with either

yum install xinetd

or

sudo apt-get install xinetd

and start the xinetd running either with the system-config-services tool
or with

service xinetd start

Server programs under the control of xinetd do not need to deal with
sockets, protocols, or Internet addresses. In fact, such servers work as a fil-
ter reading input (incoming data from a client) from stdin and producing
output (outgoing data to a client) to stdout. Thus, many Linux commands
can easily be servers without change. New servers can also be written easily
in any source code language, including scripting languages such as Bash. The

1Xinetd is a successor of the original inetd, with better security and ease of configura-
tion.

358 Mastering Linux

FIGURE 11.10: Server under xinetd Control

I n t e r n e t

Server ProgramXinetd

Standard I/O

Request
Socket

PairedCreates

Launches

Incoming

xinetd reduces the processing load on the server host because we can run
fewer daemon processes by making many services on-demand.

Let’s see how we can place the fortune program under xinetd to serve
the Internet.

1. Edit /etc/services. Go to the end of the file and add the line

fortune 55000/tcp # a test on-demand server

to make fortune a network service. Note that we have selected a local
port which does not conflict with any standard or well-known services.
You can find the local port range with

sysctl net.ipv4.ip_local_port_range

2. Make fortune an on-demand service by registering it under xinetd.
This is done by adding a file /etc/xinetd.d/fortune as follows:

Our test on-demand server
service fortune
{ socket_type = stream

protocol = tcp
wait = no
user = root
group = yes
server = /usr/bin/fortune
server_args =
disable = no

}

Restart your xinetd.

Your fortune server is ready! Try it with

nc localhost 55000

Inter-process and Network Communication 359

If it works you should see a display from fortune.
Each file in the /etc/xinetd.d folder represents a different on-demand

service made possible under xinetd. Some of the available configuration set-
tings are

• service—The service name, usually to match a service listed in the
/etc/services file

• socket_type—The network socket type (stream or dgram)

• wait–For a single-threaded server (yes) or multithreaded server (no).

• user—Effective user ID of server

• server–The server executable pathname

• disable–Service is active or not

All on-demand services can be controlled via the On Demand Services tab of
the GUI tool system-config-services.

11.13 Daemon Processes

On Linux, there are many hidden processes that work quietly in the back-
ground to perform a variety of tasks as though by magic. These are the so-
called daemon processes, and they run concurrently with other active user
processes. For example,

• The cron daemon (usually /usr/sbin/crond) executes commands at
specified dates and times scheduled through the crontab command (see
Chapter 7 Exercises).

• The httpd Web server (usually /usr/sbin/httpd) is a daemon that
handles HTTP requests (Chapter 8).

• Several daemons, including rpc.nfsd, rpc.lockd, rpc.statd, and
rpc.mountd provide the Network Filesystem (NFS) service (Sec-
tion 6.9).

• The named (usually /usr/sbin/named) is the Internet DNS server
(Section 7.16).

• The sendmail daemon (usually /usr/sbin/sendmail -bd) is the In-
ternet email server.

• The sshd daemon (usually /usr/sbin/sshd) is the secure Shell login
server.

360 Mastering Linux

• The Internet Services daemon (usually /usr/sbin/xinetd) monitors
specific transport layer ports and launches appropriate on-demand
servers (for example, rsyncd).

Many other network servers not listed here run as daemons, but there are also
servers, such as the X Window server, that are not considered daemons. Newer
workstations have multiple hardware processors to execute several processes
in parallel, resulting in greatly increased system speed.

The xinetd, on the other hand, reduces the number of idling servers wait-
ing for action by monitoring many different service ports and invoking the
appropriate server when a request arrives.

Programming a Daemon

Daemon programs such as sshd, xinetd, and sendmail -bd have these four
important characteristics:

1. A daemon never exits.

2. A daemon has no control terminal window.

3. A daemon does not use standard I/O.

4. A system daemon is normally started at boot time, is controlled by the
init process (process 1), and can be restarted if it dies for some reason.

In Chapter 8, Section 8.6 we presented how a Linux is configured to start the
Apache Web server at boot time. Follow the same procedure for other servers.

A process can disassociate itself from its control terminal window with the
system call setsid().

#include <unistd.h>
pid_t setsid(void);

The call creates a new session and a new process group. It sets the calling
process as the session leader and the process group leader. No control terminal
is assigned yet. The calling process is the only process in the new process group
and the only process in the new session.

Thus, a daemon process often executes the sequence in Figure 11.11 to
disassociate itself from the control terminal and the parent process. Once
orphaned, the daemon process is controlled by the init process.

11.14 Input/Output Multiplexing

Programs such as the inetd and the X Window server require the capa-
bility to monitor or multiplex a number of I/O descriptors at once. On-line

Inter-process and Network Communication 361

FIGURE 11.11: Disassociating from Control Terminal Window

setsid():
close(0); close(1); close(2);
if (vfork() == 0)

perform_duty(); /* infinite loop */
exit(0); /* child orphaned */

chat programs are good examples. They need to deal with many I/O channels
simultaneously.

The select system call provides a general synchronous multiplexing
scheme.

#include <sys/select.h>
int select(int nfds, fd_set* readfds, fd_set* writefds,

fd_set* exceptfds, struct timeval *timeout)

The select call monitors the I/O descriptors specified by the bit masks
*readfds, *writefds, and *exceptfds. It checks if any of the *readfds is
ready for reading; if any of the *writefds is ready for writing; and if any of
the *exceptfds has an exceptional condition pending. Each mast has bit 0
through nfds-1. The nth bit of a mask represents the I/O descriptor n. That
is, if bit n of a mask is 1, then file descriptor n is monitored. For example,
if *readfds has the value 1 (a 1 in bit position 0), then I/O descriptor 0
is monitored for data available for reading. The call returns when it finds at
least one descriptor ready. When select returns, the bit masks are modified to
indicate (in the same manner) the I/O descriptors that are ready. The integer
value returned by select is the total number of ready descriptors.

The parameter timeout is a non-zero pointer specifying a maximum time
interval to wait before select is to complete. To affect a poll, the timeout
argument should be non-zero, pointing to a zero-valued timeval structure.
If timeout is a zero pointer, select returns only when it finds at least one
ready descriptor. The code fragment in Figure 11.12 is an example where
select monitors using a two-second timeout. The int masks can accommodate
descriptors 0 through 31. Different methods are used to handle a larger number
of descriptors. One is to use several ints for a mask. Linux systems may not
work in the same way in this regard.

Let’s look at a server that monitors a stream and a datagram socket with
select (Ex: ex11/selectExample.c).

#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>

362 Mastering Linux

FIGURE 11.12: I/O Multiplexing

#include <sys/select.h>

struct timeval wait;
int fd1, fd2, read_mask, nready;
wait.tv_sec = 2
wait.tv_usec = 0;
...
read_mask = (1 << fd1) | (1 << fd2)
...
nready = select(32, (fd_set*)&read_mask, 0, 0, &wait);

#include <sys/select.h>
#include <netinet/in.h> /* Internet domain header */

#define SERVER_PORT0 3900
#define SERVER_PORT1 3901

int main()
{ int soc_s, soc_d, s_mask, d_mask, read_mask, nready;
/* set up listening socket soc */

struct sockaddr_in addr0 = {AF_INET};
addr0.sin_addr.s_addr = htons(SERVER_PORT0);
struct sockaddr_in addr1 = {AF_INET};
addr0.sin_addr.s_addr = htons(SERVER_PORT1);
soc_s = socket(AF_INET, SOCK_STREAM, 0); /* A */
soc_d = socket(AF_INET, SOCK_DGRAM, 0);
if (soc_s < 0 || soc_d < 0)
{ perror("server:socket"); exit(EXIT_FAILURE); }
if (bind(soc_s, (struct sockaddr *)&addr0,

sizeof(addr0))==-1 ||
bind(soc_d, (struct sockaddr *)&addr1,

sizeof(addr1))==-1)
{ perror("server:bind"); exit(EXIT_FAILURE); }
listen(soc_s, 3); /* B */

/* monitor sockets */
s_mask= 1 << soc_s; d_mask= 1 << soc_d; /* C */
for (;;)
{ read_mask = s_mask | d_mask; /* D */

Inter-process and Network Communication 363

nready = select(2, (fd_set*)&read_mask, 0, 0, 0); /* E */
while (nready) /* F */
{ if (read_mask & s_mask)

{ nready--; do_stream(soc_s); /* G */
}
else if (read_mask & d_mask)
{ nready--; do_dgram(soc_d); /* H */
}

} /* end of while */
} /* end of for */

}

The stream socket soc_s and the datagram socket soc_d are created, bound
to correct addresses, and made ready to receive input (lines A – B). After the
bit masks are set correctly by bit shifting operations (line C), the program
goes into an infinite loop to monitor these two sockets (line D). When select
(line E) returns, each of the ready descriptors is treated in a while loop (line
F) and monitoring is resumed.

The functions do_stream (line G) and do_dgram (line H) each handle a
different kind of ready socket.

A similar system call pselect is also available, which allows you to block
signals while multiplexing I/O.

11.15 TCP Out-of-Band Data

TCP/IP sockets support two independent logical data channels. Normal
data are sent/received in-band, but urgent messages can be communicated
out-of-band (oob). If an abnormal condition occurs while a process is sending
a long stream of data to a remote process, it is useful to be able to alert the
other process with an urgent message. The oob facility is designed for this
purpose.

Out-of-band data are sent outside of the normal data stream and received
independently of in-band data. TCP supports the reliable delivery of only one
out-of-band message at a time. The message can be a maximum of one byte
long. When an oob message is delivered to a socket, a SIGURG signal is also
sent to the receiving process so it can treat the urgent message as soon as
possible. The system calls,

send(soc, buffer, sizeof(buffer), opt);
recv(soc, buffer, sizeof(buffer), opt);

with the MSG_OOB bit of opt turned on, send and receive out-of-band data.
For example, a TCP/IP client program can use the code

send(soc, "B", 1, MSG_OOB);

364 Mastering Linux

to send the one-character urgent message B to a peer socket.
To treat oob data, a receiving process traps the SIGURG signal (Chapter 10,

Section 10.16) and supplies a handler function that reads the out-of-band
data and takes appropriate action. For example, the following code defines a
function oob_handler which reads the oob data.

int oobsoc;

void oob_handler()
{ char buf[1];

ssize_t k;
k = recv(oobsoc, buf, sizeof(buf), MSG_OOB);
if (k > 0)
{ /* process urgent msg */
}

}

To treat signals sent via oob, for example, this handler function can check the
received message to see which oob byte is received and use

kill(SIGXYZ, getpid());

to send some signal to itself (Ex: ex11/oob.c).
The SIGURG signal, indicating pending oob data, is trapped with

#include <signal.h>
#include <fcntl.h>

struct sigaction new;
struct sigaction old;
oobsoc = ns; /* ns is Internet stream socket */
new.sa_handler=oob_handler;
new.sa_flags=0;
sigaction(SIGURG, &new, &old);

To ensure that the process is notified the moment urgent oob data arrives,
the following codes should also be executed:

#include <unistd.h>
#include <fcntl.h>

if (fcntl(ns, F_SETOWN, getpid()) < 0)
{ perror("fcntl F_SETOWN:");

_exit(EXIT_FAILURE);
}
...

The code requests that when a SIGURG associated with the socket ns arises,
it is sent to the process itself. The fcntl file control call sets the process to
receive SIGIO and SIGURG signals for the file descriptor ns.

Inter-process and Network Communication 365

You’ll find a program (Ex: ex11/inetserverOOB.c) in the example code
package which adds the out-of-band data capability to the inetserver.c
program.

11.16 For More Information

Consult section 7 of the Linux man pages for all supported socket address
families. For AF_INET see ip(7), for AF_INET6 see ipv6(7), for AF_UNIX (same
as AF_LOCAL) see unix(7), for AF_APPLETALK see ddp(7), for AF_PACKET see
packet(7), for AF_X25 see x25(7), and for AF_NETLINK see netlink(7). For
Linux kernel socket support see socket(7).

