Sourabh Sharma, Rajesh RV
David Gonzalez

Microservices:
Building Scalable
Software

Learning Path

Discover how to easily build and implement scalable
microservices from scratch

[T1 Packt>

Microservices: Building
Scalable Software

Discover how to easily build and implement
scalable microservices from scratch

A course in three modules

Packt

BIRMINGHAM - MUMBAI

Microservices: Building Scalable Software

Copyright © 2016 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course

is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Published on: December 2016

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN: 978-1-78728-583-5

www . packtpub.com

Credits

Authors
Sourabh Sharma

Rajesh RV

David Gonzalez
Reviewers
Guido Grazioli

Yogendra Sharma

Kishore Kumar Yekkanti

Content Development Editor
Onkar Wani

Graphics
Abhinash Sahu

Production Coordinator
Shraddha Falebhai

Preface

With the introduction of the cloud, enterprise application development moved from
monolithic applications to small, lightweight, and process-driven components called
microservices. Microservices architecture is a style of software architecture, which
makes application development easier and offers great flexibility to utilize various
resources optimally. They are the next big thing in designing scalable, easy-to-
maintain applications. In today’s world, many enterprises use microservices as the
default standard for building large, service-oriented enterprise applications.

Implementing the microservice architecture in Spring Framework, Spring Boot, and
Spring Cloud, helps you build modern, Internet-scale Java applications in no time.
The Spring framework is a popular programming framework among developer
community for many years. Spring Boot removed the need to have a heavyweight
application container and provided a means to deploy lightweight, server-less
applications, with ease.

This course is a hands-on guide to help you build enterprise-ready implementations
of microservices. It explains the domain-driven design and its adoption in
microservices. Teaching you how to build smaller, lighter, and faster services that
can be implemented easily in a production environment. You will dive deep into
Spring Boot, Spring Cloud, Docker, Mesos, and Marathon, to understand how to
deploy autonomous services without the need for the application server and to
manage resources effectively.

[il

Preface

What this learning path covers

Module 1, Mastering Microservices with Java, This module teaches you how to build
smaller, lighter, and faster services that can be implemented easily in a production
environment. Giving you the understanding of the complete life cycle of enterprise
app development, from designing and developing to deploying, testing, and
security. The Module starts off with making you understand the core concepts and
frameworks, you will then focus on the high-level design of large software projects.
Gradually moving on to setting up the development environment and configuring
it before implementing continuous integration to deploy your microservice
architecture. At the end, you will know how to build smaller, lighter, and faster
services that can be implemented easily in a production environment.

Module 2, Spring Microservices, The goal of this module is to enlighten you with a
pragmatic approach and guidelines for implementing responsive microservices at
scale. This module will dive deep into Spring Boot, Spring Cloud, Docker, Mesos,
and Marathon. You will also understand how Spring Boot is used in deploying
autonomous services without the need for a heavyweight application server. You
will learn different Spring Cloud capabilities and also realize the use of Docker for
containerization and of Mesos and Marathon for computing resource abstraction
and cluster-wide control, respectively. In the end, you will have learned how to
implement microservice architectures using the Spring framework, Spring Boot, and
Spring Cloud.

Module 3, Developing Microservices with Node.js, This module is a hands-on guide
to start writing microservices using Node.js and the most modern frameworks,
especially Seneca and PM2. You will learn how to design, build, test, and deploy
microservices using the best practices. Also, how to make the right level of
compromise in order to avoid over-designing and get the business requirements
aligned with the technical solutions..

What you need for this learning path
Module 1:

For this module, you can use any operating system (Linux, Windows, or Mac) with
a minimum of 2 GB RAM. You will also require NetBeans with Java, Maven, Spring
Boot, Spring Cloud, Eureka Server, Docker, and CI/CD app. For Docker containers,
you may need a separate VM or a cloud host with preferably 16 GB or more RAM.

Lii]

Preface

Module 2:
Chapter 2, Building Microservices with Spring Boot, introduces Spring Boot, which

requires the following software components to test the code:

e JDK138
* Spring Tool Suite 3.7.2 (STS)
* Maven3.3.1

* Spring Framework 4.2.6. RELEASE

* Spring Boot 1.3.5.RELEASE

* spring-boot-cli-1.3.5.RELEASE-bin.zip
* RabbitMQ 3.5.6

* FakeSMTP

Chapter 5, Scaling Microservices with Spring Cloud, you will learn about the Spring
Cloud project. This requires the following software components in addition to the
previously mentioned ones:

* Spring Cloud Brixton.RELEASE

Chapter 7, Logging and Monitoring Microservices, we will take a look at how
centralized logging can be implemented for microservices. This requires the
following software stack:

* Elasticsearch 1.5.2

* kibana-4.0.2-darwin-x64

* Logstash 2.1.2
Chapter 8, Containerizing Microservices with Docker, we will demonstrate how we

can use Docker for microservices deployments. This requires the following software
components:

e Docker version 1.10.1

e Docker Hub

[iii]

Preface

Chapter 9, Managing Dockerized Microservices with Mesos and Marathon, uses
Mesos

and Marathon to deploy dockerized microservices into an autoscalable cloud. The
following software components are required for this purpose:

e Mesos version 0.27.1
e Docker version 1.6.2

e Marathon version 0.15.3
Module 3:

In order to follow the module, you will need to install Node.js, PM2 (it is a package
that is installed through npm), and MongoDB. We will also need an editor. It is
recommended to use Atom, but any general purpose editor should be enough.

Who this learning path is for

This course is intended for Java and Spring developers, DevOps engineers, and
system administrators who are familiar with microservice architecture and have a
good understanding of the core elements and microservice applications but now
want to delve into effectively implementing microservices at the enterprise level.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this course —what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the course’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt course, we have a number of things to
help you to get the most from your purchase.

[iv]

Preface

Downloading the example code

You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the course in the Search box.

Select the course for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this course from.
Click on Code Download.

NS Ok

You can also download the code files by clicking on the Code Files button on the
course’s webpage at the Packt Publishing website. This page can be accessed by
entering the course’s name in the Search box. Please note that you need to be logged
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

* WinRAR / 7-Zip for Windows

* Zipeg / iZip / UnRarX for Mac

» 7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at https://github.com/

PacktPublishing/Microservices-Building-Scalable-Software. We also have
other code bundles from our rich catalog of books, videos, and courses available at

https://github.com/PacktPublishing/. Check them out!

[v]

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our courses —maybe a mistake in the text
or the code —we would be grateful if you could report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this course. If you find any errata, please report them by visiting http://www.
packtpub.com/submit-errata, selecting your course, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the course in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this course, you can contact us at
questionse@packtpub.com, and we will do our best to address the problem.

Module 1: Mastering Microservices with Java

Chapter 1: A Solution Approach 3
Evolution of pServices 4
Monolithic architecture overview 5
Limitation of monolithic architecture versus its solution with pServices 5
Summary 17

Chapter 2: Setting Up the Development Environment 19
Spring Boot configuration 20
Sample REST program 24
Setting up the application build 31
REST API testing using the Postman Chrome extension 32
NetBeans IDE installation and setup 39
References 44
Summary 44

Chapter 3: Domain-Driven Design 45
Domain-driven design fundamentals 46
Building blocks 47
Strategic design and principles 58
Sample domain service 64
Summary 71

Chapter 4: Implementing a Microservice 73
OTRS overview 74
Developing and implementing pServices 75
Testing 90
References 94
Summary 94

Table of Contents

Chapter 5: Deployment and Testing 95
An overview of microservice architecture using Netflix 0SS 95
Load balancing 97
Circuit breaker and monitoring 104
Microservice deployment using containers 111
References 121
Summary 121

Chapter 6: Securing Microservices 123
Enabling Secure Socket Layer 123
Authentication and authorization 127
OAuth implementation using Spring Security 147
References 159
Summary 159

Chapter 7: Consuming Services Using a Microservice Web App 161
AngularJS framework overview 162
Development of OTRS features 167
Setting up the web app 189
Summary 204

Chapter 8: Best Practices and Common Principles 207
Overview and mindset 207
Best practices and principals 209
Microservices frameworks and tools 215
References 223
Summary 223

Chapter 9: Troubleshooting Guide 225
Logging and ELK stack 225
Use of correlation ID for service calls 232
Dependencies and versions 232
References 234
Summary 234

Module 2: Spring Microservices

Chapter 1: Demystifying Microservices 237
The evolution of microservices 237
What are microservices? 241
Microservices - the honeycomb analogy 244

Table of Contents

Principles of microservices 244
Characteristics of microservices 246
Microservices examples 253
Microservices benefits 259
Relationship with other architecture styles 269
Microservice use cases 279
Summary 284
Chapter 2: Building Microservices with Spring Boot 285
Setting up a development environment 285
Developing a RESTful service - the legacy approach 286
Moving from traditional web applications to microservices 291
Using Spring Boot to build RESTful microservices 292
Getting started with Spring Boot 293
Developing the Spring Boot microservice using the CLI 293
Developing the Spring Boot Java microservice using STS 294
Developing the Spring Boot microservice using Spring Initializr - the HATEOAS
example 304
What's next? 308
The Spring Boot configuration 309
Changing the default embedded web server 313
Implementing Spring Boot security 313
Enabling cross-origin access for microservices 318
Implementing Spring Boot messaging 319
Developing a comprehensive microservice example 322
Spring Boot actuators 333
Configuring application information 335
Adding a custom health module 335
Documenting microservices 338
Summary 340
Chapter 3: Applying Microservices Concepts 341
Patterns and common design decisions 341
Microservices challenges 375
The microservices capability model 380
Summary 385
Chapter 4: Microservices Evolution - A Case Study 387
Reviewing the microservices capability model 388
Understanding the PSS application 389
Death of the monolith 394

Microservices to the rescue 400

Table of Contents

The business case 401
Plan the evolution 401
Migrate modules only if required 423
Target architecture 424
Target implementation view 430
Summary 437
Chapter 5: Scaling Microservices with Spring Cloud 439
Reviewing microservices capabilities 440
Reviewing BrownField's PSS implementation 440
What is Spring Cloud? 441
Setting up the environment for BrownField PSS 446
Spring Cloud Config 447
Feign as a declarative REST client 463
Ribbon for load balancing 465
Eureka for registration and discovery 468
Zuul proxy as the API gateway 480
Streams for reactive microservices 488
Summarizing the BrownField PSS architecture 492
Summary 494
Chapter 6: Autoscaling Microservices 495
Reviewing the microservice capability model 496
Scaling microservices with Spring Cloud 496
Understanding the concept of autoscaling 498
Autoscaling approaches 504
Autoscaling BrownField PSS microservices 508
Summary 518
Chapter 7: Logging and Monitoring Microservices 519
Reviewing the microservice capability model 520
Understanding log management challenges 520
A centralized logging solution 522
The selection of logging solutions 524
Monitoring microservices 533
Data analysis using data lakes 546
Summary 547
Chapter 8: Containerizing Microservices with Docker 549
Reviewing the microservice capability model 550
Understanding the gaps in BrownField PSS microservices 550
What are containers? 552
The difference between VMs and containers 553

The benefits of containers
Microservices and containers
Introduction to Docker

Deploying microservices in Docker
Running RabbitMQ on Docker

Using the Docker registry
Microservices on the cloud

Running BrownField services on EC2
Updating the life cycle manager

The future of containerization - unikernels and hardened security
Summary

Table of Contents

555
556
557
562
566
566
568
568
570
570
571

Chapter 9: Managing Dockerized Microservices with Mesos and Marathon

573

Reviewing the microservice capability model 574
The missing pieces 574
Why cluster management is important 576
What does cluster management do? 577
Relationship with microservices 580
Relationship with virtualization 580
Cluster management solutions 580
Cluster management with Mesos and Marathon 584
Implementing Mesos and Marathon for BrownField microservices 589
A place for the life cycle manager 603
The technology metamodel 604
Summary 605
Chapter 10: The Microservices Development Life Cycle 607
Reviewing the microservice capability model 608
The new mantra of lean IT - DevOps 608
Meeting the trio - microservices, DevOps, and cloud 611
Practice points for microservices development 613

Microservices development governance, reference architectures, and libraries

Summary

634

Table of Contents

Module 3: Developing Microservices with Node.js,David
Gonzalez

Chapter 1: Microservices Architecture 637
Need for microservices 637
Key design principles 640
Key benefits 649
SOA versus microservices 655
Why Node.js? 656
Summary 659

Chapter 2: Microservices in Node.js - Seneca and PM2 Alternatives 661
Need for Node.js 661
Seneca - a microservices framework 672
PM2 - a task runner for Node.js 687
Summary 694

Chapter 3: From the Monolith to Microservices 695
First, there was the monolith 696
Then the microservices appeared 700
Organizational alignment 709
Summary 711

Chapter 4: Writing Your First Microservice in Node.js 713
Micromerce - the big picture 713
Product Manager - the two-faced core 715
The e-mailer - a common problem 726
The order manager 737
The Ul - API aggregation 744
Debugging 762
Summary 765

Chapter 5: Security and Traceability 767
Infrastructure logical security 767
Application security 771
Traceability 781
Summary 788

Chapter 6: Testing and Documenting Node.js Microservices 789
Functional testing 790
Documenting microservices 825
Summary 835

Table of Contents

Chapter 7: Monitoring Microservices 837
Monitoring services 837
Simian Army - the active monitoring from Spotify 854
Summary 860

Chapter 8: Deploying Microservices 861
Concepts in software deployment 861
Deployments with PM2 863
Docker - a container for software delivery 867
Node.js event loop - easy to learn and hard to master 880
Clustering Node.js applications 882
Load balancing our application 889

Summary 896

Module 1

Mastering Microservices with Java

Master the art of implementing microservices in your production environment with ease

A Solution Approach

As a prerequisite, I believe you have a basic understanding of microservices and
software architecture. If not, I would recommend you Google them and find one of
the many resources that explains and describes them in detail. It will help you to
understand the concepts and book thoroughly.

After reading this book, you could implement microservices for on premise or cloud
production deployment and learn the complete life cycle from design, development,
testing, and deployment with continuous integration and deployment. This book is
specifically written for practical use and to ignite your mind as a solution architect.
Your learning will help you to develop and ship products for any type on premise,
including SaaS, PaaS, and so on. We'll primarily use the Java and Java-based
framework tools such as Spring Boot and Jetty, and we will use Docker as container.

From this point onwards, uServices will be used for
S microservices except in quotes.

In this chapter, you will learn the eternal existence of uServices, and how it has
evolved. It highlights the large problems that premise and cloud-based products face
and how pServices deals with it. It also explains the common problems encountered
during the development of SaaS, enterprise, or large applications and their solutions.

In this chapter, we will learn the following topics:

* uServices and a brief background

* Monolithic architecture

* Limitation of monolithic architecture

* The benefits and flexibility microservices offers

* uServices deployment on containers such as Docker

[31]

A Solution Approach

Evolution of yServices

Martin Fowler explains:

"The term "microservice" was discussed at a workshop of software architects
near Venice in May, 2011 to describe what the participants saw as a common
architectural style that many of them had been recently exploring. In May 2012,
the same group decided on "uServices" as the most appropriate name."

Let's get some background on the way it has evolved over the years. Enterprise
architecture evolved more from historic mainframe computing, through client-server
architecture (2-tier to n-tier) to service-oriented architecture (SOA).

The transformation from SOA to pServices is not a standard defined by any industry
organization, but a practical approach practiced by many organizations. SOA
eventually evolved to become pServices.

Adrian Cockcroft, former Netflix Architect, describes it as:

"Fine grain SOA. So microservice is SOA with emphasis on small
ephemeral components."

Similarly, the following quote from Mike Gancarz (a member that designed
the X windows system), which defines one of the paramount percepts of UNIX
philosophy, suits the uService paradigm as well:

"Small is beautiful."

uServices shares many common characteristics with SOA, such as focus on services
and how one service decouples from another. SOA evolved around monolithic
application integration by exposing API that was mostly Simple Object Access
Protocol (SOAP) based. Therefore, middleware such as Enterprise Service Bus (ESB)
is very important for SOA. pServices is less complex, and even though it may use the
message bus it is only used for message transport and it does not contain any logic.

Tony Pujals defined uServices beautifully:

"In my mental model, I think of self-contained (as in containers) lightweight
processes communicating over HTTP, created and deployed with relatively small
effort and ceremony, providing narrowly-focused APIs to their consumers."

[4]

Chapter 1

Monolithic architecture overview

uServices is not something new, it has been around for many years. Its recent rise

is owing to its popularity and visibility. Before uServices became popular, there was
primarily monolithic architecture that was being used for developing on premise
and cloud applications.

Monolithic architecture allows the development of different components such as
presentation, application logic, business logic, and data access objects (DAO), and
then you either bundle them together in enterprise archive (EAR)/web archive
(WAR), or store them in a single directory hierarchy (for example, Rails, Node]JS,
and so on).

Many famous applications such as Netflix have been developed using pServices
architecture. Moreover, eBay, Amazon, and Groupon have evolved from monolithic
architecture to a pServices architecture.

Now, that you have had an insight into the background and history of pServices,
let's discuss the limitations of a traditional approach, namely monolithic app
development, and compare how pServices would address them.

Limitation of monolithic architecture
versus its solution with yServices

As we know, change is eternal. Humans always look for better solutions. This is how
uServices became what it is today and it may evolve further in the future. Today,
organizations are using agile methodologies to develop applications; it is a fast paced
development environment and is also on a much larger scale after the invention of
cloud and distributed technologies. Many argue that monolithic architecture could
also serve a similar purpose and be aligned with agile methodologies, but uServices
still provides a better solution to many aspects of production-ready applications.

To understand the design differences between monolithic and pServices, let's take an
example of a restaurant table-booking application. This app may have many services
such as customers, bookings, analytics and so on, as well as regular components such
as presentation and database.

We'll explore three different designs here - traditional monolithic design, monolithic
design with services and pServices design.

[51]

A Solution Approach

The following diagram explains the traditional monolithic application design.
This design was widely used before SOA became popular:

Presentation
Application Logic
Business Logic

opan

Traditional monolithic design

In traditional monolithic design, everything is bundled in the same archive such as
presentation code, application logic and business logic code, and DAO and related
code that interacts with the database files or another source.

After SOA, applications started being developed based on services, where each
component provides the services to other components or external entities. The
following diagram depicts the monolithic application with different services;
here services are being used with a presentation component. All services, the
presentation component, or any other components are bundled together:

Customer API

Booking API

Presentation

Analytics API

[nlinin

Monolithic design with services

[6]

Chapter 1

The following third design depicts the uServices. Here, each component represents
autonomy. Each component could be developed, built, tested, and deployed
independently. Here, even the application UI component could also be a client and
consume the pServices. For the purpose of our example, the layer designed is used
within pService.

The API gateway provides the interface where different clients can access the
individual services and solve the following problems:

* What to do when you want to send different responses to different clients
for the same service. For example, a booking service could send different
responses to a mobile client (minimal information) and a desktop client
(detailed information) providing different details and something different
again to a third-party client.

* A response may require fetching information from two or more services:

App Lagic

BusinessLogic

App Lagic

Business Logic

=

AP| Gateway

\
HIII HIIE HIIE

Presentation

App Lagic

Business Logic

P

Microservices design

After observing all the sample design diagrams, which are very high-level designs,
you might find out that in monolithic design, the components are bundled together
and tightly coupled.

[71

A Solution Approach

All the services are part of the same bundle. Similarly, in the second design figure,
you can see a variant of the first figure where all services could have their own
layers and form different APIs, but, as shown in the figure, these are also all
bundled together.

Conversely, in uServices, design components are not bundled On the other hand,
because of its component-based development and design, pServices together and
have loose coupling. Each service has its own layers and DB and is bundled in a
separate archive. All these deployed services provide their specific API such as
Customers, Bookings, or Customer. These APIs are ready to consume. Even the
Ul is also deployed separately and designed using pService. For this reason, it
provides various advantages over its monolithic counterpart. I would still remind
you that there are some exceptional cases where monolithic app development is
highly successful, like Etsy, and peer-to-peer e-commerce web applications.

One dimension scalability

Monolithic applications, which are large when scaled, scale everything as all the
components are bundled together. For example, in the case of a restaurant table
reservation application, even if you would like to scale the table-booking service,
it would scale the whole application; it cannot scale the table-booking service
separately. It does not utilize the resource optimally.

In addition, this scaling is one-dimensional. Running more copies of the application
provides scale with increasing transaction volume. An operation team could adjust
the number of application copies that were using a load-balancer based on the load
in a server farm or a cloud. Each of these copies would access the same data source,
therefore increasing the memory consumption, and the resulting I/ O operations
make caching less effective.

uServices gives the flexibility to scale only those services where scale is required
and it allows optimal utilization of the resources. As we mentioned previously,
when it is needed, you can scale just the table-booking service without affecting
any of the other components. It also allows two-dimensional scaling; here we can
not only increase the transaction volume but also the data volume using caching
(Platform scale).

A development team can then focus on the delivery and shipping of new features,
instead of worrying about the scaling issues (Product scale).

uServices could help you scale platform, people, and product dimensions as we
have seen previously. People scaling here refers to an increase or decrease in team
size depending on pServices' specific development and focus needs.

[8]

Chapter 1

uService development using RESTful web service development makes it scalable in
the sense that the server-end of REST is stateless; this means that there is not much
communication between servers, which makes it horizontally scalable.

Release rollback in case of failure

Since, monolithic applications are either bundled in the same archive or contained

in a single directory, they prevent the deployment of code modularity. For example,
many of you may have experienced the pain of delaying rolling out the whole release
due to the failure of one feature.

To resolve these situations, uServices gives us flexibility to rollback only those
features that have failed. It's a very flexible and productive approach. For example,
let's assume you are the member of an online shopping portal development team
and want to develop an app based on pServices. You can divide your app based

on different domains such as products, payments, cart and so on, and package all
these components as separate packages. Once you have deployed all these packages
separately, these would act as single components that can be developed, tested and
deployed independently, and called pService.

Now, let's see how that helps you. Let's say that after a production release launching
new features, enhancements, and bug fixes, you find flaws in the payment service that
need an immediate fix. Since the architecture you have used is based on pServices,
you can rollback the payment service instead of rolling back the whole release, if

your application architecture allows, or apply the fixes to the uServics payment
service without affecting the other services. This not only allows you to handle

failure properly, but also helps to deliver the features/fixes swiftly to customer.

Problems in adopting new technologies

Monolithic applications are mostly developed and enhanced based on the technologies
primarily used during the initial development of a project or a product. It makes it
very difficult to introduce new technology at a later stage of the development or once
the product is in a mature state (for example, after a few years). In addition, different
modules in the same project that depend on different versions of the same library
make this more challenging.

Technology is improving year on year. For example, your system might be designed
in Java and then, a few years later, you want to develop a new service in Ruby

on rails or Node]S because of a business need or to utilize the advantages of new
technologies. It would be very difficult to utilize the new technology in an existing
monolithic application.

[o]

A Solution Approach

It is not just about code-level integration but also about testing and deployment. It is
possible to adopt a new technology by re-writing the entire application, but it is time
consuming and a risky thing to do.

On the other hand, because of its component-based development and design, uServices
gives us the flexibility to use any technology, new or old, for its development. It

does not restrict you to using specific technologies, it gives a new paradigm to your
development and engineering activities. You can use Ruby on Rails, NodeJS or any
other technology at any time.

So, how is it achieved? Well, it's very simple. pServices-based application code does
not bundle into a single archive and is not stored in a single directory. Each pService
has its own archive and is deployed separately. A new service could be developed in
an isolated environment and could be tested and deployed without any technology
issues. As you know, pServices also owns its own separate processes; it serves its
purpose without any conflict such as shared resources with tight coupling, and
processes remain independent.

Since a pService is by definition a small, self-contained function, it provides a low-
risk opportunity to try a new technology. That is definitely not the case where
monolithic systems are concerned.

You can also make your Microservice available as open source software so it can be
used by others, and if required it may interoperate with a closed source proprietary
one, which is not possible with monolithic applications.

Alignment with Agile practices

There is no question that monolithic applications can be developed using agile
practices and these are being developed. Continuous Integration (CI) and Continuous
Deployment (CD) could be used, but, the question is - does it use agile practices
effectively? Let's examine the following points:

* For example, when there is a high probability of having stories dependent on
each other, and there could be various scenarios, a story could be taken up
until the dependent story is not complete

¢ The build takes more time as the code size increases

* The frequent deployment of a large monolithic application is a difficult task
to achieve

* You would have to redeploy the whole application even if you updated a
single component

[10]

Chapter 1

* Redeployment may cause problems to already running components, for
example a job scheduler may change whether components impact it or not

* The risk of redeployment may increase if a single changed component does
not work properly or if it needs more fixes

* Ul developers always need more redeployment, which is quite risky and
time-consuming for large monolithic applications

The preceding issues can be tackled very easily by pServices, for example, Ul
developers may have their own Ul component that can be developed, built, tested,
and deployed separately. Similarly, other uServices might also be deployable
independently and because of their autonomous characteristics, the risk of system
failure is reduced. Another advantage for development purposes is that Ul
developers can make use of the JSON object and mock Ajax calls to develop the
UL which can be taken up in an isolated manner. After development completes,
developers can consume the actual APIs and test the functionality. To summarize,
you could say that pServices development is swift and it aligns well with the
incremental needs of businesses.

Ease of development — could be done better

Generally, large monolithic application code is the toughest to understand for
developers, and it takes time before a new developer can become productive.

Even loading the large monolithic application into IDE is troublesome, and it

makes IDE slower and the developer less productive.

A change in a large monolithic application is difficult to implement and takes more
time due to a large code base, and there will be a high risk of bugs if impact analysis
is not done properly and thoroughly. Therefore, it becomes a prerequisite for
developers to do thorough impact analysis before implementing changes.

In monolithic applications, dependencies build up over time as all components are
bundled together. Therefore, risk associated with code change rises exponentially as
code changes (number of modified lines of code) grows.

When a code base is huge and more than 100 developers are working on it, it
becomes very difficult to build products and implement new features because of
the previously mentioned reason. You need to make sure that everything is in place,
and that everything is coordinated. A well-designed and documented API helps a
lot in such cases.

[11]

shraddhaf
Sticky Note
Marked set by shraddhaf

shraddhaf
Sticky Note
Marked set by shraddhaf

A Solution Approach

Netflix, the on-demand Internet streaming provider, had problems getting their
application developed with around 100 people. Then, they used a cloud and broke
up the app into separate pieces. These ended up being microservices. Microservices
grew from the desire for speed and agility and to deploy teams independently.

Micro-components are made loosely coupled thanks to their exposed API, which
can be continuously integration tested. With pServices' continuous release cycle,
changes are small and developers can rapidly exploit them with a regression test,
then go over them and fix the eventual defects found, reducing the risk of a
deployment. This results in higher velocity with a lower associated risk.

Owing to the separation of functionality and single responsibility principle,
uServices makes teams very productive. You can find a number of examples
online where large projects have been developed with minimum team sizes
such as eight to ten developers.

Developers can have better focus with smaller code and resultant better feature
implementation that leads to a higher empathic relationship with the users of the
product. This conduces better motivation and clarity in feature implementation.
Empathic relationship with the users allows a shorter feedback loop, and better and
speedy prioritization of the feature pipeline. Shorter feedback loop makes defects
detection also faster.

Each pServices team works independently and new features or ideas can be
implemented without being coordinated with larger audiences. The implementation
of end-point failures handling is also easily achieved in the uServices design.

Recently, at one of the conferences, a team demonstrated how they had developed
a pServices-based transport-tracking application including iOS and Android apps
within 10 weeks, which had Uber-type tracking features. A big consulting firm gave
a seven months estimation for the same app to his client. It shows how pServices is
aligned with agile methodologies and CI/CD.

Microservices build pipeline

Microservices could also be built and tested using the popular CI/CD tools such as
Jenkins, TeamCity, and so on. It is very similar to how a build is done in a monolithic
application. In microservices, each microservice is treated like a small application.

For example, once you commit the code in the repository (SCM), CI/CD tools
triggers the build process:

* C(Cleaning code

* Code compilation

[12]

Chapter 1

* Unit test execution

* Building the application archives

* Deployment on various servers such as Dev, QA, and so on
* Functional and integration test execution

* Creating image containers

* Any other steps

Then, release-build triggers that change the SNAPSHOT or RELEASE version in
pom.xml (in case of Maven) build the artifacts as described in the normal build
trigger. Publish the artifacts to the artifacts repository. Tag this version in the
repository. If you use the container image then build the container image.

Deployment using a container such as Docker

Owing to the design of uServices, you need to have an environment that provides
flexibility, agility and smoothness for continuous integration and deployment as
well as for shipment. pServices deployments need speed, isolation management
and an agile life cycle.

Products and software can also be shipped using the concept of an intermodal-
container model. An intermodal-container is a large standardized container, designed
for intermodal freight transport. It allows cargo to use different modes of transport

- truck, rail, or ship without unloading and reloading. This is an efficient and secure
way of storing and transporting stuff. It resolves the problem of shipping, which
previously had been a time consuming, labor-intensive process, and repeated
handling often broke fragile goods.

Shipping containers encapsulate their content. Similarly, software containers are
starting to be used to encapsulate their contents (products, apps, dependencies,
and so on).

Previously, virtual machines (VMs) were used to create software images that could
be deployed where needed. Later, containers such as Docker became more popular
as they were compatible with both traditional virtual stations systems and cloud
environments. For example, it is not practical to deploy more than a couple of VMs
on a developer's laptop. Building and booting a VM machine is usually I/O intensive
and consequently slow.

[13]

A Solution Approach

Containers

A container (for example, Linux containers) provides a lightweight runtime
environment consisting of the core features of virtual machines and the isolated
services of operating systems. This makes the packaging and execution of pServices
easy and smooth.

As the following diagram shows, a container runs as an application (uService) within
the operating system. The OS sits on top of the hardware and each OS could have
multiple containers, with a container running the application.

A container makes use of an operating system's kernel interfaces such as cnames and
namespaces that allow multiple containers to share the same kernel while running in
complete isolation to one another. This gives the advantage of not having to complete
an OS installation for each usage; the result being that it removes the overhead. It also
makes optimal use of the hardware.

Microservices

Operating

System

Hardware

Layer diagram for containers

[14]

Chapter 1

Docker

Container technology is one of the fastest growing technologies today and Docker
leads this segment. Docker is an open source project and was launched in 2013. Ten
thousand developers tried it after its interactive tutorial launched in August 2013. It
was downloaded 2.75 million times by the time of the launch of its 1.0 release in June
2013. Many large companies have signed the partnership agreement with Docker
such as Microsoft, Red Hat, HP, OpenStack and service providers such as Amazon
web services, IBM, and Google.

As we mentioned earlier, Docker also makes use of the Linux kernel features, such as
cgroups and namespaces to ensure resource isolation and packaging of the application
with its dependencies. This packaging of dependencies enables an application to run as
expected across different Linux operating systems/ distributions; supporting a level of
portability. Furthermore this portability allows developers to develop an application in
any language and then easily deploy it from a laptop to a test or production server.

Docker runs natively on Linux. However, you can also run Docker
=" on Windows and Mac OS using VirtualBox and boot2docker.

Containers are comprised of just the application and its dependencies including the
basic operating system. This makes it lightweight and efficient in terms of resource
utilization.. Developers and system administrators get interested in container's
portability and efficient resource utilization.

Everything in a Docker container executes natively on the host and uses the host
kernel directly. Each container has its own user namespace.

Docker's architecture

As specified on Docker documentation, Docker architecture uses client-server
architecture. As shown in the following figure (sourced from Docker's website),

the Docker client is primary a user interface that is used by an end user; clients
communicate back and forth with a Docker daemon. The Docker daemon does

the heavy lifting of building, running, and distributing your Docker containers.

The Docker client and the daemon can run on the same system, or different
machines. The Docker client and daemon communicate via sockets or through a
RESTful API. Docker registries are public or private Docker image repositories from
which you upload or download images, for example Docker Hub (hub . docker . com)
is a public Docker registry.

The primary components of Docker are a Docker image and a Docker container.

[15]

hub.docker.com

A Solution Approach

Docker image

A Docker image is a read-only template. For example, an image could contain
an Ubuntu operating system with Apache web server and your web application
installed. Docker images are a build component of Docker. Images are used to
create Docker containers. Dockers provides a simple way to build new images
or update existing images. You can also use images created by others.

(Glort}———— [Poceosy) (oo

docker build i -] Doderskermon .._I R
[N\ S~ <]
docker pull -| ! R . <
\
| -

i Containers \ Images

"\ @ NGiIAX
N !
1§ .
] 7
N~ /

docker run —

LU
&

Docker's architecture

Docker container

A Docker container is created from a Docker image. Docker works so that the
container can only see its own processes, and have its own filesystem layered onto a
host filesystem and a networking stack, which pipes to the host-networking stack.
Docker containers can be run, started, stopped, moved or deleted.

Deployment

uServices deployment with Docker deals with three parts:

1. Application packaging, for example, jar

2. Building Docker image with jar and dependencies using a Docker
instruction file, the Dockerfile and command docker build. It helps to
repeatedly create the image.

3. Docker container execution from this newly built image using command
docker run.

[16]

Chapter 1

The preceding information will help you to understand the basics of Docker. You will
learn more about Docker and its practical usage in Chapter 5, Deployment and Testing.
Source and reference: https://docs.docker. com.

Summary

In this chapter, you have learned or rehearsed the high-level design of large
software projects from traditional monolithic to pServices applications. You
were also introduced to a brief history of pServices, the limitation of monolithic
applications, and the benefits and flexibility that microservices offers. I hope this
chapter helped you to understand the common problems faced in a production
environment by monolithic applications and how microservices can resolve
such problem. You were also introduced to lightweight and efficient Docker
containers, and saw how containerization is an excellent way to simplify
microservices deployment.

In the next chapter, you will get to know about setting up the development
environment from IDE, and other development tools, to different libraries We will
deal with creating basic projects and setting up Spring Boot configuration to build
and develop our first microservice. Here, we will use Java 8 as the language and
Spring Boot for our project.

[17]

https://docs.docker.com

Setting Up the Development

Environment

This chapter focuses on the development environment setup and configurations.
If you are familiar with the tools and libraries, you could skip this chapter and
continue with Chapter 3, Domain-Driven Design where you could explore the
domain driven design.

This chapter will cover the following topics:

Spring Boot configuration

Sample REST program

Build setup

REST API testing using the Postman Chrome extension

NetBeans - installation and setup

This book will use only the open source tools and frameworks for examples and
code. The book will also use Java 8 as its programming language, and the application
framework will be based on the Spring framework. This book makes use of Spring
Boot to develop microservices.

NetBeans Integrated Development Environment (IDE) that provides state of the
art support for both Java and JavaScript, is sufficient for our needs. It has evolved a
lot over the years and has built-in support for most of the technologies used by this
book, such as Maven, Spring Boot and so on. Therefore, I would recommend you to
use NetBeans IDE. You are, however free to use any IDE.

[19]

Setting Up the Development Environment

We will use Spring Boot to develop the REST services and microservices. Opting
for the most popular of Spring frameworks, Spring Boot, or its subset Spring Cloud
in this book was a conscious decision. Because of this, we don't need to write
applications from scratch and it provides default configuration for most of the

stuff for Cloud applications. A Spring Boot overview is provided in Spring Boot's
configuration section. If you are new to Spring Boot, this would definitely help you.

We will use Maven as our build tool. As with the IDE, you can use whichever build
tool you want, for example Gradle or Ant. We will use the embedded Jetty as our
web server but another alternative is to use an embedded Tomcat web server. We
will also use the Postman extension of Chrome for testing our REST services.

We will start with Spring Boot Configurations. If you are new to NetBeans or are
facing issues in setting up the environment, you can refer to the NetBeans IDE
installation section explained in the last section; otherwise you can skip that
section altogether.

Spring Boot configuration

Spring Boot is an obvious choice to develop state of the art production-ready
applications specific to Spring. Its website also states its real advantages:

"Takes an opinionated view of building production-ready Spring applications.
Spring Boot favors convention over configuration and is designed to get you up
and running as quickly as possible."

Spring Boot overview

Spring Boot is an amazing Spring tool created by Pivotal and released in April 2014
(GA). It was developed based on request of SPR-9888 (https://jira.spring.io/
browse/SPR-9888) with the title Improved support for 'containerless' web application
architectures.

You must be wondering why containerless? Because, today's cloud environment or
PaaS provides most of the features offered by container-based web architectures such
as reliability, management or scaling. Therefore, Spring Boot focuses on making itself
an ultra light container.

[20]

https://jira.spring.io/browse/SPR-9888
https://jira.spring.io/browse/SPR-9888

Chapter 2

Spring Boot is preconfigured to make production-ready web applications very
easily. Spring Initializer (http://start.spring.io) is a page where you can select
build tools such as Maven or Gradle, project metadata such as group, artifact and
dependencies. Once, you feed the required fields you can just click on the Generate
Project button, which will give you the Spring Boot project that you can use for your
production application.

On this page, the default packaging option is jar. We'll also use jar packaging for
our microservices development. The reason is very simple: it makes microservices
development easier. Just think how difficult it would be to manage and create an
infrastructure where each microservice runs on its own server instance.

Josh Long shared in his talk in one of the Spring IOs:
"It is better to make Jar, not War."

Later, we will use the Spring Cloud that is a wrapper on top of Spring Boot.

Adding Spring Boot to the rest sample

At the time of writing the book, Spring Boot 1.2.5 release version was available.
You can use the latest released version. Spring Boot uses Spring 4 (4.1.7 release).

Open the pom.xml (available under restsample | Project Files) to add Spring Boot to
your rest sample project:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance" xsi:schemalLocation="http://maven.
apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>com.packtpub.mmj</groupIlds>
<artifactId>restsample</artifactIds>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>
<parent>
<groupIds>org.springframework.boot</groupIds>
<artifactId>spring-boot-starter-parent</artifactIds>
<version>1.2.5.RELEASE</version>
</parent>

[21]

http://start.spring.io

Setting Up the Development Environment

<propertiess

<project.build.sourceEncoding>UTF-8</project.build.
sourceEncoding>

<spring-boot-version>1.2.5.RELEASE</spring-boot-version>
</properties>
<dependencies>

<dependencys>

<grouplds>org.springframework.boot</groupId>
<artifactIds>spring-boot-starter-web</artifactIds>

<version>${spring-boot-version}</versions>
</dependency>

</dependencies>
</project>

If you are adding these dependencies for the first time, you need to download the

dependencies by right clicking on the Dependencies folder under restsample project
in the Projects pane shown as follows:

=2 restsample
[f Source Packages

- g Java Dep Add Dependency...
= Jg ProjectFil
i pom.3 Download Declared Dependencies

Download Javadoc

Download Sources

Show Managed State for dependencies

Download Maven Dependencies in NetBeans

Similarly, to resolve the project problems, right-click on the NetBeans project
restsample and opt for the Resolve Project Problems.... It will open the dialog
shown as follows. Click on the Resolve... button to resolve the issues:

[22]

Chapter 2

' = ™
‘:J Resolve Project Problems - "restsample” Project g
e — =

Project Problems:
A Parent POM file is not accessible, Project might be improperly setup.

/M Some dependency artifacts are not in the local repository.

Description:

The parent POM with id

org.springframework. boot:spring-boot-starter-parent: ${spring-boot-version} was not
found in sources or local repesitory, Please check that <relativePath= tag is present and
correct, the version of parent POM in sources matches the version defined.

If parent is only available through a remote repository, please chedk that the repository
hosting it is defined in the current POM.

Close

Resolve project problems dialog

If you are using Maven behind the proxy, then update

the proxies settings in <NetBeans Installation

Directory>\java\maven\conf\settings.xml.
You may need to restart the NetBeans IDE

The preceding steps will download all the required dependencies from a remote
Maven repository if the declared dependencies and transitive dependencies are not
available in a local Maven repository. If you are downloading the dependencies for
the first time, then it may take a bit of time, depending on your Internet speed.

Adding a Jetty-embedded server

Spring Boot by default provides Apache Tomcat as an embedded application
container. This book will use the Jetty-embedded application container in the
place of Apache Tomcat. Therefore, we need to add a Jetty application container
dependency to support the Jetty web server.

[23]

Setting Up the Development Environment

Jetty also allows you to read keys or trust stores using classpath that is, you don't
need to keep these stores outside the JAR files. If you use Tomcat with SSL, then
you will need to access the key store or trust store directly from the filesystem but
you can't do that using the classpath. The result is that you can't read a key store or
a trust store within a JAR file because Tomcat requires that the key store (and trust
store if you're using one) is directly accessible on the filesystem.

This limitation doesn't apply to Jetty, which allows the reading of keys or trust stores
within a JAR file:

<dependencies>
<dependencys>
<grouplds>org.springframework.boot</groupIlds>
<artifactIds>spring-boot-starter-web</artifactId>
<exclusionss>
<exclusion>
<grouplds>org.springframework.boot</groupIlds>
<artifactId>spring-boot-starter-tomcat</artifactIds>
</exclusion>
</exclusions>

</dependency>
<dependency>
<grouplds>org.springframework.boot</groupIlds>
<artifactIds>spring-boot-starter-jetty</artifactIds>
</dependency>
</dependencies>

Sample REST program

You will use a simple approach to building a stand-alone application. It packages
everything into a single, executable JAR file, driven by a main () method. Along
the way, you use Spring's support for embedding the Jetty servlet container as the
HTTP runtime, instead of deploying it to an external instance. Therefore, we would
create the executable JAR in place of the war that needs to be deployed on external
web servers.

Now, as you are ready with Spring Boot in NetBeans IDE, you could create your
sample web service. You will create a Math API that performs simple calculations
and generates the result as JSON.

Let's discuss how we can call and get responses from REST services.

[24]

Chapter 2

The service will handle GET requests for /calculation/sqrt or /calculation/power
and so on. The GET request should return a 200 Ok response with JSON in the body
that represents the square root of given number. It should look something like this:

{

"function": "sqgrt",
"input": [
|l144|l

]I
"output": [
lll2.0I|

}

The input field is the input parameter for the square root function, and the content is
the textual representation of the result.

You could create a resource representation class to model the representation by using
Plain Old Java Object (POJO) with fields, constructors, setters, and getters for the
input, output, and function data:

package com.packtpub.mmj.restsample.model;
import java.util.List;
public class Calculation {

String function;
private List<String> input;
private List<String> output;

public Calculation(List<String> input, List<Strings> output, String
function)
this.function = function;
this.input = input;
this.output = output;

public List<String> getInput() {
return input;

}

public void setInput (List<String> input)
this.input = input;

}

[25]

Setting Up the Development Environment

public List<String> getOutput ()
return output;

}

public void setOutput (List<String> output)
this.output = output;
}

public String getFunction()
return function;

}

public void setFunction(String function) {
this.function = function;
}

Writing the REST controller class

Roy Fielding defined and introduced the term REST, Representational State
Transfer in his doctoral dissertation. REST is a style of software architecture for
a distributed hypermedia system such as WWW. RESTful refers to those systems
that conform to REST architecture properties, principles, and constraints.

Now, you'll create a REST controller to handle the calculation resource. The controller
handles the HTTP requests in the Spring RESTful web service implementation.

@RestController

@RestController is a class-level annotation used for the resource class introduced
in Spring 4. It is a combination of @eController and @ResponseBody, and because of
it, class returns a domain object instead of a view.

In the following code, you can see that the CalculationController class handles
GET requests for /calculation by returning a new instance of the calculation class.

We will implement two URLs for a calculation resource - the square root (Math.
sqgrt () function) as /calculations/sqrt URL, and power (Math.pow () function)
as /calculation/power URL.

[26]

Chapter 2

@RequestMapping

@RequestMapping annotation is used at class-level to map the /calculation

URI to calculationController class that is, it ensures that the HTTP request to
/calculation is mapped to the CalculationController class. Based on the path
defined using the annotation @RequestMapping of the URI (postfix of /calculation,
for example, /calculation/sqgrt/144), it would be mapped to respective methods.
Here, the request mapping /calculation/sqrt is mapped to the sqrt () method
and /calculation/power is mapped to the pow () method.

You might have also observed that we have not defined what request method (GET/
POST/PUT, and so on) these methods would use. The @RequestMapping annotation
maps all the HTTP request methods by default. You could use specific methods

by using the method property of RequestMapping. For example, you could write

a @RequestMethod annotation in the following way to use the POST method:

@RequestMapping (value = "/power", method = POST)

For passing the parameters along the way, the sample demonstrates both request
parameters and path parameters using annotations @RequestParam and @
PathVariable respectively.

@RequestParam

@RequestParam is responsible for binding the query parameter to the parameter

of the controller's method. For example, the QueryParam base and exponent

are bound to parameters b and e of method pow () of calculationController
respectively. Both of the query parameters of the pow () method are required since
we are not using any default value for them. Default values for query parameters
could be set using the defaultvalue property of @RequestParam for example
@RequestParam(value="base", defaultvalue="2"), here, if the user does not
pass the query parameter base, then the default value 2 would be used for the base.

If no defaultvalue is defined, and the user doesn't provide the request parameter,
then RestController returns the HTTP status code 400 with the message 400
Required String parameter base is not present. It always uses the reference of the
first required parameter if more than one of the request parameters is missing;:

{

"timestamp": 1464678493402,

"status": 400,

"error": "Bad Request",

"exception": "org.springframework.web.bind.
MissingServletRequestParameterException",

[27]

Setting Up the Development Environment

"message": "Required String parameter 'base' is not present",
"path": "/calculation/power/"

@PathVariable

@Pathvariable helps you to create the dynamic URIs. @Pathvariable

annotation allows you to map Java parameters to a path parameter. It works with
@RequestMapping where placeholder is created in URI then the same placeholder
name is used either as a Pathvariable or a method parameter, as you can see in
the CalculationController class's method sqgrt (). Here, the value placeholder is
created inside the @RequestMapping and the same value is assigned to the value of
the epathvariable.

Method sqgrt () takes the parameter in the URI in place of the request parameter.
For example, http://localhost:8080/calculation/sqrt/144. Here, the 144
value is passed as the path parameter and this URL should return the square root
of 144 that is, 12.

To use the basic check in place, we use the regular expression "*-2+\\d+\\.?+\\d*$"
to allow only valid numbers in parameters. If non-numeric values are passed, the
respective method adds an error message in the output key of the JSON.

CalculationController also uses the regular expression .+ in

the path variable (path parameter) to allow the decimal point(.) in

numeric values - /path/{variable: . +}. Spring ignores anything
~\'Q after the last dot. Spring default behavior takes it as a file extension.

There are other alternatives such as adding a slash at the

end (/path/{variable}/) or overriding the method
configurePathMatch () of WebMvcConfigurerAdapter

by setting the useRegisteredSuffixPatternMatch to true,
using PathMatchConfigurer (available in Spring 4.0.1+).

package com.packtpub.mmj.restsample.resources;

package com.packtpub.mmj.restsample.resources;

import com.packtpub.mmj.restsample.model.Calculation;

import java.util.ArraylList;

import java.util.List;

import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;

[28]

Chapter 2

import static org.springframework.web.bind.annotation.RequestMethod.
GET;

import org.springframework.web.bind.annotation.RequestParam;

import org.springframework.web.bind.annotation.RestController;

@RestController
@RequestMapping ("/calculation")
public class CalculationController {

private static final String PATTERN = "*-2+\\d+\\.2+\\d*$";

@RequestMapping (" /power")
public Calculation pow(@RequestParam(value = "base") String b, @
RequestParam(value = "exponent") String e) {
List<String> input = new ArrayList();
input.add(b) ;
input.add(e) ;
List<String> output = new ArrayList();
String powValue = "";
if (b != null && e != null && b.matches (PATTERN) &&
e.matches (PATTERN)) {
powValue = String.valueOf (Math.pow (Double.valueOf (b),
Double.valueOf (e))) ;

} else {
powValue = "Base or/and Exponent is/are not set to numeric
value.";
}
output .add (powValue) ;
return new Calculation (input, output, "power");
}
@ReqguestMapping (value = "/sgrt/{value:.+}", method = GET)
public Calculation sgrt (@PathVariable(value = "value") String

avalue)
List<String> input = new ArrayList();
input.add (avalue) ;
List<String> output = new ArrayList();
String sqgrtValue = "";
if (avalue != null && aValue.matches (PATTERN)) {
sgrtValue = String.valueOf (Math.sqgrt (Double.
valueOf (avValue))) ;
} else {
sgrtValue = "Input value is not set to numeric value.";

[29]

Setting Up the Development Environment

output .add (sgrtValue) ;
return new Calculation (input, output, "sqgrt");

}

Here, we are exposing only the power and sqrt functions for the calculation
resource using URI /calculation/power and /calculation/sqrt.

o Here, we are using sqrt and power as a part of the URI, which we
~ have used for demonstration purposes only. Ideally, these should
Q have been passed as value of a request parameter "function"; or
something similar based on endpoint design formation.

