
M A N N I N G

Roger Ignazio
FOREWORD BY Florian Leibert

IN ACTION

Mesos in Action

Mesos in Action

ROGER IGNAZIO

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical development editor: Jerry Kuch
PO Box 761 Copyeditor: Sharon Wilkey
Shelter Island, NY 11964 Proofreader: Melody Dolab

Technical proofreaders: Chris Schaefer, Yogesh Poojari
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617292927
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

www.manning.com

 For Sarah

vii

brief contents
PART 1 HELLO, MESOS ...1

1 ■ Introducing Mesos 3
2 ■ Managing datacenter resources with Mesos 17

PART 2 CORE MESOS ..31
3 ■ Setting up Mesos 33
4 ■ Mesos fundamentals 58
5 ■ Logging and debugging 79
6 ■ Mesos in production 97

PART 3 RUNNING ON MESOS...117
7 ■ Deploying applications with Marathon 119
8 ■ Managing scheduled tasks with Chronos 147
9 ■ Deploying applications and managing scheduled

tasks with Aurora 169
10 ■ Developing a framework 196

ix

contents
foreword xv
preface xvii
acknowledgements xix
about this book xxi
about the author xxv
about the cover illustration xxvi

PART 1 HELLO, MESOS..1

1 Introducing Mesos 3
1.1 Meet Mesos 4

Understanding how it works 5 ■ Comparing virtual machines
and containers 7 ■ Knowing when (and why) to use Mesos 9

1.2 Why we need to rethink the datacenter 10
Partitioning of resources 11 ■ Deploying applications 12

1.3 The Mesos distributed architecture 13
Masters 13 ■ Slaves 14 ■ Frameworks 15

1.4 Summary 15

CONTENTSx

2 Managing datacenter resources with Mesos 17
2.1 A brief introduction to Spark 18

Spark on a standalone cluster 19 ■ Spark on Mesos 19

2.2 Running a Spark job on Mesos 22
Finding prime numbers in a set 22 ■ Getting and packaging
up the code 23 ■ Submitting the job 24 ■ Observing the
output 24

2.3 Exploring further 26
Mesos UI 26 ■ Spark UI 26

2.4 Summary 28

PART 2 CORE MESOS...31

3 Setting up Mesos 33
3.1 Deploying Mesos 34

Mesos cluster components 34 ■ Considerations for
a development environment 35 ■ Considerations for
a production environment 36

3.2 Installing Mesos and ZooKeeper 38
Installing from packages 39 ■ Compiling and installing
from source 40

3.3 Configuring Mesos and ZooKeeper 44
ZooKeeper configuration 44 ■ Mesos configuration 46

3.4 Installing and configuring Docker 52
Installation 52 ■ Configuration 54 ■ Configuring Mesos
slaves for Docker 55

3.5 Upgrading Mesos 55
Upgrading Mesos masters 56 ■ Upgrading Mesos slaves 56

3.6 Summary 57

4 Mesos fundamentals 58
4.1 Scheduling and allocating datacenter resources 58

Understanding resource scheduling 59 ■ Understanding
resource allocation 60 ■ Customizing Mesos slave resources
and attributes 63

CONTENTS xi

4.2 Isolating resources with containers 64
Isolating and monitoring CPU, memory, and disk 64
Network monitoring and rate limiting 66

4.3 Understanding fault tolerance and high availability 70
Fault tolerance 71 ■ High availability 72 ■ Handling failures
and upgrades 72

4.4 Summary 77

5 Logging and debugging 79
5.1 Understanding and configuring Mesos logging 80

Locating and interpreting log files 80 ■ Configuring logging 82

5.2 Debugging a Mesos cluster and its tasks 83
Using the Mesos web interface 85 ■ Using the built-in
command-line tools 92 ■ Using Mesosphere’s mesos-cli tool 93

5.3 Summary 95

6 Mesos in production 97
6.1 Monitoring the Mesos and ZooKeeper clusters 98

Monitoring the Mesos master 98 ■ Monitoring the
Mesos slave 100 ■ Monitoring ZooKeeper 101

6.2 Modifying the Mesos master quorum 103
Adding masters 104 ■ Removing masters 105
Replacing masters 105

6.3 Implementing security and access control 106
Slave and framework authentication 106 ■ Authorization and
access control lists 109 ■ Framework rate limiting 111

6.4 Summary 114

PART 3 RUNNING ON MESOS117

7 Deploying applications with Marathon 119
7.1 Getting to know Marathon 120

Exploring the web interface and API 121 ■ Service discovery
and routing 123

7.2 Deploying Marathon and HAProxy 126
Installing and configuring Marathon 126 ■ Installing and
configuring HAProxy 129

CONTENTSxii

7.3 Creating and scaling applications 132
Deploying a simple application 132 ■ Deploying a Docker
container 135 ■ Performing health checks and rolling
application upgrades 136

7.4 Creating application groups 139
Understanding the anatomy of an application group 139
Deploying an application group 140

7.5 Logging and debugging 142
Configuring logging for Marathon 142 ■ Debugging Marathon
applications and tasks 143

7.6 Summary 145

8 Managing scheduled tasks with Chronos 147
8.1 Getting to know Chronos 148

Exploring the web interface and API 149

8.2 Installing and configuring Chronos 151
Reviewing prerequisites 151 ■ Installing Chronos 152
Configuring Chronos 153

8.3 Working with simple jobs 154
Creating a schedule-based job 154 ■ Creating a schedule-based
job using Docker 158

8.4 Working with complex jobs 160
Combining schedule-based and dependency-based jobs 160
Visualizing job dependencies 163

8.5 Monitoring the output and status of Chronos jobs 164
Job failure notifications and monitoring 165 ■ Observing
standard output and standard error via Mesos 167

8.6 Summary 167

9 Deploying applications and managing scheduled
tasks with Aurora 169
9.1 Introducing Aurora 170

The Aurora scheduler 171 ■ The Thermos executor and
observer 171 ■ The Aurora user and admin clients 172
The Aurora domain-specific language 173

9.2 Deploying Aurora 174
Trying out Aurora in a development environment 175
Building and installing Aurora 176 ■ Configuring Aurora 178

CONTENTS xiii

9.3 Deploying applications 183
Deploying a simple application 184 ■ Deploying a
Docker-based application 187

9.4 Managing scheduled tasks 189
Creating a Cron job 189 ■ Creating a Docker-based
Cron job 190

9.5 Administering Aurora 192
Managing users and quotas 192 ■ Performing
maintenance 194

9.6 Summary 195

10 Developing a framework 196
10.1 Understanding framework basics 197

When and why would you write a framework? 199
The scheduler implementation 200 ■ The executor
implementation 202

10.2 Developing a scheduler 206
Working with the Scheduler API 207 ■ Working with
the SchedulerDriver 209

10.3 Developing an executor 210
Working with the Executor API 210 ■ Working with
the executor driver 212

10.4 Running the framework 213
Deploying in development 213 ■ Considerations for
a production deployment 215

10.5 Summary 216

appendix A Case study: Mesosphere DCOS, an enterprise Mesos distribution 217
appendix B List of Mesos frameworks and tools 229

index 237

xv

foreword
If you ever want to see a man’s head explode, walk up to somebody whose job it is to
manually configure and provision scores of servers inside a datacenter, and say the fol-
lowing: “Wow! It must be so easy, and so much fun, to keep track of what’s running on
which machines.”

 Or find a person who has spent years carrying a pager and responding to server
outages and say, “Sounds like a stress-free job. At least it guarantees you get a good
night’s sleep.”

 The truth, of course, is that managing servers and other datacenter infrastructure
has historically been difficult, tedious, and full of sleepless nights for the poor men and
women charged with configuring all these machines and responding to failures when-
ever they strike. As companies started relying more heavily on information technology
during the past 20 years, often housing one application per server (or, in recent years,
virtual machine), the practice grew increasingly difficult. A few servers grew to dozens,
dozens grew to hundreds, and hundreds sometimes grew to thousands.

 Then the web blew up, fueled by incredibly popular services such as Google, Face-
book, and Twitter. The mobile web, fueled by billions of smartphones, tablets, and
other devices, followed shortly thereafter. Old ways of computing could no longer cut
it in a world where millions of users might be on a site or app at any given time.

 Inside datacenters, single-server databases (single-server everything, really) were rap-
idly replaced by distributed systems that could handle previously unimaginable volumes
of data and traffic. Often, complex monolithic applications were replaced by microser-
vices—collections of single-purpose services managed separately, then connected via API

FOREWORDxvi

to construct end-user applications. Scalability demands increased, but so did the learn-
ing curve for building these systems and the complexity of managing them.

 Google famously solved this problem inside its own datacenters with a system
called Borg, which ostensibly let most employees—systems administrators and devel-
opers alike—manage hundreds of thousands of servers like one big computer. Several
years after Borg simplified operations at Google, the open source Apache Mesos proj-
ect hit the scene and changed the lives of its users in similar ways. All of a sudden, the
process of deploying, running, and managing complex distributed systems became
much simpler; everything shares the same set of machines, and Mesos handles the leg-
work of matching workload requirements with available resources.

 I experienced this shift firsthand as a software engineer at Twitter, where Mesos
helped conquer the infamous fail whale and helped Twitter reach new heights of scal-
ability and reliability. When I moved on to Airbnb in 2012, then a fast-growing startup
just four years old, Mesos once again helped us grow our infrastructure—but not the
complexity of it—along with our user base. I was so impressed with Mesos and its
promise that I decided to start a company, Mesosphere, dedicated to making Mesos
usable by mainstream enterprises.

 As Mesos grew in popularity and Mesosphere grew in size, we set our sights on hir-
ing the best Mesos engineers and practitioners around. When we saw the work Roger
Ignazio had done building out a Mesos-based continuous integration platform at Pup-
pet Labs, we knew we had to have him. Running scalable production systems at estab-
lished companies is always valuable experience, and since joining Mesosphere,
Roger’s experience has been a boon to the quality of our Mesos-based Datacenter
Operating System technology and to our customers’ experiences with it.

 With Mesos in Action, Roger lets anyone who is interested in Mesos and its ecosys-
tem of technologies take advantage of his experience. The book is a great guide to
getting a Mesos cluster running and installing your first frameworks, but also delves
into more-advanced topics such as mastering powerful Mesos frameworks (including
Marathon for container orchestration and Spark for big data analytics) and even
building your own framework.

 Whether you’re preparing to deploy Mesos or already have it running and want to
improve your knowledge, you would be hard-pressed to find a better guide than
Roger and a better book than Mesos in Action.

FLORIAN LEIBERT

COFOUNDER AND CEO, MESOSPHERE

xvii

preface
Apache Mesos began in 2009 as a research project at the University of California at
Berkeley, led by Benjamin Hindman. Ben and his team wanted to improve datacenter
efficiency by allowing multiple applications to share a single computing cluster, just
like multiple applications can share the processor, memory, and hard drive in your
laptop or workstation. But they wanted to do this across the many servers that make
up a modern datacenter. After an initial implementation of 10,000 lines of C++ code,
they published the paper Mesos: A Platform for Fine-Grained Resource Sharing in the Data
Center in 2010.

 Not long after, Ben joined Twitter and used Mesos to better scale its infrastructure,
largely bringing an end to the era of the “fail whale” that became infamous as Twitter
was rising in popularity and its servers couldn’t handle the demand from users.
Although Twitter doesn’t publicly disclose the number of servers in its expansive infra-
structure, online sources and firsthand knowledge from presentations put this some-
where in the ballpark of 10,000 Mesos nodes per cluster.

 In December 2010, the Mesos project entered the Apache Incubator, an arm of the
Apache Software Foundation that provides a means for projects to gain the full sup-
port of the ASF’s efforts. The Apache Mesos project graduated from the incubator in
June 2013 and is now a top-level project.

 In 2013, Ben—along with Florian Leibert and Tobi Knaup—founded Mesosphere.
Mesosphere’s flagship product, the Datacenter Operating System (DCOS), commer-
cializes the success of the open source project by providing a turnkey solution to
enterprises looking to deploy applications and scale infrastructure as effortlessly as

PREFACExviii

other companies using Mesos, such as Airbnb, Apple, and Netflix. Mesosphere contin-
ues to be a major contributor to the open source Mesos project and provides Mesos
packages and tools to the open source community.

 My foray into the Mesos ecosystem and large-scale infrastructure began in 2014
when I started looking at using Mesos to share resources among multiple instances of
Jenkins, the popular continuous integration framework. At the time, it seemed like
Mesos was reserved for those who already knew about it; a lot of resources were avail-
able online but were hard to find, and there wasn’t a single canonical source of truth.
There also weren’t any books covering Mesos. I wrote a couple of blog posts about my
experience, and it seemed like other people were in the same boat I was in: wanting to
know more about this project but not knowing where to start.

 In January 2015, Manning reached out and asked if I’d be interested in writing a
book about Mesos. Having never written a book before, the request seemed over-
whelming at first. But I also saw it as an opportunity to write the book that I wished I
had when I first started using Mesos. Fortunately, the team at Manning gave me the
freedom to do just that.

 I hope that you find Mesos in Action a valuable resource for deploying and adminis-
tering Mesos clusters and improving the overall efficiency of your infrastructure, and
that it allows your team—and your customers—to deploy applications to production
quickly and easily.

ROGER IGNAZIO

 PORTLAND, OREGON

xix

acknowledgements
You’re reading the result of a yearlong effort to produce an in-depth book on the
Apache Mesos project and ecosystem. Despite my name being on the cover, many peo-
ple contributed to the final publication, people who would otherwise remain anony-
mous if I didn’t thank them here. I’m sure that my family, my friends, and my wife
already know how much I appreciate their support through this endeavor.

 First, I’d like to thank the Mesos community. In every interaction—at conferences,
on the mailing lists, on IRC—everyone has been extremely helpful and kind. As of this
writing, there are over 100 individual contributors to the Mesos code base, and even
more people who volunteer their time on the Mesos mailing lists and chat rooms to
answer questions and provide help. In addition to all the people I’ve had the pleasure
of talking to at conferences and working with on a daily basis, I’d like to thank Ben
Hindman, Florian Leibert, Thomas Rampelberg, Dave Lester, Christian Bogeberg,
and Michael Hausenblas for all of their help. And I’d like to thank Florian for writing
the foreword to this book.

 Next, as if writing a book isn’t already a stressful and time-consuming task, I changed
jobs about two-thirds of the way through writing. At Puppet Labs, I’d like to thank Scott
Schneider, Colin Creeden, Cody Herriges, Eric Zounes, and Alanna Brown for their
support. Before I even signed with Manning, I recall a moment when Scott asked if I
really thought you could write an entire book about Mesos; as it turns out, you can!

 Many people behind the scenes helped review the book at various stages and
provided feedback, including Al Rahimi, Clive Harber, Iain Campbell, Jeroen
Benckhuijsen, John Guthrie, Ken Sipe, Luis Moux Domínguez, Marco Massenzio,

ACKNOWLEDGEMENTSxx

Mohsen Mostafar Jokar, Morgan Nelson, Nitin Gode, Odysseas Pentakalos, and Thomas
Peklak. A special thank you goes out to Jerry Kuch and Chris Schaefer for their techni-
cal reviews, and to copy editor Sharon Wilkey for making a countless number of fixes
to the original manuscript.

 Last, but certainly not least, I need to thank my amazing team at Manning Publica-
tions. My editor, Mike Stevens, helped me get from “That sounds like a lot of jargon!”
to a formal proposal and signed contract. Development editor Cynthia Kane ensured
I was always providing the right amount of context (in both text and graphics), and
helped me become a better writer and communicator. And finally, to my publisher
Marjan Bace, who not only helped shape the book during the editorial board review,
but also ultimately gave me the freedom to write the book that I wish I had when I first
got started with Mesos. Thank you!

 I’m grateful to all of the people who helped get the book to this point, and I apol-
ogize if I’ve forgotten to mention anyone here.

xxi

about this book
Mesos in Action is a practical guide to learning about and deploying Apache Mesos in a
real-world setting. I provide a complete tour of the project—from a basic introduction
that introduces Mesos and containers, to production-ready deployments that include
high availability and framework authentication. I also provide real-world usage of pop-
ular (and open source!) Mesos applications that allow you to deploy applications and
scheduled jobs on your Mesos cluster.

 Although Mesos in Action is tailored for intermediate-to-advanced systems adminis-
trators, it’s well suited for various audiences. I’ve written the book in such a way that
systems administrators, DevOps, application administrators, and software engineers
alike will feel at home throughout the text. Although some knowledge of application
deployments and software development is desirable, I’ve provided enough background
that it isn’t strictly required, instead opting to teach you new skills that you can use to
make teams—your own included—work smarter, not harder.

Roadmap
If you are a systems administrator or DevOps person looking to deploy your first
Mesos cluster, you’ll want to pay particular attention to chapters 1 through 8. These
chapters cover everything you need to know to get a cluster up and running, and
cover a few ways you can use it to deploy applications and scheduled jobs. Chapter 10
may also be beneficial in helping you to understand how to write your own Mesos-
enabled applications. Otherwise, this book is divided into three parts.

ABOUT THIS BOOKxxii

 Part 1 introduces the Apache Mesos project, compares containers to virtual
machines, and presents a real-world use case for deploying a Mesos cluster.

■ Chapter 1 introduces the Mesos project. I cover key terms and components
used throughout the book, introduce the architecture, and explain how deploy-
ing applications in containers is different from deployments in a traditional
datacenter.

■ Chapter 2 builds upon the introduction provided in chapter 1 by running an
Apache Spark data-processing job on the Mesos cluster. You’ll see a real-world
workload running on the cluster and observe how the cluster behaves. You’ll
also get a sense of how Mesos allows multiple applications to share cluster
resources, leading to improved datacenter utilization.

Part 2 examines the Mesos fundamentals in detail, including installation and configu-
ration, high availability, and monitoring.

■ Chapter 3 provides a soup-to-nuts approach for deploying Mesos on your own
servers, whether they’re in your own datacenter or running on a cloud provider
such as AWS or Azure. You’ll learn how to install and configure ZooKeeper,
Mesos, and Docker, and should have a highly available cluster up and running
by the end of the chapter.

■ Chapter 4 examines the fundamentals of the Mesos project. You’ll learn
about the scalability, fault tolerance, high availability, and resource isolation
that Mesos provides.

■ Chapter 5 provides a tour of how Mesos handles logs and how you can debug
issues when they arise. I cover topics including the Mesos web interface, CLI, log
file locations, and logging configuration.

■ Chapter 6 covers topics necessary for running Mesos in a production environ-
ment. This includes information about monitoring the Mesos and ZooKeeper
clusters, as well as security and access control for users and frameworks alike.

Part 3 provides you with real-world uses for Mesos.

■ Chapter 7 introduces the open source Marathon framework, which allows you
to deploy applications and long-running services in Linux and Docker contain-
ers across the cluster simply by specifying the amount of resources and number
of instances you’d like.

■ Chapter 8 introduces the open source Chronos framework, which allows you to
deploy scheduled jobs on the cluster using ISO 8601–formatted timestamps.
Chronos allows jobs to run on a schedule, or allows them to be dependencies on
other jobs, and supports tasks running in both Linux and Docker containers.

■ Chapter 9 introduces the open source Apache Aurora framework, which—
similar to Marathon and Chronos—allows you to deploy both applications and
scheduled jobs on a Mesos cluster. Where it differs, however, is that Aurora has

ABOUT THIS BOOK xxiii

support for multiple users out of the box, and a sophisticated configuration lan-
guage to match.

■ Chapter 10 provides a tour of the Mesos APIs, and includes an example (written
in Python) of how to develop your own Mesos applications.

■ Appendix A provides a case study on Mesosphere’s Datacenter Operating Sys-
tem (DCOS), an enterprise-grade Mesos distribution, as well as a walk-through
of how to set up a continuous deployment pipeline using DCOS, Jenkins, and
Marathon.

■ Appendix B provides a list of Mesos-related projects known at the time of writ-
ing. These projects range from Mesos applications, to language bindings, to
load-balancing and service-discovery tools. Each entry is accompanied by a
short description and a link to additional information online.

Source code
The code for the examples and configuration files used throughout this book is avail-
able on GitHub, located at github.com/rji/mesos-in-action-code-samples. The code is
also available from this book’s website, located at manning.com/books/mesos-in-action.

 Much of the code for parts 1 and 2 of the book consists of configuration fragments
designed to support or enhance the text. The code for part 3 includes examples of
applications and data-processing jobs that are used to illustrate how you might run
these workloads on your own infrastructure.

Typographical conventions
■ Italic typeface is used to introduce new terms.
■ Courier typeface is used to denote code samples and commands.
■ Code-line continuations are indicated by ➥.

Online and community resources
Many online and community resources are available for the Mesos project. First, and
perhaps most important, you can find the latest documentation online at http://
mesos.apache.org/documentation/latest. For those interested in Mesos development
and where the project is heading, it might be best to consult the project’s issue
tracker, located at https://issues.apache.org/jira/browse/MESOS.

 In addition to using these two resources, you can communicate and interact with
other people in the Mesos community in the following ways:

■ Mailing lists—Several mailing lists relating to Mesos exist, but perhaps the two
most important are the users and dev mailing lists. More info can be found on
the Mesos project’s community page at http://mesos.apache.org/community.

■ IRC—Developers and users alike chat in the #mesos channel on irc.freenode.net.
■ Planet Mesos—An RSS aggregator for members of the Mesos community, Planet

Mesos contains writings and presentations from project maintainers, contributors,

https://github.com/rji/mesos-in-action-code-samples
http://www.manning.com/books/mesos-in-action
http://mesos.apache.org/documentation/latest
http://mesos.apache.org/documentation/latest
https://issues.apache.org/jira/browse/MESOS
http://mesos.apache.org/community
http://irc.freenode.net

ABOUT THIS BOOKxxiv

and conferences. The aggregator itself is available at http://planet.apache.org/
mesos. The team also operates a Twitter account that automatically updates when
the RSS feed does; it can be found at https://twitter.com/PlanetMesos.

■ Twitter—The official Twitter feed for the project is located at https://twitter.com/
ApacheMesos.

■ MesosCon—Started in 2014, MesosCon is an annual conference organized by
the Mesos community. It has hosted talks from some of the largest internet
companies on how they use Mesos to solve scaling problems. More information
is available at http://events.linuxfoundation.org/events/mesoscon.

Author Online
Purchase of Mesos in Action includes free access to a private web forum run by Man-
ning Publications; you can make comments about the book, ask technical questions,
and receive help from the author and from other users. To access the forum and sub-
scribe to it, point your web browser to manning.com/books/mesos-in-action. This
page provides information on how to get on the forum after you’re registered, what
kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to AO remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

http://planet.apache.org/mesos
http://planet.apache.org/mesos
https://twitter.com/PlanetMesos
https://twitter.com/ApacheMesos
https://twitter.com/ApacheMesos
http://events.linuxfoundation.org/events/mesoscon
http://manning.com/books/mesos-in-action

xxv

about the author
Roger Ignazio is an experienced systems engineer with a focus on
distributed, fault-tolerant, and scalable infrastructure. He is pas-
sionate about improving productivity through better automation,
tooling, and reporting. He’s currently a technical lead on the
engineering team at Mesosphere, and lives in Portland, Oregon
with his wife Sarah and their two cats.

xxvi

about the cover illustration
On the cover of Mesos in Action is “Girl from Petrovo Polje, Dalmatia, Croatia.” The
term “Polje” derives from the Slavic for “field” and is used to denote a large flat plain.
Petrovo Polje is located in Dalmatia, a historical region of Croatia on the Adriatic
coast. Dalmatia was once a province of the Roman Empire, and over its history has
been fought over and controlled by the Goths, the Byzantines, the Venetians, and the
Austro-Hungarian Empire. The illustration is taken from a reproduction of an album
of Croatian traditional costumes from the mid-nineteenth century by Nikola Arsen-
ovic, published by the Ethnographic Museum in Split, Croatia, in 2003. The illustra-
tions were obtained from a helpful librarian at the Ethnographic Museum in Split,
itself situated in the Roman core of the medieval center of that town: the ruins of
Emperor Diocletian’s retirement palace from around AD 304. The book includes
finely colored illustrations of figures from different regions of Croatia, accompanied
by descriptions of the costumes and of everyday life.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.

Part 1

Hello, Mesos

What is Apache Mesos? How does Mesos compare to traditional datacen-
ter architecture? How are containers different from virtual machines? Why might
you use Mesos? These are questions that I begin to address in part 1. You’ll learn
about the Apache Mesos project and its use of containers by comparing and con-
trasting these relatively new technologies to that of a traditional datacenter.
You’ll also see a practical example of Mesos in action in the context of running
an Apache Spark data-processing job on the cluster.

3

Introducing Mesos

Traditionally, physical—and virtual—machines have been the typical units of com-
puting in a datacenter. Machines are provisioned with various configuration man-
agement tools to later have applications deployed. These machines are usually
organized into clusters providing individual services, and systems administrators
oversee their day-to-day operations. Eventually, these clusters reach their maximum
capacity, and more machines are brought online to handle the load.

 In 2010, a project at the University of California, Berkeley, aimed to solve the
scaling problem. The software project, now known as Apache Mesos, abstracts CPU,
memory, and disk resources in a way that allows datacenters to function as if they
were one large machine. Mesos creates a single underlying cluster to provide appli-
cations with the resources they need, without the overhead of virtual machines and
operating systems. You can see a simplified example of this in figure 1.1.

This chapter covers
■ Introducing Mesos
■ Comparing Mesos with a traditional datacenter
■ Understanding when and why to use Mesos
■ Working with Mesos’s distributed architecture

4 CHAPTER 1 Introducing Mesos

This book introduces Apache Mesos, an open source cluster manager that allows sys-
tems administrators and developers to focus less on individual servers and more on
the applications that run on them. You’ll see how to get up and running with Mesos in
your environment, how it shares resources and handles failure, and—perhaps most
important—how to use it as a platform to deploy applications.

1.1 Meet Mesos
Mesos works by introducing a layer of abstraction that provides a means to use entire
datacenters as if they were a single, large server. Instead of focusing on one applica-
tion running on a specific server, Mesos’s resource isolation allows for multitenancy—
the ability to run multiple applications on a single machine—leading to more effi-
cient use of computing resources.

 To better understand this concept, you might think of Mesos as being similar to
today’s virtualization solutions: just as a hypervisor abstracts physical CPU, memory,
and storage resources and presents them to virtual machines, Mesos does the same
but offers these resources directly to applications. Another way to think about this is in
the context of multicore processors: when you launch an application on your laptop,
it runs on one or more cores, but in most cases it doesn’t particularly matter which
one. Mesos applies this same concept to datacenters.

 In addition to improving overall resource use, Mesos is distributed, highly avail-
able, and fault-tolerant right out of the box. It has built-in support for isolating pro-
cesses using containers, such as Linux control groups (cgroups) and Docker, allowing
multiple applications to run alongside each other on a single machine. Where you
once might have set up three clusters—one each to run Memcached, Jenkins CI, and
your Ruby on Rails apps—you can instead deploy a single Mesos cluster to run all of
these applications.

Server Server

OS OS

Mesos

Spark Jenkins CI Marathon Chronos

Server Server Server ServerServer

OS OS OS OS OS
The OS kernel
provides access to
underlying physical
or virtual resources
(CPU, memory, disk).

Mesos offers
available cluster
resources directly
to frameworks.

Mesos, like
the OS kernel,
abstracts resources.

Figure 1.1 Frameworks sharing datacenter resources offered by Mesos

5Meet Mesos

 In the next few sections, you’re going to look at how Mesos works to provide all of
these features and how it compares to a traditional datacenter.

1.1.1 Understanding how it works

Using a combination of concepts referred to as resource offers, two-tier scheduling,
and resource isolation, Mesos provides a means for the cluster to act as a single super-
computer on which to run tasks. Before digging in too deeply here, let’s take a look at
figure 1.2. This diagram demonstrates the logic Mesos follows when offering resources
to running applications. This particular example references the Apache Spark data-
processing framework.

Let’s break it down:

B The Mesos slave offers its available CPU, memory, and disk to the Mesos master
in the form of a resource offer.

c The Mesos master’s allocation module—or scheduling algorithm—decides which
frameworks—or applications—to offer the resources to.

d In this particular case, the Spark scheduler doesn’t have any jobs to run on the
cluster. It rejects the resource offer, allowing the master to offer the resources to
another framework that might have some work to do.

e Now consider a user submitting a Spark job to be run on the cluster. The sched-
uler accepts the job and waits for a resource offer that satisfies the workload.

f The Spark scheduler accepts a resource offer from the Mesos master, and
launches one or more tasks on an available Mesos slave. These tasks are launched

Accept

Yes No

Reject

Spark scheduler:

Do I have work to do?
User-submitted Spark job

Mesos master

Mesos slave

Container

Figure 1.2 Mesos advertises the available CPU, memory, and disk as resource offers to
frameworks.

6 CHAPTER 1 Introducing Mesos

within a container, providing isolation between the various tasks that might be
running on a given Mesos slave.

Seems simple, right? Now that you’ve learned how Mesos uses resource offers to adver-
tise resources to frameworks, and how two-tier scheduling allows frameworks to accept
and reject resource offers as needed, let’s take a closer look at some of these funda-
mental concepts.

NOTE An effort is underway to rename the Mesos slave role to agent for future
versions of Mesos. Because this book covers Mesos 0.22.2, it uses the terminol-
ogy of that specific release, so as to not create any unnecessary confusion. For
more information, see https://issues.apache.org/jira/browse/MESOS-1478.

RESOURCE OFFERS

Like many other cluster managers, Mesos clusters are made up of groups of machines
called masters and slaves. Each Mesos slave in a cluster advertises its available CPU,
memory, and storage in the form of resource offers. As you saw in figure 1.2, these
resource offers are periodically sent from the slaves to the Mesos masters, processed
by a scheduling algorithm, and then offered to a framework’s scheduler running on
the Mesos cluster.

TWO-TIER SCHEDULING

In a Mesos cluster, resource scheduling is the responsibility of the Mesos master’s allo-
cation module and the framework’s scheduler, a concept known as two-tier scheduling.
As previously demonstrated, resource offers from Mesos slaves are sent to the master’s
allocation module, which is then responsible for offering resources to various frame-
work schedulers. The framework schedulers can accept or reject the resources based
on their workload.

 The allocation module is a pluggable component of the Mesos master that
implements an algorithm to determine which offers are sent to which frameworks
(and when). The modular nature of this component allows systems engineers to
implement their own resource-sharing policies for their organization. By default,
Mesos uses an algorithm developed at UC Berkeley known as Dominant Resource
Fairness (DRF):

In a nutshell, DRF seeks to maximize the minimum dominant share across
all users. For example, if user A runs CPU-heavy tasks and user B runs
memory-heavy tasks, DRF attempts to equalize user A’s share of CPUs with
user B’s share of memory. In the single-resource case, DRF reduces to
max-min fairness for that resource.1

1 A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. “Dominant Resource Fairness:
Fair Allocation of Multiple Resource Types.” NSDI, vol. 11, 2011.

https://issues.apache.org/jira/browse/MESOS-1478

7Meet Mesos

Mesos’s use of the DRF algorithm by default is fine for most deployments. Chances are
you won’t need to write your own allocation algorithm, so this book doesn’t go into
much detail about DRF. If you’re interested in learning more about this research, you
can find the paper online at www.usenix.org/legacy/events/nsdi11/tech/full_papers/
Ghodsi.pdf.

RESOURCE ISOLATION

Using Linux cgroups or Docker containers to isolate processes, Mesos allows for multi-
tenancy, or for multiple processes to be executed on a single Mesos slave. A framework
then executes its tasks within the container, using a Mesos containerizer. If you’re not
familiar with containers, think of them as a lightweight approach to how a hypervisor
runs multiple virtual machines on a single physical host, but without the overhead or
need to run an entire operating system.

NOTE In addition to Docker and cgroups, Mesos provides another means of
isolation for other POSIX-compliant operating systems: posix/cpu, posix/
mem, and posix/disk. It’s worth noting that these isolation methods don’t iso-
late resources, but instead monitor resource use.

Now that you have a clearer understanding of how Mesos works, you can move on to
understanding how this technology compares to the traditional datacenter. More spe-
cifically, the next section introduces the concept of an application-centric datacenter,
where the focus is more on applications than on the servers and operating systems
that run them.

1.1.2 Comparing virtual machines and containers

When thinking about applications deployed in a traditional datacenter, virtual
machines often come to mind. In recent years, virtualization providers (VMware,
OpenStack, Xen, and KVM, to name a few) have become commonplace in many orga-
nizations. Similar to how a hypervisor allows a physical host’s resources to be
abstracted and shared among virtual machines, Mesos provides a layer of abstraction,
albeit at a different level. The resources are presented to applications themselves, and
in turn consumed by containers.

 To illustrate this point, consider figure 1.3, which compares the various layers of
infrastructure required to deploy four applications.

VIRTUAL MACHINES

When thinking about traditional virtual machine–based application deployments,
consider for a moment the operational overhead of maintaining the operating sys-
tems on each of them: installing packages, applying security updates, maintaining
user access, identifying and remediating configuration drift; the list goes on. What’s
the added benefit of running applications atop an entire operating system when
you’re more concerned with deploying the application itself? Not to mention the
overhead of the operating system, which consumes added CPU, memory, and disk. At

8 CHAPTER 1 Introducing Mesos

a large-enough scale, this becomes wasteful. With an application-centric approach to
managing datacenters, Mesos allows you to simplify your stack—and your application
deployments—using lightweight containers.

CONTAINERS
As you learned previously, Mesos uses containers for resource isolation between
processes. In the context of Mesos, the two most important resource-isolation meth-
ods to know about are the control groups (cgroups) built into the Linux kernel,
and Docker.

 Around 2007, support for control groups (referred to as cgroups throughout this
text) was made available in the Linux kernel, beginning with version 2.6.24. This
allows the execution of processes in a way that’s sandboxed from other processes. In the
context of Mesos, cgroups provide resource constraints for running processes, ensur-
ing that they don’t interfere with other processes running on the system. When using
cgroups, any packages or libraries that the tasks might depend on (a specific version
of Python, a working C++ compiler, and so on) must be already present on the host
operating system. If your workloads, packages, and required tools and libraries are
fairly standardized or don’t readily conflict with each other, this might not be a prob-
lem. But consider figure 1.4, which demonstrates how using Docker can overcome
these sorts of problems and allow you to run applications and workloads in a more iso-
lated manner.

Mesos

Container-based

application deployment

Physical server

OS

Physical server

OS

App AppAppApp

Isolates apps by running multiple
VMs per physical server; still needs
to manage each guest OS!

Isolates apps using
features of the host OS,
such as Linux cgroups.

Virtual machine–based

application deployment

Physical server

Hypervisor

Physical server

Hypervisor

OS OSOSOS

VM VMVMVM

App AppAppApp

Figure 1.3 Comparing VM-based and container-based application deployments

9Meet Mesos

Using low-level primitives in the Linux kernel, including cgroups and namespaces,
Docker provides a means to build and deploy containers almost as if they were virtual
machines. The application and all of its dependencies are packaged within the con-
tainer and deployed atop a host operating system. They take a concept from the
freight industry—the standardized industrial shipping container—and apply this to
application deployment. In recent years, this new unit of software delivery has grown
in popularity as it’s generally considered to be more lightweight than deploying an
entire virtual machine.

 You don’t need to understand all the implementation details and intricacies of
building and deploying containers to use Mesos, though. If you’d like more informa-
tion, please consult the following online resources:

■ Linux control groups: www.kernel.org/doc/documentation/cgroup-v1/
cgroups.txt

■ Docker: https://docs.docker.com

1.1.3 Knowing when (and why) to use Mesos
Running applications at scale isn’t reserved for large enterprises anymore. Startups
with only a handful of employees are creating apps that easily attract millions of users.
Re-architecting applications and datacenters is a nontrivial task, but certain compo-
nents that are in a typical stack are already great candidates to run on Mesos. By tak-
ing some of these technologies and moving them (and their workloads) to a Mesos
cluster, you can scale them more easily and run your datacenter more efficiently.

NOTE This book covers Mesos version 0.22.2, which provides an environment
for running stateless and distributed applications. Beginning in version 0.23,

VM

Packages and

libraries

Hypervisor

Application

Virtual machines

Guest OS

Packages and

libraries

Host OS

Application

Docker containers

Docker container

Docker engine
Packages and

libraries

Host OS

Application

Linux cgroup

Linux control groups

Figure 1.4 Comparing virtual machines, Docker containers, and
Linux cgroups

https://docs.docker.com
http://www.kernel.org/doc/documentation/cgroup-v1/cgroups.txt
http://www.kernel.org/doc/documentation/cgroup-v1/cgroups.txt

10 CHAPTER 1 Introducing Mesos

Mesos will begin work to support persistent resources, thus enabling support
for stateful frameworks. For more information on this effort, see https://
issues.apache.org/jira/browse/MESOS-1554.

For example, consider the stateless, distributed, and stateful technologies in table 1.1.

The real value of Mesos is realized when running stateless services and applications—
applications that will handle incoming loads but that could go offline at any time with-
out negatively impacting the service as a whole, or services that run a job and report
the result to another system. As noted previously, examples of some of these applica-
tions include Ruby on Rails and Jenkins CI build slaves.

 Progress has been made running distributed databases (such as Cassandra and
Elasticsearch) and distributed filesystems (such as Hadoop Distributed File System, or
HDFS) as Mesos frameworks. But this is feasible only if the correct level of redundancy
is in place. Although certain distributed databases and filesystems have data replica-
tion and fault tolerance built in, your data might not survive if the entire Mesos cluster
fails (because of natural disasters, redundant power/cooling systems failures, or human
error). In the real world, you should weigh the risks and benefits of deploying services
that persist data on a Mesos cluster.

 As I mentioned earlier, Mesos excels at running stateless, distributed services.
Stateful applications that need to persist data to disk aren’t good candidates for run-
ning on Mesos as of this writing. Although possible, it’s not yet advisable to run certain
databases such as MySQL and PostgreSQL atop a Mesos cluster. When you do need to
persist data, it’s preferable to do so by deploying a traditional database cluster outside
the Mesos cluster.

1.2 Why we need to rethink the datacenter
Deploying applications within a datacenter has traditionally involved one or more
physical (or virtual) servers. The introduction and mainstream adoption of virtualiza-
tion has allowed us to run multiple virtual machines on a single physical server and
make better use of physical resources. But running applications this way also means
you’re usually running a full operating system on each of those virtual machines,
which consumes resources and brings along its own maintenance overhead.

Table 1.1 Technologies that are—and aren’t—good candidates to run on Mesos

Service type Examples Should you use Mesos?

Stateless—no need to persist
data to disk

Web apps (Ruby on Rails, Play,
Django), Memcached, Jenkins CI
build slaves

Yes

Distributed out of the box Cassandra, Elasticsearch, Hadoop
Distributed File System (HDFS)

Yes, provided the correct level of
redundancy is in place

Stateful—needs to persist data
to disk

MySQL, PostgreSQL, Jenkins CI
masters

No (version 0.22); potentially
(version 0.23+)

https://issues.apache.org/jira/browse/MESOS-1554
https://issues.apache.org/jira/browse/MESOS-1554

11Why we need to rethink the datacenter

 This section presents two primary reasons that you should rethink how datacenters
are managed: the administrative overhead of statically partitioning resources, and the
need to focus more on applications instead of infrastructure.

1.2.1 Partitioning of resources
When you consider the traditional virtual machine–based model of deploying applica-
tions and statically partitioning clusters, you quickly find this deployment model
inefficient and cumbersome to maintain. By maximizing the use of each server in a
datacenter, operations teams maximize their return on investment and can keep the
total cost of ownership as reasonable as possible.

 In computing circles, teams generally refer to a cluster as a group of servers that
work together as a single system to provide a service. Traditionally, the deployment of
these services has been largely node-centric: you dedicate a certain number of machines
to provide a given service. But as the infrastructure footprint expands and service
offerings increase, it’s difficult to continue statically partitioning these services.

 But now consider the demand for these services doubling. To continue scaling, a
systems administrator needs to provision new machines and join them to the individ-
ual clusters. Perhaps the operations team, anticipating the need for additional capac-
ity, scales each of those clusters to three times its current size. Although you’ve
managed to scale each of those services, you now have machines in your datacenter
sitting idle, waiting to be used. As such, if a single machine in any of those clusters
fails, it quickly needs to be brought back online for the service to continue operating
at full capacity, as shown in figure 1.5.

Spark slave Spark slave Spark slave

Jenkins slave Jenkins slave Jenkins slave

XX Ruby on Rails

app server

Each of these services
has been statically
partitioned onto
multiple servers.

If two of the app servers go down,
the Rails app can only operate at
one-third capacity, even if Spark
and Jenkins sit idle.

Figure 1.5 Three applications statically partitioned in a datacenter

12 CHAPTER 1 Introducing Mesos

Now consider solving the aforementioned scaling scenario by using Mesos, as shown
in figure 1.6. You can see that you’d use these same machines in the datacenter to
focus on running applications instead of virtual machines. The applications could run
on any machine with available resources. If you need to scale, you add servers to the
Mesos cluster, instead of adding machines to multiple clusters. If a single Mesos node
goes offline, no particular impact occurs to any one service.

Consider these small differences across hundreds or thousands of servers. Instead of
trying to guess how many servers you need for each service and provision them into
several static clusters, you’re able to allow these services to dynamically request the
compute, memory, and storage resources they need to run. To continue scaling, you
add new machines to your Mesos cluster, and the applications running on the cluster
scale to the new infrastructure. Operating a single, large computing cluster in this
manner has several advantages:

■ You can easily provision additional cluster capacity.
■ You can be less concerned about where services are running.
■ You can scale from several nodes to thousands.
■ The loss of several servers doesn’t severely degrade any one service.

1.2.2 Deploying applications
As we discussed previously, one of the major differences—and benefits—of deploying
applications on a Mesos cluster is multitenancy. Not unlike a virtualization hypervisor
running multiple virtual machines on a physical server, Mesos allows multiple applica-
tions to run on a single server in isolated environments, using either Linux cgroups or

Mesos slave Mesos slave

Mesos slave

Mesos slave Mesos slave Mesos slave

Mesos slave

These services are run on Mesos,
which dynamically schedules them
within the cluster based on
available capacity.

X X

Figure 1.6 Three applications running on a Mesos cluster

13The Mesos distributed architecture

Docker containers. Instead of having multiple environments (one each for develop-
ment, staging, and production), the entire datacenter becomes a platform on which
to deploy applications.

 Where Mesos is commonly referred to—and acts as—a distributed kernel, other
Mesos frameworks help users run long-running and scheduled tasks, similar to the
init and Cron systems, respectively. You’ll learn more about these frameworks (Mar-
athon, Chronos, and Aurora) and how to deploy applications on them later in
this book.

 Consider the power of what I’ve described so far: Mesos provides fault tolerance
out of the box. Instead of a systems administrator getting paged when a single server
goes offline, the cluster will automatically start the failed job elsewhere. The sysadmin
needs to be concerned only if a certain percentage of machines goes offline in the
datacenter, as that might signal a larger problem. As such, with the correct placement
and redundancy in place, scheduled maintenance can occur at any time.

1.3 The Mesos distributed architecture
To provide services at scale, Mesos provides a distributed, fault-tolerant architecture
that enables fine-grained resource scheduling. This architecture comprises three com-
ponents: masters, slaves, and the applications (commonly referred to as frameworks) that
run on them. Mesos relies on Apache ZooKeeper, a distributed database used specifi-
cally for coordinating leader election within the cluster, and for leader detection by
other Mesos masters, slaves, and frameworks.

 In figure 1.7, you can see how each of these architecture components works
together to provide a stable platform on which to deploy applications. I’ll break it
down for you in the sections that follow the diagram.

1.3.1 Masters

One or more Mesos masters are responsible for managing the Mesos slave daemons
running on each machine in the cluster. Using ZooKeeper, they coordinate which
node will be the leading master, and which masters will be on standby, ready to take
over if the leading master goes offline.

 The leading master is responsible for deciding which resources to offer to a partic-
ular framework using a pluggable allocation module, or scheduling algorithm, to distrib-
ute resource offers to the various schedulers. The scheduler can then either accept or
reject the offer based on whether it has any work to be performed at that time.

 A Mesos cluster requires a minimum of one master, and three or more are recom-
mended for production deployments to ensure that the services are highly available.
You can run ZooKeeper on the same machines as the Mesos masters themselves, or
use a standalone ZooKeeper cluster. Chapter 3 goes into more detail about the sizing
and deploying of Mesos masters.

14 CHAPTER 1 Introducing Mesos

1.3.2 Slaves
The machines in a cluster responsible for executing a framework’s tasks are referred
to as Mesos slaves. They query ZooKeeper to determine the leading Mesos master and
advertise their available CPU, memory, and storage resources to the leading master in
the form of a resource offer. When a scheduler accepts a resource offer from the
Mesos master, it then launches one or more executors on the slave, which are responsi-
ble for running the framework’s tasks.

 Mesos slaves can also be configured with certain attributes and resources, which
allow them to be customized for a given environment. Attributes refer to key/value
pairs that might contain information about the node’s location in a datacenter, and
resources allow a particular slave’s advertised CPU, memory, and disk to be overridden
with user-provided values, instead of Mesos automatically detecting the available
resources on the slave. Consider the following example attributes and resources:

--attributes='datacenter:pdx1;rack:1-1;os:rhel7'
--resources='cpu:24;mem:24576;disk:409600'

Framework A

scheduler

Mesos master

(leader)

Mesos master

(standby)

Mesos master

(standby)

Resource offer

Mesos master quorum

Framework B

scheduler

Resource offer

Resource offer Resource offer

ZK

ZK ZK

Slave n

Framework A

executor

Tasks

Framework B

executor

Tasks

Slave 1

Framework A

executor

Tasks Figure 1.7 The Mesos architecture
consists of one or more masters,
slaves, and frameworks.

15Summary

I’ve configured this particular Mesos slave to advertise its datacenter; location within
the datacenter; operating system; and user-provided CPU, memory, and disk resources.
This information is especially useful when trying to ensure that applications stay
online during scheduled maintenance. Using this information, a datacenter operator
could take an entire rack (or an entire row!) of machines offline for scheduled main-
tenance without impacting users. Chapter 4 covers this (and more) in the Mesos slave
configuration section.

1.3.3 Frameworks

As you learned earlier, a framework is the term given to any Mesos application that’s
responsible for scheduling and executing tasks on a cluster. A framework is made up
of two components: a scheduler and an executor.

TIP A list of frameworks known to exist at the time of writing is included in
appendix B.

SCHEDULER

A scheduler is typically a long-running service responsible for connecting to a Mesos
master and accepting or rejecting resource offers. Mesos delegates the responsibility
of scheduling to the framework, instead of attempting to schedule all the work for a
cluster itself. The scheduler can then accept or reject a resource offer based on
whether it has any tasks to run at the time of the offer. The scheduler detects the lead-
ing master by communicating with the ZooKeeper cluster, and then registers itself to
that master accordingly.

EXECUTOR

An executor is a process launched on a Mesos slave that runs a framework’s tasks on a
slave. As of this writing, the built-in Mesos executors allow frameworks to execute shell
scripts or run Docker containers. New executors can be written using Mesos’s various
language bindings and bundled with the framework, to be fetched by the Mesos slave
when a task requires it.

 As you’ve learned, Mesos provides a distributed, highly available architecture. Mas-
ters schedule work to be performed on the cluster, and slaves advertise available
resources to the schedulers, which in turn execute tasks on the cluster.

1.4 Summary
In this chapter, you’ve been introduced to the Apache Mesos project, its architecture,
and how it attempts to solve scaling problems and make clustering simple. You’ve also
learned how Mesos deployments compare and contrast with the traditional datacen-
ter, and how an application-centric approach can lead to using resources more effi-
ciently. We’ve discussed when (and when not) to use Mesos for a given workload, and

16 CHAPTER 1 Introducing Mesos

where you can get help and find more information, should you need it. Here are a few
things to remember:

■ Mesos abstracts CPU, memory, and disk resources away from underlying systems
and presents multiple machines as a single entity.

■ Mesos slaves advertise their available CPUs, memory, and disk in the form of
resource offers.

■ A Mesos framework comprises two primary components: a scheduler and an
executor.

■ Containers are a lightweight method to provide resource isolation to individual
processes.

In the next chapter, I’ll walk you through a real-world example of how Mesos allows
for more efficient resource use, and how you might run applications in your own data-
center by building on projects in the Mesos ecosystem.

17

Managing datacenter
resources with Mesos

The previous chapter introduced the Apache Mesos project, how it works, and how
it compares to the architecture of a traditional datacenter. This chapter explores
the benefits of Mesos by applying a real-world scenario: demonstrating multiple
applications using Mesos cluster resources. The chapter demonstrates Apache Spark,
a popular data-processing framework.

 If you’re not familiar with Spark, don’t worry: the following sections use Spark
as a demonstration of how Mesos distributes workloads and shares resources
among multiple applications. I use Spark as an example to teach you about resource
sharing and workload scheduling on a general-purpose Mesos cluster, and how
Mesos compares to statically partitioned clusters within a datacenter. You’ll also get
a brief introduction to the Mesos and Spark web interfaces, and, who knows, maybe
you’ll even learn a thing or two about Spark in the process. Let’s get started.

This chapter covers
■ Introducing Mesos with a real-world example
■ Comparing standalone and general-purpose

clusters
■ Launching a Spark job on a Mesos cluster
■ Exploring a framework’s interaction with Mesos

18 CHAPTER 2 Managing datacenter resources with Mesos

2.1 A brief introduction to Spark
To quote the project’s website, “Apache Spark is a fast and general engine for large-
scale data processing.” It lives in the “big data” space along with other popular proj-
ects, such as Hadoop, and is often used for data science and analytics. In many cases,
Spark performs tasks faster and more efficiently than Hadoop’s MapReduce, both in
memory and on disk.

 Spark also provides APIs for several popular programming languages, including
Python, Scala, and Java, and supports streaming workloads, interactive queries, and
machine-learning libraries, in addition to MapReduce-like batch processing.

At the most basic level, Spark requires a cluster manager for distributing work, and
access to a Hadoop-compatible data source. Out of the box, Spark includes support
for several cluster managers:

■ Spark standalone
■ Mesos
■ Hadoop YARN
■ Pseudo-distributed (running locally on your laptop or workstation)

Although it’s possible to run Spark locally and use the CPU cores on your laptop or
workstation, that’s useful only for development purposes: the number of CPU cores
limits the number of executors. When you set up a production Spark cluster, you have
two options: deploy a standalone, statically partitioned Spark cluster on a predeter-
mined number of servers, or use a cluster manager such as Mesos or YARN to run the
Spark job’s tasks for you.

 To best illustrate what a general-purpose cluster manager such as Mesos can offer,
I’ll compare and contrast Spark standalone with Mesos in the next few sections.

A brief history of Spark
In 2009, Matei Zaharia began development on Spark in the AMPLab at the University
of California, Berkeley, the same organization that supported the development of
Mesos. In fact, Matei is also one of the co-creators of Mesos.

After being open sourced in 2010, Spark was donated to the Apache Software Foun-
dation and entered the Apache Incubator in 2013. It graduated to become a top-level
project in 2014.

Databricks, a company co-founded by Matei in 2013, seeks to commercialize on
Spark’s successes and help clients with big data problems. Databricks remains a
large contributor to the open source Spark project.

19A brief introduction to Spark

2.1.1 Spark on a standalone cluster
In figure 2.1, you see that a Spark driver program connects to a cluster manager—the
Spark master—that in turn distributes tasks to various worker nodes.

In the graphic, the Spark Driver refers to the machine running the Spark job, and the
SparkContext is the main entry point to Spark. The SparkContext is responsible for
connecting to a cluster manager and running tasks on the cluster. It’s also responsible
for creating Spark’s distributed data sets. As you can also see, the two worker nodes in
the Spark cluster are single-purpose: they are machines dedicated to running Spark
tasks, and nothing else.

 As you learned in the previous chapter, Mesos provides an excellent means for run-
ning multiple applications on a single cluster, and launching multiple tasks on a single
worker node. Instead of setting up one or more statically partitioned Spark clusters,
you can use Mesos to share cluster resources across multiple applications. Let’s see
what it looks like to run Spark on Mesos.

2.1.2 Spark on Mesos
Although setting up Spark to use a standalone cluster isn’t a problem, consider the
needs of multiple teams needing their own Spark clusters, or consider the bigger pic-
ture: multiple, statically partitioned clusters in a single datacenter.

SparkContext

Spark driver

Spark master

(Cluster manager)

Spark cluster

Spark slave

Spark

executor

Tasks

Spark slave

Spark

executor

Tasks

The Spark driver refers
to the machine actually
running the job.

Spark standalone
establishes a cluster
with a single purpose:
to run Spark jobs.

The SparkContext is the
main entry point into
Spark, and connects
to a cluster manager.

Figure 2.1 Components and architecture for a standalone Spark cluster

20 CHAPTER 2 Managing datacenter resources with Mesos

 If you’re deploying these static clusters on physical hardware, you’re clearly dedi-
cating a certain amount of capital to that workload—and only that workload—without
the possibility of sharing resources. Likewise, if you set up statically partitioned clus-
ters on an Infrastructure as a Service (IaaS) provider like Amazon Web Services
(AWS), you might be wasting money due to cloud instances sitting idle. Regardless of
whether your workloads are running on premises or in the cloud, fine-grained
resource sharing can help increase a system’s utilization, and therefore improve data-
center efficiency.

 To illustrate this point, let’s take a look at figure 2.2. You have two standalone clus-
ters serving two applications: Spark (the data-processing example used up to this
point) and Jenkins, a popular, open source continuous integration framework. The
use of Jenkins itself isn’t particularly important for this example; what’s important is
that it’s some other application that needs to run on multiple servers.

As figure 2.2 illustrates, you now have two statically partitioned clusters: one for Spark
and one for Jenkins. Each cluster includes its own cluster manager (Spark master and
Jenkins master) and two worker nodes on which to launch tasks or builds. You can also
clearly see the static partitions (or silos, if you will) that these two services fall into, and
that isn’t any way to share compute resources between the two clusters. Chances are
that neither of these services is using their computing resources 100% of the time. If

Spark master

(Cluster manager)

Spark cluster

Spark slave

Spark

executor

Tasks

Spark slave

Spark

executor

Tasks

The Spark cluster executes
Spark jobs—and only Spark
jobs—on two servers.

Jenkins master

(Cluster manager)

Jenkins CI cluster

Jenkins slave

Jenkins

executor

Tasks

Jenkins slave

Jenkins

executor

Tasks

The Jenkins cluster executes
Jenkins jobs—and only Jenkins
jobs—on two servers.

Figure 2.2 Visualizing two statically partitioned, or siloed, clusters

21A brief introduction to Spark

the Spark cluster was 50% underpowered, and the Jenkins cluster 50% overpowered,
Spark—and the data scientists using the Spark cluster—would benefit by being able to
use the resources of three machines instead of just two.

 Now let’s consider running each of these systems atop a general-purpose cluster
manager like Mesos that allows for this sort of fine-grained resource sharing. In fig-
ure 2.3, you’re able to share compute resources and run multiple workloads on a sin-
gle Mesos slave by allowing Mesos to isolate each framework’s executors using Linux
control groups (cgroups). At scale, this will lead to better resource utilization across
the many machines within a modern datacenter.

 Now that you’ve taken the time to understand how Spark can use Mesos for its clus-
ter manager, and why adopting a general-purpose cluster manager like Mesos can lead
to increased efficiency by sharing compute resources, let’s take a look at what it’s like
to run a Spark job on a Mesos cluster. This will give you a better idea of how Mesos
runs tasks before we get into installation and configuration of the cluster in chapter 3.

Mesos masters

(Cluster manager)

Mesos cluster

Mesos slave

Jenkins

executor

Tasks

Spark

executor

Tasks

Workloads are isolated using Linux
cgroups or Docker containers.

Spark and Jenkins can use a single Mesos cluster
to share resources, instead of establishing their
own standalone clusters, leading to better
overall resource utilization.

Mesos is a general-purpose
cluster manager that can be
used by multiple applications.

Mesos slave

Jenkins

executor

Tasks

Spark

executor

Tasks

SparkContext

Spark driver

Jenkins job

Jenkins master

Figure 2.3 Mesos managing cluster resources for two applications

22 CHAPTER 2 Managing datacenter resources with Mesos

2.2 Running a Spark job on Mesos
The standalone Spark cluster discussed earlier in this chapter follows an architecture
just as you might expect with any other distributed system: a master schedules work on
one or more worker nodes. Figure 2.3 demonstrated how you could use Mesos to
avoid statically partitioning your datacenter into multiple clusters, and instead declare
the compute resources your workload requires of a single, general-purpose cluster.
Now let’s take a look at Mesos in action by demonstrating how it distributes work for a
framework like Spark.

NOTE This section is about running Spark in the context of Mesos, not
necessarily a primer on Spark itself. Although I show you how to run the
example job on a Mesos cluster, you shouldn’t expect to learn about using
Spark for real-world data-processing jobs in this text. If you’re interested in
learning more about Spark, please check out the Spark project page at
http://spark.apache.org and Spark in Action by Petar Zečević and Marko Bonaći
(Manning, 2016).

2.2.1 Finding prime numbers in a set

To demonstrate how Spark connects to a Mesos cluster, accepts resource offers,
launches executors, and executes tasks, I’ll demonstrate a simple job in Spark. The
job will create a data set of integers between 1 and 100,000,000, and then use Spark to
determine which integers in the set are prime numbers (numbers that are not equal
to 1 and are divisible only by 1 and themselves).

 Instead of setting up a standalone Spark cluster for this job, Spark will use Mesos as
a cluster manager for scheduling and distributing the individual tasks to available
compute resources in the cluster. But before you get into running Spark on a Mesos
cluster, let’s discuss the order of events that takes place when a framework interacts
with a Mesos cluster. Figure 2.4 maps out Spark registering as a Mesos framework,
accepting resource offers from the Mesos master, and finally, launching tasks on a
Mesos slave.

 Several things are happening in this figure, and you’ll see a breakdown of what’s
happening a little later in the chapter. For now, it’s important to understand the
following:

1 The SparkContext connects to ZooKeeper to determine the leading Mesos master.
2 The SparkContext registers with the leading Mesos master as a new framework.
3 The SparkContext receives resource offers from the leading Mesos master, with

which it can launch tasks to perform its data-processing workloads.

Having learned the events—and the order they occur—from figure 2.4, let’s take the
time now to launch the Spark job and observe real output from the cluster. After you
have a Mesos cluster up and running (which you’ll learn about in the next chapter),
feel free to install Spark and run the example.

http://spark.apache.org

23Running a Spark job on Mesos

TIP Installation instructions for Spark on Mesos are available on the Spark
website, http://spark.apache.org/docs/latest/running-on-mesos.html.