For networking and network protocols see Computer Networking: Internet
Protocols in Action by Jeanna Matthews (Wiley). For Networking on Linux
see Advanced Guide to Linux Networking and Security by Ed Sawicki (Course
Technology).

11.17 Summary

Linux supports networking applications by providing a set of system-level
facilities for ipc among distributed processes. Network services often use a
client and server model where server processes provide specific services ac-
cessed by client programs that act as user or application interfaces. Different
socket types support different networking protocols. Clients access servers by
locating the server’s socket address and initiating a request.

The ipc hinges on the socket mechanism, which serves as endpoints for
communication within any specific communication domain. The Local domain
and the Internet domain are usually supported on Linux. The former is used
for communication within the local Linux system. The latter supports the
various Internet protocols that exist in the Internet protocol family, including
IP, TCP, and UDP.

There are several types of sockets. Stream sockets are connected in pairs
to support a bidirectional communications channel, which can be likened to
a two-way pipe. Datagram sockets may or may not be connected and can
send/receive messages similar to data packets. Raw sockets give access to the
underlying communication protocols that support socket abstractions. Raw
sockets are not intended for the general programmer. A process uses its own
socket to communicate across the network with a socket belonging to a remote
process (the peer). The two sockets must be of the same type. The DNS and
a set of networking system calls combine to retrieve network addresses and
service ports. Library routines make it straightforward to find and construct
socket addresses in a program.

Network server programs may run as daemon processes, divorced from
control terminal windows and standard I/O, to run constantly but quietly in

366 Mastering Linux

the background. In contrast, on-demand services do not run as daemons, but
get started by the xinetd super server only when a client request arrives.

Monitoring I/O with select or pselect enables the multiplexing concur-
rent I/O. Out-of-band data, supported by Internet stream sockets, can be
used to send urgent messages such as interrupts to peer sockets.

11.18 Exercises

1. The system or popen call executes an sh command. How would you
get such a call to execute a command string for the Bash Shell?

2. Is it possible for a parent process to send data to the standard input of
its child? How? Is it possible for a parent process to receive output from
the standard output of a child process? How?

3. Refer to the Hello there pipe example in Section 11.2. What would
happen if the child did not close its descriptor p[1]? What would happen
if the parent did not close its descriptor p[1]?

4. Write a C function pipe_std("Shell-command-string") which creates
a child process to execute any given regular Linux command. Further-
more, it connects the file descriptors 0 and 1 of the calling (parent)
process to the corresponding descriptors of the child process.

The usage of the pipe_std function is as follows:

• In the parent process, a call to pipe_std is made with a specific
command string. This sets up the two-way pipe between the parent
process and the child process. Then, pipe_std returns.

• Now in the parent process, file descriptor 0 reads the standard
output of the child process, and output to file descriptor 1 is read as
standard input by the child process. This allows the parent process
to feed input to the child process and collect the child’s output.

• After interaction with the child process is over, the parent process
calls

end_pipe_write();
end_pipe_read();

two additional functions associated with pipe_std, to restore the
parent’s file descriptors 0 and 1.

• Since the parent process and the child process can form a circu-
lar producer-consumer relationship, the danger of deadlock is al-
ways there. It is the parent program’s responsibility (not that of
pipe_std) to guard against deadlock.

Inter-process and Network Communication 367

5. What different system calls can be used to read/write a socket? What
are their differences? Include calls not covered in the text.

6. Write a lowercase server that takes messages from a client and turns all
uppercase characters into lowercase before echoing the message back to
the client. Implement the service using an Internet datagram socket.

7. Do the previous problem with an Internet stream socket.

8. Add code to your lowercase server that checks the address and port
number of the client socket and only accepts requests from “allowable”
clients.

9. Use the out-of-band mechanism of Internet stream sockets to send Linux
signals to a remote process.

10. Write a command service that takes a service name, such as ftp and
a host name, such as monkey.cs.kent.edu, and displays the the IP
address and port number.

11. Maxima is a powerful program for mathematical computations. Install
the maxima package if your Linux does not already have it, and then
make it into an on-demand Internet server (Section 11.12).

12. Write a chat application where multiple people can join in the same chat
session on different hosts. This problem requires a clear overview of the
problem and a careful design before implementation.

Chapter 12

GUI Programming with Ruby/GTK2

A Graphical User Interface (GUI) program displays windows, buttons, menus,
and icons on the screen. These are the on-screen representations of windowing
objects, or widgets, inside the GUI program. Various types of widgets support
a variety of GUI features and functionalities.

GUI programs are event driven and perform tasks in response to user-
initiated events such as a mouse move, a mouse click, a key press, a button
icon click, or a menu selection. The occurrence of an event can trigger a call
to its event handler, which is a function programmed to perform the desired
task. Thus, GUI applications are usually easier to learn and more intuitive to
use.

GTK+, an object-oriented version of the GTK (GIMP Toolkit), is a C
library for GUI programming. GTK+ works mostly on top of X Windows
in Linux/UNIX systems, but is supported also on other platforms such as
Microsoft Windows and Mac OS X. GTK+ is part of the GNU Project and
therefore freely available. In addition to C and C++, GTK+ can be used from
Perl, PHP, Ruby, and some other programming languages.

Ruby is a scripting language that was first developed in the mid-
1990s. Ruby combines features from several other languages, including Perl,
Smalltalk, Eiffel, Ada, and Lisp. Ruby/GTK2 provides a GTK+ binding
for Ruby and works well under Linux, especially if you use the Gnome
desktop. The ruby-gtk2 package is part of the Ruby-GNOME2 bundle
(http://ruby-gnome2.sourceforge.jp). This chapter introduces GUI pro-
gramming using Ruby/GTK2.

To run the examples in this chapter, you’ll need to have Ruby and
Ruby/GTK2 installed on your Linux. It is likely that your Linux already
has these installed. If not, you can easily install them with (Section 8.24)

sudo apt-get install libgtk2-ruby (Ubuntu/Debian)
yum install ruby-gtk2 (CentOS/Fedora)

12.1 Getting Started with Ruby/GTK2

As our first example, we will look at a Ruby/GTK2 program (Ex:
ex12/click.rb) which displays a button that you can click. After each click,
the button shows the new click count (Figure 12.1).

369

370 Mastering Linux

FIGURE 12.1: First Ruby/GTK2 Example

The program starts with the standard Linux executable text file line which
indicates the interpreter, /usr/bin/ruby in this case, for the program.

The =begin and =end lines bracket any number of comment lines. The
require statement loads and executes another Ruby file. The argument to
require can be the name of a library (located in a known library folder) or a
pathname to any Ruby source file. For a Ruby/GTK2 program, we will always
need the gtk2 library (located at /usr/lib/ruby/site ruby/1.8/gtk2.rb,
for example).

#!/usr/bin/ruby
=begin
file: click.rb

=end
require "gtk2"

The program starts by setting a variable count to zero (line 1). Then a new
Button instance (a widget) is created, with the button label set to the string
Click Me (line 2). The event clicked for the Click Me button, which is
caused by a left mouse click on the Click Me button, is connected to the
event handling code (line 3). Event handling actions are to increment count
and to set the button label to count converted to a string (line 4).

count = 0 ## (1)
button = Gtk::Button.new("Click Me") ## (2)
button.signal_connect("clicked") { ## (3)

count += 1
button.label = count.to_s() ## (4)

}

Having set up the widget button, we now proceed to create an instance of
Window, with title Click Example, as our top-level container widget, one that
can contain child widgets (line 5). The width and height of win is set to 250
x 50 pixels (line 6). The add method of the win widget places button in win
(line 7).

win = Gtk::Window.new("Click Example") ## (5)
win.set_default_size(250, 50) ## (6)

GUI Programming with Ruby/GTK2 371

win.add(button) ## (7)
win.signal_connect("destroy") { ## (8)
Gtk.main_quit

}

win.show_all ## (9)
Gtk.main ## (10)

The destroy event caused by the user clicking on the close-window icon is
connected to the standard Gtk class method main_quit which causes the
displayed window to disappear and the program to terminate (line 8).

Finally, the show_all method of win is called to make visible win and all
its child widgets (line 9), and the Gtk class method main is invoked to draw
the display and start event monitoring (line 10).

This simple example provides a template for writing other, more compli-
cated, Ruby/GTK+ programs.

12.2 GTK+ Event Handling Basics

GUI programs are event driven to allow easy user interactions. An event-
driven program normally does nothing until an event triggers some prepro-
grammed action. There are different kinds of events, including mouse button
events (clicks, presses, releases, and double clicks), key events, mouse move
events, and so on.

A GUI program begins monitoring events after being initialized. Part of
the initialization sets up the monitoring and handling of specific events. When
such an event occurs, the GUI program reacts to the event, handles it quickly,
and goes back to doing nothing—being ready for the next event.

Basically, writing an event-driven program involves indicating which events
are monitored by which widgets and specifying actions in response to these
events when they occur. When an event takes places, a signal is sent to the
widget on which the event occurred. By setting up a signal handler (also
known as an event handler), you tell a widget to catch a specific signal and
then execute the handler code.

In our click.rb example (Section 12.1), we connected an event handler
to the clicked signal on a Button widget button:

button.signal_connect("clicked") {
count += 1
button.label = count.to_s()

}

The event handler is given by a code block ({ ... } or do ... end). Here,
the variables count and button in the code block refer to the variables defined
in its enclosure (calling context).

372 Mastering Linux

Depending on the event type, the enclosure may also pass one or more pa-
rameters to the event handler code block. For most events, the first parameter
is self, namely, the widget itself that is receiving the signal. The second pa-
rameter is an event object containing information about the event. To receive
such parameters, you would write the event handling code as

widget.signal connect("signal name") {|w| ## (w is self)
...

}
widget.signal connect("signal name") {|w,e| ## (e an event obj)+

...
}

For example, we can rewrite our click handler above as

button.signal_connect("clicked") {|b|
count += 1
b.label = count.to_s()

}

where the local variable b gets passed the button widget when this handler
is called.

An event handler may return true or false. The true return value stops
the further propagation of the signal. The false return value allows further
propagation. We will discuss more about events in Section 12.5.

12.3 A Ruby Primer

Ruby/GTK2 is Ruby with GTK+ binding. Thus, it enables us to write
GUI programs in an object-oriented scripting language. We will describe a
select set of Ruby constructs to get us started. Complete documentation for
Ruby can be found at ruby-doc.org.

A Ruby program is a sequence of expressions. Each expression is termi-
nated with a semicolon (;) which can be omitted if it is at the end of a line.
Variable names may involve letters, digits, and the _ (underscore), but must
not begin with a digit.

Strings

Ruby string constants can be given between single or double quotes. In double
quotes, backslash characters such as \n and expression substitution (#{exp})
are allowed. You may check string equality with == and compare strings with
s1<=>s2 which returns 0 (strings are equal), 1 (s1 is greater), −1 (s2 is greater).
Strings can be concatenated with the plus operator, s1+s2. Here are some
useful string expressions (Ex: ex12/str.rb).

GUI Programming with Ruby/GTK2 373

str = "Green is good.\n"
str[0] # Ascii code in octal for G: 71
str[0].chr # The character G (Ruby character literal ?G)
str[0,3] # substring "Gree"
str[-3,-1] # substring "d.\n"
str.length # 15
str.index(?G) # index of character G: 0 (nil if not found)
str.index("good") # index of substring: 9 (nil if not found)

The method to_i (to_f) converts a string to an integer (floating point). The
method to_s converts a number to a string. Refer to the Ruby String class
for more string operations.