One interesting thing here is that due to Spring's HTTP message converter

support, the Calculation object gets converted to JSON automatically. You don't
need to do this conversion manually. If Jackson 2 is on the classpath, Spring's
MappingJackson2HttpMessageConverter converts the Calculation object to JSON.

Making a sample REST app executable

Create a class RestSampleapp with the annotation SpringBootApplication.
The main () method uses Spring Boot's SpringApplication.run() method to
launch an application.

We will annotate the RestSampleApp class with the @SpringBootApplication that
adds all of the following tags implicitly:

* The econfiguration annotation tags the class as a source of Bean definitions
for the application context.

* The @EnableAutoConfiguration annotation indicates that Spring Boot is
to start adding beans based on classpath settings, other beans, and various
property settings.

* The @EnablewebMvc annotation is added if Spring Boot finds the spring-
webmvc on the classpath. It treats the application as a web application and
activates key behaviors such as setting up a DispatcherServlet.

[30]

Chapter 2

* The ecomponentScan annotation tells Spring to look for other components,
configurations, and services in the given package:

package com.packtpub.mmj.restsample;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.
SpringBootApplication;

@SpringBootApplication
public class RestSampleZpp

public static void main(String[] args) {
SpringApplication.run(RestSampleApp.class, args);

}
}

This web application is 100 percent pure Java and you didn't have to deal with
configuring any plumbing or infrastructure using XML; instead it uses the Java
annotation, that is made even simpler by Spring Boot. Therefore, there wasn't a
single line of XML except pom.xml for Maven. There wasn't even a web . xm1 file.

Setting up the application build

Whatever pom.xml we have used until now is enough to execute our sample REST
service. This service would package the code into a JAR. To make this JAR executable
we need to opt for the following options:

Running the Maven tool

Here, we use the Maven tool to execute the generated JAR, steps for the same are
as follows:

1. Right-click on the pom.xml.

2. Select run-maven | Goals... from the pop-up menu. It will open the dialog.
Type spring-boot : run in the Goals field. We have used the released
version of Spring Boot in the code. However, if you are using the snapshot
release, you can check the Update Snapshots checkbox. To use it in the
future, type spring-boot-run in the Remember as field.

[31]

Setting Up the Development Environment

3. Next time, you could directly click run-maven | Goals | spring-boot-run to
execute the project:

[~ ~
O Run Maven - W @
Goals: spring-bootirun
Profiles:
Properties:

Add =

Run Maven dialog

4. Click on OK to execute the project.

Executing with the Java command

To build the JAR, perform the mvn clean package Maven goal. It creates the JAR file
in a target directory, then, the JAR can be executed using the command:

java -jar target/restsample-1.0-SNAPSHOT.jar

REST API testing using the Postman
Chrome extension

This book uses the Postman - REST Client extension for Chrome to test our

REST service. We use the 0.8.4.16 version that can be downloaded using
https://chrome.google.com/webstore/detail/postman-rest-client/
fdmmgilgnpjigdojojpjoooidkmcomem. This extension is no longer searchable but
you can add it to your Chrome using the given link. You can also use the Postman
Chrome app or any other REST Client to test your sample REST application:

[32]

https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm
https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm

Chapter 2

@ Postman - REST Client

ok g (2365)

OVERVIEW REVIEWS

@ oreman o Cosgie Carme
e ca
= Fastlaes [Gosgle Calandar 5 Ant

Taipants Tleeibe dmin 3 Tait {Hans

Qnumte | Hasesisen

- (Y wa e

Fre— I
[facigen.

5 feommenis

Tt

s

[era——

[Lr—

D Mtpafas. it comigataublic

L it o s o

e
0 Tratg e cosergtion

Teliparite

s [T

Lia Patrman? Halp maks & bt

SUPPORT

R

RELATED

T Runs Offline
wio e B

B e Beekmar

% Compatible with your device

e

Postman helps you be more efficient
while working with APls. Postman is a
scratch-your-own-itch project. The
need for it arose...

Postman helps you be more efficient while
working with APIs. Postman is

a scratch-you itch project. The need
for hile one of the developers was
creating an API for his project. After looking
around for a number of tools, nothing felt
Jjust right. The prima tures added
initially were a history of sent requests and

A Website

@ Report Abuse
Version: 0.8.4.16
Updated: July 23, 2015
Size: 1.96MB
Language: English

Postman - Rest Client Chrome extension

Let's test our first REST resource once you have the Postman - REST Client installed.
We start the Postman - REST Client from either the start menu or from a shortcut.

!

Q

By default the embedded web server starts on port 8080. Therefore,
we need to use the http://localhost:8080/<resource>
URL for accessing the sample REST application. Example:

http://localhost:8080/calculation/sqrt/144.

Once it's started, you can type the Calculation REST URL for sqrt and value 144 as
the path parameter. You could see it in the following image. This URL is entered in
the URL (Enter request URL here) input field of the Postman extension. By default,
the request method is GET. We use the default value for the request method, as we
have also written our RESTful service to serve the request GET method.

[33]

Setting Up the Development Environment

Once you are ready with your input data as mentioned above, you can submit
the request by clicking the Send button. You can see in the following image that
the response code 200 is returned by your sample rest service. You can find the
Status label in the following image to see the 200 OK code. A successful request
also returns the JSON data of the Calculation Resource, shown in the pretty tab
in the screenshot. The returned JSON shows the sqgrt, value of the function key.
It also displays 144 and 12. 0 as the input and output lists respectively:

C' | [} chrome-extension://fdmmgilgnpjigdojojpjoooidkmcomem/index.html B @ vy %
Normal 4 No environment + *
http://localhost:8080/calculation/sqrt/144 GET v & URL params & Headers (1)

m Preview Add to collection

Body SIEN0E) 2000k [T 62ms

Pretty = Raw = Preview) 1 JSON | XML
"function": "sqrt",
"input": [
niaan
1.
"output™: [
"12.8"
]
}

Calculation (sqrt) resource test with Postman

Similarly, we also test our sample REST service for the calculating power function.
We input the following data in the Postman extension:
* URL: http://localhost:8080/calculation/power?base=2&exponent=4
* Request method: GET
Here, we are passing the request parameters base and exponent with values of 2 and

4 respectively. It returns the following JSON with a response status of 200 as shown
in the following screenshot.

[34]

Chapter 2

Returned JSON:
{

"function": "power",
"input": [
|I2|I ,
|I4|I
] r
"output": [
n 16 . 0 n

}

’ @ Postman

= = €' [chrome-extension;//fdmmgilgnpjigdojojpjocoidkmcomem/index.html

Normal 4% No environment «

http://localhost:8080/calculation/power?base=2&exponent=4 GET

base 2
exponent 4
URL Parameter Key Value

Preview Add to collection
Body status NN imE ProB

Pretty = Raw = Preview) 1 JSON XML

1q
2 "function": "power",
3 "input": [
2 g
5 g
6 1,
7 "output": [
8 "le6.0"
9
, 10}

v & URL params & Headers (1)

]
]

Calculation (power) resource test with Postman

[35]

Setting Up the Development Environment

Some more positive test scenarios

In the following table, all the URLs start with http://localhost:8080:

URL Output JSON
/calculation/sqrt/12344.234 {
"function": "sqgrt",
"input": [
112344 .234"
1,
"output": [

"111.1046083652699"
]

}
/calculation/sqrt/-9344.34 {
Math.sqgrt function's special scenario: "function": "sqrt",
. "input": [
* If the argument is NaN or less than zero, then "_9344 34"
the result is NaN]
"output": [
llNaNll
]
}
/calculation/ {
power?base=2.09&exponent=4.5 "function": "power",
"input": [
"2.09",
ng.5n
1,
"output": [

"27.58406626826615"
]

[36]

Chapter 2

URL Output JSON
/calculation/power?base=- {
92.9&exponent=-4 "function": "power",
"input": [
"-92.9",
n_gn

1,
"output": [

"1.3425706351762353E-8"
]

Negative test scenarios

Similarly, you could also perform some negative scenarios as shown in the following
table. In this table, all the URLs start with http://localhost:8080:

URL Output JSON
/calculation/power?base=2a&exponent=4 {
"function": "power",
"input": [
n2an,
ngm
1,
"output": [

"Base or/and
Exponent is/are not set
to numeric value."

]

/calculation/power?base=2&exponent=4b {
"function": "power",
"input": [
non,
Il4bll
1,
"output": [
"Base or/and

Exponent is/are not set
to numeric value."

]

[37]

Setting Up the Development Environment

URL Output JSON
/calculation/ {
power?base=2.0a&exponent=a4 "function": "power",
"input": [
"2.0a",
naqn
1,
"output": [

"Base or/and
Exponent is/are not set
to numeric value."

]

/calculation/sqgrt/144a

"function": "sqgrt",
"input": [
"144a"
1,
"output": [
"Input value

is not set to numeric
value."

]

/calculation/sqrt/144.33$

"function": "sqgrt",
"input": [
1144 .33s"
1,
"output": [
"Input value

is not set to numeric
value."

]

[38]

Chapter 2

NetBeans IDE installation and setup

NetBeans IDE is free and open source, and has a big community of users. You can
download the NetBeans IDE from https://netbeans.org/downloads/, its official
website.

At the time of writing this book, version 8.0.2 was the latest available version.
As shown in the following screenshot, please download all the supported NetBeans
bundles, as we'll use Javascript also:

Supported technologies - Java SE Java EE C/C++ HTMLS & PHP All
1 NetBeans Platform SDK . [.
U Java SE . . .
L Java FX . [[
L Java EE . .
L Java ME .
L HTMLS . . .
L Java Card™ 3 Connected .
LCfCH++ . .
L Groovy L]
L PHP . .
Bundled servers

L) GlassFish Server Open Source Edition 4.1 .

i apache Tomcat 8.0.15 [.

(_ Downioad) (Downioad] (Download) (Download | (Download)

Free, 90 MB Free, 186 MB Free, 53 MB Free, 53 ME Free, 205 MB

NetBeans bundles

After downloading the the installation, execute the installer file. Accept the license
agreement as shown in the following screenshot, and follow the rest of the steps to
install the NetBeans IDE. Glassfish Server and Apache Tomcat are optional.

[39]

https://netbeans.org/downloads/

Setting Up the Development Environment

. JDK7 or alater version is required for installing and running the
& All NetBeans Bundles. You can download a standalone JDK 8 from
L http://www.oracle.com/technetwork/java/javase/
downloads/index.html.
Tt D e
License Agreement
Please read the following license agreement carefully. @ IE
METBEANS IDE 8.0.2 ("Product”) LICENSE AGREEMENT I+
PLEASE READ THE FOLLOWING LICENSE AGREEMENT TERMS AND

COMNDITIOMNS CAREFULLY, INCLUDING WITHOUT LIMITATION THOSE
DISPLAYED ELSEWHERE (AS INDICATED BY LINKS LISTED BELOW),
BEFORE USING THE SOFTWARE, THESE TERMS AND CONDITIONS
CONSTITUTE A LEGAL AGREEMENT BETWEEN YOU, OR. THE ENTITY FOR
WHICH YOU ARE AN AUTHORIZED REPRESENTATIVE WITH FLILL
AUTHORITY TO ENTER. INTO THIS AGREEMENT, AND ORACLE. BY
CLICKING "ACCEFT" OR THE EQUIVALENT YOU AGREE TO ALL OF

THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT. IF YOU
DO NOT AGREE TC THIS LICENSE DO MOT CLICK "ACCEFT™ OR

THE EQUIVALENT AMND DO NOT INSTALL OR. USE THIS SOFTWARE.,

Copyright (c) 1997, 2014, Orade and/or its affiiates. Al
rights reserved.

Oracle and Java are registered trademarks of Orade andor
itz affiiates. Other names may be trademarks of their
respective owners,

{ accept the terms in the license agreement

< Back][Bext >] [Cancel

NetBeans Bundles

[40]

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 2

Once NetBeans the IDE is installed, start the NetBeans IDE. NetBeans IDE should
look as follows:

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help [Qr Search (Ctri+D)
HEH@EE =D OTH»-B-6-
Projects % |Files | Services | 0| startPage = |

&P NetBeans D LB —

Learn & Discover

Take a Tour Demos & Tutorials Featured Demo
Try a Sample Project
Java SE Applications Cannot connect to internet.
pahzistlew Java and JavaFX GUI Applications
<Mo Project Open > Community Corner Java EE & Java \Web Applications

CiC++ Applications
PHP and HTML5 Applications
Mobile and Embedded Applications

All Online Documentation >>

ORACLE

NetBeans start page

Maven and Gradle are both Java build tools. They add dependent libraries to your
project, compile your code, set properties, build archives, or do many more related
activities. Spring Boot or the Spring Cloud support both Maven and Gradle build
tools. However, in this book we'll use the Maven build tool. Please feel free to use
Gradle if you prefer.

Maven is already available in NetBeans IDE. Now, we can start a new Maven project
to build our first REST app.

Steps for creating a new empty Maven project:

1. Click on New Project (Ctrl + Shift + N) under the File menu. It will open the
new project wizard.

[41]

Setting Up the Development Environment

2. Select Maven in the Categories list. Then, select Java Application in the
Projects list (as shown in following screenshot). Then, click on the Next button:

Choose Project

Q, Filter:

Categories: Projects:
| JavaWeb =Y Java Application
~[)) JavaEE ’@ JavaFX Application
[HTMLS @) web application
|4y Java ME Embedded
|)y Java Card

Enterprise Application Client
~\go Maven 05Gi Bundle
- PHP @5 NetBeans Module

| L) Groowy ’E} MNetBeans Application
[cc++ POM Praject
- J) NetBeans Modules (& Project from Archetype

[J Samples Project with Existing POM

Description:

A simple Java SE application using Maven.

New Project Wizard

3. Now, enter the the project name as restsample. Also, enter the other
properties as shown in the following screenshot. Click on Finish once
all the mandatory fields are entered:

Steps Name and Location

1. Choose Project Project Name: |restsample
2. Name and Location
Project Location: |C:'\dev\workspace

Project Folder: |C:'\dev\workspace \restsample

Artifact Id: restsample
Group Id: com. packtpub.mmj
Version: 1.0-SNAPSHOT

Package: com. packtpub.mmj.restsample (Optional)

Next > Eimm Cancel Help

NetBeans Maven project properties

[42]

Chapter 2

Aggelos Karalias has developed a helpful plugin for NetBeans
IDE offering autocomplete support for Spring Boot configuration
properties available at https://github.com/keevosh/nb-
N springboot-configuration-support. You can download
it from his project page at http: //keevosh.github.io/nb-
springboot-configuration-support/.
You could also use Spring Tool Suite IDE (https://spring.io/
tools) from Pivotal instead of NetBeans IDE. It's a customized
all-in-one Eclipse-based distribution that makes application
development easy.

After finishing all the the preceding steps, NetBeans will display a newly created
Maven project. You will use this project for creating the sample rest application
using Spring Boot.

To use Java 8 as a source, set the Source/Binary Format to 1.8 as shown in the
following screenshot:

O Project Properties - restsample &J
—
Categories:
General Project Falder: C:\dev\workspacerestsample
Javascript Framewaorks
L@ Requirels Source Folder: C:\dev\workspace\restsample'\srcmainjava
e 2 Sources

3 Test Source Folder: | C:\dev\workspacerestsample'\srcltest\java
- @ Configurations

Bl @ Build
L @ Compile Please Note:
Spring Framework

R Any source roots generated by Maven plugins will be generated into the ${basedir}/target/generated-sources/FOOBAR folder, where
un

FOCBAR. is typically the name of the plugin. Most Maven plugins adhere to the above-mentioned folder structure convention by
Actions default. If your plugin does not, please configure it to do so and the generated sources will be recognized by the IDE,

License Headers

Formatting

o CheckStyle Formatting

Hints

Source/Binary Format: |i.8 P

Encoding: UTF-3 -

OK. H Cancel H Help

NetBeans Maven project properties

[43]

https://github.com/keevosh/nb-springboot-configuration-support
https://github.com/keevosh/nb-springboot-configuration-support
http://keevosh.github.io/nb-springboot-configuration-support/
http://keevosh.github.io/nb-springboot-configuration-support/
https://spring.io/tools
https://spring.io/tools

Setting Up the Development Environment

References

Spring Boot: http://projects.spring.io/spring-boot/
e Download NetBeans: https://netbeans.org/downloads

* Representational State Transfer (REST): Chapter 5 of Roy Thomas Fielding
Ph.D. dissertation "Architectural Styles and the Design of Network-based
Software Architectures" - https://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm

* REST:https://en.wikipedia.org/wiki/Representational state
transfer

* Maven: https://www.apache.org/
e Gradle: http://gradle.org/

Summary

In this chapter, you have explored various aspects of setting up a development
environment such as NetBeans IDE setup and installation, Maven configuration,
Spring Boot configuration and so on.

You have also learned how to make use of Spring Boot to develop a sample REST
service application. We learned how powerful Spring Boot is - it eases development
so much that you only have to worry about the actual code, and not about the
boilerplate code or configurations that you write. We have also packaged our code
into a JAR with an embedded application container Jetty. It allows it to run and
access the web application without worrying about the deployment.

In the next chapter, you will learn the domain-driven design (DDD) using a

sample project that can be used across the rest of the chapters. We'll use the sample
project online table reservation system (OTRS) to go through various phases of
microservices development and understand the DDD. After completing Chapter 3,
Domain-Driven Design you will learn the fundamentals of DDD. You will understand
how to practically use the DDD by design sample services. You will also learn to
design the domain models and REST services on top of it.

[44]

http://projects.spring.io/spring-boot/
https://netbeans.org/downloads
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.apache.org/
http://gradle.org/

Domain-Driven Design

This chapter sets the tone for rest of the chapters by referring to one sample project.
The sample project will be used to explain different microservices concepts from
here onwards. This chapter uses this sample project to drive through different
combinations of functional and domain services or apps to explain the domain-
driven design (DDD). It will help you to learn the fundamentals of DDD and its
practical usage. You will also learn the concepts of designing domain models using
REST services.

This chapter covers the following topics:

* Fundamentals of DDD
* How to design an application using DDD
* Domain models

* A sample domain model design based on DDD

A good software design is as much the key to the success of a product or services as
the functionalities offered by it. It carries equal weight to the success of product; for
example, Amazon.com provides the shopping platform but its architecture design
makes it different from other similar sites and contributes to its success. It shows
how important a software or architecture design is for the success of a product/
service. DDD is one of the software design practices and we'll explore it with various
theories and practical examples.

DDD is a key design practice that helps to design the microservices of the product
that you are developing. Therefore, we'll first explore DDD before jumping into
microservices development. DDD uses multilayered architecture as one of its
building blocks. After learning this chapter, you will understand the importance of
DDD for microservices development.

[45]

Domain-Driven Design

Domain-driven design fundamentals

An enterprise or cloud application solves business problems and other real world
problems. These problems cannot be resolved without knowledge of the domain.
For example, you cannot provide a software solution for a financial system such
as online stock trading if you don't understand the stock exchanges and their
functioning. Therefore, having domain knowledge is a must for solving problems.
Now, if you want to offer a solution using software or apps, you need to design it
with the help of domain knowledge. When we combine the domain and software
design, it offers a software design methodology known as DDD.

When we develop software to implement real world scenarios offering the
functionalities of a domain, we create a model of the domain. A model is an
abstraction or a blueprint of the domain.

Eric Evans coined the term DDD in his book Domain-Driven Design:
s Tackling Complexity in the Heart of Software, published in 2004.

Designing this model is not rocket science but it does take a lot of effort, refining
and input from domain experts. It is the collective job of software designers, domain
experts, and developers. They organize information, divide it into smaller parts,
group them logically and create modules. Each module can be taken up individually
and can be divided using a similar approach. This process can be followed until

we reach the unit level or we cannot divide it any further. A complex project may
have more of such iterations and similarly a simple project could have just a single
iteration of it.

Once a model is defined and well documented, it can move onto the next stage -
code design. So, here we have a software design - a Domain Model and code design
- and code implementation of the Domain Model. The Domain Model provides a
high level of architecture of a solution (software/app) and the code implementation
gives the domain model a life, as a working model.

DDD makes design and development work together. It provides the ability to
develop software continuously while keeping the design up to date based on
feedback received from the development. It solves one of the limitations offered by
Agile and Waterfall methodologies making software maintainable including design
and code, as well as keeping app minimum viable.

[46]

Chapter 3

Design-driven development involves a developer from the initial stage and all
meetings where software designers discuss the domain with domain experts in

the modeling process. It gives developers the right platform to understand the
domain and provides the opportunity to share early feedback of the Domain
Model implementation. It removes the bottleneck that appears in later stages when
stockholders waits for deliverables.

Building blocks

This section explains the ubiquitous language used and why it is required, the
different patterns to be used in model-driven design and the importance of
multilayered architecture.

Ubiquitous language

As we have seen, designing a model is the collective effort of software designers,
domain experts, and developers and, therefore, it requires a common language
to communicate. DDD makes it necessary to use common language and the

use of ubiquitous language. Domain models use ubiquitous language in their
diagrams, descriptions, presentations, speeches, and meetings. It removes the
misunderstanding, misinterpretation and communication gap among them.

Unified Model Language (UML) is widely used and very popular when creating
models. It also carries few limitations, for example when you have thousands of
classes drawn of a paper, it's difficult to represent class relationships and also
understand their abstraction while taking a meaning out of it. Also UML diagrams
do not represent the concepts of a model and what objects are supposed to do.

There are other ways to communicate the domain model such as - documents, code,
and so on.

Multilayered architecture

Multilayered architecture is a common solution for DDD. It contains four layers:

1. Presentation layer or User Interface (UI).
2. Application layer.

3. Domain layer.

[47]

Domain-Driven Design

4. Infrastructure layer.

Infrastructure

Application

c
2
=
1l
i
c
e
wy
@
e
(=8

Layered architecture

You can see here that only the domain layer is responsible for the domain model and
others are related to other components such as Ul, app logic and so on. This layered
architecture is very important. It keeps domain-related code separate from other layers.

In this multilayered architecture, each layer contains its respective code and it helps
to achieve loose coupling and avoid mixing code from different layers. It also help
the product/service's long term maintainability and the ease of enhancements as
the change of one layer code does not impact on other components if the change

is intended for the respective layer only. Each layer can be switched with another
implementation easily with multitier architecture.

Presentation layer

This layer represents the Ul and provides the user interface for the interaction and
information display. This layer could be a web application, mobile app or a third-
party application consuming your services.

Application layer

This layer is responsible for application logic. It maintains and coordinates the
overall flow of the product/service. It does not contain business logic or Ul It may
hold the state of application objects like tasks in progress. For example, your product
REST services would be the part of this application layer.

[48]

Chapter 3

Domain layer

The domain layer is a very important layer as it contains the domain information
and business logic. It holds the state of the business object. It persists the state of the
business objects, and communicates these persisted states to the infrastructure layer.

Infrastructure layer

This layer provides support to all the other layers and is responsible for
communication among the other layers. It contains the supporting libraries that are
used by the other layers. It also implements the persistence of business objects.

To understand the interaction of the different layers, let us take an example of table
booking at a restaurant. The end user places a request for a table booking using

UL Ul passes the request to the application layer. The application layer fetches the
domain objects such as the restaurant, the table with a date and so on from the
domain layer. The domain layers fetch these existing persisted objects from the
infrastructure and invoke relevant methods to make the booking and persists them
back to infrastructure layer. Once, domain objects are persisted, application layer
shows the booking confirmation to end user.

Artifacts of domain-driven design

There are different artifacts used in DDD to express, create, and retrieve
domain models.

Entities

There are certain categories of objects that are identifiable and remain same
throughout the states of the product/services. These objects are NOT defined by its
attributes, but by its identity and thread of continuity. These are known as entities.

It sounds pretty simple but carries complexity. You need to understand how we
can define the entities. Let's take an example for table booking system, if we have a
restaurant class with attributes such as restaurant name, address, phone number,
establishment data, and so on. We can take two instances of the restaurant

class that are not identifiable using the restaurant name, as there could be other
restaurants with the same name. Similarly, if we go by any other single attributes
we will not find any attributes that can singularly identify a unique restaurant.

If two restaurants have all the same attribute values, these are the same and are
interchangeable with each other. Still, these are not the same entities as both have
different references (memory addresses).

[49]

Domain-Driven Design

Conversely, let's take a class of US citizen. Each citizen has his own social security
number. This number is not only unique but remains unchanged throughout the life
of the citizen and assures continuity. This citizen object would exist in the memory,
would be serialized, and would be removed from the memory and stored in the
database. It even exists after the person is dead. It will be kept in the system as long
as system exists. A citizen's social security number remains the same irrespective of
its representation.

Therefore, creating entities in a product means creating identity. So, now give an
identity to any restaurant in the previous example, then either use a combination of
attributes such as restaurant name, establishment date and street, or add an identifier
such as restaurant_id to identify it. This is the basic rule that two identifiers cannot
be same. Therefore, when we introduce an identifier for any entity we need to be
sure of it.

There are different ways to create a unique identity for objects described as follows:

* Using the primary key in a table.

* Using an automated generated ID by a domain module. A domain program
generates the identifier and assigns it to objects that are being persisted
among different layers.

* A few real life objects carry user-defined identifiers themselves. For example
each country has its own country codes for dialing ISD calls.

* An attribute or combination of attributes can also be used for creating an
identifier as explained for the preceding restaurant object.

Entities are very important for domain models, therefore, they should be defined
from the initial stage of the modeling process. When an object can be identified by its
identifier and not by its attributes, a class representing these objects should have a
simple definition and care should be taken with the life cycle continuity and identity.
It's imperative to say that it is a requirement of identifying objects in this class that
have the same attribute values. A defined system should return a unique result for
each object if queried. Designers should take care that the model must define what it
means to be the same thing.

Value objects

Entities have traits such as, identity, a thread of continuity, and attributes that do
not define their identity. Value objects (VOs) just have attributes and no conceptual
identity. A best practice is to keep value Objects as immutable objects. If possible,
you should even keep entity objects immutable too.

[50]

Chapter 3

Entity concepts may bias you to keep all objects as entities, a uniquely identifiable
object in the memory or database with life cycle continuity, but there has to be

one instance for each object. Now, let's say you are creating customers as entity
objects. Each customer object would represent the restaurant guest and this cannot
be used for booking orders for other guests. This may create millions of customer
entity objects in the memory if millions of customers are using the system. There are
not only millions of uniquely identifiable objects that exist in the system, but each
object is being tracked. Both tracking and creating identity is complex. A highly
credible system is required to create and track these objects, which is not only very
complex but also resource heavy. It may result in system performance degradation.
Therefore, it is important to use value objects instead of using entities. The reasons
are explained in the next few paragraphs.

Applications don't always needs to have an identifiable customer object and be
trackable. There are cases when you just need to have some or all attributes of
the domain element. These are the cases when value objects can be used by the
application. It makes things simple and improves the performance.

Value objects can be created and destroyed easily, owing to the absence of identity.
This simplifies the design - it makes value objects available for garbage collection if
no other object has referenced them.

Let's discuss the value object's immutability. Value objects should be designed and
coded as immutable. Once they are created they should never be modified during
their life-cycle. If you need a different value of the VO or any of its objects, then
simply create a new value object, but don't modify the original value object. Here,
immutability carries all the significance from object-oriented programming (OOP).
A value object can be shared and used without impacting on its integrity if and only
if it is immutable.

Frequently asked questions
1. Can a value object contain another value object?

Yes, it can

2. Can a value object refer to another value object or entity?
Yes, it can

3. CanlIcreate a value object using the attributes of different value objects or
entities?

Yes, you can

[51]

Domain-Driven Design

Services

While creating the domain model you may encounter various situations, where
behavior may not be related to any object specifically. These behaviors can be
accommodated in service objects.

Ubiquitous language helps you to identify different objects, identities or value
objects with different attributes and behaviors during the process of domain
modeling. During the course of creating the domain model, you may find different
behaviors or methods that do not belong to any specific object. Such behaviors are
important so cannot be neglected. You can also not add them to entities or value
objects. It would spoil the object to add behavior that does not belong to it. Keep

in mind, that behavior may impact on various objects. The use of object-oriented
programming makes it possible to attach to some objects; this is known as a service.

Services are common in technical frameworks. These are also used in domain layers
in DDD. A service object does not have any internal state, the only purpose of it is
to provide a behavior to the domain. Service objects provides behaviors that cannot
be related with specific entities or value objects. Service objects may provide one

or more related behaviors to one or more entities or value objects. It is a practice to
define the services explicitly in the domain model.

While creating the services, you need to tick all the following points:

* Service objects' behavior performs on entities and value objects but it does
not belong to entities or value objects

* Service objects' behavior state is not maintained and hence they are stateless

* Services are part of the domain model

Services may exist in other layers also. It is very important to keep domain layer
services isolated. It removes the complexities and keeps the design decoupled.

Lets take an example where a restaurant owner wants to see the report of his
monthly table booking. In this case, he will log in as an admin and click the Display
Report button after providing the required input fields such as duration.

Application layers pass the request to the domain layer that owns the report and
templates objects, with some parameters such as report ID and so on. Reports get
created using the template and data is fetched from either the database or other
sources. Then the application layer passes through all the parameters including the
report ID to business layer. Here, a template needs to be fetched from the database or
other source to generate the report based on the ID. This operation does not belong
to either the report object or the template object. Therefore a service object is used
that performs this operation to retrieve the required template from the DB.

[52]

Chapter 3

Aggregates

Aggregate domain pattern is related to the object's life cycle and defines ownership
and boundaries.

When, you reserve a table in your favorite restaurant online, using any app, you
don't need to worry about the internal system and process that takes places to book
your reservation such as searching the available restaurants, then the available tables
during the given date, time, and so on and so forth. Therefore, you can say that a
reservation app is an aggregate of several other objects and works as a root for all the
other objects for a table reservation system.

This root should be an entity that binds collections of objects together. It is also called
the aggregate root. This root object does not pass any reference of inside objects to
external worlds and protects the changes performed in internal objects.

We need to understand why aggregators are required. A domain model can
contains large numbers of domain objects. The bigger the application functionalities
and size and the more complex its design, the greater number of objects will be
there. A relationship exists among these objects. Some may have a many-to-many
relationship, a few may have a one-to-many relationship and others may have a one-
to-one relationship. These relationships are enforced by the model implementation
in the code or in the database that ensures that these relationships among the

objects are kept intact. Relationships are not just unidirectional, they can also

be bi-directional. They can also increase in complexity.

The designer's job is to simplify these relationships in the model. Some relationships
may exist in a real domain, but may not be required in the domain model. Designers
need to ensure that such relationships do not exist in the domain model. Similarly,
multiplicity can be reduced by these constraints. One constraint may do the job
where many objects satisfy the relationship. It is also possible that a bidirectional
relationship could be converted into a unidirectional relationship.

No matter how much simplification you input, you may still end up with
relationships in the model. These relationships need to be maintained in the code.
When one object is removed, the code should remove all the references of this

object from other places. For example, a record removal from one table needs to be
addressed wherever it has references in the form of foreign keys and such to keep the
data consistent and maintain its integrity. Also invariants (rules) need to be forced
and maintained whenever data changes.

Relationships, constraints, and invariants bring a complexity that requires an
efficient handling in code. We find the solution by using the aggregate represented
by the single entity known as the root that is associated with the group of objects that
maintains consistency with respect to data changes.

[53]

Domain-Driven Design

This root is the only object that is accessible from outside, so this root element works
as a boundary gate that separates the internal objects from the external world. Roots
can refer to one or more inside objects and these inside objects can have references to
other inside objects that may or may not have relationships with the root. However,
outside objects can also refer to the root and not to any inside objects.

An aggregate ensures data integrity and enforces the invariant. Outside objects
cannot make any change to inside objects they can only change the root. However,
they can use the root to make a change inside the object by calling exposed
operations. The root should pass the value of inside objects to outside objects if
required.

If an aggregate object is stored in the database then the query should only return the
aggregate object. Traversal associations should be used to return the object when

it is internally linked to the aggregate root. These internal objects may also have
references to other aggregates.

An aggregate root entity holds its global identity and hold local identities inside their
entities.

An easy example of an aggregate in the table booking system is the customer.
Customers can be exposed to external objects and their root object contains their
internal object address and contact information. When requested, the value object of
internal objects like address can be passed to external objects:

Customer Contactinfo

customerlD workPhone
firstName homePhone
lastName email

L

Address

houseNo
street
Area

city

state

The customer as an aggregate

[54]

Chapter 3

Repository

In a domain model, at a given point in time, many domain objects may exist. Each
object may have its own life cycle from the creation of objects to their removal or
persistence. Whenever any domain operation needs a domain object, it should
retrieve the reference of the requested object efficiently. It would be very difficult if
you didn't maintain all the available domain objects in a central object that carries
the references of all the objects and is responsible for returning the requested object
reference. This central object is known as the repository.

The repository is a point that interacts with infrastructures such as the database or
file system. A repository object is the part of the domain model that interacts with
storage such as database, external sources, and so on to retrieve the persisted objects.
When a request is received by the repository for an object's reference, it returns the
existing object's reference. If the requested object does not exist in the repository then
it retrieves the object from storage. For example, if you need a customer, you would
query the repository object to provide the customer with ID 31. The repository
would provide the requested customer object if it is already available within the
repository, and if not would query the persisted stores such as the database, fetch it
and provide its reference.

The main advantage of using the repository is having a consistent way to retrieve
objects where the requestor does not need to interact directly with the storage such
as the database.

A repository may query objects from various storage types such as one or more
databases, filesystems or factory repositories and so on. In such cases, a repository
may have strategies that also point to different sources for different object types or
categories:

Domain Layer

Requestor Repository

Infrastructure Layer

Storage
(DB or File Storage etc.)

Repository object flow

[55]

Domain-Driven Design

As shown in the repository object flow diagram, the repository interacts with the
infrastructure layer and this interface is part of the domain layer. The requestor may
belong to a domain layer or an application layer. The repository helps the system to
manage the life cycle of domain objects.

Factory

The factory is required when a simple constructor is not enough to create the object.
It helps to create complex objects or an aggregate that involves the creation of other
related objects.

A factory is also a part of the life cycle of domain objects as it is responsible for
creating them. Factories and repositories are in some way related to each other as
both refer to domain objects. The factory refers to newly created objects whereas the
repository returns the already existing objects either from in the memory or from
external storages.

Let us see how control flows using a user creation process app. Let's say that a user
signs up with a username user1. This user creation first interacts with the factory,
which creates the name user1 and then caches it in the domain using the repository
which also stores it in the storage for persistence.

When the same user logs in again, the call moves to the repository for a reference.
This uses the storage to load the reference and pass it to the requestor.

The requestor may then use this user1 object to book the table in a specified
restaurant and at a specified time. These values are passed as parameters and a table
booking record is created in storage using the repository:

[56]

Chapter 3

createUser(‘user1”) | addUser(*user1”) |
. _ _Teturnusert _ _
insertRecord -
bookTable(‘user1”, “ref:;‘.taurant A" “Table 1", ...) _

Repository object flow

The factory may use one of the object oriented programming patterns such as the
factory or abstract factory pattern for object creation.

[57]

Domain-Driven Design

Modules

Modules are the best way of separating related business objects. These are best suited
to large projects where the size of domain objects is bigger. For the end user, it makes
sense to divide the domain model into modules and set the relationship between
these modules. Once you understand the modules and their relationship, you start to
see the bigger picture of the domain model, and it is easier to drill down further and
understand the model.

Modules also help in code that is highly cohesive or that maintains low coupling.
Ubiquitous language can be used to name these modules. For the table booking
system, we could have different modules such as user-management, restaurants and
tables, analytics and reports, and reviews, and so on.

Strategic design and principles

An enterprise model is usually very large and complex. It may be distributed among
different departments in an organization. Each department may have a separate
leadership team, so working and designing together can create difficulty and
coordination issues. In such scenarios, maintaining the integrity of the domain model
is not an easy task.

In such cases, working on a unified model is not the solution and large enterprise
models need to be divided into different submodels. These submodels contain the
predefined accurate relationship and contract in minute detail. Each submodel has to
maintain the defined contracts without any exception.

There are various principles that could be followed to maintain the integrity of the
domain model, and these are listed as follows:
* Bounded context
* Continuous integration
* Context map
° Shared kernel
° Customer-supplier
° Conformist
Anticorruption layer
Separate ways
Open host service

° Distillation

[58]

Chapter 3

Bounded context

When you have different submodels, it is difficult to maintain the code when all
submodels are combined. You need to have a small model that can be assigned to a
single team. You might need to collect the related elements and group them. Context
keeps and maintains the meaning of the domain term defined for its respective
submodel by applying this set of conditions.

These domain terms defines the scope of the model that creates the boundaries of the
context.

Bounded context seems very similar to the module that you learned about in the
previous section. In fact, module is part of the bounded context that defines the
logical frame where a submodel takes place and is developed. Whereas, the module
organizes the elements of the domain model and is visible in design document and
the code.

Now, as a designer you would have to keep each submodel well-defined and
consistent. In this way you can refactor the each model independently without
affecting the other submodels. This gives the software designer the flexibility to
refine and improve it at any point in time.

Now look at the table reservation example. When you started designing the system,
you would have seen that the guest would visit the app and would request a table
reservation in a selected restaurant, date, and time. Then, there is backend system
that informs the restaurant about the booking information, and similarly, the
restaurant would keep their system updated with respect to table bookings, given
that tables can also be booked by the restaurant themselves. So, when you look at the
systems finer points, you can see two domains models:

* The online table reservation system
* The offline restaurant management system

Both have their own bounded context and you need to make sure that the interface
between them works fine.

Continuous integration

When you are developing, the code is scattered among many teams and various
technologies. This code may be organized into different modules and has applicable
bounded context for respective submodels.

[59]

Domain-Driven Design

This sort of development may bring with it a certain level of complexity with respect
to duplicate code, a code break or maybe broken-bounded context. It happens

not only because of the large size of code and domain model, but also because of
other factors such as changes in team members, new members or not having a well
documented model to name just a few of them.

When systems are designed and developed using DDD and Agile methodologies,
domain models are not designed fully before coding starts and the domain model
and its elements get evolved over a period of time with continuous improvements
and refinement happening over the time.

Therefore, integration continues and this is currently one of the key reasons for
development today, so it plays a very important role. In continuous integration, code
is merged frequently to avoid any breaks and issues with the domain model. Merged
code not only gets deployed but it is also tested on a regular basis. There are various
continuous integration tools available in the market that merge, build, and deploy
the code at scheduled times. Organizations, these days, put more emphasis on the
automation of continuous integration. Hudson, TeamCity, and Jenkins CI are a few
of the popular tools available today for continuous integration. Hudson and Jenkins
CI are open source tools and TeamCity is a proprietary tool.

Having a test suite attached to each build confirms the consistency and integrity of
the model. A test suite defines the model from a physical point of view, whereas
UML does it logically. It tells you about any error or unexpected outcome that
requires a code change. It also helps to identify errors and anomalies in a domain
model early.

Context map

The context map helps you to understand the overall picture of a large enterprise
application. It shows how many bounded contexts are present in the enterprise
model and how they are interrelated. Therefore we can say that any diagram or
document that explains the bounded contexts and relationship between them is
called a context map.

Context maps helps all team members, whether they are in the same team or in
different team, to understand the high-level enterprise model in the form of various
parts (bounded context or submodels) and relationships. This gives individuals

a clearer picture about the tasks one performs and may allow him to raise any
concern/question about the model's integrity:

[60]

Chapter 3

Table Reservation Context

oo S

Tablel <

Restaurant Ledger Context

Context map example

The context map example diagram is a sample of a context map. Here, Tablel and
Table2 both appear in the Table Reservation Context and also in the Restaurant
Ledger Context. The interesting thing is that Tablel and Table2 have their own
respective concept in each bounded context. Here, ubiquitous language is used to
name the bounded context as table reservation and restaurant ledger.

In the following section, we will explore a few patterns that can be used to define the
communication between different contexts in the context map.

[61]

Domain-Driven Design

Shared kernel

As the name suggests, one part of the bounded context is shared with the other's
bounded context. As you can see below the Restaurant entity is being shared
between the Table Reservation Context and the Restaurant Ledger Context:

Table Reservation Context p—

Restaurant Ledger Context

Shared kernel

Customer-supplier

The customer-supplier pattern represents the relationship between two bounded
contexts when the output of one bounded context is required for the other bounded
context that is, one supplies the information to the other (known as the customer)
who consumes the information.

In a real world example, a car dealer could not sell cars until the car manufacturer
delivers them. Hence, in this domain-model, the car manufacturer is the supplier
and the dealer is the customer. This relationship establishes a customer-supplier
relationship because the output (car) of one bounded context (car-manufacturer) is
required by the other bounded context (dealer).

Here, both customer and supplier teams should meet regularly to establish a contract
and form the right protocol to communicate with each other.

[62]

Chapter 3

Conformist

This pattern is similar to that of the customer and the supplier, where one needs to
provide the contract and information while the other needs to use it. Here, instead
of bounded context, actual teams are involved in having an upstream/downstream
relationship.

Moreover, upstream teams do not provide for the needs of the downstream team
because of their lack of motivation. Therefore, it is possible that the downstream
team may need to plan and work on items which will never be available. To resolve
such cases, either the customer team could develop their own models if the supplier
provides information that is not worth enough. If the supplier provided information
is really of worth or of partial worth, then the customer can use the interface or
translators that can be used to consume the supplier-provided information with

the customer's own models.

Anticorruption layer

The anticorruption layer remains part of a domain and it is used when a system
needs data from external systems or from their own legacy systems. Here,
anticorruption is the layer that interacts with external systems and uses external
system data in the domain model without affecting the integrity and originality of
the domain model.

For the most part, a service can be used as an anticorruption layer that may use a
facade pattern with an adapter and translator to consume external domain data
within the internal model. Therefore, your system would always use the service to
retrieve the data. The service layer can be designed using the facade pattern. This
would make sure that it would work with the domain model to provide the required
data in a given format. The service could then also use the adapter and translator
patterns that would make sure that whatever format and hierarchy the data is sent
in, by external sources, the service would be provided in a desired format and the
hierarchy would use adapters and translators.

Separate ways

When you have a large enterprise application and a domain where different
domains have no common elements and it's made of large submodels that can work
independently, this still works as a single application for an end user.

In such cases, a designer could create separate models that have no relationship and
develop a small application on top of them. These small applications become a single
application when merged together.

[63]

Domain-Driven Design

An employer's Intranet application that offers various small applications such as
those that are HR-related, issue trackers, transport or intra-company social networks,
is one such application where a designer could use the separate ways pattern.

It would be very challenging and complex to integrate applications that were
developed using separate models. Therefore, you should take care before
implementing this pattern.

Open host service

A translation layer is used when two submodels interact with each other. This
translation layer is used when you integrate models with an external system. This
works fine when you have one submodel that uses this external system. The open
host service is required when this external system is being used by many submodels
to remove the extra and duplicated code because then you need to write a translation
layer for each submodel external system.

An open host service provides the services of an external system using a wrapper to
all sub-models.

Distillation

As you know, distillation is the process of purifying liquid. Similarly, in DDD,
distillation is the process that filters out the information that is not required, and
keeps only the meaningful information. It helps you to identify the core domain and
the essential concepts for your business domain. It helps you to filter out the generic
concepts until you get the code domain concept.

Core domain should be designed, developed and implemented with the highest
attention to detail, using the developers and designers, as it is crucial for the success
of the whole system.

In our table reservation system example, which is not a large, or a complex domain
application, it is not difficult to identify the core domain. The core domain here exists
to share the real-time accurate vacant tables in the restaurants and allows the user to
reserve them in a hassle free process.

Sample domain service

Let us create a sample domain service based on our table reservation system. As
discussed in this chapter, the importance of an efficient domain layer is the key to
successful products or services. Projects developed based on the domain layer are more
maintainable, highly cohesive, and decoupled. They provide high scalability in terms of
business requirement change and have a low impact on the design of other layers.

[64]

Chapter 3

Domain-driven development is based on domain, hence it is not recommended that
you use a top-down approach where the Ul would be developed first, followed

by the rest of the layers and finally the persistence layer, or a bottom-up approach
where the persistence layer like the DB is designed first and then the rest of the
layers, with the Ul at last.

Having a domain model developed first, using the patterns described in this

book, gives clarity to all team members functionality wise and an advantage to the
software designer to build a flexible, maintainable and consistent system that helps
the organization to launch a world class product with less maintenance costs.

Here, you will create a restaurant service that provides the feature to add and
retrieve restaurants. Based on implementation, you can add other functionalities
such as finding restaurants based on cuisine or on rating.

Start with the entity. Here, the restaurant is our entity as each restaurant is unique
and has an identifier. You can use an interface or set of interfaces to implement the
entity in our table reservation system. Ideally, if you go by the interface segregation
principle, you will use a set of interfaces rather than a single interface.

The Interface Segregation Principle (ISP): clients should not be
A forced to depend upon interfaces that they do not use.

Entity implementation

For the first interface you could have an abstract class or interface that is required
by all the entities. For example if we consider ID and name, attributes would be
common for all entities. Therefore, you could use the abstract class Entity as an
abstraction of entity in your domain layer:

public abstract class Entity<T> {

T id;
String name;

}

Based on that you can also have another abstract class that inherits Entity, an
abstract class:

public abstract class BaseEntity<T> extends Entity<T> {

private T id;

[65]

Domain-Driven Design

public BaseEntity (T id, String name) {
super.id = id;
super.name = name;

(getter/setter and other relevant code)

}

Based on the preceding abstractions, we could create the Restaurant entity for
restaurant management.

Now since we are developing the table reservation system, Table is another important
entity in terms of the domain model. So, if we go by the aggregate pattern, restaurant
would work as a root, and table would be internal to the Restaurant entity. Therefore,
the Table entity would always be accessible using the Restaurant entity.