2.2.2 Getting and packaging up the code

I’ve included the example code for this Spark job with the book’s supplementary
materials, available on GitHub and on manning.com. The easiest way to get the exam-
ple code is to clone the repository by using Git:

$ git clone https://github.com/rji/mesos-in-action-code-samples
$ cd mesos-in-action-code-samples/chapter02/spark-primes-example

Mesos master

(leader)

ZooKeeper

ensembleSparkContext

Spark driver

3. The framework
registers with the
leading Mesos
master and waits
for resource offers.

4. The Mesos slave
continuously offers
resources to the
Mesos master.

5. One or more
offers are sent to
the SparkContext.

Mesos slave

Spark executor

Tasks

6. The SparkContext
accepts the
resource offer.

2. ZooKeeper returns
information about
the leading Mesos
master to the
SparkContext.

1. The SparkContext
queries ZooKeeper
for the leading
Mesos master.

7. Tasks are launched
on the Mesos slave.

Figure 2.4 Events that occur when Spark runs tasks on a Mesos cluster

http://spark.apache.org/docs/latest/running-on-mesos.html
http://manning.com

24 CHAPTER 2 Managing datacenter resources with Mesos

Next, you need to package the job and its dependencies into a single Java Archive
(JAR) file that can be used with the spark-submit command-line tool. Because this
particular example is written in the Scala programming language, you’ll need to
ensure that a recent Java Development Kit (JDK) and Scala are both present on the
system you’re using to submit the job. I’ll refer to this as the gateway machine.

 After those prerequisites are met, package up the example by using sbt, a build
tool for Scala that’s similar to Maven or Ant in the Java community. If sbt isn’t already
installed on your system, you can find installation instructions for Linux, Mac OS X,
and Windows at www.scala-sbt.org/release/tutorial.

 Proceed to package the example by running the following command:

$ sbt package

After packaging has completed, you’re ready to submit the job to a Mesos cluster.
Although I won’t cover the Mesos installation and configuration process until the next
chapter, I thought it might be beneficial for you to understand how the cluster works
before we dive in to deploying it.

2.2.3 Submitting the job

Having already packaged the example code into a simple JAR file, let’s go ahead and
submit the job. The following example assumes that Spark is installed at /opt/spark:

/opt/spark/bin/spark-submit --class com.manning.mesosinaction.PrimesExample

➥ target/scala-2.10/spark-primes-example_2.10-0.1.0-SNAPSHOT.jar

➥ 100000000

This job should only take a few minutes to complete.

2.2.4 Observing the output

After submitting the job by using the spark-submit command, you observe a decent
amount of output on your console; by default, Spark is logging to the console with
INFO-level verbosity. The following listing includes some of the more important log
messages, and I’ll explain what they mean in the context of Mesos.

15/04/12 22:35:56 INFO Utils: Successfully started service 'sparkDriver'
 on port 45957.

15/04/12 22:35:56 INFO Utils: Successfully started service
 'HTTP file server' on port 49444.

15/04/12 22:35:56 INFO SparkUI: Started SparkUI at
 http://10.132.171.224:4040

Listing 2.1 Spark job output when running on a Mesos cluster

http://www.scala-sbt.org/release/tutorial

25Running a Spark job on Mesos

I0412 22:35:57.401646 8991 sched.cpp:157] Version: 0.22.2

2015-04-12 22:35:57,415:8901(0x7f8ed93eb700):ZOO_INFO@check_events@1703:
 initiated connection to server [10.132.171.224:2181]

I0412 22:35:57.418431 8993 detector.cpp:452] A new leading master
 (UPID=master@10.132.171.224:5050) is detected

I0412 22:35:57.418504 8993 sched.cpp:254] New master detected at
 master@10.132.171.224:5050

I0412 22:35:57.420454 8993 sched.cpp:448] Framework registered with
 20150412-214000-3769336842-5050-2832-0005

15/04/12 22:35:57 INFO MesosSchedulerBackend: Registered as framework ID
 20150412-214000-3769336842-5050-2832-0005

15/04/12 22:35:57 INFO SparkContext: Starting job: collect at
 PrimesExample.scala:22

15/04/12 22:39:34 INFO SparkContext: Job finished: collect at
 PrimesExample.scala:22, took 217.099354417 s

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79

99999839 99999847 99999931 99999941 99999959 99999971 99999989

15/04/12 22:40:10 INFO SparkUI: Stopped Spark web UI at http://
 10.132.171.224:4040

15/04/12 22:40:10 INFO DAGScheduler: Stopping DAGScheduler

I0412 22:40:10.902202 8931 sched.cpp:1589] Asked to stop the driver

I0412 22:40:10.902323 8997 sched.cpp:831] Stopping framework
 '20150412-214000-3769336842-5050-2832-0005'

15/04/12 22:40:10 INFO MesosSchedulerBackend: driver.run() returned
 with code DRIVER_STOPPED

15/04/12 22:40:11 INFO SparkContext: Successfully stopped SparkContext

Although a lot more activity exists in the Spark logs, and you probably don’t need
INFO-level verbosity on a regular basis, the lines selected for this listing serve as a good
example to understand how Spark is using Mesos to handle its workload, or at least
the order of events when launching a Spark workload on Mesos, just as we visualized
previously in figure 2.4.

 Now that you understand this order of events for a real-world workload, let’s take a
look at more ways you can observe the output and status of the frameworks and tasks
running on a Mesos cluster.

Spark
queries

ZooKeeper
for the
leading
Mesos

master.

Our
SparkContext

registers
itself as a

Mesos
framework.

The Spark driver
executes tasks
on the Mesos
cluster.

Output
omitted
for brevity

The Spark-
Context
shuts
down its
scheduler.

The Spark
framework is
unregistered

from the
Mesos

master.

26 CHAPTER 2 Managing datacenter resources with Mesos

2.3 Exploring further
Having just submitted and run a Spark job on a Mesos cluster—and observed the out-
put from the job on the console—perhaps it’s a good time to start introducing you to
the various happenings under the hood. In this section, you’ll take a quick look at the
Mesos and Spark web interfaces so you can observe the work being performed on
your cluster in real time. Although you won’t install and configure Mesos until the
next chapter, the next few sections serve as a starting point for topics that you’ll learn
in part 2 of this book.

2.3.1 Mesos UI

The Mesos masters provide a web interface for viewing the status of the cluster and
the work being performed. This web interface provides information on the cluster,
including the following:

■ Overview of all tasks and their current status
■ Registered frameworks and associated tasks
■ Mesos slaves, their resources, and the tasks they’re currently executing
■ Outstanding resource offers (offers that haven’t yet been accepted or rejected)

In figure 2.5, you can see that the Spark Primes Example framework is registered to
the cluster, is currently consuming 6 CPUs and 2.6 GB memory, and is running several
tasks. For now, don’t worry about every feature in the web interface; you’re concerned
only with observing how the cluster responds to a single Spark job running on it, in an
attempt to familiarize you with the features available in Mesos. Chapter 5 revisits the
web interface in greater depth.

 Clicking the Sandbox link for any of those tasks allows you to drill down into the
files and log output present in the Mesos sandbox, or working directory, for individual
tasks. In figure 2.6, the sandbox contains your Spark job’s JAR file and files that have
captured the console output from stdout and stderr.

2.3.2 Spark UI

In addition to the web interface provided by Mesos, Spark launches its own web inter-
face for monitoring the progress of your Spark jobs. You saw evidence of this in the
Spark job’s output in listing 2.1. Although accessing this interface isn’t necessary for
the proper functioning of the Mesos cluster, it does provide a nicer, cluster manager–
agnostic view of the progress of a particular Spark job.

27Exploring further

Unique framework
ID generated by the
Mesos master

Information about the
framework, including
active tasks and
resources consumed

Active tasks for the
framework, and their
location in the cluster

Figure 2.5 The Spark Primes Example framework is consuming cluster resources and running tasks.

Console output—stdout and
stderr—are captured in text
files in a task’s sandbox

Figure 2.6 Files within a Mesos sandbox for a single Spark task

28 CHAPTER 2 Managing datacenter resources with Mesos

In figure 2.7, you can see that the job’s only stage, “collect at PrimesExample.scala:22,”
is currently running on the cluster and has completed 5/8 of its tasks.

 Regardless of whether this job was running on Mesos or on another cluster man-
ager, the tasks would be distributed in a similar fashion. The difference, however, is
that Mesos allows you to run multiple frameworks—and their tasks—alongside each
other in an isolated manner.

2.4 Summary
Although this example was about how Mesos schedules and distributes work on a clus-
ter in the context of a Spark job, hopefully it was beneficial for you to see an example
Mesos workload—and Mesos in action—all in a single chapter. By doing so, you now
know what you can expect after deploying Mesos following the directions in part 2 of
this book. To recap, you learned the following from this chapter:

■ Distributed frameworks such as Apache Spark and Jenkins CI can use Mesos as
their cluster manager, simultaneously.

■ Mesos’ fine-grained resource sharing can lead to higher resource utilization
across the datacenter.

Spark splits its workload into
individual tasks. The user can
monitor the progress of Spark’s
tasks here, without diving into
the Mesos UI.

Figure 2.7 The Spark web interface shows the progress of the Spark Primes Example job

29Summary

■ A Spark job is composed of a number of individual tasks, or units of work, that
are distributed on the Mesos cluster.

■ The Mesos web interface provides a glimpse into the current state of the cluster.

In part 2 of this book, you’ll revisit each of the concepts explained in chapters 1 and 2,
including resource isolation and fault tolerance, and dive more into logging, debug-
ging, slave resources, and slave attributes. If you’d like, you can download the Spark
Primes Example from the book’s supplementary materials (available on GitHub and
on manning.com) and test it on your own Mesos cluster; the next chapter covers
installation and configuration.

 In the meantime, if you’d like more information on using Spark with Mesos as a clus-
ter manager, or more information on Spark in general, check out the following links:

■ https://spark.apache.org/docs/latest/
■ https://spark.apache.org/docs/latest/spark-standalone.html
■ https://spark.apache.org/docs/latest/running-on-mesos.html

https://spark.apache.org/docs/latest/
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/running-on-mesos.html
http://manning.com

Part 2

Core Mesos

In part 2, I provide the fundamental knowledge that you’ll need to deploy a
Mesos cluster in a production environment. You’ll learn about the installation
and configuration process of Mesos, ZooKeeper, and Docker, as well as the highly
available architecture, monitoring, and access control of Mesos.

33

Setting up Mesos

Regardless of whether you’re using a configuration management tool (such as
Puppet, Chef, or Ansible), or using SSH or Fabric to execute commands and scripts
on remote systems, it’s important to understand how to deploy Mesos using pub-
licly available packages, and how to compile it from source code for customizing
your deployment or building your own packages.

 This chapter walks you through the installation and configuration of the Mesos
master and slaves, including Apache ZooKeeper for cluster coordination, and
Docker for launching containers. You’ll learn about the installation and configura-
tion of Mesos and ZooKeeper for highly available production deployments as well
as for installing everything on a single node for development purposes.

This chapter covers
■ Deployment considerations for development

and production clusters
■ Installing and configuring Mesos, ZooKeeper,

and Docker
■ Upgrading Mesos without downtime

34 CHAPTER 3 Setting up Mesos

Regardless of whether or not you’re planning to use a configuration management
tool for the deployment of your Mesos cluster, it’s still a good idea to read through this
chapter and understand how the various components depend on and interact
with each other.

3.1 Deploying Mesos
When deploying any new technology or system, whether it’s in development, stag-
ing, or production, it’s always a good idea to understand as much as you can about
it. This way, you’re prepared when something inevitably goes awry. The next few sec-
tions teach you about the components that make up a Mesos cluster. You’ll also
learn a few things to take into consideration when deploying clusters in develop-
ment and in production.

3.1.1 Mesos cluster components
Let’s revisit the various components and how they communicate with each other.
Regardless of whether or not you’re attempting to deploy Mesos in a development
environment or a production environment, a cluster deployment is made up of some
(or all) of the following components:

■ Required—One or more Mesos masters. (If the number of masters is greater than 1,
this must be an odd number.)

■ Required—One or more Mesos slaves. (Generally speaking, the more nodes in a
cluster, the better.)

■ Optional—A ZooKeeper ensemble consisting of one or more machines. Required only if
deploying Mesos in a highly available configuration. (If the number of Zoo-
Keeper nodes is greater than 1, this must be an odd number.)

■ Optional—Docker Engine running on each of the Mesos slaves.

Configuration management with Puppet
A good configuration management strategy is key to any well-run datacenter. Many of
the instructions included in this chapter—including the installation and configuration
of Mesos, ZooKeeper, and Docker—can be performed using Puppet, an open source
configuration management tool (and as of this writing, the most popular of the sev-
eral configuration management tools in the configuration management space). Three
Puppet modules in particular can help you automate and maintain the configuration
of your Mesos cluster:

■ https://forge.puppetlabs.com/deric/mesos
■ https://forge.puppetlabs.com/deric/zookeeper
■ https://forge.puppetlabs.com/garethr/docker

Because Puppet usage is best left to the official documentation or other books already
available on the topic, this chapter doesn’t cover it. You can find and download Puppet
from most Linux distributions’ package repositories or from puppetlabs.com.

https://forge.puppetlabs.com/deric/mesos
https://forge.puppetlabs.com/deric/zookeeper
http://puppetlabs.com
https://forge.puppetlabs.com/garethr/docker

35Deploying Mesos

Depending on your intended purpose, you may need to consider additional informa-
tion for development and production environments. The next couple of sections cover
this topic.

3.1.2 Considerations for a development environment
When installing and configuring Mesos for development purposes, it’s reasonable to
deploy all of the components for a Mesos deployment on a single node, opting for a
simpler deployment in lieu of a highly available one. For a development environ-
ment, you need to install, configure, and deploy the following components, in the
following order:

1 A single instance of ZooKeeper. Note that this is optional, and needed only if
your framework needs ZooKeeper for coordination or to maintain state (as
needed by highly available frameworks).

2 The Mesos master service.
3 The Mesos slave service.
4 Docker Engine (optional).

When you reach the installation and configuration of Mesos later in this chapter,
install all the components on a single machine. But it’s worth noting that this use case
is so common for development purposes that the team over at Mesosphere, Inc. has
developed a project for just this purpose: Playa Mesos.

INTRODUCING PLAYA MESOS

A popular way of distributing reproducible development environments between sys-
tems or team members is to use Vagrant (www.vagrantup.com). Playa Mesos is one
such development environment created and maintained by Mesosphere as an easy
way to provision a Mesos cluster on a single VM, and experiment with developing
frameworks, running applications (via Marathon), and running scheduled tasks (via
Chronos). Out of the box, it also includes a single instance of ZooKeeper, and Docker
Engine, both preinstalled and preconfigured.

TIP The Playa Mesos project can be found on GitHub at https://github.com/
mesosphere/playa-mesos.

Assuming you already have a working Vagrant setup (which requires virtualization
software such as VirtualBox, VMware Fusion, or VMware Workstation), getting up and
running in a development environment is easy:

$ git clone https://github.com/mesosphere/playa-mesos
$ cd playa-mesos
$ vagrant up --provision

The same general components and concepts apply to production environments as
well, but some additional considerations need to be taken in order to deploy the vari-
ous components in a highly available manner. Let’s take a look at this now.

https://github.com/mesosphere/playa-mesos
https://github.com/mesosphere/playa-mesos
http://www.vagrantup.com

36 CHAPTER 3 Setting up Mesos

3.1.3 Considerations for a production environment
This section contains some best practices to consider for deploying the Mesos cluster.
It’s worth noting, however, that this isn’t an extensive guide for running Mesos in pro-
duction. This section is intended to help you make certain provisioning decisions at
this stage of the book. Chapter 6 provides more details about running Mesos in a pro-
duction environment, including logging, monitoring, and access control.

PRODUCTION DEPLOYMENT OVERVIEW
For a production environment, you’ll want a minimum of three Mesos masters and
three servers making up the ZooKeeper ensemble. For development purposes, you
can get away with a single Mesos master running a single instance of ZooKeeper, but
note that you won’t have any redundancy in the system.

 In figure 3.1, you can visualize the multiple Mesos masters using ZooKeeper for
coordination, and the various Mesos slaves (in this case, also running Docker) com-
municating with the leading Mesos master.

 Although ZooKeeper is illustrated as a standalone service running separate from
the Mesos masters, you’ll opt for a slightly simpler deployment overall and install Zoo-
Keeper alongside Mesos on each of the Mesos master machines. Don’t worry about
memorizing this graphic; I’ll repeat it as you make your way through the installation
and configuration of the cluster.

Mesos master

(leader)

Mesos master

(standby)

Mesos master

(standby)

ZooKeeper ensemble

ZK

ZK ZK

Mesos slave

Docker

Mesos slave

Docker

Mesos slave

Docker

Mesos masters coordinate
with ZooKeeper to elect
a leader.

Mesos slaves communicate
with the leading master.

Figure 3.1 Components in a Mesos deployment

37Deploying Mesos

This almost goes without saying, but when deploying these services on dedicated hard-
ware or using your virtualization or cloud provider of choice, be sure to account for
redundancy at all hardware levels. If you’re running in a physical datacenter, your
Mesos masters and ZooKeeper servers should perhaps be placed in different racks,
connected to different (or multiple) network switches, be connected to multiple
power distribution units, and so forth. If you’re running in a virtualized or cloud envi-
ronment, ensure that the necessary policies are in place to keep the virtual machines
running on different hypervisors or in different availability zones.

 Considering that all of your cluster coordination will be happening through the
Mesos masters and the ZooKeeper ensemble, you want to keep the single points of
failure to a minimum. If you have multiple datacenters or a disaster recovery data-
center, you might even consider using them, assuming the network latency is
low enough.

MESOS MASTERS

If you’re planning to run a Mesos cluster spanned across multiple datacenters, it’s a
good idea to ensure that low network latency exists between each of the masters and
datacenters. Otherwise, Mesos registry updates could fail if the leading master can’t
write to the standby masters’ registries within the registry_store_timeout (default:
five seconds). If you need to increase this time-out, you may consider increasing the
registry_fetch_timeout (default: one minute) as well. Depending on your environ-
ment, you might want to consider running a separate Mesos cluster at each site and
load-balancing across datacenters instead.

ZOOKEEPER ENSEMBLE

Considering that ZooKeeper is required for all coordination between Mesos masters,
slaves, and frameworks, it goes without saying that it needs to be highly available for
production deployments. A ZooKeeper cluster, known as an ensemble, needs to main-
tain a quorum, or a majority vote, within the cluster. The number of failures you’re will-
ing to tolerate depends on your environment and service-level agreements to your
users, but to create an environment that tolerates F node failures, you should deploy
(2 × F + 1) machines, as shown in table 3.1.

Table 3.1 Number of ZooKeeper nodes required for a quorum

ZooKeeper cluster size
(number of nodes)

Quorum size
Number of machine
failures tolerated

1 1 0

3 2 1

5 3 2

2 × F + 1 F + 1 F

38 CHAPTER 3 Setting up Mesos

Because the ZooKeeper ensemble requires a majority vote to make cluster decisions, it
usually makes sense to deploy ZooKeeper clusters with an odd number of nodes. Gen-
erally speaking, I recommend that you start with five ZooKeeper nodes for a produc-
tion environment. This enables one of the nodes to be taken offline for maintenance
and the cluster to still tolerate an unexpected failure.

WARNING Before setting up a ZooKeeper ensemble in a production environ-
ment, please take the time to read the ZooKeeper Administrator’s Guide at
http://zookeeper.apache.org/doc/current/zookeeperAdmin.pdf.

Now, installing ZooKeeper on the same machines as the Mesos masters isn’t a require-
ment, but it does make for simpler deployments and is generally an acceptable
approach. If you’re planning to deploy other software that also requires ZooKeeper, I
recommend that you deploy a separate, standalone ZooKeeper ensemble for those
applications and leave the Mesos ZooKeeper ensemble dedicated to serving the Mesos
cluster. Later in this chapter, I’ll have you install ZooKeeper on each of the Mesos mas-
ters to reduce complexity.

 As I said previously, this isn’t an exhaustive list of best practices, but rather some
guidelines for planning the number and location of ZooKeeper nodes and Mesos
masters for your deployment. Chapter 6 discusses additional production consider-
ations for both Mesos and ZooKeeper, including logging, monitoring, and access
control.

3.2 Installing Mesos and ZooKeeper
Mesos installations are supported on Linux and Mac OS X, and may work on other
UNIX-like operating systems. You have two options for installing Mesos and ZooKeeper:

■ Using your operating system’s package manager
■ Compiling the source code and installing the resulting binaries

In this section, you’ll learn how to install Mesos on two of the most popular Linux dis-
tributions: Red Hat Enterprise Linux (RHEL) / CentOS 7, and Ubuntu 14.04 LTS (code
name Trusty).

NOTE Remember that with any on-premises or cloud deployment, you’re still
responsible for managing the installation, configuration, and health of ser-
vices. Some cloud providers, such as Amazon Web Services (AWS), provide
tools to create templates for provisioning infrastructure automatically. Because
these tools are specific to the provider and not related to Mesos, this text
doesn’t cover them, instead opting to cover configuration of the system at the
operating-system level. You should consult your provider’s documentation for
more information on how to use their various solutions to automate your
Mesos cluster deployment.

http://zookeeper.apache.org/doc/current/zookeeperAdmin.pdf

39Installing Mesos and ZooKeeper

3.2.1 Installing from packages

Mesosphere provides Mesos package repositories for several Linux distributions that
are commonly found in production environments. As of this writing, they include the
following operating systems and OS releases:

■ RHEL / CentOS 6 and 7
■ Ubuntu 12.04 through 14.04
■ Debian 7 (code name Wheezy)

This example includes installation instructions for the latest release of RHEL/CentOS
and the latest long-term support (LTS) release of Ubuntu. Documentation for setting
up Mesosphere repositories on other supported operating systems can be found on its
website at https://mesosphere.com/downloads.

RHEL / CENTOS 7
First, you need to download the package that installs and configures your system for
the Mesosphere repository. You can do this by running the following command:

$ sudo rpm -Uvh http://repos.mesosphere.io/el/7/noarch/RPMS/

➥ mesosphere-el-repo-7-1.noarch.rpm

After the repository has been installed, you need to install the Mesos package on the
masters and slaves. On the masters, you’ll also install Mesosphere’s ZooKeeper pack-
ages. To do so, run the following command:

$ sudo yum -y install mesos-0.22.2-0.2.62.centos701406

➥ mesosphere-zookeeper

On the slaves, install Mesos by running this command:

$ sudo yum -y install mesos-0.22.2-0.2.62.centos701406

Installing these packages also installs any dependent packages required by Mesos and
ZooKeeper. After these packages are installed, feel free to skip ahead to section 3.3.

UBUNTU 14.04 (TRUSTY)
To set up the package repositories on Ubuntu, you first need to fetch Mesosphere’s
GPG public key, which is used to sign the packages. You’ll then add Mesosphere’s
repository to Apt’s sources list, and refresh all of the package metadata on the system:

$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv E56151BF
$ echo "deb http://repos.mesosphere.io/ubuntu trusty main" |

➥ sudo tee /etc/apt/sources.list.d/mesosphere.list
$ sudo apt-get update

https://mesosphere.com/downloads

40 CHAPTER 3 Setting up Mesos

After the Mesosphere key is present and the repository is available, you can install the
Mesos package on the masters and slaves. On the masters, you’ll also install the Zoo-
Keeper package. To do so, run the following command:

$ sudo apt-get install mesos=0.22.2-0.2.62.ubuntu1404 zookeeperd

Now, on the slaves, install Mesos by running this command:

$ sudo apt-get install mesos=0.22.2-0.2.62.ubuntu1404

Installing these packages also installs any dependent packages required by Mesos and
ZooKeeper. After these packages are installed, feel free to skip ahead to section 3.3.

3.2.2 Compiling and installing from source

Although installing Mesos from the packages provided by Mesosphere is by far the
quickest way to get up and running with Mesos, I thought it best to also demonstrate
how to build Mesos from source. You might consider doing this for a few reasons:

■ You need to modify the Mesos build configuration or enable additional
functionality.

■ You prefer to build your own packages, potentially with site-specific modifications.
■ You prefer to obtain the code directly from the Apache Software Foundation.

You can configure, compile, and install Mesos in various ways. In the following exam-
ple, you’ll use the default configuration as specified by the Mesos configure script. It’s
worth noting that by default, compiling Mesos also compiles a bundled version of
ZooKeeper.

 If you’d like to compile ZooKeeper separately or use a different version, you can
do so by configuring Mesos prior to compilation time. A complete list of the options
you can pass to the configure script can be found with the Mesos project documenta-
tion at http://mesos.apache.org/documentation/latest/configuration/.

NOTE Although I’ve done my best to capture the prerequisite steps and walk
you through the build process, these instructions are subject to change for
future releases. For the most up-to-date instructions, see http://mesos.apache
.org/gettingstarted/.

In short, compiling Mesos requires the following:

■ A 64-bit Linux distribution
■ GNU Compiler Collection (GCC) 4.4 or newer, or Clang 3.3 or newer

TIP Starting with Mesos 0.23, the minimum compiler version has been
upgraded to GCC 4.8 and Clang 3.5 for all supported platforms. For more
information, see https://issues.apache.org/jira/browse/MESOS-2604.

http://mesos.apache.org/documentation/latest/configuration/
http://mesos.apache.org/gettingstarted/
http://mesos.apache.org/gettingstarted/
https://issues.apache.org/jira/browse/MESOS-2604

41Installing Mesos and ZooKeeper

Because the number of Linux distributions is always growing, it isn’t feasible for me
(or the Mesos authors) to provide instructions on how to set up the environment to
compile Mesos for all of them. For parity with the package installation instructions I
covered in the previous section, the next two sections include instructions for compil-
ing Mesos on RHEL / CentOS 7 and Ubuntu 14.04 LTS (Trusty).

RHEL / CENTOS 7 PREREQUISITES

Fortunately, RHEL 7 includes GCC 4.8.3 as part of its base package offering. This
enables you to compile Mesos version 0.22.2, and ensure that you’re able to compile
version 0.23 and beyond, without requiring you to upgrade the compiler.

 All of the dependencies required to compile Mesos are available via RHEL’s Yum
package manager, except one: Boto, a Python module that provides an interface to
the AWS API. You’ll need to install this one optional package by using Python’s
easy_install utility, which is included with RHEL.

 To install the dependencies required to compile Mesos on RHEL / CentOS 7, run
the following commands:

$ sudo yum -y groupinstall "Development Tools"

$ sudo yum -y install subversion-devel java-1.8.0-openjdk-devel zlib-devel

➥ libcurl-devel openssl-devel cyrus-sasl-devel cyrus-sasl-md5 apr-devel

➥ apr-util-devel maven python-devel

$ sudo easy_install boto

After these development dependencies are installed, feel free to skip to the upcoming
“Compiling” section.

UBUNTU 14.04 (TRUSTY) PREREQUISITES

Fortunately, Ubuntu 14.04 includes GCC 4.8.4 as part of its base package offering. This
enables you to compile Mesos version 0.22.2, and ensure that you’re able to compile
version 0.23 and beyond, without requiring you to upgrade the compiler.

 All of the dependencies required to compile Mesos are available via Ubuntu’s Apt
package manager, including Boto, the optional Python module that provides an inter-
face to the AWS API.

 To install the dependencies required to compile Mesos on Ubuntu 14.04, run the
following commands:

$ sudo apt-get update

$ sudo apt-get -y install build-essential openjdk-7-jdk python-dev

➥ python-boto libcurl4-nss-dev libsasl2-dev maven libapr1-dev libsvn-dev

After these development dependencies are installed, proceed to the next section to
compile Mesos and ZooKeeper.

42 CHAPTER 3 Setting up Mesos

COMPILING

After you have all the development tools needed to compile Mesos, you can download
a Mesos release and begin the compilation process. As mentioned previously, you have
many options to configure Mesos at compilation time. For this example, you’ll accept
most of the defaults, but you’ll specify the option --prefix="/usr/local/mesos" to
ensure that all Mesos-related files are kept in a single directory. Feel free to modify
this to suit your preferences or environment.

 Run the following commands to download, configure, and compile Mesos 0.22.2:

$ curl -L -O https://www.apache.org/dist/mesos/0.22.2/mesos-0.22.2.tar.gz
$ tar zxf mesos-0.22.2.tar.gz
$ cd mesos-0.22.2
$ mkdir build && cd $_
$../configure --prefix="/usr/local/mesos"
$ make

TIP You can speed up compilation time, increasing the number of jobs that
Make launches simultaneously, by using the -j argument. For example: on a
machine with four CPU cores, you can use make -j4. Note that each job
requires about 2 GB of memory.

Depending on the number of cores available on your system, compiling Mesos could
take several minutes. After it has finished building, you might want to run the included
test suite. This next step is optional, but it’s a good idea if you intend to use any of the
example frameworks included with the Mesos source code.

 To run the test suite, run the following command:

$ make check

You’ll observe output throughout the test suite, and at the end you should see a test
summary resembling the following:

[==========] 539 tests from 86 test cases ran. (260794 ms total)
[PASSED] 539 tests.

Now that you’ve compiled Mesos and ensured that the tests are passing on your sys-
tem, you can go ahead and install Mesos.

INSTALLING MESOS

After Mesos has finished building, you can run the following command to install
Mesos:

$ sudo make install

By specifying --prefix="/usr/local/mesos" when running the configure script ear-
lier in the build process, Mesos will install itself into the /usr/local/mesos directory.

43Installing Mesos and ZooKeeper

Let’s take a look at the subdirectories that are now present in the installation direc-
tory, as well as their purposes and contents:

■ bin/ contains command-line tools for interacting with a Mesos cluster. Some of
these tools include mesos-local, mesos-execute, and mesos-ps.

■ etc/mesos/ contains configuration files for the Mesos cluster.
■ include/ contains the various C++ header files used for interfacing with Mesos.
■ lib/ contains native Mesos libraries, such as libmesos.so.
■ libexec/mesos/ contains Mesos helper binaries and scripts.
■ sbin/ contains several scripts used to start and stop Mesos masters and slaves.

Some of these include mesos-master, mesos-slave, and mesos-daemon.sh.
■ share/mesos/webui/master/static/ contains the static code for the Mesos

web interface.

It’s worth noting that because you should be able to compile Mesos on any Linux dis-
tribution (provided you have the necessary development tools), it isn’t feasible for the
Mesos project maintainers to include service wrapper scripts for all Linux operating
systems. But as mentioned previously, a set of scripts in the Mesos sbin/ directory
enables you to start masters and slaves, both in the foreground and as daemons. You
should be able to write a simple wrapper around the included scripts to start, stop,
and restart the mesos-master and mesos-slave services using your operating system’s
service manager or your service manager of choice.

TIP The mesos-init-wrapper script, which is included with the Mesos pack-
ages provided by Mesosphere, is open source and can be found in the follow-
ing GitHub repository: https://github.com/mesosphere/mesos-deb-packaging/
blob/master/mesos-init-wrapper.

INSTALLING ZOOKEEPER
When you compiled Mesos in the build/ directory, you also compiled a version of
ZooKeeper that the Mesos maintainers bundle in the Mesos source tree. The com-
piled ZooKeeper release is located within the build/3rdparty directory, and is now
ready to be installed.

 Chances are you’ll want to relocate ZooKeeper somewhere a little more perma-
nent, so let’s go ahead and copy it alongside the Mesos installation in /usr/local:

$ sudo cp -rp 3rdparty/zookeeper-3.4.5 /usr/local/
$ sudo chown -R root:root /usr/local/zookeeper-3.4.5

Located within the ZooKeeper distribution are several scripts in the bin/ directory
that assist you with starting and stopping the ZooKeeper cluster. Specifically, you’ll
want to pay attention to zkServer.sh, as this script will allow you to start, stop, and
restart your Zookeeper cluster.

 As was mentioned previously when you were installing Mesos, it’s not feasible for
the ZooKeeper project maintainers to maintain service scripts for all of the operating

https://github.com/mesosphere/mesos-deb-packaging/blob/master/mesos-init-wrapper
https://github.com/mesosphere/mesos-deb-packaging/blob/master/mesos-init-wrapper

44 CHAPTER 3 Setting up Mesos

systems ZooKeeper can run on. Some init scripts for RPM-based and Deb-based operat-
ing systems are located in the src/packages/ directory of the ZooKeeper distribution.
But otherwise, you should be able to write a small wrapper script for your operating sys-
tem’s service manager, or your service manager of choice, using the zkServer.sh script.

 Now that you’ve downloaded, compiled, and installed both Mesos and ZooKeeper,
you’re ready to learn about the various configuration options—and the methods for
specifying those options—available for both Mesos and ZooKeeper.

3.3 Configuring Mesos and ZooKeeper
Now that you understand the components that make up a Mesos deployment and
have installed Mesos and ZooKeeper, you need to configure everything so you can fire
up the services and start using your Mesos cluster.

 The ways you’ll configure ZooKeeper and Mesos will differ slightly based on whether
you chose to install from packages or compile from source in the preceding section. But
not to worry—you’ll learn about both as you work your way through this section.

3.3.1 ZooKeeper configuration
First and foremost, you’ll begin by configuring ZooKeeper, which is required for
Mesos cluster coordination and leader election. Figure 3.2 shows ZooKeeper’s role in
the cluster you’re deploying.

Mesos master

(leader)

Mesos master

(standby)

Mesos master

(standby)

ZooKeeper ensemble

ZK

ZK ZK

Mesos slave

Docker

Mesos slave

Docker

Mesos slave

Docker

Mesos masters coordinate
with ZooKeeper to elect
a leader.

Mesos slaves communicate
with the leading master.

Figure 3.2 Mesos masters coordinate leader election using a ZooKeeper ensemble.

45Configuring Mesos and ZooKeeper

The location of the configuration file, zoo.cfg, varies depending on whether you
installed ZooKeeper from packages or compiled it as part of Mesos:

■ For package-based installations, the configuration file is located at /etc/zoo-
keeper/conf/zoo.cfg.

■ For source-based installations (assuming you placed the ZooKeeper distribution
at /usr/local/zookeeper-3.4.5 as instructed), the configuration file is located at
/usr/local/zookeeper-3.4.5/conf/zoo.cfg.

The following listing provides basic settings needed to get a ZooKeeper 3.4.x cluster
up and running.

maxClientCnxns=50
tickTime=2000
initLimit=10
syncLimit=5
dataDir=/var/lib/zookeeper
clientPort=2181

server.1=mesos-master-1.example.com:2888:3888
server.2=mesos-master-2.example.com:2888:3888
server.3=mesos-master-3.example.com:2888:3888

In addition to creating the zoo.cfg configuration file, you’ll need to assign each
node in the ZooKeeper ensemble a unique ID. You’ll notice in this listing that the
servers are numbered: server.1, server.2, and so on. On each of those machines,
create the file myid within ZooKeeper’s conf/ directory. The file’s only contents
should be an integer between 1 and 255, representing the unique ID for that partic-
ular ZooKeeper node.

NOTE The ID number configured in the myid file on a given ZooKeeper
node must correspond with the ID number it’s given in zoo.cfg.

Listing 3.1 Basic ZooKeeper configuration

Maximum number of
client connections

The number of
milliseconds of
each tick

The number of ticks that
the initial synchronization
phase can take

The number of
ticks that can pass
between sending a
request and getting
an acknowledgment

The directory where
the snapshot is
stored

The port at which the
clients will connect

Specify all ZooKeeper servers in the ensemble.
The first port (2888) is used by followers to

connect to the leader. The second port (3888)
is used for leader election.

46 CHAPTER 3 Setting up Mesos

STARTING THE SERVICES
Although I’ve covered only the bare-minimum ZooKeeper configuration required, it’s
enough to bring up the machines in the ensemble and allow them to serve clients.
Let’s go ahead and start the ZooKeeper service on each of the masters:

■ For package-based installations—service zookeeper start
■ For source-based installations—/usr/local/zookeeper-3.4.5/bin/zkServer.sh

start

When the service is up and running, you can ensure that the ZooKeeper server is in a
healthy state by using Netcat to send it a health-check command. You should be able
to send ZooKeeper the ruok command, and it should respond with imok:

$ echo ruok | nc 127.0.0.1 2181
imok

If that last check worked, fantastic! ZooKeeper is up and running and ready to serve
your Mesos cluster. Chapter 6 covers monitoring the ZooKeeper cluster a bit more.
But for now, the ZooKeeper ensemble is up and running, so let’s proceed to config-
ure Mesos.

TIP For additional configuration options that might apply to your environ-
ment, please consult the ZooKeeper Administrator’s Guide at http://zookeeper
.apache.org/doc/current/zookeeperAdmin.pdf.

3.3.2 Mesos configuration
Now that the ZooKeeper ensemble is up and ready to provide services for your Mesos
cluster, let’s discuss how to go about configuring Mesos.

 The configuration provided here is enough to get a cluster ready to handle distrib-
uted workloads, but it won’t go into all the configuration options that Mesos provides.
You should refer to http://mesos.apache.org/documentation/latest/configuration
for the latest documentation and configuration options.

CONVENTIONS
Multiple conventions exist for configuring a Mesos deployment:

■ File-based—When using Mesos packages provided by Mesosphere, configuration
values can exist in files on disk, with each file named after the configuration
option. Some examples of this include /etc/mesos/zk and /etc/mesos-slave/
attributes/rack.

■ Environment-based—For both package-based and source-based installations, con-
figuration values can exist as environment variables that are read when the
mesos-master or mesos-slave services start. They can already be part of the envi-
ronment, or in a shell script that’s sourced before the services are started. For
example: MESOS_zk="zk://..."

http://zookeeper.apache.org/doc/current/zookeeperAdmin.pdf
http://zookeeper.apache.org/doc/current/zookeeperAdmin.pdf
http://mesos.apache.org/documentation/latest/configuration

47Configuring Mesos and ZooKeeper

■ Command-line arguments—Configuration values can also be passed in as argu-
ments to the mesos-master and mesos-slave binaries and service scripts. For
example: mesos-master --zk=zk://...

Chances are you’ll be interacting with Mesos more as a service and less on the com-
mand line, so this section explains configuring the masters and slaves by using the file-
based and environment-based methods. But it’s worth noting that all the configura-
tion options can be specified as command-line arguments, if you so desire.

 To determine the locations of the configuration files for your installation method
and operating system, take a look at table 3.2. This table assumes that for compiled
installations, you installed Mesos to /usr/local/mesos.

Please refer to the paths in this table for the configuration method of your choos-
ing. The following sections cover common options for Mesos master and slave
configuration without necessarily referencing the configuration files (or their loca-
tions) directly.

MASTER CONFIGURATION

You must use several required configuration settings for the proper functioning of the
Mesos masters: the ZooKeeper URL, the size of the Mesos master quorum, and the
Mesos master’s working directory. Figure 3.3 shows where you’re at in the deployment
process: configuring the Mesos masters.

 The --zk option sets the ZooKeeper URL, which is used for leader election and
coordination among the masters. This option is used in highly available deployments

Table 3.2 Mesos configuration file locations

Operating
system

Installation
method

Configuration
method

Configuration locations

RHEL and
CentOS 7

Packages
(Mesosphere)

File /etc/mesos/
/etc/mesos-master/
/etc/mesos-slave/

RHEL and
CentOS 7

Packages
(Mesosphere)

Environment /etc/default/mesos
/etc/default/mesos-master
/etc/default/mesos-slave

Ubuntu
14.04

Packages
(Mesosphere)

File /etc/mesos/
/etc/mesos-master/
/etc/mesos-slave/

Ubuntu
14.04

Packages
(Mesosphere)

Environment /etc/default/mesos
/etc/default/mesos-master
/etc/default/mesos-slave

All Source Environment /usr/local/mesos/etc/mesos/mesos-master-env.sh
/usr/local/mesos/etc/mesos/mesos-slave-env.sh

48 CHAPTER 3 Setting up Mesos

and isn’t required if you’re running Mesos in standalone mode. The ZooKeeper URL
uses the following convention:

zk://mesos-master-1.example.com:2181,

➥ mesos-master-2.example.com:2181,

➥ mesos-master-3.example.com:2181/mesos

If you have authentication enabled on the ZooKeeper cluster, you can either specify a
username and password in the URL itself, or reference a file on disk that contains the
ZooKeeper URL with your authentication details:

zk://username:password@host1:2181,host2:2181,host3:2181/mesos
file:///path/to/zk_url

If you set up the ZooKeeper cluster by following the instructions in this chapter, don’t
worry about authentication for now. Chapter 6 covers securing your Mesos and Zoo-
Keeper installations.

 The --quorum option establishes the majority of the Mesos masters in the cluster,
and is used for the Mesos replicated registry. Much like the ZooKeeper quorum, it
should be set according to table 3.3, where N is the value of the quorum option.

Mesos master

(leader)

Mesos master

(standby)

Mesos master

(standby)

ZooKeeper ensemble

ZK

ZK ZK

Mesos slave

Docker

Mesos slave

Docker

Mesos slave

Docker

Mesos masters coordinate
with ZooKeeper to elect
a leader.

Mesos slaves communicate
with the leading master.

Figure 3.3 Mesos masters use the previously configured ZooKeeper ensemble for
leader election.

49Configuring Mesos and ZooKeeper

WARNING When configuring the quorum option, it’s important to ensure that
the number of Mesos masters in the cluster matches table 3.3. Any additional
masters could violate the quorum and corrupt the replicated log. Chapter 6
provides additional information on how to safely increase and decrease the
Mesos master quorum size.

In the context of the Mesos masters, the --work_dir option specifies the location on
disk that Mesos will use for its own replicated log. There’s no default, so this must be
specified. Usually a path such as /var/lib/mesos is a good option.

 Although it’s not required, it’s a great idea to set the --log_dir option as well.
This ensures that Mesos will log events to disk, so that you can more easily debug your
Mesos cluster going forward. The packages provided by Mesosphere already set log_dir
to /var/log/mesos.

TIP I recommend setting two additional configuration options: --hostname
and --ip. Setting these options ensures that the hostname used by the
Mesos service, and the IP address for the Mesos service to communicate on,
are configured properly and not autodiscovered. Setting values for these
two options becomes even more important on machines with more than
one network interface.

Based on the preceding examples, here’s what the mesos-master-env.sh script might
look like on a source-based installation of Mesos:

export MESOS_zk=zk://mesos-master-1.example.com:2181,

➥ mesos-master-2.example.com:2181,mesos-master-3.example.com:2181/mesos
export MESOS_quorum=2
export MESOS_work_dir=/var/lib/mesos
export MESOS_log_dir=/var/log/mesos

After you’ve applied a basic configuration, all that’s left to do is to start the mesos-
master service by running the following command:

$ sudo service mesos-master start

Table 3.3 Number of Mesos masters required for a quorum

Number of
Mesos masters

Mesos master quorum
Number of machine
failures tolerated

1 1 0

3 2 1

5 3 2

2 × N – 1 N N – 1

50 CHAPTER 3 Setting up Mesos

It’s also a good idea to disable the mesos-slave service on the masters:

■ On RHEL / CentOS 7—sudo systemctl disable mesos-slave.service
■ On Ubuntu 14.04—echo "manual" | sudo tee /etc/init/mesos-slave.override

You should now be able to open a web browser and connect to one of the Mesos mas-
ters by visiting http://mesos-master-1.example.com:5050, replacing the hostname
with one of your own Mesos masters’ hostnames or IP addresses. If you connect to a
Mesos master that isn’t the current leading master, you’ll be redirected to the leader
automatically.

SLAVE CONFIGURATION
You need to set several configuration options for the proper functioning of a Mesos
slave, specifically the ZooKeeper URL and the slave’s working directory. Figure 3.4
shows where you’re at in the deployment process: configuring the Mesos slaves.

 The --master option sets the ZooKeeper URL, which is used by the Mesos slave to
detect the leading Mesos master and connect to the cluster. The ZooKeeper URL uses
the following convention:

zk://mesos-master-1.example.com:2181,

➥ mesos-master-2.example.com:2181,

➥ mesos-master-3.example.com:2181/mesos

Mesos master

(leader)

Mesos master

(standby)

Mesos master

(standby)

ZooKeeper ensemble

ZK

ZK ZK

Mesos slave

Docker

Mesos slave

Docker

Mesos slave

Docker

Mesos masters coordinate
with ZooKeeper to elect
a leader.

Mesos slaves communicate
with the leading master.

Figure 3.4 Mesos slaves use ZooKeeper to detect—and register with—the leading
Mesos master.

http://mesos-master-1.example.com:5050

51Configuring Mesos and ZooKeeper

When you have authentication enabled on the ZooKeeper cluster, you can either spec-
ify a username and password in the URL itself, or reference a file on disk that contains
the ZooKeeper URL with your authentication details:

zk://username:password@host1:2181,host2:2181,host3:2181/mesos
file:///path/to/zk_url

NOTE If you’re using the Mesos packages provided by Mesosphere, you
should set the ZooKeeper URL for the Mesos slave daemon in the file /etc/
mesos/zk, not in /etc/mesos-slave/master.

In the context of the Mesos slaves, the --work_dir option specifies the location on
disk that Mesos frameworks will use for their working directories and sandboxes.
There’s no default, so this must be specified. Usually a path such as /var/lib/mesos is
a good option. It’s also a good idea to ensure that the partition that this directory
resides on isn’t mounted with the noexec option, as /tmp often is.

 Although it’s not required, it’s a great idea to set the --log_dir option as well.
This ensures that Mesos will log events to disk so that you can more easily debug
your Mesos cluster going forward. The packages provided by Mesosphere already set
--log_dir to /var/log/mesos.

 Based on the preceding examples, here’s what the mesos-slave-env.sh script might
look like on a source-based installation of Mesos:

export MESOS_master=zk://mesos-master-1.example.com:2181,

➥ mesos-master-2.example.com:2181,mesos-master-3.example.com:2181/mesos
export MESOS_work_dir=/var/lib/mesos
export MESOS_log_dir=/var/log/mesos

After you’ve applied a basic configuration, all that’s left to do is to start the mesos-
slave service by running the following command:

$ sudo service mesos-slave start

It’s also a good idea to disable the mesos-master service on the slaves:

■ On RHEL 7—sudo systemctl disable mesos-master.service
■ On Ubuntu—echo "manual" | sudo tee /etc/init/mesos-master.override

If you navigate to the web interface for the Mesos master, you should now notice that
the newly configured slave has appeared and is advertising its resources to the cluster.

 As mentioned earlier, this is the bare-minimum configuration required to get a
Mesos cluster up and running. For an extensive list of configuration options for
both the masters and slaves, please consult the official Mesos documentation at
http://mesos.apache.org/documentation/latest/configuration. Chapter 4 discusses
additional configuration options, such as slave attributes and resources.

http://mesos.apache.org/documentation/latest/configuration

52 CHAPTER 3 Setting up Mesos

3.4 Installing and configuring Docker
Because multiple applications’ workloads can run simultaneously on any given Mesos
slave, each executor runs inside a container. In addition to the Mesos native contain-
erizer (which uses Linux control groups), you also have the option of launching con-
tainers by using Docker. This section explains a bit more about deploying Docker,
including installation and some of the commonly used configuration options.

 Figure 3.5 shows where you’re at in the deployment process: installing and config-
uring Docker on the Mesos slaves.

If you aren’t interested in launching Docker containers on your Mesos cluster just yet,
no worries; you can always come back to this section. But it’s worth knowing that later
chapters in this book include examples that involve launching Docker containers on a
Mesos cluster.

3.4.1 Installation
As I mentioned in chapter 1, custom executors must be available on each Mesos slave.
Although Docker is a Mesos containerizer, it is no exception: the Docker daemon

Mesos master

(leader)

Mesos master

(standby)

Mesos master

(standby)

ZooKeeper ensemble

ZK

ZK ZK

Mesos slave

Docker

Mesos slave

Docker

Mesos slave

Docker

Mesos masters coordinate
with ZooKeeper to elect
a leader.

Mesos slaves communicate
with the leading master.

Figure 3.5 Mesos slaves can launch Docker containers, in addition to using Linux
control groups.

53Installing and configuring Docker

must be installed, configured, and running on each Mesos slave before you can
launch Docker containers on the cluster.

RHEL / CENTOS 7
Red Hat includes Docker packages in the “extras” channel (repository), so you don’t
need to install any additional repositories in order to install the package. You can use
the Yum package manager to install it:

$ sudo yum –y install docker

As of Docker 1.5.0, the service doesn’t automatically start on RHEL 7. To start services,
run the following command:

$ sudo service docker start

UBUNTU 14.04 (TRUSTY)
The Apt repository for Docker is available only by using HTTPS. If your system doesn’t
already have the apt-transport-https package installed, you’ll need to install it first:

$ sudo apt-get update
$ sudo apt-get install apt-transport-https

Next, fetch Docker’s package-signing key, and add the Docker repository to Apt’s
sources list:

$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv A88D21E9

$ echo "deb https://get.docker.com/ubuntu docker main" |

➥ sudo tee /etc/apt/sources.list.d/docker.list

$ sudo apt-get update

Finally, install the package for Docker Engine:

$ sudo apt-get –y install docker-engine

If the Docker service fails to start on RHEL / CentOS 7
The Docker daemon might fail to start if you haven’t installed the latest software
updates. Specifically, if the package device-mapper-event-libs is older than ver-
sion 1.02.90, you’ll see the following cryptic error message:

/usr/bin/docker: relocation error: /usr/bin/docker:
symbol dm_task_get_info_with_deferred_remove,
version Base not defined in file libdevmapper.so.1.02
with link time reference

To resolve this issue, install the latest patches for RHEL by running yum update, or
upgrade this particular package with yum update device-mapper-event-libs.

54 CHAPTER 3 Setting up Mesos

As of Docker 1.6.0, the Docker service will automatically be started after the package is
installed. You can verify this by running the following command:

 $ sudo service docker status

3.4.2 Configuration

If you need to make any configuration changes to the Docker daemon, such as config-
uring a proxy or specifying certain DNS servers, now is a good time. Because Docker
works well using the default configuration, this section doesn’t go into Docker’s con-
figuration in too much detail. But I will cover some of the more common configura-
tion settings for both RHEL / CentOS 7 and Ubuntu 14.04.

TIP You can find a complete list of Docker’s configuration settings on its web-
site at https://docs.docker.com/engine/reference/commandline/daemon/.

If your environment doesn’t require the use of an HTTP proxy and you have a prop-
erly working DNS deployment, feel free to skip ahead to the next section.

RHEL / CENTOS 7
On RHEL / CentOS 7, Docker’s configuration file is located at /etc/sysconfig/
docker. The following code snippet demonstrates using an HTTP proxy for connect-
ing to Docker Hub, enabling SELinux support in Docker itself, and specifying exter-
nal DNS servers:

http_proxy="http://127.0.0.1:3128/"
OPTIONS="--selinux-enabled --dns 8.8.8.8 --dns 8.8.4.4"

If you made any changes to the configuration file, be sure to restart the Docker service:

$ sudo service docker restart

UBUNTU 14.04 (TRUSTY)
On Ubuntu 14.04, Docker’s configuration file is located at /etc/default/docker. The
following code snippet demonstrates using an HTTP proxy for connecting to Docker
Hub, enabling SELinux support in Docker itself, and specifying external DNS servers:

DOCKER_OPTS="--dns 8.8.8.8 --dns 8.8.4.4"
export http_proxy="http://127.0.0.1:3128/"

Specify the path to
an HTTP proxy.

Pass additional
options to the
Docker daemon.

Use DOCKER_OPTS to
modify the options passed
to the Docker daemon.

Specify the path
to an HTTP proxy.

https://docs.docker.com/reference/commandline/cli/#daemon

55Upgrading Mesos

If you made any changes to the configuration file, be sure to restart the Docker service:

$ sudo service docker restart

Now that you have the Docker service running and any environment-specific configu-
rations applied, let’s look at the small configuration changes you need to make to
Mesos in order for it to launch Docker containers.

3.4.3 Configuring Mesos slaves for Docker
With Docker up and operational, you’ll need to modify the list of containerizers avail-
able to the Mesos slave and increase the executor registration time-out. By increasing
the executor registration time-out, Docker is given more time to fetch images from
Docker Hub (or from your private Docker Registry) before Mesos thinks something
failed. Here, you’ll set this value to 5mins. Assuming you’re using the file-based config-
uration that the Mesosphere packages allow for, the configuration will look something
like the following:

$ echo "docker,mesos" | sudo tee /etc/mesos-slave/containerizers
$ echo "5mins" | sudo tee /etc/mesos-slave/executor_registration_timeout

Now restart the mesos-slave service to apply the changes:

$ sudo service mesos-slave restart

NOTE Unlike the default mesos containerizer, the docker containerizer in
Mesos doesn’t enforce a disk quota (as of Mesos 0.22.2). For more informa-
tion, see https://issues.apache.org/jira/browse/MESOS-2502.

3.5 Upgrading Mesos
In contrast to distributed systems that set up statically partitioned clusters or that use
only a single master, the fault-tolerant architecture of Mesos allows upgrades to occur
on both the masters and the slaves without any cluster downtime. The Mesos API even
provides a means to notify frameworks that a failure or leader election occurred,
allowing them to take appropriate action if needed. This section explains the process
for upgrading both Mesos masters and slaves.

NOTE Prior to Mesos reaching version 1.0, the Mesos maintainers support
only N + 1 upgrades. If you’re running Mesos 0.22 and wish to upgrade to
0.24, you’ll need to upgrade to 0.23 first. When performing upgrades, it’s
always a good idea to consult the latest release notes and upgrade documenta-
tion on the Mesos project page. This documentation is located at http://
mesos.apache.org/documentation/latest/upgrades.

As with any piece of software, eventually a time comes when we must upgrade it.
Whether it’s for new features or to patch security vulnerabilities, software upgrades

https://issues.apache.org/jira/browse/MESOS-2502
http://mesos.apache.org/documentation/latest/upgrades
http://mesos.apache.org/documentation/latest/upgrades

56 CHAPTER 3 Setting up Mesos

are usually associated with scheduled downtime. In contrast, Mesos can be upgraded
without taking the cluster offline.

 This section discusses the procedure for upgrading both the Mesos masters and
the slaves, which is largely the same as the Mesos installation you performed previ-
ously, with a few additional considerations. Chapter 4 explains how Mesos makes
this possible.

3.5.1 Upgrading Mesos masters

As the number of Mesos masters will be much smaller than the number of Mesos
slaves, it’s a good idea to use some sort of configuration management or orchestration
tool to ensure that the entire master quorum isn’t upgraded at the same time. Using a
configuration management tool such as Puppet or Chef, you can ensure that each
individual master is upgraded only on a set schedule. Using an orchestration tool such
as Ansible or Fabric, you can ensure that upgrades are serially executed across multi-
ple masters.

 To upgrade the Mesos masters, you need to take the following steps:

1 Upgrade the Mesos binaries and restart the master daemon.
2 Upgrade the schedulers to use the new Mesos native library, JAR, or egg.
3 Restart the schedulers.

3.5.2 Upgrading Mesos slaves

Using features known as slave recovery and checkpointing, Mesos allows for slaves to
upgrade themselves without interrupting running tasks. When the mesos-slave ser-
vice is stopped and the Mesos binaries are upgraded, the executors—and their tasks—
will continue running. If they finish before the Mesos slave daemon comes back
online, they’ll wait the recovery_timeout, a configurable slave option that defaults to
15 minutes. But if this threshold is exceeded, any executors waiting to connect to the
Mesos slave process will self-terminate.

TIP Chapter 4 covers slave recovery and checkpointing in more detail.

When performing rolling upgrades on your Mesos infrastructure, it’s good to have
some sort of configuration management or orchestration tooling in place. This will
ensure that only a percentage of the cluster is upgrading at any given time in case it
becomes necessary to stop the upgrade, or if the upgrade coincides with other sched-
uled maintenance (for example, applying security patches). To upgrade the Mesos
slaves, you need to take the following steps:

1 Upgrade the Mesos binaries and restart the slave daemon.
2 Upgrade the executors to use the new Mesos native library, JAR, or egg

(if needed).

57Summary

3.6 Summary
Following the examples provided in this chapter, you should have a properly function-
ing, highly available Mesos and ZooKeeper cluster that’s ready to execute tasks and
launch Docker containers. Here are a few things to remember:

■ The Mesos masters use Apache ZooKeeper for leader election and coordina-
tion. Mesos slaves and schedulers also use ZooKeeper to detect the leading
Mesos master.

■ For highly available deployments, you should deploy at least three machines
running ZooKeeper and three machines to serve as Mesos masters. For a simpli-
fied deployment, you can run the ZooKeeper services on the same machines as
the Mesos masters, but you might want to separate them if you plan on using
other software that depends on ZooKeeper.

■ You should install and configure ZooKeeper, followed by Mesos masters, fol-
lowed by Mesos slaves.

■ Docker is a popular option for running distributed applications within a data-
center. Although Mesos has native Docker support out of the box, it still needs
to be installed separately. Mesos requires slight configuration to enable Docker
support.

■ Both the Mesos masters and slaves can be upgraded without incurring any clus-
ter downtime.

■ Puppet, an open source configuration management tool, can automate the
installation and configuration of your Mesos, ZooKeeper, and Docker infra-
structure. The Puppet Forge contains modules to manage each of the compo-
nents in a Mesos deployment.

The next chapter presents more Mesos fundamentals, including how Mesos imple-
ments resource isolation, slave resources, and fault tolerance.

58

 Mesos fundamentals

Now that you’ve learned about the Mesos architecture and how it provides a means
to run multiple applications on a single, general-purpose cluster, let’s dive into how
Mesos works. This chapter covers how a Mesos master handles resource scheduling
and allocation, how a workload’s resources can be isolated and monitored, and
how Mesos provides a fault-tolerant and highly available environment on which to
build and run distributed applications.

4.1 Scheduling and allocating datacenter resources
By now, you’ve learned that Mesos offers available cluster resources to framework
schedulers in the form of resource offers. By default, these resources include

This chapter covers
■ Resource scheduling, allocation, and

reservations
■ Customizing slave resources, attributes,

and roles
■ Using containers to isolate and monitor

resources
■ Fault-tolerance and high availability

59Scheduling and allocating datacenter resources

available CPUs, memory, storage, and network ports. In this section, you’ll learn how
Mesos schedules resources, and how its allocation module offers those resources to
various frameworks. This section also covers how to fine-tune this decision making
to fit the needs of your environment.

4.1.1 Understanding resource scheduling

Mesos implements a two-tier scheduling system: as Mesos slaves offer their available
resources to the master, which in turn offers resources to schedulers, the schedulers
can then accept the whole offer, part of the offer, or decline it completely. Let’s take a
look at figure 4.1. This graphic demonstrates how a single resource offer from a Mesos
slave can be advertised to multiple framework schedulers.

Before we continue, let’s break down the events in the figure:

1 A Mesos slave advertises to the leading Mesos master that it has 8 CPUs, 16 GB of
memory, and 64 GB of disk space available. The asterisk (*) denotes that these
resources belong to the default role, a concept covered in the next section.

2 The Mesos allocation module decides that the master should advertise the
entire resource offer to Framework A’s scheduler.

1. The Mesos slave offers the
following resources to the
master:
cpus(*):8; mem(*):16384; disk(*):65536

2. Based on the result of a fair
sharing algorithm, the Mesos
allocation module sends the
resource offer to Framework A.

4. The remaining resources can
then be offered to another
framework—in this case,
Framework B.

3. Framework A accepts
half of the resources
in the offer: 4 CPUs,
8 GB memory, and
32 GB disk.

Mesos slave

Mesos master

Allocation

module

Framework A

scheduler

Framework B

scheduler

Figure 4.1 Other frameworks can use unallocated resources from a resource offer.

60 CHAPTER 4 Mesos fundamentals

3 Framework A’s scheduler accepts only half of the resources offered to it, leaving
4 CPUs, 8 GB memory, and 32 GB disk available for other applications.