Arrays

Arrays in Ruby are given as a list of elements inside square brackets ([]).
Elements are accessed by zero-based indexing. Here are some examples (Ex:
ex12/arr.rb).

arr=[1,2,?A,"ok"] # Array with 2 integers, a char, and a string
arr[2] # The 3rd element, ?A
arr[1..3] # Sub array [2, ?A, "ok"]
arr[-2..-1] # Sub array [?A, "ok"]
arr[0,3] # Sub array [1,2, ?A] (start and length)
arr[1]=9 # Setting 2nd element, [1, 9, ?A, "ok"]
arr.length # 4
str=arr.join(";") # String of elements, "1;2;A;ok"
str.split(";") # The array ["1", "2", "A", "ok"]
arr.delete_at(1) # Deletes element, arr now [1, ?A, "ok"]
arr.delete(x) # Deletes all x from arr
new_arr=arr+arr2 # Array concatenation
new_arr=arr&arr2 # Array intersection
new_arr=arr * 4 # Array repetition
new_arr=arr-[2,3] # Copy of arr with given elements removed

You can also create an empty array with

arr = Array.new

and then append elements to it with the notation arr << element.
Associative arrays are formed with curly braces and can use symbolic in-

dices (Ex: ex12/asso.rb).

asso = {"a"=>3, "b"=>5, 0=>"ok", 7=>"done"}
asso["b"] # is 5
asso[7] # is "done"
asso.delete("a") # {"b"=>5, 0=>"ok", 7=>"done"}
asso["new"]=9 # {"a"=>3,"b"=>5,0=>"ok",7=>"done","new"=>9}

374 Mastering Linux

To conveniently iterate over all elements of an array, use

arr.each { |item|
one or more expressions
to process item

}

With each iteration, the loop-control variable item takes on the value of the
next element in arr.

Functions

Let’s now show how to define a function with an example (Ex:
ex12/factorial.rb).

def factorial(n)
if (n < 0)

return nil ## logical false
end ## of if
if (n == 0 || n == 1)

return 1
end ## of if
return n*factorial(n-1) ## or just n*factorial(n-1)

end ## of def

When a Ruby function runs to completion through its last statement, the
value of the last statement becomes the return value. Hence, the word return
can be ommitted from the last statement of a function. Also, a function may
return multiple values. For example, if some_fn uses return(a,b,c), then
you can call it with x,y,z=some fn().

Function parameters may have default values (Ex: ex12/testFn.rb):

def test_fn(x=1, y=2, z=x+y)
puts "#{x}, #{y}, #{z}"

end

test_fn ##=> 1, 2, 3
test_fn 7 ##=> 7, 2, 9
test_fn(3,5) ##=> 3, 5, 8

Ruby has many useful built-in functions.1 You can find them easily on the
Web.

The ARGV built-in array holds command-line arguments passed to Ruby
programs. For example, we can call factorial with an argument passed on
the command line:

1Actually, methods of the Object class.

GUI Programming with Ruby/GTK2 375

ans=factorial(ARGV[0].to_i()) ## ARGV is built-in array

To implement factorial with a while loop (Ex: ex12/while.rb), we can
use

def factorial(n)
if (n < 0); return nil; end
ans=1;
while n > 1

ans = ans*n
n=n-1

end ## of while
ans

end ## of def

We can replace the while loop with a for loop (Ex: ex12/for.rb).

for i in 2..n do
ans = ans*i

end ## of for each

Ruby regular expressions are similar to those used by the Linux grep com-
mand. A regular expression is enclosed in / / or %r{ }. To test if a string
contains a regular expression, re, you can use

if (/re/ =~ str)

...

end

More will be said about object-oriented programming in Ruby (Sec-
tion 12.6). Complete documentation for Ruby can be found at ruby-doc.org.

12.4 GTK+ Widgets

In GUI programming, windowing objects (widgets) play a central role. A
GUI program employs and displays various widgets to provide visual con-
trol/operation for a program. An atomic widget is one that corresponds to a
single GUI feature such as a button or label. A container widget, on the other
hand, is a GUI component that can contain/manage other widgets. A GUI
application usually has a top-level widget (the root window) that contains and
manages other widgets in the program.

A GUI program works by responding to specific events from the user.
Reactions to an event are written into the GUI program. The GUI program

376 Mastering Linux

execution environment usually supplies event monitoring, input focusing, win-
dow rendering, graphics drawing, and parent-child window coordination.

GTK+ provides a large number of widgets to make GUI easy to build. A
set of important GTK+ widgets are described briefly here to get you started.

Each GTK+ widget belongs to a class, say, GTK::Xyz, that defines how
that widget works. The code

x = GTK::Xyz.new(...)

creates a new instance of class GTK::Xyz and assigns it to the variable x. After
being created, you can use the methods of the widget x with the notation
x.method name(...).

The Top-Level Window

In GTK+, you use a Window instance as the top-level container widget to
enclose and build your GUI. The code we have seen,

win = Gtk::Window.new("Click Example")

creates a new Window object and gives it a window title. The default size of a
top-level window can be set with

win.set default size(width, height) ## in pixels

A Window widget can contain one child widget at any given time. To display
multiple widgets, you simply add a layout container (Section 12.4) to house
the desired widgets.

Layout Containers

GTK+ layout containers are invisible widget containers that help us posi-
tion child widgets to achieve a desired layout. GTK+ provides many different
layout containers, including

• Alignment—Controls the alignment and size of a child widget

• AspectFrame—Constrains its child to a particular aspect ratio

• HBox—Provides a horizontal container box

• VBox—Provides a vertical container box

• HButtonBox—Arranges child buttons horizontally

• VButtonBox—Arranges child buttons vertically

• Fixed—Places child widgets at specified coordinates

• HPaned—Provides left-right panes

GUI Programming with Ruby/GTK2 377

• VPaned—Provides up-down panes

• Layout—Gives an infinitely scrollable area for child widgets and/or cus-
tom drawing

• Notebook—Displays child widgets in a tabbed notebook

• Table—Aligns child widgets in a row-column grid

• Expander—Hides and reveals a child widget

You can find demos together with sample source code for these layout con-
tainers and other GTK+ widgets in the Ruby/GTK2 documentation, found,
for example, under /usr/share/doc/ruby-gtk2-version/sample.

Among the various layout containers, the HBox and the VBox are the most
basic and common. Widgets packed into an HBox (a VBox) are displayed in a
horizontal row (vertical column).

To demonstrate layout with boxes, let’s look at an example (Figure 12.2)
that makes accessing the API (application programming interface) documen-
tation of GTK+ widgets quick and easy (Ex: ex12/api.rb). By entering any
widget class name, you’ll arrive directly at the API Web page.

FIGURE 12.2: Ruby/GTK2 Widget API Example

The api.rb program starts by setting the Web URL for the Ruby
GTK+ Widget API documentation and the the Web browser to use (speci-
fied via the environmental variable $BROWSER which is available in Ruby as
ENV["BROWSER"]).

#!/usr/bin/env ruby
=begin
Example: Accessing Ruby GTK Widget API documentation
=end
require "gtk2"

Ruby Gnome2 documentation retrieval URL
url="http://ruby-gnome2.sourceforge.jp/hiki.cgi?Gtk::"
browser=ENV["BROWSER"] ## Web browser to use

378 Mastering Linux

Next, api.rb constructs the GUI. The layout involves a Label (title on
line 2) and two HBoxes packed (lines 8-10) into a VBox (lines 1). When creating
a new VBox or HBox, two arguments can be specified:

Gtk::HBox.new(homogeneous = false, spacing = nil)
Gtk::VBox.new(homogeneous = false, spacing = nil)

If homogeneous (default false) is true, then all child widgets are of the same
width. The number of pixels between child widgets is specified by spacing
(default nil means unspecified).

The Label gtk and a single-line text entry widget entry (lines 3-4) are
packed into the HBox enBox (lines 5-6). The pack_start method packs suc-
cessive child widgets from left/top to right/bottom. The pack_end method, on
the other hand, packs successive child widgets from right/bottom to left/top.

The arguments are child, expand, fill, and padding. If expand is true, the
box will have the full width/height allocated to it. If expand is false, the
box will have just enough width/height to contain the child widget. The fill
setting is only effective when expand is true. Setting fill to true stretches
the children to fill the horizontal/vertical space (line 6). Setting fill to false
prevents such stretching. You may also specify extra padding around the child
in pixels.

vbox = Gtk::VBox.new(true, 5) # (1)
title=Gtk::Label.new("Go To API for Widget:") # (2)
gtk=Gtk::Label.new("Gtk::") # (3)
entry=Gtk::Entry.new() # (4)
enBox=Gtk::HBox.new
enBox.pack_start(gtk, false, false, 0) # (5)
enBox.pack_start(entry, true, true, 0) # (6)
goBox=Gtk::HBox.new
go=Gtk::Button.new(" Go ")
goBox.pack_start(go, true, false, 0) # (7)
vbox.pack_start(title, false, true, 0) # (8)
vbox.pack_start(enBox, false, true, 0) # (9)
vbox.pack_start(goBox, false, true, 0) # (10)

After entering the target widget class name in the Entry field, a user can
press the enter key (line 12) or click the go button (line 13) to invoke the
function api (line 11) which invokes the designated browser on the correctly
constructed URL.

In Ruby, calling the system function is one way of executing a Shell com-
mand. Another is with backquotes (`cmdString` as in Bash Shell). Yet
another is with the Ruby notation #[cmdString]. In either case, the #{exp}
substitution is allowed in cmdString.

def api(browser, url, className) # (11)
cmd=browser + " " + url + className

GUI Programming with Ruby/GTK2 379

system cmd
end

entry.signal_connect("activate") { # (12)
api(browser, url, entry.text)

}

go.signal_connect("clicked") { # (13)
api(browser, url, entry.text)

}

window = Gtk::Window.new("Ruby GTK Widget API")
window.border_width = 10
window.add(vbox) # (14)
window.signal_connect("delete_event") {
Gtk.main_quit

}

window.set_size_request(320, -1)
window.show_all
Gtk.main

The rest of the api.rb program simply establishes the top-level window,
adds vbox, and displays the GUI as usual.

The api.rb shows how to use HBox and VBox for layout. Table is another
layout container for placing child widgets in neatly aligned rows and colums.
See the tz.rb program in Section 12.4 for an example using Table layout.

The Expander layout container allows you to pull down and pull up con-
tents displayed (Figure 12.3). It is useful for displaying multiple items in a
limited space.

FIGURE 12.3: Ruby/GTK2 Expander Example

In the example code package, you can find an example (Ex:
ex12/ExpandMenu.rb) that applies an Expander to display a menu.

380 Mastering Linux

Atomic Widgets

Ruby/GTK2 provides atomic widgets to support many common GUI opera-
tions. Atomic widgets are basic building blocks of GUI programs. They are
laid out in containers to create a visual display. Atomic widgets include

• Label—For displaying a small amount of text with possible color and
font settings

• Button—For making a child (usually a Label but can be any widget)
clickable (via the clicked event)

• CheckButton—For user choice (via the toggled event)

• RadioButton—For one in many choice (via the toggled event)

• Entry—For single-line text input (via the activate event)

• HScale/VScale—For a horizontal/vertical sliding scale with a user-
movable slider (via the value-changed event)

• SpinButton—For increasing/decreasing values (via the value-changed
event)

• ComboBox—For providing a pull-down list of choices (via the changed
event)

• ComboBoxEntry—Same as ComboBox except the selected entry can be
edited by the user

• ColorButton/FontButton—For choosing color or font (via the
color-set or font-set event)

Becoming familiar with atomic widgets, their purposes, and their event
handling can make writing GUI code much easier. Let’s do this by working
with examples.

Button with Rollover

A widget changing color as the mouse moves over it is the familiar
rollover effect GUI designers and users love. Let’s look at an example (Ex:
ex12/mouseover.rb) where a button with a boldface label in white over a red
background (lines 1-2) becomes black on green (lines 3-4), triggered by the
enter-notify-event and leave-notify-event.