You can create the Table entity using the following implementation, and you can
add attributes as you wish. For demonstration purpose only, basic attributes are
used:

public class Table extends BaseEntity<BigIntegers> {
private int capacity;

public Table (String name, BigInteger id, int capacity) {
super (id, name) ;
this.capacity = capacity;

public void setCapacity(int capacity) {
this.capacity = capacity;

public int getCapacity() {
return capacity;

}

Now, we can implement the aggregator Restaurant shown as follows. Here,
only basic attributes are used. You could add as many you want or may add other
features also:

public class Restaurant extends BaseEntity<String>

private List<Table> tables = new ArrayList<>();

[66]

Chapter 3

public Restaurant (String name, String id, List<Table> tables) {
super (id, name) ;
this.tables = tables;

public void setTables (List<Table> tables) {
this.tables = tables;

public List<Table> getTables() {
return tables;

Repository implementation

Now, we can implement the repository pattern as learned in this chapter. To start
with, you will first create the two interfaces Repository and ReadonlyRepository.
ReadOnlyRepository will be used to provide abstraction for read only operations
whereas Repository abstraction will be used to perform all types of operations:

public interface ReadOnlyRepository<TE, T>
boolean contains (T id) ;
Entity get (T id);

Collection<TE> getAll() ;

}

Based on this interface, we could create the abstraction of the repository that would
do additional operations such as adding, removing, and updating;:

public interface Repository<TE, T> extends ReadOnlyRepository<TE, T>
void add(TE entity);
void remove (T id) ;

void update (TE entity) ;

[67]

Domain-Driven Design

Repository abstraction as defined previously could be implemented in a way that
suits you to persist your objects. The change in persistence code, that is a part of
infrastructure layer, won't impact on your domain layer code as the contract and
abstraction are defined by the domain layer. The domain layer uses the abstraction
classes and interfaces that remove the use of direct concrete class and provides

the loose coupling. For demonstration purpose, we could simple use the map that
remains in the memory to persist the objects:

public interface RestaurantRepository<Restaurant, Strings> extends
Repository<Restaurant, Strings> {

boolean ContainsName (String name) ;

public class InMemRestaurantRepository implements RestaurantRepository
<Restaurant, Strings> {

private Map<String, Restaurant> entities;

public InMemRestaurantRepository() {
entities = new HashMap () ;

@Override
public boolean ContainsName (String name) {
return entities.containsKey (name) ;

@Override
public void add(Restaurant entity) {
entities.put (entity.getName (), entity) ;

@Override
public void remove (String id) {
if (entities.containsKey(id))
entities.remove (id) ;

@Override
public void update (Restaurant entity)
if (entities.containsKey (entity.getName())) {
entities.put (entity.getName (), entity) ;

[68]

Chapter 3

@Override
public boolean contains(String id) {

throw new UnsupportedOperationException ("Not supported yet.");
//To change body of generated methods, choose Tools | Templates.

}

@Override
public Entity get (String id) {

throw new UnsupportedOperationException ("Not supported yet.");
//To change body of generated methods, choose Tools | Templates.

}

@Override
public Collection<Restaurant> getAll() {
return entities.values () ;

Service implementation

In the same way as the preceding approach, you could divide the abstraction of
domain service into two parts: main service abstraction and read only service
abstraction:

public abstract class ReadOnlyBaseService<TE, T> {

private Repository<TE, T> repository;

ReadOnlyBaseService (Repository<TE, T> repository) {
this.repository = repository;

Now, we could use this ReadonlyBaseService to create the BaseService. Here, we
are using the dependency inject pattern via a constructor to map the concrete objects
with abstraction:

public abstract class BaseService<TE, T> extends
ReadOnlyBaseService<TE, T> {

[69]

Domain-Driven Design

private Repository<TE, T> repository;

BaseService (Repository<TE, T> repository) {
super (repository) ;
_repository = repository;

public void add(TE entity) throws Exception
_repository.add(entity) ;

public Collection<TE> getAll() {
return repository.getAll();

}

Now, after defining the service abstraction services, we could implement the
RestaurantService in the following way:

public class RestaurantService extends BaseService<Restaurant,
BigInteger>

private RestaurantRepository<Restaurant, Strings>
restaurantRepository;

public RestaurantService (RestaurantRepository repository)

super (repository) ;
restaurantRepository = repository;

public void add(Restaurant restaurant) throws Exception

if (restaurantRepository.ContainsName (restaurant.getName())) {
throw new Exception(String.format ("There is already a
product with the name - %s", restaurant.getName())) ;
}
if (restaurant.getName() == null || "".equals(restaurant.
getName ()))

throw new Exception("Restaurant name cannot be null or
empty string.");

}

super.add (restaurant) ;

[70]

Chapter 3

Similarly, you could write the implementation for other entities. This code is a basic
implementation and you might add various implementations and behaviors in the
production code.

Summary

In this chapter, you have learned the fundamentals of DDD. You have also explored
multilayered architecture and different patterns one can use to develop software
using DDD. By this time, you might be aware that the domain model design is very
important for the success of the software. At the end, there is also one domain service
implementation shown using the restaurant table reservation system.

In the next chapter, you will learn how to use the design is used to implement the
sample project. The explanation of the design of this sample project is derived from
the last chapter and the DDD will be used to build the microservices. This chapter
not only covers the coding, but also the different aspects of the microservices such
as build, unit-testing, and packaging. At the end of the next chapter, the sample
microservice project will be ready for deployment and consumption.

[71]

Implementing a Microservice

This chapter takes you from the design stage to the implementation of our sample
project — an Online Table Reservation System (OTRS). Here, you will use the same
design explained in the last chapter and enhance it to build the pService. At the end of
this chapter, you will not only have learned to implement the design, but also learned
the different aspects of uServices - building, testing, and packaging. Although the
focus is on building and implementing the Restaurant pService, you can use the same
approach to build and implement other pServices used in the OTRS.

In this chapter, we will cover the following topics:

* OTRS overview
* Developing and implementing uService

* Testing

We will use the domain-driven design key concepts demonstrated in the last chapter.
In the last chapter, you saw how domain-driven design is used to develop the domain
model using core Java. Now, we will move from a sample domain implementation

to a Spring framework-driven implementation. You'll make use of Spring Boot to
implement the domain-driven design concepts and transform them from core Java

to a Spring framework-based model.

In addition, we'll also use the Spring Cloud, which provides a cloud-ready solution.
Spring Cloud also uses Spring Boot, which allows you to use an embedded application
container relying on Tomcat or Jetty inside your service, which is packages as a JAR or
as a WAR. This JAR is executed as a separate process, a pService that would serve and
provide the response to all requests and, point to endpoints defined in the service.

Spring Cloud can also be integrated easily with Netflix Eureka, a service registry
and discovery component. The OTRS will use it for registration and the discovery
of uServices.

[73]

Implementing a Microservice

OTRS overview

Based on pService principles, we need to have separate uServices for each functionality
that can function independently. After looking at the OTRS, we can easily divide

the OTRS into three main pServices - Restaurant service, Booking service, and User
service. There can be other pServices that can be defined in the OTRS. Our focus is on
these three uServices. The idea is to make them independent, including having their
own separate databases.

We can summarize the functionalities of these services as follows:

* Restaurant service: This service provides the functionality for the Restaurant
resource - create, read, update, delete (CRUD) operation and searching
based on criteria. It provides the association between restaurants and tables.
Restaurant would also provide the access to the Table entity.

* User service: This service, as the name suggests, allows the end user to
perform CRUD operations on User entities.

* Booking service: This makes use of the Restaurant service and User service to
perform CRUD operations on booking. It would use the Restaurant searching,
its associated tables lookup and allocation based on table availability for a
specified time duration. It creates the relationship between the Restaurant/
Table and the User.

Table Reservation Services

Service Registration & Discovery

[

S 8
£ @ =
@ 2 =
vl E 7]
+) v
= v +T]
E — |t
= [T} i
1] L2 o
i = o
L) o
o«

Different pServices, Registration and Discovery

[74]

Chapter 4

The preceding diagram shows how each pService works independently. This is the
reason pServices can be developed, enhanced, and maintained separately, without
affecting others. These services can each have their own layered architecture and
database. There is no restriction to use same technologies, frameworks, and languages
to develop these services. At any given point in time, you can also introduce new
uServices. For example, for accounting purposes, we can introduce an accounting
service that can be exposed to Restaurant for book keeping. Similarly, analytics and
reporting are other services that can be integrated and exposed.

For demonstration purposes, we will only implement the three services shown in the
preceding diagram.

Developing and implementing pServices

We will use the domain-driven implementation and approach described in the last
chapter to implement the uServices using Spring Cloud. Let's revisit the key artifacts:

* Entities: These are categories of objects that are identifiable and remain the
same throughout the states of the product/services. These objects are NOT
defined by their attributes, but by their identities and threads of continuity.

Entities have traits such as identity, a thread of continuity, and attributes that
do not define their identity. Value Objects (VO) just have the attributes and
no conceptual identity. A best practice is to keep Value Objects as immutable
objects. In the Spring framework, entities are pure POJOs, therefore we'll also
use them as VO.

* Services: These are common in technical frameworks. These are also used in
the Domain layer in domain-driven design. A Service object does not have an
internal state; the only purpose of it is to provide the behavior to the domain.
Service objects provide behaviors that cannot be related with specific entities
or value objects. Service objects may provide one or more related behaviors
to one or more entities or value objects. It is a best practice to define the
Services explicitly in the domain model.

* Repository object: A Repository object is a part of the domain model that
interacts with storage, such as databases, external sources and so on, to
retrieve the persisted objects. When a request is received by the repository
for an object reference, it returns the existing object reference. If the requested
object does not exist in the repository, then it retrieves the object from storage.

[75]

Implementing a Microservice

* Each OTRS pService API represents a RESTful web service. The OTRS API
uses HTTP verbs such as GET, POST, and so on, and a RESTful endpoint
structure. Request and response payloads are formatted as JSON. If required,
XML can also be used.

Restaurant pService

The Restaurant pService will be exposed to the external world using REST endpoints
for consumption. We'll find the following endpoints in the Restaurant uService
example. One can add as many endpoints as per the requirements:

Endpoint | GET /vl/restaurants/<Restaurant-Ids>
Parameters
Name Description
Restaurant_Id Path parameter that represents the unique restaurant associated
with this ID
Request
Property Type Description
None
Response
Property Type Description
Restaurant Restaurant object Restaurant object that
is associated with the
given ID
Endpoint | GET /vl/restaurants/
Parameters
Name Description
None
Request
Property Type Description
Name String Query parameter

that represents
the name, or

substring of the
name, of the
restaurant
Response
Property Type Description

[76]

Chapter 4

Restaurants Array of restaurant objects Returns all the
restaurants
whose names
contain the given
name value

Endpoint POST /vl/restaurants/

Parameters

Name Description

None

Request

Property Type Description

Restaurant Restaurant object A JSON representation of

the restaurant object

Response

Property Type Description

Restaurant Restaurant object A newly created

Restaurant object

Similarly, we can add various endpoints and their implementations. For demonstration
purposes, we'll implement the preceding endpoints using Spring Cloud.

Controller class

The Restaurant Controller uses the @RestController annotation to build the
restaurant service endpoints. We have already gone through the details of
@RestController in Chapter 2, Setting Up the Development Environment.
@RestController is a class-level annotation that is used for resource classes. It is
a combination of @Controller and @ResponseBody. It returns the domain object.

API versioning

As we move forward, I would like to share with you that we are using the v1 prefix
on our REST endpoint. That represents the version of the API. I would also like

to brief you on the importance of API versioning. Versioning APIs is important,
because APIs change over time. Your knowledge and experience improves with
time, which leads to changes to your API. A change of API may break existing client
integrations.

[77]

Implementing a Microservice

Therefore, there are various ways of managing API versions. One of these is using
the version in path or some use the HTTP header. The HTTP header can be a custom
request header or an Accept header to represent the calling API version. Please

refer to RESTful Java Patterns and Best Practices by Bhakti Mehta, Packt Publishing,
https://www.packtpub.com/application-development/restful-java-
patterns-and-best-practices, for more information.

@RestController
@RequestMapping ("/vl/restaurants")
public class RestaurantController {

protected Logger logger = Logger.getLogger (RestaurantController.
class.getName()) ;

protected RestaurantService restaurantService;

@Autowired
public RestaurantController (RestaurantService restaurantService)
this.restaurantService = restaurantService;

/**
* Fetch restaurants with the specified name. A partial case-
insensitive

* match is supported. So <codeshttp://.../restaurants/rest</code>
will find

* any restaurants with upper or lower case 'rest' in their name.
*
* @param name
* @return A non-null, non-empty collection of restaurants.
*/
@RequestMapping (method = RequestMethod.GET)
public ResponseEntity<Collection<Restaurant>> findByName (@

RequestParam("name") String name)
logger.info(String. format ("restaurant-service findByName () invoked:{}
for {} ", restaurantService.getClass().getName (), name)) ;

name = name.trim() .toLowerCase () ;

Collection<Restaurant> restaurants;
try {

restaurants = restaurantService.findByName (name) ;
} catch (Exception ex) ({

logger.log(Level .WARNING, "Exception raised findByName
REST Call", ex);

return new ResponseEntity< Collectionc<

[78]

https://www.packtpub.com/application-development/restful-java-patterns-and-best-practices
https://www.packtpub.com/application-development/restful-java-patterns-and-best-practices

Chapter 4

Restaurant>> (HttpStatus.INTERNAL SERVER ERROR) ;
return restaurants.size() > 0 ? new ResponseEntity<
Collection< Restaurant>>(restaurants, HttpStatus.OK)
new ResponseEntity< Collection<
Restaurant>> (HttpStatus.NO_ CONTENT) ;

}

/**
* Fetch restaurants with the given id.
* <code>http://.../vl/restaurants/{restaurant id}</code> will
return

* restaurant with given id.
*
* @param retaurant id
* @return A non-null, non-empty collection of restaurants.
*/
@RequestMapping (value = "/{restaurant id}", method =
RequestMethod.GET)
public ResponseEntity<Entity> findById(@PathVariable ("restaurant
id") String id)

logger.info(String. format ("restaurant-service findById()
invoked:{} for {} ", restaurantService.getClass().getName (), id));
id = id.trim() ;
Entity restaurant;
try {
restaurant = restaurantService.findById(id) ;
} catch (Exception ex) ({
logger.log(Level.SEVERE, "Exception raised findById REST
Call", ex);
return new ResponseEntity<Entitys> (HttpStatus.INTERNAL
SERVER_ERROR) ;
}
return restaurant != null ? new ResponseEntity<Entitys(restaur
ant, HttpStatus.OK)
new ResponseEntity<Entitys (HttpStatus.NO_ CONTENT) ;

* Add restaurant with the specified information.

* @param Restaurant
* @return A non-null restaurant.
* @throws RestaurantNotFoundException If there are no matches at

[79]

Implementing a Microservice

all.
*/
@RequestMapping (method = RequestMethod.POST)

public ResponseEntity<Restaurant> add(@RequestBody RestaurantVO
restaurantVo) {

logger.info(String. format ("restaurant-service add() invoked:
$s for %s", restaurantService.getClass () .getName (), restaurantVO.
getName ()) ;

Restaurant restaurant = new Restaurant (null, null, null);
BeanUtils.copyProperties (restaurantVO, restaurant) ;
try {
restaurantService.add (restaurant) ;
} catch (Exception ex) ({

logger.log(Level .WARNING, "Exception raised add Restaurant
REST Call "+ ex);

return new ResponseEntity<Restaurants> (HttpStatus.
UNPROCESSABLE ENTITY) ;

}

return new ResponseEntity<Restaurants> (HttpStatus.CREATED) ;

Service classes

RestaurantController uses RestaurantService. RestaurantService is an
interface that defines CRUD and some search operations and is defined as follows:

public interface RestaurantService {
public void add(Restaurant restaurant) throws Exception;
public void update (Restaurant restaurant) throws Exception;
public void delete(String id) throws Exception;
public Entity findById(String restaurantId) throws Exception;

public Collection<Restaurant> findByName (String name) throws
Exception;

public Collection<Restaurant> findByCriteria (Map<String,
ArrayList<String>> name) throws Exception;

}

[80]

Chapter 4

Now, we can implement the RestaurantService we have just defined. It also
extends the BaseService you created in the last chapter. We use @Service Spring
annotation to define it as a service:

@Service ("restaurantService")
public class RestaurantServiceImpl extends BaseService<Restaurant,
String>

implements RestaurantService {

private RestaurantRepository<Restaurant, Strings>
restaurantRepository;

@Autowired
public RestaurantServiceImpl (RestaurantRepository<Restaurant,
String> restaurantRepository) {
super (restaurantRepository) ;
this.restaurantRepository = restaurantRepository;

public void add(Restaurant restaurant) throws Exception {
if (restaurant.getName() == null || """ equals (restaurant.

getName ())) {
throw new Exception("Restaurant name cannot be null or

empty string.");

}

if (restaurantRepository.containsName (restaurant.getName ())) {
throw new Exception(String.format ("There is already a
product with the name - %s", restaurant.getName())) ;

}

super.add (restaurant) ;

@Override
public Collection<Restaurant> findByName (String name) throws
Exception {
return restaurantRepository.findByName (name) ;

@Override
public void update (Restaurant restaurant) throws Exception

restaurantRepository.update (restaurant) ;

[81]

Implementing a Microservice

@Override
public void delete(String id) throws Exception {
restaurantRepository.remove (id) ;

@Override
public Entity f£indById(String restaurantId) throws Exception

return restaurantRepository.get (restaurantId) ;

@Override
public Collection<Restaurant> findByCriteria (Map<String,
ArrayList<String>> name) throws Exception {
throw new UnsupportedOperationException ("Not supported yet.");
//To change body of generated methods, choose Tools | Templates.

}

Repository classes

The RestaurantRepository interface defines two new methods: the containsName
and findByName methods. It also extends the Repository interface:

public interface RestaurantRepository<Restaurant, Strings> extends
Repository<Restaurant, String> {

boolean containsName (String name) throws Exception;

Collection<Restaurant> findByName (String name) throws Exception;

}

The Repository interface defines three methods: add, remove, and update. It also
extends the ReadOnlyRepository interface:

public interface Repository<TE, T> extends ReadOnlyRepository<TE, T>
void add(TE entity);
void remove (T id) ;

void update (TE entity) ;

[82]

Chapter 4

The ReadOnlyRepository interface definition contains the get and getal1l methods,
which return Boolean values, Entity, and collection of Entity respectively. It is useful
if you want to expose only a read-only abstraction of the repository:

public interface ReadOnlyRepository<TE, T> {
boolean contains (T id) ;
Entity get (T id);

Collection<TE> getAll() ;

}

Spring framework makes use of the @Repository annotation to define the repository
bean that implements the repository. In the case of RestaurantRepository, you can
see that a map is used in place of the actual database implementation. This keeps all
entities saved in memory only. Therefore, when we start the service, we find only
two restaurants in memory. We can use JPA for database persistence. This is the
general practice for production-ready implementations:

@Repository ("restaurantRepository")

public class InMemRestaurantRepository implements RestaurantRepository
<Restaurant, Strings> {

private Map<String, Restaurant> entities;

public InMemRestaurantRepository() {
entities = new HashMap () ;
Restaurant restaurant = new Restaurant ("Big-O Restaurant",

"1", null);
entities.put("1l", restaurant);
restaurant = new Restaurant ("O Restaurant", "2", null);
entities.put ("2", restaurant);
@Override

public boolean containsName (String name) {
try {
return this.findByName (name) .size() > 0;
} catch (Exception ex) ({
//Exception Handler

}

return false;

@Override

[83]

Implementing a Microservice

public void add(Restaurant entity) {
entities.put (entity.getId(), entity);

@Override
public void remove (String id)
if (entities.containsKey(id))

entities.remove (id) ;

@Override
public void update (Restaurant entity)
if (entities.containsKey(entity.getId())) {
entities.put (entity.getId (), entity);
}
}
@Override

public Collection<Restaurant> findByName (String name) throws
Exception
Collection<Restaurant> restaurants = new ArrayList();
int noOfChars = name.length();
entities.forEach((k, v) -> {
if (v.getName () .toLowerCase () .contains (name.subSequence (0,

noOfChars))) {
restaurants.add(v) ;

3N

return restaurants;

@Override
public boolean contains(String id) {
throw new UnsupportedOperationException ("Not supported yet.");
//To change body of generated methods, choose Tools | Templates.

}

@Override
public Entity get (String id) {
return entities.get (id);

@Override

[84]

Chapter 4

public Collection<Restaurant> getAll() {
return entities.values () ;

Entity classes

The Restaurant entity, which extends BaseEntity, is defined as follows:

public class Restaurant extends BaseEntity<Strings> {
private List<Table> tables = new ArrayList<>();

public Restaurant (String name, String id, List<Tables tables) {
super (id, name) ;
this.tables = tables;

public void setTables (List<Table> tables) {
this.tables = tables;

public List<Table> getTables() {

return tables;

@Override
public String toString() {
StringBuilder sb = new StringBuilder() ;
sb.append (String.format ("id: {}, name: {},
this.getId(), this.getName (), this.getCapacity())) ;
return sb.toString() ;

capacity: {}",

Since, we are using POJO classes for our entity definitions, we do not
need to create a Value object in many cases. The idea is that the state
A~ . .
of the object should not be persisted across.

[85]

Implementing a Microservice

The Table entity, which extends BaseEntity, is defined as follows:

public class Table extends BaseEntity<BigInteger> {
private int capacity;

public Table(String name, BigInteger id, int capacity) {
super (id, name) ;
this.capacity = capacity;

}

public void setCapacity(int capacity) {
this.capacity = capacity;
}

public int getCapacity() {
return capacity;
}

@Override
public String toString() {
StringBuilder sb = new StringBuilder() ;
sb.append (String.format ("id: {}, name: {}", this.getId(),
this.getName())) ;
sb.append (String.format ("Tables: {}" + Arrays.asList (this.
getTables())));
return sb.toString() ;
}

1
The Entity abstract class is defined as follows:

public abstract class Entity<T> {

T id;
String name;

public T getId() {

return id;

public void setId(T id) {
this.id = id;

public String getName () {
return name;

[86]

Chapter 4

public void setName (String name) {
this.name = name;

}

The BaseEntity abstract class is defined as follows. It extends the Entity
abstract class:

public abstract class BaseEntity<T> extends Entity<T>

private T id;
private boolean isModified;
private String name;

public BaseEntity (T id, String name)
this.id = id;
this.name = name;

}

public T getId() {
return id;
}

public void setId(T id) {
this.id = id;

}

public boolean isIsModified() {
return isModified;
}

public void setIsModified(boolean isModified) {
this.isModified = isModified;
}

public String getName () {
return name;
}

public void setName (String name) {
this.name = name;
}

[87]

Implementing a Microservice

Booking and user services

We can use the RestaurantService implementation to develop the Booking and
User services. The User service can offer the endpoint related to the User resource
with respect to CRUD operations. The Booking service can offer the endpoints
related to the Booking resource with respect to CRUD operations and the availability
of table slots. You can find the sample code of these services on the Packt website.

Registration and Discovery service
(Eureka service)

Spring Cloud provides state-of-the-art support to Netflix Eureka, a service registry
and discovery tool. All services executed by you get listed and discovered by
Eureka service, which it reads from the Eureka client Spring configuration inside
your service project.

It needs a Spring Cloud dependency as shown here and a startup class with the
@EnableEurekalpplication annotation in pom.xml:

Maven dependency:

<dependencys>
<groupIds>org.springframework.cloud</groupIld>
<artifactIds>spring-cloud-starter-eureka-server</artifactIds>
</dependency>

Startup class:

The startup class App would run the Eureka service seamlessly by just using the
@EnableEurekaApplication class annotation:

package com.packtpub.mmj.eureka.service;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.server.
EnableEurekaServer;

@SpringBootApplication
@EnableEurekaServer
public class App {

public static void main(Stringl[] args) {
SpringApplication.run (App.class, args);
}

[88]

Chapter 4

U , \
7:11 Use <start-class>com.packtpub.mmj.eureka.service.App</

start-class> under the <propertiess> tagin the pom.xml project.

Spring configurations:

Eureka Service also needs the following Spring configuration for Eureka Server
configuration (src/main/resources/application.yml):

server:
port: ${vcap.application.port:8761} # HTTP port

eureka:

instance:
hostname: localhost

client:
registerWithEureka: false
fetchRegistry: false

server:
waitTimeInMsWhenSyncEmpty: 0

Similar to Eureka Server, each OTRS service should also contain the Eureka Client
configuration, so that a connection between Eureka Server and the client can be
established. Without this, the registration and discovery of services is not possible.

Eureka Client: your services can use the following spring configuration to configure
Eureka Server:

eureka:
client:
serviceUrl:
defaultZone: http://localhost:8761/eureka/

Execution

To see how our code works, we need to first build it and then execute it. We'll use
Maven clean package to build the service JARs.

Now to execute these service JARs, simply execute the following command from the
service home directory:

java -jar target/<service jar filex>

[89]

Implementing a Microservice

For example:

java -jar target/restaurant-service.jar
java -jar target/eureka-service.jar

Testing

To enable testing, add the following dependency in pom.xml:

<dependency>
<grouplds>org.springframework.boot</groupIds>
<artifactId>spring-boot-starter-test</artifactIds>
</dependency>

To test the RestaurantController, the following files have been added:

4 RestaurantControllerIntegrationTests,M&ﬁdlusesthe
@SpringApplicationConfiguration annotation to pick the same
configuration that Spring Boot uses:

@RunWith (SpringdUnit4ClassRunner.class)

@SpringApplicationConfiguration(classes = RestaurantApp.class)

public class RestaurantControllerIntegrationTests extends
AbstractRestaurantControllerTests {

}

e An abstract class to write our tests:

public abstract class AbstractRestaurantControllerTests

protected static final String RESTAURANT = "1";

protected static final String RESTAURANT NAME = "Big-0O
Restaurant";

@Autowired

RestaurantController restaurantController;

@Test
public void validResturantById() {
Logger.getGlobal () .info ("Start validResturantById test");
ResponseEntity<Entity> restaurant = restaurantController.
findById (RESTAURANT) ;

Assert.assertEquals (HttpStatus.OK, restaurant.
getStatusCode ()) ;
Assert.assertTrue (restaurant.hasBody ()) ;

[90]

Chapter 4

Assert.assertNotNull (restaurant.getBody()) ;

Assert.assertEquals (RESTAURANT, restaurant.getBody () .
getId());

Assert.assertEquals (RESTAURANT NAME, restaurant.getBody ().
getName ()) ;

Logger.getGlobal () .info ("End validResturantById test");

@Test
public void validResturantByName () {

Logger.getGlobal () .info ("Start validResturantByName
test") ;

ResponseEntity<Collection<Restaurant>> restaurants =
restaurantController. findByName (RESTAURANT NAME) ;

Logger.getGlobal () .info ("In validAccount test");

Assert.assertEquals (HttpStatus.OK, restaurants.
getStatusCode()) ;

Assert.assertTrue (restaurants.hasBody ()) ;

Assert.assertNotNull (restaurants.getBody ()) ;

Assert.assertFalse (restaurants.getBody () .isEmpty ()) ;

Restaurant restaurant = (Restaurant) restaurants.
getBody () .toArray () [0] ;

Assert.assertEquals (RESTAURANT, restaurant.getId());

Assert.assertEquals(RESTAURANT_NAME, restaurant.
getName ()) ;

Logger.getGlobal () .info ("End validResturantByName test");

@Test

public void validadd() {
Logger.getGlobal () .info ("Start validAdd test");
RestaurantVO restaurant = new RestaurantVoO() ;
restaurant.setId("999") ;

restaurant.setName ("Test Restaurant") ;

ResponseEntity<Restaurant> restaurants =
restaurantController.add (restaurant) ;

Assert.assertEquals (HttpStatus.CREATED, restaurants.
getStatusCode()) ;

Logger.getGlobal () .info ("End validAdd test");

[91]

Implementing a Microservice

* Finally, RestaurantControllerTests, which extends the previously
created abstract class and also creates the RestaurantService and
RestaurantRepository implementations:

public class RestaurantControllerTests extends
AbstractRestaurantControllerTests {

protected static final Restaurant restaurantStaticInstance =
new Restaurant (RESTAURANT,
RESTAURANT NAME, null);

protected static class TestRestaurantRepository implements Res
taurantRepository<Restaurant, Strings> {

private Map<String, Restaurant> entities;
public TestRestaurantRepository() {

entities = new HashMap () ;
Restaurant restaurant = new Restaurant ("Big-O

Restaurant", "1", null);
entities.put("1l", restaurant);
restaurant = new Restaurant ("O Restaurant", "2",
null) ;
entities.put ("2", restaurant) ;
}
@Override
public boolean containsName (String name) {
try {
return this.findByName (name) .size() > 0;

} catch (Exception ex) ({
//Exception Handler
}

return false;

@Override
public void add(Restaurant entity) {
entities.put (entity.getId(), entity);
}
@Override
public void remove (String id) {
if (entities.containsKey(id))

entities.remove (id) ;

@Override
public void update (Restaurant entity) {

[92]

Chapter 4

if (entities.containsKey(entity.getId())) {
entities.put (entity.getId(), entity);
}
}
@Override

public Collection<Restaurant> findByName (String name)

throws Exception {
Collection<Restaurant> restaurants = new ArrayList () ;

int noOfChars = name.length();
entities.forEach((k, v) -> {
if (v.getName () .toLowerCase () .contains (name.

subSequence (0, noOfChars))) {
restaurants.add (v) ;
!
3N

return restaurants;

@Override
public boolean contains(String id) {
throw new UnsupportedOperationException ("Not supported

yet."); //To change body of generated methods, choose Tools |
Templates.

}

@Override

public Entity get (String id) {
return entities.get (id) ;
}

@Override
public Collection<Restaurant> getAll() {

return entities.values() ;

}

protected TestRestaurantRepository testRestaurantRepository

new TestRestaurantRepository () ;
protected RestaurantService restaurantService = new Restaurant

ServiceImpl (testRestaurantRepository) ;

@Before

public void setup() {
restaurantController = new RestaurantController (restaurant

Service) ;

[93]

Implementing a Microservice

References

RESTful Java Patterns and Best Practices by Bhakti Mehta, Packt Publishing:
https://www.packtpub.com/application-development/restful-java-

patterns-and-best-practices
» Spring Cloud: http://cloud.spring.io/
* Netflix Eureka: https://github.com/netflix/eureka

Summary

In this chapter, we have learned how the domain-driven design model can be used
in a pService. After running the demo application, we can see how each pService
can be developed, deployed, and tested independently. You can create pServices
using Spring Cloud very easily. We have also explored how one can use the Eureka
registry and Discovery component with Spring Cloud.

In the next chapter, we will learn to deploy uServices in containers such as Docker.
We will also understand pService testing using REST Java clients and other tools.

[94]

https://www.packtpub.com/application-development/restful-java-patterns-and-best-practices
https://www.packtpub.com/application-development/restful-java-patterns-and-best-practices
http://cloud.spring.io/
https://github.com/netflix/eureka

Deployment and Testing

This chapter will explain how to deploy microservices in different forms, from
standalone to containers such as Docker. It will also demonstrate how Docker

can be used to deploy our sample project on a cloud service such as AWS. Before
implementing Docker, first we'll explore other factors about microservices, such as
load balancing and Edge Server. You will also come to understand microservice
testing using different REST clients such as RestTemplate, Netflix Feign, and so on.

In this chapter, we will cover the following topics:

* An overview of microservice architecture using Netflix OSS
* Load balancing microservices

* Edge Server

* Circuit breakers and monitoring

* Microservice deployment using containers

* Microservice integration testing using Docker containers

An overview of microservice architecture
using Netflix OSS

Netflix are pioneers in microservice architecture. They were the first to successfully
implement microservice architecture on a large scale. They also helped increase its
popularity and contributed immensely to microservices by open sourcing most of
their microservice tools with Netflix Open Source Software Center (OSS).

[95]

Deployment and Testing

According to the Netflix blog, when Netflix was developing their platform, they used
Apache Cassandra for data storage, which is an open source tool from Apache. They
started contributing to Cassandra with fixes and optimization extensions. This led to
Netflix seeing the benefits of releasing Netflix projects with the name Open Source
Software Center.

Spring took the opportunity to integrate many Netflix OSS projects, such as Zuul,
Ribbon, Hystrix, Eureka Server, and Turbine, into Spring Cloud. This is one of the
reasons Spring Cloud provides a ready-made platform for developing production-
ready microservices. Now, let's take a look at a few important Netflix tools and how

they fit into microservice architecture:
Hystrix Dashboard and Turbine
(Monitoring Dashboard)
API 1}

] J
API 2

=
/

As you can see in the preceding diagram, for each of the microservice practices,
we have Netflix tool associated with it. We can go through the following mapping
to understand it. Detailed information is covered in the respective sections of this
chapter except concerning Eureka, which is elaborated on in the last chapter.

App Logic

)

Business Logic

=
.2
e
it
k7
)
o
o
c2
»n o)
S
v 2
-
38
“a
=
(]
=
c
O
EL

Hystrix (Circuit Breaker

=
(7}
|51
=
e
[y}
ol
o
m
o
o |
=
o
o
=
[

T
c
(7}
v
)
bo
e
=,
@
c
[}
W)
S
=
~

Clients
L.
(F===)
L
(=S
L
(EE==E)

0

Microservice architecture diagram

* Edge Server: We use Netflix Zuul Server as an Edge Server.

* Load balancing: Netflix Ribbon is used for load balancing.

[96]

Chapter 5

* Circuit breaker: Netflix Hystrix is used as a circuit breaker and helps to keep
the system up.

* Service discovery and registration: Netflix Eureka Server is used for service
discovery and registration.

* Monitoring dashboard: Hystrix Dashboard is used with Netflix Turbine
for microservice monitoring. It provides a dashboard to check the health
of running microservices.

Load balancing

Load balancing is required to service requests in a manner that maximizes speed,
capacity utilization, and it makes sure that no server is overloaded with requests.
The load balancer also redirects requests to the remaining host servers if a server
goes down. In microservice architecture, a microservice can serve internal or external
requests. Based on this, we can have two types of load balancing - client-side and
server-side load balancing.

Client-side load balancing

Microservices need interprocess communication so that services can communicate
with each other. Spring Cloud uses Netflix Ribbon, a client-side load balancer that
plays this critical role and can handle both HTTP and TCP. Ribbon is cloud-enabled
and provides built-in failure resiliency. Ribbon also allows you to use multiple and
pluggable load balancing rules. It integrates clients with load balancers.

In the last chapter, we added Eureka Server. Ribbon is integrated with Eureka Server
in Spring Cloud by default. This integration provides the following features:

* You don't need to hardcode remote server URLs for discovery when Eureka
Server is used. This is a prominent advantage, although you can still use the
configured server list (listOfServers) in application.yml if required.

* The server list gets populated from Eureka Server. Eureka Server overrides
ribbonServerList with DiscoveryEnabledNIWSServerList.

* The request to find out whether the server is up is delegated to Eureka.
The DiscoveryEnabledNIWSServerList interface is used in place of
Ribbon's IPing.

[97]

Deployment and Testing

There are different clients available in Spring Cloud that use Ribbon, such as
RestTemplate or FeignClient. These clients allow microservices to communicate
with each other. Clients use instance IDs in place of hostnames and ports for making
an HTTP call to service instances when Eureka Server is used. The client passes the
service ID to Ribbon, Ribbon then uses the load balancer to pick the instance from
the Eureka Server.

If there are multiple instances of services available in Eureka, as shown in the
following screenshot, Ribbon picks only one for the request, based on load
balancing algorithms:

Instances currently registered with Eureka

Availability

Application AMIs Zones

RESTAURANT- @) UP (2) - SOUSHARM-IN:restaurant-servi
SERVICE (2) SOUSHARM-IN-restaurant-servic

n/a e A e O AR B A T
ZUUL-SERVER (1) UP (1) - SOUSHARM-IN:zuul-server:9094e5aae179efe903061d827e21e167}

Multiple service registration - Restaurant service

We can use DiscoveryClient to find all the available service instances in Eureka
Server, as shown in the following code. Method getLocalServiceInstance () of
class DiscoveryClientSample returns the all local service instances available in

Eureka Server.

DiscoveryClient sample:

@Component

class DiscoveryClientSample implements CommandLineRunner {

@Autowired
private DiscoveryClient;

@Override
public void run(String... strings) throws Exception
//print the Discovery Client Description
System.out.println(discoveryClient.description()) ;
// Get restaurant-service instances and prints its info
discoveryClient.getInstances ("restaurant-service") .
forEach ((ServicelInstance servicelInstance) -> {
System.out.println(new StringBuilder ("Instance -->
") .append (serviceInstance.getServiceId())

[98]

Chapter 5

.append ("\nServer: ") .append (servicelnstance.
getHost ()) .append (":") .append (serviceInstance.getPort ())
.append ("\nURI: ") .append (serviceInstance.

getUri ()) .append ("\n\n\n")) ;

1)
}

When executed, this code prints the following information. It shows two instances of
the Restaurant service:

Spring Cloud Eureka Discovery Client
Instance: RESTAURANT-SERVICE

Server: SOUSHARM-IN:3402

URI: http://SOUSHARM-IN:3402
Instance --> RESTAURANT-SERVICE
Server: SOUSHARM-IN:3368

URI: http://SOUSHARM-IN:3368

The following samples showcase how these clients can be used. You can see that
in both clients, the service name restaurant-service is used in place of a service
hostname and port. These clients call /v1/restaurants to get a list of restaurants
containing the name given in the name query parameter:

Rest Template sample:

@Override
public void run(String... strings) throws Exception {
ResponseEntity<Collection<Restaurant>> exchange
= this.restTemplate.exchange (
"http://restaurant-service/vl/restaurants?name=0",

HttpMethod.GET,

null,

new ParameterizedTypeReference<Collection<Restaura
nt>> () {

b

("restaurants") ;
exchange.getBody () . forEach ((Restaurant restaurant) -> {
System.out.println(new StringBuilder ("\n\n\n[") .append(restaurant.
getId()) .append (" ") .append(restaurant.getName ()) .append("]1"));
P
}

[99]

Deployment and Testing

FeignClient sample:

@Component
class FeignSample implements CommandLineRunner {

@Autowired
private RestaurantClient restaurantClient;

@Override
public void run(String... strings) throws Exception {
this.restaurantClient.getRestaurants ("o") .forEach((Restaurant
restaurant) -> {

System.out.println (restaurant) ;

I3F;

@FeignClient ("restaurant-service")
interface RestaurantClient {

@RequestMapping (method = RequestMethod.GET, value = "/vl1/
restaurants")

Collection<Restaurant> getRestaurants (@RequestParam("name") String
name) ;

}
All preceding examples will print the following output:

[1 Big-O Restaurant]
[2 O Restaurant]

Server-side load balancing

After client-side load balancing, it is important for us to define server-side load
balancing. In addition, from the microservice architecture's point of view, it is
important to define the routing mechanism for our OTRS app. For example, /
may be mapped to our Ul application, /restaurantapi is mapped to restaurant
service, and /userapi is mapped to user service.

We'll use the Netflix Zuul Server as our Edge Server. Zuul is a JVM-based router and
server-side load balancer. Zuul supports any JVM language for writing rules and
filters and having the in-built support for Java and Groovy.

[100]

Chapter 5

The external world (the Ul and other clients) calls the Edge server, which uses

the routes defined in application.yml to call internal services and provide the
response. Your guess is right if you think it acts as a proxy server, carries gateway
responsibility for internal networks, and calls internal services for defined and
configured routes.

Normally, it is recommended to have a single Edge Server for all requests. However,
few companies use a single Edge Server per client to scale. For example, Netflix uses
a dedicated Edge Server for each device type.

An Edge Server will also be used in the next chapter, when we configure and
implement microservice security.

Configuring and using the Edge Server is pretty simple in Spring Cloud. You need to
use the following steps:

1. Define the Zuul Server dependency in pom. xml:

<dependencys>
<groupIds>org.springframework.cloud</groupld>
<artifactId>spring-cloud-starter-zuul</artifactId>

</dependency>

2. Use the @EnableZuulProxy annotation in your application class. It also
internally uses @EnableDiscoveryClient: therefore it is also registered to
Eureka Server automatically. You can find the registered Zuul Server in the
last figure: Multiple service registration — Restaurant service".

3. Update the Zuul configuration in application.yml, as the following shows:

° zuul:ignoredServices: This skips the automatic addition of
services. We can define service ID patterns here. * denotes that we
are ignoring all services. In the following sample, all services are
ignored except restaurant-service.

° zuul.routes: This contains the path attribute that defines the URI's
pattern. Here, /restaurantapi is mapped to Restaurant Service
using serviceId. servicelId represents the service in Eureka
Server. You can use a URL in place of a service, if Eureka Server is
not used. We have also used the stripprefix attribute to strip the
prefix (/restaurantapi), and the resultant /restaurantapi/v1/
restaurants/1 call converts to /v1l/restaurants/1 while
calling the service:
application.yml
info:

component: Zuul Server

[101]

Deployment and Testing

Spring properties
spring:
application:
name: zuul-server # Service registers under this name

endpoints:
restart:
enabled: true
shutdown:
enabled: true
health:
sensitive: false

zuul:
ignoredServices: "*"
routes:
restaurantapi:
path: / restaurantapi/**
serviceIld: restaurant-service
stripPrefix: true

server:
port: 8765

Discovery Server Access
eureka:
instance:
leaseRenewallIntervalInSeconds: 3
metadataMap:
instanceId: ${vcap.application.instance id:${spring.
application.name}:${spring.application.instance id:${random.
value}}}
serviceUrl:
defaultZone: http://localhost:8761/eureka/
fetchRegistry: false

[102]

Chapter 5

Let's see a working Edge Server. First, we'll call the restaurant service deployed on

port 3402, shown as follows:

http://loc alhost: 3402/v 1/restaurants ?name=g|

GET v

m Preview Add to collection
Body STATUS BLUReLS 16 ms

Pretty Raw Preview u gl JSON | XML

nidn: mav,
"name": "Big-0 Restaurant”,

"izModified”: false,
"tables™: null

Direct Restaurant service call

Then, we'll call the same service using the Edge Server that is deployed on
port 8765. You can see that the /restaurantapi prefix is used for calling
/v1/restaurants?name=o, and it gives the same result:

http://lec alhost: 8765/ restaurantapi/v 1/restaurants?name=o

m Preview Add to collection

Pretty Raw Preview) E JSON

"id": "1v,

"name": "Big-0 Restaurant”,
"isModified”: false,
"tables": null

I

i
"id": ',
"name": "0 Restaurant”,
"isModified": false,
"tables": null

1

XML

Restaurant Service call using Edge Server

[103]

Deployment and Testing

Circuit breaker and monitoring

In general terms, a circuit breaker is:
An automatic device for stopping the flow of current in an electric circuit as a safety measure.

The same concept is used for microservice development, known as the Circuit
Breaker design pattern. It tracks the availability of external services such as Eureka
Server, API services such as restaurant-service, and so on, and prevents service
consumers from performing any action on any service that is not available.

It is another important aspect of microservice architecture, a safety measure
(failsafe mechanism) when the service does not respond to a call made by the
service consumer - circuit breaker.

We'll use Netflix Hystrix as a circuit breaker. It calls the internal fallback method in
the service consumer when failures occur (for example due to a communication error
or timeout). It executes embedded within its consumer of service. In the next section,
you will find the code that implements this feature.

Hystrix opens the circuit and fail-fast when the service fails to respond repeatedly,
until the service is available again. You must be wondering, if Hystrix opens the
circuit, then how does it know that the service is available? It exceptionally allows
some requests to call the service.

Using Hystrix's fallback methods

There are three steps for implementing fallback methods:

1. Enable the circuit breaker: The main class of microservice that consumes
other services should be annotated with @EnableCircuitBreaker.
For example, if a user service would like to get the restaurant details,
where a user has reserved the table:

@SpringBootApplication
@EnableCircuitBreaker

@ComponentScan ({"com.packtpub.mmj.user.service", "com.packtpub.
mmJj . common" })

public class UsersApp

[104]

Chapter 5

2. Configure the fallback method: To configure the fallbackMethod, the
@HystrixCommand annotation is used:
@HystrixCommand (fallbackMethod = "defaultRestaurant")

public ResponseEntity<Restaurant> getRestaurantById(int
restaurantId) {

LOG.debug ("Get Restaurant By Id with Hystrix protection") ;
URI uri = util.getServiceUrl ("restaurant-service") ;

String url = uri.toString() + "/vl/restaurants/" +
restaurantId;
LOG.debug ("Get Restaurant By Id URL: {}", url);

ResponseEntity<Restaurant> response = restTemplate.
getForEntity(url, Restaurant.class) ;

LOG.debug ("Get Restaurant By Id http-status: {}", response.
getStatusCode()) ;

LOG.debug ("GET Restaurant body: {}", response.getBody()) ;

Restaurant restaurant = response.getBody () ;
LOG.debug ("Restaurant ID: {}", restaurant.getId());

return serviceHelper.createOkResponse (restaurant) ;

}

3. Define fallback method: A method that handles the failure and performs the
steps for safety:
public ResponseEntity<Restaurant> defaultRestaurant (int
restaurantId) {
LOG.warn ("Fallback method for restaurant-service is being

used.") ;
return serviceHelper.createResponse (null, HttpStatus.BAD
GATEWAY) ;

}

These steps should be enough to failsafe the service calls and return a more
appropriate response to the service consumer.

[105]

Deployment and Testing

Monitoring
Hystrix provides the dashboard with a web UI that provides nice graphics of

circuit breakers:

[localhost: 7979

\\\\\\\\INIIU%

‘\\\\\H“H“Hﬂ;‘?

%

S
=
—
-
=,
=

\ _‘\\\Illlli'u_;,{

QA

Hystrix Dashboard

Clusrer via Turbine (defaunlt cluster): http://turbine-hostname port/turbine stream
Cluster vig Turbine (custom cluster): hitp://turbine-hostname:port/turbme stream?cluster=[clusterName]
Smgle Hystrix App: http://hystrix-app:port hystrox stream

Delay: ms Title:

IMonitor Stream

Default Hystrix dashboard

Netflix Turbine is a web application that connects to the instances of your Hystrix

applications in a cluster and aggregates information, which it does in real time

(updated every 0.5 seconds). Turbine provides information using a stream that is

known as a turbine stream.

If you combine Hystrix with Netflix Turbine, then you can get all the information
from Eureka Server on the Hystrix dashboard. This gives you a landscape view of all

the information about the circuit breakers.

To use Turbine with Hystrix, just type in the Turbine URL http://localhost:8989/
turbine.stream (port 8989 is configured for the Turbine server in application.yml)

in first textbox shown before, and click on Monitory Stream.

[106]

Chapter 5

Netflix Hystrix and Turbine uses RabbitMQ), an open source message queuing
software. RabbitMQ works on Advance Messaging Queue Protocol (AMQP). It
is a software in which queues can be defined, where applications can establish a
connection and transfer a message through it. A message can include any kind

of information. A message can be stored in the RabbitMQ queue until a receiver
application connects and receives the message (taking the message off the queue).

Hystrix uses RabbitMQ to send a metrics data feed to Turbine.

Before we configure Hystrix and Turbine, please install the RabbitMQ

application on your platform. Hystrix and Turbine use RabbitMQ to
"~ communicate between themselves.

Setting up the Hystrix Dashboard

We'll add the new Maven dependency, dashboard-server for Hystrix Server.
Configuring and using the Hystrix Dashboard is pretty simple in Spring Cloud
like others. You just need to follow these steps:

1. Define the Hystrix Dashboard dependency in pom.xm1:

<dependency>
<grouplds>org. springframework.cloud</groupId>
<artifactId>spring-cloud-starter- hystrix-dashboard</
artifactIds>

</dependency>

2. The @EnableHystrixDashboard annotation in the main Java class does
everything for you to use it. We'll also use the @econtroller to forward
the request from the root to Hystrix, as shown here:
@SpringBootApplication
@Controller
@EnableHystrixDashboard
public class DashboardApp extends SpringBootServletInitializer {

@RequestMapping ("/")
public String home () {
return "forward:/hystrix";

}

@Override
protected SpringApplicationBuilder configure (SpringApplication
Builder application) {

[107]

Deployment and Testing

return application.sources (DashboardApp.class) .web(true) ;

public static void main(String[] args) {
SpringApplication.run (DashboardApp.class, args);

}

3. Update the Dashboard application configuration in application.yml,
as shown here:
application.yml
Hystrix Dashboard properties

spring:
application:
name: dashboard-server
endpoints:
restart:
enabled: true
shutdown:
enabled: true
server:

port: 7979

eureka:
instance:
leaseRenewalIntervalInSeconds: 3
metadataMap:
instanceId: ${vcap.application.instance id:${spring.
application.name}:${spring.application.instance id:${random.
value}}}

client:

Default values comes from org.springframework.cloud.
netflix.eurek.EurekaClientConfigBean

registryFetchIntervalSeconds: 5
instanceInfoReplicationIntervalSeconds: 5
initialInstanceInfoReplicationIntervalSeconds: 5
serviceUrl:

defaultZone: http://localhost:8761/eureka/
fetchRegistry: false

logging:

[108]

Chapter 5

level:
ROOT: WARN
org.springframework.web: WARN

Setting up Turbine

We'll create one more Maven dependency for Turbine. When you run the Hystrix
Dashboard application, it will look like the Default Hystrix Dashboard screenshot
shown earlier.