4 The Mesos allocation module decides that the master should advertise all the
remaining (unallocated) resources in the offer to Framework B’s scheduler.

This process repeats itself every few seconds as slaves have available resources and as
tasks complete and resources are freed.

 Because most applications require some amount of CPUs, memory, storage, and
network, Mesos predefines some of these resources for you. Let’s take a look at the
default resources that Mesos offers to frameworks.

DEFAULT RESOURCES

Resource offers from Mesos slaves contain the following resources by default:

■ cpus—CPU cores
■ mem—Memory
■ disk—Storage
■ ports—Network ports

The free system resources determine the values for each of these resources when the
mesos-slave service starts, less some system resources for operational overhead.

TIP Memory and disk are both specified in terms of megabytes (MB).

While slaves continually advertise these resources to the master, another part of Mesos—
the allocation module—is responsible for determining which frameworks should
receive a given resource offer.

4.1.2 Understanding resource allocation

As I mentioned in the last section, the Mesos master has an allocation module that
determines which frameworks to offer resources to. The pluggable nature of this mod-
ule allows systems engineers to implement their own sharing policies and algorithms
to suit the needs of their organization. As described in part 1 of this book, the built-in
allocation module uses the Dominant Resource Fairness (DRF) algorithm, which should
suit the needs of most Mesos users.

TIP For more information about the default allocation module and allocation
algorithm, see http://mesos.apache.org/documentation/latest/allocation-
module/.

Out of the box, Mesos provides several means to fine-tune resource scheduling with-
out replacing or reimplementing the default allocation module. These come in the
forms of roles, weights, and resource reservations. In figure 4.2, you can see that Mesos
slave resources can be reserved to a particular role, and are then offered only to
frameworks that are also registered with that role.

http://mesos.apache.org/documentation/latest/allocation-module/
http://mesos.apache.org/documentation/latest/allocation-module/

61Scheduling and allocating datacenter resources

By combining roles, weights, and resource reservations, you can provide guarantees
about the cluster resources that are available to specific applications, and control how
often those applications receive resource offers. The next few sections explore these
concepts a bit further.

ROLES
The concept of roles on a Mesos cluster allows you to organize frameworks and
resources into arbitrary groups. To use roles on a given Mesos cluster, you first need to
configure the masters with a static list of all of the acceptable roles that will exist across
the cluster. By setting a value for the --roles configuration option, the following
example allows frameworks to register with three common roles in a given datacen-
ter—development, staging, and production:

--roles="dev,stage,prod"

Frameworks can then specify one of these roles when they register with the Mesos
master. This allows multiple teams—or multiple environments—to share a large
Mesos cluster, instead of creating several smaller clusters. The master then dynami-
cally calculates each role’s dominant resource when making decisions about which
framework to offer resources to. You can also use roles to ensure that a specific type of
workload runs on only a subset of machines; for example, a load balancer or reverse
proxy running on a dedicated edge node.

 In addition to frameworks specifying a role, Mesos slaves can also specify which
resources should belong to a given role; this is known as a resource reservation, which you’ll
learn about a little bit later in this chapter.

Mesos master

Framework A

Role: *

Framework B

Role: prodResources in the
default role (*)
are offered to
all frameworks.

Resources in the prod
role are offered only
to frameworks that
registered with the
prod role.

Example resource
offer for a machine with
16 CPUs, 32 GB memory,
and 128 GB disk

Allocation

module

Mesos slave
cpus(prod):8; mem(prod):16384; disk(prod):65536

cpus(*):8; mem(*):16384; disk(*):65536

Figure 4.2 Mesos slave resources can be reserved for frameworks in a given role.

62 CHAPTER 4 Mesos fundamentals

WEIGHTS

In addition to roles, the cluster can configure weights per role as a means to give pri-
ority to one role over another. When making decisions about which framework to
offer resources to first, Mesos offers it to whichever framework is furthest below its
weighted fair share.

 Using the same roles—dev, stage, and prod—that you used in the last section, you
can configure the master to prioritize the prod role above that of dev and stage:

--weights="dev=10,stage=20,prod=30"

To understand this in practice, consider the weight you’ve given to the prod role.
Frameworks in this role will be offered three times as many resources as frameworks in
the dev role. When a new resource offer is advertised to the master, the allocation
module checks the roles on the cluster to determine which one is furthest below its
weighted fair share. Then the allocation module will check the frameworks within the
role and offer resources to the framework that is furthest below its fair share.

RESOURCE RESERVATIONS

Despite weights being a good way to ensure that certain roles get more resource offers
than other roles, Mesos also provides a means to create resource reservations. Reserva-
tions guarantee that certain roles will always receive a certain amount of the slave’s
resources, but at a price: doing so could lead to overall decreased cluster utilization.

 Imagine for a moment that you have a single machine with 16 CPUs, 32 GB mem-
ory, and a 128 GB disk. You’d like to ensure that half of the resources on the machine
(8 CPUs, 16 GB memory, and 64 GB disk) are always available for frameworks regis-
tered with the prod role. The reservation can be created with the following configura-
tion on the Mesos slave:

--resources="cpus(prod):8; mem(prod):16384; disk(prod):65536"

Any remaining resources (8 CPUs, 16 GB memory, and 64 GB disk, less any resources
allocated to handle system overhead) will then be assigned to the default role (*)
and offered to frameworks that didn’t specify a specific role when they registered to
the master.

TIP The default role name in Mesos is an asterisk (*) by default. This can be
customized using the Mesos slave’s --default_role configuration option.

Up to this point, I’ve discussed how you can customize the default, predefined
resources that all Mesos slaves offer. But Mesos allows you to configure each individual
slave’s resources as well, which could include hardcoding the number of CPUs or
amount of memory a slave offers, or adding a new resource altogether.

63Scheduling and allocating datacenter resources

4.1.3 Customizing Mesos slave resources and attributes

In the preceding section, you learned that resources could be assigned to specific
roles on the slave, creating resource reservations. But what about creating custom
resources or overriding the default values? Like many things in Mesos, the resources
advertised in the resource offer are customizable. This is useful if you need to intro-
duce a new resource (such as ephemeral_ports, which is introduced later in this
chapter) or you wish to hardcode the number of CPUs or memory, to allow other ser-
vices running on the slave a bit of breathing room.

 By default, Mesos advertises the cpus, mem, disk, and ports resources in the
resource offer. Let’s take a look at what it takes to customize the resources on a slave.

CUSTOMIZING SLAVE RESOURCES

Mesos provides three different types of resources: scalars, ranges, and sets. Here are a
few examples of these types:

■ Scalar—The resource cpus with the value 8; the resource mem with the value
16384

■ Range—The resource ports with values 10000 through 20000
■ Set—The resource disks with the values ssd1, ssd2, and ssd3

NOTE A Mesos slave that doesn’t contain any cpus or mem resources will never
have its resource offers sent to frameworks!

Because I touched on customizing slave resources previously when talking about
resource reservations, I won’t go into too much detail here. You can use the --resources
configuration option to configure the resources on the slave, for the default role
and/or custom roles:

--resources="cpu(*):4; mem(*):8192; disk(*):32768; ports(*):[40000-50000];

➥ cpu(prod):8; mem(prod):16384; disk(prod):65536"

CUSTOMIZING SLAVE ATTRIBUTES

In addition to customizing the consumable slave resources, you can specify slave attri-
butes. These optional attributes are arbitrary key/value pairs that can be used to pro-
vide the master and frameworks with some data about the machine. As of this writing,
all attributes’ values are considered to be text strings.

 The following example uses the --attributes configuration option to set the
machine’s datacenter, rack, operating system, and available Python versions:

--attributes="datacenter:pdx1; rack:1-1; os:rhel7; pythons:python2,python3"

Now, in every resource offer the Mesos slave sends to the master (and the master
sends to the framework), you’ll also see these attributes. This could allow you to make
more intelligent decisions about scheduling work in heterogeneous environments.

64 CHAPTER 4 Mesos fundamentals

TIP For more information on Mesos slave resources and attributes, see
http://mesos.apache.org/documentation/latest/attributes-resources.

4.2 Isolating resources with containers
Containers are a fantastic way to squeeze efficiency out of your infrastructure. Being
much more lightweight than a virtual machine, containers allow you to run applica-
tions and code in an environment isolated from other workloads. One of Mesos’s fun-
damental ideas is that isolating processes using containers is the most efficient way to
utilize computing resources.

 Out of the box, Mesos implements support for Linux control groups and Docker,
two of the most popular container technologies as of this writing. By running execu-
tors and tasks within a container, Mesos slaves allow for multiple frameworks’ execu-
tors to run side by side without impacting other workloads. This is analogous to how
virtualization hypervisors can run multiple virtual machines per physical host, except
that containers are much more lightweight than booting an entire operating system.

 One of the fundamental components of Mesos is known as the containerizer. As of
this writing, Mesos includes two containerizers, configurable with the --containerizers
configuration option on the Mesos slave: these are mesos and docker. The mesos con-
tainerizer is responsible for isolating workloads by using cgroups, or monitoring
resource consumption, whereas docker invokes the Docker container runtime, allow-
ing you to launch premade images on your Mesos cluster.

TIP Mesos also provides an External Containerizer API that allows you to
implement another container specification. Chances are you won’t need to
write your own containerizer (and this text doesn’t cover Mesos internals), so
I haven’t included it in this chapter. But if you’re interested in learning more
about the External Containerizer API, or enhancing Mesos with a new con-
tainer specification, please see http://mesos.apache.org/documentation/
latest/external-containerizer.

In addition to containerizers, Mesos provides multiple means of resource isolation.
Some, such as the defaults posix/cpu and posix/mem, provide resource monitoring.
Others, such as cgroups/cpu and cgroups/mem, provide real resource isolation and
quota enforcement on Linux by using the cgroups feature of the Linux kernel. In the
next few sections, I’ll provide a look into the various resource-isolation methods avail-
able to Mesos.

4.2.1 Isolating and monitoring CPU, memory, and disk

To ensure that one workload on a Mesos slave doesn’t impact another workload run-
ning on the same slave, Mesos provides multiple means of resource isolation. As men-
tioned earlier, Mesos has support for Linux control groups, Docker, and basic POSIX
resource monitoring (but not isolation) for POSIX-compatible operating systems.

http://mesos.apache.org/documentation/latest/attributes-resources
http://mesos.apache.org/documentation/latest/external-containerizer
http://mesos.apache.org/documentation/latest/external-containerizer

65Isolating resources with containers

 Let’s look at how to isolate and monitor resource use for CPU, memory, and disk.
Isolation methods for the containerizer are configured on the slave by providing a
comma-separated list to the --isolation configuration option.

RESOURCE ISOLATION ON LINUX

The following resource-isolation methods are available on Linux:

■ cgroups/cpu and cgroups/mem—Isolates CPU and memory by using a feature of
the Linux kernel known as control groups.

■ filesystem/shared—Maps a directory inside a container to a location on disk,
ensuring that the container has a private working directory that’s either read-
write or read-only. Can be specified by the framework, or used in conjunction
with the --default_container_info. The following example maps the /tmp
directory in the container to the private directory relative to the sandbox’s
working directory:

{
 "type": "MESOS",
 "volumes": [
 {

"host_path": "private",
"container_path": "/tmp",
"mode": "RW"

 }
]
}

■ namespaces/pid—Enables process ID (PID) namespaces, ensuring that a con-
tainer can’t see processes belonging to other containers.

■ posix/disk—A storage isolator for Linux that monitors a container’s disk
usage. When combined with the --enforce_container_disk_quota slave con-
figuration option, it can also be used to ensure that a single container doesn’t
go above its allocated storage.

■ posix/cpu and posix/mem—These are the default isolators for Mesos, and pro-
vide CPU and memory resource monitoring only; see the next section for more
information on these isolators.

NOTE When using the filesystem/shared isolator, the mount point within
the container can’t mask part of the filesystem. For example, if the Mesos
slave’s work_dir is /tmp/mesos, the container_path can’t be /tmp.

When querying a slave’s /monitor/statistics.json HTTP API endpoint, you can
obtain per container metrics such as the following:

■ cpus_system_time_secs
■ cpus_user_time_secs
■ mem_anon_bytes

66 CHAPTER 4 Mesos fundamentals

■ mem_file_bytes
■ mem_mapped_file_bytes
■ mem_rss_bytes

Using cURL, you could query the leading Mesos master for its statistics by running the
following command:

$ curl -s http://mesos-leader:5050/monitor/statistics.json |

➥ python -m json.tool

TIP Chapter 6 covers the various ways to monitor your Mesos cluster.

Although Linux provides the most resource-isolation methods for Mesos (at least as of
this writing), it’s possible to monitor resources on other POSIX operating systems,
such as Mac OS X.

RESOURCE MONITORING ON OTHER POSIX SYSTEMS
The following resource-isolation methods are available for other POSIX systems where
Mesos might not support resource isolation, but it does support resource monitoring.
As of Mesos 0.22.2, POSIX-compatible but non-Linux operating systems are limited to
the following isolators:

■ posix/cpu and posix/mem—Provide CPU and memory-resource monitoring
only; no isolation or enforcement.

Currently, each of these isolators provides only per-executor (per-process) CPU and
memory-resource monitoring, similar to the output from running the ps command.
Because Mesos subtracts any allocated resources from a slave’s resource offers, this
might not be too problematic if your non-Linux cluster isn’t operating near 100% uti-
lization. But if a task goes over its allocated memory (due to a memory leak, miscon-
figured heap size, and so forth), the lack of resource isolation here has the ability to
impact other tasks running on a given slave. Compare these resource-monitoring
methods to Linux’s cgroups that would invoke the out-of-memory (OOM) killer and
stop the offending task.

4.2.2 Network monitoring and rate limiting

If you’re interested in monitoring network traffic and rate-limiting egress traffic on a
per-container basis, Mesos provides an optional network isolator that you may find
useful. As of this writing, it provides statistics through a JSON API on the Mesos slave.
The network monitoring is transparent to the container, and all containers will con-
tinue to share the public IP address of the Mesos slave.

 Network monitoring and rate limiting is a relatively new feature, introduced in
Mesos 0.20, and uses features present in modern Linux kernels. The next few sections
will show you how to compile Mesos with network isolator support and how to moni-
tor network traffic for the tasks running on a given Mesos slave.

67Isolating resources with containers

COMPILING MESOS WITH NETWORK ISOLATOR SUPPORT
By default, Mesos is not built with the network isolator, and as of this writing it’s not
enabled in the packages provided by Mesosphere. To enable this, you’ll need to
configure and build Mesos by using the --with-network-isolator argument. As of
Mesos 0.22.2, the network isolator works only with the Linux kernel, version 3.15 and
later, and requires some prerequisites and additional setup.

In addition to using a modern Linux kernel, you need a recent version of the Netlink
Protocol Library Suite, also known as libnl. To use the network isolator, Mesos requires
libnl version 3.2.25 or later.

An important note on Linux kernel versions and patches
For Mesos’s per-container network monitoring to work, several key patches must be
applied to the Linux kernel you’re planning to use on the Mesos slave.

As of this writing, the current release of RHEL/CentOS is 7.1, which contains kernel
3.10. The required kernel patches haven’t been backported by Red Hat. Unfortu-
nately, there’s no straightforward means of upgrading the kernel, short of compiling
it yourself, which is outside the scope of this book and isn’t supported by Red Hat.
On CentOS, you may find ELRepo helpful: http://elrepo.org/tiki/tiki-index.php.

On Ubuntu 14.04.3 LTS, the kernel version is already 3.19. If you’re running an older
LTS release (like 14.04.2), you can upgrade the kernel by using the package manager.
Run the following command, and restart the machine to load the new kernel:

$ sudo apt-get -y install linux-image-generic-lts-utopic

If you’re not using one of these operating systems or releases, be sure to install ker-
nel 3.15 or later, which contains the necessary networking patches. If you need to
use a kernel older than 3.15, the following patches need to be manually applied, and
the kernel recompiled. The patches (in the Git SHAs referenced next) can all be found
on git.kernel.org:

■ 6a662719c9868b3d6c7d26b3a085f0cd3cc15e64
■ 0d5edc68739f1c1e0519acbea1d3f0c1882a15d7
■ e374c618b1465f0292047a9f4c244bd71ab5f1f0
■ 25f929fbff0d1bcebf2e92656d33025cd330cbf8

Compiling the Netlink Protocol Library Suite
As of this writing, the latest packaged version of the Netlink Protocol Library Suite
(libnl) is version 3.2.21, on both RHEL 7 and Ubuntu 14.04 LTS. To build Mesos
with the network isolator, you need to download and compile libnl3 from
www.infradead.org/~tgr/libnl.

http://git.kernel.org
http://elrepo.org/tiki/tiki-index.php
http://www.infradead.org/~tgr/libnl

68 CHAPTER 4 Mesos fundamentals

After following the prerequisite build instructions in chapter 3 to set up the tools
required to compile Mesos, run the following commands to compile Mesos with the
network isolator. If you already built Mesos once already, be sure to run make clean
before recompiling.

NOTE Because of a bug present in the configure script in Mesos 0.22.2, you
need to override the LIBNL_CFLAGS variable in the Makefile. By default, libnl3
installs its header files to /usr/local/include/libnl3. I’ve included the work-
around in the following code. For more information, see https://issues
.apache.org/jira/browse/MESOS-1856.

$../configure --prefix=/usr/local/mesos --with-network-isolator
$ make LIBNL_CFLAGS="-I/usr/local/include/libnl3"

After Mesos has finished compiling, proceed with the remaining installation and con-
figuration instructions as first mentioned in chapter 3.

CONFIGURING THE HOST
When per-container network monitoring is enabled, each container on the Mesos
slave uses network namespaces in the Linux kernel, and each container has a sepa-
rate network stack. The first thing you need to do to prepare your host for container
network monitoring is to limit the range of ephemeral ports that the operating sys-
tem will allocate to processes, thereby reserving ephemeral ports for your running
containers.

NOTE The instructions provided in this section are an example. Based on the
software you deploy and the network ports in use, your environment may war-
rant a different network configuration. You may also be interested in reading
the Mesos project’s documentation regarding network monitoring, located at

(continued)
Building libnl3 requires Bison and Flex, both of which can be installed on RHEL /
CentOS 7 and Ubuntu 14.04 using the system’s package manager. After these pre-
requisites are installed, run the following commands:

$ curl -LO http://www.infradead.org/~tgr/libnl/files/libnl-3.2.25.tar.gz
$ tar zxf libnl-3.2.25.tar.gz
$ cd libnl-3.2.25
$./configure
$ make
$ sudo make install
$ sudo ldconfig

By default, libnl3 is configured with /usr/local for its prefix, meaning its header files
will be installed to /usr/local/include/libnl3/netlink. You should now be able to pro-
ceed with compiling Mesos with the network isolator.

https://issues.apache.org/jira/browse/MESOS-1856
https://issues.apache.org/jira/browse/MESOS-1856

69Isolating resources with containers

http://mesos.apache.org/documentation/latest/network-monitoring. If you’re
interested in learning how network namespaces work in the Linux kernel, the
following LWN article is also a good source of information: http://lwn.net/
Articles/580893.

To modify the host’s ephemeral port range, append the following line to /etc/
sysctl.conf and reboot the machine:

net.ipv4.ip_local_port_range = 57345 61000

Although you could also run sysctl -p to apply the new configuration, rebooting
the machine at this point will ensure that any services using an ephemeral port in
the old port range will be assigned a port in the new range, avoiding any potential
port collisions. If the change was successful, you should see output similar to the
following:

$ cat /proc/sys/net/ipv4/ip_local_port_range
57345 61000

CONFIGURING THE MESOS SLAVE

You then need to configure Mesos to enable network monitoring and offer the
ephemeral_ports resource—the range of ports reserved for containers. Specifically,
this includes the following:

1 Append network/port_mapping to the list of resource isolators.
2 Modify the slave’s resources to offer a range of ephemeral network ports for

containers to use.
3 Configure the number of ephemeral ports per container for normal network

traffic.

The configuration for these points will likely resemble the following:

--isolation="cgroups/cpu,cgroups/mem,network/port_mapping"
--resources="ports:[31000-32000];ephemeral_ports:[32768-57344]"
--ephemeral_ports_per_container=1024

NOTE Be sure that the ephemeral_ports resource doesn’t overlap with the
ephemeral port range provided to the host operating system!

If you’d also like to rate-limit each container’s egress (outbound) traffic, you may do
so by configuring the Mesos slave with the --egress_rate_limit_per_container
option, which expects a value in bytes.

TIP The value passed to the egress_rate_limit_per_container option is
specified as a Bytes object in the Mesos code base. Therefore, the following val-
ues are all valid: 10B, 10KB, 10MB, 10GB, 10TB.

http://mesos.apache.org/documentation/latest/network-monitoring
http://lwn.net/Articles/580893
http://lwn.net/Articles/580893

70 CHAPTER 4 Mesos fundamentals

The following slave configuration example limits per-container outbound network
traffic to about 100 Mbps:

--egress_rate_limit_per_container=12500KB

GETTING CONTAINER NETWORK METRICS

After the mesos-slave daemon is up and running with the network/port_mapping
isolator, you’ll be able to get the following network metrics for running containers (in
addition to the metrics that Mesos provides by default):

■ net_tx_bytes and net_rx_bytes
■ net_tx_dropped and net_rx_dropped
■ net_tx_errors and net_rx_errors
■ net_tx_packets and net_rx_packets

These statistics are available as part of the Mesos slave’s /monitor/statistics.json
HTTP API. It can be queried like this:

$ curl -s http://slave1:5051/monitor/statistics.json | python -m json.tool

Now that you’ve seen how Mesos schedules and allocates resources and uses contain-
ers to isolate workloads running on a single machine, let’s explore how it does all of
this in a fault-tolerant and highly available manner.

4.3 Understanding fault tolerance and high availability
By design, Mesos provides a fault-tolerant environment for running applications. The
Mesos services—the master daemon and the slave daemon—operate in a distributed
and highly available manner, ensuring that no one component can cause an outage of
the entire cluster. Let’s take a look at figure 4.3, which explores the fault-tolerant and
highly available properties of various Mesos cluster components.

This section presents how various Mesos components—frameworks, masters, and
slaves—handle and recover from failure.

Fault tolerance vs. high availability
The terms fault tolerance and high availability are closely related, and are often used
interchangeably. But they’re two separate ideas. Before continuing, let’s take a
moment to come to an understanding on how they’re used throughout this section:

Fault tolerance (FT)—The ability for a system to gracefully handle (and recover from)
a failure in one or more of its components.

High availability (HA)—The ability for a system to be operational for long periods of
time; aims for availability (uptime) to be as close to 100% as possible.

71Understanding fault tolerance and high availability

4.3.1 Fault tolerance
To gracefully handle failures, Mesos implements two features (both enabled by
default) known as checkpointing and slave recovery. Checkpointing, a feature enabled in
both the framework and on the slave, allows certain information about the state of the
cluster to be persisted periodically to disk. The checkpointed data includes informa-
tion on the tasks, executors, and status updates. Slave recovery allows the mesos-slave
daemon to read the state from disk and reconnect to running executors and tasks
should the Mesos slave daemon fail or be restarted.

WARNING As of Mesos 0.22.2, slave recovery will fail if the configured
resources are changed and the mesos-slave service is restarted, even if the
new resources are a superset of the original resources (for example, increasing

Mesos master 1

(leader)

Mesos master 2

(standby)

Mesos master 3

(standby)

ZooKeeper ensemble

ZK

ZK ZK

Mesos slave

mesos-slave

daemon

ZooKeeper provides
reliable, distributed
coordination for masters,
slaves, and frameworks.

Multiple masters—a single leader
and multiple backups—ensure
Mesos is highly available.

Checkpointing and
slave recovery ensure a
framework’s tasks continue
running, even if the
mesos-slave service is
restarted.A pool of general-purpose

Mesos slaves can prevent
static partitioning of
services, ensuring the
cluster is healthy even
if a single node fails.

Tasks Disk

Figure 4.3 The fault-tolerant and highly available properties of various Mesos cluster components

72 CHAPTER 4 Mesos fundamentals

the cpus resource from 8 to 16). For more information, see https://issues
.apache.org/jira/browse/MESOS-1739.

4.3.2 High availability

To ensure that Mesos is highly available to applications that use it as a cluster manager,
the Mesos masters use a single leader and multiple standby masters, ready to take over
in the event that the leading master fails. The masters use a ZooKeeper ensemble to
coordinate leadership among multiple nodes, and Mesos slaves and frameworks query
ZooKeeper to determine the leading master.

TIP Remember that the number of Mesos master machine failures toler-
ated for the cluster is based on the size of the master quorum, as discussed
in chapter 3.

Through checkpointing, slave recovery, multiple masters, and coordination through
ZooKeeper, the Mesos cluster is able to tolerate failures without impacting the overall
health of the cluster. Because of this graceful handling of failures, Mesos is able to be
upgraded without downtime as well. Let’s take a look now at how the cluster handles
failures and upgrades.

4.3.3 Handling failures and upgrades

A number of events typically cause downtime and outages for infrastructure, includ-
ing network partitions, machine failures, power outages, and so on. For the purposes
of this section, you’ll explore fault tolerance and high availability in Mesos within the
context of three potential failure scenarios:

■ Machine failure—The underlying physical or virtual host fails.
■ Service (process) failure—The mesos-master or mesos-slave daemon fails.
■ Upgrades—The mesos-master or mesos-slave daemon is upgraded and

restarted.

Fortunately, Mesos and Mesos frameworks are capable of handling each of these fail-
ure modes. Table 4.1 presents the various Mesos components that are involved in a
given failure scenario, and whether failover is possible for each of them.

Table 4.1 How Mesos frameworks, masters, and slaves handle typical failure scenarios. Yes/No denotes
whether failover is possible for the given component and failure scenario.

Failure scenario Framework failover Master failover Slave failover

Machine failure Yes Yes No

Service failure Yes Yes Yes

Upgrade Yes Yes Yes

https://issues.apache.org/jira/browse/MESOS-1739
https://issues.apache.org/jira/browse/MESOS-1739

73Understanding fault tolerance and high availability

NOTE Before performing an upgrade, be sure to consult the latest upgrade
documentation, located at http://mesos.apache.org/documentation/latest/
upgrades.

FRAMEWORK FAILOVER

Because frameworks is just the Mesos term for distributed applications that use Mesos as
a cluster manager, framework failover would occur similarly to any other HA setup: a
single instance of the framework’s scheduler is elected the leader and registered to
the Mesos master, while several other instances, presumably running on separate
machines, serve as backups.

 If the machine running one of the framework instances fails, or the framework
service is otherwise unavailable, one of the standby instances can become the leader
and reregister itself to the Mesos master. This usually requires some sort of external
data store (such as ZooKeeper) for coordinating leadership among the multiple
instances of the framework and maintaining a small amount of shared state between
the various instances.

TIP For more information on how ZooKeeper can be used for leader elec-
tion, see http://zookeeper.apache.org/doc/current/recipes.html#sc_leader-
Election.

Let’s look at figure 4.4, which demonstrates what a framework failover might look like.

Framework scheduler

instance 2 (standby)

Framework scheduler

instance 2 (standby)

Framework scheduler

instance 2 (leader)

Framework scheduler

instance 3 (standby)

Framework scheduler

instance 3 (standby)

Framework scheduler

instance 3 (standby)

Framework scheduler

instance 1 (leader)

Framework scheduler

instance 1 (leader)

Mesos master

Framework scheduler

instance 1 (dead)

Once the new framework leader
is elected, it reregisters with the
Mesos master.

A framework registers
with the Mesos master.

X

Figure 4.4 When a highly available framework scheduler fails, another instance can
reregister to the Mesos master without interrupting any of the running tasks.

http://mesos.apache.org/documentation/latest/upgrades
http://mesos.apache.org/documentation/latest/upgrades
http://zookeeper.apache.org/doc/current/recipes.html#sc_leaderElection
http://zookeeper.apache.org/doc/current/recipes.html#sc_leaderElection

74 CHAPTER 4 Mesos fundamentals

Let’s break down the events in the figure:

1 Framework scheduler instance 1 is currently the leader, as decided by a prior
leader election. It’s registered to the leading Mesos master.

2 Framework scheduler instance 1 goes offline.
3 A leader election takes place among the framework scheduler instances. The

new leader reregisters to the Mesos master with the same ID, and normal opera-
tion resumes.

This assumes that the framework scheduler is developed and deployed in a manner
that allows for it to be highly available. Just because Mesos allows for a framework to
reregister with the Mesos master doesn’t mean that the framework is capable of doing
so if its scheduler fails. But Mesos does provide a way for a scheduler to reregister to a
new leading master in the event that the leading Mesos master fails. Let’s take a look
at this next.

MASTER FAILOVER

The Mesos masters all use ZooKeeper for leader election, with one master serving as
the leader, and the remaining masters serving as backups or standby masters. Mesos
slaves and frameworks also use ZooKeeper to determine the leading master. If a
Mesos master fails (either due to a machine failure or a service failure), the frame-
works and slaves detect that they’ve been disconnected from the master and use Zoo-
Keeper to determine the new leading master. Once the new leading Mesos master
has been elected and the framework reregisters, normal operation resumes and new
tasks can be scheduled. This all happens without an interruption of the running tasks
on the cluster.

TIP For more information on how Mesos implements leader election with
ZooKeeper, see the following: http://mesos.apache.org/documentation/
latest/high-availability.

Let’s break down the events in figure 4.5, which demonstrates (albeit at a high level)
what master failover looks like:

1 Mesos master 1 is currently acting as the leading master, as decided from a prior
leader election. The slaves and frameworks have used ZooKeeper to determine
that this is the leader.

2 Mesos master 1 goes offline. Slaves and frameworks have detected that they’ve
been disconnected from the master, and wait for a new leader to be elected.

3 A leader election takes place, and Mesos master 2 is elected the leader. Remem-
ber that in this three-master scenario (quorum=2), no additional failures can take
place, because the cluster needs two votes to make decisions about the leader.

4 Mesos slaves and frameworks detect the new leading master, reregister with the
new leader, and resume normal operation. They can now receive resource offers.

http://mesos.apache.org/documentation/latest/high-availability
http://mesos.apache.org/documentation/latest/high-availability

75Understanding fault tolerance and high availability

When performing cluster software upgrades, the Mesos masters need to be upgraded
first, as documented in the upgrades section of chapter 3. If possible, it’s a good idea
to upgrade the standby masters first so that only one failover needs to take place in the
Mesos master quorum in order for the upgrade to take effect.

SLAVE FAILOVER

Running (live) executors and tasks are capable of surviving a failure or restart/
upgrade of the mesos-slave daemon by checkpointing certain information about the
tasks and executors to disk. It’s worth remembering that in the event of a full system
reboot, slave recovery isn’t possible because the executors and tasks will have been
killed along with the mesos-slave daemon. If the entire machine fails, the scheduler
will detect the failure and reschedule the tasks on other machines in the cluster.

Mesos slaves and

frameworks

Mesos slaves and

frameworks

Mesos slaves and

frameworks

Mesos master 2

(standby)

Mesos master 2

(standby)

Mesos master 2

(leader)

Mesos master 3

(standby)

Mesos master 3

(standby)

Mesos master 3

(standby)

Mesos master 1

(leader)

Mesos master 1

(leader)

Mesos master 1

(dead)

The surviving masters
use ZooKeeper for
leader election.

Failover events pictured left to right

ZK

ZK ZK

Slaves and frameworks
use ZooKeeper to detect
the new leading master
and reregister.

X

Figure 4.5 When the leading Mesos master fails, the surviving masters use ZooKeeper to elect a new leader.
The slaves and frameworks use ZooKeeper to detect the new leader and reregister.

76 CHAPTER 4 Mesos fundamentals

Otherwise, slave recovery is a useful feature for performing rolling upgrades of the
Mesos cluster software.

 The Mesos slave checkpoints information about the executors and tasks to disk,
as shown in figure 4.6. If the mesos-slave daemon is unavailable, the executor auto-
matically caches any status updates from the running tasks until the slave daemon
starts again.

Figure 4.7 walks you through the events that occur when the Mesos slave daemon is
unavailable, either due to a scheduled upgrade or due to the process quitting unex-
pectedly (crashing). Note that this process is the default behavior of Mesos, which
aims to keep running tasks up as much as possible. You may optionally have the Mesos
slave process kill old executors by using the configuration option --recover=cleanup,
which may also be useful for future, backward-incompatible software upgrades.

 Let’s break down the events in the figure:

1 The mesos-slave daemon is running and connected to its executors and tasks,
providing regular updates to the Mesos master.

2 The mesos-slave daemon goes offline, for any number of reasons—the process
could die from an unhandled error condition (crash), or perhaps the slave is
being reconfigured or upgraded. Regardless, it loses the connection to its run-
ning tasks.

3 The tasks continue running for the duration of the recovery_timeout option,
which defaults to 15 minutes. If the executors can’t connect to the slave dae-
mon within the allotted time, they will self-terminate. While the slave is offline,
the executor driver caches status updates, and the frameworks and executors
themselves continue operating normally.

4 The mesos-slave daemon comes back online, reads any information that was
previously checkpointed to disk, and reconnects to the running tasks.

Mesos slave

mesos-slave daemon

Disk

Executor

Tasks

Executor

Tasks

Figure 4.6 The Mesos slave checkpoints
information about the executors and tasks
to disk. This allows tasks to continue
running, even if the slave daemon is
restarted or upgraded.

77Summary

NOTE For slave recovery to work, the mesos-slave daemon must reconnect
to the master within 75 seconds. In Mesos 0.22.2, this is currently a hardcoded
time-out, but will be configurable in future versions of Mesos (see https://
issues.apache.org/jira/browse/MESOS-2110). Fortunately, modern service
systems such as systemd and Upstart have options to automatically respawn
failed processes. Alternately, you could use a tool such as Monit to ensure that
the service is always running, or a configuration management tool such as
Puppet, Chef, or Ansible to manage slave configuration, upgrades, and ser-
vice restarts automatically.

4.4 Summary
In this chapter, you built upon the knowledge gained in the first three chapters of
the book and learned how Mesos operates under the hood. Here are a few things to
remember:

■ Mesos slaves offer their resources to the leading Mesos master, which in turn
offers resources to the registered frameworks. Frameworks can accept either

Mesos slave

1. The mesos-slave daemon
is online and connected
to its running tasks.

2. The mesos-slave daemon goes offline
(dies or is being upgraded), losing
connection to its tasks.

mesos-slave daemon

Tasks Tasks

Mesos slave

mesos-slave daemon

Tasks Tasks

Mesos slave

Tasks Tasks

3. Tasks continue running
(for 15 mins) despite the
mesos-slave daemon
being unavailable.

X

Figure 4.7 Slave recovery allows tasks to continue running despite the mesos-slave daemon
being unavailable.

https://issues.apache.org/jira/browse/MESOS-2110
https://issues.apache.org/jira/browse/MESOS-2110

78 CHAPTER 4 Mesos fundamentals

all of the resources in the offer or a subset. If a subset of the resources is
accepted, the remaining (unallocated) resources can then be offered to
another framework.

■ Various aspects of a Mesos slave can be customized, including resources, attri-
butes, and roles. It’s possible to create static resource reservations for a given
role, but doing so could lead to decreased use of the system overall.

■ On a given Mesos slave, using containers isolates multiple workloads. Examples
of supported container technologies are Linux control groups (cgroups) and
Docker. Although it isn’t enabled by default, Mesos also supports per-container
network monitoring and egress rate limiting on Linux.

■ Fault tolerance is the ability of a system to gracefully handle (and recover from) a
failure in one or more of its components. High availability is the ability for a sys-
tem to be operational for long periods of time.

■ Mesos is highly available and provides a fault-tolerant environment for applica-
tions. It can handle machine failures, service failures, and upgrades without
impacting the overall health of the cluster.

The next chapter covers logging options and methods for debugging a Mesos cluster.

79

Logging and debugging

Now that you’ve learned what it takes to get a Mesos cluster up and running and
how it provides a fault-tolerant environment for running applications, let’s dive
into how to debug and troubleshoot the services and workloads on a Mesos cluster.
This chapter presents some of the logging options and log file locations for Mesos
cluster nodes and frameworks. It then discusses methods and tools available for
troubleshooting and debugging a Mesos cluster, using both the Mesos web inter-
face and the command line.

 This chapter is split into two main sections: logging and debugging. The first
section covers the various log files, their locations, and options for configuring
them. The second section builds on the first and teaches you how to debug issues
and observe output from running tasks by using the Mesos web interface and
command-line tools.

 I’ve structured this chapter using a tutorial-like approach, walking you through
the various methods to get information about the cluster. I hope you’ll find this

This chapter covers
■ Locating log files and configuring logging
■ Debugging using the Mesos web interface
■ Debugging using the command line

80 CHAPTER 5 Logging and debugging

approach useful when you’re attempting to troubleshoot cluster issues in your own
environments.

5.1 Understanding and configuring Mesos logging
The log files that a service generates can be just as important as the service itself. Many
times, log files aren’t used; they’re rotated away, or shipped to centralized logging ser-
vices to be forgotten. But when problems arise, useful and detailed logging is invalu-
able to the troubleshooting process.

 Luckily, Mesos is a great example of logging done right. The log files are helpful
and provide enough information to inform systems administrators of exactly what’s
happening. For the more advanced operator or developer, Mesos logs even provide
the filename and line of code that triggered the event to be logged in the first place.

NOTE Although ZooKeeper is a service that Mesos depends on, it’s still con-
sidered separate from Mesos itself. As such, this chapter doesn’t include infor-
mation on ZooKeeper cluster logging or debugging. You might consider
consulting the ZooKeeper Administrator’s Guide: http://zookeeper.apache
.org/doc/current/zookeeperAdmin.html.

Let’s take a look at the various log files available, for both Mesos cluster services and
for a framework’s tasks.

5.1.1 Locating and interpreting log files
Mesos provides system administrators a lot of flexibility when it comes to managing
logs. Events can be written to Mesos-managed log files on disk or to the system log
(syslog). The service scripts provided with Mesosphere’s Mesos packages also ensure
that the logs from the Mesos master and slave services are sent to syslog, thus allowing
them to be easily collected and parsed by a log management service such as Logstash
or Splunk.

 In addition to service logs, Mesos provides two default log files in each task’s sand-
box: stdout and stderr. These two special files capture any console output to standard
output (stdout) and standard error (stderr), respectively. This allows you to view a
task’s—or command’s—console output without needing access to the console of the
machine that the task is running on.

LOG FILES FOR MESOS SERVICES

Both the Mesos master and slave use the --log_dir configuration option to define
where the log files for Mesos services are stored on disk. Typically, this is set to a value
such as /var/log/mesos, but could alternately be omitted to log to standard error. If
Mesos manages the log files for you, they’re automatically rotated based on size, but
you’ll want to ensure that the old files are pruned on a regular basis.

TIP Don’t worry about the logging configuration for now; I’ll cover it in the
next section.

http://zookeeper.apache.org/doc/current/zookeeperAdmin.html
http://zookeeper.apache.org/doc/current/zookeeperAdmin.html

81Understanding and configuring Mesos logging

When the mesos-master or mesos-slave service first starts up, it outputs some infor-
mation about the format of the log file. Let’s take a look at the log file format now.

Following the format that was just described, here are a few lines from a log file on a
Mesos slave:

I0713 00:35:04.730430 2217 containerizer.cpp:1123] Executor for container

➥ 'cc538d82-c47b-4b9e-a050-6b6161f658c5' has exited
I0713 00:35:04.730542 2217 containerizer.cpp:918] Destroying container

➥ 'cc538d82-c47b-4b9e-a050-6b6161f658c5'

In these two log file entries, you can see that a task has finished (the executor for a
container has exited), and Mesos destroys the now-unused container. Each of these
entries includes a timestamp, process ID, and the file and line number that performed
the action.

LOG FILES FOR TASKS

As mentioned previously, Mesos automatically creates two files in a task’s working
directory, or sandbox: stdout and stderr. These files sit alongside the other files
required by the task in the sandbox. You’ll recall that the location of the Mesos slave’s
working directory on disk was configured by using the --work_dir configuration
option, so if you configured the Mesos slave’s work_dir to be /var/lib/mesos, the
path to a task’s sandbox will resemble the following:

/var/lib/mesos/slaves
└── <slave-id>/

└── frameworks/
└── <framework-id>/

└── executors/
└── <task-name>/

└── runs/

Log file created at: 2015/07/12 21:04:36
Running on machine: mesos-master-1
Log line format: [IWEF]mmdd hh:mm:ss.uuuuuu threadi d file:line] msg

Single-letter designation for
the various log levels: Info,
Warning, Error, and Fatal

Process ID (PID)
of the thread that
logged the event

The specific file and line
in the Mesos code base
that logged the event

The log
message

Timestamp of the event:
month, day, hour, minute,
second, microsecond

82 CHAPTER 5 Logging and debugging

├── <run-id>/
│ ├── stderr
│ └── stdout
└── latest

TIP The latest file mentioned in the preceding output is a symbolic link
(symlink) to the full path of the last run ID.

Now unlike the log files for the Mesos services, these files are automatically pruned
when the Mesos slave performs its garbage collection on old sandbox directories,
which defaults to one week, but may occur more often based on the amount of disk
space available.

5.1.2 Configuring logging

There are a number of approaches that systems administrators take when it comes
to logging. Some have log files live on the individual host, being periodically
cleaned up by a tool like Logrotate. Others have centralized logging collection sys-
tems such as Logstash, Splunk, or even just a centralized Rsyslog server. Mesos pro-
vides various options with which to configure its logging, thereby giving system
administrators some flexibility in how the logs from a Mesos cluster are managed in
their environments.

 Let’s take a look at some of these options, and when and why you might need to
modify them:

■ log_dir—Writes log files to a specific directory on disk. If not specified, no logs
will be written to disk, but events will still be logged to stderr. This option
applies to both the master and the slave, and has no default.

■ logging_level—Only logs messages at (or above) this level of severity. Possible
values (in increasing order of severity): INFO, WARNING, and ERROR. This option
applies to both the master and the slave, and defaults to INFO.

■ work_dir—When configured on the slave, specifies the location on disk for the
frameworks’ working (sandbox) directories, which contain the tasks’ stdout and
stderr log files. Defaults to /tmp/mesos.

■ external_log_file—Specifies the path to an externally managed log file to dis-
play in the web interface and HTTP API. This could be useful if you’re using the
Logger utility to write messages to the system log, or log files not managed by
Mesos. This option applies to both the master and the slave, and has no default.

■ quiet—When specified, disables logging to stderr. This option applies to both
the master and the slave, and isn’t present by default.

■ logbufsecs—Number of seconds to buffer log messages before flushing them to
disk. This option applies to both the master and the slave, and defaults to 0
(flushes log messages to disk immediately).

83Debugging a Mesos cluster and its tasks

Using these options, you can fine-tune the nature of Mesos service logging to fit well with
your logging infrastructure, no matter what your preferred methods are. Personally, I like
using the Elasticsearch, Logstash, and Kibana (ELK) stack to collect, parse, and index
log entries, allowing you to easily search and visualize log entries as data.

 Now that you’ve learned a bit about Mesos log file locations and the relevant con-
figuration options, let’s look at some methods and tools available for observing out-
put, troubleshooting, and otherwise debugging a Mesos cluster.

5.2 Debugging a Mesos cluster and its tasks
Working with and troubleshooting distributed systems, especially those such as Mesos
that can operate at scale, can be difficult. Generally speaking, the larger a cluster is,
the harder it is to correlate events across all nodes. And as is Mesos’s nature, larger
clusters lead to better overall resource use and reduce static partitioning.

Although Mesos schedules resources and handles failure for you, at times you’ll need
to debug failures, or access information about the cluster and its workloads. It’s help-
ful to know where to start debugging and what to check next. Figure 5.1 provides an
example of one such troubleshooting workflow.

 Before you even start debugging Mesos itself, you should ensure that the Mesos
services are running and determine their current configuration. In the following
example, I’m running both the master and the slave on the same machine, so both
processes appear in the output of the commands ps -ef and ps aux (depending on
your preference of arguments to ps). The configuration options have been omitted

A quick note on centralized logging
Because Mesos clusters are made up of tens, hundreds, or even thousands of
machines, and log files are stored on the various cluster nodes, troubleshooting
issues can be a rather tedious process. Fortunately, a few options are available for
the centralized processing and management of logs:

■ Elasticsearch, Logstash, and Kibana (commonly referred to as ELK)
■ Splunk
■ Rsyslog forwarding to a central server

Each of these options runs a small service on each machine which then processes
log files and forwards them to a centralized logging infrastructure. This allows you to
store log files in a structured and searchable way, within a single data store, and eas-
ily search for and display log entries from a single console.

Setting up these tools is outside the scope of this text, but an internet search will
quickly turn up numerous resources for online documentation and entire books writ-
ten on these topics.

84 CHAPTER 5 Logging and debugging

for brevity, but would otherwise appear as arguments to the mesos-master and mesos-
slave executables:

$ ps -ef | grep mesos
UID PID PPID C STIME TTY TIME CMD
root 2136 1 0 Jul12 ? 00:00:58 /usr/sbin/mesos-master ...
root 2195 1 4 Jul12 ? 00:14:58 /usr/sbin/mesos-slave ...

If either the mesos-master or mesos-slave services fail to start, it’s generally a good
idea to start by looking in the system log for any problems. On RHEL (and deriva-
tives), this is located at /var/log/messages; on Ubuntu, this is /var/log/syslog. With
the Mesosphere packages having the Mesos services log to standard error by default,
service start failures will appear in the system log and should point you toward
the issue.

 In addition to ensuring that the processes are up and running with the desired
configuration and observing any service-related output in the syslog or systemd’s jour-
nal, the remainder of this section teaches you the various tools and methods available
to narrow down and troubleshoot problems.

Begin

End

Is/are the Mesos

service(s) running?

With the correct

configuration?

Debug frameworks

Mesos masters Mesos slaves

Debug framework

executors

Debug framework

tasks

Outstanding

resource offers?

Figure 5.1 A high-level overview
of the Mesos debugging process

85Debugging a Mesos cluster and its tasks

5.2.1 Using the Mesos web interface

Mesos provides a web interface for administrators to gain insight into the state of the
cluster, including its running and completed tasks. The web interface can be accessed
on any of the masters by navigating to http://mesos-master.example.com:5050. If you
happen to connect to a nonleading master, you’ll receive a notification and automati-
cally be redirected to the current leading master.

TIP Mesos also has a useful JSON-based REST API. You can find more infor-
mation about the available endpoints by visiting http://mesos-master.example
.com:5050/help on the masters and http://mesos-slave.example.com:5051/
help on the slaves. Chapter 6 provides more details on the endpoints available
in this API.

The web interface contains various tabs, allowing you to observe the current state of
the cluster or dig deeper into the current state of frameworks, slaves, and running
and completed tasks. In the next few sections, you’ll explore the information avail-
able so that you can quickly and successfully observe output from tasks and trouble-
shoot issues.

HOME

The main Mesos tab of the Mesos web interface shows active and completed tasks, in
addition to cluster information and statistics. This page is where your web-based trou-
bleshooting will begin; from this page, you can dig deeper into running frameworks,
tasks, and slaves.

 In figure 5.2, you can see two tasks in the state RUNNING. Other task states include
STAGING, FINISHED, FAILED, KILLED, and LOST, and will appear throughout the
web interface.

 This particular page provides a lot of information about the state of your cluster.
Let’s look at the information available in the sidebar to the left of the page, starting at
the top:

■ General cluster information—Cluster name, version, build date, service start time,
and leader election time

■ Log—Opens a new window with live-updating logs from the Mesos master
(assuming either the log_dir or external_log_file configuration options
are set)

■ Cluster statistics—A snapshot of the current cluster statistics, including number
of active slaves, number of tasks (organized by their state), and cluster resources
(total, used, offered, and idle CPUs and memory)

http://mesos-master.example.com:5050
http://mesos-master.example.com:5050/help
http://mesos-master.example.com:5050/help
http://mesos-slave.example.com:5051/help

86 CHAPTER 5 Logging and debugging

In the main body of the page, you can observe active and completed tasks, as well as
their states and links to their sandboxes. You can debug a specific task by clicking the
link containing the task’s ID. Or to have a look at the contents of the container,
including console output, click the Sandbox link. I’ll go over these two features in
more detail a little later in this section.

FRAMEWORKS

The Frameworks tab lists active and terminated frameworks as well as their allocated
and consumed resources. On this page, you can also see the date and time when the
framework registered, or if it disconnected or failed over when it reregistered.

Navigation bar

Opens
and
streams
logging
events

Cluster statistics: slaves,
tasks, and resources

Recently completed tasks
(and their final state) will
appear here.

Active tasks running
on cluster nodes

General cluster
information

Figure 5.2 The main page of the Mesos web interface provides insight into the current state of the cluster.

87Debugging a Mesos cluster and its tasks

TIP By clicking any of the relative times in the web interface (such as “2 min-
utes ago”), the web interface will display the actual time instead of the relative
time.

For example: in figure 5.3, you can see the Marathon framework is using 0.1 CPUs, 128
MB memory, and has 1 active task.

Clicking the link for a particular framework ID takes you to another page listing the
framework’s tasks, along with their current or final state. If the framework registered
a URL, clicking the link in the Host column will take you to that application’s web
interface.

TASKS

After navigating to the framework-level view, you’ll observe active and completed tasks
for that framework, in addition to framework information such as name, user, and
web UI. Figure 5.4 shows an example.

The framework’s active tasks
and consumed resources

Framework ID.
Links to framework
detail page.

Frameworks that are no longer
registered with the master

Framework info.
Host name links to
the framework’s web
interface (if configured).

Date/time that the
framework registered
and/or reregistered
with the master

Figure 5.3 The Frameworks page shows registered and terminated frameworks. It also includes information
about the number of active tasks, consumed resources, and the date and time that the framework registered.

88 CHAPTER 5 Logging and debugging

To debug a particular task for a framework, click the link containing the task’s ID.
More information about the task appears in the sidebar to the left, including executor
name and consumed CPU and memory resources.

 Each task runs in a sandboxed environment or dedicated working directory, but
still has access to tools and libraries available on the host system, with one notable
exception: processes run in Docker containers have access only to the tools and librar-
ies inside the container. When Mesos launches a Docker container, however, it auto-
matically mounts the task’s sandbox directory inside the container so that you can use
features such as the Mesos fetcher to download files to the task’s sandbox.

 In the Mesos web interface, the Sandbox link for a particular task opens a graphi-
cal file browser, as shown in figure 5.5.

 Clicking the stderr or stdout links brings up a new window with the log output
updating in real time. To download the log files for further analysis with your favorite
tools, click the Download link to the right.

SLAVES

The Slaves tab, shown in figure 5.6, lists the machines in the cluster that are offering
resources to the cluster’s frameworks. On this page, you can view the slaves registered
with the cluster, and their aggregate resources.

Task ID. Links to
executor detail page.

Links to the task’s
sandbox directory

Figure 5.4 Active and completed tasks for a specific framework

89Debugging a Mesos cluster and its tasks

Opens a new window to
stream console output

Downloads a file
from the sandbox

Figure 5.5 The Mesos web interface allows you to access a task’s working directory, including the console logs.

Slave ID. Links to
slave info page.

Slave info includes machine
hostname and resources.

Slave registration
date and time

Figure 5.6 The Slaves page lists the Mesos slaves registered with the cluster. It includes the slave ID,
hostname, resources, and the registration date and time.

90 CHAPTER 5 Logging and debugging

Clicking a slave’s ID takes you to another page, shown in figure 5.7, where you can
view the frameworks actively using resources on that particular slave. This is useful for
debugging problems or observing activity on a specific slave, and for being able to
determine what any machine in the cluster is doing at any time.

In this case, the only framework using this slave is Marathon. If you click the link to
Marathon’s framework ID, you can look at the executors launched by the framework.
Digging one level deeper, you can see the running tasks, their states, and the resources
they’re consuming (see figure 5.8).

Framework ID. Links to
framework info page.

Figure 5.7 The status page for a specific Mesos slave includes information about the active frameworks,
tasks, and resources.

91Debugging a Mesos cluster and its tasks

OFFERS

The Offers tab lists outstanding offers on the cluster—resource offers that have been
offered by the Mesos master to a framework, but haven’t yet been accepted or declined
by a framework’s scheduler. You can see that the framework in figure 5.9, Bad-
SchedulerExample, has been offered a number of resources that it hasn’t yet accepted
or declined.

 Generally speaking, all the information you should need to observe a cluster’s cur-
rent state is available in the web interface. But for those of you who feel more comfort-
able working with the command line, Mesos also has command-line tools that provide
roughly the same amount of information. Now that you’ve learned the general pro-
cess for debugging a Mesos cluster and its frameworks using the web interface, let’s
look at some of the built-in command-line tools that are bundled with Mesos. These
tools enable you to follow the same general debugging process, but from the com-
mand line instead of the web interface.

Executor info

Task ID Task state Task resources

Figure 5.8 Executor/task detail page for a specific framework on a specific slave

92 CHAPTER 5 Logging and debugging

5.2.2 Using the built-in command-line tools

Mesos includes built-in command-line tools for those of you who prefer working from
the command line instead of a web browser, in addition to the web interface and the
HTTP API. It’s worth noting that the tools that I’m about to cover in this section are
available only if Mesos is also installed on the system.

OVERVIEW

Similar to their GNU core utilities (coreutils) counterparts, Mesos provides a small set
of command-line tools for managing your cluster—and working with files and pro-
cesses—from the console. These tools include the following:

■ mesos cat—Concatenates and prints a file for a specific task.
■ mesos execute—Launches a one-off command on the cluster.
■ mesos ps—Similar to the Linux and UNIX tool ps, this command outputs a list

of running tasks on the cluster.
■ mesos resolve—Queries a master or ZooKeeper to determine the current lead-

ing master.
■ mesos scp—Copies a local file (or files) to a remote directory on all the slaves

known by the Mesos master.
■ mesos tail—Similar to the UNIX tail command, concatenates and prints the

last 10 lines of a file for a specific task.

For a complete list of available commands, run the command mesos help.

Outstanding
offer ID

Outstanding offer details:
framework name, host,
and resources

Figure 5.9 The Offers page lists outstanding resource offers that have not been accepted or rejected.

93Debugging a Mesos cluster and its tasks

EXAMPLES
To better illustrate the use of some of these command-line tools, I thought it best to
include a few real-world examples. In each of the commands that follow, both Zoo-
Keeper and the Mesos master are running on the same host: mesos.example.com.
Note that I’ve omitted the output from each command for brevity.

 Output the currently running tasks on the cluster:

$ mesos ps --master=zk://mesos.example.com:2181/mesos

Determine the current leading master:

$ mesos resolve zk://mesos.example.com:2181/mesos

Launch a one-off command on the cluster, taking note of the framework ID that’s out-
put when the task is run. You’ll need this framework ID for the next example:

$ mesos execute --command="echo 'Hello, Mesos'" --name=HelloMesos

➥ --master=$(mesos resolve zk://mesos.example.com:2181/mesos)

And finally, to observe the standard output from the command you just ran, run the
following command. Be sure to replace the value of the --framework argument with
the framework ID from the previous example:

$ mesos cat --master=$(mesos resolve zk://mesos.example.com:2181/mesos)

➥ --framework=20150712-210436-16842879-5050-2136-0002

➥ --task=HelloMesos --file=stdout

These built-in Mesos command-line tools are great if you prefer working in a terminal.
But a few limitations exist, one being that Mesos must be installed on the system. In
reality, most systems administrators prefer to debug systems from their individual lap-
top or workstation, and might not want to log in to production infrastructure to run
some debugging tools, or to install Mesos locally.

 Fortunately, the folks at Mesosphere have developed their own Mesos command-
line tools that interact with Mesos remotely. These tools allow you to use the same
commands you’ve learned about so far, but without needing to install Mesos. Let’s
take a look.

5.2.3 Using Mesosphere’s mesos-cli tool
The team at Mesosphere has developed a Python-based, cluster-wide debugging tool
for Mesos aptly named mesos-cli. It allows you to run commands against the Mesos
cluster from your laptop or workstation, without needing to install Mesos itself. The
tool reimplements some of the command-line tools mentioned in the preceding sec-
tion in a more user-friendly way.

 mesos-cli is available via the Python Package Index (PyPI), and you can install it on
your workstation by running the following command:

$ sudo pip install mesos.cli

http://mesos.example.com

94 CHAPTER 5 Logging and debugging

NOTE If the Python pip tool isn’t already installed on your system, please
refer to https://pip.pypa.io/en/stable/installing/ for instructions on how to
install it.

After installation is complete, you’ll have a new executable located at /usr/local/bin/
mesos. As long as the directory /usr/local/bin appears early in your $PATH, the mesos-
cli executable mesos should now supersede Mesos’ built-in command-line tools. Now,
let’s take a look at some of the commands available in mesos-cli.

OVERVIEW
Similar to their coreutils counterparts and the relevant tools bundled with Mesos
itself, I’ve included some of the popular mesos-cli subcommands here:

■ mesos cat—Concatenates and prints a file for a specific task.
■ mesos config—Configures the mesos-cli tool from the command line.
■ mesos events—Chronologically streams master and slave logs in real time from

nodes in the cluster.
■ mesos find—Given a task ID, finds and lists files in the sandbox.
■ mesos head—Similar to the Linux and UNIX equivalent, outputs the first several

lines of a file.
■ mesos ls—Similar to mesos find, lists all the files in a task’s sandbox.
■ mesos ps—Similar to the Linux and UNIX equivalent, outputs a list of running

tasks on the cluster. Can also output inactive tasks using the -i argument.
■ mesos resolve—Queries a master or ZooKeeper to determine the current lead-

ing master.
■ mesos scp—Copies a local file (or files) to a remote directory on all the slaves

known by the Mesos master.
■ mesos ssh—Given a task ID, allows you to SSH directly to the sandbox of a par-

ticular task. Note that this command assumes you already have SSH access to the
nodes in the cluster.

■ mesos state—Outputs the current state of a master or slave in the cluster in
JSON format.

■ mesos tail—Similar to the Linux and UNIX equivalent, outputs the last several
lines of a file.

TIP If you prefer to have these commands available for tab completion in
your shell, you’re in luck! For the Bash shell, add the following line to ~/.bash
_profile: complete -C mesos-completion mesos

For a complete list of the available commands in mesos-cli, run the command
mesos help.

EXAMPLES
To better illustrate the use of some of the command-line tools mentioned in the pre-
ceding section, I thought it best to include a few real-world examples. In each of the

https://pip.pypa.io/en/stable/installing/

95Summary

commands that follow, both ZooKeeper and the Mesos master are running on the
same host: mesos.example.com. Note that I’ve omitted the output from each com-
mand for brevity.

TIP You can get the usage for each of the commands mentioned previously
by running mesos <subcommand> --help.

Configure the URL that mesos-cli will use to determine the leading master:

$ mesos config master zk://mesos.example.com:2181/mesos

Output the currently running commands on the cluster:

$ mesos ps

Launch a one-off command on the cluster within a Docker image:

$ mesos execute --command="cat /etc/redhat-release" --name="releaseTask"

➥ --master=$(mesos resolve) --docker_image="centos:7"

And finally, to observe the standard output from the command you just ran:

$ mesos cat releaseTask stdout

As covered here, the mesos-cli tool provided by Mesosphere builds upon the com-
mand-line tools, and allows you to interact with—and otherwise debug—a Mesos clus-
ter and its workloads from the comfort and safety of your individual workstation.
Being written in Python, and maintained outside the Mesos code base, it’s also easy to
customize to suit your needs.