=begin
file: mouseover.rb
=end
require "gtk2"

GUI Programming with Ruby/GTK2 381

red=Gdk::Color.new(45500,0,0) # deep red
green=Gdk::Color.new(0,45500,0) # deep green
white=Gdk::Color.new(45500,45500,45500) # white
black=Gdk::Color.new(0,0,0)

la = Gtk::Button.new ## (1)
lb=Gtk::Label.new
lb.set_markup("Mouse over me")
lb.modify_fg(Gtk::STATE_NORMAL, white)
la.add(lb)
la.modify_bg(Gtk::STATE_NORMAL, red) ## (2)

la.signal_connect("enter-notify-event") { ## (3)
la.modify_bg(Gtk::STATE_NORMAL, green)
lb.modify_fg(Gtk::STATE_NORMAL, black)

}
la.signal_connect("leave-notify-event") { ## (4)

la.modify_bg(Gtk::STATE_NORMAL, red)
lb.modify_fg(Gtk::STATE_NORMAL, white)

}

win = Gtk::Window.new("MouseOver Example")
win.set_default_size(250, 50)
win.add(la)
win.signal_connect("destroy") {
Gtk.main_quit

}

win.show_all
Gtk.main

Refer to the Gtk::Color API for more information on color settings.

A GUI for tar

Our next example (Ex: ex12/tz.rb) uses RadioButtons and Table layout to
build a GUI for the Linux tar, a command that creates and extracts archive
files (Chapter 6, Section 6.12).

The program begins by setting some global variables.

#!/usr/bin/ruby
=begin
example: tz.rb

=end
require "gtk2"
$operation="x" ## "x" for extract, or "c" for create

382 Mastering Linux

FIGURE 12.4: A GUI for tar

$format="z" ## "z" for gzip, or "j" for bzip2
$suffix=".tgz" ## or "tbz", archive file name suffix
Text for labels
$ac_text="Create Archive:"
$fc_text="From files and folders:"
$ax_text="Extract Archive:"
$fx_text="To folder (optional):"

Two groups of RadioButtons are used. Group one selects the operation
(creating or extracting an archive), and group two decides the data compres-
sion format (gzip or bzip2).

radio buttons group one
extract = Gtk::RadioButton.new("e_xtract")
create = Gtk::RadioButton.new(extract, "_create")

radio buttons group two
gzip = Gtk::RadioButton.new("_gzip")
bzip = Gtk::RadioButton.new(gzip, "_bzip")

The underscore character used in RadioButton names is significant. It des-
ignates the next character as the keyboard mnemonic for selecting the button
(see Figure 12.4).

A 5-row by 3-column layout table tb displays the Operation selection
(row one), Format selection (row two), an empty spacer (row 3), the archive
name entry field (row 4), and the source archive file (or destination file/folder)
entry field (row 5).

The third argument to Table.new indicates whether to make all table cells
the same size. The attach method indicates the placement of a child widget
in the layout table. Specifically,

tb.attach(widget, c0, c1, r0, r1)

GUI Programming with Ruby/GTK2 383

places the widget between column c0 and c1 and between rows r0 and r1
(Figure 12.5).

FIGURE 12.5: Table Layout

1

2

3

4

5

1 2 30

tb=Gtk::Table.new(5,3,true) ## layout table

op=Gtk::Label.new("Operation:")
op.set_xalign(1) ## align to the right
tb.attach(op,0,1,0,1) ## row 1
tb.attach(extract,1,2,0,1)
tb.attach(create,2,3,0,1)

fm=Gtk::Label.new("Format:")
fm.set_xalign(1)
tb.attach(fm,0,1,1,2) ## row 2
tb.attach(gzip,1,2,1,2)
tb.attach(bzip,2,3,1,2)

text entry fields
$a_label=Gtk::Label.new($ax_text)
$a_label.set_xalign(1)
$f_label=Gtk::Label.new($fx_text)
$f_label.set_xalign(1)
$folder=Gtk::Entry.new()
$ar=Gtk::Entry.new()

tb.attach(Gtk::Label.new(" "),0,1,2,3) ## row 3, spacer
tb.attach($a_label,0,1,3,4) ## row 4 archive name
tb.attach($ar,1,3,3,4)
tb.attach($f_label,0,1,4,5) ## row 5 file/folder
tb.attach($folder,1,3,4,5)

The layout table tb is then placed in a VBox (box2), and box2 together with
the go Button is placed in another VBox (box1). The visual layout is now
complete.

384 Mastering Linux

box2 = Gtk::VBox.new(false, 10)
box2.border_width = 10; box2.add(tb)
box1 = Gtk::VBox.new; box1.add(box2)
go = Gtk::Button.new(" Go "); box1.add(go)

Next, we have the event handlers for selecting the gzip/bzip compres-
sion format and for choosing the create/extract operation. The latter also
involves changing text labels.

gzip.signal_connect("toggled") { $format="z"; $suffix=".tgz"; }

bzip.signal_connect("toggled") { $format="j"; $suffix=".tbz"; }

create.signal_connect("toggled") {
$operation="c"
$a_label.text=$ac_text ## relabeling
$f_label.text=$fc_text ## relabeling

}

extract.signal_connect("toggled") {
$operation="x"
$a_label.text=$ax_text; ## relabeling
$f_label.text=$fx_text; ## relabeling

}

Two functions are defined: tarCommand constructs the correct tar command
to invoke, and tarResult displays a confirmation dialog or an error dialog
(see API for Gtk::Dialog).

def tarCommand()
aName = $ar.text; tail = ""
if ($operation=="x" && $folder.text != "")

tail = "-C " + $folder.text
end
if ($operation=="c")

if ($folder.text == "")
error no files to archive

else
tail = $folder.text
aName = $ar.text + $suffix

end
end
cmd="tar "+$format+$operation+"pf "+aName+" "+tail
return cmd

end

def tarResult(parent, msg, type)

GUI Programming with Ruby/GTK2 385

dialog = Gtk::MessageDialog.new(parent, Gtk::Dialog::MODAL,
type, Gtk::MessageDialog::BUTTONS_OK, msg)

dialog.title = "Tar Result"
dialog.run { }; dialog.destroy

end

Clicking the go button causes a call to tarCommand() (line A) and execution
of the resulting tar command (line B). Success/failure is then reported by
calling tarResult (lines C and D).

window = Gtk::Window.new("File Archive")
go.signal_connect("clicked") {

cmd=tarCommand() # (A)
if (system(cmd)) # (B)

tarResult(window, cmd + " Successful.", # (C)
Gtk::MessageDialog::INFO)

else
tarResult(window, cmd + " Failed.", # (D)

Gtk::MessageDialog::WARNING)
end

}

The usual top-level window code follows.

window.add(box1)
window.signal_connect("destroy"){Gtk.main_quit}
window.show_all
Gtk.main

Decorator Containers

Ruby/GTK2 also provides a variety of single-child containers, known as Dec-
orators, to add a certain functionality or visual effect to a child. For example,

• Frame—Adds a frame box with optional in-frame caption for the child

• MenuItem/ToolItem—Enables a child to be placed on a Menu or Tool-
Bar

• ScrolledWindow—Provides scrolling to any child added by the
add with viewport or add method

Now let’s look at another example (Ex: ex12/volume.rb) that applies
the Frame and the HScale to create a GUI for controlling the sound volume
setting of your Linux box (Figure 12.6).

The volume control is a horizontal scale with minimum value 0.0, max-
imum value 1.0, and an adjustment step size of 0.1 (line I).

386 Mastering Linux

FIGURE 12.6: Volume Control

The initial setting of control is based on the current volume setting of
the front speakers (assuming left and right front speakers are in lock step). In
the function setLevel, the amixer command’s get operation retrieves the
volume information, and the level (between 0 and 31) is converted to a value
between 0.0 and 1.0 for the HScale control (lines II-III).

Depending on the sound system used on your own Linux, you may need
to use some command other than amixer.

#!/usr/bin/ruby
=begin

volume.rb---Volume control example
=end
require "gtk2"

min, max, step
control = Gtk::HScale.new(0.0, 1.0, 0.1) ## (I)

def setLevel(f) ## (II)
level=‘/usr/bin/amixer get Front |

grep "Front Left:" | cut -d " " -f 6‘
f.set_value(level.to_f() / 31.0)

end

setLevel(control) ## (III)

The value-changed event of control sets the front speaker volume with
the amizer operation sset which can take a percentage value (line IV).

control.signal_connect("value-changed") { ## (IV)
v=control.value*100
v=v.to_i(); ## float to int conversion
cmd="/usr/bin/amixer sset Front #{v}% >/dev/null"
system cmd

}

GUI Programming with Ruby/GTK2 387

Now, for the layout, the horizontal scale is placed in an HBox to center
it with some padding (line V). We then surround the HBox with a captioned
Frame (line VI).

hbox=Gtk::HBox.new(true, 0)
hbox.pack_start(control, false, true, 20) ## (V)
cf = Gtk::Frame.new("Speaker Volume Control")
cf.add(hbox) ## (VI)

The usual top-level window code follows.

window = Gtk::Window.new(Gtk::Window::TOPLEVEL)
window.set_title "Volume Control"
window.border_width = 10
window.signal_connect("delete_event") { Gtk.main_quit }
window.set_size_request(350, 120)
window.add(cf)
window.show_all
Gtk.main

It is true that your Linux desktop panel will most likely already supply a
GUI volume control. Our example simply shows how you can also construct
a similar GUI program easily with Ruby/GTK2.

12.5 More about Events

In Ruby/GTK2, events fall into two broad categories: low-level events sup-
ported by Gdk and higher level semantic events defined by Gtk atomic, dec-
orator, and container widgets. The API documentation of each Gtk widget
describes, under the signal section, the events accepted by that widget. For
example, Button accepts the clicked event and Window accepts the destroy
event, as we have seen in prior examples. Of course, each widget also accepts
signals allowed by ancestors in its object hierarchy.

Being the ultimate ancestor of Gtk widgets, a Gtk::Widget object accepts
many low-level events including these common events:

• Mouse-button events: button-press-event, button-release-event

• Input focus events: focus-in-event, focus-out-event

• Key events: key-press-event, key-release-event

We will illustrate their use with examples. Our first example (Ex:
ex12/mousebutton.rb) detects which mouse button is clicked (Figure 12.7).

The Click Me button catches the button-press-event and checks the
button number in the event object (of type Gdk::EventButton) to determine
which mouse button was pressed.

388 Mastering Linux

FIGURE 12.7: Which Mouse Button

button = Gtk::Button.new("Click Me")
button.signal_connect("button-press-event") {|w,e|

e is event object of type Gdk::EventButton
if (e.button == 1)

button.label="Left Mouse Button Pressed"
elsif (e.button == 2)

button.label="Middle Mouse Button Pressed"
elsif (e.button == 3)

button.label="Right Mouse Button Pressed"
else

button.label="Mouse Button " + e.button.to_s()
+ " Pressed"

end
true

}

FIGURE 12.8: Mouse Button Events

The event object also carries the mouse press location information (x and
y coordinates relative to the upper-left corner of the widget) as well as
double/triple-clicking information. Figure 12.8 shows the display made by the
following event handling code (Ex: ex12/position.rb):

button.signal_connect("button-press-event") {|w,e|
button.label="Click Position = (#{e.x}, #{e.y})"
true

}

If we catch the key-press-event, then we get an event object of type
Gdk::EventKey, which has a keyval property indicating which key has been
pressed. Figure 12.9 shows the keyval of the Left Shift Key produced by the
following event handling code (Ex: ex12/key.rb):

GUI Programming with Ruby/GTK2 389

FIGURE 12.9: Key Events

button.signal_connect("key-press-event") {|w,e|
kv=e.keyval
button.label="Key = " + Gdk::Keyval.to_name(kv) +

", Value = #{kv}"
true

}

Gdk provides constants for keys in the form Gdk x, where x is the name of the
key and a utility function Gdk::Keyval.to name that can turn a keyval into
a key name.

Our next example (Ex: ex12/convert.rb) is an inch-centimeter converter
program (Figure 12.10).

FIGURE 12.10: Focus Events

By entering a number into one of the entry fields and clicking the convert
button, the equivalent value shows up in the other entry field.