Now, we will configure the Turbine Server using the following steps:

1. Define the Turbine Server dependency in pom.xml:

<dependency>
<groupld>org.springframework.cloud</groupIlds>
<artifactIds>spring-cloud-starter-turbine-amgp</artifactIds>
</dependency>

2. Use the @EnableTurbineAmgp annotation in your application class as
shown here. We are also defining a bean that will return the RabbitMQ
Connection Factory:

@SpringBootApplication
@EnableTurbineAmgp
@EnableDiscoveryClient
public class TurbineApp {

private static final Logger LOG = LoggerFactory.
getLogger (TurbineApp.class) ;

@Value ("${app.rabbitmg.host:localhost}")
String rabbitMQHost;

@Bean
public ConnectionFactory connectionFactory() {
LOG.info ("Creating RabbitMQHost ConnectionFactory for
host: {}", rabbitMQHost) ;
CachingConnectionFactory cachingConnectionFactory = new Ca
chingConnectionFactory (rabbitMQHost) ;
return cachingConnectionFactory;

}

public static void main(String[] args) {
SpringApplication.run (TurbineApp.class, args) ;

}

[109]

Deployment and Testing

3. Update the Turbine configuration in application.yml, as shown here:
server :port: The main port used by the the turbine HTTP

management : port: Port of turbine Actuator endpoints

application.yml

spring:
application:
name: turbine-server
server:

port: 8989

management :
port: 8990

PREFIX:

endpoints:
restart:
enabled: true
shutdown:
enabled: true

eureka:

instance:
leaseRenewalIntervalInSeconds: 10

client:
registryFetchIntervalSeconds: 5
instanceInfoReplicationIntervalSeconds: 5
initialInstanceInfoReplicationIntervalSeconds: 5
serviceUrl:

defaultZone: http://localhost:8761/eureka/

logging:
level:
root: WARN
com.netflix.discovery: 'OFF'

Please be aware the preceding steps always create the respective
%ji\ servers with default configurations. If required, you can override
the default configuration with specific settings.

[110]

Chapter 5

Microservice deployment using containers

You might have got the point about Docker after reading Chapter 1, A Solution Approach.

A Docker container provides a lightweight runtime environment, consisting of the
core features of a virtual machine and the isolated services of operating systems,
known as a docker image. Docker makes the packaging and execution of puServices
easier and smoother. Each operating system can have multiple Dockers, and each
Docker can run multiple applications.

Installation and configuration

Docker needs a virtualized server if you are not using a Linux OS. You can install
VirtualBox or similar tools such as Docker Toolbox to make it work for you. The
Docker installation page gives more details about it and lets you know how to do it.
So, leave it to the Docker installation guide available on Docker's website.

You can install Docker, based on your platform, by following the instructions given
at https://docs.docker.com/engine/installation/.

DockerToolbox-1.9.1f was the latest version available at the time of writing. This is
the version we used.

Docker Machine with 4 GB

Default machines are created with 2 GB of memory. We'll recreate a Docker Machine
with 4 GB of memory:

docker-machine rm default

docker-machine create -d virtualbox --virtualbox-memory 4096 default

Building Docker images with Maven

There are various Docker maven plugins that can be used:

® https://github.com/rhuss/docker-maven-plugin
* https://github.com/alexec/docker-maven-plugin
* https://github.com/spotify/docker-maven-plugin
You can use any of these, based on your choice. I found the Docker Maven plugin by

@rhuss to be best suited for us. It is updated regularly and has many extra features
when compared to the others.

[111]

https://docs.docker.com/engine/installation/
https://github.com/rhuss/docker-maven-plugin
https://github.com/alexec/docker-maven-plugin
https://github.com/spotify/docker-maven-plugin

Deployment and Testing

We need to introduce the Docker Spring Profile in application.yml before we
start discussing the configuration of docker-maven-plugin. It will make our job
easier when building services for various platforms. We need to configure the
following four properties:

* We'll use the Spring profile identified as Docker.

* There won't be any conflict of ports among embedded Tomcat, since
services will be executed in their own respective containers. We can now
use port 8080.

* We will prefer to use an IP address to register our services in Eureka.
Therefore, the Eureka instance property preferIpaddress will be set
to true.

* Finally, we'll use the Eureka Server host name in serviceUrl:defaultZone.

To add a Spring profile in your project, add the following lines in application.yml
after the existing content:

For deployment in Docker containers
spring:
profiles: docker

server:
port: 8080

eureka:
instance:

preferIpAddress: true
client:
serviceUrl:
defaultZone: http://eureka:8761/eureka/

We will also add the following code in pom.xml to activate the Spring profile Docker,
while building a Docker container JAR. (This will create the JAR using the previously
defined properties, for example port :8080.)

<profiless>
<profile>
<id>docker</id>
<propertiess
<spring.profiles.active>docker</spring.profiles.actives>
</properties>
</profile>
</profiles>

[112]

Chapter 5

We just need to use Maven docker profile while building the service, shown as follows:

mvn -P docker clean package

The preceding command will generate the service JAR with Tomcat's 8080 port and
will get registered on Eureka Server with the hostname eureka.

Now, let's configure docker-maven-plugin to build the image with our restaurant
microservice. This plugin has to create a Dockerfile first. The Dockerfile is configured
in two places - in pom.xml and docker-assembly.xml. We'll use the following
plugin configuration in pom. xm1:

<propertiess
<!-- For Docker hub leave empty; use "localhost:5000/" for a local
Docker Registry -->

<docker.registry.name>localhost:5000/</docker.registry.name>

<docker.repository.name>${docker.registry.name}sourabhh /${project.
artifactId}</docker.repository.names>

</properties>

<plugins>
<groupIds>org.jolokia</groupId>
<artifactId>docker-maven-plugin</artifactIds>
<version>0.13.7</version>
<configurations>
<imagess>

</images>
</configurations>
</plugins>

Above the Docker Maven plugin configuration, create a Dockerfile that creates the
JRE 8 (java:8-jre) -based image. This exposes ports 8080 and 8081.

Next, we'll configure docker-assembly.xml, which tells the plugin which files
should be put into the container. It will be placed under src/main/docker:

<assembly xmlns="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.2" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"
xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.2 http://maven.apache.org/xsd/assembly-1.1.2.xsd">

<id>${project.artifactId}</id>
<files>
<file>
<source>{basedir}/target/${project.build.finalName}.jar</sources>
<outputDirectory>/</outputDirectory>
</file>
<file>
<source>src/main/resources/docker-config.yml</sources>
<outputDirectory>/</outputDirectory>
</file>
</files>
</assembly>

Above assembly, add the service JAR and docker-config.yml in the generated
Dockerfile. This Dockerfile is located under target/docker/. On opening this file,
you will find the content to be similar to this:

FROM java:8-jre

MAINTAINER sourabhh

EXPOSE 8080

COPY maven /maven/

CMD java -jar \
/maven/restaurant-service.jar server \
/maven/docker-config.yml

[114]

Chapter 5

The preceding file can be found at restaurant-service\target\docker\sousharm\
restaurant-service\PACKT-SNAPSHOT\build. The build directory also contains
the maven directory, which contains everything mentioned in docker-assembly.xml.

Lets' build the Docker Image:

mvn docker:build

Once this command completes, we can validate the image in the local repository
using Docker Images, or by running the following command:

docker run -it -p 8080:8080 sourabhh/restaurant-service:PACKT-SNAPSHOT

Use -it to execute this command in the foreground, in place of -4.

Running Docker using Maven

To execute a Docker Image with Maven, we need to add the following configuration
in the pom.xml. <run> block, to be put where we marked the To Do under the image
block of docker-maven-plugin section in the pom.xm1l file:

<propertiess
<docker.host .address>localhost</docker.host.address>
<docker.port>8080</docker.port>

</propertiess>

<runs>
<namingStrategy>alias</namingStrategy>
<ports>
<port>${docker.port}:8080</port>
</ports>
<volumes>
<bind>
<volume>${user.home}/logs:/logs</volume>
</bind>
</volumess>
<wait>
<urlshttp://${docker.host.address}:${docker.port}/vl/
restaurants/1l</urls>
<time>100000</time>
</wait>
<log>
<prefix>${project.artifactId}</prefix>
<colors>cyan</color>
</log>
</run>

[115]

Deployment and Testing

Here, we have defined the parameters for running our Restaurant service container.
We have mapped Docker container ports 8080 and 8081 to the host system's ports,
which allows us to access the service. Similarly, we have also bound the containers'
logs directory to the host systems' <home>/1logs directory.

The Docker Maven plugin can detect if the container has finished starting up by
polling the ping URL of the admin backend until it receives an answer.

Please note that Docker host is not localhost if you are using DockerToolbox or
boot2docker on Windows or Mac OS X. You can check the Docker Image IP by
executing docker-machine ip default. Itis also shown while starting up.

The Docker container is ready to start. Use the following command to start it
using Maven:

mvn docker:start .

Integration testing with Docker

Starting and stopping a Docker container can be done by binding the following
executions to the docker-maven-plugin life cycle phase in pom. xm1:

<execution>
<idsstart</id>
<phase>pre-integration-test</phase>
<goals>
<goal>build</goals>
<goal>start</goals>
</goals>
</executions>
<execution>
<id>stop</id>
<phase>post-integration-test</phase>
<goals>
<goal>stop</goal>
</goals>
</executions>

We will now configure the failsafe plugin to perform integration testing with Docker.
This allows us to execute the integration tests. We are passing the service URL in the
service.url tag, so that our integration test can use it to perform integration testing.

[116]

Chapter 5

We'll use the DockerIntegrationTest marker to mark our Docker integration tests.
It is defined as follows:

package com.packtpub.mmj.restaurant.resources.docker;

public interface DockerIntegrationTest
// Marker for Docker integratino Tests

}

Look at the following integration plugin code. You can see that
DockerIntegrationTest is configured for the inclusion of integration tests
(failsafe plugin), whereas it is used for excluding in unit tests (Surefire plugin):

<plugins>
<groupIds>org.apache.maven.plugins</groupIds>
<artifactId>maven-failsafe-plugin</artifactId>
<version>2.18.1l</version>
<configurations>
<phase>integration-test</phase>
<includes>
<include>**/*_ java</include>
</includes>
<groups>com.packtpub.mmj.restaurant.resources.docker.
DockerIntegrationTest</groups>
<systemPropertyVariabless>
<service.urlshttp://${docker.host.address}:${docker.port}/</
service.urls>
</systemPropertyVariables>
</configurations>
<executionss>
<execution>
<goals>
<goals>integration-test</goals>
</goals>
</executions>
</executions>
</plugin>
<plugins>
<groupIds>org.apache.maven.plugins</groupIds>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.18.1l</version>
<configurations>
<excludedGroups>com.packtpub.mmj.restaurant.resources.docker.
DockerIntegrationTest</excludedGroups>
</configurations>
</plugin>

[117]

Deployment and Testing

A simple integration test looks like this:

@Category (DockerIntegrationTest.class)
public class RestaurantAppDockerIT {

@Test
public void testConnection() throws IOException {
String baseUrl = System.getProperty("service.url") ;
URL serviceUrl = new URL (baseUrl + "vl/restaurants/1");
HttpURLConnection connection = (HttpURLConnection) serviceUrl.
openConnection () ;

int responseCode = connection.getResponseCode () ;
assertEquals (200, responseCode) ;

}

You can use the following command to perform integration testing using Maven:

mvn integration-test

Pushing the image to a registry

Add the following tags under docker-maven-plugin to publish the Docker Image to
Docker Hub:

<execution>
<id>push-to-docker-registry</id>
<phase>deploy</phase>
<goals>
<goals>push</goals>
</goals>
</executions>

You can skip JAR publishing by using the following configuration for maven-
deploy-plugin:

<plugin>
<grouplds>org.apache.maven.plugins</groupIds>
<artifactIds>maven-deploy-plugin</artifactIds>
<versions>2.7</version>
<configuration>
<skip>true</skip>
</configurations

</plugin>

[118]

Chapter 5

Publishing a Docker image in Docker Hub also requires a username and password:

mvn -Ddocker.username=<username> -Ddocker.password=<password> deploy

You can also push a Docker image to your own Docker registry. To do this, add
the docker.registry.name tag as shown in the following code. For example,

if your Docker registry is available at xyz.domain. com on port 4994, then define
it by adding the following line of code:

<docker.registry.name>xyz.domain.com: 4994</docker.registry.name>

This does the job and we can not only deploy, but also test our Dockerized service.

Managing Docker containers

Each microservice will have its own Docker container. Therefore, we'll use the Docker
Compose Docker container manager to manage our containers.

Docker Compose will help us to specify the number of containers and how these will
be executed. We can specify the Docker Image, ports, and each container's links to
other Docker containers.

We'll create a file called docker-compose.yml in our root project directory and add
all the microservice containers to it. We'll first specify the Eureka Server as follows:

eureka:
image: localhost:5000/sourabhh/eureka-server
ports:
- "8761:8761"

Here, image represents the published Docker image for Eureka Server and ports
represents the mapping between the host being used for executing the Docker Image
and the Docker host.

This will start Eureka Server and publish the specified ports for external access.

Now, our services can use these containers (dependent containers such as Eureka).
Let's see how restaurant-service can be linked to dependent containers. It is
simple; just use the 1inks directive:

restaurant-service:
image: localhost:5000/sourabhh/restaurant-service
ports:
- "8080:8080"
links:
- eureka

[119]

Deployment and Testing

The preceding links declaration will update the /etc/hosts file in the restaurant-
service container with one line per service that the restaurant-service depends
on (let's assume the security container is also linked), for example:

192.168.0.22 security
192.168.0.31 eureka

If you don't have a docker local registry set up, then please do this
first for issue-less or smoother execution.

Build the docker local registry by:

docker run -d -p 5000:5000 --restart=always --name
.}I registry registry:2

Then, perform push and pull commands for the local images:

docker push localhost:5000/sourabhh/restaurant-
service:PACKT-SNAPSHOT

docker-compose pull

Finally, execute docker-compose:

docker-compose up -d
Once all the microservice containers (service and server) are configured, we can start
all Docker containers with a single command:

docker-compose up -d

This will start up all Docker containers configured in Docker Composer. The following
command will list them:

docker-compose ps

Name Command

State Ports
onlinetablereservation5 eureka 1 /bin/sh -c¢ java -jar N
Up 0.0.0.0:8761->8761/tcp

onlinetablereservation5 restaurant-service 1 /bin/sh -c java -jar
.. Up 0.0.0.0:8080->8080/tcp

You can also check docker image logs using the following command:

docker-compose logs

[36mrestaurant-service 1 | «[0m2015-12-23 08:20:46.819 INFO 7 --- [pool-
3-thread-1] com.netflix.discovery.DiscoveryClient : DiscoveryClient
RESTAURANT-SERVICE/172.17

[120]

Chapter 5

0.4:restaurant-service:93d93a7bd1768dcb3d86c858e520d3ce - Re-registering
apps/RESTAURANT-SERVICE

[36mrestaurant-service 1 | «[0m2015-12-23 08:20:46.820 INFO 7 --- [pool-
3-thread-1l] com.netflix.discovery.DiscoveryClient : DiscoveryClient
RESTAURANT-SERVICE/172.17

0.4:restaurant-service:93d93a7bd1768dcb3d86c858e520d3ce: registering
service...

[36mrestaurant-service 1 | «[0m2015-12-23 08:20:46.917 INFO 7 --- [pool-
3-thread-1l] com.netflix.discovery.DiscoveryClient : DiscoveryClient
RESTAURANT-SERVICE/172.17

References

The following links will give you more information:

* Netflix Ribbon: https://github.com/Netflix/ribbon

* Netflix Zuul: https://github.com/Netflix/zuul

* RabbitMQ: https://www.rabbitmg.com/download.html
* Hystrix: https://github.com/Netflix/Hystrix

e Turbine: https://github.com/Netflix/Turbine

e Docker: https://www.docker.com/

Summary

In this chapter, we have learned about various microservice management features: —
load balancing, Edge Server (Gateway), circuit breakers, and monitoring. You should
now know how to implement load balancing and routing after going through this
chapter. We have also learned how Edge Server can be set up and configured. The
failsafe mechanism is another important part that you have learned in this chapter.
Deployment can be made simple by using Docker or any other container. Docker
was demonstrated and integrated using Maven Build.

From a testing point of view, we performed the integration testing on the Docker image
of the service. We also explored the way we can write clients such as RestTemplate and
Netflix Feign.

In the next chapter, we will learn to secure the pServices with respect to authentication
and authorization. We will also explore the other aspects of microservice securities.

[121]

https://github.com/Netflix/ribbon
https://github.com/Netflix/zuul
https://www.rabbitmq.com/download.html
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Turbine
https://www.docker.com/

Securing Microservices

As you know, microservices are the components that we deploy in on-premises
or cloud infrastructure. Microservices may offer APIs or web applications. Our
sample application, OTRS, offers APIs. This chapter will focus on how to secure
these APIs using Spring Security and Spring OAuth2. We'll also focus on OAuth
2.0 fundamentals. We'll use OAuth 2.0 to secure the OTRS APIs. For more
understanding on securing REST APIs, you can refer to RESTful Java Web Services
Security, Packt Publishing book. You can also refer to Spring Security [Video], Packt
Publishing video, for more information on Spring Security. We'll also learn about
Cross Origin Request Site filters, and cross-site scripting blockers.

In this chapter, we will cover the following topics:

* Enabling Secure Socket Layer (SSL)
e Authentication and authorization
e OAuth2.0

Enabling Secure Socket Layer

So far, we are using the Hyper Text Transfer Protocol (HTTP). HTTP transfers data
in plain text, but data transfer over the Internet in plain text is not a good idea at all.
It makes hackers' jobs easy and allows them to get your private information, such as
your user ID, passwords, and credit card details easily using a packet sniffer.

We definitely don't want to compromise user data, so we will provide the most
secure way to access our web application. Therefore, we need to encrypt the
information that is exchanged between the end user and our application. We'll use
Secure Socket Layer (SSL) or Transport Security Layer (TSL) to encrypt the data.

[123]

Securing Microservices

SSL is a protocol designed to provide security (encryption) for network
communications. HTTP associates with SSL to provide the secure implementation

of HTTP, known as Hyper Text Transfer Protocol Secure, or Hyper Text Transfer
Protocol over SSL (HTTPS). HTTPS makes sure that the privacy and integrity of

the exchanged data is protected. It also ensures the authenticity of websites visited.
This security centers around the distribution of signed digital certificates between the
server hosting the application, the end user's machine, and a third-party trust store
server. Let's see how this process takes place:

1. The end user sends the request to the web application, for example http://
twitter.com, using a web browser.

2. Onreceiving the request, the server redirects the browser to https://
twitter.com using the HTTP code 302.

3. The end user's browser connects to https://twitter.comand, in response,
the server provides the certificate containing the digital signature to the end
user's browser.

4. The end user's browser receives this certificate and sends it to a trusted
Certificate Authority (CA) for verification.

5. Once the certificate gets verified all the way to the root CA, an encrypted
communication is established between the end user's browser and the
application hosting server.

Connect to http://twitter.com

Redirects to https://twitter.com

Connect to https://twitter.com

Provide the certificate

JIf

Communication Established after

certificate verification

Secure HTTP communication

[124]

http://twitter.com
http://twitter.com
https://twitter.com
https://twitter.com
https://twitter.com

Chapter 6

. Although SSL ensures security in terms of encryption and web
~ application authenticity, it does not safeguard against phishing and
Q other attacks. Professional hackers can decrypt information sent
using HTTPS

Now, after going over the basics of SSL, let's implement it for our sample OTRS
project. We don't need to implement SSL for all microservices. All microservices

will be accessed using our proxy or edge server; Zuul-server by the external
environment, except our new microservice, security-service, which we will introduce
in this chapter for authentication and authorization.

First, we'll set up SSL in edge server. We need to have the keystore that is required
for enabling SSL in embedded Tomcat. We'll use the self-signed certificate for
demonstration. We'll use Java keytool to generate the keystore using the following
command. You can use any other tool also:

keytool -genkey -keyalg RSA -alias selfsigned -keystore keystore.jks -ext
san=dns:localhost -storepass password -validity 365 -keysize 2048

It asks for information such as name, address details, organization, and so on (see the
following screenshot):

C:\dev\workspace\ms\online-table-reservation-6>keytool -genkey -keyalg RSA -alias selfsigned -keystor,

what is your first and Tast name?
[Unknown]: Tocalhost

what is the name of your organizational unit?
[Unknown]: org unit

What is the name of your organization?
[Unknown]: org

what is the name of your City or Locality?
[Unknown]: city

what is the name of your State or Province?
[Unknown]: state

What is the two-letter country code for this unit?
[Unknown]: CN

Is CN=localhost, OU=org unit, O=org, L=city, ST=state, C=CN correct?
[no]: yes

Enter key password for <selfsigned>
(RETURN if same as keystore password):
Re-enter new password:

C:\dev\workspace\ms\online-table-reservation-6>

The keytool generates keys

[125]

Securing Microservices

Be aware of the following points to ensure the proper functioning of self-signed
certificates:

* Use -ext to define Subject Alternative Names (SAN). You can also use
IP (for example, san=ip:190.19.0.11). Earlier, use of the hostname of
the machine, where application deployment takes place was being used
as most common name (CN). It prevents the java.security.cert.
CertificateException for No name matching localhost found.

* You can use a browser or OpenSSL to download the certificate. Add the
newly generated certificate to the cacerts keystore located at jre/1ib/
security/cacerts inside active JDK/JRE home directory by using the
keytool -importcert command. Note that changeit is the default
password for the cacerts keystore. Run the following command:
keytool -importcert -file path/to/.crt -alias <cert alias>

-keystore <JRE/JAVA HOME>/jre/lib/security/cacerts -storepass
changeit

Self-signed certificates can be used only for development and testing
M purposes. The use of these certificates in a production environment
Q does not provide the required security. Always use the certificates
provided and signed by trusted signing authorities in production
environments. Store your private keys safely.

Now, after putting the generated keystore.jks in the src/main/resources
directory of the OTRS project, along with application.yml, we can update this
information in EdgeServer application.yml as follows:

server:
ssl:
key-store: classpath:keystore.jks
key-store-password: password
key-password: password
port: 8765

Rebuild the Zuul-server JAR to use the HTTPS.

M The key store file can be stored in the preceding class path in Tomcat
Q version 7.0.66+ and 8.0.28+. For older versions, you can use the path
of the key store file for the server:ssl:key-store value.

Similarly, you can configure SSL for other microservices.

[126]

Chapter 6

Authentication and authorization

Providing authentication and authorization is de facto for web applications. We'll
discuss authentication and authorization in this section. The new paradigm that
has evolved over the past few years is OAuth. We'll learn and use OAuth 2.0

for implementation. OAuth is an open authorization mechanism, implemented

in every major web application. Web applications can access each other's data

by implementing the OAuth standard. It has become the most popular way to
authenticate oneself for various web applications. Like on www . quora. com, you
can register, and login using your Google or Twitter login IDs. It is also more user
friendly, as client applications (for example, www. quora.com) don't need to store the
user's passwords. The end user does not need to remember one more user ID and
password.

User Quora Server

Logs into Quora and provides
authorization to use Twitter

Twitter Servers

OAuth 2.0 example usage

[127]

www.quora.com
www.quora.com

Securing Microservices

OAuth 2.0

The Internet Engineering Task Force (IETF) governs the standards and
specifications of OAuth. OAuth 1.0a was the most recent version before OAuth 2.0
that was having a fix for session-fixation security flaw in the OAuth 1.0. OAuth 1.0
and 1.0a were very different from OAuth 2.0. OAuth 1.0 relies on security certificates
and channel binding. OAuth 2.0 does not support security certification and channel
binding. It works completely on Transport Security Layer (TSL). Therefore, OAuth
2.0 does not provide backward compatibility.

Usage of OAuth

As discussed, it can be used for authentication. You might have seen it in
various applications, displaying messages such as sign in using Facebook
or sign in using Twitter.

* Applications can use it to read data from other applications, such as by
integrating a Facebook widget into the application, or having a Twitter
feed on your blog.

* Or, the opposite of the previous point can be true: you enable other
applications to access the end user's data.

OAuth 2.0 specification — concise details

We'll try to discuss and understand the OAuth 2.0 specifications in a concise manner.
Let's first see how signing in using Twitter works.

Please note that the process mentioned here was used at the time of writing. It may
change in future. However, this process describes one of the OAuth 2.0 processes

properly:

1. The user visits the Quora home page. It shows various login options. We'll
explore the process of the Continue with Twitter link.

2. When the user clicks on the Continue with Twitter link, Quora opens a
new window (in Chrome) that redirects the user to the www.twitter.com
application. During this process few web applications redirect the user to
the same opened tab/window.

3. In this new window/tab, the user signs in to www. twitter.com with their
credentials.

4. If the user has not authorized the Quora application to use their data earlier,
Twitter asks for the user's permission to authorize Quora to access the user's
information. If the user has already authorized Quora, then this step is skipped.

[128]

www.twitter.com
www.twitter.com

Chapter 6

5. After proper authentication, Twitter redirects the user to Quora's redirect
URI with an authentication code.

6. Quora sends the client ID, client secret token, and authentication code (sent
by Twitter in step 5) to Twitter when Quora redirect URI entered in the
browser.

After validating these parameters, Twitter sends the access token to Quora.
The user is logged in to Quora on successful retrieval of the access token.

Quora may use this access token to retrieve user information from Quora.

You must be wondering how Twitter got Quora's redirect URI, client ID, and secret
token. Quora works as a client application and Twitter as an authorization server.
Quora, as a client, registered on Twitter by using Twitter's OAuth implementation
to use resource owner (end user) information. Quora provides a redirect URI at

the time of registration. Twitter provides the client ID and secret token to Quora. It
works this way. In OAuth 2.0, user information is known as user resources. Twitter
provides a resource server and an authorization server. We'll discuss more of these
OAuth terms in the next sections.

d request to redirect URI o

1 Auth token Quora sends access token

request with Auth token,
client id, client secret etc.

Provides access token

User logged in to Quora

Request for Quora Home Page
o Quora Home Page
o Continue (login) with Twitter Quora redirect to Twitter
o Twitter login page if user is not logged-in
User authorizes the Quor if not authorized. Else
sends the request for auth token.
e Twitter redirects to Quora redirect URI with auth token

OAuth 2.0 example process for signing in with Twitter

[129]

Securing Microservices

OAuth 2.0 roles

There are four roles defined in the OAuth 2.0 specifications:

Resource owner
Resource server
Client

Authorization server

Resource Owner

Quora Environment

Client

Logs into Quora and provides
authorization to use Twitter

...

Resource Server

Twitter Environment

T
Authorization Server

OAuth 2.0 roles

Resource owner

For the Quora sign in using Twitter example, the Twitter user was the resource
owner. The resource owner is an entity that owns the protected resources (for
example user handle, tweets and so on) that are to be shared. This entity can be an
application or a person. We call this entity the resource owner because it can only
grant access to its resources. Specification also defines, when resource owner is a
person, it is referred to as an end user.

[130]

Chapter 6

Resource server

The resource server hosts the protected resources. It should be capable of serving the
access requests to these resources using access tokens. For the Quora sign in using
Twitter example, Twitter is the resource server.

Client

For the Quora sign in using Twitter example, Quora is the client. The client is the
application that makes access requests for protected resources to the resource server
on behalf of the resource owner.

Authorization server

The authorization server provides different tokens to the client application, such
as access tokens or refresh tokens, only after the resource owner authenticates
themselves.

OAuth 2.0 does not provide any specifications for interactions between the resource
server and the authorization server. Therefore, the authorization server and resource
server can be on the same server, or can be on a separate one.

A single authorization server can also be used to issue access tokens for multiple
resource servers.

OAuth 2.0 client registration

The client that communicates with the authorization server to obtain the access key
for a resource should first be registered with the authorization server. The OAuth 2.0
specification does not specify the way a client registers with the authorization server.
Registration does not require direct communication between the client and the
authorization server. Registration can be done using self-issued or third-party-issued
assertions. The authorization server obtains the required client properties using one
of these assertions. Let's see what the client properties are:

* C(lient type (discussed in the next section).

* Client redirect URI, as we discussed in the Quora sign in using Twitter
example. This is one of the endpoints used for OAuth 2.0. We will discuss
other endpoints in the Endpoints section.

* Any other information required by the authorization server, for example
client name, description, logo image, contact details, acceptance of legal
terms and conditions, and so on.

[131]

Securing Microservices

Client types

There are two types of client described by the specification, based on their ability
to maintain the confidentiality of client credentials: confidential and public. Client
credentials are secret tokens issued by the authorization server to clients in order to
communicate with them.

Confidential client type

This is a client application that keeps passwords and other credentials securely

or maintains them confidentially. In the Quora sign in using Twitter example, the
Quora app server is secure and has restricted access implementation. Therefore, it is
of the confidential client type. Only the Quora app administrator has access to client
credentials.

Public client type

These are client applications that do not keep passwords and other credentials
securely or maintain them confidentially. Any native app on mobile or desktop, or
an app that runs on browser, are perfect examples of the public client type, as these
keep client credentials embedded inside them. Hackers can crack these apps and the
client credentials can be revealed.

A client can be a distributed component-based application, for example, it could
have both a web browser component and a server-side component. In this case,
both components will have different client types and security contexts. Such a client
should register each component as a separate client if the authorization server does
not support such clients.

Based on the OAuth 2.0 client types, a client can have the following profiles:

* Web application
* User agent-based application

* Native application

[132]

Chapter 6

Web application

The Quora web application used in the Quora sign in using Twitter example

is a perfect example of an OAuth 2.0 web application client profile. Quora is a
confidential client running on a web server. The resource owner (end user) accesses
the Quora application (OAuth 2.0 client) on the browser (user agent) using a HTML
user interface on his device (desktop/tablet/cell phone). The resource owner cannot
access the client (Quora OAuth 2.0 client) credentials and access tokens, as these are
stored on the web server. You can see this behavior in the diagram of the OAuth 2.0
sample flow. See steps 6 to 8 in the following figure:

User

e

o Send rec!uest to redirect URI > Quora sends access token _
with Auth token request with Auth token, 7|
clientid, client secret etc.
Provides access token
<
o User logged in to Quora

OAuth 2.0 client web application profile

[133]

Securing Microservices

User agent-based application

User agent-based applications are of the public client type. Here, though, the
application resides in the web server, but the resource owner downloads it on the
user agent (for example, a web browser) and then executes the application. Here, the
downloaded application that resides in the user agent on the resource owner's device
communicates with the authorization server. The resource owner can access the
client credentials and access tokens. A gaming application is a good example of such

an application profile.

Web Server
hosting the
User Agent Application

Resource Server

peojumoq

@ Authorization Server

Resource Owner Device

OAuth 2.0 client user agent application profile

Native application

Native applications are similar to user agent-based applications, except these are
installed on the resource owner's device and execute natively, instead of being
downloaded from the web server, and then executes inside the user agent. Many
native clients (mobile apps) you download on your mobile are of the native
application type. Here, the platform makes sure that other application on the device
do not access the credentials and access tokens of other applications. In addition,
native applications should not share client credentials and OAuth tokens with
servers that communicate with native applications.

[134]

Chapter 6

Native Application

Resource Server

Client ID, Secret and Access Token

=t
Authorization Server

OAuth 2.0 client native application profile

Client identifier

It is the authorization server's responsibility to provide a unique identifier to the
registered client. This client identifier is a string representation of the information
provided by the registered client. The authorization server needs to make sure that
this identifier is unique. The authorization server should not use it on its own for
authentication.

The OAuth 2.0 specification does not specify the size of the client identifier. The
authorization server can set the size, and it should document the size of the client
identifier it issues.

Client authentication

The authorization server should authenticate the client based on their client type.
The authorization server should determine the authentication method that suits and
meets security requirements. It should only use one authentication method in each
request.

Typically, the authorization server uses a set of client credentials, such as the client
password and some key tokens, to authenticate confidential clients.

[135]

Securing Microservices

The authorization server may establish a client authentication method with public
clients. However, it must not rely on this authentication method to identify the client,
for security reasons.

A client possessing a client password can use basic HTTP authentication. OAuth 2.0
does not recommend sending client credentials in the request body. It recommends
using TLS and brute force attack protection on endpoints required for authentication.

OAuth 2.0 protocol endpoints
An endpoint is nothing but a URI we use for REST or web components such as
Servlet or JSP. OAuth 2.0 defines three types of endpoint. Two are authorization
server endpoints and one is a client endpoint:

* Authorization endpoint (authorization server endpoint)

* Token endpoint (authorization server endpoint)

* Redirection endpoint (client endpoint)

Authorization endpoint

This endpoint is responsible for verifying the identity of the resource owner and,
once verified, obtaining the authorization grant. We'll discuss the authorization grant
in the next section.

The authorization server require TLS for the authorization endpoint. The endpoint
URI must not include the fragment component. The authorization endpoint must
support the HTTP GET method.

The specification does not specify the following;:

* The way the authorization server authenticates the client.

* How the client will receive the authorization endpoint URI. Normally,
documentation contains the authorization endpoint URI, or the client
obtains it at the time of registration.

Token endpoint

The client calls the token endpoint to receive the access token by sending the
authorization grant or refresh token. The token endpoint is used by all authorization
grants except an implicit grant.

Like the authorization endpoint, the token endpoint also requires TLS. The client
must use the HITP poST method to make the request to the token endpoint.

[136]

Chapter 6

Like the authorization endpoint, the specification does not specify how the client will
receive the token endpoint URI.

Redirection endpoint

The authorization server redirects the resource owner's user agent (for example,

a web browser) back to the client using the redirection endpoint, once the
authorization endpoint's interactions are completed between the resource owner and
the authorization server. The client provides the redirection endpoint at the time of
registration. The redirection endpoint must be an absolute URI and not contain a
fragment component.

:Request for Quora Home Page
.

Quora Home Page

Continue (login) with Twitter Quora redirect to Twitter
)

N
rd

User authorizes the Quora -if not authorized. Else
sends the request for auth token.

> uthorization

o Twitter login page if user is not logged-in

. . ; _ Endpoint
Twitter redirects to Quora redifect URI with auth token
. Redirection
. Endpoint
o Send request to redirect URI [

Wiz Reken o Quora sends access token Token

: request with Auth token, ~ .
client id, client secret etc. Endpomt

Provides access token

User logged in to Quora

©

OAuth 2.0 endpoints

[137]

Securing Microservices

OAuth 2.0 grant types

The client requests an access token from the authorization server, based on the
obtained authorization from the resource owner. The resource owner gives
authorization in the form of an authorization grant. OAuth 2.0 defines four types of
authorization grant:

* Authorization code grant

* Implicit grant

* Resource owner password credentials grant
* C(lient credentials grant

OAuth 2.0 also provides an extension mechanism to define additional grant types.
You can explore this in the official OAuth 2.0 specifications.

Authorization code grant

The first sample flow that we discussed in the OAuth 2.0 example flow for signing
in with Twitter depicts an authorization code grant. We'll add a few more steps for
the complete flow. As you know, after the eighth step, the end user logs in to the
Quora application. Let's assume the user is logging in to Quora for the first time and
requests their Quora profile page:

1. After logging in, the Quora user clicks on their Quora profile page.

2. The OAuth client Quora requests the Quora user's (resource owner)
resources (for example, Twitter profile photo and so on) from the Twitter
resource server and sends the access token received in the previous step.

3. The Twitter resource server verifies the access token using the Twitter
authorization server.

4. After successful validation of the access token, the Twitter resource server
provides the requested resources to Quora (OAuth client).

5. Quora uses these resources and displays the Quora profile page of the
end user.

Authorization code requests and responses

If you looked at all the steps (a total of 13) of the authorization code flow, you can see
that there are a total of two requests made by the client to the authorization server,
and the authorization server in reply provides two responses: one request-response
for the authentication token and one request-response for the access token.

Let's discuss the parameters used for each of these requests and responses.

[138]

Chapter 6

Qi =Rerver
Y

Request for Quora Home Page

rd

Twitter

Quora Home Page

Continue (login) with Twitter Quora redirect to Twitter
~

rd

Twitter login page if user is not logged-in

User authorizes the Quord if not authorized. Else
sends the requestifor auth token.

Twitter redirects to Quora reéjirect URI with auth token

Send request to redirect URI -
with Auth token 4

Quora sends access token
request with Auth token,
clientid, client secret etc.

Provides access token

User logged in to Quora

Request Quora Profile Page @
=3 R

equest resource (e.g. Profile Photo) with _|
access token =

@ Verify access token

Provides resource

@

Quora Profile Page

@ 00 60000006

OAuth 2.0 authorization code grant flow

[139]

Securing Microservices

The authorization request (step 4) to the authorization endpoint URI:

Parameter Required / Description
Optional

response Required code (this value must be used).

type

client_id Required It represents the ID issued by the authorization server
to the client at the time of registration.

redirect_ Optional It represents the redirect URI given by the client at the

uri time of registration.

scope Optional The scope of the request. If not provided, then the
authorization server provides the scope based on the
defined policy.

state Recommended | The client uses this parameter to maintain the client

state between the requests and callback (from the
authorization server). The specification recommends it
to protect against cross site request forgery attacks.

Authorization response (step 5):

Parameter

Required /
Optional

Description

code

Required

Code (authorization code) generated by the
authorization server.

Code should be expired after it is generated; the
maximum recommended lifetime is 10 minutes.

The client must not use the code more than once.

If the client uses it more than once, then the request
must be denied and all previous tokens issued based on
the code should be revoked.

Code is bound to the client ID and redirect URI.

state

Required

It represents the ID issued by the authorization server
to the client at the time of registration.

Token request (step 7) to token endpoint URL:

Parameter Required / Description
Optional
grant_type | Required authorization code (this value must be used).

[140]

Chapter 6

Parameter Required / Description
Optional
code Required Code (authorization code) received from the
authorization server.
redirect_ Required Required if it was included in the authorization code
uri request and the values should match.
client_id Required It represents the ID issued by the authorization server

to the client at the time of registration.

Token response (step 8):

Parameter Required / Description
Optional
access_ Required The access token issued by the authorization server.
token
token type | Required The token type defined by the authorization server.

Based on this, the client can utilize the access token.
For example, bearer or mac.

refresh Optional This token can be used by the client to get a new
token access token using the same authorization grant.

expires_in | Recommended Denotes the lifetime of the access token in seconds.
A value of 600 denotes 10 minutes of lifetime for the
access token. If this parameter is not provided in the
response, then the document should highlight the
lifetime of the access token.

scope Optional/ Optional if identical to the scope requested by the
Required client.

Required if the access token scope is different from
the one the client provided in their request to inform
the client about the actual scope of the access token
granted.

If the client does not provide the scope while
requesting the access token, then the authorization
server should provide the default scope, or deny the
request, indicating the invalid scope.

[141]

Securing Microservices

Error response:

Parameter Required / Description
Optional

error Required One of the error codes defined in the specification,
for example, unauthorized client, invalid_
scope.

error_ Optional Short description of the error.

description

error_uri Optional The URI of the error page describing the error.

An additional error parameter state is also sent in the error response if the state was
passed in the client authorization request.

Implicit grant

The first sample flow that we discussed in the OAuth 2.0 example flow for signing
in with Twitter depicts the authorization code grant. We'll add a few more steps
for its complete flow. As you know after eighth steps, end user logs in to the Quora
application. Let's assume user is logging in first time on Quora and requests for its
Quora profile page:

1. Step 9: After login, the Quora user clicks on their Quora profile page.

2. Step 10: The OAuth client Quora requests the Quora user's (resource owner)
resources (for example, Twitter profile photo and so on) from the Twitter
resource server and sends the access token received in the previous step.

3. Step 11: The Twitter resource server verifies the access token using the
Twitter authorization server.

4. Step 12: After successful validation of the access token, the Twitter resource
server provides the requested resources to Quora (OAuth client).

5. Step 13: Quora uses these resources and displays the Quora profile page of
the end user.

Implicit grant requests and responses

If you looked at all the steps (a total of 13) of the authorization code flow, you can see
that there are total of two request made by the client to the authorization server, and
the authorization server in reply provides two responses: one request-response for
the authentication token and one request-response for the access token.

[142]

Chapter 6

Let's discuss the parameters used for each of these requests and responses.

Authorization request to the authorization endpoint URI:

Parameter Required / Description
Optional

response_ Required Token (this value must be used).

type

client_id Required It represents the ID issued by the authorization server
to the client at the time of registration.

redirect_ Optional It represents the redirect URI given by the client at the

uri time of registration.

scope Optional The scope of the request. If not provided, then the
authorization server provides the scope based on the
defined policy.

state Recommended | The client uses this parameter to maintain the client

state between the requests and the callback (from the
authorization server). The specification recommends it
to protect against cross site request forgery attacks.

Access token response:

Parameter Required / Description
Optional

access_ Required The access token issued by the authorization server.

token

token_type | Required The token type defined by the authorization server.
Based on this, the client can utilize the access token.
For example, bearer or mac.

refresh_ Optional This token can be used by the client to get a new access

token token using the same authorization grant.

expires_in | Recommended | Denotes the lifetime of the access token in seconds.
A value of 600 denotes 10 minutes of lifetime for the
access token. If this parameter is not provided in the
response, then the document should highlight the
lifetime of the access token.

[143]

Securing Microservices

Parameter Required / Description
Optional
scope Optional/ Optional if identical to the scope requested by the
Required client.
Required if the access token scope is different from
the one the client provided in the request to inform
the client about the actual scope of the access token
granted.
If the client does not provide the scope while
requesting the access token, then the authorization
server should provide the default scope, or deny the
request, indicating the invalid scope.
State Optional/ Required if the state was passed in the client
Requried authorization request.
Error response:
Parameter Required / Description
Optional
error Required One of the error codes defined in the specification, for
example, unauthorized client, invalid scope.
error_ Optional Short description of the error.
description
error_uri Optional The URI of the error page describing the error.

An additional error parameter state is also sent in the error response if the state was
passed in the client authorization request.

Resource owner password credentials grant

The first sample flow that we discussed in the OAuth 2.0 example flow for signing
in with Twitter depicts the authorization code grant. We'll add a few more steps

for its complete flow. As you know, after the eighth step, the end user logs in to the
Quora application. Let's assume the user is logging in to Quora for the first time and
requests their Quora profile page:

1. Step 9: After login, the Quora user clicks on their Quora profile page.

2. Step 10: The OAuth client Quora requests the Quora user's (resource owner)
resources (for example, Twitter profile photo and so on) from the Twitter
resource server and sends the access token received in the previous step.

[144]

Chapter 6

3. Step 11: The Twitter resource server verifies the access token using the
Twitter authorization server.

4. Step 12: After successful validation of the access token, the Twitter resource
server provides the requested resources to Quora (OAuth client).

5. Step 13: Quora uses these resources and displays the Quora profile page of
the end user.

Resource owner password credentials grant requests and responses.

As seen in the previous section, in all the steps (a total of 13) of the authorization

code flow, you can see that there are total of two requests made by the client to the
authorization server, and the authorization server in reply provides two responses:
one request-response for the authentication token and one request-response for the

access token.

Let's discuss the parameters used for each of these requests and responses.

Access token request to the token endpoint URI:

Parameter Required / Description
Optional

grant_type | Required Password (this value must be used).

username Required Username of the resource owner.

password Required Password of the resource owner.

scope Optional The scope of the request. If not provided, then the
authorization server provides the scope based on the
defined policy.

Access token response (step 8):

Parameter Required / Description
Optional

access_ Required The access token issued by the authorization server.

token

token_type | Required The token type defined by the authorization server.
Based on this, the client can utilize the access token.
For example, bearer or mac.

refresh_ Optional This token can be used by the client to get a new access

token token using the same authorization grant.

[145]

Securing Microservices

Parameter Required / Description
Optional

expires_in | Recommended | Denotes the lifetime of the access token in seconds.
A value of 600 denotes 10 minutes of lifetime for the
access token. If this parameter is not provided in the
response, then the document should highlight the
lifetime of the access token.

Optional Optional Additional parameter.
parameter

Client credentials grant

The first sample flow that we discussed in the OAuth 2.0 example flow for signing
in with Twitter depicts the authorization code grant. We'll add a few more steps

for its complete flow. As you know, after the eighth step, the end user logs in to the
Quora application. Let's assume the user is logging in to Quora for the first time and
requests their Quora profile page:

1. Step 9: After login, the Quora user clicks on their Quora profile page.

2. Step 10: The OAuth client Quora requests the Quora user's (resource owner)
resources (for example, Twitter profile photo and so on) from the Twitter
resource server and sends the access token received in the previous step.

3. Step 11: The Twitter resource server verifies the access token using the
Twitter authorization server.

4. Step 12: After successful validation of the access token, the Twitter resource
server provides the requested resources to Quora (OAuth client).

5. Step 13: Quora uses these resources and displays the Quora profile page of
the end user.

Client credentials grant requests and responses.

If you looked at all the steps (a total of 13) of the authorization code flow, you can
see that there are total of two requests made by the client to the authorization server,
and the authorization server in reply provides two responses: one request-response
for the authentication token and one request-response for the access token.

Let's discuss the parameters used for each of these requests and responses.

[146]

Chapter 6

Access token request to the token endpoint URI:

Parameter Required / Description
Optional
grant_type | Required client credentials (this value must be used).
scope Optional The scope of the request. If not provided, then the
authorization server provides the scope based on the
defined policy.

Access token response:

Parameter Required / Description
Optional

access_ Required The access token issued by the authorization server.

token

token _type | Required The token type defined by the authorization server.
Based on this, the client can utilize the access token.
For example, bearer or mac.

expires_in | Recommended | Denotes the lifetime of the access token in seconds.

A value of 600 denotes 10 minutes of lifetime for the
access token. If this parameter is not provided in the
response, then the document should highlight the
lifetime of the access token.

OAuth implementation using Spring

Security

OAuth 2.0 is a way of securing APIs. Spring Security provides Spring Cloud
Security and Spring Cloud OAuth2 components for implementing the rant flows
we discussed above.

We'll create one more service, security-service, which will control authentication
and authorization.

Create a new Maven project and follow these steps:

1. Add the Spring Security and Spring Security OAuth2 dependencies

in pom.xml:

<dependency>

<grouplds>org.springframework.cloud</groupIds>

[147]

Securing Microservices

<artifactIds>spring-cloud-starter-security</artifactIds>
</dependency>
<dependencys>
<groupIds>org.springframework.cloud</groupIld>
<artifactIds>spring-cloud-starter-oauth2</artifactIds>
</dependency>

2. Use the @EnableResourceServer annotation in your application
class. This will allow this application to work as a resource server.
@EnableAuthorizationServer is another annotation we will use
to enable the authorization server as per OAuth 2.0 specifications:

@SpringBootApplication
@RestController
@EnableResourceServer
public class SecurityZpp {

@RequestMapping (" /user")
public Principal user (Principal user) {
return user;

public static void main(String[] args) {
SpringApplication.run (SecurityApp.class, args);

@Configuration
@EnableAuthorizationServer

protected static class OAuth2Config extends
AuthorizationServerConfigurerAdapter {

@Autowired
private AuthenticationManager authenticationManager;

@Override
public void configure (AuthorizationServerEndpointsConfigur
er endpointsConfigurer) throws Exception {
endpointsConfigurer.authenticationManager (authenticati
onManager) ;

}

@Override
public void configure(ClientDetailsServiceConfigurer
clientDetailsServiceConfigurer) throws Exception {
// Using hardcoded inmemory mechanism because it is just an
example

[148]

Chapter 6

clientDetailsServiceConfigurer.inMemory ()
.withClient ("acme")
.secret ("acmesecret")
.authorizedGrantTypes ("authorization code", "refresh
token", "implicit", "password", "client credentials")
.scopes ("webshop") ;

}

3. Update the security-service configuration in application.yml, as shown in
the following code:

° server.contextPath: It denotes the context path.