5.3 Summary
In this chapter you learned the various methods and tools with which you can debug a
Mesos cluster. This included log file locations, logging configuration options, the
Mesos web interface, and various Mesos command-line tools. Here are a few things
to remember:

■ Mesos provides various configuration options around logging for both the mas-
ters and the slaves. You can configure the log locations and levels, and have
externally managed (syslog) log files.

■ Every Mesos task automatically gets two files: stdout and stderr. These files,
located in the sandbox, capture output from stdout and stderr, respectively.

■ Before you begin to debug issues, ensure that the mesos-master and mesos-
slave services are running with the desired configuration. You can determine
this by observing the output from ps aux | grep mesos.

http://mesos.example.com

96 CHAPTER 5 Logging and debugging

■ Mesos provides a web interface and HTTP API that are useful for determining
the state of the cluster and assisting with debugging. You can reach the web UI
by pointing your browser to http://mesos-master.example.com:5050. If you con-
nect to a nonleading master, you’ll automatically be redirected to the leader.
The next chapter covers the API.

■ Mesos includes built-in command-line tools to assist with debugging and trou-
bleshooting. Mesosphere also provides a Python-based tool called mesos-cli,
which can be downloaded from PyPI.

The next chapter finishes up part 2 of the book with information about running
Mesos in production. It covers topics such as monitoring, security, and adding, remov-
ing, and replacing masters.

http://mesos-master.example.com:5050
http://mesos-master.example.com:5050

97

Mesos in production

Congratulations! You’ve reached the last chapter in part 2 of this book. Up to this
point, you’ve learned how Mesos provides a way to improve datacenter efficiency;
how to install and configure Mesos, ZooKeeper, and Docker; how Mesos provides a
fault-tolerant environment for applications to run on; and how to interact with and
debug a running Mesos cluster.

 This chapter—perhaps one of the most important in the book—covers the real
world: the monitoring details, quorum changes, and access control rules that you’ll
need to know in order to fine-tune and run a production Mesos cluster. The con-
tent in this chapter will better prepare you and your environment for part 3, in

This chapter covers
■ Monitoring Mesos masters, slaves, and the

ZooKeeper ensemble
■ Navigating the Mesos REST API
■ Adding, removing, and replacing Mesos

masters
■ Understanding and configuring authentication,

authorization, and rate limiting

98 CHAPTER 6 Mesos in production

which you’ll launch long-running applications and scheduled tasks on the cluster by
using the popular Marathon, Chronos, and Aurora frameworks.

6.1 Monitoring the Mesos and ZooKeeper clusters
As you learned previously, Mesos has two main services: mesos-master and mesos-
slave. At the most basic level, you could configure a monitoring system to ensure that
these processes are up and running on the systems that make up the Mesos cluster,
but we all know that this level of monitoring usually isn’t sufficient. Fortunately, Mesos
has a rich JSON-based HTTP API that you can query for more information about the
health of the cluster.

TIP If you’re looking to explore the JSON output from the Mesos API on the
command line, you might consider using HTTPie, a human-friendly, cURL-like
tool that includes features such as formatted and colorized output. For more
information, check out the project at https://github.com/jkbrzt/httpie.

Considering that the Mesos project is under rapid development, it isn’t practical to
include every little detail about the API in this chapter. The following sections cover
the most common—and perhaps most important—knowledge needed to monitor
your Mesos and ZooKeeper clusters. You may also want to navigate to the following
links to get additional information about endpoints that are available in your specific
version of Mesos:

■ http://mesos-master.example.com:5050/help
■ http://mesos-slave.example.com:5051/help

Additional API reference material can be found in the Mesos online monitoring docu-
mentation at http://mesos.apache.org/documentation/latest/monitoring.

6.1.1 Monitoring the Mesos master

Monitoring the few machines that make up the Mesos master quorum is key to
ensuring that your cluster continues to provide the level of service your users have
come to expect, and that new tasks can be scheduled on the machines that make up
the cluster. In many cases, this requires monitoring and metrics beyond basic host
monitoring (CPU, memory, disk, network) and process monitoring (the mesos-
master service).

 Although there are many monitoring tools, this section limits coverage to monitor-
ing the Mesos master with Nagios, a popular open source monitoring platform, and
querying the Mesos REST API for its available metrics, which will be useful for develop-
ing your own monitoring checks.

https://github.com/jkbrzt/httpie
http://mesos-master.example.com:5050/help
http://mesos-slave.example.com:5051/help
http://mesos.apache.org/documentation/latest/monitoring

99Monitoring the Mesos and ZooKeeper clusters

MONITORING THE MESOS MASTER WITH NAGIOS

Nagios, an open source, battle-tested monitoring system, is typically ubiquitous with
datacenter and service monitoring. Therefore, it seems only natural to discuss the
Nagios options that are available to monitor Mesos.

 The team over at OpenTable has created a Nagios check for monitoring a Mesos
cluster. You can download the script from https://github.com/opentable/nagios-
mesos. It’s capable of monitoring the leading master for the following conditions:

■ Basic health checks
■ That a minimum number of slaves are registered
■ That a given framework (or frameworks) is registered

Forwarding HTTP requests to the leading master
As you learned previously in this book, connecting to a nonleading master’s web inter-
face will cause you to be automatically redirected to the leading master. But what
happens if you try querying the API of a nonleading master? As of Mesos 0.22.x, the
behavior is somewhat unpredictable; chances are that you’ll receive incorrect or
incomplete data from the API.

To always ensure that you or your monitoring systems are getting accurate data from
the leading master, you might consider putting a HAProxy instance in front of your
Mesos masters for monitoring and administration purposes.

The following excerpt from a HAProxy configuration file adds each of the Mesos mas-
ters to a load-balancing pool. But it also adds a health check, one that only succeeds
for the leading master. This way, you can ensure that requests are forwarded only to
the leading master, whichever one of the three hosts it might be:

listen mesos-master 0.0.0.0:5050
 mode http
 option httpclose
 option forwardfor
 option httpchk GET /metrics/snapshot
 http-check expect string "master\/elected":1
 server mesos-master-1 mesos-master-1.example.com:5050 check
 server mesos-master-2 mesos-master-2.example.com:5050 check
 server mesos-master-3 mesos-master-3.example.com:5050 check

To ensure that HAProxy doesn’t become a single point of failure in your infrastructure,
you may want to deploy HAProxy in an active/passive configuration, using Keepalived
and a floating IP address across the two instances. Alternately, if you don’t want to
put an instance of HAProxy in front of your masters, you can query the /master/redi-
rect API endpoint. This endpoint will return an HTTP 307 redirect to the URL of the
leading master.

https://github.com/opentable/nagios-mesos
https://github.com/opentable/nagios-mesos

100 CHAPTER 6 Mesos in production

To see a complete list of options, run check_mesos.py --help. Otherwise, the most
basic way to use the check_mesos.py script is with the following example:

./check_mesos.py --host mesos-master.example.com

If you’re looking for more information about the cluster or want to develop your own
monitoring checks, look no further than the Mesos REST API. You’ll explore the avail-
able endpoints and the data they return in the next section.

QUERYING THE MESOS MASTER API ENDPOINTS
Mesos provides an extensive REST API that provides information about the cluster.
Some of this information includes (but isn’t limited to) the following metrics:

■ Utilized resources
■ Framework messages received and processed (if authentication is enabled)
■ System load
■ Connected slaves

Because of the project’s rapid development, listing all the available API endpoints isn’t
practical. Table 6.1 includes a few that are the most important.

For an extensive list of endpoints, you should visit the /help endpoint, or consult the
official Mesos documentation for your particular version.

6.1.2 Monitoring the Mesos slave

Monitoring Mesos slaves is (arguably) a bit less critical than the masters because the
slaves aren’t necessarily responsible for maintaining a quorum and making decisions
about where to schedule tasks across the cluster. Nevertheless, the monitoring of these
worker machines is as important as any other machine running in production. With-
out proper monitoring in place for the slaves, you run the risk of running out of
resources or filling your disks without so much as a warning.

Table 6.1 Select Mesos master API endpoints

Endpoint Description

/help Returns information about the available API endpoints

/metrics/snapshot Returns a JSON object containing system metrics from the master

/master/health Returns HTTP 200 (OK) if the master is healthy

/master/redirect Returns an HTTP 307 (Temporary Redirect) redirect to the URL of the
leading master

/master/slaves Returns information about the connected Mesos slaves

101Monitoring the Mesos and ZooKeeper clusters

 There aren’t any set-in-stone guidelines here; each organization and environment
likely has particular thresholds for CPU, memory, and disk usage. Regardless, here are
a few suggestions for monitoring checks to perform on any given Mesos slave:

■ Ensure that the mesos-slave process is running (and that port 5051 is accessible)
■ Ensure that the docker or docker.io process is running (if you’re using Docker)
■ Monitor basic CPU, memory, disk, and network use, ideally collected and

graphed over time
■ Monitor per-container metrics (CPU, memory, disk, network)

With the exception of per-container monitoring (covered later in this chapter), these
are basic OS-level monitoring checks. Some of these metrics are also exposed over the
Mesos slave’s metrics endpoint for convenience. Let’s now cover the information avail-
able to you and your monitoring system via the Mesos slave’s REST API.

QUERYING THE MESOS SLAVE API ENDPOINTS
Just as with the Mesos master, the Mesos slave has an extensive REST API that you can
query. Unlike the master, which returns cluster-wide metrics, the slave’s endpoint
returns only information about that particular slave. Because of the project’s rapid
development cycle, it isn’t practical to include information about all the endpoints.
Table 6.2 includes a few API endpoints that I find to be the most important for the
purposes of this section.

These endpoints can provide metrics on resource use that you’d normally expect
from OS-level monitoring, plus insight into the running containers on a given Mesos
slave. For an extensive list of endpoints, you should visit the /help endpoint, or con-
sult the official Mesos documentation for your particular version.

6.1.3 Monitoring ZooKeeper
Although this book is predominantly about Mesos, ZooKeeper is critical for coordina-
tion and discovery. Therefore, it’s important to ensure that ZooKeeper is sufficiently
monitored for a stable Mesos deployment. Despite linking you to online ZooKeeper
documentation in previous chapters, I thought it best to at least point you in the right
direction in terms of ZooKeeper monitoring within this chapter.

NOTE The remainder of this section assumes you’re using ZooKeeper 3.4.0
or later.

Table 6.2 Select Mesos slave API endpoints

Endpoint Description

/help Returns information about the available API endpoints

/metrics/snapshot Returns a JSON object containing system metrics from the slave

/monitor/statistics.json Returns a JSON object about resources consumed by containers running
on the slave

102 CHAPTER 6 Mesos in production

MONITORING AND MANAGING ZOOKEEPER WITH EXHIBITOR

To monitor and manage ZooKeeper installations, the team over at Netflix has devel-
oped and open sourced a tool they’ve named Exhibitor. Citing the project page,
Exhibitor is “a supervisor system for Apache ZooKeeper.” It provides system adminis-
trators cluster-wide management and monitoring features such as the following:

■ Ensuring that an instance is up and responding to requests
■ Performing backup and restore
■ Managing cluster-wide configuration
■ Exploring a tree of ZNodes via a web interface and REST API

For more information about Exhibitor, including installation and configuration
instructions, check out the project page at https://github.com/Netflix/exhibitor.

MONITORING ZOOKEEPER WITH NAGIOS

In addition to Exhibitor, various monitoring scripts are distributed with ZooKeeper. If
you installed ZooKeeper from source, or compiled Mesos from source and used the
bundled version of ZooKeeper, the monitoring scripts can be found in the src/contrib/
monitoring/ directory. Because we covered monitoring Mesos with Nagios already,
we’ll also cover monitoring ZooKeeper with Nagios.

TIP If you installed ZooKeeper by using a package manager, the monitor-
ing scripts weren’t included. You can download the Nagios check for Zoo-
Keeper from https://github.com/apache/zookeeper/tree/trunk/src/contrib/
monitoring.

A Nagios check for ZooKeeper, check_zookeeper.py, can be found at src/contrib/
monitoring/check_zookeeper.py. The script takes several arguments and can alert
you if a particular metric is out of bounds. Example Nagios service configurations
are also available in the nagios/ directory and can be used to configure your Nag-
ios server.

 In the following example, I’ll call the check_zookeeper.py script directly to illus-
trate how it works. It’ll check a ZooKeeper node’s outstanding requests, returning a
warning status if the value reaches 10, and a critical status if the value reaches 25:

$ python check_zookeeper.py -o nagios -s zk.example.com:2181

➥ -k zk_outstanding_requests -w 10 -c 25

This is one example out of many of how you could monitor the health of a ZooKeeper
instance. In addition to the number of example service checks provided within the
nagios/ directory, you can get the full help and usage output by running the follow-
ing command:

$ python check_zookeeper.py --help

https://github.com/Netflix/exhibitor
https://github.com/apache/zookeeper/tree/trunk/src/contrib/monitoring
https://github.com/apache/zookeeper/tree/trunk/src/contrib/monitoring

103Modifying the Mesos master quorum

You also can write your own Nagios monitoring script by using a series of built-in com-
mands to query ZooKeeper, a few of which I’ll cover next.

MONITORING ZOOKEEPER WITH FOUR-LETTER COMMANDS

ZooKeeper can provide certain information about an instance by using a series of
four-letter commands issued to the server. Table 6.3 provides details on a select num-
ber of these commands that are useful for monitoring purposes.

The four-letter commands are typically sent to a ZooKeeper instance by using the Net-
cat tool. The following example demonstrates using Netcat to issue the ruok health
check command to a ZooKeeper instance listening on port 2181:

$ echo 'ruok' | nc zk1.example.com 2181
imok

TIP For a complete list of ZooKeeper commands, see the ZooKeeper Admin-
istrator’s Guide at http://zookeeper.apache.org/doc/current/zookeeper-
Admin.html#sc_zkCommands.

6.2 Modifying the Mesos master quorum
At times you might find yourself needing to modify the number of Mesos masters run-
ning the cluster. Perhaps this is to replace failed hardware, rebuild a VM on a newer
release of an operating system, or provision additional masters to improve your high-
availability strategy. This section covers modifications to the number of Mesos masters
running a given deployment.

Table 6.3 Select commands for monitoring ZooKeeper

Command Description

ruok Basic health check. Returns imok if the server is up and healthy.

mntr Returns a tab-separated list of metrics used to monitor a ZooKeeper instance. Some
of this information includes the server state (standalone, leader, follower), version,
and latency.

srvr Provides details about the server, including number of connections and mode (leader,
follower, standalone).

stat Returns a list of connected clients and some details on the state of the server.

Use caution when modifying the master quorum
Although this section provides instructions for modifying the number of masters and
the master quorum size, it’s worth taking the time to note a few areas of caution.

The Mesos replicated log isn’t capable of zero-downtime reconfiguration, so the
masters need to be restarted in order to make changes to the cluster quorum via

http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_zkCommands
http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_zkCommands

104 CHAPTER 6 Mesos in production

As a reminder from chapter 3, there needs to be an odd number of masters to main-
tain a quorum; a majority of masters is required to make decisions for the cluster. The
quorum size is set on each of the Mesos masters with the --quorum configuration
option. For ease of reference, the Mesos master quorum sizing table from chapter 3 is
repeated here as table 6.4.

Now that you have some background information (and a few words of caution) about
modifying the quorum size, let’s go over what it takes to add masters to a cluster. Each
of the following sections is presented in an example-like scenario and provides
instructions about the steps to perform for each.

6.2.1 Adding masters

There might come a time when you want to increase the number of Mesos masters for
additional failover capacity—for example, you might want to be able to tolerate two
master machine failures instead of just one. In this scenario, I’ll demonstrate how to

(continued)
the --quorum configuration option. You’ll learn how to perform this operation later in
this section. For more information about online reconfiguration in future releases of
Mesos, see https://issues.apache.org/jira/browse/MESOS-683.

Furthermore, Mesos doesn’t implement a whitelist for masters that are participating
in the quorum. To prevent corruption of the replicated log and potential split-brain sce-
narios, you need to ensure that the number of masters participating in the quorum
doesn’t exceed the corresponding quorum size (as referenced in table 6.4). As of
Mesos 0.22.x, there’s an outstanding feature request for Mesos to support such a
whitelist. For more information, see https://issues.apache.org/jira/browse/MESOS-
1546. To mitigate this risk, you might consider enabling authentication on the Zoo-
Keeper ensemble that you’re using for Mesos to prevent unauthenticated masters
from joining the quorum.

Failure to follow these basic rules could result in service interruptions. As with any
production service, be sure to test changes in a pre-production environment, and pro-
ceed with caution when making changes to a production system.

Table 6.4 Mesos master quorum size

Number of Mesos masters Mesos master quorum Number of failures tolerated

1 1 0

3 2 1

5 3 2

2 × N – 1 N N – 1

https://issues.apache.org/jira/browse/MESOS-683
https://issues.apache.org/jira/browse/MESOS-1546
https://issues.apache.org/jira/browse/MESOS-1546

105Modifying the Mesos master quorum

increase the number of masters from three to five, thus allowing your cluster to toler-
ate the failure of two of its masters:

1 Currently, you have three Mesos masters running and configured with --quorum=2.
Reconfigure each of the masters with --quorum=3 and restart the mesos-master
service on each of them by running sudo service mesos-master restart.

2 Provision two additional masters, also configured with --quorum=3, and start
the mesos-master service by running sudo service mesos-master start.

TIP If ZooKeeper is running on the same machines as the Mesos masters,
now would be a good time to increase the size of the ZooKeeper ensemble.
Generally speaking, this involves configuring the new nodes to join the
ensemble, followed by reconfiguring the existing followers, and finally recon-
figuring and restarting the current leader. Also, be sure to update the Zoo-
Keeper URL used by the Mesos masters, slaves, and frameworks to include the
new members of the ensemble.

6.2.2 Removing masters

Although it’s probably rare for someone to need to reduce the quorum size, it’s possi-
ble to do so. In this scenario, you’ll reduce the number of masters from five to three,
thus decreasing the number of master machine failures your cluster can tolerate from
two to one:

1 Currently, you have five masters running and configured with --quorum=3.
Remove two of the masters from the cluster, ensuring they will never be brought
back online.

2 Reconfigure the three remaining masters with --quorum=2 and restart the
mesos-master service on each of them by running sudo service mesos-master
restart.

6.2.3 Replacing masters

If the need arises to replace one of the masters (removing one master and adding
another in its place while maintaining the currently configured quorum size), you
should be able to do so without any reconfiguration or downtime. In this scenario,
you’ll decommission an old master and replace it with a newly provisioned one:

1 Currently, you have three masters running and configured with --quorum=2.
Remove the master you want to replace, ensuring that it will never rejoin the
cluster (delete the virtual machine, wipe hard disks, and so forth).

2 Provision a new Mesos master and configure it with the same quorum value as
the rest of the masters—in this case, --quorum=2.

3 Start the mesos-master service by running sudo service mesos-master start
and allow the replicated log to catch up with that of the existing masters.

106 CHAPTER 6 Mesos in production

6.3 Implementing security and access control
A well-formed security strategy is critical to the security of an organization’s infrastruc-
ture, and ultimately, its data. Today, we’re seeing that a security-in-layers approach works
best for this, where certain ideas for a given system—such as basic user authentica-
tion—are combined with more complex, overarching ideas—such as network segrega-
tion, or encryption between hosts and datacenters.

 The security model implemented by Mesos can be divided into two discrete con-
cepts that should already be familiar to most of you: authentication and authorization.
Before continuing with this section, though, let’s take a moment to clarify these terms.

In Mesos, it’s possible not only to enable authentication and authorization for users
and systems administrators, but to enforce access control for frameworks and slaves as
well. This section presents several features of Mesos that make up security and access
control for the cluster: framework authentication and authorization, slave authentica-
tion, access control lists, and framework rate limiting.

6.3.1 Slave and framework authentication

The ability to authenticate machines and applications is important in any production
system. In Mesos, authentication ensures that unauthorized slaves don’t join the clus-
ter and that unauthorized frameworks don’t consume cluster resources.

 Fortunately, Mesos provides a way to enable and configure authentication of slaves
and frameworks. It uses the Simple Authentication and Security Layer (SASL) frame-
work, with CRAM-MD5 as the authentication mechanism.

 Although most of us are familiar with usernames and passwords for authentication,
Mesos uses slightly different terms; usernames are called principals, and passwords are
called secrets. It’s worth noting, however, that the principal is different from the frame-
work user (the Linux user running a framework’s tasks) and the framework’s role (used
for resource reservations). This will become apparent a little later in this section.

Defining authentication and authorization
Authentication and authorization are two discrete concepts that play into the security
model for controlling access to systems.

An authentication mechanism provides a way to identify a user or service, typically
(but not always) using a username and password. The credentials entered by the user
(or service) are then compared with credentials stored in a database before the
request is accepted.

On the other hand, authorization is the process for enforcing access control policies.
It’s a way to define which actions an authenticated (or unauthenticated) user is
allowed to perform on a given set of objects.

107Implementing security and access control

 Using these concepts of principal-secret and challenge-response authentication,
let’s explore how to configure authentication between masters, slaves, and frame-
works. For any master-side security options you set here, you’ll need to ensure the con-
figurations are the same across the multiple Mesos masters.

SLAVE AUTHENTICATION
Mesos masters provide a few options for allowing Mesos slaves to participate in the
cluster, including whitelisting a set of hosts or requiring slaves to authenticate with a
principal and secret. These configuration options are listed in table 6.5.

In addition to these master-side options, you’ll also need to provide the Mesos slave
with credentials to authenticate with the master. The --credential option takes a
path to a file on disk containing the Mesos slave authentication credentials.

 I thought it best to demonstrate how to configure slave authentication with a
short example. On the Mesos master, create a credentials file on disk that resembles
the following:

{
 "credentials": [
 {

"principal": "slaveuser",
"secret": "slavepass"

 }
]
}

You can alternately create credential files by using whitespace-separated usernames
and passwords, one pair per line:

$ echo -n "slaveuser slavepass" > /etc/mesos/secure/credentials

NOTE Certain popular editors (Vim and Emacs) automatically insert new-
lines at the end of a file, which can lead to authentication failures. You can
avoid this behavior by opening files in binary mode and explicitly setting the
noeol option. Alternately, you can use JSON-formatted credentials files.

Table 6.5 Configuration options for slave authentication

Configuration option Description

whitelist Takes a path to a file as a parameter. The target file has a list of slaves
(one per line) that the master will advertise resource offers for.

credentials A path to a file on disk containing usernames and passwords (for
example, file:///path/to/file).

authenticate_slaves If set to true, only authenticated slaves (those that have credentials
present in the credentials file) are allowed to register with the master.
The default is false, indicating that all slaves are allowed to register.

108 CHAPTER 6 Mesos in production

Then configure the master by using the --credentials configuration option and
restart the service:

--credentials=file:///etc/mesos/secure/credentials

To provide the slave with authentication credentials, create a credentials file following
the format mentioned earlier:

$ echo -n "slaveuser slavepass" > /etc/mesos/secure/slave-credentials

The configuration option on the Mesos slave is slightly different from that of the mas-
ter; on the slave, you’ll use the --credential configuration option to set the path to
the slave’s credentials file and then restart the service:

--credential=file:///etc/mesos/secure/slave-credentials

By following these instructions, you ensure that Mesos slaves can’t join a particular
cluster unless they’ve authenticated to the master first. Configuring authentication for
frameworks follows a similar approach.

FRAMEWORK AUTHENTICATION

Just as you can require that a Mesos slave authenticate to the master, you can also
enable authentication for frameworks as well. To enable authentication for frame-
works registering with a Mesos cluster, you need to set a couple of configuration
options on the master:

■ --credentials—As mentioned previously, this option is a path to a file on disk
containing usernames and passwords. Regardless of whether you’re authenti-
cating slaves or frameworks, all credentials are stored in a single file referenced
by this configuration option.

■ --authenticate—Set this option to true in order to allow only authenticated
frameworks to register with the cluster.

To reiterate what we covered in the previous section for slave authentication, create a
credentials file (or add to an existing credentials file) that resembles the following:

{
 "credentials": [
 {

"principal": "frameworkuser",
"secret": "frameworkpass"

 }
]
}

Then configure the master by using the --credentials configuration option, and
restart the mesos-master service:

--credentials=file:///etc/mesos/secure/credentials

109Implementing security and access control

TIP Remember to pay attention to the owner, group, and permissions of
your credentials files! Because Mesos currently requires that credentials are
stored in plain text, you’ll want to be sure that only administrators with root-
level access can read these files.

The framework registering with the cluster then needs to provide a valid principal and
secret in order to authenticate with the cluster. Let’s not worry about configuring indi-
vidual frameworks now, though; part 3 of this book covers that in more detail, when
you’ll learn about the Marathon, Chronos, and Aurora frameworks.

6.3.2 Authorization and access control lists

The Mesos master checks an access control list (ACL) to determine whether a request
is permitted. These ACLs consist of a subject that can perform an action on a specific set
of objects. The framework principal (or user), mentioned previously in the authentica-
tion section, is the same principal that you’ll use in your ACLs. Consider the following
in figure 6.1.

For clarity, I didn’t use the Mesos terms for the subjects, actions, and objects in the
previous graphic, but hopefully you can understand what each is capable of perform-
ing. Building upon framework authentication, these ACLs will either permit or deny
frameworks and users to perform certain actions on the cluster. In the next few sec-
tions, I’ll provide some examples of how to write access control lists to define a frame-
work’s access to the cluster.

UNDERSTANDING ACCESS CONTROL LISTS

In contrast with some systems that default to least-privilege or most-privilege, Mesos
ACLs are matched in the order they’re defined: the first ACL that matches the request
determines whether the request is authorized. Table 6.6 provides a list of subjects,
actions, and objects that make up ACLs.

Framework

principals

Subjects

Register

frameworks

Can With specific

Administrators

Framework

principals

Shut down

frameworks

ObjectsActions

Run tasks User accounts

Roles

Figure 6.1 A Mesos ACL consists of a subject that can perform an action with specific objects.

110 CHAPTER 6 Mesos in production

As a fallback, it’s also possible to provide a permissive option in your ACL; this option
defines the default behavior in the event a request doesn’t match any of the defini-
tions in the ACL. This option defaults to true, meaning the action is permitted.

IMPLEMENTING ACCESS CONTROL LISTS
Access control lists are configured on the Mesos masters by using the --acls configu-
ration option. This option accepts either a path to a file containing the ACLs (such as
file:///etc/mesos/secure/acl) or the JSON-formatted ACL itself.

 I believe that the best way to demonstrate the power of the Mesos access control
lists is by example. The following examples include several ACL configurations, with
short descriptions of what they’re trying to accomplish, demonstrating how to limit
access to the run_tasks and register_frameworks actions.

TIP ACL values are an array of strings, or the special types ANY and NONE.
When used with the following ACL examples, ANY is generally permissive (per-
mitting any framework to do something), and NONE is generally restrictive
(prohibiting any framework from doing something).

Example 1: Permit the Jenkins framework to run tasks on Mesos slaves as the jenkins
user on the underlying system. Note that the jenkins user must already exist on all of
the Mesos slaves in order for this to work:

{
 "run_tasks": [
 {

"principals": { "values": ["jenkins"] },
"users": { "values": ["jenkins"] }

 }
]
}

Example 2: Prevent frameworks from running tasks on Mesos slaves as the root user
on a system:

{
 "run_tasks": [
 {

"principals": { "type": "NONE" },
"users": { "values": ["root"] }

 }
]
}

Table 6.6 Subjects, actions, and objects that make up Mesos ACLs

Subject Action Object

principals register_frameworks roles

run_tasks users

shutdown_frameworks framework_principals

111Implementing security and access control

Example 3: Create a whitelist of the framework principals that may register with a par-
ticular role. In this example, only marathon is allowed to register with the prod role;
any requests from other frameworks to register with the prod role are rejected:

{
 "register_frameworks": [
 {

"principals": { "values": ["marathon"] },
"roles": { "values": ["prod"] }

 },
 {

"principals": { "type": "NONE" },
"roles": { "values": ["prod"] }

 }
]
}

Example 4: Create a global whitelist for all frameworks across all roles. In this exam-
ple, the only framework allowed to register with the master is chronos, and only with
the batch role. Any other framework that attempts to register to the cluster, with any
role, is denied.

{
 "permissive": false,
 "register_frameworks": [
 {

"principals": { "values": ["chronos"] },
"roles": { "values": ["batch"] }

 }
]
}

In addition to access control lists that authorize certain framework principals to per-
form certain actions, such as registering to the cluster with a specific role, Mesos also
provides a means to rate-limit the messages coming from the frameworks.

6.3.3 Framework rate limiting

In any deployment that runs multiple frameworks, a single bad actor could flood the
master with messages, thereby reducing throughput for higher-priority, “production-
level” frameworks. Framework rate limiting in Mesos protects these higher-priority
frameworks by limiting the number of queries per second—and the number of
queued messages—for specific frameworks, as identified by their principal.

 By restricting the number of messages processed per second for a given frame-
work, you can be sure that the Mesos master can respond to other frameworks in a
timely manner. And by restricting the number of messages that can be queued by the
master, you can provide some guarantees about the master’s memory usage. I’ll
explore these two ideas in a bit more detail throughout this section. For now, check

112 CHAPTER 6 Mesos in production

out figure 6.2, where you can visualize the various combinations of rate limiting and
queue capacity.

 When considering the monitoring and configuration sections that follow, it’s
important to keep in mind that the goal of framework rate limiting isn’t necessarily
to model a framework’s behavior as accurately or precisely as possible, but instead to
ensure that the throughput of higher-priority frameworks can’t be negatively impacted
by lower-priority frameworks.

 Because frameworks without rate limiting configured will continue having their
messages processed as soon as possible, it’s perfectly reasonable to enable rate limit-
ing on lower-priority frameworks first, letting you get an idea of how this functionality
will work in your environment.

MONITORING FRAMEWORK AND MASTER BEHAVIOR
I recommend that you first observe the characteristics of any running frameworks
before enabling rate limiting. Therefore, the first step in configuration framework rate
limiting is to monitor the messages received and processed for each framework prin-
cipal. These metrics can be obtained for each framework principal by querying the
/metrics/snapshot API endpoint on the leading Mesos master.

 To get an idea of how to monitor the messages being received and processed from
each framework principal, let’s take a look at this API endpoint. There will be a num-
ber of entries following the format frameworks/<framework-principal>. In the fol-
lowing example for marathon, you can see that the master has received and processed
254 messages:

"frameworks/marathon/messages_processed": 254,
"frameworks/marathon/messages_received": 254,

Message

processed

Framework A

Message

processed

Framework B

Message

processed

Framework C

No rate limit,

unlimited capacity

Rate limit,

unlimited capacity

Rate limit,

limited capacity

Queue

()capacity

Rate

()qps

Figure 6.2 Combinations of framework rate and capacity-limiting configurations

113Implementing security and access control

The values returned for messages_received and messages_processed should be
equal (or about equal) when rate limiting is disabled (the default), because messages
are processed as soon as they’re received. You’ll want to poll this API over a period of
time to get an accurate representation of what your cluster activity looks like before
enabling rate limiting.

TIP You might consider writing a script to query this endpoint on a regular
basis and store and visualize the metrics you wish to monitor using Graphite
and Grafana, two popular (and open source) projects for storing and visualiz-
ing time series data.

It’s also a good idea to look at the typical memory usage for the mesos-master pro-
cess. You could do this with a monitoring tool that captures performance data as part
of regular monitoring (such as Nagios), or a tool that focuses specifically on collecting
time-series data from a system (such as Collectd). You could also get the physical
memory use of the master (in KB) by running the following command:

$ ps -efo user,pid,rss,comm $(pidof mesos-master)

CONFIGURING FRAMEWORK RATE LIMITS
After observing and monitoring the behavior and resource consumption of the mas-
ter and its frameworks, you can begin configuring rate limits for frameworks. But first,
let’s define the terms Mesos uses when configuring rate limiting:

■ principal—Framework identifier (note: multiple frameworks can share a
principal).

■ qps—Rate limit, expressed as queries per second. If this field is omitted for a
given principal, there will be no limit.

■ capacity—Number of messages that can be queued on the master: messages
received, but not yet processed. Effective only when used with qps.

■ aggregate_default_qps—Aggregate rate limit for all frameworks not defined
in the rate limits configuration.

■ aggregate_default_capacity—Aggregate number of messages that can be
queued on the master for all frameworks not defined in the rate limits configu-
ration. Effective only when used with aggregate_default_qps.

Just as in the ACLs section, I think the best way to demonstrate rate limiting is with a
couple of examples. Each of these configurations represents valid values for the --rate
_limits master configuration option.

 Example 1: Limit the jenkins framework to 100 queries per second, and to 6,000
messages in queue. All other frameworks aren’t throttled and have unlimited queue
capacity:

{
 "limits": [
 {

"principal": "jenkins",

114 CHAPTER 6 Mesos in production

"qps": 100,
"capacity": 6000

 }
]
}

Example 2: Limit the chronos framework to 300 queries per second, with an unlim-
ited queue capacity. The marathon framework has no throttling and an unlimited
queue capacity. Any undefined frameworks (such as jenkins) will have an aggregate
rate limit of 500 queries per second and a queue capacity of 4,500 messages:

{
 "limits": [
 {

"principal": "chronos",
"qps": 300

 },
 {

"principal": "marathon"
 }
],
 "aggregate_default_qps": 500,
 "aggregate_default_capacity": 4500
}

If the framework exceeds its configured rate limit and subsequently exceeds its config-
ured capacity, an error message is sent back to the framework. Framework developers
can then use this event to trigger a behavior or action in their framework scheduler to
handle the situation.

TIP Future releases of Mesos will have the ability to notify frameworks when
their messages start to be queued up by the master. This way, frameworks can
react accordingly as soon as messages begin to be queued, instead of waiting
for their queue capacity to be exceeded. To track the progress of this feature,
see https://issues.apache.org/jira/browse/MESOS-1664.

As you’ve seen in the previous few sections, combining framework, authentication, and
rate limiting gives you a lot of control over the frameworks connecting to the cluster.

6.4 Summary
In this chapter, you learned about monitoring and managing Mesos clusters in a pro-
duction environment. You explored topics such as monitoring Mesos and ZooKeeper,
adding and replacing Mesos masters, and implementing access control lists. Here are
a few things to remember:

■ Both the Mesos masters and slaves provide a JSON-based REST API that contains
valuable information about the cluster or individual node. For a list of available
endpoints, see http://mesos-master.example.com:5050/help and http://mesos-
slave.example.com:5051/help.

http://mesos-slave.example.com:5051/help
http://mesos-slave.example.com:5051/help
http://mesos-master.example.com:5050/help
https://issues.apache.org/jira/browse/MESOS-1664

115Summary

■ To ensure that your monitoring requests are always going to the leading Mesos
master, you might consider following the HTTP redirects offered by the master’s
/master/redirect endpoint. Alternately, you could put a HAProxy instance
between your monitoring system and your Mesos masters.

■ To manage and monitor ZooKeeper clusters, Netflix has created—and open
sourced—a tool named Exhibitor. ZooKeeper can also be monitored with a set
of four-letter commands, such as ruok and mntr. The project maintainers also
include various monitoring scripts in the project’s src/contrib/ directory.

■ When adding Mesos masters to an existing cluster, be sure to resize the cluster
quorum before bringing the new masters online.

■ In addition to slave and framework authentication, access control lists (ACLs)
define which subjects can perform certain actions on a set of objects. In the con-
text of frameworks, the ACLs ensure that only approved frameworks matching a
given set of criteria can register with the master.

■ Framework rate limiting in Mesos protects higher-priority, production-level
frameworks by limiting the number of messages processed for other frame-
works. These metrics are exposed in the /metrics/snapshot API endpoint, and
identified by their principal.

This concludes the second part of this book. Part 3 covers some popular open source
frameworks that allow you to run applications and scheduled tasks on a Mesos cluster,
and also introduces the Mesos API and provides guidance for developing your own
Mesos framework.

 In the next chapter, you’ll learn about the popular Marathon framework for run-
ning applications and Docker containers on top of a Mesos cluster.

Part 3

Running on Mesos

Now that you’ve learned how to deploy Mesos in a production environ-
ment, part 3 covers how to use some popular (and open source) Mesos frame-
works to deploy applications and scheduled jobs. You’ll learn about service
discovery within the cluster, and how to load-balance incoming user traffic.
Finally, I introduce the Mesos APIs and some examples of how to develop your
own Mesos framework.

119

Deploying applications
with Marathon

In parts 1 and 2 of this book, you learned about the Apache Mesos project and how
to configure a Mesos cluster for production use. In part 3, which begins with this
chapter, you’ll start putting your Mesos cluster to work by deploying applications
and scheduled tasks on a Mesos cluster.

 This chapter introduces you to Marathon, a popular, open source Mesos frame-
work developed by Mesosphere that can be used for deploying long-running ser-
vices and applications—including Docker containers. This chapter is structured in
a way that enables you to become familiar with Marathon and application manage-
ment by using real-world examples.

This chapter covers
■ Installing and configuring Marathon
■ Deploying applications and Docker images
■ Using HAProxy for service discovery and routing

120 CHAPTER 7 Deploying applications with Marathon

7.1 Getting to know Marathon
Up to this point, you’ve explored Mesos in the context of running multiple different
frameworks and have seen how to achieve better datacenter utilization when you
don’t need to statically partition the datacenter. You know that certain Mesos-enabled
applications—such as Jenkins and Spark—can connect directly to the cluster and run
tasks, but what about a more typical application, or an application contained in a
Docker image?

 If you consider Mesos to be analogous to the kernel of an operating system, Mara-
thon is the equivalent of the service management system; in Linux, this is commonly
referred to as the init system. Marathon deploys applications as long-running Mesos
tasks, both in Linux cgroups and Docker containers. Perhaps more correctly, it can
also be considered a private platform as a service (PaaS) on which to deploy applica-
tions. Marathon does this by launching instances of an application as long-lived Mesos
tasks, as you can see in figure 7.1.

Marathon allows you to specify the resources needed for each instance of an applica-
tion, and then the number of instances you’d like to run. Similar to modern service
managers such as systemd and Upstart, Marathon automatically respawns failed tasks
by using available cluster resources. If a Mesos slave fails, or an instance of your appli-
cation crashes or exits, Marathon will automatically start a new instance to replace the
failed one. Marathon also allows users to specify dependencies on other services and
applications during deployment, so you can be certain that an application instance
can’t start before its database instance is up and passing health checks.

Mesos slaves

Marathon

Mesos masters

Marathon

tasks

Chronos

tasks

Spark

tasks

Marathon applications specify
CPUs, memory, disk, and ports
needed for each instance.

The leading Mesos master
offers resources to Marathon.
Marathon accepts resources to
launch application instances.

Marathon apps run
as long-lived Mesos
tasks on the cluster,
alongside other
workloads.

Figure 7.1 Marathon launches application instances as long-lived Mesos tasks.

121Getting to know Marathon

NOTE This chapter covers Marathon version 0.10.1.

Marathon contains an extensive list of features that should satisfy the needs of most
application management scenarios. Some of the most noteworthy features include
the following:

■ Managing applications and groups of applications, with dependencies and
health checks

■ Rolling application upgrades with specific capacity requirements
■ A powerful web interface and REST API
■ High availability (using ZooKeeper for leader election and coordination)

The next few sections introduce you to the most popular of these features and show
how Marathon manages applications and application deployments. You’ll learn how
to combine Marathon with tools such as HAProxy and Mesos-DNS to handle service
discovery and routing, both from other applications and from your users.

7.1.1 Exploring the web interface and API
To get familiar with Marathon, let’s first discuss the two main ways of interacting with
it: the web interface and the REST API.

EXPLORING THE WEB INTERFACE

Marathon has an intuitive web interface for both managing applications and observ-
ing deployment status. Let’s take a quick tour of the main Apps page of the web inter-
face by looking at figure 7.2.

Switch between Apps
and Deployments views.

Information about
the configuration of
the Marathon instance

List of application IDs.
Links to app info page.

Resources assigned
to each app instance

App instance count
(deployed/total) and
health (healthy, waiting,
unknown)

App status

Figure 7.2 Overview of the Marathon web interface

122 CHAPTER 7 Deploying applications with Marathon

Despite the fact that the web interface is helpful for visualizing and managing your
applications and deployments, it’s somewhat limited: you can’t use the web interface
to launch Docker containers, or use the more advanced features such as minimum
health capacity or health checks. For those features, you need to manage your applica-
tions by using Marathon’s API.

EXPLORING THE REST API
Considering that many organizations are embracing continuous integration (CI) and
continuous delivery (CD) to automate their application deployments, Marathon’s rich
JSON-based REST API makes it easy to deploy new apps or deploy new versions of exist-
ing apps. Table 7.1 includes important Marathon API endpoints and the HTTP meth-
ods for operating on them. You’ll use these select endpoints throughout the rest of
the chapter. Because the result of each endpoint is different, based on the HTTP
method used, the table includes multiple behaviors for each endpoint with the method
in parentheses.

The full documentation for Marathon’s REST API can be found under Marathon’s /help
endpoint, or online at https://mesosphere.github.io/marathon/docs/rest-api.html.
This documentation includes more information about some of Marathon’s more
advanced features, such as minimumHealthCapacity (for rolling upgrades) and HTTP
and TCP-based health checks.

Table 7.1 Select Marathon API endpoints

API endpoint Description

/v2/apps Query for all applications on a Marathon instance (GET) or create new appli-
cations (POST)

/v2/apps/<app-id> Query for information about a specific app (GET), update the configuration
of an app (PUT), or delete an app (DELETE)

/v2/groups Query for all application groups on a Marathon instance (GET) or create a
new application group (POST)

/v2/groups/<group-id> Query for information about a specific application group (GET), update the
configuration of an application group (PUT), or delete an application group
(DELETE)

/v2/info Query for information about the Marathon instance (GET)

/v2/leader Query Marathon for the hostname and port of the current leader (GET), or
cause the leader to abdicate and trigger a leader election (DELETE)

https://mesosphere.github.io/marathon/docs/rest-api.html

123Getting to know Marathon

TIP The API-based examples throughout this chapter show you how to submit
JSON to the API directly. If you’re interested in a higher-level implementation,
there’s a great Python client library for Marathon. For more information, see
https://github.com/thefactory/marathon-python.

I’ll cover some practical application management scenarios a little later in this chap-
ter. For now, let’s cover how the various services that make up modern application
architectures can communicate with each other. For the purposes of this book, I’ll
refer to this as service discovery and routing.

7.1.2 Service discovery and routing

Modern applications are typically composed of multiple services, or layers. Perhaps
most commonly, a load balancer is responsible for forwarding requests from users to a
few web servers. The front-end web application typically consumes a RESTful API,
which may also be running on servers behind a load balancer. In turn, these API serv-
ers act as an abstraction to one or more back-end databases.

 Needless to say, it’s crucial that these services can all communicate with each other.
But what’s relatively easy in the traditional world—associating services with a specific
hostname—becomes rather complex in the Mesos world. Because containers can run
anywhere in the cluster with available compute resources, it’s difficult to know where
instances of a particular application are located so that load-balancer configurations
can be updated.

 In the Mesos and Marathon ecosystem, we refer to this problem (and the solution,
for that matter) as service discovery. Fortunately, though, multiple tools are available to
handle service discovery and application routing. This section covers two of the most
popular options: HAProxy and Mesos-DNS.

SERVICE ROUTING WITH HAPROXY
As covered earlier in the chapter, Marathon provides information about running
instances of applications (tasks) via its REST API. With a bit of tooling, you can use this
information to dynamically create configurations for HAProxy, a popular, lightweight,
open source HTTP and TCP load balancer.

 In contrast to a traditional load balancer that primarily handles user traffic, you
can deploy HAProxy on each of the Mesos slaves in the cluster, and then have your
applications connect to a port on the local host, depending on which service it needs
to communicate with. Figure 7.3 demonstrates using HAProxy in two distinct ways: as a
means for intra-cluster communication, and as a means for handling inbound connec-
tions from users.

https://github.com/thefactory/marathon-python

124 CHAPTER 7 Deploying applications with Marathon

Perhaps due to HAProxy’s popularity and stability, Marathon is distributed with two
scripts that can periodically (via Cron) query the Marathon API for information about
running application instances. It can then use this information to build HAProxy con-
figurations and reload the service. These scripts include the following:

■ haproxy-marathon-bridge—A small shell script that builds an HAProxy configura-
tion based on application information within Marathon. It automatically reloads
the HAProxy service when changes are made.

■ servicerouter.py—Similar to the aforementioned script, but allows much more
control over the generated HAProxy configuration.

Each of these scripts is available in the Marathon project repository, located at https://
github.com/mesosphere/marathon/tree/v0.10.1/bin, and each serves a slightly dif-
ferent purpose, depending on how much control you want or need to have over the
generated HAProxy configurations. Don’t worry about downloading them yet, though;
you’ll learn how to deploy HAProxy for service routing later in this chapter.

Mesos slave

Marathon

Mesos master

Each Mesos slave also runs an instance of HAProxy
to allow services on one host to connect with services
on another host. It queries Marathon for a list of
running apps and their ports.

An instance of HAProxy at the edge handles
inbound user traffic. It queries Marathon for
a list of running apps and their ports.

HAProxy

(haproxy-marathon-bridge)

HAProxy

(servicerouter.py)

Mesos slave

HAProxy

(haproxy-marathon-bridge)

Users

Figure 7.3 At a glance: service routing with HAProxy

https://github.com/mesosphere/marathon/tree/v0.10.1/bin
https://github.com/mesosphere/marathon/tree/v0.10.1/bin

125Getting to know Marathon

SERVICE DISCOVERY WITH MESOS-DNS
Mesos-DNS—an open source project developed by Mesosphere—is a stateless Domain
Name System (DNS) service for Mesos clusters. Much like a typical DNS server, it allows
applications and services to find other applications and services by using a predictable
naming convention and name lookups, publishing both A and SRV records for run-
ning Mesos tasks (see figure 7.4).

Unlike the HAProxy method mentioned previously, Mesos-DNS works with Mesos
directly and doesn’t depend on Marathon. This makes it a good method for services
to use to communicate with each other even across different Mesos frameworks.

TIP Figure 7.4 demonstrates using Mesos-DNS as a resolver, which forwards
external (unknown) DNS queries. If you already have a DNS infrastructure in
place, it’s also possible to do the opposite: configure existing DNS infrastruc-
ture to forward DNS queries for the .mesos domain (the default) to Mesos-DNS.

Although this section covered both HAProxy and Mesos-DNS, DNS is a familiar enough
concept to most, so I’m going to proceed with demonstrating service routing with
HAProxy throughout the remainder of this chapter. If you’re interested in learning
more about the Mesos-DNS project, you can check out its project page at http://meso-
sphere.github.io/mesos-dns.

Mesos-DNS

Record generator

DNS resolver

Creates DNS records
based on running tasks

Mesos tasks discover
other tasks by using DNS.

External

DNS

Mesos slaves

Mesos masters
Cluster state

DNS query

The Mesos-DNS resolver
forwards external DNS
requests to existing
DNS servers.

Figure 7.4 At a glance: Mesos-DNS

http://mesosphere.github.io/mesos-dns
http://mesosphere.github.io/mesos-dns

126 CHAPTER 7 Deploying applications with Marathon

7.2 Deploying Marathon and HAProxy
All workloads running on a Mesos cluster run as individual tasks inside containers.
The reduced overhead of running applications in containers means that you’ll use
datacenter resources more efficiently. But to deploy applications and services, you
need a way to manage application instances as if they’re long-running Mesos tasks.

 Marathon provides a way to easily scale an application from 1 instance to 100 (and
beyond), ensuring that each task is up and running as much as possible. If a task or a
node fails, Marathon automatically restarts it based on incoming resource offers from
Mesos, which means application instances are automatically moved to a new node if
needed. When you combine the power of Marathon with HAProxy, you have a power-
ful platform for deploying applications and services, ensuring that they can communi-
cate with any other dependent services in a scalable way.

 In this section, you’ll prepare your Mesos cluster to run applications by deploying
Marathon for application management and HAProxy for service discovery, routing,
and load balancing. You’ll deploy Marathon in a highly available manner and deploy
HAProxy on each of the Mesos slaves, ensuring that application instances can easily
load-balance connections to other dependent services. Let’s get started.

7.2.1 Installing and configuring Marathon

To deploy Marathon, certain prerequisites must be met. As of version 0.10.1, these
include the following:

■ Java 1.7 or later
■ Mesos 0.22.2 or later (0.22.2 is the recommended version as of this writing)
■ ZooKeeper (for leader election, and to maintain state)

For Marathon to be highly available, you need to deploy it on a number of nodes, just
as you deployed an odd number of Mesos masters in chapter 3. Deploying three Mara-
thon instances is probably fine for most environments, and each of these instances will
use a ZooKeeper ensemble for leader election and to maintain state.

 For a simpler installation, you could consider deploying Marathon on the same
machines as the Mesos masters themselves. To make the examples in this section eas-
ier to understand, let’s assume you’ll be installing Marathon on the Mesos masters
that you deployed in chapter 3.

A single DNS name for Marathon
In a highly available Marathon deployment, multiple instances are deployed across a
number of hosts. For administration and automated application deployment pur-
poses, you might consider creating a single record in DNS to point at your Marathon
cluster. Fortunately, Marathon has a feature whereby any requests that are sent to a
nonleading Marathon instance are transparently proxied to the leader.

127Deploying Marathon and HAProxy

Let’s proceed with installing and configuring Marathon.

INSTALLING MARATHON

The easiest way to install Marathon is by using Mesosphere’s package repositories,
which you already installed and configured during the Mesos installation in chap-
ter 3. Based on your Linux distribution, run one of the following commands to
install Marathon:

■ On RHEL and CentOS: sudo yum install marathon-0.10.1-1.0.416.el7
■ On Ubuntu: sudo apt-get install marathon= 0.10.1-1.0.416.ubuntu1404

Although it’s possible to download and install Marathon from the source code, the
procedure is more involved than using the package manager. As a result, this book
doesn’t go over the build instructions. But if you’re interested in going that route,
check out the project’s “Getting Started” documentation (http://mesosphere.github.io/
marathon/docs) for up-to-date instructions.

CONFIGURING MARATHON

Similar to Mesos, Marathon has a few configuration conventions, depending on your
deployment method and preference. Because Mesosphere develops and packages
Marathon, its file-based configuration (similar to that of Mesosphere’s Mesos pack-
ages) is probably the easiest and most straightforward to get started with. Marathon
can be configured by creating text files under the /etc/marathon/conf/ directory.

 Marathon has several configuration options, as specified at https://mesosphere
.github.io/marathon/docs/command-line-flags.html. Table 7.2 details the configura-
tion options that I find to be most noteworthy.

You can take two approaches to connect to the Marathon cluster by a single name:

■ DNS load balancing—Create a single DNS name with multiple A or CNAME records
pointing to each Marathon instance

■ HTTP load balancing—Use a load balancer (such as HAProxy) to forward connec-
tions to Marathon, and create a single DNS name pointing to the load balancer

Each option has advantages and disadvantages. For example: DNS load balancing is
simple to configure, but if one of the Marathon instances is unavailable, failed con-
nection attempts could result. On the other hand, adding a HAProxy load balancer
automatically removes failed instances from the pool, but at the expense of adding
a service between the client and Marathon.

http://mesosphere.github.io/marathon/docs
https://mesosphere.github.io/marathon/docs/command-line-flags.html
http://mesosphere.github.io/marathon/docs
https://mesosphere.github.io/marathon/docs/command-line-flags.html

128 CHAPTER 7 Deploying applications with Marathon

Marathon also supports SSL and basic authentication. I’ve intentionally left this fea-
ture out of the previous table because some users might prefer to set up authentica-
tion on a load balancer in front of multiple Marathon instances instead. If you’re
interested in enabling SSL and authentication for the instance of Marathon itself, see
https://mesosphere.github.io/marathon/docs/ssl-basic-access-authentication.html.

TIP Some users on the mailing lists have experienced issues with Mesos
scheduler drivers binding to an incorrect network interface, which can result
in connectivity problems between the Mesos master and the framework. By
default, the Mesos native library will bind to the IP address that maps to the
system’s FQDN, as provided by the command hostname -f. To ensure that the
scheduler driver binds to the correct interface, be sure that the host’s DNS
record (or the entry in /etc/hosts) is properly configured, or manually set
the $LIBPROCESS_IP environment variable for the service to the IP address of
the network interface you wish to advertise to the Mesos master.

After Marathon has been installed and configured on each of the Mesos masters, you
can start the service by running sudo service marathon start. Once the service is
up and running, you should be able to access the Marathon web interface at http://
mesos-master.example.com:8080.

Table 7.2 Select Marathon configuration options

Configuration option Description

master The ZooKeeper URL used by the Mesos masters. If
/etc/mesos/zk is present (Marathon is deployed on
a Mesos master), the value in that file will automati-
cally be used.

zk The ZooKeeper URL for Marathon to use for leader
election and state. For example: zk://host1:2181/
marathon. If /etc/mesos/zk is present (Marathon is
deployed on a Mesos master), Marathon will use the
same ZK hosts and ports as Mesos, but create its
own /marathon znode instead.

hostname The DNS name or IP address for a given Marathon
instance.

mesos_role If set, registers Marathon to the Mesos cluster with a
specific role (see chapter 6).

mesos_authentication_principal The Mesos principal used for framework authentica-
tion (see chapter 6).

mesos_authentication_secret_file The path to a file containing the secret for framework
authentication (see chapter 6).

https://mesosphere.github.io/marathon/docs/ssl-basic-access-authentication.html
http://mesos-master.example.com:8080
http://mesos-master.example.com:8080

129Deploying Marathon and HAProxy

7.2.2 Installing and configuring HAProxy

Building on our previous coverage of service discovery and routing, you’ll handle net-
work traffic between various applications and services by installing and configuring
HAProxy on each Mesos slave in the cluster. The haproxy-marathon-bridge script
that’s distributed with Marathon will dynamically generate HAProxy configuration
files based on information available from Marathon. This will permit Marathon appli-
cations to connect to a port on the local host and automatically have access to a run-
ning instance of a dependent service.

 In addition, you’ll also need to consider how to handle the inbound user traffic.
For the purposes of this text, I assume that the HAProxy instance running servicer-
outer.py will be a separate machine tasked with handling inbound user traffic. This
allows me to go into the best level of detail about how to deploy the load balancer.

INSTALLING HAPROXY

To maintain compatibility with the scripts provided with the Marathon project, you’ll
want to install the latest version of HAProxy in the 1.5.x series on each of the Mesos
slaves. The easiest way to do this is by using the operating system’s package manager.

NOTE To install HAProxy 1.5.x on Ubuntu 14.04, you’ll first need to enable
the trusty-backports repository by uncommenting the relevant lines in /etc/
apt/sources.list. After you’ve done this, be sure to update the package list by
running sudo apt-get update.

To install HAProxy on Enterprise Linux or Ubuntu, run one of these commands:

■ On RHEL and CentOS—sudo yum install haproxy
■ On Ubuntu—sudo apt-get -t trusty-backports install haproxy

DYNAMICALLY CONFIGURING HAPROXY WITH HAPROXY-MARATHON-BRIDGE

To facilitate communication between services within the cluster, you’ll use the haproxy-
marathon-bridge script provided with Marathon to dynamically create HAProxy con-
figurations, and automatically reload the service when changes occur. By installing
HAProxy on each node and automatically and dynamically reconfiguring the service,
you allow applications to communicate with other applications in a scalable way by
connecting to the application’s servicePort on localhost. To visualize this concept,
take a look at figure 7.5.

 To install haproxy-marathon-bridge on a given system, download the script from the
Marathon GitHub repository and use its built-in install_haproxy_system function:

$ curl -LO https://raw.githubusercontent.com/mesosphere/marathon/

➥ v0.10.1/bin/haproxy-marathon-bridge
$ chmod +x haproxy-marathon-bridge
$./haproxy-marathon-bridge install_haproxy_system <host1> [host2] [...]

130 CHAPTER 7 Deploying applications with Marathon

NOTE For Debian-based systems, the haproxy-marathon-bridge script assumes
that you have aptitude installed on the system. If you don’t, you can install it
by running sudo apt-get install aptitude.

As executed here, you’ve just accomplished the following:

■ Installed the script to /usr/local/bin/haproxy-marathon-bridge
■ Added host1, host2, and any additional Marathon hosts to the configuration

file located at /etc/haproxy-marathon-bridge/marathons
■ Created a Cron job at /etc/cron.d/haproxy-marathon-bridge that runs the

script every minute
■ Created or modified the HAProxy configuration file located at /etc/haproxy/

haproxy.cfg and restarted the service

The script adds application instances to the HAProxy configuration file. If no tasks are
running, the file will be empty. Otherwise, HAProxy will be used to load-balance con-
nections between applications.

 If a Mesos slave goes offline or a task (an instance of an application) fails within
the one-minute window between Cron running the script, HAProxy’s health checks
will automatically detect the failure and stop sending traffic to that instance. The
failed instance will then be removed from the HAProxy configuration the next time
the Cron job runs.

Mesos slave

App1

(port 8000)

App2

(port 8001)

HAProxy

Mesos slave

Db1

(port 9000)

App2

(port 8001)

HAProxy

App1 connects to Db1
on localhost:9000.

haproxy-marathon-bridge configures HAProxy
based on the service ports in Marathon.
HAProxy forwards the connections.

Db1 is configured to use
service port 9000 in its
Marathon configuration.

Figure 7.5 Deploying HAProxy for routing intra-cluster network traffic

131Deploying Marathon and HAProxy

DYNAMICALLY CONFIGURING HAPROXY WITH SERVICEROUTER.PY
Another script included with Marathon is servicerouter.py, which is intended to be a
more full-featured replacement for haproxy-marathon-bridge. It configures HAProxy
more as you’d expect from a typical load balancer, with features such as SSL termina-
tion, HTTP-to-HTTPS redirection, and virtual hosts. Despite our previous example of
using servicerouter.py on the edge node that handles user traffic, you could also use
this in lieu of haproxy-marathon-bridge on each of the Mesos slaves.

 Configuration for this script resides within the Marathon application configura-
tion itself in the form of environment variables. servicerouter.py also permits an
administrator to override the templates built into the script by using a templates/
directory relative to the location where the script resides. This can be useful for modi-
fying the HAProxy configuration to suit your specific environment, including certain
information such as paths to SSL certificates, or preferred load-balancing policies.

 To use the script on a given system, download it from Marathon’s GitHub reposi-
tory to a well-known location on disk. In this example, you’ll download it to /usr/
local/servicerouter/servicerouter.py:

$ sudo mkdir -p /usr/local/servicerouter
$ sudo curl -L -o /usr/local/servicerouter/servicerouter.py

➥ https://raw.githubusercontent.com/mesosphere/marathon/v0.10.1/bin

➥ /servicerouter.py
$ sudo chmod +x /usr/local/servicerouter/servicerouter.py

To use the script, you’ll pass in some command-line arguments, specifying the URLs to
the various Marathon instances and the location to save the haproxy.cfg file:

$./servicerouter.py --marathon http://marathon.example.com:8080

➥ --haproxy-config /etc/haproxy/haproxy.cfg

For full usage, run the following command:

$./servicerouter.py --longhelp

After you have the script building HAProxy configurations to your liking, it’s a good
idea to create a local Cron job to ensure that this script runs on a predictable sched-
ule. Although HAProxy will automatically remove unhealthy instances from its load-
balancing pool, it’s important to ensure that the configurations always have the latest
data from the Marathon API.