First, we create an inch and a cm Entry widget, each 16-chars wide
(lines 1-2). Two text labels and a convert button are also created (line 3-4).
These are then packed into an HBox for visual presentation (lines 5-6).

inch=Gtk::Entry.new ## (1)
cm=Gtk::Entry.new
inch.width_chars=16; cm.width_chars=16 ## (2)
inlabel=Gtk::Label.new("in:") ## (3)
cmlabel=Gtk::Label.new("cm:")
convert=Gtk::Button.new("convert") ## (4)
hbox=Gtk::HBox.new ## (5)
hbox.pack_start(inlabel, false, false, 0)
hbox.pack_start(inch, false, false, 10)
hbox.pack_start(convert, false, false, 10)
hbox.pack_start(cmlabel, false, false, 0)

390 Mastering Linux

hbox.pack_start(cm, false, false, 10)
convert.height_request=30 ## (6)

Now let’s look at event handling. The convert button clicked signal
triggers a call to doConvert, a function that performs the actual conversion.
Each Entry widget has its focus-in-event connected to a call to the reset
function which blanks out both entry fields. So they are ready for the next
conversion.

convert.signal_connect("clicked") { doConvert(inch, cm) }
cm.signal_connect("focus-in-event") { reset(cm, inch) }
inch.signal_connect("focus-in-event") { reset(cm, inch) }

def reset(cm, inch)
cm.text=""; inch.text=""

end

def doConvert(inch, cm)
i=inch.text; c=cm.text
if (i == "")
inch.text=(c.to_f/2.54).to_s

else
cm.text=(i.to_f*2.54).to_s

end
end

The rest of convert.rb is the usual top-level window code.

win = Gtk::Window.new("Inch-cm Conversion")
win.set_default_size(350, 50)
win.border_width=10; win.add(hbox)
win.signal_connect("destroy") { Gtk.main_quit }
win.show_all; Gtk.main

See the API for Gtk::Widget for a complete list of signals available to all
widgets. Each signal description specifies the arguments passed to event han-
dlers and the event object type. In Ruby/GTK2, event objects are descendants
of the Gdk::Event class.

12.6 OOP with Ruby/GTK2

Ruby supports Object-Oriented Programming (OOP), and GTK+ is a class
library for GUI programming. An OO program builds objects and has them
interact with one another at run time to achieve desired tasks. With OOP, a
class is defined as a template to build objects that are instances of the class.
Thus, a class is a blueprint for creating new objects belonging to that class.
The general form of a class in Ruby is

GUI Programming with Ruby/GTK2 391

class NameOfClass
def initialize(...)

...
end ## of initialize

def methodName(...)
...

end ## of method

...

end ## of class definition

A class has attributes (variables defined in the class) and methods (functions
defined in the class). The initialize is a special method known as a con-
structor. The code NameOfClass.new(...) creates a new object instance and
passes any arguments to initialize for setting up that object.

An instance method is a method within an individual object. A method
is an instance method unless its method name uses the NameOfClass. prefix,
in which case the method becomes a class method. You invoke an instance
method i method through an object.

an object.i method(...)

whereas you invoke a class method c method with the class name.

NameOfClass.c method(...)

When no arguments are passed, the entire (...) is often omitted.
An instance attribute is a local variable in an object. An instance attribute

name must use the @ prefix. A class attribute is a variable local to the class
itself. A class attribute name must use the @@ prefix. A global variable, one
that is accessible anywhere, uses the $ prefix.

In Ruby, the period (.) operator is used for method calls but not for
attribute access. In fact, an attribute is private (not accessible from outside
the object or class) unless the class provides accessor methods for it.

You can easily arrange the conventional reader and writer methods for any
instance attribute @var:

def var; @var; end (Reader for @var, usage: foo=obj.var
def var=(x); @var=x; end (Writer for @var, usage: obj.var=value

Ruby makes coding this even easier. With the abbreviation notations

attri reader :var1, :var2, ...
attri writer :var1, :var2, ...
attri accessor :var1, :var2, ...

392 Mastering Linux

you can create readers, writers, and accessors (both readers and writers) for
any list of instance attributes of your choice (see Section 12.7 for an example).

After this brief introduction to OOP in Ruby, we will demonstrate how
to write OO code in Ruby/GTK2 with examples. Let’s rewrite our click.rb
example using OOP as follows (Ex: ex12/ooclick.rb):

#!/usr/bin/ruby
=begin
file: ooclick.rb
=end
require "gtk2"

class ClickMe < Gtk::Window # (1)
def initialize(title) ## constructor

super(title) # (2)
@count=0 # (3)
@button = Gtk::Button.new("Click Me") # (4)
add(@button) # (5)
@button.signal_connect("clicked"){ # (6)

clickHandler }
set_default_size(250, 50) # (7)
signal_connect("destroy") {Gtk.main_quit} # (8)

end ## of initialize

def clickHandler ## method # (9)
@count+=1; @button.label=@count.to_s()

end ## of clickHandler
end ## of class ClickMe

win = ClickMe.new("OO Click Example") # (10)
win.show_all; Gtk.main

A great advantage of OOP is the ability to write new classes by modifying
existing classes through inheritance. Here our ClickMe class inherits from
Gtk::Window (with the < notation on line 1), meaning that ClickMe gets all
the methods and attributes in Gtk::Window, the superclass of ClickMe. As
a result, ClickMe becomes a specialized version (a subclass) of Gtk::Window
and can be used as such.

The initialize method of ClickMe passes the title argument (line 2)
to the superclass constructor (initialize in Gtk::Window), sets up a Button
object @button and an integer @count (lines 3-4), adds @button as a child to
itself (line 5), and connects the method clickHandler, defined on line 9, to
the @button clicked event (line 6).

Finally, it sets its own default size and destroy event handler (lines 7-8).
After the class ClickMe is defined, we simply create an instance (line 10),

show it, and call Gtk.main.

GUI Programming with Ruby/GTK2 393

12.7 A Tic-Tac-Toe Game

Our next example (Ex: ex12/tic/tictactoe.rb) demonstrates OOP and
the use of images in a realistic application (Figure 12.11).

FIGURE 12.11: Tic-Tac-Toe

First, we define a PlayButton class as a subclass of Gtk::Button.
PlayButton objects will form the nine clickable positions on the Tic-Tac-Toe
game board.

class PlayButton < Gtk::Button
attr_reader :r, :c, :open, :lb
attr_writer :open
def initialize(r,c)

super() ## initialize the super-class object
@lb=Gtk::Label.new(" ")
add(@lb)
@r=r; @c=c; @open=true

end
end

The rows and columns of our game board are indexed 0 through 2. The
PlayButton row (@r) and column (@c) attributes record its board position.
The @open attribute indicates if the position is occupied or not. A PlayButton
initially contains a blank label. When the position is played, it will display
either an X image or an O image.

The TicBoard, a subclass of Gtk::Window, implements the game board
display and game logic.

class TicBoard < Gtk::Window

394 Mastering Linux

def initialize(x_file, o_file) ## constructor
super("Tic-Tac-Toe")
@x=x_file; @o=o_file; @xTurn=true ## (a)
set_default_size(220, 200)
signal_connect("destroy") {Gtk.main_quit}
reset()

end ## of initialize

A new TicBoard gets the X and O token image files and saves them in instance
attributes @x and @o, respectively. The @xTurn attribute keeps track of which
token to play (line a).

The constructor calls reset to prepare values for a new game. It creates a
3x3 layout Table (@grid, lines b-c) and attaches a new PlayButton to each
of the nine positions with a double loop (line e).

def reset
@gameEnd=false; @moveCount=0
@mv=Array.new(3){Array.new(3, nil)}
@grid=Gtk::Table.new(3,3,true) ## (b)
@grid.row_spacings=10
@grid.column_spacings=10
@grid.border_width=20 ## (c)
for r in 0..2 do ## (e)

for c in 0..2 do
b=PlayButton.new(r,c)
b.set_size_request(37,39)
@grid.attach(b,r,r+1,c,c+1)
b.signal_connect("clicked"){|pb| ## (f)

makeMove(pb) }
end ## of for c loop

end ## of for r loop
add(@grid)

end ## of reset

The reset method can be called at any time to begin a new game.
The clicked event of each PlayButton is connected (line f) to the event

handler makeMove, which works as follows:

1. If the game has ended, starts a new game by removing and destroying
the @grid child, calling reset, and causing re-display (line g)

2. If the play position is not open, returns; otherwise, marks it occupied
and continues (line h)

3. Increments the @moveCount, replaces the blank label child with the ap-
propriate game token image, records the move in the @mv array and calls
the winner method to see if the game has ended (lines i-j)

GUI Programming with Ruby/GTK2 395

4. Toggles the @xTurn attribute before finishing (line k)

def makeMove(pb)
if (@gameEnd) ## (g)

remove(@grid); @grid.destroy
reset(); show_all; return(true)

end
if (! pb.open); return(true) ## (h)
else; pb.open=false; end
@moveCount=@moveCount+1 ## (i)
r=pb.r; c=pb.c
pb.remove(pb.lb); pb.lb.destroy
if (@xTurn)

token=Gtk::Image.new(@x)
pb.add(token); token.show
@mv[r][c]="X";
if (winner("X")); @gameEnd=true; end

else
token=Gtk::Image.new(@o)
pb.add(token); token.show
@mv[r][c]="O"
if (winner("O")); @gameEnd=true; end

end ## (j)
@xTurn=!@xTurn ## (k)
true

end ## of makeMove

To determine if token t has won, the winner method checks the rows, columns,
and diagonals only if the @moveCount is 5 or greater.

def winner(t)
if (@moveCount > 4); return(

(@mv[0][0]==t && @mv[0][1]==t && @mv[0][2]==t) ||
(@mv[1][0]==t && @mv[1][1]==t && @mv[1][2]==t) ||
(@mv[2][0]==t && @mv[2][1]==t && @mv[2][2]==t) ||
(@mv[0][0]==t && @mv[1][0]==t && @mv[2][0]==t) ||
(@mv[0][1]==t && @mv[1][1]==t && @mv[2][1]==t) ||
(@mv[0][2]==t && @mv[1][2]==t && @mv[2][2]==t) ||
(@mv[0][0]==t && @mv[1][1]==t && @mv[2][2]==t) ||
(@mv[0][2]==t && @mv[1][1]==t && @mv[2][0]==t))

end
return(false)

end
end ## of class TicBoard

With the TicBoard class defined, we only need three lines of code to get the
game going.

396 Mastering Linux

$win = TicBoard.new("x.png", "o.png")
$win.show_all; Gtk.main

The complete, ready-to-run code for this and other examples in this chapter
can be found in the example code package.

12.8 Menu Bar

A game GUI, even one as simple as that for Tic-Tac-Toe, will usually have
options for the game and for players. Such options are typically placed on a
menu bar for easy access.

Let’s see how to add a menu bar to the Tic-Tac-Toe game given in Sec-
tion 12.7.

FIGURE 12.12: Tic-Tac-Toe with Menu Bar

In Figure 12.12, the menu bar contains two menu items, and each pulls
down a menu (list of options). In this example, the Player menu provides the
option of X or O going first. The Game menu allows players to start a new
game or take back a move.

The createBar method creates and returns a MenuBar (line A). After ob-
taining a new MenuBar, topbar, we set its background (to orange, line B); pass
two options, op1 and op2, to the constructor of a MyMenuItem named Game
(linesC-D); and place the menu item on topbar (line E). The Player menu
item is constructed similarly.