° security.user.password: We'll use the hardcoded password for
this demonstration. You can re-configure it for real use:

application.yml
info:
component :
Security Server

server:
port: 9001
ssl:
key-store: classpath:keystore.jks
key-store-password: password
key-password: password
contextPath: /auth

security:
user:
password: password

logging:
level:
org.springframework.security: DEBUG

Now we have our security server in place, we'll expose our APIs using the new
microservice api-service, which will be used for communicating with external
applications and Uls.

[149]

Securing Microservices

Create a new Maven project and follow these steps:

1. Add the Spring Security and Spring Security OAuth2 dependencies
in pom.xml:

<dependencys>
<groupIds>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-undertow</artifactIds>

</dependency>

<dependencys>
<groupIds>org.springframework.boot</groupIds>
<artifactId>spring-boot-starter-actuator</artifactIds>

</dependency>

<dependencys>
<groupId>com.packtpub.mmj</groupIlds>
<artifactIds>online-table-reservation-common</artifactIds>
<version>PACKT-SNAPSHOT</versions>

</dependency>

<dependencys>
<groupIds>org.springframework.cloud</groupld>
<artifactId>spring-cloud-starter-security</artifactIds>

</dependency>

<dependencys>
<groupIds>org.springframework.cloud</groupld>
<artifactId>spring-cloud-starter-oauth2</artifactId>

</dependency>

<dependencys>
<groupIds>org.springframework.cloud</groupld>
<artifactId>spring-cloud-starter-eureka</artifactId>

</dependency>

<dependencys>
<groupIds>org.springframework.cloud</groupld>
<artifactId>spring-cloud-starter-hystrix</artifactIds>

</dependency>

<dependencys>
<groupIds>org.springframework.cloud</grouplds>
<artifactId>spring-cloud-starter-bus-amgp</artifactId>

</dependency>

<dependencys>
<groupIds>org.springframework.cloud</groupld>
<artifactId>spring-cloud-starter-stream-rabbit</artifactIds>

</dependency>

<dependencys>
<groupIds>org.apache.httpcomponents</grouplds>

[150]

Chapter 6

<artifactIds>httpclient</artifactIds>
</dependency>
<dependencys>
<groupld>org.springframework.boot</groupId>
<artifactIds>spring-boot-starter-web</artifactIds>
</dependency>
<dependencys>
<!-- Testing starter -->
<grouplds>org.springframework.boot</groupId>
<artifactIds>spring-boot-starter-test</artifactIds>
</dependency>

Use the @EnableResourceServer annotation in your application class.
This will allow this application to work as a resource server:

@SpringBootApplication

@EnableDiscoveryClient

@EnableCircuitBreaker

@EnableResourceServer

@ComponentScan ({"com.packtpub.mmj.api.service", "com.packtpub.mmj.
common" })

public class ApiApp

private static final Logger LOG = LoggerFactory.
getLogger (ApiApp.class) ;

static {
// for localhost testing only
LOG.warn("Will now disable hostname check in SSL, only to
be used during development") ;
HttpsURLConnection.setDefaultHostnameVerifier ((hostname,
sslSession) -> true);

}

@Value ("${app.rabbitmg.host:localhost}")
String rabbitMgHost;

@Bean
public ConnectionFactory connectionFactory() {
LOG.info("Create RabbitMqCF for host: {}", rabbitMgHost) ;
CachingConnectionFactory connectionFactory = new CachingCo
nnectionFactory (rabbitMgHost) ;
return connectionFactory;

public static void main(String[] args) {

[151]

Securing Microservices

LOG.info ("Register MDCHystrixConcurrencyStrategy") ;

HystrixPlugins.getInstance () .
registerConcurrencyStrategy (new MDCHystrixConcurrencyStrategy()) ;

SpringApplication.run (ApiApp.class, args);

}

3. Update the api-service configuration in application.yml, as shown in the
following code:

° security.oauth2.resource.userInfoUri: It denotes the security
service user URL

application.yml
info:
component: API Service

spring:
application:
name: api-service
aop:
proxyTargetClass: true

server:
port: 7771

security:
oauth2:
resource:
userInfoUri: https://localhost:9001/auth/user

management :
security:
enabled: false
Other properties like Eureka, Logging and so on

Now we have our security server in place, we'll expose our APIs using the new
microservice api-service, which will be used for communicating with external
applications and Uls.

Now let's test and explore how it works for different OAuth 2.0 grant types.

We'll make use of the postman extension to the Chrome browser to
e test the different flows.

[152]

Chapter 6

Authorization code grant

We will enter the following URL in our browser. A request for authorization code is
as follows:

https://localhost:9001/auth/ocauth/authorize?response
type=code&client id=clienté&redirect uri=http://localhost:7771/1l&scope
=apiAccess&state=1234

Here, we provide the client ID (hardcoded client is by default we have registered in
our security service), redirect URI, scope (hardcoded value apiAccess in security
service) and state. You must be wondering about the state parameter. It contains the
random number that we re-validate in response to prevent cross site request forgery.

If the resource owner (user) is not already authenticated, it will ask for the user name
and password. Provide user as the username and password as the password; we
have hardcoded these values in security service.

Once the login is successful, it will ask to provide your (resource owner) approval:

€« C' | & b#ps://localhost:9001/auth/oauth/authorize?response_type=code&client_id
OAuth Approval

Do vou authorize 'client’ to access vour protected resources?
s scope.aptAccess: O Approve ® Deny

Authorize

OAuth 2.0 authorization code grant - resource grant approval

Select Approve and click on Authorize. This action will redirect the application to
http://localhost:7771/1?code=08t4fi&state=1234.

As you can see, it has returned the authorization code and state.

[153]

Securing Microservices

Now, we'll use this code to retrieve the access code. We'll use the postman Chrome
extension. First we'll add the authorization header using Username as client and
Password as clientsecret, as shown in the following screenshot:

POST https://localhost:9001/auth/oauth/token

Authorization Headers (1) Body Pre-request script Tests
Basic Auth W
Username - client The authorization header will be

4 gensrated and added as a custam header
Passwaor S LEITIT YT Y]

Show Password

Save helper data to request

OAuth 2.0 authorization code grant - access token request - adding the authentication

This will add the Authorization header to the request with the value Basic
Y2XpZW500mNsaWVudHN1Y3J1dA==.

Now, we'll add a few other parameters to the request, as shown in the following
screenshot, and then submit the request:

[154]

Chapter 6

POST w https://localhost:9001/auth/oauth/token

Authorization Headers (1) Body Pre-request script Tests

® form-data w-www-forme-urlencoded raw binary

grant_type authorization_code

client_id client
code oBt4fi

redirect_uri http:/flocalhost:7771/1

0000

Body Cookies eaders (12 Tests (0/0 Status 2000K Time 195ms
Raw Preview JSOM W =
1=K
2 "access_token": "6a233475-aS5db-476d-8e31-d0aeb2d@@3ed”,
3 "token_type": "bearer”,
4 "refresh_token": "8d91b9be-7f2b-44d5-b14b-dbbdccd848bE",
5 "expires _in": 431399,

"scope": "aplAccess"

3

]

OAuth 2.0 authorization code grant - access token request and response

This returns the following response, as per the OAuth 2.0 specification:

{
"access_ token": "6a233475-a5db-476d-8e31-d0aeb2d003e9",
"token type": "bearer",
"refresh token": "8d91b9be-7f2b-44d5-bl4b-dbbdccd848bs8",
"expires in": 43199,
"scope": "apiAccess"

}

Now we can use this information to access the resources owned by the resource
owner. For example, if https://localhost:8765/api/restaurant/1 represents
the restaurant with the ID of 1, then it should return the respective restaurant details.

Without the access token, if we enter the URL, it returns the error Unauthorized,
with the message Full authentication is required to access this

resource.

[155]

Securing Microservices

Now, let's access this URL with the access token, as shown in the following screenshot:

GET w https://localhost:8745/api/restaurant/1

Authorization Headers (1) Pre-request script Tests
o Authorization Bearer 63233473-a5db-476d-8e31-d0aeb2d003e9
Body Cookies Headers(11 Tests (0/C Status 2000K Time 200ms

Raw Preview v || =

1~ [{

2 "tables": null,

3 nigr: o man,

4 "isModified": false,

5 "mame": "Big-0 Restaurant"

s

OAuth 2.0 authorization code grant - using the access token for API access
As you can see, we have added the Authorization header with the access token.

Now, we will explore implicit grant implementation.

Implicit grant

Implicit grants are very similar to authorization code grants, except for the code
grant step. If you remove the first step — the code grant step (where the client
application receives the authorization token from the authorization server) — from
the authorization code grant, the rest of the steps are the same. Let's check it out.

Enter the following URL and parameters in the browser and press Enter. Also, make
sure to add basic authentication, with client as the username and password as the
password if asked:

https://localhost:9001/auth/cauth/authorize?response
type=token&redirect uri=https://localhost:8765&scope=apiAccess&states=

553344&client id=client

Here, we are calling the authorization endpoint with the following request
parameters: Response type, client ID, redirect URI, scope, and state.

[156]

Chapter 6

When the request is successful, the browser will be redirected to the following URL
with new request parameters and values:

https://localhost:8765/#access token=6a233475-a5db-476d-8e31-
dO0aeb2d003e9&token type=bearer&state=553344&expires in=19592

Here, we receive the access_token, token_type, state, and expiry duration for the
token. Now, we can make use of this access token to access the APIs, as used in the
authorization code grant.

Resource owner password credential grant

In this grant, we provide the username and password as parameters when
requesting the access token, along with the grant_type, client, and scope
parameters. We also need to use the client ID and secret to authenticate the request.
These grant flows use client applications in place of browsers, and are normally used
in mobile and desktop apps.

In the following postman tool screenshot, the authorization header has already been
added using basic authentication with client_id and passworad:

POST w https://localhost:2001/auth/oauth/token
Authorization Headers (1) Body Pre-request script Tests
———
& form-data s-form-urlencoded raw binary
o grant_type password
o scope apifccess
o client_id client
o username user
o password password
Body (Cookies Headers(12) Tests(0/0 Status 2000K Time 192ms
Raw Preview ~ =
1= K
2 "access_token": "6a233475-a5db-476d-8e31-d@aeb2d@@3ed"”,
3 "token_type": "bearer",
4 "refresh_token": "8d91b%be-7f2b-44d5-bl4b-dbbdccd848b8
5 "expires_in": 17377
"scope": "apiAccess"
7}

OAuth 2.0 resource owner password credentials grant - access token request and response

[157]

Securing Microservices

Once the access token is received by the client, it can be used in a similar way to how

it is used in the authorization code grant.

Client credentials grant

In this flow, the client provides their own credentials and retrieves the access token.

It does not use the resource owner's credentials and permissions.

As you can see in the following screenshot, we directly enter the token endpoint with
only two parameters: grant_type and scope. The authorization header is added

using client_idand client secret:

POST » https://localhost:2001/auth/oauth/token

Authorization Headers (1) Bocly Pre-request script Tests
® form-data w-wwwe-form-urlencoded raw binary
o grant_type client_credentials
o scope apiAccess
Body Cookies Headers(12 Tests (0/O Status 2000K Time 118ms

Raw Preview JSOM w =

1= i

2 "access_token": "a37a%el3-ebfc-4168-9c@b-4@dce57818cl"”,

3 "token_type": "bearer”,

- "expires_in": 4269@,

5 "scope": "apihccess"

& 1

OAuth 2.0 client credentials grant - access token request and response

You can use the access token similarly as it is explained for the authorization
code grant.

[158]

Chapter 6

References

For more information, you refer to these links:

RESTful Java Web Services Security, Packt Publishing, by René Enriquez, Andrés
Salazar C: https://www.packtpub.com/application-development/
restful-java-web-services-security

Spring Security [Video], Packt Publishing: https://www.packtpub.com/
application-development/spring-security-video

The OAuth 2.0 Authorization Framework: https://tools.ietf.org/html/
rfc6749

Spring Security: http://projects.spring.io/spring-security

Spring OAuth2: http://projects.spring.io/spring-security-oauth/

Summary

In this chapter, we have learned how important it is to have the TLS layer or HTTPS
in place for all web traffic. We have added a self-signed certificate to our sample
application. I would like to reiterate that, for a production application, you must
use the certificates offered by certificate signing authorities. We have also explored
the fundamentals of OAuth 2.0 and various OAuth 2.0 grant flows. Different OAuth
2.0 grant flows are implemented using Spring Security and OAuth 2.0. In the next
chapter, we'll implement the UI for the sample OTRS project and will explore how
all the components work together.

[159]

https://www.packtpub.com/application-development/restful-java-web-services-security
https://www.packtpub.com/application-development/restful-java-web-services-security
https://www.packtpub.com/application-development/spring-security-video
https://www.packtpub.com/application-development/spring-security-video
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
http://projects.spring.io/spring-security
http://projects.spring.io/spring-security-oauth/

Consuming Services Using a
Microservice Web App

Now, after developing the microservices, it would be interesting to see how

the services offered by the Online Table Reservation System (OTRS) could be
consumed by web or mobile applications. We will develop the web application
(UI) using Angular]S/bootstrap to build the prototype of the web application.
This sample application will display the data and flow of this sample project - a
small utility project. This web application will also be a sample project and will
run independently. Earlier, web applications were being developed in single web
archives (files with .war extensions) that contain both UI and server-side code. The
reason for doing so was pretty simple as UI was also developed using Java with
JSPs, servlets, JSF, and so on. Nowadays, Uls are being developed independently
using JavaScript. Therefore, these UI apps also deploy as a single microservice.

In this chapter, we'll explore how these independent Ul applications are being
developed. We will develop and implement the OTRS sample app without login
and authorization flow. We'll deploy a very limited functionality implementation
and cover the high level Angular]S concepts. For more information on Angular]S,
you can refer to Angular]S by Example, Chandermani, Packt publishing.

In this chapter, we will cover the following topics:

* Angular]S framework overview
* Development of OTRS features
* Setting up a web app (UI)

[161]

Consuming Services Using a Microservice Web App

AngularJS framework overview

Now since we are ready with our HTML5 web app setup, we can go through the
basics of AngularJS. This will help us to understand the AngularJS code. This section
depicts the high level of understanding that you can utilize to understand the sample
app and explore further using Angular]S documentation or by referring to other
Packt publications.

Angular]S is a client side JavaScript framework. It is flexible enough to be used as
a MVC (Model View Controller) or MVVM (Model-View-ViewModel). It also
provides built-in services like $http or $1og using a dependency injection pattern.

MVC

MVC is well-known design pattern. Struts and Spring MVC are popular examples.
Let's see how they fit in the JavaScript world:

* Model: Models are JavaScript objects that contain the application data. They
also represent the state of the application.

* View: View is a presentation layer that consists of HTML files. Here, you can
show the data from models and provide the interactive interface to the user.

* Controller: You can define the controller in JavaScript and it contains the
application logic.

MVVM

MVVM is an architecture design pattern that specifically targets the UI development.
MVVM is designed to make two-way data binding easier. Two-way data binding
provides the synchronization between the Model and View. When the Model (data)
changes, it reflects immediately on the View. Similarly, when the user changes the
data on the View, it reflects on the Model.

* Model: This is very similar to MVC and contains the business logic and data.

* View: Like MVC, it contains the presentation logic or user interface.

* ViewModel: ViewModel contains the data binding between the View and
Model. Therefore, it is an interface between the View and Model.

[162]

Chapter 7

Modules

A module is the first thing we define for any AngularJS application. A module is a
container that contains the different parts of the app such as controllers, services,
filters, and so on. An Angular]S app can be written in a single module or multiple
modules. An Angular]S module can contain other modules also.

Many other JavaScript frameworks use the main method for instantiating and wiring
the different parts of the app. Angular]S does not have the main method. It uses the
module as an entry point due to following reasons:

Modularity: You can divide and create your application feature-wise or with
reusable components.

Simplicity: You might have come across complex and large application
code, which makes maintenance and enhancement a headache. No more,
Angular]S makes code simple, readable, and easy to understand.

Testing: It makes unit testing and end-to-end testing easier as you can
override configuration and load only those modules which are required.

Each Angular]S app needs to have a single module for bootstrapping the Angular]S
app. Bootstrapping our app requires the following three parts:

App module: A JavaScript file (app. js) that contains the Angular]S module
as shown:

var otrsApp = AngularJdS.module ('otrsApp', [1)
// [1 contains the reference to other modules

Loading Angular library and app module: An index.html file containing
the reference to the JavaScript file with other Angular]S libraries:

<script type="text/javascript" src="AngularJS/AngulardS.js"/>
<script type="text/javascript" src="scripts/app.js"/></script>

App DOM configuration: This tells the Angular]S location of the DOM
element where bootstrapping should take place. It can be done in either
of two ways:

° Index.html file that also contains an HTML element (typically
<html>) with the ng-app (Angular]S directive) attribute having
the value given in app . js. Angular]S directives are prefixed with
ng (Angular]S): <html lang="en" ng-app="otrsApp" class="no-
js"s.

° Or use this command if you are loading the JavaScript
tiles asynchronously: Angulards.bootstrap (document .
documentElement, ['otrsApp']l) ;.

[163]

Consuming Services Using a Microservice Web App

An Angular]S module has two important parts, config () and run (), apart from
other components like controllers, services, filters, and so on.

* config() is used for registering and configuring the modules and it only
entertains the providers and constants using $injector. $injectorisan
Angular]S service. We'll cover providers and $injector in the next section.
You cannot use instances here. It prevents the use of services before it is fully
configured.

* run() is used for executing the code after $injector is created using the
preceding config method. This only entertains the instances and constants.
You cannot use providers here to avoid configuration at run time.

Providers and services

Let's have a look at the following code:

.controller ('otrsAppCtrl', function ($Sinjector) {
var log = Sinjector.get('$log') ;

$1log is an inbuilt Angular]S service that provides the logging API. Here, we are
using another inbuilt service, $injector, that allows us to use the $1og service.
$injector is an argument in the controller. Angular]S uses function definitions
and regex to provide the $injector service to a caller, also known as the controller.
These are examples of how Angular]S effectively uses the dependency injection
pattern.

Angular]S heavily uses the dependency injection pattern. Angular]S uses the
injector service ($injector) to instantiate and wire most of the objects we use in our
Angular]S app. This injector creates two types of objects - services and specialized
objects.

For simplification, you can say that we (developers) define services. On the contrary,
specialized objects are Angular]S stuff like controllers, filters, directives, and so on.

Angular]S provides five recipe types that tell the injector how to create service
objects - provider, value, factory, service, and constant.

* The provider is the core and most complex recipe type. Other recipes are
synthetic sugar on it. We generally avoid using the provider except when we
need to create reusable code that requires global configuration.

* The value and constant recipe types works as their name suggests. Both
cannot have dependencies. Moreover, the difference between them lies with
their usage. You cannot use value service objects in the configuration phase.

[164]

Chapter 7

* The factory and service are the most used services types. They are of a
similar type. We use the factory recipe when we want to produce JavaScript
primitives and functions. On the other hand, the service is used when we
want to produce custom defined types.

As we have now some understanding of services, we can say that there are two
common uses of services - organizing code and sharing code across apps. Services are
singleton objects, which are lazily instantiated by the Angular]S service factory. By
now, we have already seen a few of the in-built Angular]S services like $injector,
$1log, and so on. Angular]S services are prefixed with the $ symbol.

Scopes

In Angular]S apps, two types of scopes are widely used: $rootScope and $scope:

* S$rootScope is the top most object in the scope hierarchy and has the global
scope associated with it. That means that any variable you attached to it
will be available everywhere and therefore use of $rootscope should be a
carefully considered decision.

* Controllers have $scope as an argument in the callback function. It is used
for binding data from the controller to the view. Its scope is limited to the
use of the controller it is associated with.

Controllers

The controller is defined by the JavaScript constructor function as having a $scope
as an argument. The controller's main purpose is to tie the data to the view. The
controller function is also used for writing business logic - setting up the initial state
of the $scope object and adding the behavior to $scope. The controller signature
looks like the following;:

RestModule.controller ('RestaurantsCtrl', function ($scope,
restaurantService) {

Here, the controller is a part of RestModule. The name of the controller is
RestaurantCtrl. $scope and restaurantService are passed as arguments.

[165]

Consuming Services Using a Microservice Web App

Filters

The purpose of filters is to format the value of a given expression. In the following
code we have defined the datetimel filter that takes date as an argument and
changes the value in dd MMM yyyy HH:mm format like 04 Apr 2016 04:13 PM.

.filter('datetimel', function ($filter) ({
return function (argDateTime) {
if (argDateTime)
return $filter('date') (new Date (argDateTime), 'dd MMM yyyy
HH:mm a') ;

}

return "";
Vi
I3F;

Directives

As we have seen in the Modules section, Angular]S directives are HTML attributes
with an ng prefix. Some of the popular directives are:

* ng-app: This directive defines the AngularJS application

* ng-model: This directive binds the HTML form input to data
* ng-bind: This directive binds the data to the HTML view

* ng-submit: This directive submits the HTML form

* ng-repeat: This directive iterates the collection

<div ng-app="">
<p>Search: <input type="text" ng-model="searchValue"></p>
<p ng-bind="searchedTerm"></p>

</div>

Ul-Router

In single page applications (SPAs), the page only loads once and the user navigates
through different links without page refresh. It is all possible because of routing.
Routing is a way to make SPA navigation feel like a normal site. Therefore, routing is
very important for SPA.

[166]

Chapter 7

The AngularUI team built UI-Router, an Angular]S routing framework. UI-Router
is not a part of core Angular]S. UI-Router not only changes the route URL, but it
also changes the state of the application when the user clicks on any link in the SPA.
Because Ul-Router can also make state changes, you can change the view of the
page without changing the URL. This is possible because of the application state
management by Ul-Router.

If we consider the SPA as a state machine then the state is a current state of the
application. We will use the attribute ui-sref in a HTML link tag when we create
the route link. The attribute href in the link will be generated from this and point
to certain states of the application which are created in app. js.

We use the ui-view attribute in the HTML div to use UI-Router: for example,
<div ui-views</divs>.

Development of OTRS features

As you know, we are developing the SPA. Therefore, once the application loads, you
can perform all the operations without page refresh. All interactions with the server
are performed using AJAX calls. Now, we'll make use of the Angular]S concepts that
we have covered in the first section. We'll cover the following scenarios:

* A page that will display a list of restaurants. This will also be our home page.

* Search restaurants.

* Restaurant details with reservation options.

* Login (not from the server, but used for displaying the flow).

* Reservation confirmation.

For the home page, we will create index.html and a template that will contain the
restaurant listing in the middle section or the content area.

Home page/restaurant list page

The home page is the main page of any web application. To design the home page,
we are going to use the Angular-UlI bootstrap rather than the actual bootstrap.
Angular-Ul is an Angular version of the bootstrap. The home page will be divided
into three sections:

* The header section will contain the app name, search restaurants form, and
user name at top-right corner.

[167]

Consuming Services Using a Microservice Web App

* The content or middle section will contain the restaurant listing which will
have the restaurant name as the link. This link will point to the restaurant
details and reservation page.

* The footer section will contain the app name with the copyright mark.

You must be interested in viewing the home page before designing or implementing it.
Therefore, let us first see how it will look like once we have our content ready:

Online Table Reservation System

#d Name

1 Le Meurice

2 L'Ambroisie

3 Arpége

4 Alain Ducasse au Plaza Athénée
5 Pavillon LeDoyen

6 Pierre Gagnaire

7 L'Astrance

3 Pré Catelan

9 Guy Savoy

10 Le Bristol

Famous Gourmet Restaurants in Paris

@ 2016 Online Table Reservation System

Welcome Guestl

Address

228 rue de Rivoli, 75001, Paris

9 place des Vosges, 75004, Paris

84, rue de Varenne, 75007, Paris

25 avenue de Montaigne, 75008, Paris
1, avenue Dutuit, 75008, Paris

6, rue Balzac, 75008, Paris

4, rue Beethoven, 75016, Paris

Bois de Boulogne, 75016, Paris

18 rue Troyon, 75017, Paris

112, rue du Faubourg St Honoré, 8th arrondissement, Paris

OTRS home page with restaurants listing

Now, to design our home page, we need to add following four files:

* index.html: Our main HTML file

* app.js: Our main Angular]S module

* restaurants.js: The restaurants module that also contains the restaurant

Angular service

* restaurants.html: The HTML template that will display the list

of restaurants

[168]

Chapter 7

index.html

First, we'll add the . /app/index.html in our project workspace. The contents of
index.html will be as explained here onwards.

I have added comments in between the code to make the code more
i readable and make it easier to understand.

index.html is divided into many parts. We'll discuss a few of the key parts here.
First, we will see how to address old Internet Explorer versions. If you want to target
the Internet Explorer browser versions greater than 8 or IE version 9 onwards, then
we need to add following block that will prevent JavaScript rendering and give the
no-js output to the end-user.

<!--[if 1t IE 71> <html lang="en" ng-app="otrsApp" class="no-js
lt-ie9 1lt-ie8 1lt-ie7"> <! [endif]-->

<!--[if IE 71> <html lang="en" ng-app="otrsApp" class="no-js
lt-ie9 1lt-ie8"> <! [endif]-->

<!--[if IE 8]> <html lang="en" ng-app="otrsApp" class="no-js
lt-ie9"> <! [endif]-->

<!--[1if gt IE 8]><!--> <html lang="en" ng-app="otrsApp" class="no-js">
<!--<![endif]-->

Then, after adding a few meta tags and the title of the application, we'll also define
the important meta tag viewport. The viewport is used for responsive Ul designs.

The width property defined in the content attribute controls the size of the viewport.
It can be set to a specific number of pixels like width = 600 or to the special value
device-width value which is the width of the screen in CSS pixels at a scale of 100%.

The initial-scale property controls the zoom level when the page is first loaded. The
maximume-scale, minimume-scale, and user-scalable properties control how users are
allowed to zoom the page in or out.

<meta name="viewport" content="width=device-width, initial-
scale=1">

In the next few lines, we'll define the style sheets of our application. We are adding
normalize.css and main.css from HTMLS5 boilerplate code. We are also adding
our application's customer CSS app . css. Finally, we are adding the bootstrap 3 CSS.
Apart from the customer app . css, other CSS are referenced in it. There is no change
in these CSS files.

<link rel="stylesheet" href="bower components/html5-boilerplate/dist/
css/normalize.css">

[169]

Consuming Services Using a Microservice Web App

<link rel="stylesheet" href="bower components/html5-
boilerplate/dist/css/main.css">

<link rel="stylesheet" href="public/css/app.css">

<link data-require="bootstrap-csse@*" data-server="3.0.0"

rel="stylesheet" href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/
bootstrap.min.css" />

Then we'll define the scripts using the script tag. We are adding the modernizer,
Angular, Angular-route, and our own developed custom JavaScript file app . js.
We have already discussed Angular and Angular-Ul app.js will be discussed in
the next section.

Modernizer allows web developers to use new CSS3 and HTMLS5 features while
maintaining a fine level of control over browsers that don't support them. Basically,
modernizer performs the next generation feature detection (checking the availability
of those features) while the page loads in the browser and reports the results. Based
on these results you can detect what are the latest features available in the browser
and based on that you can provide an interface to the end user. If the browser does
not support a few of the features then an alternate flow or Ul is provided to the

end user.

We are also adding the bootstrap templates which are written in JavaScript using the
ui-bootstrap-tpls javascript file.

<script src="bower components/html5-boilerplate/dist/js/
vendor/modernizr-2.8.3.min.js"></script>

<script src="bower components/angular/angular.min.js"></
scripts>

<script src="bower components/angular-route/angular-route.min.
js"></script>
<script src="app.js"></scripts>
<script data-require="ui-bootstrap@0.5.0" data-semver="0.5.0"
src="http://angular-ui.github.io/bootstrap/ui-bootstrap-tpls-
0.6.0.js"></script>

We can also add style to the head tag as shown in the following. This style allows
drop-down menus to work.

<style>
div.navbar-collapse.collapse {

display: block;
overflow: hidden;
max-height: 0px;
-webkit-transition: max-height .3s ease;
-moz-transition: max-height .3s ease;
-o-transition: max-height .3s ease;
transition: max-height .3s ease;

[170]

Chapter 7

}

div.navbar-collapse.collapse.in
max-height: 2000px;

}

</style>

In the body tag we are defining the controller of the application using the
ng-controller attribute. While the page loads, it tells the controller the
name of the application to Angular.

<body ng-controller="otrsAppCtrl">

Then, we define the header section of the home page. In the header section, we'll
define the application title, online Table Reservation System. Also, we'll define
the search form that will search the restaurants.

<!-- BEGIN HEADER -->
<nav class="navbar navbar-default" role="navigation"s>

<div class="navbar-header">

Online Table Reservation System

</div>
<div class="collapse navbar-collapse" ng-
class="I!navCollapsed && 'in'" ng-click="navCollapsed = true">
<form class="navbar-form navbar-left" role="search"
ng-submit="search() ">
<div class="form-group"s>

<input type="text" id="searchedValue" ng-

model="searchedValue" class="form-control" placeholder="Search
Restaurants">

</div>

<button type="submit" class="btn btn-default" ng-
click="">Go</buttons>

</form>
<!-- END HEADER -->

Then, in the next section, the middle section, includes where we actually bind the
different views, marked with actual content comments. The ui-view attribute in div
gets its content dynamically from Angular such as restaurant details, restaurant list,
and so on. We have also added a warning dialog and spinner to the middle section
that will be visible as and when required.

<div class="clearfix"></div>
<!-- BEGIN CONTAINER -->

[171]

Consuming Services Using a Microservice Web App

<div class="page-container container"s>
<!-- BEGIN CONTENT -->
<div class="page-content-wrapper">
<div class="page-content"s>

<!-- BEGIN ACTUAL CONTENT -->
<div ui-view class="fade-in-up"></div>
<!-- END ACTUAL CONTENT -->
</div>
</div>
<!-- END CONTENT -->
</div>
<!-- loading spinner -->

<div id="loadingSpinnerId" ng-show="isSpinnerShown ()"
style="top:0; left:45%; position:absolute; z-index:999">
<script type="text/ng-template" id="alert.html">
<div class="alert alert-warning" role="alert"s>
<div ng-transclude></div>
</div>
</script>
<uib-alert type="warning" template-url="alert.
html">Loading...</uib-alert>
</div>
<!-- END CONTAINER -->

The final section of the index.html is the footer. Here, we are just adding the static
content and copyright text. You can add whatever content you want here.

<!-- BEGIN FOOTER -->
<div class="page-footer"s>

<hr/><div style="padding: 0 39%">© 2016 Online Table
Reservation System</divs>

</div>
<!-- END FOOTER -->
</body>

</html>

app.)Js
app - js is our main application file. Because we have defined it in index.html,
it gets loaded as soon as our index.html is called.

1
~ We need to take care that we do not mix, route (URI) with REST

endpoints. Routes represents the state/view of the SPA.

[172]

Chapter 7

As we are using the Edge Server (Proxy Server), everything will be accessible from

it including our REST endpoints. External applications including the UI will use

the Edge Server host to access the application. You can configure it in some global
constants file and then use it wherever it is required. This will allow you to configure
the REST host at a single place and use it at other places.

'use strict';
/*
This call initializes our application and registers all the modules,
which are passed as an array in the second argument.
*/
var otrsApp = angular.module ('otrsApp', I
'ui.router',
'templates',
'ui.bootstrap',
'ngStorage',
'otrsApp.httperror',
'otrsApp.login',
'otrsApp.restaurants'

1)

/*
Then we have defined the default route /restaurants
*/
.config ([
'$SstateProvider', 'SurlRouterProvider',
function ($stateProvider, $urlRouterProvider) {
SurlRouterProvider.otherwise ('/restaurants') ;

1)

/*

This functions controls the flow of the application and handles
the events.
*/
.controller ('otrsAppCtrl', function (S$scope, S$injector,
restaurantService) {
var controller = this;

var AjaxHandler = $injector.get ('AjaxHandler');
var SrootScope = S$injector.get ('SrootScope') ;
var log = $injector.get('S$log') ;
var sessionStorage = $injector.get('SsessionStorage') ;
$Sscope.showSpinner = false;
/*
This function gets called when the user searches any restaurant.
It uses the Angular restaurant service that we'll define in the next
section to search the given search string.

[173]

Consuming Services Using a Microservice Web App

*/
$scope.search = function ()
$scope.restaurantService = restaurantService;
restaurantService.async () .then (function () ({
$scope.restaurants = restaurantService.

search ($scope.searchedvValue) ;

3N

/*

When the state is changed, the new controller controls the flows
based on the view and configuration and the existing controller is
destroyed. This function gets a call on the destroy event.

*/
$scope.$on ('$destroy', function destroyed()
log.debug ('otrsAppCtrl destroyed') ;
controller = null;
$scope = null;

3N

SrootScope. fromState;
SrootScope. fromStateParams;
SrootScope. Son('$stateChangeSuccess', function (event,
toState, toParams, fromState, fromStateParams) {
SrootScope.fromState = fromState;
SrootScope.fromStateParams = fromStateParams;

3N

// utility method
$scope.isLoggedIn = function ()
if (sessionStorage.session)
return true;
} else {
return false;

}i

/* spinner status */
$scope.isSpinnerShown = function ()
return AjaxHandler.getSpinnerStatus() ;

}i

1)
/*
This function gets executed when this object loads. Here we are
setting the user object which is defined for the root scope.

[174]

Chapter 7

*/
.run(['SrootScope', 'Sinjector', '$state', function

($rootScope, $injector, $state)

SrootScope.restaurants = null;

// self reference

var controller = this;

// inject external references

var log = $injector.get('$log') ;

var S$sessionStorage = $injector.
get ('$sessionStorage!') ;

var AjaxHandler = $injector.get ('AjaxHandler');

if (sessionStorage.currentUser) {
SrootScope.currentUser = $sessionStorage.

currentUser;
} else {
SrootScope.currentUser = "Guest";
$sessionStorage.currentUser = ""
}
j3D)
restaurants.js

restaurants. js represents an Angular service for our app which we'll use for the
restaurants. We know that there are two common uses of services - organizing code
and sharing code across apps. Therefore, we have created a restaurants service which
will be used among different modules like search, list, details, and so on.

Services are singleton objects, which are lazily instantiated by the
L= Angular]S service factory.

The following section initializes the restaurant service module and loads the required
dependencies.

angular.module ('otrsApp.restaurants', [
'ui.router',
'ui.bootstrap',
'ngStorage'’,
'ngResource’

1)

In the configuration, we are defining the routes and state of the otrsApp.restaurants
module using UI-Router.

[175]

Consuming Services Using a Microservice Web App

First we define the restaurants state by passing the JSON object containing the
URL that points the router URI, the template URL that points to the HTML template
that display the restaurants state, and the controller that will handle the events on
the restaurants view.

On top of the restaurants view (route - /restaurants), a nested state
restaurants.profile is also defined that will represent the specific restaurant. For
example, /restaurant/1 would open and display the restaurant profile (details) page
of a restaurant which is represented by 1d 1. This state is called when a link is clicked
in the restaurants template. In this ui-sref="restaurants.profile ({id: rest.
id}) " rest represents the restaurant object retrieved from the restaurants view.

Notice that the state name is 'restaurants.profile' which tells the Angular]S Ul
Router that the profile is a nested state of the restaurants state.

.config ([
'SstateProvider', 'SurlRouterProvider',
function ($stateProvider, $SurlRouterProvider) {
$stateProvider.state ('restaurants',
url: '/restaurants',
templateUrl: 'restaurants/restaurants.html',

controller: 'RestaurantsCtrl'

3]

// Restaurant show page

.state('restaurants.profile', {
url: '/:id',
views:
@'
templateUrl: 'restaurants/

restaurant.html',
controller: 'RestaurantCtrl'

3N
j2 D)

In the next code section, we are defining the restaurant service using the Angular
factory service type. This restaurant service on load fetches the list of restaurants
from the server using a REST call. It provides a list and searches restaurant
operations and restaurant data.

.factory('restaurantService', function ($injector, $q) {
var log = S$injector.get('$log');
var ajaxHandler = $injector.get ('AjaxHandler');
var deffered = $qg.defer();

[176]

Chapter 7

var restaurantService = {};
restaurantService.restaurants = [];
restaurantService.orignalRestaurants = [];
restaurantService.async = function () {
ajaxHandler.startSpinner() ;
if (restaurantService.restaurants.length === 0)
ajaxHandler.get ('/api/restaurant')
.success (function (data, status, headers,
config) {
log.debug('Getting restaurants') ;
sessionStorage.apiActive = true;
log.debug("if Restaurants --> " +
restaurantService.restaurants.length) ;
restaurantService.restaurants = data;
ajaxHandler.stopSpinner () ;
deffered.resolve() ;
)
.error (function (error, status, headers,
config) {
restaurantService.restaurants =
mockdata;
ajaxHandler.stopSpinner () ;
deffered.resolve() ;
3N
return deffered.promise;
} else {
deffered.resolve() ;
ajaxHandler.stopSpinner () ;
return deffered.promise;

restaurantService.list = function () ({
return restaurantService.restaurants;
restaurantService.add = function () {
console.log("called add") ;
restaurantService.restaurants.push (
id: 103,
name: 'Chi Cha\'s Noodles',
address: 'l13 W. St., Eastern Park, New
County, Paris',
13N

[177]

Consuming Services Using a Microservice Web App

restaurantService.search = function (searchedvalue) {
ajaxHandler.startSpinner() ;
if (!searchedvalue)
if (restaurantService.orignalRestaurants.length >
0) {
restaurantService.restaurants =
restaurantService.orignalRestaurants;
}
deffered.resolve() ;
ajaxHandler.stopSpinner () ;
return deffered.promise;
} else {
ajaxHandler.get ('/api/restaurant?name="' +

searchedvalue)
.success (function (data, status, headers,

config) {
log.debug('Getting restaurants') ;

sessionStorage.apiActive = true;
log.debug("if Restaurants --> " +

restaurantService.restaurants.length) ;
if (restaurantService.

orignalRestaurants.length < 1) {
restaurantService.

orignalRestaurants = restaurantService.restaurants;

}

restaurantService.restaurants = data;
ajaxHandler.stopSpinner () ;
deffered.resolve() ;

|3
.error (function (error, status, headers,
config) {
if (restaurantService.

orignalRestaurants.length < 1) {
restaurantService.

orignalRestaurants = restaurantService.restaurants;

}

restaurantService.restaurants = [];
restaurantService.restaurants.push (
id: 104,
name: 'Gibsons - Chicago

Rush St.',
address: '1028 N. Rush

St., Rush & Division, Cook County, Paris'

3N

[178]

Chapter 7

restaurantService.restaurants.push (

{
id: 105,
name: 'Harry Caray\'s
Italian Steakhouse',
address: '33 W. Kinzie
St., River North, Cook County, Paris',

1)
ajaxHandler.stopSpinner () ;
deffered.resolve() ;

1

return deffered.promise;

}i

return restaurantService;

3]

In the next section of the restaurants.js module, we'll add two controllers that

we defined for the restaurants and restaurants.profile states in the routing
configuration. These two controllers are RestaurantsCtrl and RestaurantCtrl that
handle the restaurants state and the restaurants.profiles states respectively.

RestaurantsCtrl is pretty simple in that it loads the restaurants data using the
restaurants service list method.

.controller ('RestaurantsCtrl', function (S$scope,
restaurantService) {
$scope.restaurantService = restaurantService;
restaurantService.async () .then (function () ({
$Sscope.restaurants = restaurantService.list();

3N
)

RestaurantCtrl is responsible for showing the restaurant details of a given ID.

This is also responsible for performing the reservation operations on the displayed
restaurant. This control will be used when we design the restaurant details page with
reservation options.

.controller ('RestaurantCtrl', function ($scope, $state,
$SstateParams, S$injector, restaurantService) {
var S$sessionStorage = $injector.get ('$sessionStorage') ;
$scope.format = 'dd MMMM yyyy';

$Sscope.today = S$scope.dt = new Date();
$scope.dateOptions = {
formatYear: 'yy',

[179]

Consuming Services Using a Microservice Web App

180),
restaurant;
tm) ;
(value, key)

} .

7

maxDate: new Date () .setDate($Sscope.today.getDate () +

minDate: $scope.today.getDate(),
startingDay: 1

$scope.popupl = {

} .

7

opened: false

$scope.altInputFormats = ['M!/d!/yyyy']l;

$scope.openl = function ()

$scope.mstep

if

} .

$Sscope.hstep

7

$scope.popupl.opened = true;

1;
30;

($sessionStorage.reservationData) {

$Sscope.restaurant = $sessionStorage.reservationData.

$scope.dt = new Date ($sessionStorage.reservationData.

$scope.tm $Sscope.dt;

} else {

}

{

Sscope.dt.setDate ($scope.today.getDate() + 1);

$Sscope.tm = $scope.dt;

$scope.tm.setHours (19) ;

$Sscope.tm.setMinutes (30) ;

restaurantService.async () .then (function () ({
angular.forEach (restaurantService.list (), function

if (value.id === parselnt ($stateParams.id))
$scope.restaurant = value;

3N
3N

$scope.book = function ()

var tempHour = S$scope.tm.getHours() ;

var tempMinute = $scope.tm.getMinutes() ;

$Sscope.tm = $scope.dt;

$scope.tm.setHours (tempHour) ;

$scope.tm.setMinutes (tempMinute) ;

if ($sessionStorage.currentUser) {
console.log("$scope.tm --> " + $scope.tm);

[180]

Chapter 7

alert ("Booking Confirmed!!!");
$sessionStorage.reservationData = null;
$state.go("restaurants") ;

} else {
$sessionStorage.reservationData = {};

$sessionStorage.reservationData.restaurant =
$scope.restaurant;

$sessionStorage.reservationData.tm = $scope.tm;
$state.go("login") ;

3]

We have also added a few of the filters in the restaurants.js module to format the
date and time. These filters perform the following formatting on the input data:

* datel: Returns the input date in 'dd MMM yyyy' format, for example 13-
Apr-2016

* timel: Returns the input time in 'HH:mm:ss' format, for example 11:55:04

* dateTimel: Returns the input date and time in 'dd MMM yyyy HH:mm:ss'
format, for example 13-Apr-2016 11:55:04

In the following code snippet we've applied these three filters:

.filter('datel', function ($filter) {
return function (argDate) {
if (argDate) {

var d = $filter('date') (new Date (argDate), 'dd MMM
yyyy');
return d.toString() ;
}
return "";
}i
)
.filter('timel', function ($filter) {
return function (argTime) {
if (argTime)
return $filter('date') (new Date (argTime),
'"HH:mm:ss') ;

}
return "";
}i
)
.filter('datetimel', function (S$filter) {
return function (argDateTime) {

[181]

Consuming Services Using a Microservice Web App

if (argDateTime) {
return $filter('date') (new Date (argDateTime), 'dd

MMM yyyy HH:mm a') ;
}
return "";
}i
1)

restaurants.html

We need to add the templates that we have defined for the restaurants.profile
state. As you can see in the template we are using the ng-repeat directive to

iterate the list of objects returned by restaurantService.restaurants. The
restaurantService scope variable is defined in the controller. 'RestaurantsCtrl’
is associated with this template in the restaurants state.

<h3>Famous Gourmet Restaurants in Paris</h3>
<div class="row">
<div class="col-md-12">
<table class="table table-bordered table-striped">
<thead>
<tr>
<th>#Id</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr ng-repeat="rest in restaurantService.restaurants">
<td>{{rest.id}}</td>
<td><a ui-sref="restaurants.profile({id: rest.
id}) ">{{rest.name}}</td>
<td>{{rest.address}}</td>
</tr>
</tbody>
</table>
</div>

</div>

[182]

Chapter 7

Search Restaurants

On the home page index.html we have added the search form in the header section
that allows us to search restaurants. The Search Restaurants functionality will use
the same files as described earlier. It makes use of the app. js (search form handler),
restaurants.js (restaurant service), and restaurants.html to display the

searched records.

Welcome Guestl

Online Table Reservation System C | Go

Famous Gourmet Restaurants in Paris

#ld Name Address
104 = Gibsons - Chicago Rush St 1028 N. Rush St., Rush & Division, Cook County, Paris
105 Harry Caray's Italian Steakhouse 33 W. Kinzie St.. River North, Cook County, Paris

© 2016 Online Table
Reservation System

OTRS home page with restaurants listing

Restaurant details with reservation option

Restaurant details with reservation option will be the part of the content area (middle
section of the page). This will contain a breadcrumb at the top with restaurants

as a link to the restaurant listing page, followed by the name and address of the
restaurant. The last section will contain the reservation section containing date time
selection boxes and reserve button.

[183]

Consuming Services Using a Microservice Web App

This page will look like the following screenshot:

Online Table Reservation System Search Restaurants Go Welcome Guestl

Restaurants / Alain Ducasse au Plaza Athénée

Alain Ducasse au Plaza Athénée

Address: 25 avenue de Montaigne, 75008, Paris

N ~
Select Date & Time for Booking: 22 March 2016 &= 07 | 30 PM
hd v
Reserve

@ 2016 Online Table Reservation System

Restaurants Detail Page with Reservation Option

Here, we will make use of the same restaurant service declared in restaurants.js.
The only change will be the template as described for the state restaurants.profile.
This template will be defined using the restaurant .html.

restaurant.html

As you can see, the breadcrumb is using the restaurants route, which is defined
using the ui-sref attribute. The reservation form designed in this template calls
the book () function defined in the controller RestaurantCtrl using the directive
ng-submit on the form submit.

<div class="row">
<div class="row">
<div class="col-md-12">
<0l class="breadcrumb">
<a ui-sref="restaurants"s>Restaurants

[184]

Chapter 7

<li class="active">{{restaurant.name}}</1li>

<div class="bs-docs-section">
<hl class="page-header">{{restaurant.name}}</hl>
<div>
Address: {{restaurant.address}}
</div>
</br></br>
<form ng-submit="book () ">
<div class="input-append date form datetime">
<div class="row">
<div class="col-md-7">
<p class="input-group">
<span style="display: table-cell;
vertical-align: middle; font-weight: bolder; font-size: 1.2em">Select
Date & Time for Booking:
<span style="display: table-cell;
vertical-align: middle"s
<input type="text" size=20
class="form-control" uib-datepicker-popup="{{format}}" ng-model="dt"
is-open="popupl.opened" datepicker-options="dateOptions" ng-
required="true" close-text="Close" alt-input-formats="altInputFormats"
/>

<button type="button" class="btn

btn-default" ng-click="openl()"><i class="glyphicon glyphicon-
calendar"></i></button>

<uib-timepicker ng-model="tm" ng-
change="changed ()" hour-step="hstep" minute-step="mstep"></uib-
timepickers>
</p>
</div>
</div></divs>

<div class="form-group">

<button class="btn btn-primary"
type="submit">Reserve</buttons>

</div>
</form></br></br>
</div>
</div>
</div>

[185]

Consuming Services Using a Microservice Web App

Login page

When a user clicks on the Reserve button on the Restaurant Detail page after
selecting the date and time of the reservation, the Restaurant Detail page checks
whether the user is already logged in or not. If the user is not logged in, then the
Login page displays. It looks like the following screenshot:

Online Table Reservation System Go

Login
|

® 2016 Online Table Reservation System

Login page

We are not authenticating the user from the server. Instead, we are

just populating the user name in the session storage and rootscope for
"~ implementing the flow.