 Let’s create a Cron job at /etc/cron.d/servicerouter that resembles the following:

* * * * * root /usr/local/servicerouter/servicerouter.py <args>

Now that you’ve completed installing and configuring Marathon and HAProxy and
have covered haproxy-marathon-bridge and servicerouter.py, let’s dive into creating
and deploying your first applications with Marathon.

132 CHAPTER 7 Deploying applications with Marathon

7.3 Creating and scaling applications
One of the many problems that SysOps and development teams have to tackle is appli-
cation management. How do you deploy new applications? How do you update exist-
ing ones? How do you easily scale an application up as demand increases, or down as
it decreases? How do you ensure that your front-end application doesn’t come up
before the API service that it consumes, and that the API service doesn’t come up before
the database that backs it?

 Marathon helps operations and development teams by providing a platform on
which to run applications. Instead of the traditional approach of provisioning servers,
deploying apps, and getting paged at 3 a.m. when a service goes down or when hard-
ware (inevitably) fails, Marathon runs each instance of the application as a task on the
Mesos cluster, automatically restarting the instance if it should fail. Marathon does this
by ensuring that the workflow begins with the application, not with the server. Create
the application, define the resources each instance will need, and specify the number
of instances to run. Marathon and Mesos take it from there.

 Following the concept that infrastructure should exist to serve applications, Mara-
thon makes it easy to deploy your apps by using the container support built into
Mesos. Let’s get started by looking at what it takes to deploy applications with Mara-
thon, using both Linux and Docker containers.

7.3.1 Deploying a simple application
In Marathon’s own terms, an application deployment is defined as a set of actions that
accomplishes the following:

■ Starting (creating) or stopping (destroying) one or more applications
■ Scaling application instances up or down (n > 1), or suspending them alto-

gether (n = 0) without destroying the application configuration itself
■ Upgrading (modifying the configuration of) one or more applications and roll-

ing those changes out across your infrastructure

When writing this chapter, I thought it was best to provide somewhat real-world sce-
narios for deploying applications. The supplementary materials for this book include
an example application named OutputEnv. This simple Ruby web application outputs
the environment variables for a given application instance (Mesos task) as a web page.

DEPLOYING THE OUTPUTENV EXAMPLE APPLICATION
Because OutputEnv is a simple application (it doesn’t run in Docker, nor does it have
any dependencies on external services, health checks, or host constraints), let’s deploy
this particular application by using Marathon’s web interface.

NOTE Because OutputEnv doesn’t run in Docker, you must have Ruby (ver-
sion 1.9.3 or later) and Bundler installed on each of the Mesos slaves in order
to deploy this application. Ruby can be installed using your system’s package
manager, and Bundler can be installed by running sudo gem install bundler.

133Creating and scaling applications

From the main Apps page that you saw earlier in the chapter, clicking the New App
button brings up a dialog box like the one in figure 7.6.

 Here, you can give the application a name, set the required resources for each
instance, and set the number of instances. In the Optional Settings portion, you pro-
vide a URI to download the application, and the command that you use to run it. By
entering the settings in figure 7.6, you can download the OutputEnv application from
this book’s GitHub repository and run it on your Mesos cluster. If you specify an
archive file (for example, zip or tar.gz) in the URIs field, the Mesos fetcher will auto-
matically extract the archive for you in the sandbox. Click the Create button to start
deploying the application.

MANAGING THE OUTPUTENV EXAMPLE APPLICATION

After creating the app, you’ll arrive back at the main Apps page. Clicking the Output-
Env application will take you to an application management page, which lists all of the
Mesos tasks for the application, as shown in figure 7.7.

Figure 7.6 Creating the OutputEnv application in the Marathon web interface

134 CHAPTER 7 Deploying applications with Marathon

As shown in the previous graphic, you get a fair amount of information about the run-
ning application, as well as a few controls for scaling the number of instances up or
down, redeploying the application, or destroying it altogether. By clicking the Scale
button, you can enter application instances (Mesos tasks) you wish to deploy for a par-
ticular application, allowing you to easily scale it up as load increases, or down as load
decreases. Furthermore, you could connect your monitoring system to the Marathon
API and scale applications automatically, knowing that your HAProxy load-balancer
configuration is being dynamically generated and updated every minute.

 Clicking any of the task IDs provides additional information about that particular
task, and clicking the hostname and port takes you to that particular application
instance in your web browser (assuming your workstation has network connectivity to
the Mesos slave the task is running on).

 Unfortunately, as of this writing, the Marathon web interface is rather limited; you
can’t use it to modify an application’s configuration, perform rolling upgrades, or

Application
ID and status

Scale to N app
instances, or
suspend app
(scale to 0).

Switch between
Tasks and
Configuration
views.

Task ID, host, and port

Figure 7.7 Marathon application details and management page for output-env

135Creating and scaling applications

deploy Docker containers. But now that you’ve seen how to create and deploy an
application via the web interface (in this case, by running bundle exec ruby app.rb),
let’s take a look at some of the more advanced operations available in Marathon by
using the REST API.

7.3.2 Deploying a Docker container
As covered earlier in this book, Docker provides a great way to package both applica-
tion code and dependencies in a way that you can run it on any infrastructure, on
premises, and in the cloud. Fortunately, both Marathon and Mesos are capable of run-
ning applications and services inside Docker containers. But as of this writing, you’ll
need to rely on Marathon’s REST API in order to deploy them. That’s not a problem,
though; this section covers how to do so.

TIP Docker images are typically pushed to Docker Hub, a web-based reposi-
tory provided by Docker, Inc. If you prefer to host your own internal reposi-
tory using Docker Registry, you’ll need to take a few additional steps when
deploying your applications. For instructions on how to set this up, see https://
mesosphere.github.io/marathon/docs/native-docker-private-registry.html.

To get started, let’s take a look at deploying the official Nginx Docker image as a new
Marathon application.

DEPLOYING THE NGINX DOCKER IMAGE
Just in case you aren’t already familiar with Nginx, it’s a high-performance web server,
reverse proxy, and load balancer that supports various protocols. The project’s main-
tainers publish an official Nginx image to Docker Hub, which can be found at https://
hub.docker.com/_/nginx/.

 Deploying Docker images on Marathon works by adding a container field to the
JSON object that defines your application. Let’s take a look at the docker-nginx appli-
cation definition in the following listing.

{
 "id": "docker-nginx",
 "instances": 1,
 "cpus": 0.5,
 "mem": 64.0,
 "container": {

"type": "DOCKER",
"docker": {

"image": "nginx:1.9",
"network": "BRIDGE",
"portMappings": [

{
"containerPort": 80,
"hostPort": 0

}

Listing 7.1 Deploying the Nginx Docker image in Marathon

Marathon
application ID

Docker container
info, specifying
the image and
networking mode

Bridge containerPort
80 to the ephemeral
hostPort used by
Mesos and Marathon

https://hub.docker.com/_/nginx/
https://mesosphere.github.io/marathon/docs/native-docker-private-registry.html
https://mesosphere.github.io/marathon/docs/native-docker-private-registry.html
https://hub.docker.com/_/nginx/

136 CHAPTER 7 Deploying applications with Marathon

]
}

 }
}

This basic application definition deploys one instance of the Nginx Docker container,
bridging port 80 within the container (the port that Nginx is listening on) to the ran-
domly assigned port provided by Mesos and Marathon.

 Assuming the previous JSON object was saved as docker-nginx.json, the following
cURL command will launch the nginx:1.9 Docker image as a new Marathon application:

$ curl -H 'Content-Type: application/json' -d @docker-nginx.json

➥ http://marathon.example.com:8080/v2/apps

If you navigate to the Marathon web interface or query Marathon’s /v2/apps/docker-
nginx API endpoint, you’ll get information about the application and each of its run-
ning instances (tasks), including the hostname and port that each instance of the con-
tainer is running on. If you navigate to one of these instances, you should see the
default Nginx welcome page.

7.3.3 Performing health checks and rolling application upgrades

Despite Mesos’s ability to use the currently running process to provide a task’s status
(such as running, finished, failed, and killed, among others), application instances
warrant an additional level of monitoring. Traditionally, this is where a monitoring
and alerting system such as Nagios might come into play, but the Marathon develop-
ers decided that something more dynamic was needed. Therefore, Marathon pro-
vides optional HTTP- and TCP-based health checks for each of the instances of a
particular application.

 In the event that an instance starts failing its health checks—either by returning an
HTTP error code or by failing a TCP connection—the task will be reported as
unhealthy. After a certain number of failed health checks, Marathon will restart the
unhealthy task. The parameters of these health checks are all configurable, and I’ll
cover them shortly.

 These health checks also allow you to perform rolling upgrades of an application
or service, ensuring a minimum level of service, or capacity, so that new instances
come up healthy before the upgrade proceeds. Combine these features with dynami-
cally configured load balancers, and Marathon allows for zero-downtime deployments
of new versions of applications.

 Let’s begin by taking a look at how health checks are implemented; you’ll learn
about rolling upgrades later in this section.

137Creating and scaling applications

ANATOMY OF A HEALTH CHECK
Health checks can be implemented for any Marathon application. As of this writing,
three methods, or protocols, are available for performing health checks of an applica-
tion instance:

■ HTTP—Issues a layer 7 HTTP request to a specific port and path
■ TCP—Attempts to open a TCP socket connection to a specific port
■ COMMAND—Runs an arbitrary command to determine health (not currently com-

patible with tasks running in Docker containers)

In addition, you can customize the interval, grace period, time-out, and number of
consecutive failures allowed for the health check. Let’s take a look at the following list-
ing for a couple of examples of application health checks in Marathon.

"healthChecks": [
 {

"protocol": "HTTP",
 "path": "/ping",
 "portIndex": 0,
 "gracePeriodSeconds": 3,
 "intervalSeconds": 30,
 "timeoutSeconds": 10,

"maxConsecutiveFailures": 3
 },
 {

"protocol": "COMMAND",
"command": {

"value": "curl -f -X GET http://$HOST:$PORT0/ping"
},
"maxConsecutiveFailures": 3

 }
]

This example specifies an HTTP health check B that queries a specific path c, but
instead of repeating the port in the application definition, you use the portIndex field
to specify the index of the service port in the ports array d. By default, this is 0,
which is the first port in the array.

 Health checks are a powerful way to ensure that the various instances, or tasks, for
a given application are all up and healthy at the application layer. They play a crucial
role in allowing Marathon to perform rolling upgrades of a given application—deploy-
ing a new version of an application with zero downtime.

Listing 7.2 Examples of Marathon application health checks

Specifies health-check
protocol. Valid values
are HTTP, TCP, and
COMMAND.

 b Path to query
(HTTP only)

 c

Index of the port to
query in the application’s
ports array

 d
Ignores health-

check failures
within N seconds

of the task
being started.

Seconds between
health checks

Health check
time-out

Number of
consecutive
failures allowed
before the task
is killed

138 CHAPTER 7 Deploying applications with Marathon

PERFORMING HEALTH-BASED ROLLING UPGRADES
During an upgrade, Marathon will, by default, bring up the total configured tasks for
the new version of an application before it starts killing tasks belonging to the old
version. This ensures that all instances of the new version of the application are run-
ning and healthy before completely switching over. But as most things in Marathon,
this is highly customizable, depending on the strategy that works best for your team,
organization, and infrastructure. Let’s explore the upgrade strategy configuration a
bit more with a few examples.

 The upgrade strategy, consisting of a minimum health capacity and a maximum
“over capacity,” can be configured for a Marathon application like this:

"upgradeStrategy": {
 "minimumHealthCapacity": 1.0,
 "maximumOverCapacity": 0.2
}

Because these two options aren’t immediately clear, let’s consider an example applica-
tion upgrade scenario: a given app has 100 instances (tasks) serving users, and you’d
like to deploy a new version of the app with Marathon. With a minimumHealthCapacity
of 1.0 (100%), Marathon will maintain a minimum of 100 tasks during the upgrade.
If this number is set lower (say: 0.9, or 90%), Marathon will kill 10 of the existing tasks
to make room for the new tasks to start.

 The other configuration option worth paying attention to is maximumOverCapacity.
This option allows Marathon to replace a given percentage of tasks at a time during
the upgrade. In this example, Marathon will bring up 20 tasks of the new version and
wait for them to become healthy before killing off any of the existing tasks.

 These values can be modified to meet the SLAs for your individual applications, or
fine-tuned based on the available resources you have in the cluster. If you’ve specifi-
cally granted a fixed amount of resources to a given application, you could set
minimumHealthCapacity to 0.9 and maximumOverCapacity to 0.0, causing the app to
maintain 90% of its configured instances throughout the upgrade (and thus replacing
10 instances at a time).

 As I mentioned earlier in the chapter when introducing Marathon’s REST API,
you can update the configuration of an existing Marathon application by using the
HTTP PUT method against the /v2/apps/<app-id> endpoint. If you have an applica-
tion named test-app and your Marathon application definition lives in your code
repository or on disk as marathon.json, you can run the following cURL command
to upgrade it:

$ curl -H 'Content-Type: application/json' -X PUT –d @marathon.json

➥ http://marathon.example.com:8080/v2/apps/test-app

Percentage of tasks to remain
online during an upgrade

Percentage of additional tasks
to bring up during an upgrade

139Creating application groups

When rolling upgrades are combined with the dynamic HAProxy configuration gener-
ated by haproxy-marathon-bridge and servicerouter.py, it allows new instances to enter
the pool—and old instances to be removed—throughout the upgrade, ensuring a
seamless transition between application versions, and zero downtime for your users.

 Now that you know a bit about deploying simple applications, health checks, and
rolling upgrades, let’s go over how to create application groups and service dependen-
cies as a single Marathon deployment. Because application groups are made up of
individual applications, much of the content covered in this section also applies in the
next section (even if I don’t necessarily repeat it).

7.4 Creating application groups
Although the examples in the previous section help demonstrate the power of Mara-
thon, chances are that your applications are composed of multiple services and/or
Docker images. Up to this point, I’ve showed you how to deploy multiple instances of
single, standalone Marathon applications, using both the web interface and the REST
API. The real power of Marathon starts to appear when you look at defining your
applications—and their dependent services—in the form of application groups.

7.4.1 Understanding the anatomy of an application group
Marathon deployments are made up of standalone applications, or applications con-
tained in application groups. Application groups can contain either applications or
other application groups. Additionally, applications and application groups can have
dependencies on other applications or application groups. Before delving too far into
what application groups can look like, let’s consider the application groups, as shown
in figure 7.8.

Depends on

/

/product

Group

Applications

/product/app /product/db

Legend

Rails

Instances: 9

Play

Instances: 3

Redis MySQL

Instances: 5 Instances: 1

Figure 7.8 Marathon application groups containing multiple individual applications

140 CHAPTER 7 Deploying applications with Marathon

Using application groups, you can model complex applications—and their dependen-
cies—all within a single JSON payload. This allows you to easily define dependencies,
deploy updates, and scale entire application stacks running on Marathon, both by the
individual application and by the entire application group. Now that you understand
a bit more about how an application group is composed, let’s take a look at a more
real-world scenario.

7.4.2 Deploying an application group
To best illustrate how to deploy an application that depends on a database, let’s
deploy an example application (Keys and Values) included with the supplementary
materials for this book. You’ll start by taking a look at figure 7.9 to see what this Mara-
thon application group looks like at a high level.

Keys and Values is a Ruby web application (written using the Sinatra framework) that
allows a user to manipulate entries in a Redis key/value database. You’ll run several
instances of the application and a single instance of Redis, using HAProxy to handle
communication between the services.

NOTE Just like the OutputEnv app mentioned earlier in this chapter, Keys
and Values isn’t deployed here as a Docker image. To deploy this app, you
must have Ruby (version 1.9.3 or later) and Bundler installed on each of the
Mesos slaves. Ruby can be installed using your system’s package manager, and
Bundler can be installed by running sudo gem install bundler. This is to illus-
trate a point: Docker makes it easy to distribute applications and dependent
libraries to systems, without any intervention from a systems administrator.

Depends on

/

/keys-and-values

/keys-and-values/app

Instances: 3

/keys-and-values/db

Instances: 1

Figure 7.9 Overview of the Keys and Values application deployment

141Creating application groups

DEPLOYING THE KEYS AND VALUES EXAMPLE APPLICATION
Listing 7.3 brings together everything you’ve learned up to this point to create a Mar-
athon application group called keys-and-values that will ensure that Redis is avail-
able before the application. Note that you must be running haproxy-marathon-bridge
on each machine in the cluster so that the application can connect to the database.

{
 "id": "keys-and-values",
 "apps": [

{
"id": "app",
"instances": 3,
"cpus": 0.1,
"mem": 128.0,
"disk": 0.0,
"uris": [

"https://github.com/rji/

➥ mesos-in-action-code-samples/archive/master.tar.gz"
],

 "cmd": "cd mesos-in-action-code-samples-master/keys-values-app

➥ && bundle install --retry 3 && bundle exec ruby app.rb",
"ports": [

8080
],
"env": {

"REDIS_HOST": "localhost",
"REDIS_PORT": "9000"

},
"dependencies": [

"/keys-and-values/db"
]

},
{

"id": "db",
"instances": 1,
"cpus": 0.1,
"mem": 128.0,
"disk": 0.0,
"container": {

"type": "DOCKER",
"docker": {

"image": "redis:3.0.3",
"network": "BRIDGE",
"portMappings": [

{
"containerPort": 6379, 3
"hostPort": 0,
"servicePort": 9000,
"protocol": "tcp"

}
]

}

Listing 7.3 Deploying the Keys and Values app in Marathon

ID of the
application group

ID of the application
inside the application
group

The servicePort that
Marathon will
advertise to HAProxy

Environment variables
for the app; connects to
Redis on localhost:9000

Ensures the database is
available before the app.

ID of the database
service inside the
application group

Bridge port 6379
inside the container
to Marathon’s
random hostPort

HAProxy should
forward connections
on port 9000 to
this app.

142 CHAPTER 7 Deploying applications with Marathon

},
"healthChecks": [

{
"protocol": "TCP",
"portIndex": 0,
"maxConsecutiveFailures": 3

}
]

}
]
}

Assuming that the previous JSON object was saved as keys-and-values.json, the following
cURL command will launch this application group in Marathon, starting with Redis:

$ curl -H 'Content-Type: application/json' -d @keys-and-values.json

➥ http://marathon.example.com:8080/v2/groups

If you navigate to the Marathon web interface or query the /v2/groups/keys-and-
values API endpoint, you’ll get information about the application group and each of
its apps. If you navigate to one of these instances, you should be able to interact with
the application.

 Additionally, take note of the ports array specified in /keys-and-values/app. This
service port will be used by haproxy-marathon-bridge and/or servicerouter.py to pop-
ulate a HAProxy load-balancer configuration file. If you’ve set up a load balancer by
using one of these scripts, you should be able to access it by navigating to http://load-
balancer.example.com:8080.

7.5 Logging and debugging
Despite the fact that Marathon is a Mesos framework, the logging messages provided
by Mesos stop with the Mesos API. The Mesos master won’t know a whole lot about
what’s happening with Marathon outside of resource offers, launching tasks, and
framework registration and re-registration. Therefore, the logs provided by a Mesos-
native application are as important as any other application that runs in a datacenter.

 The log messages provided by Marathon can be useful for troubleshooting an issue
or observing common behavior from the service itself. The log messages include
information such as API endpoints accessed, resource offers that are accepted and
declined, status updates from tasks, and scaling applications up and down. You’ll
observe these messages during your day-to-day interactions with the Marathon service.

 This section covers how Marathon handles logging, and what configurations are
available.

7.5.1 Configuring logging for Marathon
By default, the startup script that comes with Marathon uses the logger interface for
adding entries to the system log. It does so at an INFO-level of verbosity by default,

Establishes a TCP
health check on the
Marathon hostPort.

http://loadbalancer.example.com:8080
http://loadbalancer.example.com:8080

143Logging and debugging

which provides a decent amount of information regarding the API endpoints being
accessed and the state of deployed Marathon applications. As with most things, the log
level can be configured, and Rsyslog can be customized to better suit the environ-
ment. Let’s take a look at what’s required to modify each of these.

MODIFYING THE LOGGING LEVEL

Marathon provides a configuration option to modify the logging level of the applica-
tion. Using the --logging_level configuration option (or by creating a file with the
value at /etc/marathon/conf/logging_level), you can set logging to be one of the fol-
lowing values, listed in increasing severity: all, trace, debug, info, warn, error, fatal,
and off. By default, Marathon is distributed with its logging level set to info.

REDIRECTING MARATHON LOGS FROM SYSLOG TO A DEDICATED LOG FILE

By default, Marathon sends logs at—and above—the configured logging level to the
system log. For some, this may be desirable: a centralized logging infrastructure such
as Logstash or Splunk can easily consume the syslog entries and structure them in a
way that can be easily queried later. For others, it’s incredibly tedious to look through
the syslog file at /var/log/messages or /var/log/syslog (depending on your distribu-
tion) and try to filter out Marathon’s logging messages to troubleshoot a problem.

 If you aren’t planning to centralize your logging, or you’d prefer to filter Rsys-
log and have the log entries for Marathon written to their own log file, create the
file /etc/rsyslog.d/10-marathon.conf with the following content:

if $programname == "marathon" then {
 action(type="omfile" file="/var/log/marathon.log")
}

TIP For more information on the available filter conditions for Rsyslog,
check out the official documentation at www.rsyslog.com/doc/v8-stable/con-
figuration/filters.html.

As always, if you’re planning to write logs to a dedicated file on disk, you should take
care to create some Logrotate rules to ensure that the log files don’t grow too large
and fill the logging partition on the local system.

7.5.2 Debugging Marathon applications and tasks

Because instances of a Marathon application are simply long-running Mesos tasks,
most of the logging and debugging content already covered in chapter 5 applies
here. It’s important to quickly revisit this and add some information about debugging
Docker containers.

REFRESHER ON DEBUGGING MESOS TASKS

Each task running on a Mesos cluster is visible from the Mesos web interface, located
at http://mesos-master.example.com:5050. If you navigate to a nonleading master,
you’ll automatically be redirected to the leader. From here, you’ll be able to view the

http://mesos-master.example.com:5050
http://www.rsyslog.com/doc/v8-stable/configuration/filters.html
http://www.rsyslog.com/doc/v8-stable/configuration/filters.html

144 CHAPTER 7 Deploying applications with Marathon

sandbox for a running task. Two files will be automatically created in each sandbox
(stdout and stderr) to capture any console output for that particular task.

 The process (task) will continue running until it’s killed, lost, or exits, at which
point it will update the state of the task with Mesos. If the loss of a task means that a
Marathon application isn’t operating at 100% capacity, Marathon will automatically
restart the failed task, no questions asked.

 In the case of Marathon, application instances can be defined as either shell com-
mands (such as bundle exec ruby myapp.rb) or Docker containers (by adding a
container section to the application’s JSON object). There’s an important distinction
here: standalone commands will be launched using the Mesos command executor,
whereas Docker images will be launched using the built-in Docker executor. Because
of this distinction, it’s worth covering a common failure mode when launching
Docker containers on a Mesos cluster: failed tasks with empty log files in the sandbox.

DEBUGGING DOCKER CONTAINERS LAUNCHED BY MARATHON AND MESOS
If the application within the Docker container is configured to log to standard out-
put and standard error, logging entries will appear in the Mesos sandbox in the std-
out and stderr files, respectively. This is pretty typical of tasks running on a Mesos
cluster. Sometimes, though, a Docker container will fail to run via Marathon, and the
log files within the sandbox will be completely empty. What gives? Let’s take a look at
one such situation.

 Let’s say you created and deployed an application to Marathon named docker-
invalid-container-example that was configured to pull down and run the Docker con-
tainer fake-org/thisisnotmybeautifulcontainer. The only problem: this container
doesn’t exist. When you observe that your application isn’t failing to start and navigate
to the Mesos UI to figure out what’s wrong, you find both the stdout and stderr log
files are completely empty.

 When taking a look one level deeper—at the Marathon logs—all you manage to
find is this rather cryptic entry:

Oct 18 21:24:48 mesos marathon[1335]: [2015-10-18 21:24:48,434] INFO
Received status update for task docker-invalid-container-example.a753e2af-
75de-11e5-a1ac-56847afe9799: TASK_FAILED (Abnormal executor termination)
(mesosphere.marathon.MarathonScheduler$$EnhancerByGuice$$417430f8:100)

Unfortunately, you haven’t learned much more than you already knew: the task failed.
In this particular case, the real failure cause is logged in the /var/log/mesos/mesos-
slave.INFO file on the machine that attempted to launch the Docker container. If you
investigate a bit further, you’ll find the following error:

E1018 21:24:48.423717 18610 slave.cpp:3112] Container '978cc82b-6838-4c2a-
8487-3516357a8641' for executor 'docker-invalid-container-example.a753e2af-
75de-11e5-a1ac-56847afe9799' of framework '20150930-024708-16842879-5050-
1180-0000' failed to start: Failed to 'docker pull fake-
org/thisisnotmybeautifulcontainer:latest': exit status = exited with status
1 stderr = Error: image fake-org/thisisnotmybeautifulcontainer:latest not
found

145Summary

Aha! The reason that the sandbox logs are blank is that the executor is failing to
launch (because the Docker container doesn’t exist), which means no log entries are
written to the sandbox. Correcting the error in the application definition should
resolve the issue.

 This scenario is exactly where a centralized logging solution like the open source
Elasticsearch, Logstash, and Kibana (ELK) stack, or a commercial product like Splunk,
start to become valuable additions to your infrastructure. Instead of figuring out
which Mesos slave the container failed to run on and then logging into the host and
looking through logs, you could easily search them from a single interface. For
more information on Logstash, check out the documentation at www.elastic.co/
guide/en/logstash/current/introduction.html. For more information on Splunk, see
www.splunk.com/en_us/products/splunk-enterprise.html.

 Now, if you want to have more control over Docker container logging and to spe-
cifically enable use of the docker logs command on the Mesos slave, I suggest you
take a look at the following documentation:

■ Configuring Docker logging drivers: https://docs.docker.com/reference/log-
ging/overview/

■ Passing arbitrary Docker parameters via Marathon: http://mesosphere.github
.io/marathon/docs/native-docker.html#privileged-mode-and-arbitrary-docker-
options

I’ve only touched the tip of the iceberg when it comes to logging and inspecting the
state of Docker containers. Other options are available, such as structured logging
with JSON, or sending Docker container logs to the system log. Besides reading over
the official Docker documentation, you may also be interested in picking up a copy of
Docker in Action by Jeff Nickoloff (Manning, 2016).

7.6 Summary
In this chapter, you learned about deploying services and applications on Marathon.
The chapter covered topics such as installation, configuration, application deploy-
ments, application dependencies, and service discovery and routing. Here are a few
things to remember:

■ Marathon is a private platform as a service (PaaS) for Mesos. It deploys long-
running applications or services as Mesos tasks, and automatically restarts them
if they fail. It’s commonly referred to as the Mesos equivalent of the init system
of a traditional Linux operating system.

■ Service discovery and routing can be handled using HAProxy and the included
haproxy-marathon-bridge and servicerouter.py scripts, or Mesos-DNS.

■ Application deployments can be composed of standalone applications, or appli-
cations contained in application groups. Application groups can contain either
applications or other application groups.

https://docs.docker.com/reference/logging/overview/
http://mesosphere.github.io/marathon/docs/native-docker.html#privileged-mode-and-arbitrary-docker-options
http://www.elastic.co/guide/en/logstash/current/introduction.html
http://www.elastic.co/guide/en/logstash/current/introduction.html
http://www.splunk.com/en_us/products/splunk-enterprise.html
https://docs.docker.com/reference/logging/overview/
http://mesosphere.github.io/marathon/docs/native-docker.html#privileged-mode-and-arbitrary-docker-options

146 CHAPTER 7 Deploying applications with Marathon

■ Health checks can be implemented using HTTP, TCP, or COMMAND, ensuring that
the application is up and responsive. You can also configure the allowed num-
ber of consecutive failures, the maximum check time-out, and the interval
between checks, on a per-application basis.

■ To ensure that new versions of applications can be rolled out without interrupt-
ing users, Marathon allows for rolling upgrades of existing applications using
the minimumHealthCapacity field in an application’s JSON object. Combined
with health checks, Marathon can ensure that a new version of the application
is coming up properly before proceeding with tearing down the old version.

■ Within an application group, Marathon applications can have dependencies
on other applications or services, in addition to minimum health requirements
(such as a Rails application depending on a certain number of instances of
a database).

Although this chapter provided several in-depth examples, Marathon has many more
features than I can cover in this book—and more are being added in every release.
For the latest documentation, check out https://mesosphere.github.io/marathon/
docs/.

 In the next chapter, you’ll go over the popular Chronos framework for running
scheduled tasks—also known as Cron jobs—on a Mesos cluster.

https://mesosphere.github.io/marathon/docs/
https://mesosphere.github.io/marathon/docs/

147

Managing scheduled
tasks with Chronos

In a traditional Linux operating system, the Cron daemon is responsible for time-
based execution of commands or scripts, commonly referred to as Cron jobs. If you
consider Mesos to be the “distributed systems kernel” as it’s described on the proj-
ect’s website, Chronos is the Mesos equivalent of the Cron system: it handles time-
based scheduling of jobs (tasks) on a Mesos cluster. If you want to have an arbitrary
command run on the Mesos cluster, you need to specify the schedule and the
amount of CPU and memory the job needs.

 This chapter introduces you to Chronos, a popular, open source Mesos frame-
work originally developed at Airbnb to handle its complex data analysis pipelines.
It was designed to be highly available, to automatically retry jobs when they fail, and
to be as flexible as possible: that is, to be a Mesos equivalent of the Cron daemon,
and not simply used for data analysis.

 Chronos can be used to schedule commands or scripts, and uses the built-in
containerizers in Mesos; it comes with out-of-the-box support for running commands
in Linux control groups (cgroups) and Docker containers. With the Chronos feature

This chapter covers
■ Installing and configuring Chronos
■ Creating scheduled tasks
■ Observing task output and alerting on failures

148 CHAPTER 8 Managing scheduled tasks with Chronos

set, you can easily and reliably create standalone schedule-based jobs, as well as com-
plex dependency-based jobs and pipelines, simply by specifying the schedule and
resources (which are offered up by the Mesos slaves) that the job requires. This allows
you to be sure that your time-based jobs are running on time while continuing to use
datacenter resources as efficiently as possible.

8.1 Getting to know Chronos
Up to this point, you’ve explored Mesos in the context of running multiple different
frameworks, and learned how to achieve better datacenter utilization without worry-
ing about managing multiple, statically configured machines. With Chronos, I’m
going to shift this approach a bit to discuss how running scheduled tasks on a Mesos
cluster can make for a more resilient, scheduled job-execution system. In fact, deploy-
ing Chronos as a robust replacement to running a Cron job on a lone server some-
where in a datacenter was among one of the first things I did when I started using
Mesos. Let’s consider the differences between running Cron jobs on a single machine
and running them on a Mesos cluster by taking a look at figure 8.1.

Server 1 Server 2

OS

Cron daemon

OS

Cron daemon

Job 1 Job 2 Job 3 Job 4

A sysadmin
manually deploys
multiple Cron
jobs to multiple
servers.

A service runs
the job at the
correct time.

A sysadmin
manages multiple
Cron jobs using a
distributed job
scheduler.

Note: A failure of either of these systems—
hardware, OS, or Cron itself—will cause
some of the Cron jobs to not run on time.

Statically partitioning Cron jobs

Mesos

slave 1

OS

mesos-slave

OS

mesos-slave

Job 1 Job 2 Job 3 Job 4

Dynamically scheduling Cron jobs

Chronos

Mesos master

Mesos

slave 2

Figure 8.1 Mesos and Chronos provide a dynamic, fault-tolerant environment to run time-based jobs.

149Getting to know Chronos

I’ve depicted how systems administrators might traditionally deploy scheduled jobs,
and how they might do the same thing using Chronos and Mesos. Sure, you could
deploy several new VMs and create Cron jobs on them, but at the end of the day you
don’t need to concern yourself with which jobs run on which servers; instead, you
need to be concerned with the CPU, memory, and disk resources that your jobs need
to run.

 Chronos allows you to schedule tasks by using available resources on a Mesos
cluster. It’s fault tolerant and uses the available resources on the Mesos cluster,
meaning you won’t have to worry about failures in hardware, the OS, or the Cron
daemon itself. It’s also highly available, which means you won’t need to concern
yourself with a single instance of the Chronos framework failing; a new instance will
be elected leader, and chances are that you and your users won’t even notice that a
failover took place.

 Combined with the Mesos container-based approach to resource isolation (cov-
ered in chapter 4), each of these jobs can run alongside other jobs or applications on
a Mesos cluster without any interference.

NOTE This chapter covers Chronos version 2.4.0.

Chronos contains an extensive list of features that builds upon the basic features of
the Cron daemon (specifying schedules and users to run commands). These features
allow you to do the following:

■ Execute jobs on a schedule
■ Create complex parent/child dependencies between jobs
■ Run commands in Docker containers
■ Automatically retry failed jobs

The next few sections provide a tour of the Chronos web interface and REST API,
before diving into deploying Chronos and creating scheduled jobs.

8.1.1 Exploring the web interface and API

Chronos has a rich web interface for managing scheduled jobs and gathering infor-
mation about them, with a REST API underneath. This allows you to store your Chro-
nos job configurations as JSON objects in version control, and use a CI system (such
as Jenkins or TeamCity) to deploy changes when they occur. You’ll learn about the
REST API a little later in this section. For now, let’s get started by taking a look at
the web interface.

EXPLORING THE WEB INTERFACE

Similar to Marathon (covered in chapter 7), Chronos provides a web interface for
managing scheduled jobs and displaying information about them. Some of this
information includes the state (success/failure) of the job, run durations, and a job

150 CHAPTER 8 Managing scheduled tasks with Chronos

dependency graph. Let’s take a quick tour of the main page of the web interface,
shown in figure 8.2.

 As you can see, the web interface provides functionality to do the following:

■ Create, configure, and delete jobs
■ View existing jobs and their current state and last-run status
■ View dependencies between jobs using a built-in dependency graph

Despite the web interface being helpful for creating simple tasks and viewing their
dependencies, it’s somewhat limited: you can’t (currently) use the web interface to
launch Docker containers, nor can you access some of the more advanced features,
such as using the Mesos fetcher to download files to the sandbox, specifying a time
zone, or setting environment variables. For this reason, this chapter covers the API in a
fair amount of detail.

View the job
dependency graph

Create a
new job

Job operations: edit, run,
duplicate, view dependency
graph, and delete

Job configuration
details

List of jobs, showing
success/failure and
current state

Figure 8.2 Overview of the Chronos web interface

151Installing and configuring Chronos

EXPLORING THE REST API
The JSON-based REST API in Chronos makes it simple to create, update, or remove
jobs. To get started, table 8.1 lists some important Chronos API endpoints and the
HTTP methods for operating on them. Because the result of each endpoint is differ-
ent based on the HTTP method used, I’ve included multiple behaviors for each end-
point, with the method in parentheses. You’ll use these endpoints throughout the rest
of the chapter to create increasingly complex jobs.

The full documentation for the Chronos REST API—including additional features
not mentioned in this text—can be found online at http://mesos.github.io/chronos/
docs/api.html.

TIP In the API-based examples throughout this chapter, you’ll see how to
submit JSON to the API directly. If you’re interested in a higher-level imple-
mentation, an open source Python client library for Chronos wraps the vari-
ous API endpoints and HTTP methods required to operate on them. For more
information, see https://github.com/asher/chronos-python.

You’ll learn about creating tasks by using both the web interface and the REST API
later in this chapter. For now, let’s go over how to deploy Chronos.

8.2 Installing and configuring Chronos
The previous section introduced you to the Chronos project and provided a brief
overview of its web interface and REST API. Now, let’s prepare the Mesos cluster for
handling scheduled jobs by installing and configuring Chronos.

8.2.1 Reviewing prerequisites
To deploy Chronos to your infrastructure, the following prerequisites must be met on
the systems that it will run on. As of version 2.4.0 (and for the purposes of this book),
these dependencies include the following:

■ Java 1.7 or later
■ Mesos 0.22.2 or later
■ ZooKeeper

Table 8.1 Select Chronos API endpoints

API endpoint Description

/scheduler/jobs Query for all jobs on a Chronos instance (GET).

/scheduler/iso8601 Create (POST) or modify (PUT) a job that runs on a schedule.

/scheduler/dependency Create (POST) or modify (PUT) a job that runs after a parent job completes.

/scheduler/job/<job-id> Perform operations on an existing job: manually run the job (PUT) or delete
it (DELETE).

http://mesos.github.io/chronos/docs/api.html
http://mesos.github.io/chronos/docs/api.html
https://github.com/asher/chronos-python

152 CHAPTER 8 Managing scheduled tasks with Chronos

For Chronos to be highly available, you need to deploy it on a number of nodes, just
as you deployed an odd number of Mesos masters in chapter 3. Deploying three Chro-
nos instances is probably fine for most environments, and each of these instances will
use a ZooKeeper ensemble for leader election and to maintain state.

 For a simpler deployment, you could consider deploying Chronos on the same
machines as the Mesos masters, or run Chronos as an application on Marathon. To
make the examples in this chapter easier to understand, let’s assume that you’ll be
installing Chronos on the same machines as the Mesos masters that you deployed in
chapter 3.

Now, let’s proceed with installing and configuring Chronos.

8.2.2 Installing Chronos

The easiest way to install Chronos is by using Mesosphere’s package repositories,
which you already installed and configured during the Mesos installation in chap-
ter 3. Based on your Linux distribution, run one of the following commands to
install Chronos:

■ On RHEL and CentOS:

$ sudo yum install chronos-2.4.0-0.1.20151007110204.el7

■ On Ubuntu:

$ sudo apt-get install chronos= 2.4.0-0.1.20151007110204.ubuntu1404

A single DNS name for Chronos
In a highly available Chronos deployment, multiple instances are deployed across a
number of hosts. For administration purposes, you might consider creating a single
record in DNS to point at your Chronos cluster. Fortunately, Chronos has a feature
whereby any requests sent to a nonleading Chronos instance are transparently prox-
ied to the leader.

You can take two approaches to connect to the Chronos cluster by a single name:

■ DNS load balancing—Create a single DNS name with multiple A or CNAME records
pointing to each Chronos instance

■ HTTP load balancing—Use a load balancer (such as HAProxy) to forward connec-
tions to Chronos, and create a single DNS name pointing to the load balancer

Each option has advantages and disadvantages. For example, DNS load balancing is
simple to configure, but if one of the Chronos instances is unavailable, failed connec-
tion attempts could result. On the other hand, adding a HAProxy load balancer auto-
matically removes failed instances from the pool, but at the expense of adding a
service between the client and Chronos.

153Installing and configuring Chronos

Although it’s possible to download and install Chronos from the source code, the proce-
dure is more involved than using the packages provided by Mesosphere. In the interest
of brevity, this book doesn’t detail the build instructions. But if you want to go that route,
check out the project’s “Getting Started” documentation (http://mesos.github.io/
chronos/docs/getting-started.html) for the most up-to-date instructions.

8.2.3 Configuring Chronos

Like Marathon, Chronos has a few configuration conventions, depending on your
deployment method and preference. Because Mesosphere continues to develop Chro-
nos and provides packages for the community, its file-based configuration (similar
to that of Mesosphere’s Mesos and Marathon packages) is probably the easiest and
most straightforward to start with. Chronos can be configured by creating text files
under the /etc/chronos/conf/ directory. You may need to create the parent directory
(/etc/chronos/conf) on your system.

 Chronos has various configuration options, as specified at http://mesos.github.io/
chronos/docs/configuration.html. Table 8.2 details the configuration options that I
find to be most noteworthy and that you’ll most likely need to configure when deploy-
ing Chronos yourself.

Table 8.2 Select Chronos configuration options

Configuration option Description

master The ZooKeeper URL used by the Mesos masters. If
/etc/mesos/zk is present (Chronos is deployed on
a Mesos master), the value in that file will automat-
ically be used.

zk_hosts A comma-separated list of ZooKeeper hosts for
Chronos to use for leader election and state. If
/etc/mesos/zk is present (Chronos is deployed on
a Mesos master), Chronos will use the same ZK
hosts and ports as Mesos, but create its own
/chronos/state znode instead.

hostname The DNS name or IP address for a given Chronos
instance.

mesos_role If set, registers Chronos to the Mesos cluster with
a specific role (see chapter 6).

mesos_authentication_principal The Mesos principal used for framework authenti-
cation (see chapter 6).

mesos_authentication_secret_file The path to a file containing the secret for frame-
work authentication (see chapter 6).

mail_from The From email address for Chronos email
notifications.

http://mesos.github.io/chronos/docs/getting-started.html
http://mesos.github.io/chronos/docs/configuration.html
http://mesos.github.io/chronos/docs/configuration.html
http://mesos.github.io/chronos/docs/getting-started.html

154 CHAPTER 8 Managing scheduled tasks with Chronos

In addition, Chronos supports basic authentication and SSL. I’ve intentionally left this
out of the previous table because some users might prefer to set up authentication and
SSL termination on a load balancer in front of multiple Chronos instances. If you’re
interested in enabling SSL and authentication for Chronos itself, you might want to
check out the ssl_keystore_path and ssl_keystore_password configuration options
in the project’s configuration documentation, located at http://mesos.github.io/
chronos/docs/configuration.html.

 After Chronos has been installed and configured on each of the Mesos masters
and the service is up and running, you should be able to access the Chronos web inter-
face at http://chronos.example.com:4400.

8.3 Working with simple jobs
This chapter classifies Chronos jobs into two categories: simple and complex. First, let’s
take a moment to clarify what I mean by this:

■ I use the term simple job throughout this chapter to refer to a standalone,
schedule-based Chronos job. This job won’t have any parent or child depen-
dencies on other Chronos jobs. This might be something like sending an email
every day, or performing a database backup nightly.

■ I use the term complex job beginning in section 8.4 to refer to at least one
schedule-based Chronos job, followed by one or more dependency-based jobs
(a job that runs only after its parent job(s) completes successfully). This might
be something like a series of extract-transform-load (ETL) pipelines for data
analysis that could be run hourly, daily, and weekly.

To get started with Chronos, you’ll begin with a single, standalone job, not unlike one
you’d expect to find configured with the traditional Cron daemon.

8.3.1 Creating a schedule-based job

Let’s face it: in every organization, there’s a need to run something on a schedule.
Whether that’s submitting billing data to a payment processor each night, rotating log

mail_server The SMTP server used for sending email. Combine
with mail_user and mail_password if the
server requires auth, and mail_ssl to encrypt
connections to the mail server.

slack_url The webhook URL for sending notifications
to Slack.

Table 8.2 Select Chronos configuration options (continued)

Configuration option Description

http://mesos.github.io/chronos/docs/configuration.html
http://mesos.github.io/chronos/docs/configuration.html
http://chronos.example.com:4400

155Working with simple jobs

files every hour, or running an ETL pipeline every 30 minutes, there are clearly use
cases for running a task on a schedule and expecting it to be reliably scheduled and
launched on time.

 Compared to the traditional Cron daemon that most of us are familiar with, Chro-
nos allows you to schedule resources on a Mesos cluster and run a scheduled job
within a container. Instead of wasting time and resources by manually provisioning
individual machines (that are also single points of failure!) to run Cron jobs, Mesos
and Chronos provide a way to reliably launch jobs with available resources on the clus-
ter, and automatically retry them when they fail.

 Let’s start by taking a look at the limitations of the traditional Cron daemon before
jumping into creating your first Chronos job.

ANATOMY OF A TRADITIONAL CRON JOB

The following example represents the most basic form of a schedule-based job in
Cron. Every minute, run a command as the user alice that sleeps for 30 seconds:

* * * * * alice /bin/sh -c 'sleep 30'

This example should be familiar enough. This Cron job is typically deployed to a sin-
gle machine, and will run as long as the machine—and the Cron daemon—are both
alive and healthy. Regardless of how simple this example is, consider the drawbacks of
the Cron system itself for a moment:

■ The job must be manually deployed to a specific system running the Cron
daemon.

■ The job can’t run more often than once per minute.
■ The job isn’t capable of having parent/child dependencies on other jobs.
■ The standard Cron syntax may be counterintuitive to some.

Sure, you could argue that tools like Anacron allow you to schedule missed jobs if
the system experiences some downtime, and, yes, you could execute a command
that handles the relationships between multiple jobs for you. But at the end of the
day, you’re still left administering another machine in the datacenter, and the Cron
jobs located on it.

ANATOMY OF A SCHEDULE-BASED CHRONOS JOB
In contrast, a schedule-based job in Chronos is represented as a JSON object contain-
ing, at a minimum, the following parts:

■ Schedule
■ Name (also referred to as an ID)
■ Command

156 CHAPTER 8 Managing scheduled tasks with Chronos

The job schedule is composed of three parts, each separated with a / (forward slash):

After you become familiar with the Chronos job schedule format, you can easily
understand the date and time that the job first begins, how often it runs from that
date and time, and the number of times (including infinity) that it should repeat. The
previous example runs the job every 10 minutes beginning October 5, 2015 at 10 p.m.
UTC, and repeats an infinite number of times.

TIP For more information regarding the ISO 8601 date/time standard, check
out https://en.wikipedia.org/wiki/ISO_8601.

Now that you’ve seen how Chronos differs from the traditional Cron daemon and
understand how its schedules are formatted, let’s go over how to create a simple
schedule-based job by using the Chronos web interface.

CREATING A SCHEDULE-BASED JOB BY USING THE WEB INTERFACE

The web UI provides various fields when creating a job; these include name, descrip-
tion, command, and schedule. For the most part, they’re self-explanatory. In figure 8.3,
you create a simple job that sleeps for 60 seconds and exits.

 Clicking the advanced options link for a job allows you to set additional options,
such as the epsilon (the amount of time Chronos will wait for a resource offer from
Mesos) and the resources required to run the job (CPUs, memory, disk, and so forth).
For now, the defaults are fine, and you shouldn’t need to modify those options. I’m
showing them here in the interest of completeness.

 Unfortunately, the web interface doesn’t have all of the job options available in
Chronos. To use some of the more advanced features, you need to turn to the
REST API.

R/2015-10-05T22:00:00Z/PT10M

Number of times to repeat a job.
“R” alone repeats the job forever;
“Rn” repeats the job n times

Run interval, following the
“durations” component of
the ISO 8601 standard

Date and time to start the job,
following the ISO 8601 standard

https://en.wikipedia.org/wiki/ISO_8601

157Working with simple jobs

CREATING A SCHEDULE-BASED JOB BY USING THE REST API
The REST API includes features that aren’t present in the web UI, such as Docker con-
tainer information, time-zone support, and the ability to use the Mesos fetcher to
download files into the task’s sandbox. The following listing presents the same job as
in figure 8.3, but created using the REST API instead.

Time-based
job schedule

Mesos cluster resources
required for the job

Basic job configuration:
name, description, and
command

Figure 8.3 Defining the configuration for a Chronos job using the web interface

158 CHAPTER 8 Managing scheduled tasks with Chronos

{
 "schedule": "R/2015-10-04T22:57:59Z/PT24H",
 "name": "new-sleep-job",
 "description": "Sleep for 60 seconds and return.",
 "cpus": 0.5,
 "mem": 256,
 "disk": 500,
 "command": "sleep 60"
}

Assuming the previous JSON was saved as simple-sleep.json, the following cURL com-
mand creates the job new-sleep-job in Chronos:

$ curl -H 'Content-Type: application/json' -d @simple-sleep.json

➥ http://chronos.example.com:4400/scheduler/iso8601

If you navigate to the Chronos web interface at this point, you’ll see information
about the job, including its last-run result, current status, and historical run durations.

8.3.2 Creating a schedule-based job using Docker

As covered in part 1 of this book, using Docker containers allows you to package your
code—along with its dependencies—and distribute it as a single artifact to any node
in the cluster. By doing so, you’re able to build and distribute Docker images at will
instead of submitting change requests for installing dependencies on every node that
your job might run on.

 Because this kind of portability is valuable, the Chronos maintainers have built in
native support for launching Docker containers as scheduled jobs. This could mean
launching Docker containers that run a command (using CMD) and exit, or running a
command within a container (using ENTRYPOINT).

 One useful feature here is that the Mesos task’s sandbox directory is automati-
cally mapped to a path within the container, so you can continue to use features in
Mesos—such as the fetcher—to download any files or scripts you need for your
scheduled job. Let’s take a look at how to use the Mesos fetcher to download a script
into the sandbox, and then run the script inside a Docker container that comes with
Python 3.

CREATING THE JOB BY USING THE REST API
One of the common use cases for Cron (and Chronos, for that matter) is automati-
cally sending emails on a set schedule. I’ve included an example script along with
the supplementary materials for this book: email-weather-forecast.py. This script

Listing 8.1 A simple sleep job in Chronos

The schedule includes the start
date, run interval, and number
of times to run the job.

A unique identifier
for the job

A human-readable
description for
the job

The command
to run

159Working with simple jobs

emails the user the latest weather forecast for their area by specifying a U.S. zip
code. Let’s take a look at how you deploy this job by using the Chronos REST API in
the next listing.

{
 "schedule": "R/2015-10-28T00:00:00.000Z/PT24H",
 "name": "daily-forecast-97201",
 "description": "The daily NWS weather forecast for Portland, OR",
 "container": {
 "type": "DOCKER",
 "image": "python:3.4.3"
 },
 "cpus": 0.1,
 "mem": 128.0,
 "owner": "user@example.com",
 "uris": [
 "https://raw.githubusercontent.com/rji/

➥ mesos-in-action-code-samples/master/email-weather-forecast.py"
],
 "command": "cd $MESOS_SANDBOX && python3 email-weather-forecast.py",
 "environmentVariables": [
 { "name": "TO_EMAIL_ADDR", "value": "user@example.com" },
 { "name": "FROM_EMAIL_ADDR", "value": "weather@example.com" },
 { "name": "ZIP_CODE", "value": "97201" },
 { "name": "MAIL_SERVER", "value": "mail.example.com:25" },
 { "name": "MAIL_USERNAME", "value": "weather@example.com" },
 { "name": "MAIL_PASSWORD", "value": "ItsTopSecret!" }
]
}

Assuming the JSON in the previous code listing was saved as simple-docker.json, the
following cURL command creates the job daily-forecast-97201 in Chronos:

$ curl -H 'Content-Type: application/json' -d @simple-docker.json

➥ http://chronos.example.com:4400/scheduler/iso8601

TIP You can update an existing job’s configuration by resubmitting the same
JSON using the HTTP PUT method instead of POST. If you’re using cURL, this
can be accomplished by adding the argument -X PUT to the command.

Although these standalone, schedule-based jobs have demonstrated how Chronos
provides a more full-featured Cron for Mesos, you see its real power when you start
working with complex jobs—a mix of schedule-based and dependency-based jobs.

Listing 8.2 Running a script within a Docker container

The ContainerInfo; here we use
the Docker container python:3.4.3.

Chronos will send
emails to the owner
if the job fails.

Download
the example

from this
book’s
GitHub

repository.

Change into
the sandbox

directory
and run

the script.

Specify environment variables
that will be used by the script.

160 CHAPTER 8 Managing scheduled tasks with Chronos

8.4 Working with complex jobs
The preceding section covered simple, standalone jobs that run on a schedule, much
like the Cron daemon that most of us are familiar with. Chronos also has the ability
to create a dependency-based job: a job that runs only when its parent job(s) has
completed successfully. Although many use cases exist for this, one that stands out is
an ETL job, typically associated with data processing and analytics.

8.4.1 Combining schedule-based and dependency-based jobs

At their core, ETL jobs do the following:

■ Extract data from one or more data sources
■ Transform that data to be stored in a format more suited for analysis
■ Load data into the destination store

In Chronos, dependency-based jobs don’t contain a schedule field, but instead spec-
ify one or more parent jobs (using the parents field) that must complete before that
job will run. Figure 8.4 shows how an ETL job might look in Chronos. Note the differ-
ence between the schedule field and the parents field.

In the previous figure, extract-job must complete successfully before transform-
job1 or transform-job2 can begin. By establishing these dependencies between jobs,
you can develop more-complex scheduled jobs. Combined with your external data
stores, Chronos gives you a reliable way of scheduling jobs on a Mesos cluster.

 Let’s look at one such example: scheduling an ETL job that counts the words in
Leo Tolstoy’s War and Peace.

Extract job

Load job

Transform job 1 Transform job 2

Schedule-based job:

"schedule": "R/2015-10-31T00:00:00Z/PT24H"

Dependency-based jobs:

"parents": ["extract-job"]

"parents": [

"transform-job1",

"transform-job2"

]

Figure 8.4 A complex Chronos job that runs when parent job(s) have completed
successfully

161Working with complex jobs

AN EXAMPLE: GETTING THE TOP 20 WORDS IN WAR AND PEACE

To illustrate how you can combine schedule-based and dependency-based jobs within
the context of an ETL job, I’ve included an example of a Chronos job made up of a
single schedule-based job and two dependency-based jobs. This example also uses
HDFS and Spark, covered briefly in chapter 2. You can find the source code for this
example with the supplementary materials included with this book.

TIP To run the Spark job with Chronos, I’ve installed Cloudera’s CDH 5.3
Hadoop distribution and Apache Spark on a Mesos cluster. Installation instruc-
tions are available at www.cloudera.com/content/www/en-us/documentation/
enterprise/5-3-x/cloudera-homepage.html and http://spark.apache.org/
downloads.html.

To visualize how this might look, consider figure 8.5.
 Although this looks like it might normally be a complex task, Chronos allows you

to create smaller, individual jobs and chain them together by creating a dependency
graph. In listing 8.3, you begin the first job in the chain by downloading War and Peace
from Project Gutenberg and storing the resulting text in HDFS for later use.

HDFS

is downloaded
from Project Gutenberg and stored
in HDFS for later use.

War and Peace

A third job reads the results from
HDFS, runs a quick sort on the data,
and outputs the result to standard
output (visible in the Mesos web UI).

A Spark job reads the raw text
from HDFS, runs a map/reduce
job to count the number of
occurrences of each word, and
saves the result back to HDFS
for later use.

Extract

(download)

Standard

output

Load

Transform

(map/reduce)

Project

Gutenberg

Figure 8.5 Visualizing the War and Peace ETL job as three Chronos jobs

http://www.cloudera.com/content/www/en-us/documentation/enterprise/5-3-x/cloudera-homepage.html
http://www.cloudera.com/content/www/en-us/documentation/enterprise/5-3-x/cloudera-homepage.html
http://spark.apache.org/downloads.html
http://spark.apache.org/downloads.html

162 CHAPTER 8 Managing scheduled tasks with Chronos

{
 "name": "download-war-and-peace",
 "description": "Download the text of War and Peace.",
 "schedule": "R1//PT1M",
 "command": "hadoop fs -mkdir -p ${basepath} && hadoop fs -put -f

➥ pg2600.txt ${basepath}/warandpeace.txt",
 "uris": ["http://www.gutenberg.org/cache/epub/2600/pg2600.txt"],
 "environmentVariables": [
 { "name": "basepath", "value": "/tmp/warandpeace" }
]
}

In the next step of your ETL job, you need to run a Spark map/reduce job that pro-
cesses the text and counts the number of times each word appears. In the following
listing, you create a second Chronos job, this time specifying the previous job
(download-war-and-peace) in the parents field.

{
 "name": "war-and-peace-wordcount-spark-job",
 "description": "Use Spark to count all the words in War and Peace",
 "parents": ["download-war-and-peace"],
 "command": "/opt/spark/bin/spark-submit

➥ mesos-in-action-code-samples-master/wordcount-example/

➥ war-and-peace-wordcount_2.10-0.1.0.jar ${basepath}",
 "uris": [
 "https://github.com/rji/mesos-in-action-code-samples/archive/

➥ master.tar.gz"
],
 "environmentVariables": [
 { "name": "basepath", "value": "/tmp/warandpeace" }
]
}

The Spark job in the previous code listing reads the text from HDFS and then stores
the word counts alongside the text. To display the output in the Mesos UI, let’s read
the results from the Spark job in listing 8.5, sort them, and get the first 20 lines. As in
the code in listing 8.4, you also specify the parents field to establish a dependency on
the previous job.

Listing 8.3 A Chronos job to download War and Peace

Listing 8.4 Running a Spark job to count the words in War and Peace

Run this job
once on a
schedule.

Run this job when
download-war-and-peace has

completed successfully.

163Working with complex jobs

{
 "name": "load-war-and-peace-word-counts",
 "description": "Read the output from HDFS and send it to stdout",
 "parents": ["war-and-peace-wordcount-spark-job"],
 "command": "hadoop fs -cat ${basepath}/result/part-* |

➥ sort -t, -rnk2 | head -20",
 "environmentVariables": [
 { "name": "basepath", "value": "/tmp/warandpeace" }
]
}

That’s it! Those three jobs will run the ETL pipeline required to process the text of
War and Peace and output the top 20 words. To illustrate this as quickly as possible, a
small script that deploys these three jobs is in the GitHub repository for this book. If
Spark and HDFS are set up on your Mesos cluster, you can try it by running the follow-
ing command:

$ complex-etl-job/create-jobs.sh http://chronos.example.com:4400

The script creates three jobs, as defined in listings 8.3 through 8.5. Assuming that
everything works as intended, you should be able to navigate to the Mesos web inter-
face and view the output from the load-war-and-peace-word-counts job. It should
display the top 20 words in the book.

8.4.2 Visualizing job dependencies

Chronos has a useful feature for visualizing dependencies between various jobs.
Instead of trying to track complex job dependencies by hand, you can view a
dynamically generated graph, right from within the Chronos web interface. Look at
figure 8.6, which shows the job dependencies from the ETL pipeline created in the
previous section.

 The other helpful aspect of the dependency graph is that it highlights which jobs
are successful and which fail, allowing you to quickly discover and resolve failures in
increasingly complex jobs.

TIP If you’d rather retrieve the contents of the DOT file instead of the ren-
dered graph, check out the /scheduler/graph/dot API endpoint.

Listing 8.5 Loading the results and outputting the top 20 words

Run this job when
war-and-peace-
wordcount-spark-job
has completed
successfully.

164 CHAPTER 8 Managing scheduled tasks with Chronos

8.5 Monitoring the output and status of Chronos jobs
It’s not a matter of if something will fail; it’s a matter of when. Even the most well-
designed systems will suffer some sort of failure or service degradation eventually. The
key is to ensure that the system fails or degrades gracefully and notifies the system’s
owner with relevant information when it occurs.

 This section covers how to enable job-failure notifications in Chronos for both
email and Slack, the popular group-messaging service. The section also covers how to
monitor jobs to determine whether they’re in a healthy or a failed state and observe
job output when further debugging is required.

3. The job that loads the results
doesn’t run because its parent
job didn’t complete successfully.

2. The Spark
word count
job fails.

1. downloads
successfully and starts the
Spark job.