GUI Programming with Ruby/GTK2 397

def createBar
topbar=Gtk::MenuBar.new ## (A)
topbar.modify_bg(Gtk::STATE_NORMAL, ## (B)

Gdk::Color.parse("#FFFFAAAA0000"))
op1=Gtk::MenuItem.new("New Game") ## (C)
op1.signal_connect("activate"){

@vbox.remove(@grid); @grid.destroy
reset(); show_all

}
op2=Gtk::MenuItem.new("Unmove")
op2.signal_connect("activate"){

puts "Take back a move!"
}
it1=MyMenuItem.new("Game", op1, op2) ## (D)
topbar.append(it1)

op1=Gtk::MenuItem.new("X First")
op1.signal_connect("activate"){ @xTurn=true }
op2=Gtk::MenuItem.new("O First")
op2.signal_connect("activate"){ @xTurn=false }
it1=MyMenuItem.new("Player", op1, op2)
topbar.append(it1)
return topbar

end

The MyMenuItem class is a subclass of Gtk::MenuItem created with any given
title and number of options passed to its constructor. Note that the *options
parameter gets all arguments after the first one (line F).

class MyMenuItem < Gtk::MenuItem
def initialize(title, *options) ## (F)

super(title)
submenu = Gtk::Menu.new
options.each {|op| submenu.append(op) }
set_submenu(submenu)

end
end

The full program (Ex: ex12/tic/ticmenu.rb) can be found in the example
package.

12.9 Drag and Drop

A particular advantage of GUI is the ability to provide drag-and-drop
(dnd) operations. Here, we will demonstrate Ruby/GTK2 support for dnd

398 Mastering Linux

by a program that can receive files via dnd from the Gnome desktop, the
Nautilus file manager, or other similar applications and upload the files to
another computer (Figure 12.13).

FIGURE 12.13: Drag-And-Drop File Upload

With dnd, you drag from a source window and drop over a destination
window. The data items transferred from source to destination are known as
targets.

Our example (Ex: ex12/upload.rb) starts with a customizable global
variable set to the command to be used for file uploading.

The DestWindow class is a top-level window set up as a dnd destination
capable of receiving text as well as uri targets (line 1-2). The drag-drop event
triggers a call to the Gtk::Drag class method get data to request for the
target data. When the target data becomes available, a drag-data-received
signal will be delivered.

$uploadCommand="/root/cmd/mput"

class DestWindow < Gtk::Window
def initialize
super("File Upload")
@label = Gtk::Label.new("Ready To Upload")
add(@label)
set_default_size(500, 100)
Gtk::Drag.dest_set(self, ## (1)

Gtk::Drag::DEST_DEFAULT_ALL, [],
Gdk::DragContext::ACTION_COPY)

Gtk::Drag.dest_add_text_targets(self);
Gtk::Drag.dest_add_uri_targets(self); ## (2)

signal_connect("drag-drop"){|w, dc, x, y, time| ## (3)
Gtk::Drag.get_data(w, dc, dc.targets[0], time)

}

The drag-data-received event is connected to code to prepare for file up-
loading: obtaining file pathname from the uri data (line 4), splitting multiple
files into an array (line 5), and scheduling each file for uploading (line 6) with
an appropriate delay. The GLib::Timeout.add_seconds schedules any block
of code to be called repeatedly every number of seconds. The repetition is
stopped when the code block returns false.

GUI Programming with Ruby/GTK2 399

signal_connect("drag-data-received"){
|w, dc, x, y, selectiondata, info, time|
f=selectiondata.data
f = f.gsub(/file:\/\//,"") ## (4)
files=f.split(/\r\n/) ## (5)
@label.set_label(

"Uploading #{files.length} files ...")
delay=1
files.each{|file| ## (6)

scheduling repeated call to file_upload
GLib::Timeout.add_seconds(delay){ file_upload(file) }
delay=delay+delay

}
}

end ## of initialize

Actual file uploading is performed by the file_upload method which invokes
the given $uploadCommand and displays the resulting standard output through
@label.

def file_upload(f)
result=‘#{$uploadCommand} #{f} 2>/dev/null‘
@label.set_label(result)
return false ### stops repetition

end
end ## of DestWindow

The complete upload.rb can be found in the example code package.

12.10 For More Information

Ruby/GTK2 provides many widgets and other useful classes for GUI. The
companion website provides a convenient Ruby-GNOME2 Widget and Object
API Search function. For complete user guides, tutorials, installation, and API
information go to the official site

http://ruby-gnome2.sourceforge.jp/

For more information on the Ruby language please visit

http://ruby-doc.org/

Glade is a rapid development tool for GTK, allowing you to interactively
design a GUI by selecting widgets, edit their attributes, and arrange their
layout. You can also connect event handling code. Glade allows you to save
your work in XML files filename.glade that can be used to generate actual
GUI code in C++ or Ruby/GTK2. Please go to http://glade.gnome.org/
for more information.

400 Mastering Linux

12.11 Summary

The GTK+ is an object-oriented version of GTK (GIMP Toolkit), which
is a graphics and GUI library built on top of X11. Through the Ruby scripting
language and its GTK+ binding (Ruby/GTK2), GUI programming is made
much easier.

A GUI program is event driven. It displays widgets in a well-designed
layout for run-time user actions. The events produced by these actions lead
to preprogrammed event handler code. A GUI program monitors events when
not handling them.

Widgets in a GUI program form a containment hierarchy. The top-level
window is the root container. Layout containers provide horizontal and vertical
flow, row-column positioning in a grid, fixed positioning, and so on. Atomic
widgets provide many familiar GUI features such as push buttons, selection
buttons, radio buttons, text entry fields, and slider scales.

The signal_connect method of a widget is used to connect a signal for
the widget to a code block that handles the particular event. In addition to
basic events from the mouse and keyboard, semantic events represent widget-
defined signals such as button clicking and text entry. Different event objects
carry data related to particular events and are delivered to event handlers for
processing.

A set of GUI examples shows how to write code, procedural and object-
oriented, in Ruby/GTK2 that works under Linux, including a GUI front end
for tar, a Tic-Tac-Toe game, and a drag-and-drop file uploader.

12.12 Exercises

1. Take the click.rb example in Section 12.1 and connect to the

button-press-event or
button-release-event

instead of the clicked event.

2. Take the volume.rb example in Section 12.4 and modify it to use a 0.5
adjustment step and a vertical scale.

3. Take the tz.rb example in Section 12.4 and rewrite it using OOP.

4. Take the api.rb code in Section 12.4 and add the ability to display API
for Gdk (for example, for Gdk::EventButton).

5. Take the tz.rb example in Section 12.4 and build a similar GUI front
end for the zip command.

GUI Programming with Ruby/GTK2 401

6. Write a picture viewer program that displays pictures given on the com-
mand line. A user may use mouse clicks to go to the next or previous
picture.

7. Add a menu bar to the upload.rb example in Section 12.9 to provide
an Ask before upload toggle option. If the option is set, the program
will use a dialog window to ask the user to confirm or cancel each file
upload.

8. Add GUI elements and move generation logic to the tictactoe.rb ex-
ample in Section 12.7 to enable the program to make moves as a player
to play the game with a user.

9. Write a Ruby/GTK2 program to display a pie chart based on percent-
ages and colors given on the command line.

10. Create a simple text editor Ruby/GTK2 program.

Appendices Online

To reduce the volume of the book, the appendices are online at the book’s web-
site (http://ml.sofpower.com) where you can also find information updates
and many other useful resources.

Appendix: Secure Communication with SSH and SFTP

SSH is a secure remote login program. It lets you log in and access a remote
computer, often a Linux system, using your own desktop/laptop computer
from home or anywhere you can access the Internet. SFTP is a secure file
transfer program that allows you to upload and download files to and from
another computer. See the appendix at http://ml.sofpower.com/ssh.html.

Appendix: Introduction to vim

Creating and editing text files is basic to many tasks on the com-
puter. There are many text editors for Linux, but vim (vi iMproved)
is a visual interactive editor preferred by many. See the appendix at
http://ml.sofpower.com/vimIntro.pdf.

Appendix: Text Editing with vi

In-depth coverage of text editing concepts, techniques, and macros with the vi
editor are provided. See the appendix at http://ml.sofpower.com/vi.pdf.

Appendix: Vi Quick Reference

Many editing commands are available under vi, and this quick reference card
can be handy. See the appendix at http://ml.sofpower.com/viQuickRef.pdf.

Appendix: The emacs Editor

Rather than operating in distinct input and command modes like vi, emacs
operates in only one mode: Printable characters typed are inserted at the
cursor position. Commands are given as control characters or are prefixed by
ESC or ctrl+x. See the appendix at http://ml.sofpower.com/emacs.pdf.

403

Website and Example Code Package

Website

The book has a website useful for instructors and students:

http://ml.sofpower.com

You can find the appendices for the textbook at the site. The site also of-
fers a complete example code package for downloading, information updates,
resources, ordering information, and errata.

Example Code Package

All examples in this book, and a few more, are contained in a code exam-
ple package.1 The entire package can be downloaded from the website in one
compressed file, MasteringLinux.tgz or MasteringLinux.zip. The down-
load access code is LMCEP2010dL.

The package contains the following files and directories

ex01/ ex03/ ex05/ ex07/ ex09/ ex11/ guide.pdf
ex02/ ex04/ ex06/ ex08/ ex10/ ex12/ license.txt

corresponding to the chapters in the book. You can find the descriptions for
the examples in the textbook with cross-references to their file locations.

Unpacking

1. Place the downloaded file in an appropriate directory of your choice.

2. Go to that directory and, depending on the downloaded file, use one of
these commands to unpack:

tar zxpvf MasteringLinux.tgz

unzip MasteringLinux.zip

This will create a folder MasteringLinuixCode/ containing the example
code package.

1This example code package is distributed under license from SOFPOWER. The example
code package is for the personal use of purchasers of the book. Any other use, copying, or
resale, without written permission from SOFPOWER, is prohibited.

405

Bibliography

[1] Richard Blum. Linux Command Line and Shell Scripting Bible. John
Wiley & Sons, Inc. New York, NY, USA, 2008

[2] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel, 3rd
Ed. O’Reilly, California, USA, 2005

[3] Arthur Griffith. Gnome/Gtk+ Programming Bible. John Wiley & Sons,
Inc. New York, NY, USA, 2000

[4] Robert Love. Linux Kernel Development, 3rd Ed. Addison-Wesley Pro-
fessional, Indianapolis, Indiana, USA, 2010

[5] Carla Schroder. Linux Networking Cookbook. O’Reilly, California, USA,
2007

[6] Ellen Siever, Stephen Figgins, Robert Love, and Arnold Robbins. Linux
in a Nutshell, 6th Ed., O’Reilly, California, USA 2009

[7] Mark G. Sobell. A Practical Guide to Linux Commands, Editors, and
Shell Programming, 2nd Ed., Prentice Hall, New Jersey, USA, 2009

[8] Mark G. Sobell. A Practical Guide to Ubuntu Linux, 3rd Ed., Prentice
Hall, New Jersey, USA, 2010

[9] Tony Steidler-Dennison. Run Your Own Web Server Using Linux &
Apache. SitePoint, Collingwood, Victoria, AU, 2005

[10] Paul S. Wang and Sanda Katila. An Introduction to Web Design and
Programming, Course Technology/Cengage Learning, Ohio, USA, 2004

[11] Brian Ward. How Linux Works: What Every Superuser Should Know. No
Starch Press, San Francisco, CA, USA, 2004

[12] Kevin Yank. Build Your Own Database Driven Web Site Using PHP &
MySQL. SitePoint, Collingwood, Victoria, AU, 2009

407

Index

(Bash variable), 130
* (Bash variable), 131
. (Bash command), 64
. (directory self pointer), 22
.. (parent directory), 22
/etc/passwd (file), 69
? (Bash variable), 135
@ (Bash variable), 75, 131

abort (library function), 324
accept (system call), 353
access (system call), 302
Active Server Pages (ASP), 215
alarm (library function), 324
alias (Bash command), 59
alias (Bash expansion), 59
Aliases, domain name, 195
Apache server, 208
Apache Web server, 226–235

configuration, 228–235
directives, 229–230
file deflation, 237–238
install, 238–241
modules, 230–231
PHP module, 242–244

apache2ctl (regular command), 228
apachectl (regular command), 228
apt-get (regular command), 254
aptitude (regular command), 254
ar (regular command), 273
arithmetic (Bash expansion), 55
ARPANET, 191
as (regular command), 261
ASCII armored, 202
ASP (Active Server Pages), 215
Audio and video player, 96
Authority, for name server zones, 213

awk (regular command), 119

basename (file command), 185
Bash

alias expansion, 59
arithmetic expansion, 55
arrays, 142–143
brace expansion, 55
command execution, 47–49
command expansion, 61–62
command line, 44
command-line prompt, 44, 65
compound command, 45
disable globbing, 63
error and interrupt, 159–160
example scripts, 151–158
expansions, 55–63
file query, 140–141
filename expansion, 62–63
for loop, 131–132
function, 146–150
function arguments, 147–149
function definition, 74
function export, 75
function return value, 149–150
functions, 74–75
here document, 144–146
history expansion, 56–59
init files, 69–71
interacting with, 44–45
job control, 51–54
numerical computation, 139–140
pattern condition, 139
process expansion, 62
process number, 160
prompt, 67
quoting, 71–74