Once the user logs in, the user is redirected back to same booking page with the
persisted state. Then the user can proceed with the reservation. The Login page uses
basically two files: 1ogin.html and login. js.

login.html

The login.html template consists of only two input fields, username and password,
with the Login button and Cancel link. The Cancel link resets the form and the
Login button submits the login form.

[186]

Chapter 7

Here, we are using the Loginctrl with the ng-controller directive. The Login
form is submitted using the ng- submit directive that calls the submit function of
LoginCtrl. Input values are first collected using the ng-model directive and then
submitted using their respective properties - _email and _password.

<div ng-controller="LoginCtrl as loginC" style="max-width: 300px">
<h3>Login</h3>
<div class="form-container"s>
<form ng-submit="loginC.submit (_email, password)">
<div class="form-group"s>
<label for="username" class="sr-only"s>Username</label>
<input type="text" id="username" class="form-control"
placeholder="username" ng-model="_ email" required autofocus />
</div>
<div class="form-group"s>
<label for="password" class="sr-only">Password</label>
<input type="password" id="password" class="form-
control" placeholder="password" ng-model=" password" />
</div>
<div class="form-group"s>
<button class="btn btn-primary" type="submit"s>Login</
buttons>
<button class="btn btn-link" ng-click="loginC.
cancel () "s>Cancel</button>
</div>
</form>
</div>

</div>

login.js

The login module is defined in the login. js that contains and loads the
dependencies using the module function. The state login is defined with the help
of the config function that takes the JSON object containing the url, controller, and
templateUrl properties.

Inside the controller, we define the cancel and submit operations, which are called
from the login.html template.

angular.module ('otrsApp.login', [
'ui.router',
'ngStorage'
1)
.config(function config($stateProvider) {
$stateProvider.state('login',

[187]

Consuming Services Using a Microservice Web App

url: '/login',
controller: 'LoginCtrl',
templateUrl: 'login/login.html'
1)
)

.controller ('LoginCtrl', function ($state, $scope, $rootScope,

$injector)
var S$sessionStorage = $injector.get ('$sessionStorage') ;
if ($sessionStorage.currentUser) ({

Sstate.go(SrootScope.fromState.name, $rootScope.
fromStateParams) ;

}

var controller = this;

var log = $injector.get('S$log') ;
var http = $injector.get ('Shttp');

$scope.$on ('$destroy', function destroyed()
log.debug('LoginCtrl destroyed') ;
controller = null;
$scope = null;

1)

this.cancel = function () {
$scope.$dismiss;
$state.go('restaurants') ;

}

console.log("Current --> " + $state.current) ;

this.submit = function (username, password) {
SrootScope.currentUser = username;
$sessionStorage.currentUser = username;
if ($rootScope.fromState.name) {

Sstate.go(SrootScope.fromState.name, $rootScope.
fromStateParams) ;

} else {
$state.go("restaurants") ;

[188]

Chapter 7

Reservation confirmation

Once the user is logged in and has clicked on the Reservation button, the restaurant
controller shows the alert box with confirmation as shown in the following screenshot.

x

‘ Online Table Reservation System i localhost:1337 says; Welcome Peter

Booking Confirmed!!!

Restaurants / L'Astrance Prevent this page from creating additional dialogs.

L'Astrance

Address: 4, rue Beethoven, 75016, Paris

8
=]
8
2

Select Date & Time for Booking: 24 August 2016

© 2016 Online Table Reservation System

Restaurants detail page with reservation confirmation

Setting up the web app

As we are planning to use the latest technology stack for our Ul app development,
we will use the Node.js and npm (Node.js package manager) that provides the
open-source runtime environment for developing the server side JavaScript web

application.

Y I would recommend to go through this section once. It will introduce

Q you to JavaScript build tooling and stack. However, you can skip if
you know the JavaScript build tools or do not want to explore them.

[189]

Consuming Services Using a Microservice Web App

Node,js is built on Chrome's V8 JavaScript engine and uses an event-driven, non-
blocking I/O, which makes it lightweight and efficient. The default package manager
of Node.js, npm, is the largest ecosystem of open source libraries. It allows installing
node programs and makes it easier to specify and link dependencies.

1. First we need to install npm if it's not already installed. It is a prerequisite.
You can check the link at https://docs.npmjs.com/getting-started/
installing-node to install npm.

2. To check if npm is set up correctly execute the npm -v command on CLI.
It should return the installed npm version in the output. We can switch to
NetBeans for creating a new AngularJS JS HTML 5 project in NetBeans. At
the time of writing this chapter, I have used NetBeans 8.1.

3. Navigate to File | New Project. A new project dialog should appear. Select
the HTML5/JavaScript under the Categories list and HTML5/JS Application
under the Projects options as shown in the following screenshot:

) New Project @
Steps Choose Project
1. Choose Project Q. Filter:
S it
Categories: Projects:

-----). Grade 73 JJHTML5/35 Application

.....)\ Java ® Mode.js Application

.....) JavaFx ® HTMLS/15 Application with Mode.js

1 B JavaScript Library

----- L JavaWeb
----- 1, JavaEE
-----) HTMLS5{JavaScript

Oracle JET QuickStart Basic

HTML5/15 Application with Existing Sources
® Mode.js Application with Existing Sources
""" 1 Maven @ Cordova Application
-----)\ PHP
----- L Groovy
----- L NetBeans Modules
-1), Samples

Description:

Creates a new HTML5/Javascript application configured for HTML, CSS and JavaScript.

NetBeans - New HTML5/JavaScript project

[190]

https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node

Chapter 7

4. Click on the Next button. Then feed the Project Name, Project Location,
and Project Folder on the Name and Location dialog and click on the

Next button.
) Mew HTMLS/JS Application [
Steps Name and Location
1. Choose Project Project Name: | OTRS_UI

2. Name and Location
3. Site Template Project Location: |C:\dev\workspace\ms\4801_chapter7_ui
4,

Tools
Project Folder: | C:\deviworkspace\ms\4801_chapter 7_ui\OTRS_UL

MNext = Finish Cancel H Help

NetBeans New Project - Name and Location

[191]

Consuming Services Using a Microservice Web App

5. On the Site Template dialog, select the Angular]S Seed item under the
Download Online Template: option and click on the Next button. The

Angular]S Seed project is available at https://github.com/angular/
angular-seed:

() New HTMLS/IS Application =50
Steps Site Template
1. Choose Project Optionally initialize your project structure with a site template.
2. Mame and Location)
3. Site Template () No Site Template
4. Tools () Select Template:
Template:

Browse...
Local archive file or a URL pointing to remote archive file can be specified.
(@) Download Online Template:
Angular]s Seed
Initializr: Bootstrap
Initializr: Classic
Initializr: Responsive

m

-

Description: Clear local cache

Site template for Angular]s projects.

Once created, run npm install” to install dependencies.

’ < Back][MNext = H Einish][Cancel H Help

NetBeans New Project - Site Template

[192]

https://github.com/angular/angular-seed
https://github.com/angular/angular-seed

Chapter 7

6. Onthe Tools dialog, select Create package.json, Create bower.json, and
Create gulpfile.js. We'll use gulp as our build tool. Gulp and Grunt are two
of the most popular build framework for JS. As a Java programmer, you can
correlate these tools to ANT. Both are awesome in their own way. If you
want, you can also use Gruntfile.js as a build tool.

() Mew HTMLS/JS Application [S=ce

Steps Tools

Choose Project -
| Create package.json
Mame and Location s

Site Template Create bower json

Tools . .
e :
Create gulpfile.js

Fl

Mext = [Einish H Cancel H Help

Netbeans New Project - Tools

[193]

Consuming Services Using a Microservice Web App

7. Now, once you click on Finish, you can see the HTML5/]S Application
directories and files. The directory structure will look like the following

screenshot:
Projects % | Files | Services | =]
=@

B3 Site Root

H-| 1) components
- wiewl
-

+

) wiew2

..... Ty app.css

----- & apps

----- [€] index-async.html
----- [&] index.html

- f3 Unit Tests

Bl 5 Selenium Tests

----- @ protractor.conf.js
----- @‘] SCEnarios.js

-1 & Important Files

----- [# bowerrc

----- [#5] bower.json

----- @‘] guipfile

----- @ package. json
-l g npm Libraries

----- ﬁ karma-jasmine
----- ﬂ karma-junit-reparter
----- ﬁ protractor

----- ﬁ shelljs

-l g Bower Libraries

----- & angular

----- = angular-oader
----- B angular-mocks
----- & angular-routs
----- & himl5-boilerplate
Wi Karma

Angular]S seed directory structure

[194]

Chapter 7

8. You will also see an exclamation mark in your project if all the required
dependencies are not configured properly. You can resolve project problems
by right clicking the project and then selecting the Resolve Project Problems
option.

() Resolve Project Problems - "OTRS_UT" Project)

Project Problems:

s Missing Bower modules

A Missing npm modules

Description:

Project OTRS_UT uses Bower modules but they are not installed.

Resolve Project Problems dialog

9. Ideally, NetBeans resolves project problems if you click on the
Resolve... button.

10. You can also resolve a few of the problems by giving the correct path for
some of the JS modules like bower, gulp, and node:

e}

Bower: Required to manage the JavaScript libraries for the OTRS app

o

Gulp: A task runner, required for building our projects like ANT

o

Node: For executing our server side OTRS app

[195]

Consuming Services Using a Microservice Web App

M Bower is a dependencies management tool that works like npm. npm
Q is used for installing the Node.js modules, whereas bower is used for
managing your web application's libraries/components.

11. Click on the Tools menu and select Options. Now, set the path of bower,
gulp, and node.js as shown in the HTML/]S tools (top bar icon) in the
following screenshot. For setting up the bower path click on the Bower
tab as shown in the following screenshot and update the path:

SRR I Tam o)
% E @ :.:_‘-.\lava E F @ [J%~J DE Q, |Filter (Ctrl+F)

General Editor Fonts & Colors Keymap Java HTMLf1S| EasyPmd PHP Team Appearance Miscellaneous

Bower | C55 Preprocessors I Gruntl Gulp | Karma I Mobile Platforms | Node.jsl
Bower Path: | C:\Users\user\AppData‘Roaming npm\bower.cmd Browse...] [Search...
Full path of Bawer file {typically bower.cmd). Install Bower
Setting Bower path

12. For setting up the Gulp Path click on the Gulp tab as shown in the following
screenshot and update the path:

o =
% E @ =Java E { ©he) rﬁm DE pla—ts i

General Editor Fonts & Colors Keymap Java HTML{1S| EasyPmd PHP Team Appearance Miscellaneous

| Bower | S5 Preprocessors | Grunt| Gulp | Karma | Mobile Platforms | Node.jsl

Gulp Path: |C:\Users\user)AppDataiRoaminginpm\gulp. cmd Browse...] [Search...
Full path of Gulp file (typically qulp.cmd). Install Gulp
Setting Gulp path

13. For setting up the Node Path click on the Node.js tab as shown in the
following screenshot and update the path:

[196]

Chapter 7

g Options

BT —

- =

5|

HTML/J5

%%2% izi (ﬁg& E!E! h%ﬂava

General Editor Fonts & Colors Keymap Java EasyPmd PHP

| Bower I CS5 Preprocessors | Gruntl Gulp I Karma | Mabile Platﬁ:rms| Node.js |

Q, |Filter {Ctrl+F)

Team Appearance Miscellaneous

Mode Path: |C:l\devinodejsinode.exe
Full path of node file {typically node.exe).

Sources: Mot downloaded {version 5.5.0 -> 0.12.9)

MetBeans needs Node.js ECMAScript 5 sources to work properly.

[Browse... H Search...]

Install Node.js

[Download. ..][Browse...]

Setting Node path

14. Once this is done, package.json will look like the following. We have
modified the values for a few of the entries like name, descriptions,

dependencies, and so on:

{

"name": "otrs-ui",
"private": true,
"1.0.0",

"description":

"version":
"main": "index.js",
"license": "MIT",
"dependencies": {

"coffee-script": "*1.10.0

"gulp-AngularJdS-templatecache":

"del": "*1.1.1",
"gulp-connect": "*3.1.0",
"gulp-file-include":
"gulp-sass": "*2.2.0",
"gulp-util": "*3.0.7",

"run-sequence": "*1.1.5"

"devDependencies":
"coffee-script":
"gulp-sass":

"t1.3.1v,

"*0.6.1",

"jasmine-core": "*2.3.4",

""'0.12",

"karma-chrome-launcher":

Il*lll
Il*lll

"bower" :
"http-server":

"karma" :

"karma-firefox-launcher":
"karma-jasmine": "*0.3.5"

"karma-junit-reporter":

"Online Table Reservation System",

n
’

"t1.8.0",

"t0.13.7",

"t0.1.12",
"t0.1.6",

’

"to.2.2",

[197]

Consuming Services Using a Microservice Web App

"protractor": "A2.1.O",
"shelljs": "*0.2.6"
b
"scripts": {
"postinstall": "bower install",
"prestart": "npm install",
"start": "http-server -a localhost -p 8000 -c-1",
"pretest": "npm install",
"test": "karma start karma.conf.js",

"test-single-run": "karma start karma.conf.js --single-
run'",

"preupdate-webdriver": "npm install",

"update-webdriver": "webdriver-manager update",

"preprotractor": "npm run update-webdriver",

"protractor": "protractor e2e-tests/protractor.conf.js",

"update-index-async": "node -e \"require('shelljs/
global'); sed('-i"', /\\/\\/@@NG_LOADER_START@@
[(\\s\\S]1*\\/\\/@eNG_LOADER ENDe@/, '//@@NG LOADER
STARTe@\\n' + sed(/sourceMappingURL=AngularJS-loader.min.
js.map/, 'sourceMappingURL=bower components/AngularJS-loader/
AngularJdS-loader.min.js.map', 'app/bower components/AngulardsS-
loader/AngularJdS-loader.min.js') + '\\n//@eNG_LOADER_ ENDe@', 'app/
index-async.html') ;\""

}
}

15. Then, we'll update the bower . json as shown in the following:

{

"name": "OTRS-UI",

"description": "OTRS-UI",

"version": "0.0.1",

"license": "MIT",

"private": true,

"dependencies": {
"Angulards": "~1.5.0",
"AngulardS-ui-router": "~0.2.18",
"AngularJdS-mocks": "~1.5.0",
"AngularJS-bootstrap": "~1.2.1",
"AngularJS-touch": "~1.5.0",
"bootstrap-sass-official": "~3.3.6",
"AngularJdS-route": "~1.5.0",
"AngularJS-loader": "~1.5.0",
"ngstorage": "*0.3.10",
"AngularJS-resource": "*1.5.0",

[198]

Chapter 7

16.

17.

18.

"html5-boilerplate": "~5.2.0"

}

Next, we'll modify the .bowerrc file as shown in the following to specify the
directory where bower will store the components defined in bower. json.
We'll store the bower component under the app directory.

{
}

Next, we'll set up the gulpfile.js. We'll use CoffeeScript to define the
gulp tasks. Therefore, we will just define the CoffeeScript in gulpfile.js
and the actual task will be defined in gulpfile.coffee. Let's see the content
of gulpfile.js:

"directory": "app/bower components"

require ('coffee-script/register') ;
require ('./gulpfile.coffee');

In this step, we'll define the gulp configuration. We are using CoffeeScript
to define the gulp file. The name of the gulp file written in CoffeeScript is
gulpfile.coffee. The default task is defined as default sequence:

default sequence = ['connect',6 'build', 'watch']

As per the defined default sequence task, first it will connect to the server,
then build the web app, and keep a watch on the changes. The watch

will help to render changes we make in the code and will be displayed
immediately on the Ul

The most important parts in this script are connect and watch. Others are
self-explanatory.

o

gulp-connect: This is a gulp plugin to run the web server. It also
allows live reload.

gulp-watch: This is a file watcher that uses chokidar and emits vinyl
objects (objects describe the file - its path and content). In simple
words, we can say that gulp-watch watches files for changes and
triggers tasks.

gulpfile.coffee:

gulp = require('gulp')

gutil = require('gulp-util')
del = require('del');

clean = require('gulp-clean')
connect = require('gulp-connect')

[199]

Consuming Services Using a Microservice Web App

fileinclude = require('gulp-file-include')
runSequence = require ('run-sequence')
templateCache = require('gulp-AngulardS-templatecache')

sass require ('gulp-sass')
paths =

scripts:
src: ['app/src/scripts/**/*.js']
dest: 'public/scripts'

scripts2:
src: ['app/src/views/**/* . js']
dest: 'public/scripts'

styles:
src: ['app/src/styles/**/*.scss']
dest: 'public/styles'

fonts:
src: ['app/src/fonts/**/*']
dest: 'public/fonts'

images:
src: ['app/src/images/**/*']
dest: 'public/images'

templates:
src: ['app/src/views/**/* html']
dest: 'public/scripts'

html:
src: ['app/src/*.html']
dest: 'public'

bower:
src: ['app/bower components/x*/*']
dest: 'public/bower components'

#copy bower modules to public directory
gulp.task 'bower', ->
gulp.src (paths.bower.src)
.pipe gulp.dest (paths.bower.dest)
.pipe connect.reload()

#copy scripts to public directory
gulp.task 'scripts', ->
gulp.src (paths.scripts.src)
.pipe gulp.dest (paths.scripts.dest)
.pipe connect.reload()

#copy scripts2 to public directory

[200]

Chapter 7

gulp.task 'scripts2', ->
gulp.src(paths.scripts2.src)
.pipe gulp.dest (paths.scripts2.dest)
.pipe connect.reload/()

#copy styles to public directory
gulp.task 'styles',K ->
gulp.src (paths.styles.src)
.pipe sass|()
.pipe gulp.dest (paths.styles.dest)
.pipe connect.reload()

#copy images to public directory
gulp.task 'images', ->
gulp.src (paths.images.src)
.pipe gulp.dest (paths.images.dest)
.pipe connect.reload()

#copy fonts to public directory
gulp.task 'fonts', ->
gulp.src (paths.fonts.src)
.pipe gulp.dest (paths.fonts.dest)
.pipe connect.reload()

#copy html to public directory
gulp.task 'html', ->
gulp.src(paths.html.src)
.pipe gulp.dest (paths.html.dest)
.pipe connect.reload()

#icompile AngularJdS template in a single js file
gulp.task 'templates', ->
gulp.src (paths.templates.src)
.pipe (templateCache ({standalone: true}))
.pipe(gulp.dest (paths.templates.dest))

#delete contents from public directory
gulp.task 'clean', (callback) ->
del ['./public/**/*'], callback;

#Gulp Connect task, deploys the public directory
gulp.task 'connect', ->
connect.server
root: ['./public']

[201]

Consuming Services Using a Microservice Web App

port: 1337
livereload: true

gulp.task 'watch', ->
gulp.watch paths.scripts.src, ['scripts']
gulp.watch paths.scripts2.src, ['scripts2']
gulp.watch paths.styles.src, ['styles']
gulp.watch paths.fonts.src, ['fonts']
gulp.watch paths.html.src, ['html']
gulp.watch paths.images.src, ['images']
gulp.watch paths.templates.src, ['templates']
gulp.task 'build', ['bower', 'scripts', 'scripts2', 'styles',
'fonts', 'images', 'templates', 'html']
default sequence = ['connect',6 'build', 'watch']

gulp.task 'default', default sequence

gutil.log 'Server started and waiting for changes'

19. Once we are ready with the preceding changes, we will install the gulp using
the following command:

npm install --no-optional gulp

20. Also, we'll install the other gulp libraries like gulp-clean, gulp-connect,
and so on using the following command:

npm install --save --no-optional gulp-util gulp-clean gulp-connect
gulp-file-include run-sequence gulp-AngularJS-templatecache gulp-
sass

21. Now, we can install the bower dependencies defined in the bower . json file
using the following command:

bower install --save

[202]

Chapter 7

ular-ro

htm15-boilerplate#5. pp'\b ponents\htm15-boilerplate

angul: -_im- ; 9 a Wer_com 1gular-mo

omponent

Sample output - bower install --save

22. This is the last step in the setup. Here, we will confirm that the directory
structure should look like the following. We'll keep the src and published
artifacts (in . /public directory) as separate directories. Therefore, the
following directory structure is different from the default Angular]S seed

project:
+---app
+---bower components

+---AngularJds
+---AngularJS-bootstrap
+---AngularJS-loader
+---AngularJS-mocks
+---AngularJS-resource
+---AngularJS-route
+---AngularJS-touch
+---AngularJS-ui-router
+---bootstrap-sass-official
+---html5-boilerplate

[203]

Consuming Services Using a Microservice Web App

| +---jquery

| \---ngstorage
+---components

| \---version
+---node_modules

+---public

| \---css

\---src
+---scripts
+---styles

| +---views
+---e2e-tests
+---nbproject

| \---private
+---node_modules

+---public

| +---bower_ components
| +---scripts

| +---styles

\---test

References to some good reads:

Angular]S by Example, Packt Publishing (https://www.packtpub.com/web-
development/angularjs- example)

Angular Seed Project (https://github.com/angular/angular-seed)
Angular Ul (https://angular-ui.github.io/bootstrap/)

Gulp (http://gulpjs.com/)

Summary

In this chapter, we have learned the new dynamic web application development.

It has changed completely over the years. The web application frontend is completely
developed in pure HTML and JavaScript instead of using any server side technologies
like JSP, servlets, ASP, and so on. Ul app development with JavaScript now has its
own development environment like npm, bower, and so on. We have explored the
AngularJS framework to develop our web app. It made things easier by providing
inbuilt features and support to bootstrap and the $http service that deals with the

AJAX calls.

[204]

https://www.packtpub.com/web-development/angularjs-example
https://www.packtpub.com/web-development/angularjs-example
https://github.com/angular/angular-seed
https://angular-ui.github.io/bootstrap/
http://gulpjs.com/

Chapter 7

I hope you have grasped the Ul development overview and the way modern
applications are developed and integrated with server side microservices. In the
next chapter, we will learn the best practices and common principals of microservice
design. The chapter will provide details about microservices development

using industry practices and examples. It will also contain examples of where
microservices implementation goes wrong and how you can avoid such problems.

[205]

Best Practices and
Common Principles

After all the hard work put in by you towards gaining the experience of developing
the microservice sample project, you must be wondering how to avoid common
mistakes and improve the overall process of developing microservices-based
products and services. We can follow these principles or guidelines to simplify the
process of developing the microservices and avoid/reduce the potential limitations.
We will focus on these key concepts in this chapter.

This chapter is spread across the following three sections:

* Overview and mindset
* Best practices and principals

e Microservices frameworks and tools

Overview and mindset

You can implement microservices-based design on both new and existing products
and services. Contrary to the belief that it is easier to develop and design a new
system from scratch rather than making changes to an existing one that is already
live, each approach has its own respective challenges and advantages.

[207]

Best Practices and Commion Principles

For example, since there is no existing system design for a new product or service,
you have freedom and flexibility to design the system without giving any thought
to its impact. However, you don't have the clarity on both functional and system
requirements for a new system, as these mature and take shape over time. On the
other hand, for mature products and services, you have detailed knowledge and
information of the functional and system requirements. Nevertheless, you have

a challenge to mitigate the risk of impact that design change brings to the table.
Therefore, when it comes to updating a production system from monolithic to
microservices, you will need to plan better than if you were building a system
from scratch.

Experienced and successful software design experts and architects always evaluate
the pros and cons and take a cautious approach to making any change to existing
live systems. One should not make changes to existing live system design simply
because it may be cool or trendy. Therefore, if you would like to update the design
of your existing production system to microservices, you need to evaluate all the
pros and cons before making this call.

I believe that monolithic systems provide a great platform to upgrade to a successful
microservices-based design. Obviously, we are not discussing cost here. You have
ample knowledge of the existing system and functionality, which enables you to
divide the existing system and build microservices based on functionalities and how
those would interact with each other. Also, if your monolithic product is already
modularized in some way, then directly transforming microservices by exposing

an API instead of Application Binary Interface (ABI) is possibly the easiest way of
achieving a microservice architecture. A successful microservices-based system is more
dependent on microservices and their interaction protocol rather than anything else.

Having said that, it does not mean that you cannot have a successful microservices-
based system if you are starting from scratch. However, it is recommended to

start a new project based on monolithic design that gives you perspective and
understanding of the system and functionality. It allows you to find bottlenecks
quickly and guides you to identify any potential feature that can be developed
using microservices. Here, we have not discussed the size of the project, which is
another important factor. We'll discuss this in the next section.

In today's cloud age and agile development world, it takes an hour between making
any change and the change going live. In today's competitive environment, every
organization would like to have an edge for quickly delivering features to the user.
Continuous development, integration, and deployment are part of the production
delivery process, a completely automatic process.

[208]

Chapter 8

It makes more sense if you are offering cloud-based products or services. Then, a
microservices-based system enables the team to respond with agility to fix any issue
or provide a new feature to the user.

Therefore, you need to evaluate all pros and cons before you make a call for starting
a new microservices-based project from scratch or planning to upgrade the design
of an existing monolithic system to a microservices-based system. You have to listen
to and understand the different ideas and perspectives shared across your team, and
you need to take a cautious approach.

Finally, I would like to share the importance of having better processes and an
efficient system in place for a successful production system. Having a microservices-
based system does not guarantee a successful production system, and monolithic
application does not mean you cannot have a successful production system in
today's age. Netflix, a microservices-based cloud video rental service, and Etsy, a
monolithic e-commerce platform, are both examples of successful live production
systems (see an interesting Twitter discussion link in the Reference section later in
the chapter). Therefore, processes and agility are also key to a successful

production system.

Best practices and principals

As we have learned from the first chapter, microservices are a lightweight style of
implementing Service Oriented Architecture (SOA). On top of that, microservices
are not strictly defined, which gives you the flexibility of developing microservices
the way you want and according to need. At the same time, you need to make sure
that you follow a few of the standard practices and principals to make your job easier
and implement microservices-based architecture successfully.

Nanoservice (not recommended), size, and
monolithic

Each microservice in your project should be small in size and perform one
functionality or feature (for example, user management), independently enough
to perform the function on its own.

The following two quotes from Mike Gancarz (a member that designed the
X windows system), which defines one of the paramount precepts of UNIX
philosophy, suits the microservice paradigm as well:

"Small is beautiful."

"Make each program do one thing well."

[209]

Best Practices and Commion Principles

Now, how to define the size, in today's age, when you have a framework (for example
Finangle) that reduces the lines of code (LOC)? In addition, many modern languages,
such as Python and Erlang, are less verbose. This makes it difficult to decide whether
you want to make this code microservice or not.

Apparently, you may implement a microservice for a small number of LOC, that is
actually not a microservice but a nanoservice.

Arnon Rotem-Gal-Oz defined nanoservice as follows:

"Nanoservice is an antipattern where a service is too fine-grained. A nanoservice
is a service whose overhead (communications, maintenance, and so on) outweighs
its utility."

Therefore, it always makes sense to design microservices based on functionality.
Domain driven design makes it easier to define functionality at a domain level.

As discussed previously, the size of your project is a key factor when deciding
whether to implement microservices or determining the number of microservices
you want to have for your project. In a simple and small project, it makes sense
to use monolithic architecture. For example, based on the domain design that we
learned in Chapter 3, Domain-Driven Design you would get a clear understanding of
your functional requirements and it makes facts available to draw the boundaries
between various functionalities or features. For example, in the sample project
(OTRS) we have implemented, it is very easy to develop the same project using
monolithic design; provided you don't want to expose the APIs to the customer,
or you don't want to use it as SaaS, or there are plenty of similar parameters that
you want to evaluate before making a call.

You can migrate the monolithic project to microservices design later, when the need
arises. Therefore, it is important that you should develop the monolithic project in
modular fashion and have the loose coupling at every level and layer, and ensure there
are predefined contact points and boundaries between different functionalities and
features. In addition, your data source, such as DB, should be designed accordingly.
Even if you are not planning to migrate to a microservices-based system, it would
make bug fixes and enhancement easier to implement.

Paying attention to the previous points will mitigate any possible difficulties you
may encounter when you migrate to microservices.

Generally, large or complex projects should be developed using microservices-
based architecture, due to the many advantages it provides, as discussed in
previous chapters.

[210]

Chapter 8

Even I recommended developing your initial project as monolithic; once you gain a
better understanding of project functionalities and project complexity, then you can
migrate it to microservices. Ideally, a developed initial prototype should give you the
functional boundaries that will enable you to make the right choice.

Continuous integration and deployment

You must have a continuous integration and deployment process in place. It gives
you an edge to deliver changes faster and detect bugs early. Therefore, each service
should have its own integration and deployment process. In addition, it must be
automated. There are many tools available, such as Teamcity, Jenkins, and so on, that
are used widely. It helps you to automate the build process —which catches build
failure early, especially when you integrate your changes with mainline.

You can also integrate your tests with each automated integration and deployment
process. Integration Testing tests the interactions of different parts of the system,
like between two interfaces (API provider and consumer), or among different
components or modules in a system, such as between DAO and database, and so

on. Integration testing is important as it tests the interfaces between the modules.
Individual modules are first tested in isolation. Then, integration testing is performed
to check the combined behavior and validate that requirements are implemented
correctly. Therefore, in microservices, integration testing is a key tool to validate the
APIs. We will cover more about it in the next section.

Finally, you can see the update mainline changes on your DIT machine where this
process deploys the build.

The process does not end here; you can make a container, like docker and hand it
over to your WebOps team, or have a separate process that delivers to a configured
location or deploy to a WebOps stage environment. From here it could be deployed
directly to your production system once approved by the designated authority.

System/end-to-end test automation

Testing is a very important part of any product and service delivery. You do not
want to deliver buggy applications to customers. Earlier, at the time when the
waterfall model was popular, an organization used to take one to six months or more
for the testing stage before delivering to the customer. In recent years, after agile
process became popular, more emphasis is given to automation. Similar to prior
point testing, automation is also mandatory.

[211]

Best Practices and Commion Principles

Whether you follow Test Driven Development (TDD) or not, we must have system
or end-to-end test automation in place. It's very important to test your business
scenarios and that is also the case with end-to-end testing that may start from your
REST call to database checks, or from Ul app to database checks.

Also, it is important to test your APIs if you have public APIs.

Doing this makes sure that any change does not break any of the functionality and
ensures seamless, bug-free production delivery. As discussed in the last section, each
module is tested in isolation using unit testing to check everything is working as
expected, then integration testing is performed among different modules to check the
expected combined behavior and validate the requirements, whether implemented
correctly or not. After integration tests, functional tests are executed that validate the
functional and feature requirements.

So, if unit testing makes sure individual modules are working fine in isolation,
integration testing makes sure that interaction among different modules works as
expected. If unit tests are working fine, it implies that the chances of integration
test failure is greatly reduced. Similarly, integration testing ensures that functional
testing is likely to be successful.

It is presumed that one always keeps all types of tests updated,
s~ whether these are unit-level tests or end-to-end test scenarios.

Self-monitoring and logging

Microservices should provide service information about itself and the state of the
various resources it depends on. Service information represents the statistics such
as the average, minimum, and maximum time to process a request, the number of
successful and failed requests, being able to track a request, memory usage, and
SO On.

Adrian Cockcroft highlighted a few practices, which are very important for
monitoring the microservices, in Glue Conference (Glue Con) 2015. Most of them
are valid for any monitoring system:

* Spend more time working on code that analyzes the meaning of metrics than
code that collects, moves, stores, and displays metrics.

This helps to not only increase the productivity, but also provides important
parameters to fine-tune the microservices and increase the system efficiency.
The idea is to develop more analysis tools rather than developing more
monitoring tools.

[212]

Chapter 8

* The metric to display latency needs to be less than the human attention span.
That means less than 10 seconds, according to Adrian.

* Validate that your measurement system has enough accuracy and precision.
Collect histograms of response time.

* Accurate data makes decision making faster and allows you to fine-tune till
precision level. He also suggests that the best graph to show the response
time is a histogram.

* Monitoring systems need to be more available and scalable than the systems
being monitored.

* The statement says it all: you cannot rely on a system which itself is not
stable or available 24/7.

* Optimize for distributed, ephemeral, cloud native, containerized microservices.

* Fit metrics to models to understand relationships.

Monitoring is a key component of microservice architecture. You may have a dozen
to thousands of microservices (true for a big enterprise's large project) based on
project size. Even for scaling and high availability, organizations create a clustered
or load-balanced pool/pod for each microservice, even separate pools for each
microservice based on versions. Ultimately, it increases the number of resources you
need to monitor, including each microservice instance. In addition, it is important
that you should have a process in place so that whenever something goes wrong,
you know it immediately, or better, receive a warning notification in advance before
something goes wrong. Therefore, effective and efficient monitoring is crucial for
building and using the microservice architecture. Netflix uses security monitoring
using tools like Netflix Atlas (real-time operational monitoring which processes

1.2 billion metrics), Security Monkey (for monitoring security on AWS-based
environments), Scumblr (intelligence gathering tool) and FIDO (for analyzing events
and automated incident reporting).

Logging is another important aspect for microservices that should not be ignored.
Having effective logging makes all the difference. As there could be 10 or more
microservices, managing logging is a huge task.

For our sample project, we have used MDC logging, which is sufficient, in a way,
for individual microservice logging. However, we also need logging for an entire
system, or central logging. We also need aggregated statistics of logs. There are tools
that do the job, like Loggly or Logspout.

[213]

Best Practices and Commion Principles

A request and generated correlated events gives you an overall view
of the request. For tracing of any event and request, it is important

to associate the event and request with service ID and request ID
’ respectively. You can also associate the content of the event, such as

message, severity, class name, and so on, to service ID.

A separate data store for each microservice

If you remember, the most important characteristics of microservices you can find
out about is the way microservices run in isolation from other microservices, most
commonly as standalone applications.

Abiding by this rule, it is recommended that you not use the same database, or
any other data store across multiple microservices. In large projects, you may have
different teams working on the same project, and you want the flexibility to choose
the database for each microservice that best suits the microservice.

Now, this also brings some challenges.

For instance, the following is relevant to teams who may be working on different
microservices within the same project, if that project shares the same database
structure. There is a possibility that a change in one microservice may impact the
other microservices model. In such cases, change in one may affect the dependent
microservice, so you also need to change the dependent model structure.

To resolve this issue, microservices should be developed based on an API-driven
platform. Each microservice would expose its APIs, which could be consumed by
the other microservices. Therefore, you also need to develop the APIs, which is
required for the integration of different microservices.

Similarly, due to different data stores, actual project data is also spread across multiple
data stores and it makes data management more complicated, because the separate
storage systems can more easily get out of sync or become inconsistent, and foreign
keys can change unexpectedly. To resolve such an issue, you need to use Master
Data Management (MDM) tools. MDM tools operate in the background and fix
inconsistencies if they find any. For the OTRS sample example, it might check every
database that stores booking request IDs, to verify that the same IDs exist in all of
them (in other words, that there aren't any missing or extra IDs in any one database).
MDM tools available in the market include Informatica, IBM MDM Advance Edition,
Oracle Siebel UCM, Postgres (master streaming replication), mariadb (master/master
configuration), and so on.

[214]

Chapter 8

If none of the existing products suit your requirements, or you are not interested
in any proprietary product, then you can write your own. Presently, API-driven
development and platform reduce such complexities; therefore, it is important that
microservices should be developed along with an API platform.

Transaction boundaries

We have gone through domain driven design concepts in Chapter 3, Domain-Driven
Design. Please review this if you have not grasped it thoroughly, as it gives you an
understanding of the state vertically. Since we are focusing on microservices-based
design, the result is that we have a system of systems, where each microservice
represents a system. In this environment, finding the state of a whole system at
any given point in time is very challenging. If you are familiar with distributed
applications, then you may be comfortable in such an environment, with respect
to state.

It is very important to have transaction boundaries in place that describe which
microservice owns a message at any given time. You need a way or process that
can participate in transactions, transacted routes and error handlers, idempotent
consumers, and compensating actions. It is not an easy task to ensure transactional
behavior across heterogeneous systems, but there are tools available that do the job
for you.

For example, Camel has great transactional capabilities that help developers easily
create services with transactional behavior.

Microservices frameworks and tools

It is always better not to reinvent the wheel. Therefore, we would like to explore
what tools are already available and provide the platform, framework, and features
that make microservices development and deployment easier.

Throughout the book, we have used the Spring Cloud extensively, due to the

same reason; it provides all the tools and platform required to make microservice
development very easy. Spring Cloud uses the Netflix Open Source Software (OSS).
Let us explore Netflix OSS—a complete package.

I have also added a brief overview about how each tool will help to build good
microservice architecture.

[215]

Best Practices and Commion Principles

Netflix Open Source Software (OSS)

Netflix OSS center is the most popular and widely-used open source software for
Java-based microservice open source projects. The world's most successful video
renting service is dependent on it. Netflix has more than 40 million users and is used
across the globe. Netflix is a pure cloud-based solution, developed on microservice-
based architecture. You can say that whenever anybody talks about microservices,
Netflix is the first name that comes to mind. Let us discuss the wide variety of tools
it provides. We have already discussed many of them while developing the sample
OTRS app. However, there are a few which we have not explored. Here, we'll cover
only the overview of each tool, instead of going into detail. It will give you an overall
idea of the practical characteristics of microservices architecture and its use in Cloud.

Build — Nebula

Netflix Nebula is a collection of Gradle plugins that makes your microservice builds
easier using Gradle (a Maven-like build tool). For our sample project, we have made
use of Maven, therefore we haven't had the opportunity to explore Nebula in this
book. However, exploring it would be fun. The most significant Nebula feature for
developers is eliminating the boilerplate code in Gradle build files, which allows
developers to focus on coding.

Having a good build environment, especially CI/CD (continuous
& integration and continuous deployment) is a must for microservice
— development and keeping aligned with agile development. Netflix
Nebula makes your build easier and more efficient.

Deployment and delivery — Spinnaker with Aminator

Once your build is ready, you want to move that build to Amazon Web Services
(AWS) EC2. Aminator creates and packages images of builds in the form of Amazon
Machine Image (AMI). Spinnaker then deploys these AMIs to AWS.

Spinnaker is a continuous delivery platform for releasing code changes with high
velocity and efficiency. Spinnaker also supports other cloud services, such as Google
Computer Engine and Cloud Foundry.

You would like to deploy your latest microservice builds to cloud
environments like EC2. Spinnaker and Aminator helps you to do
’ that in an autonomous way.

[216]

Chapter 8

Service registration and discovery — Eureka

Eureka, as we have explored in this book provides a service that is responsible for
microservice registration and discovery. On top of that, Eureka is also used for load-
balancing the middle-tier (processes hosting different microservices). Netflix also
uses Eureka, along with other tools, like Cassandra or memcached, to enhance its
overall usability.

Service registration and discovery is a must for microservice

architecture. Eureka serves this purpose. Please refer to Chapter 4,
’ Implementing Microservices for more information about Eureka.

Service communication — Ribbon

Microservice architecture is of no use if there is no inter-process or service
communication. The Ribbon application provides this feature. Ribbon works with
Eureka for load balancing and with Hystrix for fault tolerance or circuit breaker
operations.

Ribbon also supports TCP and UDP protocols, apart from HTTP. It provides these
protocol supports in both asynchronous and reactive models. It also provides the
caching and batching capabilities.

Since you will have many microservices in your project, you

need a way to process information using inter-process or service
communication. Netflix provides the Ribbon tool for this purpose.

Circuit breaker — Hystrix

Hystrix tool is for circuit breaker operations, that is, latency and fault tolerance.
Therefore, Hystrix stops cascading failures. Hystrix performs the real-time
operations for monitoring the services and property changes, and supports
concurrency.

. Circuit breaker, or fault tolerance, is an important concept for any
% project, including microservices. Failure of one microservice should
= not halt your entire system; to prevent this, and provide meaningful
information to the customer on failure, is the job of Netflix Hystrix.

[217]

Best Practices and Commion Principles

Edge (proxy) server — Zuul

Zuul is an edge server or proxy server, and serves the requests of external
applications such as Ul client, Android/iOS app, or any third-party consumer
of APIs offered by the product or service. Conceptually, it is a door to external
applications.

Zuul allows dynamic routing and monitoring of requests. It also performs security
operations like authentication. It can identify authentication requirements for each
resource and reject any request that does not satisfy them.

You need an edge server or API gateway for your microservices.
@@j%“ Netflix Zuul provides this feature. Please refer to Chapter 5,
’ Deployment and Testing for more information.

Operational monitoring — Atlas

Atlas is an operational monitoring tool that provides near real-time information on
dimensional time-series data. It captures operational intelligence that provides a
picture of what is currently happening within a system. It features in-memory data
storage, allowing it to gather and report very large numbers of metrics very quickly.
At present, it processes 1.3 billion metrics for Netflix.

Atlas is a scalable tool. This is why it can now process 1.3 billion metrics, from 1
million metrics a few years back. Atlas not only provides scalability in terms of
reading the data, but also aggregating it as a part of graph request.

Atlas uses the Netflix Spectator library for recording dimensional time-series data.

Once you deploy microservices in Cloud environment,
a you need to have a monitoring system in place to track and
monitor all microservices. Netflix Atlas does this job for you

Reliability monitoring service — Simian Army

In Cloud, no single component can guarantee 100% uptime. Therefore, it is a
requirement for successful microservice architecture to make the entire system
available in case a single cloud component fails. Netflix has developed a tool named
Simian Army to avoid system failure. Simian Army keeps a cloud environment safe,
secure, and highly available. To achieve high availability and security, it uses various
services (Monkeys) in the cloud for generating various kinds of failures, detecting
abnormal conditions, and testing the cloud's ability to survive these challenges.

It uses the following services (Monkeys), which are taken from the Netflix blog:

[218]

Chapter 8

* Chaos Monkey: Chaos Monkey is a service which identifies groups
of systems and randomly terminates one of the systems in a group.
The service operates at a controlled time and interval. Chaos Monkey
only runs in business hours with the intent that engineers will be alert
and able to respond.

* Janitor Monkey: Janitor Monkey is a service which runs in the AWS cloud
looking for unused resources to clean up. It can be extended to work with
other cloud providers and cloud resources. The schedule of service is
configurable. Janitor Monkey determines whether a resource should be
a cleanup candidate, by applying a set of rules on it. If any of the rules
determines that the resource is a cleanup candidate, Janitor Monkey marks
the resource and schedules a time to clean it up. For exceptional cases, when
you want to keep an unused resource longer, before Janitor Monkey deletes a
resource, the owner of the resource will receive a notification a configurable
number of days ahead of the cleanup time.

* Conformity Monkey: Conformity Monkey is a service which runs in the
AWS cloud looking for instances that are not conforming to predefined rules
for the best practices. It can be extended to work with other cloud providers
and cloud resources. The schedule of service is configurable.

If any of the rules determines that the instance is not conforming, the monkey
sends an e-mail notification to the owner of the instance. There could be
exceptional cases where you want to ignore warnings of a specific conformity
rule for some applications.

* Security Monkey: Security Monkey monitors policy changes and alerts on
insecure configurations in an AWS account. The main purpose of Security
Monkey is security, though it also proves a useful tool for tracking down
potential problems, as it is essentially a change-tracking system.

* Successful microservice architecture makes sure that your system is always
up, and failure of a single cloud component should not fail the entire system.
Simian Army uses many services to achieve high availability.

AWS resource monitoring — Edda

In a cloud environment, nothing is static. For example, virtual host instance changes
frequently, an IP address could be reused by various applications, or a firewall or
related changes may take place.

[219]

Best Practices and Commion Principles

Edda is a service that keeps track of these dynamic AWS resources. Netflix named it
Edda (meaning a fale of Norse mythology), as it records the tales of cloud management
and deployments. Edda uses the AWS APIs to poll AWS resources and records the
results. These records allow you to search and see how the cloud has changed over
time. For instance, if any host of the API server is causing any issue, then you need
to find out what that host is and which team is responsible for it.

These are the features it offers:

* Dynamic querying: Edda provides the REST APIs, and it supports the
matrix arguments and provides fields selectors that let you retrieve only
the desired data.

* History/Changes: Edda maintains the history of all AWS resources.
This information helps you when you analyze the causes and impact of
outage. Edda can also provide the different view of current and historical
information about resources. It stores the information in MongoDB at the
time of writing.

* Configuration: Edda supports many configuration options. In general, you
can poll information from multiple accounts and multiple regions and can
use the combination of account and regions that account points. Similarly, it
provides different configurations for AWS, Crawler, Elector, and MongoDB.

* If you are using the AWS for hosting your microservice based product,
then Edda serves the purpose of monitoring the AWS resources.

On-host performance monitoring — Vector

Vector is a static web application and runs inside a web browser. It allows it to
monitor the performance of those hosts where Performance Co-Pilot (PCP) is
installed. Vector supports PCP version 3.10+. PCP collects metrics and makes them
available to Vector.

It provides high-resolution right metrics available on demand. This helps engineers
to understand how a system behaves and correctly troubleshoot performance issues.

A monitoring tool that helps you to monitor the performance of
s a remote host.

[220]

Chapter 8

Distributed configuration management — Archaius

Archaius is a distributed configuration management tool that allows you to do
the following:

* Use dynamic and typed properties

* Perform thread-safe configuration operations

* Check for property changes using a polling framework

* Use a callback mechanism in an ordered hierarchy of configurations

* Inspect and perform operations on properties using JConsole, as Archaius
provides the JMX MBean

* A good configuration management tool is required when you have a

microservices-based product. Archaius helps to configure different types
of properties in a distributed environment.

Scheduler for Apache Mesos — Fenzo

Fenzo is a scheduler library for Apache Mesos frameworks written in Java. Apache
Mesos frameworks match and assign resources to pending tasks. The following are
its key features:

* It supports long-running service style tasks and for batch
e [t can auto-scale the execution host cluster, based on resource demands

* It supports plugins that you can create based on requirements

* You can monitor resource-allocation failures, which allows you to debug
the root cause

Cost and cloud utilization — Ice

Ice provides a bird's eye view of cloud resources from a cost and usage perspective.
It provides the latest information of provisioned cloud resources allocation to
different teams that add value for optimal utilization of the cloud resources.

Ice is a grail project. Users interacts with the Ice Ul component that displays the
information sent via the Ice reader component. The reader fetches information from
the data generated by the Ice processor component. The Ice processor component
reads data information from a detailed cloud billing file and converts it into data
that is readable by the Ice reader component.

[221]

Best Practices and Commion Principles

Other security tools — Scumblr and FIDO

Along with Security Monkey, Netflix OSS also makes use of Scumblr and Fully
Integrated Defense Operation (FIDO) tools.

To keep track and protect your microservices from regular threats

and attacks, you need an automated way to secure and monitor
g your microservices. Netflix Scumblr and FIDO do this job for you.

Scumblr

Scumblr is a Ruby on Rails-based web application that allows you to perform
periodic searches and store/take action on the identified results. Basically, it gathers
intelligence that leverages Internet-wide targeted searches to surface specific security
issues for investigation.

Scumblr makes use of Workflowable gem to allow setting up flexible workflows for
different types of results. Scumblr searches utilize plugins called Search Providers.
It checks the anomaly like following. Since it is extensible, you can add as many as
you want:

* Compromised credentials
* Vulnerability /hacking discussion
* Attack discussion

* Security-relevant social media discussion

Fully Integrated Defence Operation (FIDO)

FIDO is a security orchestration framework for analyzing events and automating
incident responses. It automates the incident response process by evaluating,
assessing and responding to malware. FIDO's primary purpose is to handle the
heavy manual effort needed to evaluate threats coming from today's security stack
and the large number of alerts generated by them.