War and Peace

Figure 8.6 A Chronos dependency graph for jobs that have a parent/child relationship. The
success of the first job causes the second job to run, but because the second job fails, the third
job never runs.

165Monitoring the output and status of Chronos jobs

8.5.1 Job failure notifications and monitoring

Depending on your organization, team, and preferred medium for receiving alerts
and notifications, you might prefer email notifications on job failures, Slack notifica-
tions for your team, or a monitoring system like Nagios to periodically check the status
of your jobs via the REST API. Fortunately, solutions exist for each of these.

EMAIL NOTIFICATIONS ON JOB FAILURE

To enable email notifications, Chronos must first be configured to connect to a mail
server. Although we first covered this during the installation and configuration sec-
tion, the options you need to set within /etc/chronos/conf are as follows:

■ mail_from—The email address from which to send notifications, such as chro-
nos@example.com

■ mail_server—The mail server to connect with, specified as the server and port
(such as mail.example.com:25)

■ mail_user—Optional; the username to use when authenticating to the mail
server

■ mail_password—Optional; the password to use when authenticating to the
mail server

■ mail_ssl—Optional; enables SSL connections to the mail server

After the Chronos instance is configured to connect to a mail relay, each job can spec-
ify the email addresses of one or more owners. As with the To field in an email, multi-
ple owners for a job can be entered; just be sure to separate them with commas. This
option is on a per-job basis, and is configurable both via the web interface and the
owner field first covered in listing 8.2.

SLACK NOTIFICATIONS ON JOB FAILURE

Slack is a popular group-messaging platform that allows for instant communication
between team members. Considering that a large portion of a team’s communication
could be happening via instant messaging, email might not necessarily be the best
option to be notified of a failure and be able to respond quickly. Fortunately, Chronos
has built-in support for sending a notification to a Slack channel when a job fails.

NOTE As mentioned earlier, the Slack support in Chronos requires that you
provide a Slack webhook URL using the --slack_url configuration option.
This can be accomplished by creating the file /etc/chronos/conf/slack_url
for each of the deployed Chronos instances.

As of this writing, the Slack implementation has a limitation in Chronos: because it’s
implemented as a configuration option for the Chronos instance and not the job
within Chronos, all notifications must go to one channel. In some cases, sending these
notifications to #general or #sysops should be fine. Figure 8.7 shows an example Slack
notification sent to the #general channel.

166 CHAPTER 8 Managing scheduled tasks with Chronos

As you can see in the screenshot, the job failed and a Slack notification was sent. This
notification includes the name of the job, the timestamp, the number of retries that
were attempted, the task ID (for debugging in the Mesos UI), and the error message.

MONITORING A JOB’S STATUS VIA THE REST API
Chronos provides the /scheduler/jobs API endpoint, which allows you to get informa-
tion about all of the jobs within Chronos, their configurations, and information about
the jobs’ successes and failures. By iterating over the items in the JSON array, you’re
able to check the status of all jobs by making a single HTTP request.

 Just as you might write a script for your monitoring system to check on the status of
a Cron job, you can do the same thing for Chronos jobs. Of particular note are the fol-
lowing fields within a given job’s JSON hash, as provided in table 8.3.

Given this information, you could write a check for your monitoring system of choice.
Some alerting use cases that come to mind include the following:

■ Alerting that a job is in an error state: errorsSinceLastSuccess will be 0 if
the last run of the job was successful. If this is positive, the job is currently in a
failed state.

■ Alerting that the timestamp of a job’s last successful run is outside a given SLA:
lastSuccess could be used to escalate an alert to an engineering manager or
product manager if a business-critical data processing job that should run every
hour hasn’t been successful in the last 3 hours.

■ Alerting on the failure rate of a particular job: you could create a check that
uses the formula failure_pct = errorCount / (errorCount + successCount)
to determine how often a job completes successfully.

Table 8.3 Select job metrics available for monitoring purposes

Field Description

errorsSinceLastSuccess The number of times the job has failed since the last successful run

lastSuccess The date and time of the last successful run, in ISO 8601 format

lastError The date and time of the last failed run, in ISO 8601 format

successCount Successful run count over the history of the job

errorCount Failed run count over the history of the job

Figure 8.7 An example of a Chronos
notification in a Slack channel

167Summary

8.5.2 Observing standard output and standard error via Mesos
Because Chronos jobs run as Mesos tasks, the easiest way to observe output from these
jobs is by using the Mesos web interface, as covered in chapter 5. To provide a
refresher, two files are automatically created in a task’s sandbox: stdout and stderr, as
shown in figure 8.8. These files capture output from a task’s standard output and stan-
dard error, respectively.

Clicking either the stdout or stderr link within a task’s sandbox opens a new window,
allowing you to live-stream the logs from the job to your web browser. This makes it
easy to keep an eye on long-running Chronos jobs or determine why a job failed with-
out needing to log in to a machine.

8.6 Summary
In this chapter, you learned about deploying scheduled jobs on Chronos. You
explored topics such as installation and configuration, jobs and job dependencies,
and monitoring. Here are a few things to remember:

■ The schedule for a Chronos job is broken into three parts, separated by a for-
ward slash: the number of times the job repeats, the start time of the job (in ISO

Stream the
output of stdout

Figure 8.8 Observing the output from a Chronos job in the Mesos web interface

168 CHAPTER 8 Managing scheduled tasks with Chronos

8601 format), and a run interval (following the format of the “durations” com-
ponent in the ISO 8601 standard).

■ Jobs that run on a schedule and don’t have any parent/child dependencies are
simple jobs. Complex jobs have one parent job that runs on a schedule, and one or
more child jobs that run only if their parent job completed successfully.

■ When using Docker images, the Mesos task’s sandbox is automatically mapped
within the container. This allows you to use the Mesos fetcher to download
files that need to be present in the sandbox before the Docker container is
even launched.

■ When creating jobs that are dependent on a parent job, the schedule field is
omitted; instead, you need to use the parents field.

■ You can monitor jobs, send notifications on failure, and observe output in
numerous ways: notifications can currently be sent via email and Slack; a job’s
status—including success and failure counts and times—can be gathered using
the REST API; and to observe the output from a job, check out the stdout and
stderr files within a task’s sandbox.

Although this chapter provided several in-depth examples with the most commonly
used parameters, Chronos has many more features than can be covered in this book—
and more are being added in every release. For the latest documentation, check out
https://mesos.github.io/chronos.

 The next chapter covers the popular Apache Aurora project. Aurora allows you to
deploy applications and scheduled jobs on Mesos, all within a single framework.

https://mesos.github.io/chronos

169

Deploying applications
and managing scheduled

tasks with Aurora

In the preceding two chapters, you learned about Marathon and Chronos, two pop-
ular Mesos frameworks that allow you to deploy applications and run scheduled
tasks on a Mesos cluster. In this chapter, I’ll cover Apache Aurora, a Mesos frame-
work developed by Twitter to simplify its operations around deploying applications
and Cron jobs.

 Although Aurora is arguably more difficult to configure and deploy than Mar-
athon or Chronos, this book covers Aurora to provide you with options for frame-
works to deploy on your own cluster. For example, Marathon and Chronos both
provide an easy-to-use, JSON-based REST API, but they don’t provide user-access
control. On the other hand, Aurora provides multi-user access control, but with
the added complexity of its own Python-based language. Of course, you should
evaluate each in a development or preproduction environment and determine
which suits your team and organization the best. Although Aurora is complex, it’s
also powerful.

This chapter covers
■ Building, installing, and configuring Aurora
■ Deploying applications and Docker containers
■ Creating scheduled tasks

170 CHAPTER 9 Deploying applications and managing scheduled tasks with Aurora

 Before proceeding with Aurora, you should be comfortable compiling software,
writing your own service scripts, and (optionally) building your own packages.
Because I already covered running applications and Cron jobs in chapters 7 and 8, I
won’t necessarily repeat all of that information here, instead opting to cover the
Aurora-specific bits using the examples you’re already familiar with. If you haven’t
read through chapters 7 and 8 and are interested in how Mesos handles application
deployments and scheduled tasks, I recommend you read those first. Otherwise, let’s
get started!

9.1 Introducing Aurora
Aurora began as a project at Twitter in 2010, around the same time the company was
adopting Mesos to scale its infrastructure and put an end to the “Fail Whale.” As one
of the first Mesos frameworks, Aurora allowed Twitter to simplify its operations by pro-
viding self-service application and job management to its large team of developers.

 Twitter open sourced this work, and Aurora became a top-level project at the
Apache Software Foundation, alongside Mesos. It’s safe to say that Aurora has been
battle-tested in a large-scale production environment, and supports hundreds of soft-
ware engineers deploying applications and Cron jobs on a daily basis.

NOTE This chapter covers Aurora 0.9.0.

Because Aurora grew out of a necessity to support multiple users, it isn’t (in some
cases) as full-featured as other Mesos frameworks. But you can rest assured that the
features built into Aurora are stable and robust. Let’s take a moment to compare
Aurora to the other frameworks discussed previously (Marathon and Chronos) by tak-
ing a look at table 9.1.

Table 9.1 Comparing features of Aurora, Marathon, and Chronos

Aurora Marathon Chronos

Configuration DSL Yes No No

Deploy long-running applications Yes Yes No

Deploy scheduled (Cron) jobs Yes No Yes

Docker support Experimental / incomplete Yes Yes

HA deployment Yes Yes Yes

Packages available No Yes Yes

REST API No Yes Yes

Support for user auth and resource
quotas

Yes No No

171Introducing Aurora

Despite the framework generally being referred to by the Aurora name, it’s made up
of several components:

■ Scheduler
■ Client (two—one for users and one for administrators)
■ Executor
■ Observer

Together, these components make up a platform for running applications and sched-
uled jobs on a Mesos cluster. The scheduler serves as the main interface into an Aurora
cluster, and a command-line client provides a way for users to create, update, and delete
jobs. The executor and observer provide a consistent execution environment for run-
ning and monitoring tasks, and an admin client allows operators to administer the clus-
ter. Let’s take a look at each of these components in a bit more detail.

9.1.1 The Aurora scheduler
Like any other Mesos scheduler, the Aurora scheduler is responsible for registering to
the Mesos master, accepting or declining resource offers, and launching tasks on the
cluster. Similar to other frameworks that you’ve learned about in this book, the sched-
uler is the component responsible for providing the overall Aurora service to users.
When users need to deploy new services or scheduled jobs, it’s the scheduler that han-
dles dispatching the process to a machine in the cluster.

 The scheduler itself is written in Java, and, during the build process, bundles all its
dependencies into a single JAR (with the exception of libmesos and the JVM itself;
these must already be present on the system). Like Mesos and other Mesos frame-
works, Aurora uses ZooKeeper for replica detection, leader election, and to publish
service discovery information. By using a distributed database like ZooKeeper, Aurora
can be deployed in a highly available manner.

 Most of the operations in Aurora either start with or flow through the scheduler.
The command-line clients connect with the scheduler and are used for managing
both user jobs and the cluster itself. The scheduler is also capable of supporting multi-
ple users via the Apache Shiro security framework, which I’ll cover later in this chap-
ter. Finally, the scheduler also provides a web interface for viewing job configurations
and an application’s configuration and deployment status.

9.1.2 The Thermos executor and observer
You learned earlier in the book that Mesos launches a task on a slave in the cluster by
using an executor. One of the built-in executors in Mesos, the CommandExecutor,
launches commands using a shell (/bin/sh). But Mesos also provides an API to develop
custom executors that can launch, monitor, and kill tasks. Thermos, the executor
used in Aurora, is an example of a custom, Python-based executor for Mesos that pro-
vides a consistent execution environment for tasks launched by the Aurora scheduler.

TIP The next chapter covers custom executors in more detail.

172 CHAPTER 9 Deploying applications and managing scheduled tasks with Aurora

Thermos is made up of two parts:
■ Executor—A Mesos executor that launches and manages Aurora’s tasks and

health checks
■ Observer—A separate service (one instance per Mesos slave) that monitors tasks

launched by a Thermos executor

When the Aurora scheduler accepts a resource offer to launch a task on a slave, it does
so by first launching the executor. Once the executor registers with the Mesos slave, it
can launch the process that the user requested, whether that’s launching an instance
of an application or running a scheduled job.

 The observer in Aurora is unique in that it monitors each executor and provides a
web interface on each Mesos slave participating in an Aurora cluster. This provides a
way for users to interact with a monitoring service on each of the cluster nodes with-
out requiring shell access to the Mesos infrastructure itself. As you may recall from
chapter 7, Marathon displays some basic task information, but for any additional
details, you need to switch back to the Mesos web interface (at least as of this writing).
The close integration between the Aurora scheduler’s web interface and that of the
Thermos observer provide for a more consistent user experience, at the cost of a
more complex deployment overall.

9.1.3 The Aurora user and admin clients
The Aurora project provides two separate, Python-based command-line clients that I
refer to as the user client and the admin client. Just as the names imply, the user client
can be distributed to application developers for deploying services and scheduled jobs
on an Aurora-enabled Mesos cluster. The admin client, on the other hand, is distrib-
uted to systems administrators and is used for common tasks such as cluster mainte-
nance and managing users.

 You’ll learn more about how to use these clients a little later in this chapter. For
now, I’ll provide a brief overview of some of the capabilities that each of these cli-
ents provides.

THE USER CLIENT

The first of the two command-line clients, the Aurora user client, is typically deployed
to users and engineering teams so that they can manage their own services and sched-
uled jobs on a common cluster. A few noteworthy capabilities of this client, which
you’ll see throughout the remainder of this chapter, include the following:

■ job—Create, kill, restart, and list services and ad hoc jobs.
■ cron—Create, modify, remove, and manually start Cron jobs.
■ update—Start, abort, pause, and resume a rolling update of a service or job.

There’s a lot more functionality built into the client than we have time to cover here,
and the Aurora project is still being actively developed. For the complete list of subcom-
mands, including detailed usage and help, run aurora -h or refer to the official project
documentation at http://aurora.apache.org/documentation/latest/client-commands.

http://aurora.apache.org/documentation/latest/client-commands

173Introducing Aurora

THE ADMIN CLIENT
The second of the two command-line clients, the Aurora admin client, is tailored
toward the systems administrators responsible for maintaining the Aurora cluster. It
allows you to perform operations across a given Aurora cluster from the comfort of
your laptop or workstation. It includes features such as the following:

■ Backup and restore—Perform a backup of the scheduler’s state, and restore from
a backup.

■ Maintenance—Put hosts into (and remove them from) maintenance mode,
including draining tasks from a specific host or set of hosts.

■ Quotas—Create and modify the amount of production quota granted to a spe-
cific user.

■ SLAs—Probe a specific host for its tasks, and calculate a projected SLA should
the host go offline.

Just as with the user client, a large amount of functionality is built into the admin cli-
ent, and I probably don’t need to repeat it all in this text. To get a complete list of all
of the subcommands, run aurora-admin -h. I’ll cover some of the main functionality,
specifically host maintenance and user management, later in this chapter.

9.1.4 The Aurora domain-specific language
Unlike Marathon and Chronos, the two Mesos frameworks covered in chapters 7 and
8, Aurora provides its own Python-based domain-specific language (DSL) for writing
job configurations in lieu of a JSON-based API. Each configuration file is maintained
by the team deploying the application or job, and is suffixed with .aurora.

 The Aurora language has a few primitives that are worth understanding:
■ Process—The command that’s executed on a system. One or more Process

objects make up a Task.
■ Task—An object that contains one or more processes. There are also two varia-

tions of this primitive: SimpleTask and SequentialTask.
■ Job—A collection of Tasks that can be launched on a Mesos cluster.

These configuration files are processed by the Aurora client and deployed to the cluster.
Each job has a unique identifier, referred to as the job key. Each job key follows this format:

The name of
the cluster

The user on the Mesos slave
that will run the task (e.g.,
root or www-data)

The environment in which
to run the task. Accepted
values are devel, test,
stagingN, and prod.

The name
of the job

<cluster_name>/<role>/<environment>/<job_name>

174 CHAPTER 9 Deploying applications and managing scheduled tasks with Aurora

An Aurora job is referred to in the configuration file by its job key, and contains one
or more Processes, Tasks, and Jobs. I cover some examples of jobs written in the
Aurora DSL a little later in this chapter. For the complete configuration reference and
best practices around creating configuration files and working with the Aurora DSL,
please refer to the official documentation:

■ The configuration tutorial provides step-by-step instructions for using the DSL:
http://aurora.apache.org/documentation/latest/configuration-tutorial.

■ The configuration reference provides detailed information about the entire
schema: http://aurora.apache.org/documentation/latest/configuration-ref-
erence.

Now that you’re familiar with the components that make up Aurora—the scheduler, the
executor, the observer, the two command-line clients, and the job configuration DSL—
let’s go over how to build, install, and configure Aurora to work with your Mesos cluster.

9.2 Deploying Aurora
Similar to Mesos and other Mesos frameworks, Aurora can be deployed in various
ways. It can be installed as a single instance (for development purposes), highly avail-
able (for production purposes), or if you’re just looking to test it out in a develop-
ment environment, you can use the Vagrant file located inside the Aurora download
at aurora.apache.org to provision a single-node Aurora cluster right on your laptop.

 Before continuing, it’s important to learn how each component in Aurora inter-
acts with the others by studying figure 9.1.

Mesos masters

Aurora scheduler Aurora admin clientAurora client

Mesos slave

Thermos

executor

Thermos

observer

Tasks

The Aurora client allows end
users to interact with Aurora
via the command line.

The Thermos executor
runs the process(es)
that make up a task.

The Thermos observer
polls the Thermos executor
for information about its
tasks.

The Aurora admin client allows
systems administrators to interact
with Aurora via the command line.

Figure 9.1 The components that make up Apache Aurora include a scheduler.

http://aurora.apache.org/documentation/latest/configuration-reference
http://aurora.apache.org/documentation/latest/configuration-tutorial
http://aurora.apache.org/documentation/latest/configuration-reference
http://aurora.apache.org

175Deploying Aurora

Similar to the scheduler of any other Mesos framework, Aurora’s scheduler registers
with the Mesos master and launches tasks on a slave. The Aurora command-line cli-
ents are responsible for deploying applications, creating Cron jobs, and administering
the cluster. When the scheduler has work to be run on the cluster, it accepts a resource
offer from the leading Mesos master, and launches one or more tasks.

 This section discusses how to get up and running with Aurora in a development
(Vagrant) environment, and also how to deploy it to a production-ready Mesos cluster
such as the one that you first learned to create in chapter 3.

9.2.1 Trying out Aurora in a development environment
The easiest way to get started with Aurora in development is to use the Vagrant envi-
ronment included in the project’s Git repository. In case you aren’t familiar with
Vagrant, it’s an open source tool that provides a simple way to share development
environments with others. You can find more information, including download links,
at www.vagrantup.com.

 The Vagrant file included with Aurora sets up the Mesos master, Mesos slave, and
Aurora, all on a single virtual machine. This allows you to test out Aurora and deploy
some applications and Cron jobs from the comfort of your laptop or workstation. If
you’re interested in trying out Aurora locally first, great! If not, feel free to skip ahead
to section 9.2.2, where you’ll install Aurora in a more production-like manner.

SETTING UP THE VAGRANT ENVIRONMENT

The Vagrant environment is commonly used for setting up Aurora for development
purposes. You can clone Aurora from its Git repository hosted by the Apache Software
Foundation by running the following commands:

$ git clone git://git.apache.org/aurora.git
$ cd aurora
$ git checkout rel/0.9.0

When Aurora has finished cloning and you’ve checked out the version of Aurora
that we cover in this chapter, bring up the Vagrant machine by running the follow-
ing command:

$ vagrant up

WARNING The Vagrantfile included with Aurora 0.9.0 installs Mesos 0.22.0,
which has some known issues with recent versions of Docker. After the
Vagrant machine is up and running, you should add the Mesosphere package
repository (instructions available in chapter 3 and at https://mesosphere
.com/downloads), and upgrade Mesos to version 0.22.2 before proceeding.
After upgrading Mesos, be sure to restart each of the services by running
service mesos-master restart and service mesos-slave restart. With-
out upgrading Mesos, the mesos-slave daemon will refuse to start, and you
won’t be able to schedule any tasks.

mailto:user@mesos-master-1.example.com
https://mesosphere.com/downloads
http://www.vagrantup.com

176 CHAPTER 9 Deploying applications and managing scheduled tasks with Aurora

You should now be able to access Mesos and Aurora at the following URLs:

■ Mesos master: http://192.168.33.7:5050
■ Aurora scheduler: http://192.168.33.7:8081/scheduler
■ Thermos observer: http://192.168.33.7:1338

9.2.2 Building and installing Aurora
As you did with Mesos, you need to deploy the Aurora scheduler on a number of
machines. For production workloads, deploying three or five instances of the Aurora
scheduler should be sufficient. To keep the deployment simple, assume that you’re
deploying Aurora on the same machines as the Mesos masters themselves. The Aurora
project doesn’t maintain packages for both RHEL and Ubuntu, at least at the time of
this writing, so I’ve opted to demonstrate how to build Aurora from the source code
available at aurora.apache.org.

TIP Although Aurora packages aren’t available at the time of writing, efforts
are underway to build and distribute official packages. You can find the latest
code at https://git-wip-us.apache.org/repos/asf?p=aurora-packaging.git;a=tree.
But for now, you’ll need to write your own service scripts for your service man-
ager or supervisor of choice (systemd, upstart, supervisord, and so forth), or
try to adapt the scripts in the packaging repo to meet your needs.

To facilitate the building of the various Aurora components, and to keep the build
instructions in the text to a minimum, I’ve included a build script for Aurora in the
chapter09 directory of the GitHub repository that accompanies this book. The
script is capable of building the Aurora components on both RHEL / CentOS 7 and
Ubuntu 14.04.

BUILDING AURORA
To build all of the components that make up Aurora, first clone this book’s Git reposi-
tory by running the following commands:

$ git clone https://github.com/rji/mesos-in-action-code-samples
$ cd chapter09

Next, use the aurora-build.sh script to compile all of the components. The script will
also install any prerequisite packages needed to build Aurora:

$./aurora-build.sh all

The build script will take a few minutes to complete. When it’s done, all of the built
components will be available in the apache-aurora-0.9.0/dist directory. I’ll refer to the
individual components during the installation instructions in the next several sections.

INSTALLING THE AURORA SCHEDULER
As I mentioned previously, let’s assume that you’ll install an instance of the scheduler
on each of the Mesos masters. In the previous build step, a zip file containing the

http://192.168.33.7:5050
http://192.168.33.7:8081/scheduler
http://192.168.33.7:1338
https://git-wip-us.apache.org/repos/asf?p=aurora-packaging.git;a=tree
http://aurora.apache.org

177Deploying Aurora

scheduler code can be found in your current working directory at apache-aurora-0.9.0/
dist/distributions/aurora-scheduler-0.9.0.zip. Go ahead and copy this file to each of
the Mesos masters:

$ scp apache-aurora-0.9.0/dist/distributions/aurora-scheduler-0.9.0.zip

➥ user@mesos-master-1.example.com:

Next, extract the Aurora distribution from your home directory to your location of
choice. For the purposes of this book, let’s install it to /usr/local, and create a symlink
to the installation at /usr/local/aurora-scheduler. This will allow you to easily upgrade
Aurora in the future by placing a newer version of Aurora within /usr/local and
updating the target of the symlink:

user@mesos-master $ sudo unzip aurora-scheduler-0.9.0.zip -d /usr/local
user@mesos-master $ sudo ln -fns /usr/local/aurora-scheduler-0.9.0

➥ /usr/local/aurora-scheduler

With the Aurora scheduler code in place on each of the masters, let’s move on to
cover the installation of the remaining Aurora components. I’ll cover the configura-
tion of each of the components in the next section (9.2.3).

INSTALLING THE THERMOS EXECUTOR AND OBSERVER

To install the Thermos executor and observer, you’ll need to copy a couple of execut-
ables to each machine in the Mesos cluster. For large installations, this is where a con-
figuration management tool like Puppet, or an orchestration tool like Ansible, really
comes in handy.

 Copy thermos_executor.pex and thermos_observer.pex from the apache-aurora-
0.9.0/dist directory on your local machine to each of the Mesos slaves by running the
following commands:

$ scp -p apache-aurora-0.9.0/dist/thermos_{executor,observer}.pex

➥ user@mesos-slave-N.example.com:

Next, just as you did for the Aurora scheduler, move them to a location on disk that
makes sense for your environment and then create symlinks pointing to the current
version. This will allow you to upgrade the executor and observer code by updating
the target of the link:

user@mesos-slave $ sudo mkdir /usr/local/aurora-executor-0.9.0
user@mesos-slave $ sudo mv thermos_{executor,observer}.pex

➥ /usr/local/aurora-executor-0.9.0/
user@mesos-slave $ sudo ln -fns /usr/local/aurora-executor-0.9.0

➥ /usr/local/aurora-executor

NOTE The Aurora executor code must be available at the same location on
every slave in the cluster. You’ll need to provide this path when configuring
the Aurora scheduler in the next section.

178 CHAPTER 9 Deploying applications and managing scheduled tasks with Aurora

After copying the Aurora code to the Mesos masters and slaves, you’re almost ready to
start deploying applications and creating Cron jobs. But before you can do that, you
need to build and install the command-line clients that allow you to do so.

INSTALLING THE AURORA CLIENT

Aurora provides a separate command-line client for managing jobs and services from
developer workstations, providing a great self-service model for small to large engi-
neering organizations. After aurora-build.sh has finished building all of the compo-
nents, you’ll find a file named aurora.pex located in the apache-aurora-0.9.0/dist
directory. Move this file to a suitable location on your workstation by running the fol-
lowing commands:

$ sudo mv apache-aurora-0.9.0/dist/aurora.pex

➥ /usr/local/aurora-client-0.9.0.pex
$ sudo ln -fns /usr/local/aurora-client-0.9.0.pex /usr/local/bin/aurora

If all is well, you should be able to run the command aurora --version and have it
return 0.9.0. If not, ensure that /usr/local/bin appears on your $PATH.

BUILDING AND INSTALLING THE AURORA ADMIN CLIENT

The second command-line tool that comes with Aurora, the Aurora admin client, is
designed for systems administrators and provides several tools for performing cluster
maintenance and overall cluster administration. To install the aurora-admin com-
mand-line tool to /usr/local/bin/aurora-admin, run the following commands:

$ sudo mv apache-aurora-0.9.0/dist/aurora_admin.pex

➥ /usr/local/aurora-admin-0.9.0.pex
$ sudo ln -fns /usr/local/aurora-admin-0.9.0.pex

➥ /usr/local/bin/aurora-admin

Now that you’ve built and installed the components that make up Aurora, let’s start
configuring each of them.

9.2.3 Configuring Aurora
Each component in Aurora, especially the scheduler, is highly configurable based on
your specific wants, needs, and environment. This section provides examples of how
you might configure Aurora, including the required (and some recommended) con-
figuration options for doing so.

CONFIGURING THE SCHEDULER
Aurora’s scheduler is responsible for interfacing with Mesos, launching tasks, and
allowing users to submit jobs, so it’s safe to say that most operations rely on it being up
and running. Let’s begin configuring Aurora by first configuring the scheduler and
ensuring the service is up and running.

NOTE Aurora expects to be run by an external supervisor process, such as sys-
temd, upstart, or supervisord. You should keep this in mind when building
and deploying Aurora in your own environment.

179Deploying Aurora

Table 9.2 includes the required configuration options, plus a few other important
options you might need when deploying the Aurora scheduler for your Mesos cluster.
For a complete listing of the configuration options available, you can also run the fol-
lowing command:

$ /usr/local/aurora-scheduler/bin/aurora-scheduler –help

To maintain state across each of the scheduler instances, Aurora uses an instance of
the replicated log present in Mesos. Therefore, you need to initialize a new replicated
log—dedicated to Aurora—on each of the Mesos masters. Running the following
command will initialize the log file at /var/db/aurora:

$ sudo mkdir -p /var/db && sudo mesos-log initialize --path=/var/db/aurora

Table 9.2 Required (and important) configuration options for the Aurora scheduler

Configuration option Description

-cluster_name An arbitrary name used to identify the Aurora cluster.

-mesos_master_address The ZooKeeper URL for detecting and connecting
to the Mesos master. For example:
zk://zk1:2181,zk2:2181,zk3:2181/mesos

-serverset_path ZooKeeper ServerSet path used for registration. For
example: /aurora/scheduler

-zk_endpoints A list of servers in the ZooKeeper ensemble to be used
with Aurora. For example: zk1:2181,zk2:2181,zk3:2181

-native_log_quorum_size The quorum size for the Aurora schedulers. If deploying
the Aurora schedulers on the same machines as the
Mesos masters, this would be the value of /etc/mesos-
master/quorum.

-native_log_file_path The location on disk for the Mesos replicated log used
by Aurora to maintain state.

-backup_dir The directory in which Aurora will store its backups.

-thermos_executor_path The path to the Thermos executor on a slave. The exec-
utor must be located at the same path on all slaves in
the cluster.

-thermos_executor_flags Additional options to pass to the Thermos executor.

-allowed_container_types The containerizers that can be used by Aurora. For our
cluster, this will be DOCKER,MESOS.

-framework_authentication_file Mesos authentication principal and secret (see
chapter 6).

-zk_digest_credentials A file containing credentials used to authenticate with
ZooKeeper (optional). Follows the format
username:password

180 CHAPTER 9 Deploying applications and managing scheduled tasks with Aurora

NOTE The location for the Mesos replicated log for Aurora is completely
arbitrary, but it must match the value for the -native_log_file_path config-
uration option passed to the Aurora scheduler.

Because Aurora’s configuration and startup is much more involved than that of Mara-
thon or Chronos (or, in some cases, even Mesos), I thought it best to include an exam-
ple script that can be used to launch the Aurora scheduler service. The script in the
following listing also includes some sane values for the configuration options covered
in table 9.1.

#!/bin/bash

AURORA_SCHEDULER_HOME=/usr/local/aurora-scheduler
export LIBPROCESS_PORT=8083
export JAVA_OPTS="-Djava.library.path=/usr/lib -Xms2g -Xmx2g"

AURORA_OPTS=(
-zk_endpoints=$(cut -d / -f 3 /etc/mesos/zk)
-mesos_master_address=$(cat /etc/mesos/zk)
-native_log_quorum_size=$(cat /etc/mesos-master/quorum)
-cluster_name=aurora-cluster
-http_port=8081
-serverset_path=/aurora/scheduler
-native_log_zk_group_path=/aurora/replicated-log
-native_log_file_path=/var/db/aurora
-backup_dir=/var/lib/aurora/backups
-vlog=INFO
-logtostderr
-allowed_container_types=DOCKER,MESOS
-thermos_executor_path=/usr/local/aurora-executor/thermos_executor.pex
-thermos_executor_flags="--announcer-enable

➥ --announcer-ensemble $(cut –d / -f 3 /etc/mesos/zk)"
)

exec "${AURORA_SCHEDULER_HOME}/bin/aurora-scheduler" "${AURORA_OPTS[@]}"

Note that the script in this listing is just one example of how you could configure this
service. Depending on how you configured Mesos, or if you’re deploying Aurora to
machines that aren’t also running the Mesos master daemon, this could be different
for your environment. In addition, you could also modify the previous script to take
the approach that Marathon and Chronos use, whereby all configuration options exist
as files on disk and the service script reads them in as arguments when the script is
executed. Either way, you then need to combine this with your service manager of
choice to run the scheduler.

 Because you have many deployment options and a lot of them come down to per-
sonal preference, let’s fire up the Aurora scheduler as a background process so you

Listing 9.1 Example Aurora scheduler startup script

The port used by the Mesos
scheduler driver (libmesos)
to communicate with the
master

JVM options;
in this case we
specify the
heap size and
the location to
libmesos.

181Deploying Aurora

can move forward. Assuming you saved the script from listing 9.1 as aurora-sched-
uler.sh, start the scheduler by running the following command:

$ chmod +x aurora-scheduler.sh
$ sudo ./aurora-scheduler.sh > /dev/null 2>&1 &

If all is well, you should see a framework registered with the name TwitterScheduler in
the Mesos web interface. Note that for brevity, all logging output in the previous com-
mand is being redirected to /dev/null. When you adapt this script to your service
manager of choice, be sure to redirect logs to a sane location for your system or cen-
tralized logging solution.

CONFIGURING THE THERMOS EXECUTOR AND OBSERVER
Out of the box, the Thermos executor doesn’t require any additional configuration; it
just needs to be deployed to the same path on every Mesos slave. But at the same time,
you can use numerous configuration options to fine-tune the executor. Because these
are options used for fine-tuning the executor and aren’t required for normal opera-
tion, I won’t cover them here. For a complete list of configuration parameters, run the
following command:

$ /usr/local/aurora-executor/thermos_executor.pex --long-help.

The Thermos observer, on the other hand, is a service separate from the executor that
runs on each of the Mesos slaves. The observer provides information about the run-
ning executors and tasks and requires some light configuration. Table 9.3 lists the
configuration options that you’ll need to set for the observer.

The previous table listed the most important options, but as with the executor,
there are additional options to fine-tune the observer that I won’t go into detail
here. For a complete listing of all available configuration parameters, run the fol-
lowing command:

$ /usr/local/aurora-executor/thermos_observer.pex --long-help

Table 9.3 Thermos observer configuration options

Configuration option Description

--root The root directory to search for the Thermos executor’s tasks.
Defaults to /var/run/thermos.

--mesos-root The Mesos root directory that Thermos executor sandboxes
are contained in. This should be set to the same directory as
--work_dir on the Mesos slaves. Defaults to /var/lib/mesos.

--port The port that the observer will listen on. Defaults to 1338.

--polling_interval_secs The interval between polling attempts of the Thermos executor’s
tasks. Defaults to five seconds.

182 CHAPTER 9 Deploying applications and managing scheduled tasks with Aurora

Depending on your preferences and environment, you’ll want to use an external
supervisor system to start the service and automatically respawn it if it fails. But to get
everything up and running as quickly as possible, you can fire up the Thermos
observer by running the following command:

$ sudo /usr/local/aurora-executor/thermos_observer.pex --port=1338

➥ --log_to_disk=NONE --log_to_stderr=google:INFO > /dev/null 2>&1 &

Now, let’s create the configuration file that will be used by the Aurora command-
line clients.

CONFIGURING THE CLIENT
The Aurora clients use JSON-formatted configuration files, where you define one or
more cluster configurations. By default, the client reads a file named clusters.json,
located at /etc/aurora/clusters.json or ~/.aurora/clusters.json. The structure of
clusters.json resembles the following:

[
 {
 "auth_mechanism": "UNAUTHENTICATED",
 "name": "aurora-cluster",
 "scheduler_zk_path": "/aurora/scheduler",
 "slave_root": "/var/lib/mesos",
 "slave_run_directory": "latest",
 "zk": "mesos-master-1,mesos-master-2,mesos-master-3"
 }
]

Multiple Aurora clusters can be specified in a single file by creating additional hashes
in the top-level array, each with a unique cluster name. The example here is enough
to get you up and running, but for the complete client configuration reference, see
http://aurora.apache.org/documentation/latest/client-cluster-configuration.

NOTE The ZooKeeper hosts list in clusters.json assumes that each ZooKeeper
instance is listening on the default port: 2181. Although an additional
zk_port option is available, I’ve intentionally left it out of the example;
Aurora 0.9.0 has a bug in the client whereby a custom port would be used
only for the last host in the list. For more information, see https://issues
.apache.org/jira/browse/AURORA-1405.

At this point, all of the Aurora components should be built, configured, and deployed
to your Mesos cluster and workstation. You should navigate to the following URLs to
ensure that the scheduler and observer services are up and running, and that their
web interfaces are accessible:

■ Aurora scheduler: http://mesos-master.example.com:8081/scheduler
■ Thermos observer: http://mesos-slave.example.com:1338

http://aurora.apache.org/documentation/latest/client-cluster-configuration
https://issues.apache.org/jira/browse/AURORA-1405
https://issues.apache.org/jira/browse/AURORA-1405
http://mesos-master.example.com:8081/scheduler
http://mesos-slave.example.com:1338

183Deploying applications

Assuming all is well, let’s start running through some practical examples of deploying
applications and scheduled jobs on Aurora.

9.3 Deploying applications
Today, more and more organizations are turning to technology to operate their busi-
ness more effectively. Whether that means delivering application enhancements to
users (internal and external), building data analysis pipelines for better insight into
user behavior, or building the next killer app, it’s important to have robust tools that
help you deploy changes quickly.

 Increasingly, individual engineering teams are tasked with deploying changes to
production—usually by an automated system that builds, tests, and deploys code—
to reduce delivery time. As a result, the typical “over the wall” approach to application
deployment is removed altogether; no longer does a developer need to wait for an
application administrator or systems administrator to deploy their new code.

 Aurora provides this sort of self-service application management to engineering
teams. Engineers are responsible for building their own Aurora configuration files
and—using Aurora’s command-line tools—deploying changes in a way that makes
sense for the given application. Aurora allows you to define an application’s configu-
ration and the number of instances that should be running, and perform rolling
upgrades of running applications to minimize downtime to users.

Service discovery when using Aurora
Service discovery with Aurora is a bit more complicated than the solutions you
learned about in chapters 7 and 8. Let’s take a moment to consider a few possible
ways to allow services to communicate with each other when using Aurora to deploy
them.

First, Aurora includes a built-in mechanism for allowing its executors to advertise ser-
vices into a ServerSet in ZooKeeper. Because this requires writing additional code
and services, I’ve intentionally left it out of this book. But more information on this
topic, including implementation details, is readily available at http://aurora.apache
.org/documentation/latest/user-guide/#service-discovery.

Second, TellApart has written a service named Aurproxy that has knowledge of
Aurora’s service-discovery mechanism. Aurproxy allows you to load-balance traffic to
application instances running on Aurora by using Nginx running in a Docker container.
For more information about Aurproxy, see https://github.com/tellapart/aurproxy.

Finally, as I first mentioned in chapter 7, Mesos-DNS is a DNS-based service-discov-
ery mechanism for Mesos that creates A and SRV records based on the information
about running tasks from Mesos itself. As such, Mesos-DNS automatically supports
Aurora, and makes for a great generic, multiframework solution to service discovery.
More information about Mesos-DNS can be found at http://mesosphere.github.io/
mesos-dns.

http://aurora.apache.org/documentation/latest/user-guide/#service-discovery
https://github.com/tellapart/aurproxy
http://mesosphere.github.io/mesos-dns
http://aurora.apache.org/documentation/latest/user-guide/#service-discovery
http://mesosphere.github.io/mesos-dns

184 CHAPTER 9 Deploying applications and managing scheduled tasks with Aurora

In contrast to the JSON-based REST API provided by Marathon and Chronos, Aurora
provides a powerful Python DSL that allows you to create and manage applications as
code. Because these definitions can use the full power of the Python programming
language, you can also create and reuse templates within and across teams. The next
few sections provide examples of how to configure and deploy applications by using
the Aurora DSL and command-line client.

TIP If you’re interested in learning how Twitter uses Aurora for its applica-
tion deployments, check out Bill Farner’s talk “Generalizing Software Deploy-
ment” from MesosCon 2015: www.youtube.com/watch?v=y1hi7K1lPkk.

9.3.1 Deploying a simple application
As I first introduced when covering Marathon in chapter 7, the supplementary materi-
als for this book include an example application named OutputEnv. This simple Ruby
web application outputs the environment variables for a given instance of the applica-
tion (a single Mesos task) as a formatted web page.

 To deploy this application on Aurora, you first need to create a configuration file
by using the Aurora DSL. In this file, you’ll define the role, environment, and job that
you want to deploy, and which cluster the application should run on. The following
listing shows how you might deploy this application using Aurora.

tarball = 'https://github.com/rji/mesos-in-action-code-samples/

➥ archive/master.tar.gz'

download = Process(
 name='download', cmdline=' '.join(['curl -LO', tarball]))

extract = Process(name='extract', cmdline='tar zxf master.tar.gz')

run = Process(name='run', cmdline="""
 cd mesos-in-action-code-samples-master/output-env-app && \
 bundle install --retry 3 && \
 PORT={{thermos.ports[http]}} bundle exec ruby app.rb""")

task = SequentialTask(
 processes=[download, extract, run],
 resources=Resources(cpu=0.1, ram=128*MB, disk=1*GB))

jobs = [
 Service(

cluster='aurora-cluster',
role='www-data',
environment='prod',
name='outputenv',
task=task,
instances=3)

]

Listing 9.2 Aurora configuration for the OutputEnv application

Download the
supplementary
code for this
book from
GitHub.

Extract
the

tarball.

Run the
commands to
launch the app,
substituting in
an available
port.

Create a new
SequentialTask
that executes
the download,
extract, and run
processes.

Create a new Service
definition for a
specific cluster, role,
and environment.

http://www.youtube.com/watch?v=y1hi7K1lPkk

185Deploying applications

The cluster name that you use in the configuration file must match an entry in your
Aurora client’s clusters.json file so that the Aurora command-line client knows how
to connect to that particular Aurora cluster. Assuming the following was saved as
outputenv.aurora, running the following command will deploy the application on
the cluster:

$ aurora job create aurora-cluster/www-data/prod/outputenv outputenv.aurora

If the application was deployed successfully, you should see output in your terminal
that resembles the following:

 INFO] Creating job outputenv
 INFO] Checking status of aurora-cluster/www-data/prod/outputenv
Job create succeeded: job url=http://mesos-master:8081/scheduler/
www-data/prod/outputenv

In the output from the Aurora client, you’ll see a job URL that you can navigate to in
order to get more information about the job that was just created. Let’s briefly explore
the Aurora web interface to get a bit more information about this application and
where it’s running in the cluster.

NOTE As you may recall from chapter 7, Ruby and Bundler must be present
on each Mesos slave for the OutputEnv application to run. This was used to
illustrate the difference between requiring dependencies on each of the
slaves in the cluster and bundling an application’s dependencies in a
Docker image.

EXPLORING THE WEB INTERFACE
By using your web browser to navigate to the job URL link provided by the com-
mand-line client, you’ll arrive at a job configuration page that looks similar to the
one shown in figure 9.2. This page provides an overview of the configuration for the
job that was just deployed, and information about each of the running instances of
the job.

 In the event that you updated the configuration for an already-deployed job,
Aurora will perform a rolling upgrade of the application, ensuring that each new
instance passes its health checks before an old instance is torn down. This process,
commonly referred to as a blue/green deployment, will display the new instances in green
until the update is complete. You would then be able to view the configurations side
by side to observe the differences between the two versions of the job.

 By clicking the link specified in the Host column for a particular instance, you can
open the page to the Thermos observer for the Mesos slave that the task is currently

186 CHAPTER 9 Deploying applications and managing scheduled tasks with Aurora

running on. Figure 9.3 explains the information available via the Thermos observer in
a bit more detail.

 The Thermos observer, as shown in figure 9.3, provides information about the run-
ning tasks and task configurations. Using this interface, you’re able to view the tasks’
sandboxes, stdout and stderr log files, and consumed resources.

Job configuration
details.

Task ID for a particular
instance. Clicking the link
opens a struct dump of the
particular task.

Job deployment status. Blue denotes
instances currently deployed; green
denotes instances being deployed.

The Mesos slave running a
particular instance. Clicking
the link opens the Thermos
observer running on the slave.

Figure 9.2 Job overview, configuration, and deployment status

187Deploying applications

TIP For more information on service configurations, check out the user guide
at http://aurora.apache.org/documentation/latest/user-guide.

You’ll notice that when deploying this application, the machines in the cluster need to
have a few packages already available: one or more Ruby runtimes and the Bundler
tool that Ruby uses to install application dependencies. In the last few years, Docker
has become a popular way to avoid additional cluster configuration and dependency
conflicts by allowing you to package all of your application code and dependencies
into a single container image.

 Now that you’ve deployed the OutputEnv application on an Aurora cluster, let’s
take a look at deploying Docker containers on Aurora, as well as some of the limita-
tions of Aurora’s Docker implementation present in version 0.9.0.

9.3.2 Deploying a Docker-based application

As of this writing, deploying Docker images by using Aurora is an experimental fea-
ture. Twitter uses cgroups in its environment, and native Docker support was only
recently introduced in Mesos (version 0.20.0, to be exact). Some basic functionality
that you get with Marathon and Mesos (mapping ports and volumes between the host

One-click access to the
standard output and
standard error for
each process

Get the current/final status, start and
end times, and resources consumed for
each process that makes up the task

Basic task information,
such as the status, user,
and port

View the task’s sandbox
(or chroot, in Aurora terms)
and configuration

Figure 9.3 Thermos observer information for a particular Aurora task

http://aurora.apache.org/documentation/latest/user-guide

188 CHAPTER 9 Deploying applications and managing scheduled tasks with Aurora

and the Docker container) isn’t implemented in this version of Aurora, but is planned
for a future release.

TIP There’s an effort to expose all of the DockerInfo fields from Mesos (Image,
Network, PortMapping, and so forth) in Aurora. You can track the progress of
this functionality at https://issues.apache.org/jira/browse/AURORA-1396.

For now, if your Docker container runs a service that needs to listen on a network
port, your best bet is to have the service within the Docker container listen on an
ephemeral port provided by the Mesos resource offer. You might consider building
your image in a way that you can set the listening port via an environment variable
(such as $PORT), or pass it in as an argument to the script in the container that starts
your service. An abbreviated way of doing this in the Aurora DSL might look like
the following:

p = Process(cmdline='./run_server.py --port {{thermos.ports[http]}}')
t = Task(processes=[p])
jobs = [
 Service(

task=t,
container=Container(docker=Docker(image='user/image:version'))

)
]

Another way you could go about launching Docker containers when using Aurora is
to skip the built-in Docker functionality altogether, instead opting to use the docker
run command directly; after all, it’s just another process. Because this method allows
you to use all the functionality currently built into Docker, the following listing dem-
onstrates how to do just that.

docker = Process(
 name='docker-run-nginx',
 cmdline='docker run -p {{thermos.ports[http]}}:80 nginx:1.9'
)

task = Task(
 processes=[docker],
 resources=Resources(cpu=0.1, ram=128*MB, disk=1*GB)
)

jobs = [
 Service(

cluster='aurora-cluster',
role='www-data',
environment='prod',
name='docker-nginx',
task=task

)
]

Listing 9.3 Launching a Docker container by using the Docker CLI

https://issues.apache.org/jira/browse/AURORA-1396

189Managing scheduled tasks

Assuming the code in the listing was saved as docker-nginx.aurora, you can run the
following command to launch this container on the cluster:

$ aurora job create aurora-cluster/www-data/prod/docker-nginx

➥ docker-nginx.aurora

NOTE In this particular example, you’re running the Nginx job as the www-
data user. If this user isn’t already a member of the docker group on the
Mesos slaves, you’ll get an error that the docker run command couldn’t con-
nect to the Docker daemon. You can add the user to the group by running
sudo usermod -a -G docker www-data.

If you navigate to the job URL provided by the Aurora client, you should see that the
Nginx container is running and Docker is bridging the ephemeral port offered by
Mesos to the port exposed by the Nginx container—in this case, port 80.

 Deploying applications (or services, in Aurora terms) is half of what it can do.
Aurora also provides support for scheduling Cron jobs on a cluster, much like the
Chronos framework covered in chapter 8. Let’s look at how to manage scheduled
tasks in Aurora.

9.4 Managing scheduled tasks
Unlike Chronos, Aurora takes a more traditional approach to running scheduled
jobs, commonly referred to as Cron jobs. It follows—and builds upon—the familiar
Cron schedule, with these additional features:

■ Automatic retry on failure—If an Aurora Cron job fails, it can be automatically
retried a number of times, based on the value provided to a task’s max_task
_failures attribute.

■ Collision policies—Control the scheduler’s behavior when a new Cron job is
attempting to start, but the previous instance hasn’t yet finished. This behavior
is controlled by setting a task’s cron_collision_policy attribute to KILL_
EXISTING or CANCEL_NEW.

■ Time-zone support—This cluster-wide option is specified as an option to the
Aurora scheduler and not an individual job. Therefore, it defaults to UTC, but
can be set using the -cron_timezone configuration option.

For more detailed information about Cron jobs within Aurora, including examples,
be sure to check out the documentation at http://aurora.apache.org/documentation/
latest/cron-jobs. For now, let’s cover some basic examples of creating Cron jobs, both
standalone and within a Docker container.

9.4.1 Creating a Cron job
In the Aurora DSL, creating a Cron job is similar to creating any other job, with the
exception of the few specific Cron attributes just covered. The following listing creates
a Cron job that comprises a Process, a Task, and a Job, just as you saw in the previous

http://aurora.apache.org/documentation/latest/cron-jobs
http://aurora.apache.org/documentation/latest/cron-jobs

190 CHAPTER 9 Deploying applications and managing scheduled tasks with Aurora

listing, except that you set a value for the cron_schedule attribute in the Job object.
Let’s take a look.

sleep = Process(
name='simple-sleep',
cmdline="""
echo "At the tone the time will be: $(date +'%r %Z')"
echo "Sleeping for 60 seconds."
sleep 60
"""

)

task = Task(
 processes=[sleep],
 resources=Resources(cpu=0.1, ram=16*MB, disk=1*MB)
)

jobs = [
 Job(

cluster='aurora-cluster',
role='www-data',
environment='prod',
name='simple-sleep',
cron_schedule='*/5 * * * *',
task=task

)
]

Assuming that the code in this listing was saved as simple-sleep-cron.aurora, you can
create this Cron job by running the following command:

$ aurora cron schedule aurora-cluster/www-data/prod/simple-sleep

➥ simple-sleep-cron.aurora

This command creates the Cron job within the Aurora scheduler, and runs the job on
the schedule provided (every five minutes). Aurora also allows you to run the job
manually using the Aurora command-line client. If you’d like to run the job on
demand, you can do so by running the following command:

$ aurora cron start aurora-cluster/www-data/prod/simple-sleep

Additional Cron subcommands are available in the Aurora client; these include
removing Cron jobs and killing the tasks of currently running jobs. For more informa-
tion on these additional features, run aurora cron -h.

9.4.2 Creating a Docker-based Cron job
Although I mentioned previously that Docker support is experimental, it’s rather
straightforward to run a command in a Docker container when using Aurora. Borrowing

Listing 9.4 Creating a Cron job

191Managing scheduled tasks

an example introduced in chapter 8, the following listing shows what it looks like to
deploy a Cron job that runs a given command within a Docker container.

script = 'https://raw.githubusercontent.com/rji/

➥ mesos-in-action-code-samples/master/email-weather-forecast.py'

install_python3 = Process(
name='install_python3',
cmdline='apt-get update && apt-get -y install python3'

)

download = Process(name='download', cmdline=' '.join(['curl -LO', script]))

run = Process(
name='run',
cmdline="""
export TO_EMAIL_ADDR=user@example.com
export FROM_EMAIL_ADDR=weather@example.com
export ZIP_CODE=97201
export MAIL_SERVER=mail.example.com:25
export MAIL_USERNAME=weather@example.com
export MAIL_PASSWORD=ItsTopSecret

python3 email-weather-forecast.py
"""

)

task = SequentialTask(
 processes=[install_python3, download, run],
 resources=Resources(cpu=0.5, ram=1*GB, disk=768*MB)
)

jobs = [
 Job(

cluster='aurora-cluster',
role='www-data',
environment='prod',
name='daily-weather-report',
cron_schedule='0 0 * * *',
task=task,
container=Container(docker=Docker(image='python:2.7.10'))

)
]

In this example, I’ve added a new container attribute to the job, specifying that the
SequentialTask that you defined should run within the python:2.7.10 Docker
image from Docker Hub. Assuming that the code in this listing was saved as daily-
weather-cron.aurora, run the following command to create the job on the Aurora
cluster:

$ aurora cron schedule aurora-cluster/www-data/prod/daily-weather-report

➥ daily-weather-cron.aurora

Listing 9.5 Creating a Cron job that runs in a Docker container

192 CHAPTER 9 Deploying applications and managing scheduled tasks with Aurora

WARNING Aurora copies thermos_executor.pex, which depends on Python
2.7, into the task’s sandbox. If Python 2.7 isn’t present in the Docker con-
tainer, the executor will never register with the Mesos slave, and the task will
be stuck in the STAGING state.

Hopefully, those few examples provided enough information to get started deploying
your own applications and Cron jobs on Aurora. As always, the Aurora project main-
tains a fair amount of documentation, including a complete reference of all possible
options and attributes for both services and Cron jobs. For more information, be sure to
check out http://aurora.apache.org/documentation/latest/configuration-reference.

9.5 Administering Aurora
Aurora is an opinionated Mesos framework in that it expects to run most, if not all,
services on a given Mesos cluster. In some ways, this is a good thing: as a systems
administrator, it gives you a single way to maintain user authentication and authoriza-
tion, set resource quotas, and even influence scheduling decisions so that a Mesos
slave can be safely taken offline for maintenance. In the next two sections, I’ll cover
these features in more detail.

9.5.1 Managing users and quotas
One of Aurora’s strengths is its support for multiple users, having grown out of Twit-
ter’s need to support a large engineering organization. Aurora integrates with the
open source Apache Shiro security framework to provide authentication and authori-
zation for its users. Shiro allows for authentication with a variety of data sources,
including support for LDAP and Active Directory out of the box. Its pluggable nature
allows you to implement your own as well, if you should need to do so.

 As of version 0.9.0, Aurora provides two authentication mechanisms: basic HTTP
authentication and Kerberos. To keep things simple throughout this section, I’ll limit
the scope to basic HTTP authentication and an INI-based authorization file located on
the machine running the Aurora scheduler. If you’re interested in more-complex
authentication and authorization schemes (such as using Kerberos), please refer to
aurora.apache.org/documentation/0.9.0/security.

AUTHENTICATION
At its absolute simplest, Aurora’s security file contains a Users section that allows you
to specify usernames and passwords like this:

[users]
alice = topsecretpw

NOTE Aurora’s security.ini file stores user credentials in plaintext. Be sure to
set the permissions on this file to the least amount required for the scheduler
process to read it. There’s a ticket open in the Aurora bug tracker to allow
for hashed and salted passwords in security.ini; for more information, see
https://issues.apache.org/jira/browse/AURORA-1179.

http://aurora.apache.org/documentation/latest/configuration-reference
https://issues.apache.org/jira/browse/AURORA-1179
http://aurora.apache.org/documentation/0.9.0/security

193Administering Aurora

To configure the Aurora command-line clients for basic HTTP authentication, users
must create an entry in their ~/.netrc file with Aurora’s hostname and your credentials:

machine aurora-cluster.example.com
login alice
password topsecretpw

The machine name in the .netrc file must match the name or IP address that the
Aurora scheduler used to register with the Mesos master. If you have a load balancer
in front of Aurora, or refer to the scheduler by a single DNS name, you can set this
with the -hostname option when starting the scheduler.

TIP For more information on the .netrc file, see www.gnu.org/software/
inetutils/manual/html_node/The-_002enetrc-file.html.

AUTHORIZATION

Along with user authentication, Aurora allows you to configure arbitrary roles that
users may belong to. These roles are based on the roles available via the Aurora Thrift
API, whose documentation can found by accessing the Aurora scheduler at http://
aurora.example.com:8081/apiclient/api.html.

 In the following example, the user Alice is granted admin-level access to the
Aurora cluster, and Bob is granted access to only the accounting role. Carol isn’t
added to any roles:

[users]
alice = secret, admin
bob = secret, accounting
carol = secret

[roles]
admin = *
accounting = thirft.AuroraAdmin:setQuota

MANAGING RESOURCE QUOTAS

In Aurora, production-level tasks are allowed to preempt nonproduction tasks; a pro-
duction task can kill a lower-priority nonproduction task if it requires additional clus-
ter resources. This allows various environments within Aurora (development, staging,
production, and so on) to safely use the same cluster without running the risk of
impacting production workloads.

 Resource quotas are required for production jobs and reserve a pool of cluster
resources in which that job will run. Two subcommands within the Aurora admin cli-
ent are used to set and increase quota:

aurora-admin set_quota <role> <cpus> <mem> <disk>
aurora-admin increase_quota <role> <cpus> <mem> <disk>

http://aurora.example.com:8081/apiclient/api.html
http://aurora.example.com:8081/apiclient/api.html
http://www.gnu.org/software/inetutils/manual/html_node/The-_002enetrc-file.html
http://www.gnu.org/software/inetutils/manual/html_node/The-_002enetrc-file.html

194 CHAPTER 9 Deploying applications and managing scheduled tasks with Aurora

If cluster security was set up as mentioned in the Authentication and Authorization
sections, you’ll need to be in the admin role or the accounting role in order to make
changes to resource quotas.

 As an Aurora user, you can determine the allocated quota for a specific role, as well
as identify production and nonproduction resources being consumed, by using the
Aurora user client:

aurora quota get devcluster/example_role

9.5.2 Performing maintenance

One of the administrative features available in Aurora is the ability to perform sched-
uler-level maintenance on a set of machines in the cluster. This allows you to place a
host in maintenance mode, drain the tasks and reschedule them on other nodes in the
cluster, perform your maintenance, and return the machine back to normal service.

 This functionality is exposed through the Aurora admin client and comprises the
following subcommands:

■ host_deactivate—Puts a host or set of hosts into maintenance mode. This
effectively de-prioritizes the host in scheduling decisions made by Aurora, but
tasks may still be scheduled onto a deactivated host depending on available
cluster capacity.

■ host_drain—Kills the running tasks on a host or set of hosts, and prevents the
scheduler from scheduling any new tasks on it. This subcommand is best com-
bined with host_deactivate, where you de-prioritize scheduling on a large set
of machines and then use host_drain to perform maintenance in smaller
batches.

■ host_activate—Removes a host or set of hosts from maintenance mode and
resumes normal scheduling.

■ host_status—Gets the maintenance status of a host or set of hosts. Will be
one of SCHEDULED (host_deactivate), DRAINED (host_drain), or NONE
(host_activate).

Using the Aurora admin client, each of these subcommands can be run against a
given cluster by using the following format:

$ aurora-admin <subcommand> --hosts=host.example.com[, ...] <cluster_name>

Some of these subcommands have additional options that you may find helpful. For
example, each subcommand mentioned here can take a text file of hosts to place in
maintenance mode, and the host_drain subcommand can accept an optional argu-
ment to run a script on a host after all its tasks have been drained. For full usage infor-
mation, run aurora-admin help <subcommand>.

195Summary

9.6 Summary
In this chapter, you learned about deploying applications and scheduled tasks by
using the Apache Aurora framework for Mesos. Here are a few things to remember:

■ Aurora consists of four main components: a scheduler, an executor, an observer,
and a client. The executor and observer are both components of a project
known as Thermos, which is included with the Aurora distribution.

■ The Aurora scheduler is responsible for accepting and declining resource
offers from the Mesos master. It is highly configurable, and launches tasks
within the Thermos executor on an available Mesos slave.

■ The Thermos observer is a service that runs on the Mesos slave and polls the
running executors for task information. It provides one-stop access to a task’s
logs, sandbox, and resource-consumption statistics.

■ The Aurora user client is commonly distributed to individual users and engi-
neers who need to manage services and Cron jobs on an Aurora cluster. For full
usage information, run aurora -h.

■ The Aurora admin client is commonly distributed to systems administrators
needing to maintain the cluster, including setting and modifying user quotas
and performing host maintenance. For full usage information, run aurora-
admin help.