409

410 Mastering Linux

redefine built-in function, 150
script debugging, 158
script execution, 130
script invoking, 127–128
script parameters, 130–131
special characters, 71–74
string expansion, 55
test expressions, 135–136
tilde expansion, 59–60
until loop, 139
variable expansion, 60–61
variable export, 48
variable modifiers, 143–144
variables, 64–65, 141–142
while loop, 138

Bash command
., 64
alias, 59
bg, 53
break, 140
case, 137
cd, 22
continue, 140
declare, 61
dirs, 64
echo, 43, 56
env, 66
eval, 153
exit, 38, 54
export, 48
fc, 58
fg, 45, 53
for, 131
hash, 48
help, 64
historyhistory, 117
if, 132–136
jobs, 52
kill, 54, 324
logout, 54
popd, 64
pushd, 64
set, 45, 50, 61
shift, 136
shopt, 63

source, 64
umask, 171
until, 139
which, 48
while, 138

Bash example script
clean, 151–153
cpp, 153–155
mput, 156–157
resize, 157–158
total, 155–156

Bash variable
#, 130
*, 131
?, 135
@, 75, 131
CDPATH, 65
DISPLAY, 66
EDITOR, 65
HISTFILE, 58
HISTSIZE, 65
HOME, 65
HOSTNAME, 65
OLDPWD, 59, 65
PATH, 47, 65
PS1, 65
PS2, 65
PWD, 65
SHELL, 65
TERM, 66
USER, 65
DISPLAY, 89
positional, 141

bc (regular command), 96
bg (Bash command), 53
bind (system call), 345
BITNET, 192
Boot files, 213
brace (Bash expansion), 55
bzip2 (file command), 183

C library function, 213
C program

main function arguments, 258
assembly, 261

Index 411

compiler, 261–263
exit status, 259
header files, 265
library, 267–269
linking, 266–267
optimization, 261
preprocessor, 263–265

cancel (regular command), 40
case (Bash command), 137
Case sensitivity, 195
cat (regular command), 50
cd (Bash command), 22
CD and DVD, 95
CDPATH, 65
CGI (Common Gateway Interface),

215
chdir (system call), 304
chgrp (file command), 173
chkconfig (regular command), 227
chmod (file command), 170
chown (file command), 173
chsh (regular command), 38, 43
class (Ruby), 390
closedir (library function), 304
cmp (file command), 185
comm (file command), 185
Command

Bash built-in, 18, 44
execution environment, 65–66
exit status, 45
interpretation cycle, 44
regular, 18, 44
search, 47
search path, 47

command (Bash expansion), 61
Command line

argument conventions, 260–261
arguments in C, 258–259
completion, 46–47
editing, 45–46

Commands
job control, 54
useful, 38–40

Common Gateway Interface (CGI),
215

Compiling C program, 260–263
Compiling Programs, 34
Completion

command name, 46
file name, 46
programmable, 47
user hostname, 46
user name, 46
variable name, 46

Comprehensive Perl Archive
Network, 161

connect (system call), 344
Connections, in HTTP, 216
Container widgets

layout, 376–379
top-level, 376

Content Type and File Suffix, 168
Content, types of, 207–208
Core dumps, 285–287
Country-code top-level domains, 212
cp (regular command), 23
cpp (regular command), 263
creat (system call), 297
Cryptography

public-key, 200–201
symmetric-key, 200

ctime (library function), 300

Daemon, 359–360
Data sink, 50
date (regular command), 39
Debugging with GDB, 279–284
declare (Bash command), 61
DECnet, 192
Desktop

launcher, 80
notification area, 83
overview, 79–80
Panel, 80
start menu, 82
window list, 83
workspace, 82

desktop (GUI), 11
df (file command), 185
diff (file command), 185

412 Mastering Linux

dig (regular command), 198
Digest, of message, 204
Digital Signature, 200–201
Digital signature, 205
Directory

operations in C, 302–304
stream, 303–304

dirs (Bash command), 64
DISPLAY, 66
DISPLAY (Bash variable), 89
display (regular command), 96
DNS, 194, 212–214

Resolvers, 213
Servers, 213

Domain names, 192
IP mapping to, 212
registration of, 211–214
servers of, 211
service, 212–214
top-level, 192

Dot notation, 192
Drag and drop

data, 398
destination window, 398
GTK+ event, 398
source window, 398

drag-data-received (GTK+ event),
398

drag-drop (GTK+ event), 398
du (file command), 185
dup2 (system call), 336
Dynamic server pages, 215

echo (Bash command), 43, 56
Editing Text, 27–28
EDITOR, 65
Editor

emacs, 39
gedit, 39
gvim, 39
nano, 39
vi, 39
vim, 39

edquota (regular command), 179
emacs (editor), 39

Encoding, base64, 202
Encrypt/decrypt with GnuPG,

202–203
env (Bash command), 66
eog (regular command), 96
Epoch, 300
eval (Bash command), 153
Event

object, 372
propagation, 372

Event handler, 371
parameters, 372

Event handling (GTK+), 371–372
Event signal, 371
Event-driven program, 371
Event-driven programs, 371
evince (regular command), 92
ex (regular command), 114
execl (library function), 314
Executable

binary file, 315
ELF, 315
file, 315
text file, 315

execv (library function), 314
execve (library function), 314
exit (Bash command), 38, 54
exit (library function), 320
Exit status, 135

C program, 259–260
expand (filter), 106
expand (regular command), 106
export (Bash command), 48
exportfs (regular command), 180

fc (Bash command), 58
fcntl (system call), 354, 364
fdopen (library function), 272, 337
fdopendir (system call), 303
fflush (library function), 270
fg (Bash command), 45, 53
figure drawing, 96
File

absolute pathname, 21
access control, 24–27, 170–171

Index 413

Bash login, 70
Bash logout, 70
creation mask, 68–69
full pathname, 166
group, 175
hidden, 17
mode, 172
/etc/passwd, 69
pathname, 207
relative pathname, 21
setuid, 174
simple name, 22
status, 172–175
synchronization, 200
textttBash init, 70
user/group id, 173

File command
basename, 185
bzip2, 183
chgrp, 173
chmod, 170
chown, 173
cmp, 185
comm, 185
df, 185
diff, 185
du, 185
find, 181
gzip, 183
ln, 169
locate, 183
ls, 169
mount, 180
rm, 169
shar, 184
size, 185
split, 185
tar, 183
touch, 185
umount, 177
uniq, 185
wc, 185

File manager, Nautilus, 91–94
File name suffixes, 33
File types, 166–170

directory, 167
link, 168
ordinary, 167
special, 168
symbolic link, 169

filename (Bash expansion), 62
Files and Directories, 20–24
Filesystem

mounted, 177
networked, 180
quotas, 179
super block, 178
table, 179

Filters, 103–108
expand, 106
fold, 106
head, 104
sort, 107
tail, 104
tr, 105

find (file command), 181
finger (regular command), 39
firefox (regular command), 45
fold (filter), 106
fold (regular command), 106
for (Bash command), 131
fork (system call), 311
freopen (library function), 271
fseek (library function), 270
fstat (system call), 299
ftell (library function), 271

g++ (regular command), 257
gcalctool (regular command), 96
gcc (regular command), 257
gcc options, 262–263
gdb (regular command), 279
gedit (editor), 39
GET method, 216
getchar (library function), 268
getcwd (library function), 323
getdents (system call), 303
gethostbyname (library function),

345, 347
getpid (system call), 313

414 Mastering Linux

getppid (system call), 313
gimp (regular command), 52, 96
GNOME Desktop, 80–88

appearance, 85
applications, 84
objects, 85
workspace, 86

GNOME Terminal, 97–99
Web, email links, 99
copy and paste, 99
starting, 97–98

GNOME window manager, 89
gnome-session (regular command),

80
gnome-terminal (regular command),

43, 97
GnuPG, 200

and email, 203
encrypt/decrypt, 202–203
key creation, 201–202
message signing, 204–205

gprof (regular command), 263
groupadd (regular command), 175
GTK+

atomic widgets, 380–385
decorators, 385–387
drag and drop, 397–399
event basics, 371–372
events, 387–390
input-focus sevents, 387
key events, 387
layout containers, 376–379
low-level events, 387
menu bar, 396–397
MenuItem, 397
mouse-button events, 387
new instance, 376
semantic events, 387
table layout, 394
top-level window, 370, 376
widget Button, 370
widget Window, 370
widget method signal connect,

370, 371
widget subclassing, 393

widgets, 375–387
GTK+ event

activate, 378
button-press-event, 387
button-release-event, 387
clicked, 370, 379
delete event, 379
destroy, 371
enter-notify-event, 381
focus-in-event, 387
focus-out-event, 387
key-press-event, 387
key-release-event, 387
leave-notify-event, 381
toggled, 384
value-changed, 386
drag-data-received, 398
drag-drop, 398

GTK+ widget
Alignment, 376
AspectFrame, 376
Button, 380
CheckButton, 380
ColorButton, 380
ComboBoxEntry, 380
ComboBox, 380
Entry, 380
Expander, 377
Fixed, 376
Frame, 385
HBox, 376
HButtonBox, 376
HPaned, 376
HScale, 380
Label, 380
Layout, 377
MenuItem, 385
Notebook, 377
RadioButton, 380
ScrolledWindow, 385
SpinButton, 380
Table, 377
VBox, 376
VButtonBox, 376
VPaned, 377

Index 415

GUI, 11
gvim (editor), 39
gzip (file command), 183

Hall, Larry, 161
hash (Bash command), 48
head (filter), 104
head (regular command), 104
help (Bash command), 64
Hidden files, 17
HISTFILE, 58
history (Bash expansion), 56
HISTSIZE, 65
HOME, 65
host (regular command), 197
HOSTNAME, 65
hostname (regular command), 196
HTML, 209–210
htonl (library function), 356
htons (library function), 356
htpasswd (regular command), 237
htpasswd (regular command), 237
HTTP method

GET, 216
POST, 217

httpd (regular command), 226
Hypertext, 206
Hypertext Markup Language (HTML),

206–207, 209–210
Hypertext Preprocessor (PHP), 215
Hypertext Transfer Protocol (HTTP),

215–217

I/O
redirection, 49–51
standard, 49

I/O descriptor, 292–295
I/O multiplexing, 360–363
I/O redirection in C, 271–272
image manipulation, 96
import (regular command), 96
Index files, 207
xinetd, 357–359
Init file

readline, 46

texttt.bash profile, 71
init script /etc/init.d/httpd, 228
insight (regular command), 284
Instant Messaging, 31–32
Integrated development environment

(IDE), 209
Integrity, of message, 204
Internet, 191–194

address, 192
clients, 193, 194
domain name system, 194–195
servers, 193, 194
TLD, 195

Internet Corporation for Assigned
Names and Numbers (ICANN),
192, 193, 211, 213

Internet Protocol (IP), 192, 212–213
Internet Service Providers (ISPs), 213
Internet services daemon, 357
Internetworking, 191