As an orchestration platform, FIDO can make using your existing security tools more
efficient and accurate by heavily reducing the manual effort needed to detect, notify,
and respond to attacks against a network. For more information, you can refer these
following links:

https://github.com/Netflix/Fido https://github.com/Netflix

[222]

https://github.com/Netflix/Fido https://github.com/Netflix

Chapter 8

References

Monolithic (Etsy) versus Microservices (Netflix) Twitter discussion
https://twitter.com/adrianco/status/441169921863860225

* Monitoring Microservice and Containers Presentation by Adrian Cockcroft:
http://www.slideshare.net/adriancockcroft/gluecon-monitoring-
microservices-and-containers-a-challenge

* Nanoservice Antipattern: http://arnon.me/2014/03/services-
microservices-nanoservices/

* Apache Camel for Microservice Architectures: https://www.
javacodegeeks.com/2014/09/apache-camel-for-micro%C2%ADservice-
architectures.html

* Teamcity: https://www.jetbrains.com/teamcity/
e Jenkins: https://jenkins-ci.org/

* Loggly: https://www.loggly.com/

Summary

In this chapter, we have explored various practices and principles, which are best-
suited for microservices-based products and services. Microservices architecture is

a result of cloud environments, which are being used widely in comparison to on-
premise-based monolithic systems. We have identified a few of the principals related
to size, agility, and testing, that have to be in place for successful implementation.

We have also got an overview of different tools used by Netflix OSS for the various
key features required for successful implementation of microservices architecture-
based products and services. Netflix offers a video rental service, using the same
tools successfully.

In the next chapter, readers may encounter issues and they may get stuck at those
problems. The chapter explains the common problems encountered during the
development of microservices, and their solutions.

[223]

https://twitter.com/adrianco/status/441169921863860225
http://www.slideshare.net/adriancockcroft/gluecon-monitoring-microservices-and-containers-a-challenge
http://www.slideshare.net/adriancockcroft/gluecon-monitoring-microservices-and-containers-a-challenge
http://arnon.me/2014/03/services-microservices-nanoservices/
http://arnon.me/2014/03/services-microservices-nanoservices/
https://www.javacodegeeks.com/2014/09/apache-camel-for-micro%C2%ADservice-architectures.html
https://www.javacodegeeks.com/2014/09/apache-camel-for-micro%C2%ADservice-architectures.html
https://www.javacodegeeks.com/2014/09/apache-camel-for-micro%C2%ADservice-architectures.html
https://www.jetbrains.com/teamcity/
https://jenkins-ci.org/
https://www.loggly.com/

Troubleshooting Guide

We have come so far and I am sure you are enjoying each and every moment of
this challenging and joyful learning journey. I will not say that this book ends

after this chapter, but rather you are completing the first milestone. This milestone
opens the doors for learning and implementing a new paradigm in the cloud with
microservice-based design. I would like to reaffirm that integration testing is an
important way to test interaction among microservices and APIs. While working on
your sample app Online Table Reservation System (OTRS), I am sure you faced
many challenges, especially while debugging the app. Here, we will cover a few of
the practices and tools that will help you to troubleshoot the deployed application,
Docker containers, and host machines.

This chapter covers the following three topics:

* Logging and ELK stack
e Use of correlation ID for service calls

* Dependencies and versions

Logging and ELK stack

Can you imagine debugging any issue without seeing a log on the production
system? Simply, no, as it would be difficult to go back in time. Therefore, we need
logging. Logs also give us warning signals about the system if they are designed and
coded that way. Logging and log analysis is an important step for troubleshooting
any issue, and also for throughput, capacity, and monitoring the health of the
system. Therefore, having a very good logging platform and strategy will enable
effective debugging. Logging is one of the most important key components of
software development in the initial days.

[225]

Troubleshooting Guide

Microservices are generally deployed using image containers like Docker that
provide the log with commands that help you to read logs of services deployed
inside the containers. Docker and Docker Compose provide commands to stream the
log output of running services within the container and in all containers respectively.
Please refer to the following logs command of Docker and Docker Compose:

Docker logs command:
Usage: docker logs [OPTIONS] <CONTAINER NAME>

Fetch the logs of a container:

-f, --follow Follow log output

--help Print usage

--since="" Show logs since
timestamp

-t, --timestamps Show timestamps

--tail="all" Number of lines to show

from the end of the logs

Docker Compose logs Command:
Usage: docker-compose logs [options] [SERVICE...]

Options:

--no-color Produce monochrome output
-f, --follow Follow log output

-t, --timestamps Show timestamps

--tail Number of lines to show from the end of the
logs for each container

[SERVICES..] Service representing the container - you
can give multiple

These commands help you to explore the logs of microservices and other processes
running inside the containers. As you can see, using the above commands would

be a challenging task when you have a higher number of services. For example,

if you have 10s or 100s of microservices, it would be very difficult to track each
microservice log. Similarly, you can imagine, even without containers, how difficult
it would be to monitor logs individually. Therefore, you can assume the difficulty of
exploring and correlating the logs of 10s to 100s of containers. It is time-consuming
and adds very little value.

Therefore, a log aggregator and visualizing tools like the ELK stack come to our
rescue. It will be used for centralizing logging. We'll explore this in the next section.

[226]

Chapter 9

A brief overview

The Elasticsearch, Logstash, Kibana (ELK) stack is a chain of tools that performs
log aggregation, analysis, visualization, and monitoring. The ELK stack provides

a complete logging platform that allows you to analyze, visualize, and monitor all
your logs, including all types of product logs and system logs. If you already know
about the ELK stack, please skip to the next section. Here, we'll provide a brief
introduction to each tool in the ELK Stack.

Elasticsearch

Elasticsearch is one of the most popular enterprise full text search engines. It is
open sourced software. It is distributable and supports multitenancy. A single
Elasticsearch server stores multiple indexes (each index represents a database),
and a single query can search data of multiple indexes. It is a distributed search
engine and supports clustering.

It is readily scalable and can provide near real-time searches with a latency of 1
second. It is developed in Java using Apache Lucene. Apache Lucene is also free,
open sourced, and it provides the core of Elasticsearch, aka the informational
retrieval software library.

Elasticsearch APIs are extensive in nature and very elaborative. Elasticsearch
provides a JSON-based schema, less storage, and represents data models in JSON.
Elasticsearch APIs use JSON documents for HTTP requests and responses.

Logstash

Logstash is an open source data collection engine with real-time pipeline capabilities.
In simple words, it collects, parses, processes, and stores the data. Since Logstash has
data pipeline capabilities, helping you to process any event data, like logs, from a
variety of systems. Logstash runs as an agent that collects the data, parses it, filters it,
and sends the output to a designated app, such as Elasticsearch, or simple standard
output on a console.

[227]

Troubleshooting Guide

It is also has a very good plugin ecosystem (image sourced from www.elastic.co):

Analysis

Archiving

Oo .
—r'.‘

\

Monitoring

- /

—

' .
Alerting

Logstash ecosystem

Kibana

Kibana is an open source analytics and visualization web application. It is designed
to work with Elasticsearch. You use Kibana to search, view, and interact with data
stored in Elasticsearch indices.

It is a browser-based web application that lets you perform advanced data analysis
and visualize your data in a variety of charts, tables, and maps. Moreover, it is a
zero-configuration application. Therefore, it neither needs any coding nor additional
infrastructure after installation.

ELK stack setup

Generally, these tools are installed individually and then configured to communicate
with each other. The installation of these components is pretty straight forward.
Download the installable artifact from the designated location and follow the
installation steps as shown in the next section.

The installation steps provided below are part of a basic setup, which is required
for setting up the ELK stack you want to run. Since this installation was done on my
localhost machine, I have used the host localhost. It can be changed easily with any
respective host name that you want.

[228]

www.elastic.co

Chapter 9

Installing Elasticsearch

We can install Elasticsearch by following these steps:

1.

Download the latest Elasticsearch distribution from https://www.elastic.
co/downloads/elasticsearch.

Unzip it to the desired location in your system.

Make sure the latest Java version is installed and the JAVA HOME environment
variable is set.

Go to Elasticsearch home and run bin/elasticsearch on Unix-based
systems and bin/elasticsearch.bat on Windows.

Open any browser and hit http://localhost:9200/. On successful
installation it should provide you a JSON object similar to that shown
as follows:

{

"name" : "Leech",
"cluster name" : "elasticsearch",
"version" : {
"number" : "2.3.1",
"build hash" : "bd980929010aef404e7cb0843e61d0665269£fc39",
"build timestamp" : "2016-04-04T12:25:05zZ",
"build snapshot" : false,
"lucene version" : "5.5.0"
b
"tagline" : "You Know, for Search"

}

By default, the GUI is not installed. You can install one by executing the
following command from the bin directory; make sure the system is
connected to the Internet:

plugin -install mobz/elasticsearch-head
Now you can access the GUI interface with the URL
http://localhost:9200/ plugin/head/.

You can replace localhost and 9200 with your respective hostname and
port number.

[229]

Troubleshooting Guide

Installing Logstash

We can install Logstash by following the given steps:

1.

Download the latest Logstash distribution from https://www.elastic.co/
downloads/logstash.

Unzip it to the desired location in your system.

Prepare a configuration file, as shown below. It instructs Logstash to read
input from given files and passes it to Elasticsearch (see the following config
file; Elasticsearch is represented by localhost and 9200 port). It is the simplest
configuration file. To add filters and learn more about Logstash, you can
explore the Logstash reference documentation available at https: //www.
elastic.co/guide/en/logstash/current/index.html.

As you can see, the OTRS service log and edge-server
%ji‘ log are added as input. Similarly, you can also add log files
’ of other microservices.

input {
OTRS
file {
path => "\logs\otrs-service.log"
type => "otrs-api"
codec => "json"
start position => "beginning"

edge
file {
path => "/logs/edge-server.log"
type => "edge-server"
codec => "json"
}
}

output {
stdout {
codec => rubydebug
}
elasticsearch
hosts => "localhost:9200"

}

[230]

https://www.elastic.co/downloads/logstash
https://www.elastic.co/downloads/logstash
https://www.elastic.co/guide/en/logstash/current/index.html
https://www.elastic.co/guide/en/logstash/current/index.html

Chapter 9

Go to Logstash home and run bin/logstash agent -f logstash.conf
on Unix-based systems and bin/logstash.bat agent -f logstash.
conf on Windows. Here, Logstash is executed using the agent command.
Logstash agent collects data from the sources provided in the input field in
the configuration file and sends the output to Elasticsearch. Here, we have
not used the filters, because otherwise it may process the input data before
providing it to Elasticsearch.

Installing Kibana
We can install the Kibana web application by following the given steps:

1.

Download the latest Kibana distribution from https://www.elastic.co/
downloads/kibana.

Unzip it to the desired location in your system.

Open the configuration file config/kibana.yml from the Kibana home
directory and point the elasticsearch.url to the previously configured
Elasticsearch instance:

elasticsearch.url: "http://localhost:9200"

Go to Kibana home and run bin/kibana agent -f logstash.conf on
Unix-based systems and bin/kibana.bat agent -f logstash.conf on
Windows.

Now you can access the Kibana app from your browser using the URL
http://localhost:5601/.

To learn more about Kibana, explore the Kibana reference documentation at
https://www.elastic.co/guide/en/kibana/current/getting-started.
html.

As we followed the above steps, you may have noticed that it requires some amount
of effort. If you want to avoid a manual setup, you can Dockerize it. If you don't
want to put effort into creating the Docker container of the ELK stack, you can
choose one from Docker Hub. On Docker Hub there are many ready-made ELK stack
Docker images. You can try different ELK containers and choose the one that suits
you the most. willdurand/elk is the most downloaded container and is easy to start,
working well with Docker Compose.

Tips for ELK stack implementation

To avoid any data loss and handle the sudden spike of input load, using
a broker, such as Redis or RabbitMQ), is recommended between Logstash
and Elasticsearch.

[231]

https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/guide/en/kibana/current/getting-started.html
https://www.elastic.co/guide/en/kibana/current/getting-started.html

Troubleshooting Guide

* Use an odd number of nodes for Elasticsearch if you are using clustering to
prevent the split-brain problem.

* In Elasticsearch, always use the appropriate field type for given data.
This will allow you to perform different checks, for example, the int
field type will allow you to perform ("http_status: <400")or ("http_
status:=200"). Similarly, other field types also allow you to perform
similar checks.

Use of correlation ID for service calls

When you make a call to any REST endpoint and if any issue pops up, it is difficult
to trace the issue and its root origin because each call is made to server, and this call
may call another and so on and so forth. This makes it very difficult to figure out
how one particular request was transformed and what it was called. Normally, an
issue that is caused by one service can cause service elsewhere. It is very difficult to
track and may require an enormous amount of effort. If it is monolithic, you know
that you are looking in the right direction but microservices make it difficult to
understand what the source of the issue is and where you should get your data.

Let's see how we can tackle this problem

By using a correlation ID that is passed across all calls, it allows you to track each
request and track the route easily. Each request will have its unique correlation ID.
Therefore, when we debug any issue, the correlation ID is our starting point. We can
follow it, and along the way, we can find out what went wrong.

The correlation ID requires some extra development effort, but it's effort well spent as
it helps a lot in the long run. When a request travels between different microservices,
you will be able to see all interactions and which service has problems.

This is not something new or invented for microservices. This pattern is already
being used by many popular products such as Microsoft SharePoint.

Dependencies and versions

Two common problems that we face in product development are cyclic dependencies
and API versions. We'll discuss them in terms of microservice based architectures.

[232]

Chapter 9

Cyclic dependencies and their impact

Generally, monolithic architecture has a typical layer model, whereas microservices
carry the graph model. Therefore, microservices may have cyclic dependencies.

Therefore, it is necessary to keep a dependency check on microservice relationships.
Let us have a look at the following two cases:

* If you have a cycle of dependencies between your microservices, you are
vulnerable to distributed stack overflow errors when a certain transaction
might be stuck in a loop. For example, when a restaurant table is being
reserved by a person. In this case, the restaurant needs to know the person
(findBookedUser), and the person needs to know the restaurant at a given
time (findBookedRestaurant). If it is not designed well, these services may
call each other in loop. The result may be a stack overflow generated by JVM.

* If two services share a dependency and you update that other service's API
in a way that could affect them, you'll need to updated all three at once. This
brings up questions like, which should you update first? In addition, how do
you make this a safe transition?

It needs to be analyzed while designing the system

Therefore, it is important while designing the microservices to establish the proper
relationship between different services internally to avoid any cyclic dependencies.
It is a design issue and must be addressed even if it requires a refactoring of the code.

Maintaining different versions

When you have more services, it means different release cycles for each of them,
which adds to this complexity by introducing different versions of services, in that
there will be different versions of the same REST services. Reproducing the solution
to a problem will prove to be very difficult when it has gone in one version and
returns in a newer one.

'
Let's explore more

The versioning of APIs is important because with time APIs change. Your knowledge
and experience improves with time, and that leads to changes in APIs. Changing
APIs may break existing client integrations.

[233]

Troubleshooting Guide

Therefore, there are various ways for managing the API versions. One of these is
using the version in the path that we have used in this book; some also use the HTTP
header. The HTTP header could be a custom request header or you could use the
Accept Header for representing the calling API version. For more information on how
versions are handled using HTTP headers, please refer to RESTful Java Patterns and
Best Practices by Bhakti Mehta, Packt Publishing: https: //www.packtpub.com/
application-development/restful-java-patterns-and-best-practices.

It is very important while troubleshooting any issue that your microservices are
implemented to produce the version numbers in logs. In addition, ideally, you
should avoid any instance where you have too many versions of any microservice.

References

This following links will have more information:

e FElasticsearch: https://www.elastic.co/products/elasticsearch
. Logstash: https://www.elastic.co/products/logstash

e Kibana: https://www.elastic.co/products/kibana

* willdurand/elk: ELK Docker image

* Mastering Elasticsearch — Second Edition: https://www.packtpub.com/web-
development /mastering-elasticsearch-second-edition

Summary

In this chapter, we have explored the ELK stack overview and installation. In the
ELK stack, Elasticsearch is used for storing the logs and service queries from Kibana.
Logstash is an agent that runs on each server that you wish to collect logs from.
Logstash reads the logs, filters/transforms them, and provides them to Elasticsearch.
Kibana reads/ queries the data from Elasticsearch and presents it in tabular or
graphical visualizations.

We also understand the utility of having the correlation ID while debugging issues.
At the end of this chapter, we also discovered the shortcomings of a few microservice
designs. It was a challenging task to cover all the topics relating to microservices

in this book, so I tried to include as much relevant information as possible with
precise sections with references, which allow you to explore more. Now I would

like to let you start implementing the concepts we have learned in this chapter to
your workplace or in your personal projects. This will not only give you hands-on
experience, but may also allow you to master microservices. In addition, you will
also be able to participate in local meetups and conferences.

[234]

https://www.packtpub.com/application-development/restful-java-patterns-and-best-practices
https://www.packtpub.com/application-development/restful-java-patterns-and-best-practices
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana
https://www.packtpub.com/web-development/mastering-elasticsearch-second-edition
https://www.packtpub.com/web-development/mastering-elasticsearch-second-edition

Module 2

Spring Microservices

Build scalable microservices with Spring, Docker, and Mesos

Demystifying Microservices

Microservices are an architecture style and an approach for software development to
satisfy modern business demands. Microservices are not invented; they are more of
an evolution from the previous architecture styles.

We will start the chapter by taking a closer look at the evolution of the microservices
architecture from the traditional monolithic architectures. We will also examine the
definition, concepts, and characteristics of microservices. Finally, we will analyze
typical use cases of microservices and establish the similarities and relationships
between microservices and other architecture approaches such as Service Oriented
Architecture (SOA) and Twelve-Factor Apps. Twelve-Factor Apps defines a set of
software engineering principles of developing applications targeting the cloud.

In this chapter you, will learn about:

* The evolution of microservices

* The definition of the microservices architecture with examples
* Concepts and characteristics of the microservices architecture
* Typical use cases of the microservices architecture

* The relationship of microservices with SOA and Twelve-Factor Apps

The evolution of microservices

Microservices are one of the increasingly popular architecture patterns next to
SOA, complemented by DevOps and cloud. The microservices evolution is greatly
influenced by the disruptive digital innovation trends in modern business and the
evolution of technologies in the last few years. We will examine these two factors
in this section.

[237]

Demystifying Microservices

Business demand as a catalyst for
microservices evolution

In this era of digital transformation, enterprises increasingly adopt technologies as
one of the key enablers for radically increasing their revenue and customer base.
Enterprises primarily use social media, mobile, cloud, big data, and Internet of
Things as vehicles to achieve the disruptive innovations. Using these technologies,
enterprises find new ways to quickly penetrate the market, which severely pose
challenges to the traditional IT delivery mechanisms.

The following graph shows the state of traditional development and microservices
against the new enterprise challenges such as agility, speed of delivery, and scale.

Microservices

ée

&F

Speed of delivery

Monolithic

Agility

Microservices promise more agility, speed of delivery, and scale
compared to traditional monolithic applications.

Gone are the days when businesses invested in large application developments
with the turnaround time of a few years. Enterprises are no longer interested in
developing consolidated applications to manage their end-to-end business functions
as they did a few years ago.

The following graph shows the state of traditional monolithic applications and
microservices in comparison with the turnaround time and cost.

Manolithic

Microservices

Turn Around Time

Cost

[238]

Chapter 1

‘\‘ Microservices provide an approach for developing quick and agile

applications, resulting in less overall cost.

Today, for instance, airlines or financial institutions do not invest in rebuilding

their core mainframe systems as another monolithic monster. Retailers and other
industries do not rebuild heavyweight supply chain management applications, such
as their traditional ERPs. Focus has shifted to building quick-win point solutions that
cater to specific needs of the business in the most agile way possible.

Let's take an example of an online retailer running with a legacy monolithic
application. If the retailer wants to innovate his/her sales by offering their products
personalized to a customer based on the customer's past shopping, preferences, and
so on and also wants to enlighten customers by offering products based on their
propensity to buy them, they will quickly develop a personalization engine or offers
based on their immediate needs and plug them into their legacy application.

Offer Engine
Personalized
Engine
Personalized
Engine
Core Legacy Core Legacy
System System
Offer Engine
A) Response is iIntercepted to B) Gore logic Is rewritten to callout
Include new functions new functions

As shown in the preceding diagram, rather than investing in rebuilding the core
legacy system, this will be either done by passing the responses through the new
functions, as shown in the diagram marked A, or by modifying the core legacy
system to call out these functions as part of the processing, as shown in the diagram
marked B. These functions are typically written as microservices.

This approach gives organizations a plethora of opportunities to quickly try out new
functions with lesser cost in an experimental mode. Businesses can later validate key
performance indicators and alter or replace these implementations if required.

[239]

Demystifying Microservices

M Modern architectures are expected to maximize the ability to replace
Q their parts and minimize the cost of replacing their parts. The
microservices approach is a means to achieving this.

Technology as a catalyst for the
microservices evolution

Emerging technologies have also made us rethink the way we build software
systems. For example, a few decades back, we couldn't even imagine a distributed
application without a two-phase commit. Later, NoSQL databases made us think
differently.

Similarly, these kinds of paradigm shifts in technology have reshaped all the layers
of the software architecture.

The emergence of HTML 5 and CSS3 and the advancement of mobile applications
repositioned user interfaces. Client-side JavaScript frameworks such as Angular,
Ember, React, Backbone, and so on are immensely popular due to their client-side
rendering and responsive designs.

With cloud adoptions steamed into the mainstream, Platform as a Services

(PaaS) providers such as Pivotal CF, AWS, Salesforce.com, IBMs Bluemix, RedHat
OpenShift, and so on made us rethink the way we build middleware components.
The container revolution created by Docker radically influenced the infrastructure
space. These days, an infrastructure is treated as a commodity service.

The integration landscape has also changed with Integration Platform as a Service
(iPaaS), which is emerging. Platforms such as Dell Boomi, Informatica, MuleSoft,
and so on are examples of iPaaS. These tools helped organizations stretch integration
boundaries beyond the traditional enterprise.

NoSQLs have revolutionized the databases space. A few years ago, we had only a
few popular databases, all based on relational data modeling principles. We have
a long list of databases today: Hadoop, Cassandra, CouchDB, and Neo 4j to name
a few. Each of these databases addresses certain specific architectural problems.

Imperative architecture evolution

Application architecture has always been evolving alongside demanding business
requirements and the evolution of technologies. Architectures have gone through
the evolution of age-old mainframe systems to fully abstract cloud services such
as AWS Lambda.

[240]

Chapter 1

Using AWS Lambda, developers can now drop their "functions" into
~Q a fully managed compute service.

Read more about Lambda at: https://aws.amazon.com/
documentation/lambda/

Different architecture approaches and styles such as mainframes, client server,
N-tier, and service-oriented were popular at different timeframes. Irrespective of
the choice of architecture styles, we always used to build one or the other forms
of monolithic architectures. The microservices architecture evolved as a result

of modern business demands such as agility and speed of delivery, emerging
technologies, and learning from previous generations of architectures.

Monolithie Microservices
Architecture Architecture

Microservices help us break the boundaries of monolithic applications and build a
logically independent smaller system of systems, as shown in the preceding diagram.

\ If we consider monolithic applications as a set of logical
~ subsystems encompassed with a physical boundary, microservices
Q are a set of independent subsystems with no enclosing physical
boundary.

What are microservices?

Microservices are an architecture style used by many organizations today as a game
changer to achieve a high degree of agility, speed of delivery, and scale. Microservices
give us a way to develop more physically separated modular applications.

Microservices are not invented. Many organizations such as Netflix, Amazon, and
eBay successfully used the divide-and-conquer technique to functionally partition
their monolithic applications into smaller atomic units, each performing a single
function. These organizations solved a number of prevailing issues they were
experiencing with their monolithic applications.

[241]

https://aws.amazon.com/documentation/lambda/
https://aws.amazon.com/documentation/lambda/

Demystifying Microservices

Following the success of these organizations, many other organizations started
adopting this as a common pattern to refactor their monolithic applications. Later,
evangelists termed this pattern as the microservices architecture.

Microservices originated from the idea of hexagonal architecture coined by Alistair
Cockburn. Hexagonal architecture is also known as the Ports and Adapters pattern.

1
‘Q Read more about hexagonal architecture at http://alistair.

cockburn.us/Hexagonal+architecture.

Microservices are an architectural style or an approach to building IT systems as a set
of business capabilities that are autonomous, self-contained, and loosely coupled:

Module A Module B Module C

Presentation Layer

Module A Module B Module C

Business Layer

Database i]

Module A Module B Module C

The preceding diagram depicts a traditional N-tier application architecture having

a presentation layer, business layer, and database layer. The modules A, B, and C
represent three different business capabilities. The layers in the diagram represent a
separation of architecture concerns. Each layer holds all three business capabilities
pertaining to this layer. The presentation layer has web components of all the three
modules, the business layer has business components of all the three modules, and
the database hosts tables of all the three modules. In most cases, layers are physically
spreadable, whereas modules within a layer are hardwired.

[242]

http://alistair.cockburn.us/Hexagonal+architecture
http://alistair.cockburn.us/Hexagonal+architecture

Chapter 1

Let's now examine a microservices-based architecture.

Module A Module B Module C
Presentation Layer
Module A Module B Module C
Business Layer
Database Database Database
Database Layer
Microservice A Microservice B Microservice C

As we can note in the preceding diagram, the boundaries are inversed in the
microservices architecture. Each vertical slice represents a microservice. Each
microservice has its own presentation layer, business layer, and database layer.
Microservices are aligned towards business capabilities. By doing so, changes
to one microservice do not impact others.

There is no standard for communication or transport mechanisms for microservices.
In general, microservices communicate with each other using widely adopted
lightweight protocols, such as HTTP and REST, or messaging protocols, such as
JMS or AMQP. In specific cases, one might choose more optimized communication
protocols, such as Thrift, ZeroMQ, Protocol Buffers, or Avro.

As microservices are more aligned to business capabilities and have independently
manageable life cycles, they are the ideal choice for enterprises embarking on
DevOps and cloud. DevOps and cloud are two facets of microservices.

DevOps is an IT realignment to narrow the gap between traditional IT
é‘Q development and operations for better efficiency.

Read more about DevOps:
http://dev2ops.org/2010/02/what-is-devops/

[243]

http://dev2ops.org/2010/02/what-is-devops/

Demystifying Microservices

Microservices — the honeycomb analogy

The honeycomb is an ideal analogy for representing the evolutionary microservices

e
o
&

In the real world, bees build a honeycomb by aligning hexagonal wax cells. They
start small, using different materials to build the cells. Construction is based on
what is available at the time of building. Repetitive cells form a pattern and result
in a strong fabric structure. Each cell in the honeycomb is independent but also
integrated with other cells. By adding new cells, the honeycomb grows organically
to a big, solid structure. The content inside each cell is abstracted and not visible

outside. Damage to one cell does not damage other cells, and bees can reconstruct
these cells without impacting the overall honeycomb.

Principles of microservices

In this section, we will examine some of the principles of the microservices
architecture. These principles are a "must have" when designing and developing
microservices.

Single responsibility per service

The single responsibility principle is one of the principles defined as part of the
SOLID design pattern. It states that a unit should only have one responsibility.

M Read more about the SOLID design pattern at:
Q http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDes
ign

[244]

http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign
http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign

Chapter 1

This implies that a unit, either a class, a function, or a service, should have only one
responsibility. At no point should two units share one responsibility or one unit have
more than one responsibility. A unit with more than one responsibility indicates
tight coupling.

Customer
Customer
Product
Product
Order
Order

Multiple Responsibility . -
Single Responsibility
Monolithic App Microservices

As shown in the preceding diagram, Customer, Product, and Order are different
functions of an e-commerce application. Rather than building all of them into one
application, it is better to have three different services, each responsible for exactly
one business function, so that changes to one responsibility will not impair others.
In the preceding scenario, Customer, Product, and Order will be treated as three
independent microservices.

Microservices are autonomous

Microservices are self-contained, independently deployable, and autonomous
services that take full responsibility of a business capability and its execution.
They bundle all dependencies, including library dependencies, and execution
environments such as web servers and containers or virtual machines that abstract
physical resources.

One of the major differences between microservices and SOA is in their level of
autonomy. While most SOA implementations provide service-level abstraction,
microservices go further and abstract the realization and execution environment.

[245]

Demystifying Microservices

In traditional application developments, we build a WAR or an EAR, then deploy
it into a JEE application server, such as with JBoss, WebLogic, WebSphere, and

so on. We may deploy multiple applications into the same JEE container. In the
microservices approach, each microservice will be built as a fat Jar, embedding all
dependencies and run as a standalone Java process.

Microservice A

Service
Implementation

Microservice B

Service
Implementation

Application A

(earfwar)
Dependent Libraries Dependent Libraries

Application A

(@arfwar)
Service Listener Service Listener
(HTTP) (HTTP)
JEE
Application Server
Container Container
Container /
Virtual Machine

Physical Machine Physical Machine

Microservices may also get their own containers for execution, as shown in the
preceding diagram. Containers are portable, independently manageable, lightweight
runtime environments. Container technologies, such as Docker, are an ideal choice
for microservices deployment.

Characteristics of microservices

The microservices definition discussed earlier in this chapter is arbitrary. Evangelists
and practitioners have strong but sometimes different opinions on microservices.
There is no single, concrete, and universally accepted definition for microservices.
However, all successful microservices implementations exhibit a number of common
characteristics. Therefore, it is important to understand these characteristics rather
than sticking to theoretical definitions. Some of the common characteristics are
detailed in this section.

[246]

Chapter 1

Services are first-class citizens

In the microservices world, services are first-class citizens. Microservices expose
service endpoints as APIs and abstract all their realization details. The internal
implementation logic, architecture, and technologies (including programming
language, database, quality of services mechanisms, and so on) are completely
hidden behind the service API.

Moreover, in the microservices architecture, there is no more application
development; instead, organizations focus on service development. In most
enterprises, this requires a major cultural shift in the way that applications are built.

In a Customer Profile microservice, internals such as the data structure, technologies,
business logic, and so on are hidden. They aren't exposed or visible to any external
entities. Access is restricted through the service endpoints or APIs. For instance,
Customer Profile microservices may expose Register Customer and Get Customer
as two APIs for others to interact with.

Characteristics of services in a microservice

As microservices are more or less like a flavor of SOA, many of the service
characteristics defined in the SOA are applicable to microservices as well.

The following are some of the characteristics of services that are applicable to
microservices as well:

* Service contract: Similar to SOA, microservices are described through
well-defined service contracts. In the microservices world, JSON and REST
are universally accepted for service communication. In the case of JSON/
REST, there are many techniques used to define service contracts. JSON
Schema, WADL, Swagger, and RAML are a few examples.

* Loose coupling: Microservices are independent and loosely coupled. In
most cases, microservices accept an event as input and respond with another
event. Messaging, HTTP, and REST are commonly used for interaction
between microservices. Message-based endpoints provide higher levels
of decoupling.

* Service abstraction: In microservices, service abstraction is not just an
abstraction of service realization, but it also provides a complete abstraction
of all libraries and environment details, as discussed earlier.

* Service reuse: Microservices are course-grained reusable business
services. These are accessed by mobile devices and desktop channels,
other microservices, or even other systems.

[247]

Demystifying Microservices

* Statelessness: Well-designed microservices are stateless and share nothing
with no shared state or conversational state maintained by the services.
In case there is a requirement to maintain state, they are maintained in
a database, perhaps in memory.

* Services are discoverable: Microservices are discoverable. In a typical
microservices environment, microservices self-advertise their existence
and make themselves available for discovery. When services die, they
automatically take themselves out from the microservices ecosystem.

* Service interoperability: Services are interoperable as they use standard
protocols and message exchange standards. Messaging, HTTP, and so on are
used as transport mechanisms. REST/JSON is the most popular method for
developing interoperable services in the microservices world. In cases where
further optimization is required on communications, other protocols such as
Protocol Buffers, Thrift, Avro, or Zero MQ could be used. However, the use
of these protocols may limit the overall interoperability of the services.

* Service composeability: Microservices are composeable. Service
composeability is achieved either through service orchestration or
service choreography.

a1

~Q More detail on SOA principles can be found at:

http://serviceorientation.com/serviceorientation/index

Microservices are lightweight

Well-designed microservices are aligned to a single business capability, so they
perform only one function. As a result, one of the common characteristics we see
in most of the implementations are microservices with smaller footprints.

When selecting supporting technologies, such as web containers, we will have

to ensure that they are also lightweight so that the overall footprint remains
manageable. For example, Jetty or Tomcat are better choices as application containers
for microservices compared to more complex traditional application servers such as
WebLogic or WebSphere.

Container technologies such as Docker also help us keep the infrastructure footprint
as minimal as possible compared to hypervisors such as VMWare or Hyper-V.

[248]

http://serviceorientation.com/serviceorientation/index

Chapter 1

Physical Machine

Virtual Machine

Application Server

A B (o}
All in one App EAR

Tradiitonal Deployment

Physical Machine

Docker Container

libs +
Listaner

A

Microservice A

Docker Container Docker Container
B libs + c libs +

Listanar Listenar

Microservice B Microservice C

Microservices Deployment

As shown in the preceding diagram, microservices are typically deployed in Docker
containers, which encapsulate the business logic and needed libraries. This help us
quickly replicate the entire setup on a new machine or on a completely different
hosting environment or even to move across different cloud providers. As there is no
physical infrastructure dependency, containerized microservices are easily portable.

Microservices with polyglot architecture

As microservices are autonomous and abstract everything behind service APIs, it is
possible to have different architectures for different microservices. A few common
characteristics that we see in microservices implementations are:

* Different services use different versions of the same technologies. One
microservice may be written on Java 1.7, and another one could be on Java 1.8.

* Different languages are used to develop different microservices, such as one
microservice is developed in Java and another one in Scala.

* Different architectures are used, such as one microservice using the Redis
cache to serve data, while another microservice could use MySQL as a

persistent data store.

REST/JSON

Erlang

Elastic Search

Hotel Search

REST/JSON

Java

My SQL

Hotel Booking

[249]

Demystifying Microservices

In the preceding example, as Hotel Search is expected to have high transaction
volumes with stringent performance requirements, it is implemented using Erlang.
In order to support predictive searching, Elasticsearch is used as the data store.

At the same time, Hotel Booking needs more ACID transactional characteristics.
Therefore, it is implemented using MySQL and Java. The internal implementations
are hidden behind service endpoints defined as REST/JSON over HTTP.

Automation in a microservices environment

Most of the microservices implementations are automated to a maximum from
development to production.

As microservices break monolithic applications into a number of smaller services,
large enterprises may see a proliferation of microservices. A large number of
microservices is hard to manage until and unless automation is in place. The smaller
footprint of microservices also helps us automate the microservices development to
the deployment life cycle. In general, microservices are automated end to end —for
example, automated builds, automated testing, automated deployment, and elastic
scaling.

Automated Automated
Continous Automated Testing Infrastructure Automated
Integration Provisioning Deployment

As indicated in the preceding diagram, automations are typically applied during the
development, test, release, and deployment phases:

* The development phase is automated using version control tools such as Git
together with Continuous Integration (CI) tools such as Jenkins, Travis CI,
and so on. This may also include code quality checks and automation of unit
testing. Automation of a full build on every code check-in is also achievable
with microservices.

* The testing phase will be automated using testing tools such as Selenium,
Cucumber, and other AB testing strategies. As microservices are aligned to
business capabilities, the number of test cases to automate is fewer compared
to monolithic applications, hence regression testing on every build also
becomes possible.

* Infrastructure provisioning is done through container technologies such as
Docker, together with release management tools such as Chef or Puppet, and
configuration management tools such as Ansible. Automated deployments are
handled using tools such as Spring Cloud, Kubernetes, Mesos, and Marathon.

[250]

Chapter 1

Microservices with a supporting ecosystem

Most of the large-scale microservices implementations have a supporting ecosystem
in place. The ecosystem capabilities include DevOps processes, centralized log
management, service registry, API gateways, extensive monitoring, service routing,
and flow control mechanisms.

Service Routing / AP| Gateway

Service Logging &

Monitoring Microservices Service Registry DevOps

Self Managed, Self Healing Cloud Environment

Microservices work well when supporting capabilities are in place, as represented in
the preceding diagram.

Microservices are distributed and dynamic

Successful microservices implementations encapsulate logic and data within the
service. This results in two unconventional situations: distributed data and logic
and decentralized governance.

Compared to traditional applications, which consolidate all logic and data into
one application boundary, microservices decentralize data and logic. Each service,
aligned to a specific business capability, owns its data and logic.

Logic Logic Logic
A B C
Data Data Data
Microservice A Microservice B Microservice C

Logical System Boundary (as in monolithic)

The outer rectangle in the preceding diagram implies the logical monolithic
application boundary. When we migrate this to microservices, each microservice
A, B, and C creates its own physical boundaries.

[251]

Demystifying Microservices

Microservices don't typically use centralized governance mechanisms the way

they are used in SOA. One of the common characteristics of microservices
implementations is that they do not relay on heavyweight enterprise-level products,
such as Enterprise Service Bus (ESB). Instead, the business logic and intelligence are
embedded as a part of the services themselves.

Shopping Logic

ESB

Customer Product Order

A typical SOA implementation is shown in the preceding diagram. Shopping logic is
fully implemented in ESB by orchestrating different services exposed by Customer,
Order, and Product. In the microservices approach, on the other hand, Shopping
itself will run as a separate microservice, which interacts with Customer, Product,
and Order in a fairly decoupled way.

SOA implementations heavily relay on static registry and repository configurations
to manage services and other artifacts. Microservices bring a more dynamic nature
into this. Hence, a static governance approach is seen as an overhead in maintaining
up-to-date information. This is why most of the microservices implementations use
automated mechanisms to build registry information dynamically from the runtime
topologies.

Antifragility, fail fast, and self-healing

Antifragility is a technique successfully experimented at Netflix. It is one of the most
powerful approaches to building fail-safe systems in modern software development.

1
‘Q The antifragility concept is introduced by Nassim Nicholas Taleb in his

book Antifragile: Things That Gain from Disorder.

In the antifragility practice, software systems are consistently challenged. Software
systems evolve through these challenges and, over a period of time, get better and
better at withstanding these challenges. Amazon's GameDay exercise and Netflix'
Simian Army are good examples of such antifragility experiments.

[252]

Chapter 1

Fail fast is another concept used to build fault-tolerant, resilient systems. This
philosophy advocates systems that expect failures versus building systems that never
fail. Importance should be given to how quickly the system can fail and if it fails,
how quickly it can recover from this failure. With this approach, the focus is shifted
from Mean Time Between Failures (MTBF) to Mean Time To Recover (MTTR).

A key advantage of this approach is that if something goes wrong, it kills itself, and
downstream functions aren't stressed.

Self-healing is commonly used in microservices deployments, where the system
automatically learns from failures and adjusts itself. These systems also prevent
future failures.

Microservices examples

There is no "one size fits all" approach when implementing microservices. In this
section, different examples are analyzed to crystalize the microservices concept.

An example of a holiday portal

In the first example, we will review a holiday portal, Fly By Points. Fly By Points
collects points that are accumulated when a customer books a hotel, flight, or car
through the online website. When the customer logs in to the Fly By Points website,
he/she is able to see the points accumulated, personalized offers that can be availed
of by redeeming the points, and upcoming trips if any.

fiybypoints

hitps:ifwww. flybypoints.com
Fly By Points »)- & Jeo =

Welcome to Fly By Points Services

> & [&]

21123 4 2

Points Offers Trips

Destinations and More...

[253]

Demystifying Microservices

Let's assume that the preceding page is the home page after login. There are two
upcoming trips for Jeo, four personalized offers, and 21,123 loyalty points. When
the user clicks on each of the boxes, the details are queried and displayed.

The holiday portal has a Java Spring-based traditional monolithic application
architecture, as shown in the following:

Spring MVC Spring MVC Spring MVC
Services Services Services
Entities Entities Entities

Repository Repository Repository

Points Subsystem Offers Subsyst Trips Sub:

Internal Layers and Subsystems of the Architecture

flybypoints.war deployed on a
JEE web container

As shown in the preceding diagram, the holiday portal's architecture is web-based
and modular, with a clear separation between layers. Following the usual practice,
the holiday portal is also deployed as a single WAR file on a web server such as
Tomcat. Data is stored on an all-encompassing backing relational database. This is a
good fit for the purpose architecture when the complexities are few. As the business
grows, the user base expands, and the complexity also increases. This results in a
proportional increase in transaction volumes. At this point, enterprises should look
to rearchitecting the monolithic application to microservices for better speed of
delivery, agility, and manageability.

[254]

Chapter 1

Rest Service Rest Service Rest Service
Services Services Services
Entities Entities Entities
Repository Repository Repository
Points Subsystem Offers Subsystem Trips Subsystem
Data Store Data Store Data Store

Examining the simple microservices version of this application, we can immediately
note a few things in this architecture:

* Each subsystem has now become an independent system by itself, a
microservice. There are three microservices representing three business
functions: Trips, Offers, and Points. Each one has its internal data store
and middle layer. The internal structure of each service remains the same.

* Each service encapsulates its own database as well as its own HTTP listener.
As opposed to the previous model, there is no web server or WAR. Instead,
each service has its own embedded HTTP listener, such as Jetty, Tomcat,
and so on.

* Each microservice exposes a REST service to manipulate the resources/entity
that belong to this service.

It is assumed that the presentation layer is developed using a client-side JavaScript
MVC framework such as Angular JS. These client-side frameworks are capable of
invoking REST calls directly.

When the web page is loaded, all the three boxes, Trips, Offers, and Points will be
displayed with details such as points, the number of offers, and the number of trips.
This will be done by each box independently making asynchronous calls to the
respective backend microservices using REST. There is no dependency between the
services at the service layer. When the user clicks on any of the boxes, the screen will
be transitioned and will load the details of the item clicked on. This will be done by
making another call to the respective microservice.

[255]

Demystifying Microservices

A microservice-based order management
system

Let's examine another microservices example: an online retail website. In this
case, we will focus more on the backend services, such as the Order Service which
processes the Order Event generated when a customer places an order through
the website:

Delivery Trucking

Delivery Service Event Service

Customer
Notification Service

Order Order Order Created Inventory Cache
Event Service Event Service

Stock Reorder
Service

Customer Points
Service

Customer Account
Service

This microservices system is completely designed based on reactive programming
practices.

a1

~Q Read more on reactive programming at:

http://www.reactivemanifesto.org

When an event is published, a number of microservices are ready to kick-start upon
receiving the event. Each one of them is independent and does not rely on other
microservices. The advantage of this model is that we can keep adding or replacing
microservices to achieve specific needs.

[256]

http://www.reactivemanifesto.org

Chapter 1

In the preceding diagram, there are eight microservices shown. The following
activities take place upon the arrival of Order Event:

1.

10.

Order Service kicks off when Order Event is received. Order Service creates
an order and saves the details to its own database.

If the order is successfully saved, Order Successful Event is created by Order
Service and published.

A series of actions take place when Order Successful Event arrives.

Delivery Service accepts the event and places Delivery Record to deliver the
order to the customer. This, in turn, generates Delivery Event and publishes
the event.

Trucking Service picks up Delivery Event and processes it. For instance,
Trucking Service creates a trucking plan.

Customer Notification Service sends a notification to the customer informing
the customer that an order is placed.

Inventory Cache Service updates the inventory cache with the available
product count.

Stock Reorder Service checks whether the stock limits are adequate and
generates Replenish Event if required.

Customer Points Service recalculates the customer's loyalty points based
on this purchase.

Customer Account Service updates the order history in the customer's
account.

In this approach, each service is responsible for only one function. Services

accept and generate events. Each service is independent and is not aware of its
neighborhood. Hence, the neighborhood can organically grow as mentioned in the
honeycomb analogy. New services can be added as and when necessary. Adding
a new service does not impact any of the existing services.

[257]

Demystifying Microservices

An example of a travel agent portal

This third example is a simple travel agent portal application. In this example, we
will see both synchronous REST calls as well as asynchronous events.

In this case, the portal is just a container application with multiple menu items or
links in the portal. When specific pages are requested —for example, when the menu
or a link is clicked on—they will be loaded from the specific microservices.

Customer Ul REST Customer

Pages Service
REST
Booking Ul REST Booking
Pages Service
REST
Visa Ul REST Visa
Pages Services
Travel
Agent Event
Portal
Flight Ul Flight
Pages REST Services
CMPSa';";OUT Notification
Services
Payment Ul
Pages

When a customer requests a booking, the following events take place internally:

1.

The travel agent opens the flight UI, searches for a flight, and identifies the
right flight for the customer. Behind the scenes, the flight Ul is loaded from
the Flight microservice. The flight UI only interacts with its own backend
APIs within the Flight microservice. In this case, it makes a REST call to the
Flight microservice to load the flights to be displayed.

The travel agent then queries the customer details by accessing the customer
UL Similar to the flight UI, the customer Ul is loaded from the Customer
microservice. Actions in the customer Ul will invoke REST calls on the
Customer microservice. In this case, customer details are loaded by
invoking appropriate APIs on the Customer microservice.

Then, the travel agent checks the visa details for the customer's eligibility
to travel to the selected country. This also follows the same pattern as
mentioned in the previous two points.

[258]

Chapter 1

4. Next, the travel agent makes a booking using the booking Ul from the
Booking microservice, which again follows the same pattern.

5. The payment pages are loaded from the Payment microservice. In general,
the payment service has additional constraints such as PCIDSS compliance
(protecting and encrypting data in motion and data at rest). The advantage
of the microservices approach is that none of the other microservices need
to be considered under the purview of PCIDSS as opposed to the monolithic
application, where the complete application comes under the governing rules
of PCIDSS. Payment also follows the same pattern as described earlier.

6. Once the booking is submitted, the Booking microservice calls the flight
service to validate and update the flight booking. This orchestration is
defined as part of the Booking microservice. Intelligence to make a booking is
also held within the Booking microservice. As part of the booking process, it
also validates, retrieves, and updates the Customer microservice.

7. Finally, the Booking microservice sends the Booking Event, which the
Notification service picks up and sends a notification of to the customer.

The interesting factor here is that we can change the user interface, logic, and data
of a microservice without impacting any other microservices.

This is a clean and neat approach. A number of portal applications can be built by
composing different screens from different microservices, especially for different
user communities. The overall behavior and navigation will be controlled by the
portal application.

The approach has a number of challenges unless the pages are designed with this
approach in mind. Note that the site layouts and static content will be loaded by the
Content Management System (CMS) as layout templates. Alternately, this could be
stored in a web server. The site layout may have fragments of Uls that will be loaded
from the microservices at runtime.

Microservices benefits

Microservices offer a number of benefits over the traditional multitier, monolithic
architectures. This section explains some key benefits of the microservices
architecture approach.

Supports polyglot architecture

With microservices, architects and developers can choose fit for purpose
architectures and technologies for each microservice. This gives the flexibility
to design better-fit solutions in a more cost-effective way.

[259]

Demystifying Microservices

As microservices are autonomous and independent, each service can run with its
own architecture or technology or different versions of technologies.

The following shows a simple, practical example of a polyglot architecture with
microservices.

Services Kafka Services
Entity Flume Entity
My SQL HDFS My SQL
Order Audit Products
Micoservice Micoservice Micoservice

There is a requirement to audit all system transactions and record transaction details
such as request and response data, the user who initiated the transaction, the service
invoked, and so on.

As shown in the preceding diagram, while core services such as the Order and
Products microservices use a relational data store, the Audit microservice persists
data in Hadoop File System (HDEFS). A relational data store is neither ideal nor
cost effective in storing large data volumes such as in the case of audit data. In the
monolithic approach, the application generally uses a shared, single database that
stores Order, Products, and Audit data.

In this example, the audit service is a technical microservice using a different
architecture. Similarly, different functional services could also use different
architectures.