■ When running services or Cron jobs within a Docker container, ensure that
Python 2.7 is present so the Thermos executor can register with the Mesos
slave. Otherwise, tasks will get stuck in the STAGING state.

■ Aurora uses the Apache Shiro security framework for authentication and autho-
rization. Out of the box, Aurora provides support for unauthenticated requests,
basic HTTP authentication, and Kerberos.

■ Production-level resource quotas can be set on a per-role basis, and will pre-
empt nonproduction tasks if necessary.

■ Using the Aurora admin client, you can place hosts in maintenance mode to
influence scheduling decisions about a set of hosts in the cluster. Using the vari-
ous subcommands available, you can drain the tasks from a host before perform-
ing maintenance and restore the host to normal service after your infrastructure
maintenance is complete.

Because Aurora is a powerful framework that scales to hundreds of users, I couldn’t
cover every possible feature and configuration in this chapter. Fortunately, the
Aurora project provides extensive documentation at http://aurora.apache.org/
documentation/0.9.0.

 The next (and final) chapter provides a primer on the Mesos API and how to get
started developing your own Mesos framework.

http://aurora.apache.org/documentation/0.9.0
http://aurora.apache.org/documentation/0.9.0

196

Developing a framework

Welcome to the last and final chapter of Mesos in Action. Up to this point, I’ve cov-
ered topics such as how Mesos provides a new architecture for datacenter comput-
ing, how to deploy Mesos, and how to deploy applications and Cron jobs. This
chapter provides a primer on how to start developing your first Mesos framework.

 Unlike previous chapters, this chapter is more development-oriented than the
operations-oriented material I’ve presented up to this point. Before we proceed,
I’ll assume that you have some experience with software development and with
reading and writing code in the Python programming language. Although Mesos
provides bindings for other languages, such as C++, Java, and Scala, and there are
community efforts around bindings for languages such as Erlang and Go, I’m using
Python here because it’s generally easy to read and understand.

This chapter covers
■ The components that make up a Mesos

framework
■ The Mesos Scheduler and Executor APIs
■ Writing a framework by using the Python

bindings for Mesos

197Understanding framework basics

 This chapter provides an introduction to the components that make up a Mesos
framework, and presents some considerations to keep in mind when writing your own
framework. Because of the amount of functionality exposed in the Mesos APIs, it isn’t
possible to cover everything in this chapter; we’d probably need a separate book dedi-
cated to framework development. After reading this chapter, you should have a better
understanding of the Mesos APIs, and should be able to run—and build upon—the
example code included here.

 Ready? Let’s get started.

10.1 Understanding framework basics
Mesos frameworks are distributed systems that use Mesos to receive cluster resources.
The term framework in Mesos refers to any application that registers with the Mesos
master and runs on top of the Mesos cluster. There are two components that make up
a Mesos framework—the scheduler and the executor :

■ Scheduler—Registers with the Mesos master and implements the logic required
for accepting or declining resource offers from the master, and deciding which
tasks will use which resources.

■ Executor—Registers with the Mesos slave and implements the logic for manag-
ing a task’s lifecycle, including launching and killing the task and providing sta-
tus updates. When a process first starts, the executor sends an update that the
task is running; when it exits, the executor sends an update that the task has fin-
ished or failed.

In its most basic form, this interaction between Mesos, the scheduler, and the execu-
tor is depicted in figure 10.1.

NOTE This chapter provides information on developing both custom sched-
ulers and executors. It’s worth noting early on that you don’t necessarily need
to write a custom executor to write your own framework; it’s perfectly rea-
sonable to execute commands in a shell, using the built-in Mesos Command-
Executor. I’ll discuss both of these approaches a bit later in this chapter.

Mesos mastersScheduler

Mesos slave

Executor

Tasks

Framework

Figure 10.1 The scheduler and executor that make up a framework, in the
context of the Mesos master and slave

198 CHAPTER 10 Developing a framework

Let’s consider for a moment the lifecycle of a resource offer in the context of the
scheduler. In figure 10.2, you can see a cyclical process in which Mesos slaves offer
up available resources, and a framework scheduler launches executors using the
resource offers.

When Mesos slaves advertise available resources to the master, the master makes some
decisions based on the fair share of resources assigned to the registered frameworks.
The resources are then offered to a framework’s scheduler, which includes the logic
for accepting or declining resource offers. If a resource offer is accepted, the sched-
uler is responsible for launching the executors on the slaves, which in turn launch the
framework’s tasks.

 In addition to the scheduler and executor, there’s a third requirement, although
this requirement is (potentially) independent of the framework itself: you need a way
serve up the custom executor code so that Mesos can use it. Fortunately, you have a
few options:

■ HTTP—If the scheduler can/will run a web server, you can bundle the executor
code with the scheduler and serve it over HTTP. The Mesos fetcher will down-
load the code into the sandbox before attempting to call the executor.

■ Network file system—The Mesos fetcher also supports downloading the executor
code from FTP and Amazon’s Simple Storage Service (S3).

Mesos masters

Scheduler

Mesos slave

Executor

8 CPUs

32 GB RAM

250 GB disk

Tasks

Mesos slave

Executor

8 CPUs

32 GB RAM

250 GB disk

Tasks

Mesos slave

Executor

8 CPUs

32 GB RAM

250 GB disk

Tasks

Available compute resources

Master offers
resources to
scheduler.

Resource offer accepted,
launch executors/tasks

Figure 10.2 The scheduler launches executors and tasks based on resource offers.

199Understanding framework basics

■ Distributed file system—Using a distributed file system, such as HDFS, you’re able
to distribute the executor independently of the scheduler, allowing it to be
less coupled.

■ From the slave’s local file system, or a mount point—If you already have a configura-
tion management tool, such as Puppet or Chef, or a common mount point on
every slave in the cluster (such as an NFS export), you can reference the execu-
tor code as a path on disk. If you decide to go this route, you need to refer to
the executor by its absolute path (which must be the same on all hosts), or set the
--frameworks_home configuration option for the mesos-slave daemon and use
a relative path to the executor.

10.1.1 When and why would you write a framework?

Similar to how the Linux kernel schedules resources (CPU, memory, disk, ports) on a
single machine, Mesos is a distributed kernel that schedules resources (CPU, memory,
disk, ports) across multiple machines. Instead of applications using the Linux APIs,
they use the Mesos APIs. To think about it another way, Mesos provides a common set
of primitives for running distributed applications.

 With the popularity of Marathon, Chronos, and Aurora, it might make sense to
reuse these frameworks for various engineering teams to deploy applications and
Cron jobs. But each of these frameworks needs to use the Mesos APIs that you’re
learning about in this chapter in order to schedule workloads on a Mesos cluster.
Because you already know how Marathon, Chronos, and Aurora work, let’s con-
sider a couple of services that have been adapted to the Mesos model of resource
scheduling:

■ Jenkins—The team at Twitter wrote a Mesos plugin for Jenkins, the popular
continuous integration (CI) system. Because Jenkins distributes its builds to a
set of machines attached to a master, it matches quite well with the Mesos
model of scheduling resources. The benefit? Jenkins is now able to schedule
the CPU, memory, and disk resources it needs alongside other frameworks
running on a larger Mesos cluster, instead of requiring its own statically parti-
tioned cluster.

■ HDFS—The team at Mesosphere maintains many Mesos frameworks, including
one for running the Hadoop Distributed File System (HDFS) on top of Mesos.
Normally, Hadoop (like Jenkins) would require its own cluster of machines to
run. The logic to ensure that the HDFS NameNodes start up before the Data-
Nodes, and that each instance must run on a unique Mesos slave, can all be built
into the scheduler, and HDFS can use the storage available on a large fleet of
Mesos slaves. Mesos provides primitives out of the box, such as fault tolerance
and high availability, ensuring that the HDFS nodes can be rescheduled on a
healthy machine in the event one of them fails.

200 CHAPTER 10 Developing a framework

If you’re looking to deploy applications and scheduled jobs to a Mesos cluster, you
probably don’t need to be developing your own framework, opting instead to use an
off-the-shelf solution. After all, developing a new distributed system is a nontrivial
task, and creating a production-grade framework is even more difficult. But if you’re
trying to write a new Mesos-native application, port an existing service to Mesos, or
your application requires specialized scheduling logic, your best bet is to write your
own framework.

10.1.2 The scheduler implementation

The scheduler is the component of the framework that’s responsible for the following:

■ Receiving resource offers from the master
■ Accepting a resource offer and launching tasks, or declining the offer
■ Receiving and responding to status updates from tasks

Internally, Mesos serializes messages between components by using a system called pro-
tocol buffers, a project originally developed at Google. Although the full explanation of
protocol buffers is outside the scope of this book, using it allowed the Mesos develop-
ers to write bindings for Mesos in multiple languages while still conforming to a com-
mon message format implemented for the Mesos API. These messages can be found
in the Mesos code base at https://github.com/apache/mesos/blob/0.22.2/include/
mesos/mesos.proto and are generally well documented.

 I’ve included the most important messages here so that you can get a better
understanding of how they work when you’re getting ready to write and run your
own scheduler. Using mesos.proto as a reference should prove helpful while devel-
oping your framework.

RESOURCE OFFERS

Because Mesos is responsible for scheduling cluster compute resources across multi-
ple frameworks, the most logical place to start is with the format of the resource offers
themselves. The Offer message describes the amount of resources available on a
Mesos slave. In addition to listing the available resources, the offer includes the host-
name and the unique ID of the Mesos slave:

message Offer {
 required OfferID id
 required FrameworkID framework_id
 required SlaveID slave_id
 required string hostname
 repeated Resource resources
 repeated Attribute attributes
 repeated ExecutorID executor_ids
}

https://github.com/apache/mesos/blob/0.22.2/include/mesos/mesos.proto
https://github.com/apache/mesos/blob/0.22.2/include/mesos/mesos.proto

201Understanding framework basics

You might recall from chapter 4 that I covered customizing the resources on a given
Mesos slave by using three distinct types: scalars, ranges, and sets. The Resource mes-
sage, which is part of the Offer, describes these resource types:

message Resource {
 required string name
 required Value.Type type
 optional Value.Scalar scalar
 optional Value.Ranges ranges
 optional Value.Set set
 optional string role [default = "*"]
}

Because all scheduling depends on resource offers in Mesos, the resourceOffers()
method is one of the few methods that you’re required to implement in your own
scheduler; this is where you’ll start implementing your scheduling logic:

def resourceOffers(self, driver, offers):
 for offer in offers:

logging.info("Received offer with ID: {}".format(offer.id.value))
logging.info("Declining offer ID {}".format(offer.id.value))
driver.declineOffer(offer.id)

The previous code example prints a logging message and declines all offers as they’re
received. Typically, you’d check a queue of pending work to determine whether the offer
could be used and whether it met the needs of the task to be launched. Section 10.2
covers resourceOffers() and the other methods that make up the Scheduler API in
more detail.

FRAMEWORK INFO
The FrameworkInfo message is responsible for describing the framework. There are
only two required options that you have to specify when creating a framework: the
user that it will run as, and the name of the framework:

message FrameworkInfo {
 required string user
 required string name
 optional FrameworkID id
 optional double failover_timeout [default = 0.0]
 optional bool checkpoint [default = false]
 optional string role [default = "*"]
 optional string hostname
 optional string principal
 optional string webui_url
}

Other options in FrameworkInfo include the hostname that the scheduler is register-
ing as, the principal to identify the framework, and the URL to the scheduler’s web
interface (if any). If you specify a value for the framework’s webui_url, you’ll be able
to quickly navigate to the scheduler’s web interface from within the Mesos UI.

202 CHAPTER 10 Developing a framework

 In Python, you’ll set each of these options by creating a new instance of Framework-
Info() and passing it to the MesosSchedulerDriver, which the next section covers in
more detail:

framework = mesos_pb2.FrameworkInfo()
framework.user = ''
framework.name = 'ExampleFramework'
framework.checkpoint = True
framework.principal = 'ExampleFramework'
...
driver = MesosSchedulerDriver(..., framework, ...)
...

If you specify an empty string for framework.user (as I did previously), Mesos will
assume that you meant the user on the system currently running the framework.

SCHEDULER DRIVER

MesosSchedulerDriver is responsible for connecting to and interacting with the
Mesos master. After you instantiate the driver, you’ll use it to either accept an offer
and launch some tasks on a slave by using launchTasks(), or decline the offer with
the declineOffer() method if there isn’t any work to be done:

class ExampleScheduler(mesos.interface.Scheduler):
 ...
 def resourceOffers(self, driver, offers):

for offer in offers:
driver.declineOffer(offer.id)

 ...
driver = MesosSchedulerDriver(ExampleScheduler(), framework, master)
driver.run()

Section 10.2 covers the various methods that make up the Scheduler API and Sched-
ulerDriver.

10.1.3 The executor implementation

The other component that makes up a Mesos framework is the executor. In short, the
executor is responsible for the following:

■ Launching and killing tasks
■ Providing status updates about a task back to the scheduler

Out of the box, Mesos includes a built-in CommandExecutor that launches commands
as arguments to /bin/sh, as you might expect if you ran the command from your lap-
top or from the console of a server directly. In this section, I’ll cover the custom exec-
utor implementation in Mesos.

 Because a shell can launch most processes, you might be wondering why you need
to write a custom executor for your framework. Usually, it’s a good idea to do this

203Understanding framework basics

when you need to perform health checks of the task you’re launching, when you want
to run some code written in your framework’s programming language, or when your
process needs more setup than simply running in a shell. Building on the health-
check scenario, you could send status updates about the task back to the scheduler
based on the status of the health checks, thus allowing the scheduler to make addi-
tional decisions about how to handle a particular situation.

 Because health checks are the first use case that comes to mind and they map
nicely with the various task statuses, let’s start by going over the TaskStatus message.

EXECUTOR TASK STATUS

To update the status of a task, a Mesos executor uses the TaskStatus message. At a
minimum, a task’s status update requires that you specify the task ID and a state for
the status:

message TaskStatus {
 ...
 required TaskID task_id
 required TaskState state
 optional string message
 optional Source source
 optional Reason reason
 optional bytes data
 optional SlaveID slave_id
 optional ExecutorID executor_id
 optional double timestamp
 optional bytes uuid
 optional bool healthy
}

Because task states are used across multiple Mesos components, the possible states a
task can be in are defined as a separate TaskState message in mesos.proto:

enum TaskState {
 TASK_STAGING
 TASK_STARTING
 TASK_RUNNING
 TASK_FINISHED
 TASK_FAILED
 TASK_KILLED
 TASK_LOST
 TASK_ERROR
}

The first state, TASK_STAGING, should be used only internally by Mesos and shouldn’t
be used by your framework’s status updates. Furthermore, each of the statuses after
TASK_RUNNING (for example, TASK_FINISHED, TASK_FAILED, and so forth) is consid-
ered to be a terminal state. This implies that the task is no longer running and that
Mesos should clean up after the task, including scheduling the task’s sandbox for gar-
bage collection and offering the consumed resources to another task or framework.

204 CHAPTER 10 Developing a framework

 The task ID is available in the executor’s launchTask() method, which is discussed
more in section 10.3. For now, you can see a basic implementation of launching a task
and providing a status update in the following code snippet:

def launchTask(self, driver, task):
 update = mesos_pb2.TaskStatus()
 update.task_id.value = task.task_id.value
 update.state = mesos_pb2.TASK_RUNNING
 driver.sendStatusUpdate(update)
 ...

After sending the initial TASK_RUNNING update to the driver, you then perform any of
the logic required for running the task, sending additional status when needed.

DEFINING THE EXECUTOR THAT A SCHEDULER WILL USE

A framework’s scheduler and executor are loosely coupled, but the scheduler does
need to know a bit about the executor that will be launching its tasks. ExecutorInfo
contains information such as the executor ID, the command to execute, and the
resources that will be allocated:

message ExecutorInfo {
 required ExecutorID executor_id
 optional FrameworkID framework_id
 required CommandInfo command
 optional ContainerInfo container
 repeated Resource resources
 optional string name
 optional string source
 optional bytes data
 optional DiscoveryInfo discovery
}

As part of the ExecutorInfo message, there’s also CommandInfo, which is responsible
for describing how a task will be executed:

message CommandInfo {
 message URI {
 required string value = 1;
 optional bool executable = 2;
 optional bool extract = 3 [default = true];
 }

 message ContainerInfo {
 required string image = 1;
 repeated string options = 2;
 }

 optional ContainerInfo container = 4;
 repeated URI uris = 1;
 optional Environment environment = 2;
 optional bool shell = 6 [default = true];
 optional string value = 3;
 repeated string arguments = 7;
 optional string user = 5;
}

205Understanding framework basics

To use a custom executor when launching tasks, you first need to instantiate a new
executor based on the ExecutorInfo message and pass it to the instance of your
scheduler:

executor = mesos_pb2.ExecutorInfo()
executor.executor_id.value = 'ExampleExecutor'
executor.command.value = os.path.abspath('./example-executor.py')
executor.name = 'Example Executor'
...
driver = MesosSchedulerDriver(ExampleScheduler(executor) ...)

By passing the executor to an instance of your scheduler’s class, you’ll have access to it
when creating tasks (via TaskInfo).

NOTE In this example, and in other places throughout this chapter, I’ve
assumed that we’re developing this framework in a development environ-
ment, with the Mesos master and slave running on the same machine. As
such, the scheduler and the executor are both available on the same file sys-
tem. You may have noticed the uris field in the CommandInfo message; to use
the Mesos fetcher, check out the method executor.command.uris.add().
That method will allow you to download the executor’s code into the sandbox
by using the various methods described in the beginning of this chapter.

TASK INFO

The TaskInfo message describes a task and is a bit different from the other messages
I’ve talked about so far. The task info is passed from the scheduler to the executor (via
driver.launchTasks()). It requires either ExecutorInfo to be set if working with a
custom executor, or CommandInfo if using the built-in Mesos CommandExecutor:

message TaskInfo {
 required string name
 required TaskID task_id
 required SlaveID slave_id
 repeated Resource resources
 optional ExecutorInfo executor
 optional CommandInfo command
 optional ContainerInfo container
 optional bytes data
 optional HealthCheck health_check
 optional Labels labels
 optional DiscoveryInfo discovery
}

A task is created as the result of a resource offer being received by the scheduler, and
the scheduler constructing a task and sending it back to the MesosSchedulerDriver:

def resourceOffers(self, driver, offers):
 for offer in offers:

task = mesos_pb2.TaskInfo()
task_id = str(uuid.uuid4())

206 CHAPTER 10 Developing a framework

task.task_id.value = task_id
task.slave_id.value = offer.slave_id.value
task.name = "task {}".format(task_id)
task.executor.MergeFrom(self.executor)

cpus = task.resources.add()
...

mem = task.resources.add()
...

driver.launchTasks(offer.id, [task])

Now, when a task is launched on a Mesos cluster, it will launch the custom executor to
execute your code, where you have more control over health-checking the service and
providing status updates.

 More messages for the scheduler and executor are defined in the mesos.proto
file, but by this point, you should have an understanding of how Mesos is offering
resources and launching tasks to frameworks. You might want to refer back to
mesos.proto and the Mesos API for Python during the development process, or use an
IDE like IntelliJ IDEA or PyCharm, both available from JetBrains (jetbrains.com), to
help with development.

 In the next section, you’ll apply the knowledge you’ve gained up to this point
while learning to develop a framework of your own.

10.2 Developing a scheduler
As you’ve learned throughout this book, Mesos follows a two-tier scheduling model:
the master offers resources to a scheduler, and a scheduler decides to accept or
decline the offer based on whether there’s any work to be done (tasks to be
launched). The scheduler can use the information offered to it as a means to make
decisions about when and where to schedule specific workloads; in the case of the
HDFS framework, the scheduler was developed in a way that each HDFS DataNode
must run on a unique Mesos slave. This ensures that all of the DataNode tasks can’t
run on a single node, and that HDFS doesn’t suffer from an outage should that node
go offline.

 As mentioned briefly in the last section, the scheduler and executor are con-
nected to Mesos with an abstraction known as a driver; there’s a separate driver for
the scheduler (known as SchedulerDriver) and for the executor (ExecutorDriver).
In figure 10.3, you can see how a task launched by the scheduler is launched as a new
process on the slave.

 The sections that follow demonstrate (with code) how to use the APIs and drivers
available in Mesos to launch your own custom scheduler and executor, and run tasks
on the cluster. In the interest of brevity, the text covers the minimum viable imple-
mentations, implementing only the methods that are required to get the scheduler

http://jetbrains.com

207Developing a scheduler

working. More complete examples are included with the supplementary code for
this book.

10.2.1 Working with the Scheduler API

The Mesos interface predefines several methods that you’ll use when developing your
own scheduler. These methods, which I refer to as the Scheduler API, allow you to
either accept the default logic provided by Mesos, or implement your own logic by
subclassing mesos.interface.Scheduler and overriding the methods that you wish to
reimplement.

 You can view the entire interface, along with detailed descriptions of how each
method is used (and should be used) by checking out the Mesos source code.1 For a
full working skeleton that you can use as a starting point when developing your own
framework, check out the examples located in the chapter10/ directory.

OVERVIEW OF THE SCHEDULER API
Each method in the Scheduler API roughly explains what it’s used for, and the data
that will be passed in as arguments to the method. Borrowing from (and abbreviating)
the source code for the Mesos Python interface, the available methods (and their
arguments) in the Scheduler API are as follows:

class Scheduler(object)
 def registered(self, driver, frameworkId, masterInfo)
 def reregistered(self, driver, masterInfo)
 def disconnected(self, driver)

1 https://github.com/apache/mesos/blob/0.22.2/src/python/interface/src/mesos/interface/
__init__.py#L34-L129

MinimalScheduler()

mesos-master daemon

Mesos master node

MesosSchedulerDriver(

MinimalScheduler())

mesos-slave daemon

Mesos slave node

MinimalExecutor()

Tasks

MinimalExecutorDriver(

MinimalExecutor())

Resources

(CPU, RAM, …)

Figure 10.3 Interactions
between the scheduler,
scheduler driver, executor,
and executor driver

https://github.com/apache/mesos/blob/0.22.2/src/python/interface/src/mesos/interface/__init__.py#L34-L129
https://github.com/apache/mesos/blob/0.22.2/src/python/interface/src/mesos/interface/__init__.py#L34-L129

208 CHAPTER 10 Developing a framework

 def resourceOffers(self, driver, offers)
 def offerRescinded(self, driver, offerId)
 def statusUpdate(self, driver, status)
 def frameworkMessage(self, driver, executorId, slaveId, message)
 def slaveLost(self, driver, slaveId)
 def executorLost(self, driver, executorId, slaveId, status)
 def error(self, driver, message)

When a given event occurs, whether the scheduler has registered(), reregis-
tered(), or received a frameworkMessage(), the API allows you to accept the default
logic or implement your own. The only method that you’re required to implement is
resourceOffers().

WRITING YOUR OWN SCHEDULER

The following listing provides a minimal example for developing your own Mesos
scheduler. The listing also includes information for using a custom executor, which
you’ll implement in the next section.

from __future__ import print_function
import sys
import uuid
from threading import Thread
from mesos.interface import Scheduler, mesos_pb2
from mesos.native import MesosSchedulerDriver

class MinimalScheduler(Scheduler):
 def __init__(self, executor):

self.executor = executor

 def resourceOffers(self, driver, offers):
for offer in offers:

task = mesos_pb2.TaskInfo()
task_id = str(uuid.uuid4())
task.task_id.value = task_id
task.slave_id.value = offer.slave_id.value
task.name = "task {}".format(task_id)
task.executor.MergeFrom(self.executor)
task.data = "Hello from task {}!".format(task_id)

cpus = task.resources.add()
cpus.name = 'cpus'
cpus.type = mesos_pb2.Value.SCALAR
cpus.scalar.value = 0.1

mem = task.resources.add()
mem.name = 'mem'
mem.type = mesos_pb2.Value.SCALAR
mem.scalar.value = 32

tasks = [task]
driver.launchTasks(offer.id, tasks)

Listing 10.1 Developing a minimal Mesos scheduler

Implement a new
class by subclassing
mesos.interface.Scheduler.

Accept an ExecutorInfo()
object as an argument.

In the MinimalScheduler
class, you must implement
the resourceOffers() method.

One or more
resource offers
are available as an
array in the
method.

Construct a new
TaskInfo() object
with CPUs,
memory, executor,
name, and data.

Use a specific
offer to launch
one or more
tasks.

209Developing a scheduler

def main():
 executor = mesos_pb2.ExecutorInfo()
 executor.executor_id.value = 'MinimalExecutor'
 executor.name = executor.executor_id.value
 executor.command.value = '/path/to/executor-minimal.py'

 framework = mesos_pb2.FrameworkInfo()
 framework.user = ''
 framework.name = 'MinimalFramework'
 framework.checkpoint = True
 framework.principal = framework.name

In the previous example, the scheduler accepts every resource offer it receives and
uses the offer to launch one or more tasks, with each task allocated 0.1 CPUs and 32
MB RAM. After defining the scheduler logic, the executor and framework objects in
main()need to be passed to MesosSchedulerDriver(), which is responsible for com-
municating with the Mesos master. I’ll cover the SchedulerDriver in the next section.

10.2.2 Working with the SchedulerDriver

The Mesos scheduler driver provides an interface for connecting the scheduler code
to the Mesos master. It’s used to do the following:

■ Manage the scheduler lifecycle by using run(), stop(), and so forth
■ Interact with Mesos by using launchTasks(), declineOffer(), and so forth

In the interest of brevity, this chapter doesn’t cover all the details of the scheduler
driver. You can learn about the various methods in the interface and detailed descrip-
tions about what they’re used for by checking out the relevant code in the Mesos
Python bindings:2

class SchedulerDriver(object)
 def start(self)
 def stop(self, failover=False)
 def abort(self)
 def join(self)
 def run(self)
 def requestResources(self, requests)
 def launchTasks(self, offerIds, tasks, filters=None)
 def killTask(self, taskId)
 def declineOffer(self, offerId, filters=None)
 def reviveOffers(self)
 def acknowledgeStatusUpdate(self, status)
 def sendFrameworkMessage(self, executorId, slaveId, data)
 def reconcileTasks(self, tasks)

2 https://github.com/apache/mesos/blob/0.22.2/src/python/interface/src/mesos/interface/
__init__.py#L132-L244

Create a new
ExecutorInfo
object.

Create a new
FrameworkInfo
object.

https://github.com/apache/mesos/blob/0.22.2/src/python/interface/src/mesos/interface/__init__.py#L132-L244
https://github.com/apache/mesos/blob/0.22.2/src/python/interface/src/mesos/interface/__init__.py#L132-L244

210 CHAPTER 10 Developing a framework

Listing 10.2 provides a minimal example for invoking the scheduler driver, which is
responsible for registering the scheduler with the master. The scheduler driver can be
run from anywhere, provided that the machine running the scheduler has access to
the Mesos master, and vice versa. The scheduler driver takes a few arguments, which
include the instance of the scheduler subclass, the framework info, and the Mesos
master to connect with.

def main():
 ...
 driver = MesosSchedulerDriver(

MinimalScheduler(executor), framework, 'localhost:5050')

 status = 0 if driver.run() == mesos_pb2.DRIVER_STOPPED else 1
 driver.stop()
 sys.exit(status)

It’s worth noting that the scheduler driver will block further execution, so it’s gener-
ally a good idea to run the driver in its own thread. The examples provided in the
GitHub repository for this book provide an example of how to do this.

10.3 Developing an executor
When developing your own Mesos framework, writing a custom executor isn’t a strict
requirement. Instead, your scheduler could use the built-in CommandExecutor in
Mesos by modifying TaskInfo() when the task is created, like this:

task.command.value = 'echo "Hello, world!" && sleep 30'

The CommandExecutor takes the value of the command and appends it to /bin/sh -c,
which is probably fine for many cases. But in the interest of completeness, I’ll cover
the Executor API in this chapter as well.

10.3.1 Working with the Executor API
The Mesos executor interface predefines several methods that you’ll use when devel-
oping your own scheduler. These methods, which I refer to as the Executor API, allow
you to either accept the default logic provided by Mesos, or implement your own logic
by subclassing mesos.interface.Executor.

 You can view the entire interface, along with detailed descriptions about how each
method is used (and should be used) by checking out the Mesos source code.3 For a

Listing 10.2 Connecting the scheduler to Mesos with the scheduler driver

3 https://github.com/apache/mesos/blob/0.22.2/src/python/interface/src/mesos/interface/
__init__.py#L246-L310

Create a new
MesosScheduler-
Driver.

Run the
MesosScheduler-
Driver.Stop the

driver.

https://github.com/apache/mesos/blob/0.22.2/src/python/interface/src/mesos/interface/__init__.py#L246-L310
https://github.com/apache/mesos/blob/0.22.2/src/python/interface/src/mesos/interface/__init__.py#L246-L310

211Developing an executor

full working skeleton that you can use as a starting point when developing your own
framework, check out the examples located in the chapter10/ directory.

OVERVIEW OF THE EXECUTOR API
Each method name in the Executor API is roughly self-explanatory, as are the argu-
ments that are passed to the method. Borrowing from the source code for the Mesos
Python interface, the available methods (and their arguments) in the Executor API
are as follows:

class Executor(object)
 def registered(self, driver, executorInfo, frameworkInfo, slaveInfo)
 def reregistered(self, driver, slaveInfo)
 def disconnected(self, driver)
 def launchTask(self, driver, task)
 def killTask(self, driver, taskId)
 def frameworkMessage(self, driver, message)
 def shutdown(self, driver)
 def error(self, driver, message)

When a given event occurs, whether the executor has registered() or detected that
it has disconnected() from the Mesos slave, the API allows you to accept the default
logic in Mesos or implement your own.

WRITING YOUR OWN EXECUTOR
The following listing provides a minimal example for developing your own Mesos
executor. After the executor is registered, it can be reused across tasks; note that we
print the task.data as part of this executor, where task.data is any arbitrary data
that’s passed in all the way from the scheduler.

from __future__ import print_function
import sys
import time
from threading import Thread
from mesos.interface import Executor, mesos_pb2
from mesos.native import MesosExecutorDriver

class MinimalExecutor(Executor):
 def launchTask(self, driver, task):

def run_task():

Listing 10.3 Developing a minimal Mesos executor

Implement a new
class by subclassing
mesos.interface.Executor.

Implement the
launchTasks() method
to run the task.

Provide a status
update for the task
back to the scheduler.

User-defined code
would commonly
appear here.

update = mesos_pb2.TaskStatus()
update.task_id.value = task.task_id.value
update.state = mesos_pb2.TASK_RUNNING
driver.sendStatusUpdate(update)

print(task.data)
time.sleep(30)

update = mesos_pb2.TaskStatus()
update.task_id.value = task.task_id.value

212 CHAPTER 10 Developing a framework

update.state = mesos_pb2.TASK_FINISHED
driver.sendStatusUpdate(update)

thread = Thread(target=run_task, args=())
thread.start()

In the previous example, an executor is created for a host and runs a given task. In
this case, the executor prints the value of task.data as passed in all the way from the
scheduler, when the task was originally created. But to connect this executor with
the Mesos slave, you need to invoke the executor driver.

10.3.2 Working with the executor driver
The Mesos executor driver provides an interface for connecting the executor code to
the Mesos slave. It’s used to do the following:

■ Manage the executor lifecycle by using run(), stop(), and so forth
■ Launch tasks by using launchTask() and provide status updates by using Task-

Status()

You can check out the various methods of the interface, including detailed descrip-
tions about what each one does, in the Mesos code base.4 For now, let’s look at the var-
ious methods available to the driver:

class ExecutorDriver(object)
 def start(self)
 def stop(self)
 def abort(self)
 def join(self)
 def run(self)
 def sendStatusUpdate(self, status)
 def sendFrameworkMessage(self, data)

In the following code snippet, I’ve provided some boilerplate code that can be used to
invoke the executor driver, which is responsible for registering the executor to the
Mesos slave. This code is part of the executor code, which means it would be executed
on the Mesos slave when the scheduler launches a task. The scheduler driver takes
one argument—an instance of your custom executor:

if __name__ == '__main__':
 driver = MesosExecutorDriver(MinimalExecutor())
 sys.exit(0 if driver.run() == mesos_pb2.DRIVER_STOPPED else 1)

4 https://github.com/apache/mesos/blob/0.22.2/src/python/interface/src/mesos/interface/
__init__.py#L314-L367

The task should
be run in its own
thread or process.

Create a new
instance of the
MesosExecutorDriver.

Run the
driver.

https://github.com/apache/mesos/blob/0.22.2/src/python/interface/src/mesos/interface/__init__.py#L314-L367
https://github.com/apache/mesos/blob/0.22.2/src/python/interface/src/mesos/interface/__init__.py#L314-L367

213Running the framework

With a minimal (but working!) implementation of both a scheduler and an executor,
let’s take a look at how to test out your framework code in a development environ-
ment. The next section covers a common Vagrant-based development environment,
and some things to keep in mind when creating production-ready frameworks.

10.4 Running the framework
Now that you’ve had a tour of the Mesos APIs and how to write code against them, let’s
go over how to run your code in a development environment. Most commonly, you
can either build Mesos locally or install it from packages, and run the Mesos master
and slave on your laptop. I prefer a more repeatable (and disposable) development
environment, which is why I usually develop in a Vagrant environment.

10.4.1 Deploying in development
The team at Mesosphere has a development environment that they’ve named Playa
Mesos. Out of the box, this Vagrant environment installs Mesos, Marathon, Chro-
nos, and Docker, and—fortunately for us—also provides the Mesos native libraries
for Python.

BRINGING UP THE VAGRANT ENVIRONMENT

First, you need to install Vagrant and VirtualBox, if you don’t already have them installed.
Each project is open source and can be downloaded by using the following links:

■ www.vagrantup.com
■ www.virtualbox.org

Next, clone the Playa Mesos GitHub repository by running the following command:

$ git clone https://github.com/mesosphere/playa-mesos

By default, Playa Mesos attempts to install the latest packaged version of Mesos from
the Mesosphere repositories. For the purposes of this book (which covers Mesos
0.22.2), that might not be desired. To ensure that Mesos 0.22.2 is installed when
you’re bringing up the Vagrant box, modify the hash in config.json to contain the fol-
lowing line:

"mesos_release": "0.22.2-0.2.62.ubuntu1404"

Finally, bring up the machine by running the following command:

$ vagrant up --provision

TESTING OUT THE MINIMAL FRAMEWORK

The provisioning process takes a little while to download and install all of the packages
required, so please be patient. After the machine has finished the provisioning process,
you should be able to access Mesos by navigating to http://10.141.141.10:5050. If all is
well, let’s move on.

http://10.141.141.10:5050
http://www.vagrantup.com
http://www.virtualbox.org

214 CHAPTER 10 Developing a framework

 SSH into the running Vagrant box and clone the Git repository for this book:

$ vagrant ssh
vagrant@mesos$ git clone https://github.com/rji/

➥ mesos-in-action-code-samples
vagrant@mesos$ cd mesos-in-action-code-samples/chapter10

Now, let’s go ahead and run the scheduler:

vagrant@mesos$./scheduler-minimal.py zk://localhost:2181/mesos

OBSERVING OUTPUT

If all is well, the scheduler should have registered with the Mesos master, accepted one
or more resource offers, and launched one or more tasks. If you navigate over to the
Mesos web interface, you should see that your framework is registered and has been
allocated a certain number of resources, as shown in figure 10.4.

If you open up the sandbox for a particular task, you should see output similar to the
following:

Hello from task 2c863b8a-1290-4849-958f-a3f2261e184a!
Hello from task d5aa1d8d-ea07-45f9-a703-d0e57ff88a22!
Hello from task aedc6839-4d44-47ec-8a23-fc7a20f1cd0b!

You’ll note that you’re seeing output from several tasks in the standard output for the
executor. Because you’re running on only a single node, Mesos has created a single
instance of your custom executor, and runs the tasks within it. In our case, because the
code is a simple print(task.data), you’re seeing the UUID for each task as the stan-
dard output for this instance of the executor.

Figure 10.4 The MinimalFramework is registered with the Mesos master, and three tasks are running.

215Running the framework

10.4.2 Considerations for a production deployment
Although this chapter is just a primer on framework development, I want to leave you
with a few parting notes on what you can do to add some production-quality features
to your framework. In short, I’ll provide a couple of pointers on making your sched-
uler highly available, and how you can authenticate with a Mesos cluster that has
framework authentication enabled. But as I mentioned previously, Mesos frameworks
are really distributed systems, and one chapter isn’t enough space to cover developing
a production-ready framework.

HIGH AVAILABILITY
Although Mesos provides a means for frameworks to reregister with the master using
the same framework ID, that alone doesn’t mean that a deployed framework is highly
available; that logic needs to be built into your own framework before the scheduler
driver registers with the master.

 One common way to ensure that only one instance of your scheduler is registered is
to elect a leading instance by using ZooKeeper. The registered instance persists its
framework ID (as assigned by Mesos) into ZooKeeper, and if it fails, a surviving instance
can then reregister using the same framework ID, allowing the newly elected instance to
connect to the running tasks. You can find more information on the ZooKeeper website
(http://zookeeper.apache.org/doc/current/recipes.html#sc_leaderElection).

 On the Mesos side of things, you’ll need to set a few additional options. Specifi-
cally, these include the following:

■ Set the framework’s failover_timeout to a value greater than 0.
■ Enable framework checkpointing (checkpoint=True).
■ When stopping the MesosSchedulerDriver for a particular instance, set

failover=True.

FRAMEWORK AUTHENTICATION

An optional feature of Mesos frameworks is known as framework authentication, which
you first learned about in chapter 6. Framework authentication allows you to define a
principal and a secret for a framework to use when registering with a Mesos master,
and gives systems administrators a way to control the frameworks registering with a
specific cluster:

message Credential {
 required string principal
 optional bytes secret
}

If framework authentication is enabled on the cluster, you need to first create a
Credential() object, and then pass it in as an argument to MesosSchedulerDriver,
like this:

...
credential = mesos_pb2.Credential()
credential.principal = os.getenv('EXAMPLE_PRINCIPAL')

http://zookeeper.apache.org/doc/current/recipes.html#sc_leaderElection

216 CHAPTER 10 Developing a framework

credential.secret = os.getenv('EXAMPLE_SECRET')
...
driver = MesosSchedulerDriver(
 ExampleScheduler(), framework, master, credential)
driver.run()

10.5 Summary
In this chapter, you learned about developing a Mesos framework. I covered topics
such as why you might want to write your own framework, and the Scheduler and
Executor APIs. Here are a few things to remember:

■ Mesos frameworks are composed of a scheduler and an executor. The sched-
uler and executor are implemented by subclassing mesos.interface.Scheduler
and mesos.interface.Executor, respectively.

■ In the scheduler, the only method that you’re required to override is resource-
Offers(). This is where the bulk of the scheduling logic will take place.

■ In the executor, the only method that you’re required to override is launch-
Task(). Any code launched in this method should be run in a separate thread
or process.

■ The custom scheduler and executor are connected to Mesos by using Mesos-
SchedulerDriver and MesosExecutorDriver.

■ To achieve high availability for your scheduler, consider using the leader elec-
tion recipe found on the ZooKeeper website. By persisting the framework ID (as
assigned by Mesos) into ZooKeeper, another instance of the scheduler can
reregister using the same ID in the event a failover occurs.

If you’re looking for examples of developing a scheduler and executor in other lan-
guages such as C++, Go, Haskell, Java, and Scala, you might want to check out the
RENDLER example framework, located at https://github.com/mesosphere/rendler.
The Mesos project also maintains some basic framework development documenta-
tion, which can be found at http://mesos.apache.org/documentation/latest/app-
framework-development-guide.

 Well, that’s all, folks! Thanks for reading Mesos in Action, and I hope that you’ve
found this book helpful in understanding the Mesos architecture, deploying it in your
own datacenter, and running applications and Cron jobs on top of it. A list of Mesos
frameworks and related tools known at the time of writing, including language bind-
ings, is included in appendix B.

https://github.com/mesosphere/rendler
http://mesos.apache.org/documentation/latest/app-framework-development-guide
http://mesos.apache.org/documentation/latest/app-framework-development-guide

217

appendix A
Case study: Mesosphere

DCOS, an enterprise
Mesos distribution

Throughout this book, you’ve learned about the open source Apache Mesos proj-
ect and how it enables fine-grained resource scheduling for large clusters of
machines in a datacenter. You’ve also learned about various use cases for Mesos,
including the execution of large-scale data-processing jobs, the deployment of
applications and containers, and the running of scheduled tasks. But by this point,
you may be feeling overwhelmed about the sheer number of moving parts in such a
system, and concerned about finding ways to ensure that certain versions of compo-
nents are compatible with specific versions of others. The ideas and frameworks
presented throughout part 3 of this book have been a primer on datacenter opera-
tions: application management, load balancing, security and access control, and
even an introduction to distributed systems development.

 This appendix provides a case study on the Datacenter Operating System
(DCOS): an innovative, enterprise-grade, distributed operating system—based on
Mesos—being built by Mesosphere. I cover topics such as how DCOS provides a
turnkey Mesos solution for organizations of all sizes; how DCOS handles package
management for distributed systems; and how you can use Jenkins on DCOS to
develop a continuous delivery pipeline for deploying your own applications and
containers, thus reducing the time it takes to get changes into production.

A.1 Introduction to DCOS
Although open source adoption within organizations seems to be trending over the
past several years, and this book prepares you for deploying a Mesos cluster in your

218 APPENDIX A Case study: Mesosphere DCOS, an enterprise Mesos distribution

own organization, some enterprises are interested in purchasing turnkey solutions
that come with software support contracts. Others are accepting of open source tech-
nologies, but don’t mind going with an enterprise solution if it offers significant
added value. With DCOS, Mesosphere is building enterprise software atop the open
source Mesos project to help organizations scale their infrastructure and automate
their application deployments, while still providing the comfort and convenience of
24/7 customer support, thoroughly tested components, and convenient tools for
users and administrators.

 DCOS combines open source projects—several of which I’ve mentioned through-
out this book—and commercial-only components to deliver a Mesos cluster that’s easy
to manage and deploy, both for on-premises and cloud installations, thus allowing you
to quickly deploy applications and containers. In DCOS, these components have all
been tested together to ensure a stable platform, and the engineers at Mesosphere
have written production-ready configurations for each of them so you don’t have to.

NOTE This appendix covers DCOS 1.4, the current stable version at the time
of writing.

Mesosphere offers DCOS in two flavors:

■ Community edition (CE)—A free version of DCOS that runs on Amazon Web Ser-
vices (AWS) and is being expanded to additional providers including Microsoft
Azure and Google Cloud Platform.

■ Enterprise edition (EE)—An enterprise version of DCOS that runs on premises or
in the cloud, and is billed on a per-node basis. DCOS EE includes additional
desirable features such as 24/7/365 support, Kerberos authentication, custom
installation and configuration, and even emergency patches (if needed).

Before I get into this book’s capstone example of continuous delivery using Jenkins
on DCOS, let’s go over the details of the DCOS architecture. Having read this book, the
concepts and components should, for the most part, already be familiar. I revisit each
of them briefly in the next section within the context of DCOS and, in some cases,
within the context of Jenkins.

A.1.1 Understanding the DCOS architecture

In developing and shipping DCOS, Mesosphere configures Mesos similarly to how I
first covered it in chapter 3, with either a single master or with three masters for high
availability. In addition to the Mesos master daemon, the DCOS masters also run
administrative services that I cover later in this section. Depending on the size of your
workloads, you then attach an appropriate number of DCOS agents to the masters.
Where this begins to differ from an open source Mesos deployment is that DCOS also
includes one or more public nodes, configured with the Mesos role slave_public.

 The role of the public node is to provide you with a means for running reverse
proxies, load balancers, and other external-facing services on a dedicated node (or set

219Introduction to DCOS

of nodes), allowing you to place a public DCOS node in your DMZ to serve user traffic,
while the remainder of the cluster—the nodes running your applications—remain
private. You can visualize this sort of deployment by taking a look at figure A.1.

 Because the public node is sending resource offers to the DCOS master with the
role slave_public, the only thing you need to do to run apps on this DMZ node is to
add the following field to your application’s marathon.json:

"acceptedResourceRoles": ["slave_public"]

Although DCOS has more components than I’ve depicted in the diagram, you should
already be familiar with how Mesos uses ZooKeeper and how Mesos-DNS publishes
task information via DNS, so I intentionally left these out of the diagram in the interest
of clarity. But the next few sections provide a bit more information on how each of the

Just like Mesos, DCOS can have multiple
masters for high availability. Each of the
masters runs an instance of Mesos-DNS,
ZooKeeper, Marathon, and Admin Router.

The bulk of the nodes in a DCOS cluster will be “private” nodes,
which run your various workloads. Any services you install on
DCOS run in containers on the private nodes, not on the
masters, and are available via Mesos-DNS.

DCOS clusters have at least one
“public” node, which is meant
to run services that should be
exposed to external users, such
as load balancers and
reverse proxies.

External

DNS
Internal

users

DCOS masters

DCOS node

(private)

DCOS node

(private)

Web UICLI DCOS node

(public)

Figure A.1 High-level representation of a DCOS deployment

220 APPENDIX A Case study: Mesosphere DCOS, an enterprise Mesos distribution

main components in DCOS—Mesos, Marathon, Mesos-DNS, ZooKeeper, and a reverse
proxy called Admin Router—work within the context of DCOS.

MESOS

At the heart of DCOS is Mesos, the distributed systems kernel that I’ve covered
throughout this book. Mesos is responsible for abstracting resources from individual
machines and offering them directly to frameworks, but like the kernel of an operat-
ing system, it’s just one component. Mesosphere is a significant contributor to the
open source Apache Mesos project.

MARATHON
In any operating system is a subsystem for managing long-running services. RHEL
has systemd; Ubuntu has Upstart; DCOS has Marathon. On DCOS, Marathon runs
the various services that you install on the cluster, in addition to any applications
you might also deploy. These services, running in containers on one of the private
nodes, register themselves to the leading Mesos master (which can be found by que-
rying Mesos-DNS for leader.mesos, but I’ll get to that in a minute). If an instance of
the framework’s scheduler happens to crash, or the machine that it’s running on
fails, Marathon automatically schedules the task on another node and launches
the container.

 The idea of Mesos frameworks running on top of another Mesos framework might
sound a bit confusing, but figure A.2 should help you better understand the concept.
Take note of the Jenkins framework running on top of Marathon.

DCOS Marathon

Spark Jenkins Marathon HDFSChronos

Private

node

Private

node

Private

node

Mesosphere DCOS

The tasks for the various
DCOS services (Mesos
services) running on
Marathon run on private
nodes in containers.

Various services run atop
a Marathon deployment
built into DCOS. These
services then register as
Mesos frameworks, and
receive offers directly.

At the heart of DCOS
is Mesos, which schedules
cluster resources and offers
them to applications and
services.

Private

node

Private

node

Private

node

Private

node

Figure A.2 A built-in Marathon instance runs DCOS services (Mesos frameworks). Individual instances of
Marathon can be run atop DCOS Marathon, providing individual teams with dedicated instances on which to
deploy their applications.

221Introduction to DCOS

For Jenkins to be deployed on DCOS, a few things happen:

1 A new Marathon application is created to run the Jenkins master. For this exam-
ple, let’s assume that the Jenkins master will run inside a Docker container.

2 Marathon launches an instance of the Jenkins master on one of the DCOS agents.
3 After Jenkins is up and running, the Mesos plugin registers with the underlying

Mesos master, just as if it were running on a dedicated server somewhere else in
your infrastructure.

4 After Jenkins is registered, it can accept resource offers and launch tasks on the
DCOS agents.

Now, I know this seems like a bit of a high-level scenario; it’s all within the context of
Marathon. Don’t worry about these details for now. I provide additional details on
how to install and run Jenkins later in this appendix. For now, let’s move on to how
DCOS handles service discovery with Mesos-DNS.

MESOS-DNS
I first introduced the problem of service discovery in chapter 7, where applications
might not necessarily know which host another, dependent service (such as a data-
base) is running on. Each of the DCOS masters runs an instance of Mesos-DNS, which
polls Mesos for information about its running tasks and publishes that information via
DNS. Mesos-DNS provides both A records to identify which host a task is running on,
and SRV records that include the host IP, protocol, and port number. Because Mesos-
DNS connects directly to the leading Mesos master under the hood, and not to a spe-
cific Mesos framework, it automatically provides DNS records for tasks running across
multiple frameworks.

ZOOKEEPER

Mesos—and as a result, many Mesos frameworks—rely on a ZooKeeper ensemble for
leader election, coordination, and to maintain state. Because of these dependencies,
which could be owed to ZooKeeper’s reputation in distributed systems coordination,
DCOS also includes ZooKeeper, but builds upon it by including Exhibitor, the Zoo-
Keeper supervisor and configuration manager developed at Netflix that I first intro-
duced in chapter 6. Other than potentially configuring your own framework to work
on DCOS, chances are you won’t need to interact with the ZooKeeper ensemble all
that much.

ADMIN ROUTER

One of the complexities in deploying and administering a Mesos cluster and several
frameworks is keeping track of which hosts and ports each of the components is run-
ning and listening on. As you may recall from chapter 6, I suggested the possibility of
using HAProxy in front of the Mesos masters so that your monitoring systems could
use a single DNS name to communicate with the current leader. I suggested a similar
approach for Marathon and Chronos in chapters 7 and 8. Admin Router is Meso-
sphere’s solution for this problem.

222 APPENDIX A Case study: Mesosphere DCOS, an enterprise Mesos distribution

 Admin Router is responsible for acting as a reverse proxy to various DCOS services,
but instead of using ports, it uses named URIs. When you install the Jenkins service for
DCOS, it will be available at http://dcos.example.com/service/jenkins; there’s no
need to worry about which port the scheduler is running on! Most user interactions
with DCOS will either occur via Admin Router, or at least use it to gather information
about the cluster (for SSHing into a specific node, for example). This way, you can
limit the number of services that are exposed outside the cluster’s network.

TIP The code for Admin Router is open source and can be found at https://
github.com/mesosphere/adminrouter-public.

Although I’ve talked about how Mesosphere combines these various components to
make for a stable and robust Mesos deployment, the real value begins to be apparent
when you have clearly defined interaction points with the system for administrators
and users alike.

A.1.2 Interacting with DCOS

When you take a moment to consider the base components that you use to interact
with a traditional operating system, such as Red Hat Enterprise Linux or Ubuntu, the
components can largely be broken down into the following three categories:

■ Package management—A package format (rpm, deb), package manager (yum,
apt), and a set of base repositories (base, main). You may also optionally
enable experimental or testing repositories, both from the vendor and from
third parties.

■ Command-line interface—A shell that’s launched when a user logs in (bash, sh,
zsh) that can be used for interacting with the system.

■ Graphical user interface—An optional graphical user interface for monitoring
and administering the system.

In DCOS, each of these operating system components still exists, but at a different
layer of abstraction. Let’s take a look at each of these in a bit more detail to under-
stand how they work in a distributed system such as Mesos.

PACKAGE MANAGEMENT

At the time of this writing, Mesosphere provides two package repositories for DCOS,
named Universe and Multiverse. These repositories host production-ready and exper-
imental packages, respectively. A package’s metadata in one of these repositories is a
JSON object that can be processed by the DCOS CLI and understood by Marathon’s
REST API, which isn’t all that different from what you learned about application defini-
tions in Marathon in chapter 7.

 Some of the services available for DCOS—Cassandra, HDFS, and Kubernetes, to
name a few—require nontrivial amounts of effort to deploy effectively. The team
at Mesosphere, using these package repositories, provides and maintains turnkey

http://dcos.example.com/service/jenkins
https://github.com/mesosphere/adminrouter-public
https://github.com/mesosphere/adminrouter-public

223Introduction to DCOS

solutions for deploying these services in your own datacenter in a fully automated,
fault-tolerant manner.

 The documentation for the Universe repository covers the schema quite nicely, so
I won’t cover it all here. But if you’re interested in creating your own packages for
DCOS or understanding this schema in more detail, check out the documentation at
http://mesosphere.github.io/universe.

COMMAND-LINE INTERFACE

The DCOS CLI can be installed on your laptop or workstation and interacts with vari-
ous services in DCOS. It provides functionality for managing packages, services, and
nodes in a DCOS cluster. DCOS services are capable of installing their own DCOS sub-
commands, but a few notable, built-in subcommands are included here:

■ config—Get and set configuration options for the DCOS CLI.
■ package—Install, manage, update, and uninstall DCOS packages.
■ node—List and SSH into the nodes belonging to the DCOS cluster.
■ marathon—Deploy and manage Marathon applications.

For example, to install the Jenkins package on DCOS using the CLI, you would run the
following command:

$ dcos package install --yes jenkins

That’s it! No provisioning additional infrastructure, and no need to know where in
the cluster Jenkins will run. Everything else has been taken care of for you by the pack-
age’s maintainer. For full usage for a given subcommand, run the command dcos
help <subcommand>.

GRAPHICAL USER INTERFACE

Although the DCOS CLI allows you to fully administer the operating system from the
command line, the web interface provides information about the cluster, including
installed services, running tasks, and nodes belonging to the cluster. Figure A.3 shows
the main dashboard of the DCOS UI, including cluster CPU and memory allocation,
task failure rate, service health, running tasks, and the number of connected nodes.

 Additional tabs on the left side of the dashboard allow you to explore a service’s
resource allocation on the cluster, as well as the resource utilization and health of
individual nodes.

TIP If you’d like to spin up your own DCOS cluster, you can find more infor-
mation on how to do so at mesosphere.com/product.

One of the nice things about DCOS is that it gives you the power of Mesos with addi-
tional enterprise-ready features on top. Having read through this book, you’ve not
only learned how to deploy and use Mesos, but in a way, also learned a lot about DCOS
in the process, perhaps without even realizing it.

http://mesosphere.github.io/universe
http://mesosphere.com/product

224 APPENDIX A Case study: Mesosphere DCOS, an enterprise Mesos distribution

Now, as the book winds down, let’s go over the final lesson you’ll learn in this text:
using Jenkins with DCOS (and Mesos and Marathon, for that matter!) to continuously
test and deploy changes to an application so that you and your engineering team can
ship new features and bug fixes to production, quickly and easily.

A.2 Continuous deployment with Jenkins and Marathon
A common theme I’ve covered throughout this book is how Mesos allows you to sim-
plify operations by abstracting the resources from multiple machines and represent-
ing them as a single entity. I’ve covered application platforms such as Marathon and
Aurora and included a few example applications that you could use to try out each of
these projects. But up to this point, you haven’t been able to use concepts covered in
multiple chapters in a cohesive, end-to-end example.

 I aim to present a use case for the knowledge you’ve gained up to this point. By the
end of this appendix, you’ll explore how to use Jenkins, a popular, open source con-
tinuous integration system, along with Mesos, Marathon, and DCOS, to poll for code
changes to a Git repository and automatically trigger new builds of Docker images for
your software projects. Assuming the build completed successfully, the new Docker

Figure A.3 Overview of the DCOS web interface

225Continuous deployment with Jenkins and Marathon

image will be pushed up to Docker Hub, and a new version will be deployed to Mara-
thon, and as a result, Mesos. You’ll have automated the pain out of your application
deployments so that you can focus your time and effort on writing code instead.

 If any of that sounds like something you might be interested in, great! Let’s get
started.

A.2.1 Preparing DCOS for continuous application deployments

Building on what you learned about DCOS previously, this section presents a use case
in which you’ll use Jenkins running on DCOS to continuously build and deploy
changes to an example HTML and CSS application included with this book’s supple-
mentary materials. I’ll also introduce you to another project named Marathon-LB,
which is similar to Marathon’s servicerouter.py script that automatically configures
and reloads a HAProxy load balancer. Throughout this section, you’ll build a small
infrastructure in which to host applications and load-balance user traffic, just by run-
ning a few commands and writing a Jenkins build script. I’ve depicted this a bit more
clearly in figure A.4.

Marathon performs a rolling upgrade of
the application. Marathon-LB dynamically
builds its configuration based on the
running tasks; therefore, user traffic
gets routed to the new instances.

Changes are
introduced to
a project’s Git
repository.

Jenkins polls the
Git repository for
changes and triggers
a new build.

Jenkins deploys
the new version
of the application
via Marathon.

Users

Marathon-LBMarathonJenkinsGit repository

App instances

(green)

App instances

(blue)

Figure A.4 Continuous deployment pipeline using Git, Jenkins, Marathon, and Marathon-LB

226 APPENDIX A Case study: Mesosphere DCOS, an enterprise Mesos distribution

I’m going to demonstrate how to perform this example by using a DCOS cluster for
running Jenkins and deploying the example web app. If you’d like to follow along
using the Mesos cluster you learned about (and possibly provisioned by reading this
book), you should take the time to ensure the following:

■ You’ll need at least one “public node” that Marathon-LB will run on. Typically,
this node would be placed in a DMZ and receive traffic from the public internet
(or from your internal users). For this, I recommend a dedicated Mesos slave,
configured with --default_role=slave_public.

■ You’ll need to have Marathon and Mesos-DNS installed on the Mesos masters.
Although this isn’t strictly required, you might consider deploying Marathon as
a means to run other Mesos frameworks, including one or more instances of
Marathon.

■ You should have the DCOS CLI installed on your workstation. Note that DCOS
CLI also works with open source Mesos deployments. Configuration instruc-
tions for this are available in the project’s README file, located at https://
github.com/mesosphere/dcos-cli.

After configuring the DCOS CLI with your cluster’s URL, use it to install the Marathon,
Marathon-LB, and Jenkins packages by running the following commands:

$ dcos package update
$ dcos package install --yes marathon
$ dcos package install --yes marathon-lb
$ dcos package install --yes jenkins

After a short time, each of these services will be visible via the DCOS Marathon
instance. New instances of Jenkins and Marathon will be running on top of the Mara-
thon instance built into DCOS, and Marathon-LB will be running on the public node.
After Jenkins has finished coming up, you’ll see it listed in the Services pane of the
DCOS UI.

 With your infrastructure ready to handle the task at hand, let’s go ahead and cre-
ate the Jenkins job that will deploy the application to Marathon.

A.2.2 Configuring Jenkins

To keep this example clear and concise, I’m going to present the various build steps
(poll for changes, build the project, run the tests, deploy the app) that you’d normally
see in a continuous delivery pipeline within the context of a single Jenkins job. To do
so, I’ve included a simple static HTML and CSS web page in this book’s GitHub reposi-
tory that can be served to users with the Nginx web server.

NOTE I’m assuming that you already have a Docker Hub account and access
to a Git repository. If not, you can create a free account for Docker Hub at
hub.docker.com, and for GitHub at github.com.

https://github.com/mesosphere/dcos-cli
https://github.com/mesosphere/dcos-cli
http://hub.docker.com
http://github.com

227Continuous deployment with Jenkins and Marathon

To set up this build-and-deploy job within Jenkins, you need to navigate to the Jenkins
web interface. In DCOS, you can access Jenkins from the main Dashboard page, under
Services. In Mesos, you can access Jenkins by navigating to the Frameworks tab and
clicking the link to the framework’s web URL.

 After you’ve reached the Jenkins web interface, perform the following steps:

1 Create a new Jenkins job and name it accordingly. For this example, let’s
assume the job is called “demo-app-build-and-deploy.”