Java Server Pages (JSP), 215
jobs (Bash command), 52
JSP (Java Server Pages), 215

kdevelop (regular command), 258
Key server, 202
Keyboard input escape character, 47
kill (Bash command), 54, 324
kill (regular command), 53, 54
kill (system call), 325
konsole (regular command), 43
ksnapshot (regular command), 96

Labels, for DNS tree node, 195
ld (regular command), 266
less (regular command), 105
Library creating, 272–273
Library function

abort, 324
alarm, 324
closedir, 304
ctime, 300
execl, 314
execv, 314
execve, 314

416 Mastering Linux

exit, 320
fdopen, 272, 337
fflush, 270
freopen, 271
fseek, 270
ftell, 271
getchar, 268
getcwd, 323
gethostbyname, 345, 347
htonl, 356
htons, 356
longjmp, 277
ntohl, 356
ntohs, 356
pclose, 332
popen, 331
putchar, 268
raise, 325
readdir, 303
setjmp, 277

Library functions
common, 267

link (system call), 298
Linux

documentation, 35–37
features, 4–5
file locations, 165–166
filesystem, 176–181
help and documentation, 100
history, 1–2
networking commands, 196–205
philosophy, 3
versions, 2–3

Linux systems, 212
listen (system call), 353
ln (file command), 169
locate (file command), 183
Login, 10–14
logout (Bash command), 54
longjmp (library function), 277
look (regular command), 39, 109
lp (regular command), 40
lpr (regular command), 29, 40
lprm (regular command), 40
lpstat (regular command), 40

lqp (regular command), 40
ls (file command), 169
lstat (system call), 299

Macromedia Dreamweaver, 209
mail (regular command), 174
make (regular command), 244
man (regular command), 36
Markup tags, 210
MD5, 184, 204
MenuItem (GTK+), 397
Message digest, 204
Message integrity, 204
Metacity, 90
MIME (Multipurpose Internet Mail

Extensions), 167, 208
mkdir (regular command), 23
mkdir (system call), 302
mknod (regular command), 180
mknod (system call), 300
more (regular command), 31
mount (file command), 180
mutt (regular command), 31
mv (regular command), 23
MySQL

administration, 248–251
configuration, 247–248
controlling, 247
install, 251–252
server and client, 247

mysql (regular command), 247
MySQL database server, 246–252
mysqld (regular command), 247

nano (editor), 39
Nautilus

networking in, 195–196
nautilus (regular command), 91
netstat (regular command), 248
Network

address, 192–193
client and server, 193
layer, 191
packet switching, 193
services, 189, 191

Index 417

Networking
protocols, 190–191
sockets, 341–345

Networking in C, 340–357
Nodes, 213
nslookup (regular command), 197
ntohl (library function), 356
ntohs (library function), 356

OLDPWD, 59, 65
On-demand service, 357–359
opendir (system call), 303
Opening a process, 331–332
openoffice.org (regular command),

96
Operating System, 9

Package management, 252–254
APT, 254
YUM, 252–253

Packet switching, 193
Page makers, 209
Partially specified URLs, 207
passwd (regular command), 38
Password encryption, 237
PATH, 47, 65
awk, 119–124
pclose (library function), 332
Per-user Web folder, 85
Perl scripting language

description of, 160–161
Personal Web pages, 208–209
PHP

configuration, 245
debugging, 245
file processing, 244
install, 243–244
security, 245

PHP (Hypertext Preprocessor), 215,
241–242

phpMyAdmin, 249
phpMyAdmin install, 250–251
pidof (regular command), 228
ping (regular command), 198
Pipe, 51

Pipe two-way, 338–339
Pipeline building, 117–119
pirut (regular command), 253
popd (Bash command), 64
popen (library function), 331
Port numbers, 207
Predicate function, 149
Process, 291

background, 45
creation, 311–314
environment, 320–323
foreground, 45
synchronization, 318–319
termination, 320

process (Bash expansion), 62
Processing, in HTTP, 216
Program execution, 314–319
ps (regular command), 310
PS1, 65
PS2, 65
pselect (system call), 363
ptrace (system call), 319
pushd (Bash command), 64
putchar (library function), 268
PWD, 65
pwd (regular command), 22, 61

Quad notation, 192
Queries

in HTTP, 216
Queries, in HTTP, 216
quotaoff (regular command), 179
quotaon (regular command), 179

raise (library function), 325
read (system call), 295
readdir (library function), 303
readelf (regular command), 315
recv (system call), 363
recvfrom (system call), 344
Regular command

apache2ctl, 228
apachectl, 228
apt-get, 254
aptitude, 254

418 Mastering Linux

ar, 273
as, 261
awk, 119
bc, 96
cancel, 40
cat, 50
chkconfig, 227
chmod, 26
chsh, 38, 43
cp, 23
cpp, 263
date, 39
dig, 198
display, 96
edquota, 179
eog, 96
evince, 92
ex, 114
expand, 106
exportfs, 180
finger, 29–30, 39
firefox, 45
fold, 106
g++, 257
gcalctool, 96
gcc, 257
gdb, 279
gimp, 52, 96
gnome-session, 80
gnome-terminal, 43, 97
gprof, 263
grep,fgrep,egrep, 108
groupadd, 175
head, 104
host, 197
hostname, 196
htpasswd, 237
httpd, 226
import, 96
insight, 284
kdevelop, 258
kill, 53, 54
konsole, 43
ksnapshot, 96
ld, 266

less, 105
look, 39, 109
lp, 40
lpr, 29, 40
lprm, 40
lpstat, 40
lqp, 40
ls, 25
mail, 174
make, 244
man, 36
mkdir, 23
mknod, 180
more, 31
mutt, 31
mv, 23
mysql, 247
mysqld, 247
nautilus, 91
netstat, 248
nslookup, 197
openoffice.org, 96
passwd, 38
pidof, 228
ping, 198
pirut, 253
ps, 310
pwd, 22, 61
quotaoff, 179
quotaon, 179
readelf, 315
rm, 23
rmdir, 23
rsync, 200
scp, 199
script, 40
sed, 113
service, 227
sftp, 199
sort, 107
ssh, 13, 46, 198
su, 25
sudo, 238–239
system-config-services, 227
system-config-users, 175

Index 419

tail, 104
tr, 105
unexpand, 106
vi, 111
wget, 218
which, 322
xclock, 89
xfig, 96
xwininfo, 91
yum, 252

Regular expression
basic, 110–112
grep, 112
grep, 113
matching commands, 108–110

Relative domain names, 195
rename (system call), 299
Responses, in HTTP, 216
rm (file command), 169
rm (regular command), 23
rmdir (regular command), 23
rmdir (system call), 303
Root name servers, 213
rsync (regular command), 200
Ruby

array loop, 374
arrays, 373–374
attribute name prefix, 391
class, 390
class attribute, 391
class method, 391
for loop, 375
functions, 374–375
instance attribute, 391
instance method, 391
method to i, 373
method to s, 373
primer, 372–375
regular expressions, 375
strings, 372–373
while loop, 375

Ruby class attribute
accessor, 392
reader and writer, 391

Ruby/GTK2

first example, 369–371
OOP, 390–392

scheme, in URLs, 206
scp (regular command), 199
screen capture, 96
script (regular command), 40
sed (regular command), 113
select (system call), 361
send (system call), 363
sendto (system call), 344
server, 207
Server root, 207
Server-side programming, 214, 216
service (regular command), 227
Session, 87
set (Bash command), 45, 50, 61
setjmp (library function), 277
setsid (system call), 360
sftp (regular command), 199
shar (file command), 184
SHELL, 65
Shell, 9

Glob pattern, 62
interactive, 70
intro, 14–20
login, 70
non-interactive, 70
setting default, 43

Shell command from C, 307
shift (Bash command), 136
shopt (Bash command), 63
shutdown (system call), 352
Sibling labels, 195
sigaction (system call), 325
Signal

concepts, 323–324
processing, 325
sending, 324–325
trapping, 325–328

Signals, 323–328
Signature, digital, 200–201
size (file command), 185
Socket

address, 343

420 Mastering Linux

address structure, 344
datagram, 341
Internet, 343
local, 343
port, 345
raw, 341
stream, 341

socket (system call), 342
Socket out-of-band data, 363–365
socketpair (system call), 352
sort (filter), 107
sort (regular command), 107
source (Bash command), 64
split (file command), 185
SSH

key generation, 199
X11 forwarding, 198–199

ssh (regular command), 13, 46, 198
stat (system call), 299
sed, 113–117
string (Bash expansion), 55
su (regular command), 25
symlink (system call), 298
system (system call), 307
System call

exit, 320
accept, 353
access, 302
bind, 345
chdir, 304
connect, 344
creat, 297
dup2, 336
fcntl, 354, 364
fdopendir, 303
file operations, 297–302
fork, 311
fstat, 299
getdents, 303
getpid, 313
getppid, 313
I/O, 292–297
kill, 325
link, 298
listen, 353

lseek, 296–297
lstat, 299
mkdir, 302
mknod, 300
opendir, 303
pipe, 333–337
pselect, 363
ptrace, 319
read, 295
recv, 363
recvfrom, 344
rename, 299
rmdir, 303
select, 361
send, 363
sendto, 344
setsid, 360
shutdown, 352
sigaction, 325
socket, 342
socketpair, 352
stat, 299
symlink, 298
system, 307
umask, 298
unlink, 298
utimes, 300
vfork, 318
wait, 318
waitpid, 319
write, 295

system-config-services (regular
command), 227

system-config-users (regular
command), 175

tail (regular command), 104
tail (filter), 104
tar (file command), 183
TERM, 66
Terminal window, 98–100
Termination, in HTTP, 216
Tic-Tac-Toe, 393–396
tilde (Bash expansion), 59
Top-level domain, 192, 211

Index 421

touch (file command), 185
tr (filter), 105
tr (regular command), 105
Transmission Control Protocol, 191

umask (Bash command), 171
umask (system call), 298
umount (file command), 177
unexpand (regular command), 106
Uniform Resource Locators (URLs),

206–207
uniq (file command), 185
unlink (system call), 298
until (Bash command), 139
URI, 224–225
URL, 224–225
USER, 65
User Datagram Protocol, 191
utimes (system call), 300

variable (Bash expansion), 60
vfork (system call), 318
vi (editor), 39
vi (regular command), 111
vim (editor), 39
VoIP, 96

W3 Consortium, 206
wait (system call), 318
waitpid (system call), 319
wc (file command), 185
Web, 205–208

access, 207
browsers, 194
browsing, 32
database support for, 246
dynamic page generation, 214–

215
hosting, 210–211
HTTP request, 225
HTTP response, 226
hyperlinks, 206
publishing, 208
request, 225
server, 223–224
URLs, 206–207

wget (regular command), 218
which (Bash command), 48
which (regular command), 322
while (Bash command), 138
whois command, 212
Widget

atomic, 380
child, 376
container, 376
decorator, 385
layout, 376
top-level, 375

Window
child, 376
input focus, 376
parent, 376
rendering, 376
root, 375
title, 376
top-level, 376

window ID, 91
Window manager, 89–90
World Wide Web, 205–208

information on, 208–209
personal pages on, 208–209

write (system call), 295

X server, 88
X Window System, 88–91
X11 forwarding, 198
xclock (regular command), 89
xfig (regular command), 96
xwininfo (regular command), 91

yum (regular command), 252

Zones, of name servers, 213

	Cover
	Title
	Copyright
	Preface
	Contents
	Introduction
	Chapter 1: A Linux Primer
	Chapter 2: Interactive Use of the Shell
	Chapter 3: Desktops, Windows, and Applications
	Chapter 4: Filters and Regular Expressions
	Chapter 5: Writing Shell Scripts
	Chapter 6: The File System
	Chapter 7: Networking, Internet, and the Web
	Chapter 8: Web Hosting: Apache, PHP, and MySQL
	Chapter 9: C Programming in Linux
	Chapter 10: I/O and Process Control System Calls
	Chapter 11: Inter-process and Network Communication
	Chapter 12: GUI Programming with Ruby/GTK2
	Appendices Online
	Website and Example Code Package
	Bibliography
	Index