2 Within the job configuration page, configure the Git plugin to poll your appli-
cation’s repository for changes. (Feel free to copy the example code for this
appendix from this book’s GitHub repo into a GitHub repo of your own to test
it out.)

3 Create a new build step that executes a shell script. Here, you’ll want to write a
build script that builds the Docker image, pushes it to Docker Hub, and then
updates your Marathon application with the new Docker image tag. I’ve included
an example in the Git repo, and personally, I prefer to keep this build script in
version control alongside my application’s code.

4 Optional: configure Jenkins to send an email or chat notifications when the job
has started and when it has finished. This way, you and the members of your
team know that a change is being deployed.

After creating the Jenkins job with the URL to your Git repository, polling schedule,
and build script, you can either wait for it to run or manually trigger a build.

A.2.3 Continuous deployment in action

Without thinking too much about it, the Jenkins job cloned your code repository,
built a new Docker image, pushed it to Docker Hub, and deployed the new version of
your application to Marathon. Marathon then performed a rolling upgrade of the
application, taking the new version and deploying it alongside the old one. Once
the health checks for the new version started passing, Marathon began tearing
down the old instances.

 While all of this was occurring, Marathon-LB, running on the public node, was sub-
scribed to Marathon’s event stream, which is accessible via an API endpoint. While
new instances of the app were coming online and old instances were being torn down,
the load balancer was updating its HAProxy configuration to ensure that requests were
being routed to healthy instances of the app. All of this was possible after running a
few commands from the DCOS CLI.

 I understand that the example presented here might be basic, and that in reality CI
and CD pipelines are usually more complex and applications have different depen-
dencies that need to be brought in; that’s fine. Go build upon this example to suit
your needs and the needs of your application.

228 APPENDIX A Case study: Mesosphere DCOS, an enterprise Mesos distribution

A.3 Summary
In this appendix, you learned how Mesosphere is providing an enterprise-grade Mesos
distribution. You also learned how Jenkins, Marathon, and Mesos are capable of auto-
matically deploying changes to an application without the need for human interven-
tion. Here are a few things to remember:

■ The Mesosphere DCOS is an enterprise-grade distribution built on top of the
Mesos distributed systems kernel. DCOS provides a turnkey solution to enter-
prises wanting to deploy application containers at scale.

■ Nodes in a DCOS deployment are divided into two classifications: public and
private. Whereas private nodes make up the bulk of the cluster, a small number
of public nodes can run external-facing services such as reverse proxies and
load balancers.

■ Mesosphere engineers maintain a growing number of distributed services for
DCOS, including Cassandra, Chronos, HDFS, Jenkins, Kafka, Marathon, and Spark,
among others. In essence, any Mesos framework can also be run on DCOS.

■ By installing the Jenkins and Marathon services on DCOS, you can continuously
build, test, and deploy new instances of your applications in a fully automated
fashion. The Jenkins framework dynamically launches container-based build
slaves when needed, and destroys them when they’re no longer in use.

■ By using Jenkins and Marathon to deploy your applications, you can continu-
ously deploy updates to your application when your CI pipeline completes suc-
cessfully. Marathon-LB subscribes to Marathon’s event stream and automatically
updates your load balancer’s configuration file and reloads the service.

The next appendix provides a list of Mesos frameworks known—and maintained—as
of this writing. Each of these frameworks can be deployed onto a Mesos cluster of your
own, and some are already available for DCOS, thanks to the efforts of the Mesosphere
engineering team.

229

appendix B
List of Mesos frameworks

and tools

Mesos was designed to run multiple frameworks on a single cluster of computers,
thereby improving overall resource utilization. Various community efforts have
arisen around running existing applications on Mesos.

 In this appendix, I provide a list of the Mesos frameworks known and actively
being maintained as of publishing time. I also include references to Mesos lan-
guage bindings, which will allow you to write your own frameworks in languages
other than C++, Java, Scala, and Python. Finally, I cover tools in the community that
can be used for configuration management, monitoring, service discovery, and
load balancing.

B.1 Mesos frameworks
At publishing time, several open source Mesos frameworks are available. Some of
these are purpose-built—such as Aurora, Chronos, and Marathon—whereas others
are existing distributed services that work well with the Mesos model; these include
(but aren’t limited to) Cassandra, Jenkins, and Spark. This section covers Mesos
frameworks that you can immediately begin using with your cluster.

B.1.1 Application management and batch scheduling

One of the mainstream uses of Mesos is to deploy long-running applications on a
Mesos cluster, effectively using Mesos as a way to distribute and run containers. This
section covers frameworks that can be used for deploying applications and batch
jobs on a Mesos cluster, similar to the topics covered in chapters 7 through 9.

230 APPENDIX B List of Mesos frameworks and tools

B.1.2 Data processing
The first uses for Mesos, as specified in its original research paper, were data-
processing tasks. In fact, the Apache Spark project began with some of the same
members of the original Mesos project, to prove a hypothesis that specialized data-
processing frameworks were more valuable than general-purpose frameworks. This
section covers popular data-processing frameworks, providing a description and
project URL for each.

Name Description More info

Aurora Apache Aurora is a framework developed by Twitter
for managing long-running services and scheduled
jobs.

https://aurora.apache.org

Chronos Chronos is a framework developed by Airbnb to run
scheduled data-processing jobs in a fault-tolerant
manner. Supports ISO 8601–based schedules and
job dependencies.

http://mesos.github.io/chronos

Cloud Foundry Huawei has developed a Mesos framework for run-
ning the open source Cloud Foundry PaaS as a ser-
vice on a Mesos cluster.

https://github.com/mesos/
cloudfoundry-mesos

Docker Swarm Swarm, the container clustering and orchestration
tool developed by Docker, can be configured to use
a Mesos cluster for managing compute resources.

https://github.com/docker/
swarm/blob/v1.0.1/cluster/
mesos/README.md

Jenkins Jenkins is an open source continuous integration
and deployment tool for software development and
application management. Using the Mesos plugin,
Jenkins can scale its build infrastructure elasti-
cally on a Mesos cluster.

https://github.com/jenkinsci/
mesos-plugin

Kubernetes Mesosphere has developed a framework for run-
ning Google’s open source container scheduler on
top of a Mesos cluster. This allows you to run
Kubernetes alongside other Mesos frameworks
such as Spark.

https://github.com/meso-
sphere/kubernetes-mesos

Marathon Marathon is an open source framework for Mesos
developed and maintained by Mesosphere. It
deploys applications and long-running services on
top of Mesos.

http://mesosphere.github.io/
marathon

PaaSTA PaaSTA is a platform developed by Yelp for running
services and scheduled jobs on Mesos. It’s built
upon several other open source projects, including
Marathon, Chronos, and Docker.

https://github.com/Yelp/paasta

Singularity Singularity is a framework developed at HubSpot
for launching long-running, scheduled, and one-off
tasks on a Mesos cluster.

https://github.com/HubSpot/
Singularity

https://aurora.apache.org
http://mesos.github.io/chronos
https://github.com/mesos/cloudfoundry-mesos
https://github.com/mesos/cloudfoundry-mesos
https://github.com/docker/swarm/blob/v1.0.1/cluster/mesos/README.md
https://github.com/docker/swarm/blob/v1.0.1/cluster/mesos/README.md
https://github.com/jenkinsci/mesos-plugin
https://github.com/jenkinsci/mesos-plugin
https://github.com/mesosphere/kubernetes-mesos
https://github.com/mesosphere/kubernetes-mesos
http://mesosphere.github.io/marathon
http://mesosphere.github.io/marathon
https://github.com/Yelp/paasta
https://github.com/HubSpot/Singularity
https://github.com/HubSpot/Singularity

231Mesos frameworks

B.1.3 Distributed databases and storage
Distributed databases and filesystems, like Cassandra and HDFS, handle their own
clustering and replication. Typically these services would run on dedicated sets of
machines. Because Mesos provides primitives for distributed computing, various efforts
have arisen to run these distributed systems in a fully automated fashion on a single
general-purpose Mesos cluster. This section provides a list of distributed databases and
filesystems that run on Mesos as of publishing time.

Name Description More info

Cook Cook is a batch scheduler for Mesos developed at
Two Sigma. It was designed to support multiple
users and preempt low-priority tasks, and can pro-
vide a multitenant environment for running Spark
jobs.

https://github.com/twosigma/cook

DPark DPark is a Python clone of Apache Spark and
includes built-in support for running jobs on a Mesos
cluster.

https://github.com/douban/dpark

Hadoop Apache Hadoop is a popular data-processing frame-
work and ecosystem. It was among the first applica-
tions ported to Mesos and is widely cited in the
original Mesos paper.

https://github.com/mesos/hadoop

Kafka Apache Kafka is a distributed, high-throughput pub-
lish-subscribe (pubsub) messaging system. By run-
ning Kafka on Mesos, you can scale Kafka
elastically alongside other frameworks that con-
sume streaming data, such as Apache Spark.

https://github.com/mesos/kafka

Myriad Apache Myriad, a project currently in the Apache
Incubator, enables Hadoop YARN (MapReduce v2) to
run on a Mesos cluster. By running YARN on Mesos,
YARN applications are able to share the same physi-
cal infrastructure as other Mesos frameworks.

https://myriad.incubator.apache.org

Spark Apache Spark is a popular, open source data-pro-
cessing framework and was the first purpose-built
data-processing framework for Mesos. In contrast to
Hadoop’s disk-based map/reduce paradigm, Spark
can load data sets into memory and, in some cases,
has shown a 10× performance improvement over
Hadoop.

https://spark.apache.org

Storm Apache Storm is an open source stream-processing
system that focuses on real-time computation.

https://github.com/mesos/storm

https://github.com/twosigma/cook
https://github.com/douban/dpark
https://github.com/mesos/hadoop
https://github.com/mesos/kafka
https://myriad.incubator.apache.org
https://spark.apache.org
https://github.com/mesos/storm

232 APPENDIX B List of Mesos frameworks and tools

B.2 Mesos-related tools
Mesos provides a drastically different approach to traditional datacenter architecture,
allowing you to schedule resources across many machines instead of dedicating indi-
vidual machines (or sets of machines) to an application. When you know the individ-
ual hostnames that an application is running on, configuring load balancers or
connecting web applications to databases is relatively easy. But when the applications
can be running on any one of tens, hundreds, or even thousands of nodes, things
become a bit more complicated.

 This section presents some tools you can use in your own environment. These
include language bindings for developing your own Mesos frameworks, load-balancing
and service-discovery solutions, monitoring and configuration management scripts,
and a few Vagrant development environments.

B.2.1 Language bindings
Language bindings for Mesos allow you to write Mesos frameworks in your language
of choice. Some of these bindings—I refer to them as native bindings—are main-
tained and distributed with Mesos itself. Others are developed and maintained by

Name Description More info

ArangoDB ArangoDB is an open source, distributed
NoSQL database that can handle JSON docu-
ments, graphs, and key/value pairs.

https://github.com/arangodb/
arangodb-mesos

Cassandra Apache Cassandra is a scalable NoSQL data-
base used for managing large amounts of
data. It’s used in production at organizations
including Apple, CERN, and Netflix.

http://mesosphere.github.io/
cassandra-mesos

Ceph Ceph is a fault-tolerant, self-healing distrib-
uted filesystem. The Big Data Analytics team
at Intel has created a Mesos framework for
scaling Ceph clusters on Mesos.

https://github.com/Intel-bigdata/ceph-
mesos

Elasticsearch Elasticsearch is an open source, distributed
search and analytics server developed by
Elastic and based on Apache Lucene.

https://github.com/mesos/elastic-
search

Etcd Etcd is a distributed key/value store devel-
oped by CoreOS.

https://github.com/mesosphere/
etcd-mesos

HDFS The Hadoop Distributed File System (HDFS) is
a distributed, fault-tolerant filesystem
designed to run on commodity hardware.

https://github.com/mesosphere/hdfs

MemSQL MemSQL is a distributed, in-memory SQL
database.

https://github.com/memsql/
memsql-mesos

Riak KV Riak KV is a robust key/value store developed
by Basho.

https://github.com/basho-labs/
riak-mesos

https://github.com/arangodb/arangodb-mesos
https://github.com/arangodb/arangodb-mesos
http://mesosphere.github.io/cassandra-mesos
http://mesosphere.github.io/cassandra-mesos
https://github.com/Intel-bigdata/ceph-mesos
https://github.com/Intel-bigdata/ceph-mesos
https://github.com/mesos/elasticsearch
https://github.com/mesos/elasticsearch
https://github.com/mesos/elasticsearch
https://github.com/mesosphere/etcd-mesos
https://github.com/mesosphere/etcd-mesos
https://github.com/mesosphere/hdfs
https://github.com/memsql/memsql-mesos
https://github.com/memsql/memsql-mesos
https://github.com/basho-labs/riak-mesos
https://github.com/basho-labs/riak-mesos

233Mesos-related tools

the community, and allow you to write frameworks in a language that you or your
development team is more comfortable with.

MESOS NATIVE

As I covered in chapter 10, Mesos allows you to write frameworks in C++, Java, Scala,
and Python, right out of the box. Here are some online resources:

■ http://mesos.apache.org/api/latest/c++
■ http://mesos.apache.org/api/latest/java
■ https://github.com/apache/mesos/blob/0.22.2/src/python/interface/src/

mesos/interface/__init__.py

In addition, be sure to check out the Mesos framework development guide, located at
http://mesos.apache.org/documentation/latest/app-framework-development-guide,
and the RENDLER example, located at https://github.com/mesosphere/rendler.

COMMUNITY MAINTAINED

Some of the members and organizations in the Mesos community have created and
maintain language bindings, which allow you to write Mesos frameworks in your lan-
guage of choice:

■ Clojure—https://github.com/dgrnbrg/clj-mesos
■ Erlang—https://github.com/mdevilliers/erlang-mesos
■ Haskell—https://github.com/iand675/hs-mesos
■ Pure Java—https://github.com/groupon/jesos
■ Go—https://github.com/mesos/mesos-go
■ Perl—https://github.com/mark-5/perl-mesos
■ Pure Python—https://github.com/wickman/pesos
■ Rust—https://github.com/spacejam/mesos-rs

B.2.2 Load balancing and service discovery

Because you don’t always know which machines are running a particular application
or service, you’ll need a way to discover and connect to them by using the information
that Mesos (or your Mesos framework) already has about the running tasks.

Name Description More info

Aurproxy Aurproxy is a load balancer for Apache Aurora. It
generates configurations for Nginx and gracefully
reloads the service when changes occur.

https://github.com/tellapart/
aurproxy

Bamboo Bamboo is a load balancer for Marathon that
configures HAProxy based on the state available
via the Marathon API. It also includes a user
interface and API for defining HAProxy ACLs.

https://github.com/QubitProducts/
bamboo

http://mesos.apache.org/api/latest/c++
http://mesos.apache.org/api/latest/java
https://github.com/apache/mesos/blob/0.22.2/src/python/interface/src/mesos/interface/__init__.py
http://mesos.apache.org/documentation/latest/app-framework-development-guide
https://github.com/mesosphere/rendler
https://github.com/dgrnbrg/clj-mesos
https://github.com/mdevilliers/erlang-mesos
https://github.com/iand675/hs-mesos
https://github.com/groupon/jesos
https://github.com/mesos/mesos-go
https://github.com/mark-5/perl-mesos
https://github.com/wickman/pesos
https://github.com/spacejam/mesos-rs
https://github.com/tellapart/aurproxy
https://github.com/tellapart/aurproxy
https://github.com/QubitProducts/bamboo
https://github.com/QubitProducts/bamboo

234 APPENDIX B List of Mesos frameworks and tools

B.2.3 Monitoring and management
When deploying any new service into your environment, especially one as critical as
Mesos, it’s important to know what options exist for monitoring the health of the ser-
vice and managing and deploying changes to the service’s configuration. This section
describes tools that can be used to monitor the health of your Mesos cluster, and add-
ons for today’s three most popular configuration management tools.

MONITORING
For monitoring Mesos services and frameworks, you can typically use whatever moni-
toring tools you already have in place. For example, you can use the Elasticsearch,
Logstash, and Kibana (ELK) stack or Splunk for centralized log management across
the cluster, and you can use Nagios, Icinga, or another third-party monitoring tool for
overall monitoring and alerting. Here are a few additional open source projects that
you might be interested in:

■ Collectd plugin for Mesos—https://github.com/rayrod2030/collectd-mesos
■ Exhibitor (a supervisor for ZooKeeper)—https://github.com/Netflix/exhibitor
■ Nagios checks for Mesos—https://github.com/opentable/nagios-mesos
■ Nagios checks for ZooKeeper—https://github.com/apache/zookeeper/tree/

trunk/src/contrib/monitoring
■ Prometheus exporter for Mesos—https://github.com/prometheus/mesos

_exporter
■ Satellite (monitoring service for Mesos)—https://github.com/twosigma/satellite

CONFIGURATION MANAGEMENT
In many organizations and environments, configuration management tools enable
systems administrators to manage machines in a many-to-one fashion. As of this writ-
ing, three popular configuration management tools are in this space: Ansible, Chef,

Marathon-LB Marathon-LB is a load balancer for Marathon,
developed by Mesosphere. It can pull state from
the Marathon API or subscribe to Marathon’s
event stream to dynamically build HAProxy con-
figurations and gracefully reload the service.

https://github.com/mesosphere/
marathon-lb

Mesos-Consul Mesos-Consul polls Mesos for information about
running tasks across all frameworks and pub-
lishes the information to Consul, which then
makes it available via DNS and the Consul
HTTP API.

https://github.com/CiscoCloud/
mesos-consul

Mesos-DNS Mesos-DNS is a stateless DNS server that polls
Mesos for information about running tasks
across all frameworks. It then provides this ser-
vice information via its built-in DNS server and
HTTP API.

https://mesosphere.github.io/
mesos-dns

Name Description More info

https://github.com/mesosphere/marathon-lb
https://github.com/mesosphere/marathon-lb
https://github.com/CiscoCloud/mesos-consul
https://github.com/CiscoCloud/mesos-consul
https://mesosphere.github.io/mesos-dns
https://mesosphere.github.io/mesos-dns
https://github.com/rayrod2030/collectd-mesos
https://github.com/Netflix/exhibitor
https://github.com/opentable/nagios-mesos
https://github.com/apache/zookeeper/tree/trunk/src/contrib/monitoring
https://github.com/prometheus/mesos_exporter
https://github.com/twosigma/satellite
https://github.com/apache/zookeeper/tree/trunk/src/contrib/monitoring
https://github.com/prometheus/mesos_exporter

235Mesos-related tools

and Puppet. Community members have written code in order to use these tools to
provision Mesos and ZooKeeper clusters, and I’d like to highlight some of the better-
known projects here.

 Ansible is a configuration management tool and orchestration engine that allows
you to deploy changes to machines over SSH, without needing to run an agent on the
machine being managed. The following two playbooks will allow you to provision
Mesos and ZooKeeper clusters:

■ https://github.com/AnsibleShipyard/ansible-mesos
■ https://github.com/AnsibleShipyard/ansible-zookeeper

Chef allows systems administrators to declare the desired state of their infrastructure
by using a domain-specific language, or DSL. These two Chef cookbooks will allow you
to provision Mesos and Zookeeper clusters:

■ https://supermarket.chef.io/cookbooks/mesos
■ https://supermarket.chef.io/cookbooks/zookeeper

Puppet also allows administrators to declare the desired state of their infrastructure by
using a DSL. These two Puppet modules in particular will allow you to provision and
manage the configuration of Mesos and ZooKeeper clusters:

■ https://forge.puppetlabs.com/deric/mesos
■ https://forge.puppetlabs.com/deric/zookeeper

B.2.4 Vagrant environments
A couple of Vagrant environments are available that allow you to provision a Mesos
cluster right on your laptop. These two in particular will install Mesos, Marathon,
and Docker:

■ https://github.com/mesosphere/playa-mesos
■ https://github.com/tayzlor/vagrant-puppet-mesosphere

https://github.com/AnsibleShipyard/ansible-mesos
https://github.com/AnsibleShipyard/ansible-zookeeper
https://supermarket.chef.io/cookbooks/mesos
https://supermarket.chef.io/cookbooks/zookeeper
https://forge.puppetlabs.com/deric/mesos
https://forge.puppetlabs.com/deric/zookeeper
https://github.com/mesosphere/playa-mesos
https://github.com/tayzlor/vagrant-puppet-mesosphere

237

index

Symbols

~/.aurora/clusters.json file 182

A

access control. See security and
access control

ACL (access control lists)
109–111

- -acls configuration option 110
admin client, Aurora 173, 178
admin role, Aurora

authorization 194
Admin Router, DCOS and

221–222
Administrator’s Guide,

Zookeeper 80, 103
agents. See slaves
aggregate_default_capacity 113
aggregate_default_qps 113
allocating resources. See

resource allocation
allocation module 5, 13
-allowed_container_types config-

uration option 179
Amazon Web Services. See AWS
AMPLab 18
Anacron tool 155
Ansible tool 56
ANY type 110
Apache Cassandra 232
Apache Hadoop 231
Apache Kafka 231
Apache Lucene 232
Apache Myriad 231

Apache Software
Foundation 175

Apache Spark. See Spark frame-
work

Apache Storm 231
Apache ZooKeeper. See Zoo-

Keeper
apache-aurora-0.9.0/dist

directory 177–178
API endpoints, querying 100
application deployment 12–13
application details and manage-

ment page, output-env 134
application groups 139–142

anatomy of 139–140
deploying 140–142

application management, Mesos
frameworks for 229

Apps page 133
apt-transport-https package 53
ArangoDB 232
asterisk character 59, 62
attributes 14
- -attributes option 63
aurora - -version command 178
aurora cron -h command 190
Aurora framework

admin client 173, 178
building 176
client

configuring 182–183
installing 178

deploying applications
183–189

Docker-based application
187–189

overview 183
simple application 184–187

domain-specific
language 173–174

performing maintenance 194
scheduled tasks,

managing 189–192
creating Cron job

189–190
creating Docker-based

Cron job 190–192
scheduler

configuring 178–181
installing 176–177
overview 171

Thermos executor and
observer

configuring 181–182
installing 177–178
overview 171–172

trying out in development
environment 175–176

user client 172–173
users and quotas,

managing 192–194
authentication 192–193
authorization 193
resource quotas 193–194

Vagrant environment
175–176

aurora -h command 172
Aurora scheduler URL 176
Aurora Thrift API 193
aurora-admin command-line

tool 178
aurora-admin -h command 173

INDEX238

aurora-admin increase_quota
<role> <cpus> <mem>
<disk> command 193

aurora-admin set_quota <role>
<cpus> <mem> <disk>
command 193

aurora.pex file 178
aurora-scheduler.sh 181
Aurproxy service 183, 233
- -authenticate configuration

option 108
authenticate_slaves option, slave

authentication 107
authentication

defining 106
of frameworks 108–109
of slaves 107–108
using Aurora 192–193

authorization
access control lists 109–111
defining 106
using Aurora 193

authorization (Aurora) 194
authorization file, INI-based

192
Automatic retry on failure fea-

ture, Cron schedule 189
AWS (Amazon Web

Services) 38, 218

B

Backup and restore feature,
Aurora admin client 173

-backup_dir configuration
option 179

Bamboo (load balancer) 233
batch scheduling, Mesos frame-

works for 229
Bison 68
blue/green deployment

process 185
Bonaci, Marko 22
Boto module 41
built-in command-line tools,

debugging using 92–93

C

CANCEL_NEW setting 189
capacity, defining 113
Cassandra 232
CD (continuous delivery) 122
CE (community edition),

DCOS 218

CentOS 7, Mesos and Zoo-
Keeper installation and 39,
41

centralized logging 83
Ceph 232
cgroups. See control groups
cgroups/cpu 64
cgroups/mem isolator 64–65
challenge-response

authentication 107
check_mesos.py - -help 100
checkpointing 56, 71
check_zookeeper.py file 102
Chef tool 56
Chronos configuration options

mail_from configuration
option 153

mail_from option 165
mail_password option 165
mail_server configuration

option 154
mail_server option 165
mail_ssl option 165
mail_user option 165

Chronos framework 114,
147–168

configuring 153–154
installing 152–153
monitoring output and status

of jobs 164–168
job failure notifications and

monitoring 165–166
overview 164
standard output and error

via Mesos 167–168
overview 147–151, 230
REST API 151
schedule-based jobs 154–158

combining with depen-
dency-based jobs
160–163

creating using Docker
158–159

creating using REST
API 157–158

creating using web
interface 156

overview 154
parts of 155–156

traditional jobs 155
visualizing job

dependencies 163
web interface 149–150

CI (continuous integration)
122

Clang 40
client, Aurora

configuring 182–183
installing 178

Cloud Foundry 230
Cluster statistics section, Mesos

main page 85
-cluster_name configuration

option 179
clusters 11–12
clusters.json file 182, 185
Collision policies feature, Cron

schedule 189
COMMAND, performing health

checks with 137
CommandExecutor 171, 197,

202, 205, 210
CommandInfo 204–205
command-line interface 222
command-line tools, built-

in 92–93
commands, to install

Marathon 127
community edition, DCOS.

See CE
compiling, Mesos and

Zookeeper 42
complex jobs (Chronos) 154,

160
configuration management,

tools for 234–235
configuring

Aurora client 182–183
Chronos framework

153–154
Docker 54–55

RHEL / CentOS 7 54
Ubuntu 14.04

(TRUSTY) 54–55
framework rate limits

113–115
Marathon 127–128
Mesos 46–51

conventions 46–47
master configuration

47–50
slave configuration 50–51

scheduler, Aurora 178–181
Thermos executor and

observer 181–182
ZooKeeper 44–46

container attribute 191
container section 144
containerizer 7
- -containerizers option 64

INDEX 239

containers
Docker 88
overview 8–9
resource isolation with 64–70

isolating and monitoring
CPU, memory, and
disk 64–66

network monitoring and
rate limiting 66–70

continuous delivery. See CD
continuous integration. See CI
control groups (cgroups) 4,

8–9, 12, 64, 187
Cook framework 231
coreutils (core utilities), GNU 92
CPU, isolating and

monitoring 64–66
cpus resource 60, 63, 72
- -credential option 107
Credential() method 215
- -credentials configuration

option 108
credentials files, JSON 107
credentials option, slave

authentication 107
cron capability, Aurora user

client 172
Cron daemon 149, 155
Cron jobs

creating
overview 130–131
using Aurora 189–192

overview 148–149
cron_collision_policy

attribute 189
cron_schedule attribute 190
-cron_timezone configuration

option 189
cURL command 136, 138, 142
custom executor code 198
customizing

slave attributes 63–64
slave resources 63

D

data processing, Mesos frame-
works for 230

databases, distributed 231
Databricks (company) 18
datacenter resource allocation.

See resource allocation
datacenter resource

management 17–29
See also Spark framework

DataNodes 199, 206
DCOS (Datacenter Operating

System) 217–228
architecture of 218–222

Admin Router 221–222
Marathon 220–221
Mesos 220
Mesos-DNS 221
ZooKeeper 221

configuring Jenkins 226–227
continuous deployment in

action 227–228
interacting with 222–224

command-line
interface 223

graphical user
interface 223–224

package management
222–223

overview 217
preparing for continuous

application
deployments 225–226

debug value 143
debugging 83–96

Marathon applications and
tasks 143–146

docker containers launched
by Marathon and
Mesos 144–146

Mesos tasks 143–144
overview 83–84
using built-in command-line

tools 92–93
using Mesos web

interface 85–91
frameworks 86–87
home 85–86
resource offers 91
slaves 88–91
tasks 87–88

using mesos-cli tool 93–96
declineOffer() method 202,

209
Default role (*) character 59,

62
dependency-based jobs, Chro-

nos framework 160–163
deploying applications

overview 12–13
using Aurora 183–189

Docker-based
application 187–189

simple application 184–187
See also Marathon

deploying Mesos 34–38,
213–216

cluster components 34–35
development environment

considerations 35
in development 213–214
production deployment

215–216
production environment

considerations 36–38
Mesos masters 37
overview 36–37
ZooKeeper ensemble

37–38
development environment

considerations 35
device-mapper-event-libs

package 53
disconnected() method 211
disk resource 60, 63
disk, isolating and

monitoring 64–66
distributed architecture

13–15
frameworks 15
masters 13
slaves 14–15

distributed databases, Mesos
frameworks for 231

distributed file system 199
distributed out of the box

technologies 10
DNS (Domain Name System)

125
DNS load balancing 127, 152
Docker

Chronos framework and
158–159

configuring 54–55
RHEL / CentOS 7 54
Ubuntu 14.04 (TRUSTY)

54–55
configuring Mesos slaves

for 55
creating Docker-based Cron

job 190–192
installing 52–54

overview 52
RHEL / CentOS 7 53
Ubuntu 14.04 (TRUSTY)

53–54
resources for 9

Docker containers
deploying 135–136
overview 88

INDEX240

Docker Hub account,
creating 226

Docker in Action, Jeff
Nickoloff 145

docker logs command 145
docker process 101
docker run command 188–189
Docker Swarm 230
Docker-based application,

deploying 187–189
DockerInfo fields 188
docker-invalid-container-

example application 144
docker.io process 101
docker-nginx application 135
docker-nginx.aurora file 189
docker-nginx.json 136
Domain Name System. See DNS
DPark 231
DRF (Dominant Resource

Fairness) 6, 60
driver.launchTasks() method

205
DSL (domain-specific

language) 173

E

easy_install utility 41
EE (enterprise edition),

DCOS 218
Elasticsearch 232
ELK (Elasticsearch, Logstash,

and Kibana) 83, 145, 234
ENTRYPOINT 158
ephemeral_ports resource 69
error value 143
errorCount field 166
errorsSinceLastSuccess

field 166
/etc/apt/sources.list 129
/etc/aurora/clusters.json

file 182
Etcd 232
/etc/haproxy/haproxy.cfg 130
/etc/marathon/conf/

logging_level 143
ETL (extract-transform-

load) 154
ETL jobs 160
ETL pipeline 163
executor 202–206

developing 210–213
overview 202
task information 205–206

task status 203–204
used by scheduler, defining

204–205
Executor API 210–212

overview 210–211
writing 211–212

executor component, Mesos
framework 197

Executor part, Thermos
executor 172

executor.command.uris.add()
method 205

ExecutorDriver 206
ExecutorInfo message 204–205
executors 14–15
Executor/task detail page 91
Exhibitor, ZooKeeper with 102
External Containerizer API 64
external_log_file option 82
extract-transform-load. See ETL

F

Fabric tool 56
FAILED state 85
failed tasks 120
failover_timeout option 215
failures 72–78

framework failover 73–74
master failover 74–75
overview 72
slave failover 75–78

fatal value 143
fault tolerance 71
filesystem/shared isolator 65
FINISHED state 85
forward slash character 156
four-letter commands, monitor-

ing ZooKeeper with 103
- -framework argument 93
framework checkpointing 215
framework failover 73–74
framework ID, Marathon 90
-framework_authentication_file

configuration option 179
FrameworkInfo 201
framework-level view 87
frameworkMessage()

method 208
framework_principals object,

Mesos ACLs 110
frameworks 13, 15, 86–87

authentication of 108–109
configuring rate limits

for 113–115

monitoring 112–113
writing, reasons for 199–200

Frameworks page 87
frameworks/<framework-princi-

pal> format 112
- -frameworks_home configura-

tion option 199
framework.user 202

G

gateway machine 24
GCC (GNU Compiler

Collection) 40
General cluster information

section, Mesos main
page 85

GitHub repository 129, 163
global whitelist 111
GNU coreutils (core

utilities) 92
Grafana project 113
graphical user interface 222
Graphite project 113

H

Hadoop YARN 18, 231
HAProxy

dynamically configuring with
haproxy-marathon-
bridge 129–130

dynamically configuring with
servicerouter.py 131

installing 129
service routing with 123–124

HAProxy configuration file 99
haproxy-marathon-bridge

script 124, 129–130
HDFS (Hadoop Distributed File

System) 199, 232
health checks 122
/help endpoint 100–101
high availability 72
Host column 185
host_activate command 194
host_deactivate command 194
host_drain command 194
hostname configuration

option 128, 153
hostname -f command 128
- -hostname option 49
host_status command 194
HTTP load balancing 127, 152
HTTP option 198

INDEX 241

HTTP, performing health
checks with 137

HTTPie tool 98

I

-i argument 94
Image field, DockerInfo 188
imok command 46
info value 143
INFO-level 25, 142
INI-based authorization file

(Aurora) 192
init system 120, 145
inserted newlines, avoiding

107
install_haproxy_system

function 129
installing

Aurora client 178
Aurora scheduler 176–177
Chronos framework

152–153
Docker 52–54

overview 52
RHEL / CentOS 7 53
Ubuntu 14.04 (TRUSTY)

53–54
HAProxy 129
Marathon 127
Thermos executor and

observer 177–178
installing Mesos

compiling 42
from packages 39–40

RHEL / CentOS 7 39
Ubuntu 14.04 (TRUSTY)

39–40
from source 40–44

overview 40–41
RHEL / Centos 7

prerequisites 41
Ubuntu 14.04 (TRUSTY)

prerequisites 41
overview 38

installing ZooKeeper
compiling 42
from packages 39–40

RHEL / CentOS 7 39
Ubuntu 14.04

(TRUSTY) 39–40
from source 40–44

overview 40–41
RHEL / Centos 7

prerequisites 41

Ubuntu 14.04 (TRUSTY)
prerequisites 41

overview 38
IntelliJ IDEA 206
interpreting log files 80–82

for Mesos services 80–81
for tasks 81–82

- -ip option 49
isolating resources. See resource

isolation
- -isolation option 65

J

-j argument (Make) 42
Jenkins framework 20–21, 199,

230
JetBrains 206
job capability, Aurora user

client 172
Job collection, Aurora

language 173
Job object 190
job schedule 156
jobs

complex 154, 160
Cron 148–149
ETL 160
load-war-and-peace-word-

counts 163
simple 154, 156
simple sleep 158
Spark 162
War and Peace 162

JSON payload 140
JSON REST API 85

K

Kafka 231
Keepalived 99
kernel 13
Keys and Values

application 140–141
KILLED state 85
KILL_EXISTING setting 189
Kubernetes 230

L

language bindings, tools
for 232–233

lastError field 166
lastSuccess field 166
latest file 82

launchTask() method 204, 209,
212

leader.mesos (Mesos-DNS) 220
leading master 13
libmesos 171
LIBNL_CFLAGS variable 68
$LIBPROCESS_IP environment

variable 128
Linux control groups. See con-

trol groups (cgroups)
Linux, resource isolation

on 65–66
load balancing

DNS 152
HTTP 152
overview 127
tools for 233

load-war-and-peace-word-counts
job 163

local file system 199
localhost 129
locating log files 80–82

for Mesos services 80–81
for tasks 81–82

Log section, Mesos main
page 85

logbufsecs option 82
log_dir option 49, 51, 80, 82
logging 80–83

configuring 82–83
for Marathon 142–143

modifying logging level 143
overview 142
redirecting logs from syslog

to dedicated log file 143
locating and interpreting log

files 80–82
for Mesos services 80–81
for tasks 81–82

logging infrastructure,
centralized 83

- -logging_level configuration
option 143

logging_level option 82
Logrotate rules 143
LOST state 85
Lucene 232

M

main() method 209
Maintenance feature, Aurora

admin client 173
make clean command 68
make -j4 command 42

INDEX242

Marathon 119–146
application groups 139–142

anatomy of 139–140
deploying 140–142

configuring 127–128
creating and scaling

applications 132–139
deploying Docker

container 135–136
deploying simple

application 132–135
performing health checks

and rolling application
upgrades 136–139

DCOS and 220–221
debugging applications and

tasks 143–146
docker containers launched

by Marathon and
Mesos 144–146

Mesos tasks 143–144
dynamically configuring

HAProxy with haproxy-
marathon-bridge 129–130

installing 127
logging for 142–143

modifying logging level 143
overview 142
redirecting logs from syslog

to dedicated log file 143
overview 119, 230
REST API 122–123
service discovery with Mesos-

DNS 125
web interface 121–122
See also HAProxy

marathon command 223
Marathon framework 87, 90, 114
Marathon GitHub

repository 129
Marathon package,

Mesosphere 153
Marathon-LB project 225–227
master configuration option 128
master failover 74–75
- -master option 50
/master/health endpoint 100
/master/redirect endpoint 100
masters

monitoring master
behavior 112–113

overview 6, 13
/master/slaves endpoint 100
maximumOverCapacity option

for Marathon 138

max_task_failures attribute
189

mem resource 60, 63
memory, isolating and

monitoring 64–66
MemSQL 232
mesos cat tool 92
Mesos command line utilities

mesos cat command 94
mesos config command 94
mesos events command 94
mesos find command 94
mesos head command 94
mesos help command 92,

94
mesos ls command 94

mesos containerizer 64
.mesos domain 125
mesos execute tool 92
Mesos fetcher 205
Mesos framework

deploying 213–216
in development 213–214
production deployment

215–216
distributred architecture

of 13–15
frameworks 15
masters 13
slave 14
slaves 14–15

executor 202–206
developing 210–213
overview 202
task information 205–206
task status 203–204
used by scheduler,

defining 204–205
for application management

and batch scheduling
229

for data processing 230
for distributed databases and

storage 231
how it works 5–7

resource isolation 7
resource offers 6
two-tier scheduling 6–7

scheduler 200–202
developing 206–210
driver for 202
executor used by,

defining 204–205
framework information

201–202

resource offers 200–201
when to use 9–10

Mesos master 98–100
monitoring with Nagios

99–100
overview 98
querying API endpoints 100

Mesos master quorum,
modifying 103–105

adding masters 104–105
removing masters 105
replacing masters 105

Mesos master URL 176
Mesos masters 37
Mesos package, Mesosphere 153
mesos ps command 94
mesos ps tool 92
mesos resolve command 94
mesos resolve tool 92
mesos scp command 94
mesos scp tool 92
Mesos services, log files for 80–81
Mesos slave 100–101
mesos ssh command 94
mesos state command 94
mesos <subcommand> - -help

95
mesos tail command 94
mesos tail tool 92
Mesos UI 26
Mesos web interface, debugging

using 85–91
frameworks 86–87
home 85–86
resource offers 91
slaves 88–91
tasks 87–88

mesos_authentication_principal
configuration option 128,
153

mesos_authentication_secret_file
configuration option 128,
153

mesos-cli tool, debugging
using 93–96

Mesos-Consul 234
Mesos-DNS

DCOS and 221
overview 183, 234
service discovery with 125

mesos.interface.Scheduler 207
mesos-master daemon 72
mesos-master executable 84
mesos-master service 81, 84, 98,

105, 108, 113–114

INDEX 243

-mesos_master_address configu-
ration option 179

mesos.proto file 200, 203, 206
mesos_role configuration

option 128, 153
- -mesos-root configuration

option 181
MesosSchedulerDriver()

method 202, 205, 209, 215
mesos-slave daemon 72, 75–76,

175, 199
mesos-slave service 81, 84, 98,

101, 114
messages_processed 113
messages_received 113
/metrics/snapshot

endpoint 100–101
MinimalFramework 214
minimumHealthCapacity

option 122, 138
mntr command 103
modifying, Mesos master

quorum 103–105
adding masters 104–105
removing masters 105
replacing masters 105

monitoring
Mesos master 98–100

overview 98
querying API endpoints 100
with Nagios 99–100

Mesos slave 100–101
tools for 234
ZooKeeper 101–103

overview 101
with Exhibitor 102
with four-letter

commands 103
with Nagios 102–103

/monitor/statistics.json
endpoint 101

mount point 199
multitenancy 4, 7
myid file 45
Myriad 231

N

Nagios
Mesos master with 99–100
monitoring Mesos master

with 99–100
Monitoring ZooKeeper

with 102–103
overview 98

nagios/ directory 102
NameNodes (HDFS) 199
namespaces/pid isolator 65
native bindings 232
-native_log_file_path configura-

tion option 179–180
-native_log_quorum_size config-

uration option 179
Netlink Protocol Library Suite

(libnl) 67
.netrc file for Aurora 193
Network field, DockerInfo 188
network file system 198
network isolator support, com-

piling Mesos with 67–68
network/port_mapping

isolator 70
New App button, Apps page for

Marathon 133
newlines, avoiding 107
Nginx Docker image,

deploying 135–136
node command 223
noexec option 51
NONE type 110
nonleading master 99

O

Observer service, Thermos
executor 172

off value 143
Offer message 200
Offers page 92
one-off command 92–93, 95
Optional Settings portion 133
OutputEnv example application

deploying 132–133
managing 133–135

outputenv.aurora file 185

P

PaaS (platform as a
service) 120, 145

PaaSTA 230
package command 223
package management 222
packages, installing Mesos and

ZooKeeper from 39–40
RHEL / CentOS 7 39
Ubuntu 14.04 (TRUSTY)

39–40
partitioning resources. See

resource partioning

passwords, vs secrets 106
permissive option 110
pip tool, Python 94
platform as a service. See PaaS
Playa Mesos development

environment 35
Playa Mesos GitHub

repository 213
- -polling_interval_secs

configuration option 181
- -port configuration option

181
$PORT variable 188
PortMapping field,

DockerInfo 188
ports resource 60, 63
POSIX systems, resource isola-

tion on 66
posix/cpu isolator 64–66
posix/disk isolator 65
posix/mem isolator 64–66
- -prefix= 42
principals

defining 113
usernames 106

principals subject, Mesos
ACLs 110

principal-secret
authentication 107

print(task.data) method 214
Process command, Aurora

language 173
prod role 62, 111
production deployment,

of Meso framework
215–216

production environment
considerations 36–38

Mesos masters 37
overview 36–37
ZooKeeper ensemble

37–38
production-level

frameworks 111
protocol buffers 200
ps aux command 83
ps command 66
ps -ef command 83
ps tool 92
public nodes 218, 226
Puppet tool 34, 56
PUT method, HTTP 138, 159
PyCharm 206
PyPI (Python Package Index)

93

INDEX244

Q

qps, defining 113
querying, API endpoints 100
quiet option 82
- -quorum configuration

option 48, 104
Quotas feature, Aurora admin

client 173

R

rate limits, configuring for
frameworks 113–115

- -rate_limits option 113
README file 226
- -recover=cleanup option 76
recovery_timeout option 76
Red Hat Enterprise Linux. See

RHEL
registered() method 208, 211
register_frameworks action,

Mesos ACLs 110
registry_store_timeout 37
replicated log, Mesos 103
reregistered() method 208
resource allocation 60–62

customizing slave
attributes 63–64

customizing slave
resources 63

overview 60
resource reservations 62
roles 61
weights 62

resource isolation
on Linux 65–66
on other POSIX systems 66
with containers 64–70

isolating and monitoring
CPU, memory, and
disk 64–66

network monitoring and
rate limiting 66–70

Resource message 201
resource offers 13, 91
resource partioning 11–12
resource quotas, using

Aurora 193–194
resource scheduling 59–60,

199
customizing slave

attributes 63–64
customizing slave

resources 63

default resources 60
overview 59

resourceOffers() method 201,
208

resources 14
- -resources option 63
REST API

Chronos framework and 151,
157–158

Marathon 122–123
monitoring Chronos job's sta-

tus via 166
RHEL (Red Hat Enterprise

Linux)
CentOS 7

Docker configuration
and 54

Docker installation and 53
Mesos and ZooKeeper installa-

tion and 39, 41
Riak KV 232
roles object, Mesos ACLs 110
- -roles option 61
roles, in resource allocation 61
- -root configuration option

181
root user 110
run() method 209, 212
RUNNING state 85
run_tasks action, Mesos

ACLs 110
ruok command 46, 103

S

S3 (Simple Storage Service) 198
Sandbox link, Mesos web

interface 88
SASL (Simple Authentication

and Security Layer)
framework 106

SBT build tool 24
Scala programming

language 24
schedule-based jobs, Chronos

framework
combining with dependency-

based jobs 160–163
creating using Docker

158–159
creating using REST

API 157–158
creating using web

interface 156
parts of 155–156

scheduled tasks, managing,
using Aurora 189–192

creating Cron job 189–190
creating Docker-based Cron

job 190–192
scheduler

Aurora 171
configuring 178–181
installing 176–177

developing 206–210
driver for 202
framework information

201–202
overview 200
resource offers 200–201

Scheduler API
overview 207–208
writing 208–209

scheduler component, Mesos
framework 197

/scheduler/dependency
endpoint 151

SchedulerDriver 206, 209–210
/scheduler/iso8601

endpoint 151
/scheduler/job/<job-id>

endpoint 151
/scheduler/jobs endpoint 151
scheduling resources. See

resource scheduling
secrets, vs passwords 106
security and access control

106–115
authorization and access con-

trol lists 109–111
configuring framework rate

limits 113–115
framework

authentication 108–109
monitoring framework and

master behavior 112–113
overview 106
slave authentication 107–108

SequentialTask 191
ServerSet 183
-serverset_path configuration

option 179
Service (IaaS) provider 20
service discovery, with Mesos-

DNS 125
service mesos-master restart 175
service mesos-slave restart 175
service routing, with

HAProxy 123–124
servicePort 129

INDEX 245

servicerouter.py script 124, 131,
225

setting up Mesos 33–57
compilation 42–44
compiling 40–44
configuration 46–51

conventions 46–47
master configuration

47–50
slave configuration 50–51

deployment 34–38
cluster components 34–35
development environment

considerations 35
production environment

considerations 36–38
Docker configuration 54–55

RHEL / CentOS 7 54
Ubuntu 14.04

(TRUSTY) 54–55
Docker installation 52–54

overview 52
RHEL / CentOS 7 53
Ubuntu 14.04

(TRUSTY) 53–54
installation 38–44

from packages 39–40
from source 40–44
overview 38

upgrading Mesos 55–57
overview 55
upgrading Mesos

masters 56
upgrading Mesos slaves

56–57
shutdown_frameworks action,

Mesos ACLs 110
Simple Authentication and Secu-

rity Layer framework. See
SASL

simple jobs 154, 156
Simple Storage Service. See S3
simple-docker.json 159
simple-sleep-cron.aurora

file 190
simple-sleep.json 158
Singularity 230
Slack, notifications on job

failure 165–166
- -slack_url configuration

option 165
slack_url configuration

option 154
SLAs feature, Aurora admin

client 173

slave attributes, customizing
63–64

slave failover 75–78
slave recovery feature 56
slave resources, customizing 63
slave’s ID 90
slave’s local file system 199
slave_public 218–219
slaves

authentication of 107–108
overview 6, 14

Slaves tab 88
sleep job 158
socket connections, TCP 137
source, installing Mesos and

ZooKeeper from 40–44
Spark Driver 19
Spark framework 18–21

on Mesos 19–25
finding prime numbers in

set 22
getting and packaging up

code 23–24
observing output 24–25
submitting job 24

on standalone cluster 19
overview 18
Spark UI 26–28

Spark in Action (Bonaci and
Zecevic) 22

Spark job 162
Spark Primes Example

framework 26–27
SparkContext 19, 22
spark-submit command 24
src/contrib/monitoring/

directory 102
src/contrib/monitoring/

check_zookeeper.py
file 102

srvr command 103
ssl_keystore_password configura-

tion option 154
ssl_keystore_path configuration

option 154
stage role 62
STAGING state 85
stat command for

Zookeeper 103
stateful technologies 10
stateless technologies 10
stderr file 80–81, 144, 167, 186
stdout file 80–81, 144, 167, 186
stop() method 209, 212
Storm 231

successCount field 166
supervisord 178
symlink (symbolic link) 82
sysctl -p command 69
syslog (system log) 80
syslog entries 143
systemd 178

T

tail command, UNIX 92
task management. See Chronos
Task object, Aurora language

173
task.data 211
TASK_FAILED state 203
TASK_FINISHED state 203
TaskInfo message 205
TaskInfo() method 210
TASK_RUNNING state 203–204
tasks

failed 120
log files for 81–82
overview 87–88
scheduled, managing

189–192
TASK_STAGING state 203
TaskStatus message 203
TaskStatus() method 212
TCP, performing health checks

with 137
TellApart 183
Thermos executor and observer

configuring 181–182
installing 177–178
overview 171–172

Thermos observer URL 176
-thermos_executor_flags config-

uration option 179
-thermos_executor_path config-

uration option 179
thermos_executor.pex 177,

180–181, 192
thermos_observer.pex 177
Time-zone support feature,

Cron schedule 189
tools

for configuration
management 234–235

for language bindings
232–233

for load balancing and service
discovery 233

for monitoring 234
Vagrant environments 235

INDEX246

trace value 143
Trusty. See Ubuntu 14.04 (Trusty)
trusty-backports repository

129
two-tier scheduling 6

U

Ubuntu 14.04 (Trusty)
Docker configuration

and 54–55
Docker installation and

53–54
Mesos and ZooKeeper installa-

tion and 39–41
Ubuntu 14.04.3 LTS, kernel ver-

sion on 67
update capability, Aurora user

client 172
upgrades 72–78
uris field 205
user client, Aurora 172–173
usernames, vs principals 106
users and quotas, managing

using Aurora 192–194
authentication 192–193
authorization 193
resource quotas 193–194

users object, Mesos ACLs 110
/usr/local/aurora-

scheduler 177
/usr/local/bin/aurora-

admin 178

V

v2 API, Marathon 122
Vagrant environments 35,

175–176, 213, 235
Vagrant file 174–175
/var/db/aurora file 179
/var/log/mesos value 80
virtual machines, comparing

containers to 7–8

W

War and Peace (Tolstoy)
160

warn value 143
web interface

Chronos framework
149–150

Marathon 121–122
webhook URL, Slack 165
webui_url 201
weights, in resource

allocation 62
whitelist option, slave

authentication 107
whitelists

global 111
overview 104

- -with-network-isolator
argument 67

- -work_dir option 49, 51, 81
work_dir option 82

X

-X argument 159

Y

YARN 18
Yum package manager 41
yum update command 53

Z

Zaharia, Matei 18
zk configuration option 128
- -zk option 47
-zk_digest_credentials configura-

tion option 179
-zk_endpoints configuration

option 179
zk_hosts configuration

option 153
zk_port option 182
ZNodes 102
ZooKeeper 13, 37–38, 101–103

Administrator’s Guide 80, 103
configuring 44–46
DCOS and 221
monitoring with

Exhibitor 102
monitoring with four-letter

commands 103
monitoring with Nagios

102–103

Roger Ignazio

M odern datacenters are complex environments, and when
you throw Docker and other container-based systems
into the mix, there’s a great need to simplify. Mesos is

an open source cluster management platform that transforms
the whole datacenter into a single pool of compute, memory,
and storage resources that you can allocate, automate, and
scale as if you’re working with a single supercomputer.

Mesos in Action introduces readers to the Apache Mesos cluster
manager and the concept of application-centric infrastructure.
Filled with helpful fi gures and hands-on instructions, this
book guides you from your fi rst steps creating a highly-
available Mesos cluster through deploying applications in
production and writing native Mesos frameworks. You’ll learn
how to scale to thousands of nodes, while providing resource
isolation between processes using Linux and Docker contain-
ers. You’ll also learn practical techniques for deploying
applications using popular key frameworks.

What’s Inside
● Spinning up your fi rst Mesos cluster
● Scheduling, resource administration, and logging
● Deploying containerized applications with Marathon,

Chronos, and Aurora
● Writing Mesos frameworks using Python

Readers need to be familiar with the core ideas of datacenter
administration and need a basic knowledge of Python or a
similar programming language.

Roger Ignazio is an experienced systems engineer with a focus
on distributed, fault-tolerant, and scalable infrastructure.
He is currently a technical lead at Mesosphere.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/mesos-in-action

$44.99 / Can $51.99 [INCLUDING eBOOK]

Mesos IN ACTION

PROGRAMMING

M A N N I N G

“You would be hard-
pressed to fi nd a better guide

than Roger Ignazio and
a better book than
Mesos in Action.”—From the Foreword by Florian
Leibert, Mesosphere

“Helps to illuminate best
practices and avoid hidden

pitfalls when deploying
Apache Mesos.”—Marco Massenzio, Apple

“Ignazio knows his stuff,
but more importantly he

knows how to explain it.”—Morgan Nelson, getaroom.com

“You will not only learn
Mesos, you will learn

 a whole ecosystem.”—Thomas Peklak, Emakina CEE

SEE INSERT

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgements
	about this book
	Roadmap
	Source code
	Typographical conventions
	Online and community resources
	Author Online

	about the author
	about the cover illustration
	Part 1—Hello, Mesos
	1 Introducing Mesos
	1.1 Meet Mesos
	1.1.1 Understanding how it works
	1.1.2 Comparing virtual machines and containers
	1.1.3 Knowing when (and why) to use Mesos

	1.2 Why we need to rethink the datacenter
	1.2.1 Partitioning of resources
	1.2.2 Deploying applications

	1.3 The Mesos distributed architecture
	1.3.1 Masters
	1.3.2 Slaves
	1.3.3 Frameworks

	1.4 Summary

	2 Managing datacenter resources with Mesos
	2.1 A brief introduction to Spark
	2.1.1 Spark on a standalone cluster
	2.1.2 Spark on Mesos

	2.2 Running a Spark job on Mesos
	2.2.1 Finding prime numbers in a set
	2.2.2 Getting and packaging up the code
	2.2.3 Submitting the job
	2.2.4 Observing the output

	2.3 Exploring further
	2.3.1 Mesos UI
	2.3.2 Spark UI

	2.4 Summary

	Part 2—Core Mesos
	3 Setting up Mesos
	3.1 Deploying Mesos
	3.1.1 Mesos cluster components
	3.1.2 Considerations for a development environment
	3.1.3 Considerations for a production environment

	3.2 Installing Mesos and ZooKeeper
	3.2.1 Installing from packages
	3.2.2 Compiling and installing from source

	3.3 Configuring Mesos and ZooKeeper
	3.3.1 ZooKeeper configuration
	3.3.2 Mesos configuration

	3.4 Installing and configuring Docker
	3.4.1 Installation
	3.4.2 Configuration
	3.4.3 Configuring Mesos slaves for Docker

	3.5 Upgrading Mesos
	3.5.1 Upgrading Mesos masters
	3.5.2 Upgrading Mesos slaves

	3.6 Summary

	4 Mesos fundamentals
	4.1 Scheduling and allocating datacenter resources
	4.1.1 Understanding resource scheduling
	4.1.2 Understanding resource allocation
	4.1.3 Customizing Mesos slave resources and attributes

	4.2 Isolating resources with containers
	4.2.1 Isolating and monitoring CPU, memory, and disk
	4.2.2 Network monitoring and rate limiting

	4.3 Understanding fault tolerance and high availability
	4.3.1 Fault tolerance
	4.3.2 High availability
	4.3.3 Handling failures and upgrades

	4.4 Summary

	5 Logging and debugging
	5.1 Understanding and configuring Mesos logging
	5.1.1 Locating and interpreting log files
	5.1.2 Configuring logging

	5.2 Debugging a Mesos cluster and its tasks
	5.2.1 Using the Mesos web interface
	5.2.2 Using the built-in command-line tools
	5.2.3 Using Mesosphere’s mesos-cli tool

	5.3 Summary

	6 Mesos in production
	6.1 Monitoring the Mesos and ZooKeeper clusters
	6.1.1 Monitoring the Mesos master
	6.1.2 Monitoring the Mesos slave
	6.1.3 Monitoring ZooKeeper

	6.2 Modifying the Mesos master quorum
	6.2.1 Adding masters
	6.2.2 Removing masters
	6.2.3 Replacing masters

	6.3 Implementing security and access control
	6.3.1 Slave and framework authentication
	6.3.2 Authorization and access control lists
	6.3.3 Framework rate limiting

	6.4 Summary

	Part 3—Running on Mesos
	7 Deploying applications with Marathon
	7.1 Getting to know Marathon
	7.1.1 Exploring the web interface and API
	7.1.2 Service discovery and routing

	7.2 Deploying Marathon and HAProxy
	7.2.1 Installing and configuring Marathon
	7.2.2 Installing and configuring HAProxy

	7.3 Creating and scaling applications
	7.3.1 Deploying a simple application
	7.3.2 Deploying a Docker container
	7.3.3 Performing health checks and rolling application upgrades

	7.4 Creating application groups
	7.4.1 Understanding the anatomy of an application group
	7.4.2 Deploying an application group

	7.5 Logging and debugging
	7.5.1 Configuring logging for Marathon
	7.5.2 Debugging Marathon applications and tasks

	7.6 Summary

	8 Managing scheduled tasks with Chronos
	8.1 Getting to know Chronos
	8.1.1 Exploring the web interface and API

	8.2 Installing and configuring Chronos
	8.2.1 Reviewing prerequisites
	8.2.2 Installing Chronos
	8.2.3 Configuring Chronos

	8.3 Working with simple jobs
	8.3.1 Creating a schedule-based job
	8.3.2 Creating a schedule-based job using Docker

	8.4 Working with complex jobs
	8.4.1 Combining schedule-based and dependency-based jobs
	8.4.2 Visualizing job dependencies

	8.5 Monitoring the output and status of Chronos jobs
	8.5.1 Job failure notifications and monitoring
	8.5.2 Observing standard output and standard error via Mesos

	8.6 Summary

	9 Deploying applications and managing scheduled tasks with Aurora
	9.1 Introducing Aurora
	9.1.1 The Aurora scheduler
	9.1.2 The Thermos executor and observer
	9.1.3 The Aurora user and admin clients
	9.1.4 The Aurora domain-specific language

	9.2 Deploying Aurora
	9.2.1 Trying out Aurora in a development environment
	9.2.2 Building and installing Aurora
	9.2.3 Configuring Aurora

	9.3 Deploying applications
	9.3.1 Deploying a simple application
	9.3.2 Deploying a Docker-based application

	9.4 Managing scheduled tasks
	9.4.1 Creating a Cron job
	9.4.2 Creating a Docker-based Cron job

	9.5 Administering Aurora
	9.5.1 Managing users and quotas
	9.5.2 Performing maintenance

	9.6 Summary

	10 Developing a framework
	10.1 Understanding framework basics
	10.1.1 When and why would you write a framework?
	10.1.2 The scheduler implementation
	10.1.3 The executor implementation

	10.2 Developing a scheduler
	10.2.1 Working with the Scheduler API
	10.2.2 Working with the SchedulerDriver

	10.3 Developing an executor
	10.3.1 Working with the Executor API
	10.3.2 Working with the executor driver

	10.4 Running the framework
	10.4.1 Deploying in development
	10.4.2 Considerations for a production deployment

	10.5 Summary

	Appendix A—Case study: Mesosphere DCOS, an enterprise Mesos distribution
	A.1 Introduction to DCOS
	A.1.1 Understanding the DCOS architecture
	A.1.2 Interacting with DCOS

	A.2 Continuous deployment with Jenkins and Marathon
	A.2.1 Preparing DCOS for continuous application deployments
	A.2.2 Configuring Jenkins
	A.2.3 Continuous deployment in action

	A.3 Summary

	Appendix B—List of Mesos frameworks and tools
	B.1 Mesos frameworks
	B.1.1 Application management and batch scheduling
	B.1.2 Data processing
	B.1.3 Distributed databases and storage

	B.2 Mesos-related tools
	B.2.1 Language bindings
	B.2.2 Load balancing and service discovery
	B.2.3 Monitoring and management
	B.2.4 Vagrant environments

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