In another example, there could be a Reservation microservice running on Java

7, while a Search microservice could be running on Java 8. Similarly, an Order
microservice could be written on Erlang, whereas a Delivery microservice could be
on the Go language. None of these are possible with a monolithic architecture.

Enabling experimentation and innovation

Modern enterprises are thriving towards quick wins. Microservices are one of the
key enablers for enterprises to do disruptive innovation by offering the ability to
experiment and fail fast.

[260]

Chapter 1

As services are fairly simple and smaller in size, enterprises can afford to experiment
new processes, algorithms, business logics, and so on. With large monolithic
applications, experimentation was not easy; nor was it straightforward or cost
effective. Businesses had to spend huge money to build or change an application

to try out something new. With microservices, it is possible to write a small
microservice to achieve the targeted functionality and plug it into the system in a
reactive style. One can then experiment with the new function for a few months, and
if the new microservice does not work as expected, we can change or replace it with
another one. The cost of change will be considerably less compared to that of the
monolithic approach.

1. Book Flight
4. Return
Hotel
Recommendation
3. Get Microservice

Recommendations
2. Make Booking

Booking

Monolithic
Application

In another example of an airline booking website, the airline wants to show
personalized hotel recommendations in their booking page. The recommendations
must be displayed on the booking confirmation page.

As shown in the preceding diagram, it is convenient to write a microservice that can
be plugged into the monolithic applications booking flow rather than incorporating
this requirement in the monolithic application itself. The airline may choose to start
with a simple recommendation service and keep replacing it with newer versions till
it meets the required accuracy.

Elastically and selectively scalable

As microservices are smaller units of work, they enable us to implement selective
scalability.

Scalability requirements may be different for different functions in an application.
A monolithic application, packaged as a single WAR or an EAR, can only be scaled
as a whole. An I/O-intensive function when streamed with high velocity data could
easily bring down the service levels of the entire application.

[261]

Demystifying Microservices

In the case of microservices, each service could be independently scaled up or
down. As scalability can be selectively applied at each service, the cost of scaling is
comparatively less with the microservices approach.

In practice, there are many different ways available to scale an application and
is largely subject to the architecture and behavior of the application. Scale Cube
defines primarily three approaches to scaling an application:

* Scaling the x axis by horizontally cloning the application
* Scaling the y axis by splitting different functionality
* Scaling the z axis by partitioning or sharding the data

% Read more about Scale Cube in the following site:
Q http://theartofscalability.com/

When y axis scaling is applied to monolithic applications, it breaks the monolithic
to smaller units aligned with business functions. Many organizations successfully
applied this technique to move away from monolithic applications. In principle, the
resulting units of functions are in line with the microservices characteristics.

For instance, in a typical airline website, statistics indicate that the ratio of flight
searching to flight booking could be as high as 500:1. This means one booking
transaction for every 500 search transactions. In this scenario, the search needs
500 times more scalability than the booking function. This is an ideal use case for
selective scaling.

LB
LB

Search Search Search Booking Booking
Service Service Service Service Service
IMDG IMDG IMDG
Search Search Search Booking Booking
Microservice Microservice Microservice Microservice Microservice
Booking Store

[262]

http://theartofscalability.com/

Chapter 1

The solution is to treat search requests and booking requests differently. With
a monolithic architecture, this is only possible with z scaling in the scale cube.
However, this approach is expensive because in the z scale, the entire code base
is replicated.

In the preceding diagram, Search and Booking are designed as different microservices
so that Search can be scaled differently from Booking. In the diagram, Search has
three instances, and Booking has two instances. Selective scalability is not limited

to the number of instances, as shown in the diagram, but also in the way in which

the microservices are architected. In the case of Search, an in-memory data grid
(IMDG) such as Hazelcast can be used as the data store. This will further increase the
performance and scalability of Search. When a new Search microservice instance is
instantiated, an additional IMDG node is added to the IMDG cluster. Booking does
not require the same level of scalability. In the case of Booking, both instances of the
Booking microservice are connected to the same instance of the database.

Allowing substitution

Microservices are self-contained, independent deployment modules enabling the
substitution of one microservice with another similar microservice.

Many large enterprises follow buy-versus-build policies to implement software
systems. A common scenario is to build most of the functions in house and buy
certain niche capabilities from specialists outside. This poses challenges in traditional
monolithic applications as these application components are highly cohesive.
Attempting to plug in third-party solutions to the monolithic applications results in
complex integrations. With microservices, this is not an afterthought. Architecturally,
a microservice can be easily replaced by another microservice developed either
in-house or even extended by a microservice from a third party.

Other Fares & Fare b a Pricing
Modules | rpc Pricing Service % @ 3rd Party
Monolithic Application Microservice inputs

[263]

Demystifying Microservices

A pricing engine in the airline business is complex. Fares for different routes are
calculated using complex mathematical formulas known as the pricing logic. Airlines
may choose to buy a pricing engine from the market instead of building the product
in house. In the monolithic architecture, Pricing is a function of Fares and Booking. In
most cases Pricing, Fares, and Booking are hardwired, making it almost impossible
to detach.

In a well-designed microservices system, Booking, Fares, and Pricing would

be independent microservices. Replacing the Pricing microservice will have

only a minimal impact on any other services as they are all loosely coupled and
independent. Today, it could be a third-party service; tomorrow, it could be easily
substituted by another third-party or home-grown service.

Enabling to build organic systems

Microservices help us build systems that are organic in nature. This is significantly
important when migrating monolithic systems gradually to microservices.

Organic systems are systems that grow laterally over a period of time by adding
more and more functions to it. In practice, an application grows unimaginably
large in its lifespan, and in most cases, the manageability of the application reduces
dramatically over this same period of time.

Microservices are all about independently manageable services. This enable us to
keep adding more and more services as the need arises with minimal impact on the
existing services. Building such systems does not need huge capital investments.
Hence, businesses can keep building as part of their operational expenditure.

A loyalty system in an airline was built years ago, targeting individual passengers.
Everything was fine until the airline started offering loyalty benefits to their
corporate customers. Corporate customers are individuals grouped under
corporations. As the current systems core data model is flat, targeting individuals,
the corporate environment needs a fundamental change in the core data model,
and hence huge reworking, to incorporate this requirement.

Customer Corporate
Service LDY;::L:::‘"IS Customer Service
Manage all Manage corporate

Manage points

customer profiles customers

push individual customers
to customer service

[264]

Chapter 1

As shown in the preceding diagram, in a microservices-based architecture, customer
information would be managed by the Customer microservice and loyalty by the
Loyalty Points microservice.

In this situation, it is easy to add a new Corporate Customer microservice to manage
corporate customers. When a corporation is registered, individual members will

be pushed to the Customer microservice to manage them as usual. The Corporate
Customer microservice provides a corporate view by aggregating data from the
Customer microservice. It will also provide services to support corporate-specific
business rules. With this approach, adding new services will have only a minimal
impact on the existing services.

Helping reducing technology debt

As microservices are smaller in size and have minimal dependencies, they allow the
migration of services that use end-of-life technologies with minimal cost.

Technology changes are one of the barriers in software development. In many
traditional monolithic applications, due to the fast changes in technologies, today's
next-generation applications could easily become legacy even before their release
to production. Architects and developers tend to add a lot of protection against
technology changes by adding layers of abstractions. However, in reality, this
approach does not solve the issue but, instead, results in over-engineered systems.
As technology upgrades are often risky and expensive with no direct returns to
business, the business may not be happy to invest in reducing the technology

debt of the applications.

With microservices, it is possible to change or upgrade technology for each service
individually rather than upgrading an entire application.

Upgrading an application with, for instance, five million lines written on EJB 1.1 and
Hibernate to the Spring, JPA, and REST services is almost similar to rewriting the
entire application. In the microservices world, this could be done incrementally.

Development Timelines

development of development of development development
Microservice 1 Microservice 2 Microservice 3 Microservice 4
{on V1 of technoloy) {on V2 of technoloy) {on V3 of technoloy) {on V4 of technoloy)
migration of development of
Microservice 1 Microservice 2
(on V3 of technoloy) (on V4 of technoloy)

[265]

Demystifying Microservices

As shown in the preceding diagram, while older versions of the services are running
on old versions of technologies, new service developments can leverage the latest
technologies. The cost of migrating microservices with end-of-life technologies is
considerably less compared to enhancing monolithic applications.

Allowing the coexistence of different versions

As microservices package the service runtime environment along with the service
itself, this enables having multiple versions of the service to coexist in the same
environment.

There will be situations where we will have to run multiple versions of the same
service at the same time. Zero downtime promote, where one has to gracefully
switch over from one version to another, is one example of a such a scenario as
there will be a time window where both services will have to be up and running
simultaneously. With monolithic applications, this is a complex procedure because
upgrading new services in one node of the cluster is cumbersome as, for instance,
this could lead to class loading issues. A canary release, where a new version is
only released to a few users to validate the new service, is another example where
multiple versions of the services have to coexist.

With microservices, both these scenarios are easily manageable. As each microservice
uses independent environments, including service listeners such as Tomcat or Jetty
embedded, multiple versions can be released and gracefully transitioned without
many issues. When consumers look up services, they look for specific versions of
services. For example, in a canary release, a new user interface is released to user

A. When user A sends a request to the microservice, it looks up the canary release
version, whereas all other users will continue to look up the last production version.

Care needs to be taken at the database level to ensure the database design is always
backward compatible to avoid breaking the changes.

Routing Rule:
Gateway regionsEquals("XYZ")
route to V2

Customer V01 Customer V02

Customer Customer

[266]

Chapter 1

As shown in the preceding diagram, version 1 and 2 of the Customer service can
coexist as they are not interfering with each other, given their respective deployment
environments. Routing rules can be set at the gateway to divert traffic to specific
instances, as shown in the diagram. Alternatively, clients can request specific
versions as part of the request itself. In the diagram, the gateway selects the version
based on the region from which the request is originated.

Supporting the building of self-organizing
systems

Microservices help us build self-organizing systems. A self-organizing system
support will automate deployment, be resilient, and exhibit self-healing and self-
learning capabilities.

In a well-architected microservices system, a service is unaware of other services. It
accepts a message from a selected queue and processes it. At the end of the process, it
may send out another message, which triggers other services. This allows us to drop
any service into the ecosystem without analyzing the impact on the overall system.
Based on the input and output, the service will self-organize into the ecosystem. No
additional code changes or service orchestration is required. There is no central brain
to control and coordinate the processes.

Imagine an existing notification service that listens to an INPUT queue and sends
notifications to an SMTP server, as shown in the following figure:

email email

message message

Some Microservice Notification

=
g Microservice A

Let's assume, later, a personalization engine, responsible for changing the language
of the message to the customer's native language, needs to be introduced to
personalize messages before sending them to the customer, the personalization
engine is responsible for changing the language of the message to the customer's
native language.

email email email

message | Z MeSSAQ® | pogonalization | Message
. . 3 . -
Some Microservice Si Microservice

email

message Notification

Microservice S

1ndLno

[267]

Demystifying Microservices

With microservices, a new personalization microservice will be created to do this job.
The input queue will be configured as INPUT in an external configuration server,
and the personalization service will pick up the messages from the INPUT queue
(earlier, this was used by the notification service) and send the messages to the
OUTPUT queue after completing process. The notification service will read messages
from OUTPUT and send to SMTP. From the very next moment onward, the system
automatically adopts this new message flow.

Supporting event-driven architecture

Microservices enable us to develop transparent software systems. Traditional
systems communicate with each other through native protocols and hence behave
like a black box application. Business events and system events, unless published
explicitly, are hard to understand and analyze. Modern applications require data
for business analysis, to understand dynamic system behaviors, and analyze market
trends, and they also need to respond to real-time events. Events are useful
mechanisms for data extraction.

A well-architected microservice always works with events for both input and output.
These events can be tapped by any service. Once extracted, events can be used for
a variety of use cases.

For example, the business wants to see the velocity of orders categorized by product
type in real time. In a monolithic system, we need to think about how to extract these
events. This may impose changes in the system.

Delivery Service
O
Order Service Order g
Event 2

Motification Service

New Event
Aggregation Service :‘

In the microservices world, Order Event is already published whenever an order is
created. This means that it is just a matter of adding a new service to subscribe to the
same topic, extract the event, perform the requested aggregations, and push another
event for the dashboard to consume.

[268]

Chapter 1

Enabling DevOps

Microservices are one of the key enablers of DevOps. DevOps is widely adopted

as a practice in many enterprises, primarily to increase the speed of delivery and
agility. A successful adoption of DevOps requires cultural changes, process changes,
as well as architectural changes. DevOps advocates to have agile development,
high-velocity release cycles, automatic testing, automatic infrastructure provisioning,
and automated deployment.

Automating all these processes is extremely hard to achieve with traditional
monolithic applications. Microservices are not the ultimate answer, but microservices
are at the center stage in many DevOps implementations. Many DevOps tools and
techniques are also evolving around the use of microservices.

Consider a monolithic application that takes hours to complete a full build and 20

to 30 minutes to start the application; one can see that this kind of application is not
ideal for DevOps automation. It is hard to automate continuous integration on every
commit. As large, monolithic applications are not automation friendly, continuous
testing and deployments are also hard to achieve.

On the other hand, small footprint microservices are more automation-friendly and
therefore can more easily support these requirements.

Microservices also enable smaller, focused agile teams for development. Teams will
be organized based on the boundaries of microservices.

Relationship with other architecture
styles

Now that we have seen the characteristics and benefits of microservices, in this
section, we will explore the relationship of microservices with other closely related
architecture styles such as SOA and Twelve-Factor Apps.

Relations with SOA

SOA and microservices follow similar concepts. Earlier in this chapter, we discussed
that microservices are evolved from SOA, and many service characteristics are
common in both approaches.

However, are they the same or are they different?

As microservices are evolved from SOA, many characteristics of microservices are
similar to SOA. Let's first examine the definition of SOA.

[269]

Demystifying Microservices

The definition of SOA from The Open Group consortium is as follows:

"Service-Oriented Architecture (SOA) is an architectural style that supports
service orientation. Service orientation is a way of thinking in terms of services
and service-based development and the outcomes of services.

A service:

Is a logical representation of a repeatable business activity that has a specified
outcome (e.., check customer credit, provide weather data, consolidate drilling
reports)

It is self-contained.
It may be composed of other services.
Itis a "black box" to consumers of the service."

We observed similar aspects in microservices as well. So, in what way are
microservices different? The answer is: it depends.

The answer to the previous question could be yes or no, depending upon the
organization and its adoption of SOA. SOA is a broader term, and different
organizations approached SOA differently to solve different organizational
problems. The difference between microservices and SOA is in a way based
on how an organization approaches SOA.

In order to get clarity, a few cases will be examined.

Service-oriented integration

Service-oriented integration refers to a service-based integration approach used by
many organizations.

App F
App D App E
ERP Oracle Srd Party
ropritory
Enterprise Service Bus
App A App B App C
MNet Java Mainframe

[270]

Chapter 1

Many organizations would have used SOA primarily to solve their integration
complexities, also known as integration spaghetti. Generally, this is termed as
Service-Oriented Integration (SOI). In such cases, applications communicate

with each other through a common integration layer using standard protocols and
message formats such as SOAP/XML-based web services over HTTP or JMS. These
types of organizations focus on Enterprise Integration Patterns (EIP) to model their
integration requirements. This approach strongly relies on heavyweight ESB such

as TIBCO Business Works, WebSphere ESB, Oracle ESB, and the likes. Most ESB
vendors also packed a set of related products such as rules engines, business process
management engines, and so on as an SOA suite. Such organizations' integrations are
deeply rooted into their products. They either write heavy orchestration logic in the
ESB layer or the business logic itself in the service bus. In both cases, all enterprise
services are deployed and accessed via ESB. These services are managed through an
enterprise governance model. For such organizations, microservices are altogether
different from SOA.

Legacy modernization

SOA is also used to build service layers on top of legacy applications.

Enterprise Services

Enterprise Service Bus

Mainframe ERP
Adaptor Adaptor
Legacy Mainframe Legacy ERP

Another category of organizations would use SOA in transformation projects or
legacy modernization projects. In such cases, the services are built and deployed
in the ESB layer connecting to backend systems using ESB adapters. For these
organizations, microservices are different from SOA.

[271]

Demystifying Microservices

Service-oriented application

Some organizations adopt SOA at an application level.

Integration Integration Integration Integration
Framework Framework Framework Framework
App 1 App 2 App 3 App 4

In this approach, lightweight integration frameworks, such as Apache Camel or Spring
Integration, are embedded within applications to handle service-related cross-cutting
capabilities such as protocol mediation, parallel execution, orchestration, and service
integration. As some of the lightweight integration frameworks have native Java object
support, such applications would even use native Plain Old Java Objects (POJO)
services for integration and data exchange between services. As a result, all services
have to be packaged as one monolithic web archive. Such organizations could see
microservices as the next logical step of their SOA.

Monolithic migration using SOA

Web Services Web Services Web Services
Subsystem1.war Subsystem2.war Subsystem3.war
(Tomcat) {Tomcat) (Tomeat)

Logical System Boundary

The last possibility is transforming a monolithic application into smaller units

after hitting the breaking point with the monolithic system. They would break the
application into smaller, physically deployable subsystems, similar to the y axis
scaling approach explained earlier, and deploy them as web archives on web servers
or as JARs deployed on some home-grown containers. These subsystems as service
would use web services or other lightweight protocols to exchange data between
services. They would also use SOA and service design principles to achieve this. For
such organizations, they may tend to think that microservices are the same old wine
in a new bottle.

[272]

Chapter 1

Relations with Twelve-Factor apps

Cloud computing is one of the rapidly evolving technologies. Cloud computing
promises many benefits, such as cost advantage, speed, agility, flexibility, and
elasticity. There are many cloud providers offering different services. They lower the
cost models to make it more attractive to the enterprises. Different cloud providers
such as AWS, Microsoft, Rackspace, IBM, Google, and so on use different tools,
technologies, and services. On the other hand, enterprises are aware of this evolving
battlefield and, therefore, they are looking for options for de-risking from lockdown
to a single vendor.

Many organizations do lift and shift their applications to the cloud. In such cases,
the applications may not realize all the benefits promised by cloud platforms. Some
applications need to undergo overhaul, whereas some may need minor tweaking
before moving to cloud. This by and large depends upon how the application is
architected and developed.

For example, if the application has its production database server URLs hardcoded
as part of the applications WAR, it needs to be modified before moving the
application to cloud. In the cloud, the infrastructure is transparent to the application,
and especially, the physical IP addresses cannot be assumed.

How do we ensure that an application, or even microservices, can run seamlessly
across multiple cloud providers and take advantages of cloud services such as
elasticity?

It is important to follow certain principles while developing cloud native applications.

\ Cloud native is a term used for developing applications that can work

~ efficiently in a cloud environment, understanding and utilizing cloud
behaviors such as elasticity, utilization based charging, fail aware, and
SO on.

Twelve-Factor App, forwarded by Heroku, is a methodology describing the
characteristics expected from modern cloud-ready applications. Twelve-Factor App
is equally applicable for microservices as well. Hence, it is important to understand
Twelve-Factor App.

[273]

Demystifying Microservices

A single code base

The code base principle advises that each application has a single code base. There
can be multiple instances of deployment of the same code base, such as development,
testing, and production. Code is typically managed in a source control system such
as Git, Subversion, and so on.

M1: Development M1: Testing M1: Staging M1: Production
Microservice M1
(codebase)
Microservice M2
(codebase)
M2: Development M2: Testing M2: Staging M2: Production

Git / Subversion

Extending the same philosophy for microservices, each microservice should have its
own code base, and this code base is not shared with any other microservice. It also
means that one microservice has exactly one code base.

Bundling dependencies

As per this principle, all applications should bundle their dependencies along with
the application bundle. With build tools such as Maven and Gradle, we explicitly
manage dependencies in a pom.xml or the .gradle file and link them using a central
build artifact repository such as Nexus or Archiva. This ensures that the versions

are managed correctly. The final executables will be packaged as a WAR file or an
executable JAR file, embedding all the dependencies.

Microservice
code

microservices
dependencies (jars)

Nexus / Archiva runtime environment
Build Artefact dependencies (jars)
Repository jettyftomeat etc.

microserviceexecutable.jar

Microservice
(maven project)

pom.xml

In the context of microservices, this is one of the fundamental principles to be followed.
Each microservice should bundle all the required dependencies and execution libraries
such as the HTTP listener and so on in the final executable bundle.

[274]

Chapter 1

Externalizing configurations

This principle advises the externalization of all configuration parameters from the
code. An application's configuration parameters vary between environments, such as
support to the e-mail IDs or URL of an external system, username, passwords, queue
name, and so on. These will be different for development, testing, and production.
All service configurations should be externalized.

Microservice 1

Configuration

Microservice 2
Server

http://microservicecongfig:8080

Microservice 3

The same principle is obvious for microservices as well. The microservices
configuration parameters should be loaded from an external source. This will also
help to automate the release and deployment process as the only difference between
these environments is the configuration parameters.

Backing services are addressable

All backing services should be accessible through an addressable URL. All services
need to talk to some external resources during the life cycle of their execution.

For example, they could be listening or sending messages to a messaging system,
sending an e-mail, persisting data to database, and so on. All these services should
be reachable through a URL without complex communication requirements.

tep://messaging/ING))
smtp://emailserver SMTP Server
business http://microservice2/ | Microservice 2
components
Jjdbe://mydb

http://externalservice External Service

Microservice 1

[275]

Demystifying Microservices

In the microservices world, microservices either talk to a messaging system to send
or receive messages, or they could accept or send messages to other service APIs. In
aregular case, these are either HTTP endpoints using REST and JSON or TCP- or
HTTP-based messaging endpoints.

Isolation between build, release, and run

This principle advocates a strong isolation between the build, release, and run stages.
The build stage refers to compiling and producing binaries by including all the
assets required. The release stage refers to combining binaries with environment-
specific configuration parameters. The run stage refers to running application on a
specific execution environment. The pipeline is unidirectional, so it is not possible

to propagate changes from the run stages back to the build stage. Essentially, it also
means that it is not recommended to do specific builds for production; rather, it has
to go through the pipeline.

Build Artifact Release Container
Repository Configurations Repository
Microservi{‘:es executable jar Microservices release version Microservices
Maven Froject Executable Jar container
Build Stage Release Stage Run Stage

In microservices, the build will create executable JAR files, including the service
runtime such as an HTTP listener. During the release phase, these executables will be
combined with release configurations such as production URLs and so on and create
a release version, most probably as a container similar to Docker. In the run stage,
these containers will be deployed on production via a container scheduler.

Stateless, shared nothing processes

This principle suggests that processes should be stateless and share nothing. If the
application is stateless, then it is fault tolerant and can be scaled out easily.

All microservices should be designed as stateless functions. If there is any
requirement to store a state, it should be done with a backing database or
in an in-memory cache.

[276]

Chapter 1

Exposing services through port bindings

A Twelve-Factor application is expected to be self-contained. Traditionally,
applications are deployed to a server: a web server or an application server such as
Apache Tomcat or JBoss. A Twelve-Factor application does not rely on an external
web server. HTTP listeners such as Tomcat or Jetty have to be embedded in the
service itself.

Port binding is one of the fundamental requirements for microservices to be
autonomous and self-contained. Microservices embed service listeners as a part
of the service itself.

Concurrency to scale out

This principle states that processes should be designed to scale out by replicating the
processes. This is in addition to the use of threads within the process.

In the microservices world, services are designed to scale out rather than scale up.
The x axis scaling technique is primarily used for a scaling service by spinning up
another identical service instance. The services can be elastically scaled or shrunk
based on the traffic flow. Further to this, microservices may make use of parallel
processing and concurrency frameworks to further speed up or scale up the
transaction processing.

Disposability with minimal overhead

This principle advocates building applications with minimal startup and shutdown
times with graceful shutdown support. In an automated deployment environment,
we should be able bring up or bring down instances as quick as possible. If the
application's startup or shutdown takes considerable time, it will have an adverse
effect on automation. The startup time is proportionally related to the size of the
application. In a cloud environment targeting auto-scaling, we should be able to
spin up new instance quickly. This is also applicable when promoting new versions
of services.

In the microservices context, in order to achieve full automation, it is extremely
important to keep the size of the application as thin as possible, with minimal startup
and shutdown time. Microservices also should consider a lazy loading of objects

and data.

[277]

Demystifying Microservices

Development and production parity

This principle states the importance of keeping development and production
environments as identical as possible. For example, let's consider an application with
multiple services or processes, such as a job scheduler service, cache services, and
one or more application services. In a development environment, we tend to run all
of them on a single machine, whereas in production, we will facilitate independent
machines to run each of these processes. This is primarily to manage the cost

of infrastructure. The downside is that if production fails, there is no identical
environment to re-produce and fix the issues.

Not only is this principle valid for microservices, but it is also applicable to any
application development.

Externalizing logs

A Twelve-Factor application never attempts to store or ship log files. In a cloud, it is
better to avoid local I/Os. If the I/ Os are not fast enough in a given infrastructure,
it could create a bottleneck. The solution to this is to use a centralized logging
framework. Splunk, Greylog, Logstash, Logplex, and Loggly are some examples

of log shipping and analysis tools. The recommended approach is to ship logs to

a central repository by tapping the logback appenders and write to one of the
shippers' endpoints.

In a microservices ecosystem, this is very important as we are breaking a system

into a number of smaller services, which could result in decentralized logging. If they
store logs in a local storage, it would be extremely difficult to correlate logs between
services.

log event
Microservice stream (stdout)
(development) Conscle
Microservice log event
(staging) stream Shippers
Microservice log event
(production) stream Shippers

In development, the microservice may direct the log stream to stdout, whereas in
production, these streams will be captured by the log shippers and sent to a central
log service for storage and analysis.

[278]

Chapter 1

Package admin processes

Apart from application services, most applications provide admin tasks as well. This
principle advises to use the same release bundle as well as an identical environment
for both application services and admin tasks. Admin code should also be packaged
along with the application code.

Not only is this principle valid for microservices, but also it is applicable to any
application development.

Microservice use cases

A microservice is not a silver bullet and will not solve all the architectural challenges
of today's world. There is no hard-and-fast rule or rigid guideline on when to use
microservices.

Microservices may not fit in each and every use case. The success of microservices
largely depends on the selection of use cases. The first and the foremost activity is

to do a litmus test of the use case against the microservices' benefits. The litmus test
must cover all the microservices' benefits we discussed earlier in this chapter. For a
given use case, if there are no quantifiable benefits or the cost outweighs the benefits,
then the use case may not be the right choice for microservices.

Let's discuss some commonly used scenarios that are suitable candidates for a
microservices architecture:

* Migrating a monolithic application due to improvements required in
scalability, manageability, agility, or speed of delivery. Another similar
scenario is rewriting an end-of-life heavily used legacy application. In
both cases, microservices present an opportunity. Using a microservices
architecture, it is possible to replatform a legacy application by slowly
transforming functions to microservices. There are benefits in this approach.
There is no humongous upfront investment required, no major disruption
to business, and no severe business risks. As the service dependencies are
known, the microservices dependencies can be well managed.

* Utility computing scenarios such as integrating an optimization service,
forecasting service, price calculation service, prediction service, offer service,
recommendation service, and so on are good candidates for microservices.
These are independent stateless computing units that accept certain data,
apply algorithms, and return the results. Independent technical services such
as the communication service, the encryption service, authentication services,
and so on are also good candidates for microservices.

[279]

Demystifying Microservices

In many cases, we can build headless business applications or services that
are autonomous in nature —for instance, the payment service, login service,
flight search service, customer profile service, notification service, and so on.
These are normally reused across multiple channels and, hence, are good
candidates for building them as microservices.

There could be micro or macro applications that serve a single purpose and
performing a single responsibility. A simple time tracking application is an
example of this category. All it does is capture the time, duration, and task
performed. Common-use enterprise applications are also candidates for
microservices.

Backend services of a well-architected, responsive client-side MVC web
application (the Backend as a Service (BaaS) scenario) load data on demand
in response to the user navigation. In most of these scenarios, data could be
coming from multiple logically different data sources as described in the Fly
By Points example mentioned earlier.

Highly agile applications, applications demanding speed of delivery or time
to market, innovation pilots, applications selected for DevOps, applications
of the System of Innovation type, and so on could also be considered as
potential candidates for the microservices architecture.

Applications that we could anticipate getting benefits from microservices
such as polyglot requirements, applications that require Command Query
Responsibility segregations (CQRS), and so on are also potential candidates
of the microservices architecture.

If the use case falls into any of these categories, it is a potential candidate for the
microservices architecture.

There are few scenarios in which we should consider avoiding microservices:

If the organization's policies are forced to use centrally managed
heavyweight components such as ESB to host a business logic or if the
organization has any other policies that hinder the fundamental principles
of microservices, then microservices are not the right solution unless the
organizational process is relaxed.

If the organization's culture, processes, and so on are based on the
traditional waterfall delivery model, lengthy release cycles, matrix teams,
manual deployments and cumbersome release processes, no infrastructure
provisioning, and so on, then microservices may not be the right fit. This
is underpinned by Conway's Law. This states that there is a strong link
between the organizational structure and software it creates.

[280]

Chapter 1

Al

~ Read more about the Conway's Law at:
http://www.melconway.com/Home/Conways Law.html

Microservices early adopters

Many organizations have already successfully embarked on their journey to the
microservices world. In this section, we will examine some of the frontrunners on the
microservices space to analyze why they did what they did and how they did it. We
will conduct some analysis at the end to draw some conclusions:

Netflix (www.netflix.com): Netflix, an international on-demand media
streaming company, is a pioneer in the microservices space. Netflix
transformed their large pool of developers developing traditional monolithic
code to smaller development teams producing microservices. These
microservices work together to stream digital media to millions of Netflix
customers. At Netflix, engineers started with monolithic, went through

the pain, and then broke the application into smaller units that are loosely
coupled and aligned to the business capability.

Uber (www.uber . com): Uber, an international transportation network
company, began in 2008 with a monolithic architecture with a single code
base. All services were embedded into the monolithic application. When

Uber expanded their business from one city to multiple cities, the challenges
started. Uber then moved to SOA-based architecture by breaking the system
into smaller independent units. Each module was given to different teams and
empowered them to choose their language, framework, and database. Uber
has many microservices deployed in their ecosystem using RPC and REST.

Airbnb (www.airbnb.com): Airbnb, a world leader providing a trusted
marketplace for accommodation, started with a monolithic application that
performed all the required functions of the business. Airbnb faced scalability
issues with increased traffic. A single code base became too complicated to
manage, resulted in a poor separation of concerns, and ran into performance
issues. Airbnb broke their monolithic application into smaller pieces with
separate code bases running on separate machines with separate deployment
cycles. Airbnb developed their own microservices or SOA ecosystem around
these services.

[281]

http://www.melconway.com/Home/Conways_Law.html
www.netflix.com
www.uber.com
www.airbnb.com

Demystifying Microservices

Orbitz (www.orbitz.com): Orbitz, an online travel portal, started with a
monolithic architecture in the 2000s with a web layer, a business layer, and a
database layer. As Orbitz expanded their business, they faced manageability
and scalability issues with monolithic-tiered architecture. Orbitz then went
through continuous architecture changes. Later, Orbitz broke down their
monolithic to many smaller applications.

eBay (www.ebay.com): eBay, one of the largest online retailers, started

in the late 1990s with a monolithic Perl application and FreeBSD as the
database. eBay went through scaling issues as the business grew. It was
consistently investing in improving its architecture. In the mid 2000s, eBay
moved to smaller decomposed systems based on Java and web services.
They employed database partitions and functional segregation to meet the
required scalability.

Amazon (www.amazon.com): Amazon, one of the largest online retailer
websites, was run on a big monolithic application written on C++

in 2001. The well-architected monolithic application was based on a

tiered architecture with many modular components. However, all these
components were tightly coupled. As a result, Amazon was not able to speed
up their development cycle by splitting teams into smaller groups. Amazon
then separated out the code as independent functional services, wrapped
with web services, and eventually advanced to microservices.

Gilt (www.gilt.com): Gilt, an online shopping website, began in 2007 with

a tiered monolithic Rails application and a Postgres database at the back.
Similarly to many other applications, as traffic volumes increased, the web
application was not able to provide the required resiliency. Gilt went through
an architecture overhaul by introducing Java and polyglot persistence. Later,
Gilt moved to many smaller applications using the microservices concept.

Twitter (www. twitter.com): Twitter, one of the largest social websites,
began with a three-tiered monolithic rails application in the mid 2000s. Later,
when Twitter experienced growth in its user base, they went through an
architecture-refactoring cycle. With this refactoring, Twitter moved away
from a typical web application to an API-based event driven core. Twitter
uses Scala and Java to develop microservices with polyglot persistence.

Nike (www.nike.com): Nike, the world leader in apparel and footwear,
transformed their monolithic applications to microservices. Similarly to many
other organizations, Nike too was run with age-old legacy applications that
were hardly stable. In their journey, Nike moved to heavyweight commercial
products with an objective to stabilize legacy applications but ended up in
monolithic applications that were expensive to scale, had long release cycles,
and needed too much manual work to deploy and manage applications.
Later, Nike moved to a microservices-based architecture that brought down
the development cycle considerably.

[282]

www.orbitz.com
www.ebay.com
www.amazon.com
www.gilt.com
www.twitter.com
www.nike.com

Chapter 1

The common theme is monolithic migrations

When we analyze the preceding enterprises, there is one common theme. All these
enterprises started with monolithic applications and transitioned to a microservices
architecture by applying learning and pain points from their previous editions.

Even today, many start-ups begin with monolith as it is easy to start, conceptualize,
and then slowly move to microservices when the demand arises. Monolithic to
microservices migration scenarios have an added advantage: they have all the
information upfront, readily available for refactoring.

Though, for all these enterprises, it is monolithic transformation, the catalysts were
different for different organizations. Some of the common motivations are a lack
of scalability, long development cycles, process automation, manageability, and
changes in the business models.

While monolithic migrations are no-brainers, there are opportunities to build
microservices from the ground up. More than building ground-up systems, look
for opportunities to build smaller services that are quick wins for business — for
example, adding a trucking service to an airline's end-to-end cargo management
system or adding a customer scoring service to a retailer's loyalty system. These
could be implemented as independent microservices exchanging messages with
their respective monolithic applications.

Another point is that many organizations use microservices only for their business-
critical customer engagement applications, leaving the rest of the legacy monolithic
applications to take their own trajectory.

Another important observation is that most of the organizations examined
previously are at different levels of maturity in their microservices journey. When
eBay transitioned from a monolithic application in the early 2000s, they functionally
split the application into smaller, independent, and deployable units. These logically
divided units are wrapped with web services. While single responsibility and
autonomy are their underpinning principles, the architectures are limited to the
technologies and tools available at that point in time. Organizations such as Netflix
and Airbnb built capabilities of their own to solve the specific challenges they faced.
To summarize, all of these are not truly microservices, but are small, business-
aligned services following the same characteristics.

There is no state called "definite or ultimate microservices'". It is a journey and is
evolving and maturing day by day. The mantra for architects and developers is the
replaceability principle; build an architecture that maximizes the ability to replace its
parts and minimizes the cost of replacing its parts. The bottom line is that enterprises
shouldn't attempt to develop microservices by just following the hype.

[283]

Demystifying Microservices

Summary

In this chapter, you learned about the fundamentals of microservices with the help of
a few examples.

We explored the evolution of microservices from traditional monolithic applications.
We examined some of the principles and the mind shift required for modern
application architectures. We also took a look at the characteristics and benefits

of microservices and use cases. In this chapter, we established the microservices'
relationship with service-oriented architecture and Twelve-Factor Apps. Lastly, we
analyzed examples of a few enterprises from different industries.

We will develop a few sample microservices in the next chapter to bring more clarity
to our learnings in this chapter.

[284]

Building Microservices with
Spring Boot

Developing microservices is not so tedious anymore thanks to the powerful
Spring Boot framework. Spring Boot is a framework to develop production-ready
microservices in Java.

This chapter will move from the microservices theory explained in the previous
chapter to hands-on practice by reviewing code samples. This chapter will introduce
the Spring Boot framework and explain how Spring Boot can help build RESTful
microservices in line with the principles and characteristics discussed in the previous
chapter. Finally, some of the features offered by Spring Boot to make microservices
production-ready will be reviewed.

By the end of this chapter, you will have learned about:

* Setting up the latest Spring development environment

* Developing RESTful services using the Spring framework

* Using Spring Boot to build fully qualified microservices

* Useful Spring Boot features to build production-ready microservices

Setting up a development environment
To crystalize microservices concepts, a couple of microservices will be built. For this,

it is assumed that the following components are installed:

¢ JDK1.8: http://www.oracle.com/technetwork/java/javase/
downloads/jdk8-downloads-2133151.html

* Spring Tool Suite 3.7.2 (STS): https://spring.io/tools/sts/all
* Maven 3.3.1: https://maven.apache.org/download.cgi

[285]

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://spring.io/tools/sts/all
https://maven.apache.org/download.cgi

Building Microservices with Spring Boot

Alternately, other IDEs such as Intelli] IDEA, NetBeans, or Eclipse could be used.
Similarly, alternate build tools such as Gradle can be used. It is assumed that the
Maven repository, class path, and other path variables are set properly to run STS
and Maven projects.

This chapter is based on the following versions of Spring libraries:

* Spring Framework 4.2 .6 .RELEASE

* Spring Boot 1.3 .5.RELEASE

Detailed steps to download the code bundle are mentioned in the
Preface of this book. Have a look.

Y The code bundle for the book is also hosted on GitHub at
Q https://github.com/PacktPublishing/Spring-
Microservices. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Developing a RESTful service — the
legacy approach

This example will review the traditional RESTful service development before
jumping deep into Spring Boot.

STS will be used to develop this REST/JSON service.

The full source code of this example is available as the
s legacyrest project in the code files of this book.

[286]

https://github.com/PacktPublishing/Spring-Microservices
https://github.com/PacktPublishing/Spring-Microservices
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Chapter 2

The following are the steps to develop the first RESTful service:

1. Start STS and set a workspace of choice for this project.

2. Navigate to File | New | Project.

3. Select Spring Legacy Project as shown in the following screenshot and click
on Next:

[] [] New Project

Select a wizard

Wizards:

» (=-EJB

W (= Java

W (= Java EE

P (= JavaScript

b = JANE

P (=5 JPA

P (= Maven

» (= Plug-in Development

¥ (= Spring
@Import Spring Getting Started Centent
@ Spring Starter Project

» =Web

(= Examples

©

[287]

Building Microservices with Spring Boot

4. Select Spring MVC Project as shown in the following diagram and click
on Next:

[JoN] New Spring Legacy Project

Spring Legacy Project —
@ Click 'Mext’ to load the template contents. E "

Project name: legacyrest

Use default location

Location:

Select Spring version: Default "

Templates:
» [Simple Projects
= Batch
= GemFire
= Integration
= Persistence
¥[5 Simple Spring Utility Project

% B Spring MVC Project

>
>
>
>

i+ requires downloading Configure templates... Refresh

Description:
A new Spring MVC web application development project

URL:http:/fdist. springsource.com/release/STShelp/
org.springframework. templates.mve-3.2.2.zip

Working sets

| Add project to working sets

Working sets: <

5. Select a top-level package name of choice. This example uses org.rvslab.
chapter2.legacyrest as the top-level package.

Then, click on Finish.
7. This will create a project in the STS workspace with the name legacyrest.

Before proceeding further, pom.xml needs editing.

[288]

Chapter 2

10.

11.

Change the Spring version to 4.2 .6 .RELEASE, as follows:

<org.springframework-version>4.2.6 .RELEASE</org. springframework-
version>

Add Jackson dependencies in the pom.xm1 file for JSON-to-POJO and
POJO-to-JSON conversions. Note that the 2. * . * version is used to ensure
compatibility with Spring 4.
<dependency>
<groupId>com.fasterxml.jackson.core</groupIld>
<artifactId>jackson-databind</artifactId>
<version>2.6.4</version>
</dependency>

Some Java code needs to be added. In Java Resources, under legacyrest,
expand the package and open the default HomeController.java file:

[Package Explorer 53 C-—E.') hilfies
¥ (# src/mainfjava
¥ H3 org.rvslab.chapter2
> rﬁ HomeControllerjava
¥ (B src/main/resources
F [srcftest/java
b (® sroftest/resources
Pk =i, JRE System Library [JavaSE-1.6]
» = Maven Dependencies
b 25enc
b (= target
@ pom.xmi
b = Servers

The default implementation is targeted more towards the MVC project.
Rewriting HomeController.java to return a JSON value in response to the
REST call will do the trick. The resulting HomeController. java file will look
similar to the following;:

@RestController
public class HomeController {
@RequestMapping ("/")
public Greet sayHello () {
return new Greet ("Hello World!");

[289]

Building Microservices with Spring Boot

12.

class Greet ({
private String message;
public Greet (String message) {
this.message = message;
}

//add getter and setter

}

Examining the code, there are now two classes:

° Greet: This is a simple Java class with getters and setters to represent
a data object. There is only one attribute in the Greet class, which is
message.

° HomeController.java: This is nothing but a Spring controller REST
endpoint to handle HTTP requests.

Note that the annotation used in HomeController is @RestController,
which automatically injects @Controller and @ResponseBody and has the
same effect as the following code:

@Controller
@ResponseBody
public class HomeController { }

The project can now be run by right-clicking on legacyrest, navigating to
Run As | Run On Server, and then selecting the default server (Pivotal tc
Server Developer Edition v3.1) that comes along with STS.

This should automatically start the server and deploy the web application on
the TC server.

If the server started properly, the following message will appear in the
console:

INFO : org.springframework.web.servlet.DispatcherServlet -
FrameworkServlet 'appServlet': initialization completed in 906 ms
May 08, 2016 8:22:48 PM org.apache.catalina.startup.Catalina start
INFO: Server startup in 2289 ms

[290]

Chapter 2

13. If everything is fine, STS will open a browser window to http://
localhost:8080/legacyrest/ and display the JSON object as shown in
the browser. Right-click on and navigate to legacyrest | Properties | Web
Project Settings and review Context Root to identify the context root of the
web application:

ttp:#/localhost: egacyrest -
@@ http:// Ih 8080/ 7 3 =
= Qék' http:/flocalhost: 8080/ legacyrest/ M

{"message"”" : "Hello World!"}

The alternate build option is to use Maven. Right-click on the project and navigate
to Run As | Maven install. This will generate chapter2-1.0.0-BUILD-SNAPSHOT.
war under the target folder. This war is deployable in any servlet container such as
Tomcat, JBoss, and so on.

Moving from traditional web applications
to microservices

Carefully examining the preceding RESTful service will reveal whether this really
constitutes a microservice. At first glance, the preceding RESTful service is a fully
qualified interoperable REST/JSON service. However, it is not fully autonomous
in nature. This is primarily because the service relies on an underlying application
server or web container. In the preceding example, a war was explicitly created and
deployed on a Tomcat server.

This is a traditional approach to developing RESTful services as a web application.
However, from the microservices point of view, one needs a mechanism to develop
services as executables, self-contained JAR files with an embedded HTTP listener.

Spring Boot is a tool that allows easy development of such kinds of services.
Dropwizard and WildFly Swarm are alternate server-less RESTful stacks.

[291]

Building Microservices with Spring Boot

Using Spring Boot to build RESTful
microservices

Spring Boot is a utility framework from the Spring team to bootstrap Spring-

based applications and microservices quickly and easily. The framework uses an
opinionated approach over configurations for decision making, thereby reducing the
effort required in writing a lot of boilerplate code and configurations. Using the 80-20
principle, developers should be able to kickstart a variety of Spring applications with
many default values. Spring Boot further presents opportunities for the developers
to customize applications by overriding the autoconfigured values.

Spring Boot not only increases the speed of development but also provides a set

of production-ready ops features such as health checks and metrics collection. As
Spring Boot masks many configuration parameters and abstracts many lower-level
implementations, it minimizes the chance of error to a certain extent. Spring Boot
recognizes the nature of the application based on the libraries available in the class
path and runs the autoconfiguration classes packaged in these libraries.

Often, many developers mistakenly see Spring Boot as a code generator, but in
reality, it is not. Spring Boot only autoconfigures build files —for example, POM files
in the case of Maven. It also sets properties, such as data source properties, based on
certain opinionated defaults. Take a look at the following code:

<dependency>
<grouplds>org.springframework.boot</groupIld>
<artifactIds>spring-boot-starter-data-jpa</artifactIds>

</dependency>

<dependency>
<groupld>org.hsgldb</groupIld>
<artifactIds>hsgldb</artifactId>
<scope>runtime</scope>

</dependency>

For instance, in the preceding case, Spring Boot understands that the project is set to
use the Spring Data JPA and HSQL databases. It automatically configures the driver
class and other connection parameters.

One of the great outcomes of Spring Boot is that it almost eliminates the need to have
traditional XML configurations. Spring Boot also enables microservices' development
by packaging all the required runtime dependencies in a fat executable JAR file.

[292]

Chapter 2

Getting started with Spring Boot

There are different ways that Spring Boot-based application development can be

started:

Using the Spring Boot CLI as a command-line tool

Using IDEs such as STS to provide Spring Boot, which are supported out of
the box

Using the Spring Initializr project at http://start.spring.io

All these three options will be explored in this chapter, developing a variety of
sample services.

Developing the Spring Boot microservice
using the CLI

The easiest way to develop and demonstrate Spring Boot's capabilities is using the
Spring Boot CLI, a command-line tool. Perform the following steps:

1.

Install the Spring Boot command-line tool by downloading the spring-
boot-cli-1.3.5.RELEASE-bin.zip file from http://repo.spring.io/
release/org/springframework/boot/spring-boot-cli/1.3.5.RELEASE/
spring-boot-cli-1.3.5.RELEASE-bin.zip.

Unzip the file into a directory of your choice. Open a terminal window and
change the terminal prompt to the bin folder.

Ensure that the bin folder is added to the system path so that Spring Boot
can be run from any location.

Verify the installation with the following command. If successful, the Spring
CLI version will be printed in the console:

$spring --version

Spring CLI v1.3.5.RELEASE

[293]

http://start.spring.io
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.3.5.RELEASE/spring-boot-cli-1.3.5.RELEASE-bin.zip
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.3.5.RELEASE/spring-boot-cli-1.3.5.RELEASE-bin.zip
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.3.5.RELEASE/spring-boot-cli-1.3.5.RELEASE-bin.zip

Building Microservices with Spring Boot

4.

As the next step, a quick REST service will be developed in Groovy, which

is supported out of the box in Spring Boot. To do so, copy and paste the
following code using any editor of choice and save it as myfirstapp.groovy
in any folder:

@RestController
class HelloworldController {
@RequestMapping ("/")
String sayHello() {
"Hello World!"
}
}

In order to run this Groovy application, go to the folder where myfirstapp.
groovy is saved and execute the following command. The last few lines of
the server start-up log will be similar to the following:

$spring run myfirstapp.groovy

2016-05-09 18:13:55.351 INFO 35861 --- [nio-8080-exec-1]
o.s.web.servlet.DispatcherServlet : FrameworkServlet
'dispatcherServlet': initialization started

2016-05-09 18:13:55.375 INFO 35861 --- [nio-8080-exec-1]
o.s.web.servlet.DispatcherServlet : FrameworkServlet
'dispatcherServlet': initialization completed in 24 ms

Open a browser window and go to http://localhost:8080; the browser
will display the following message:

Hello World!

There is no war file created, and no Tomcat server was run. Spring Boot
automatically picked up Tomcat as the webserver and embedded it into the
application. This is a very basic, minimal microservice. The @RestController
annotation, used in the previous code, will be examined in detail in the next example.

Developing the Spring Boot Java
microservice using STS

In this section, developing another Java-based REST/JSON Spring Boot service using
STS will be demonstrated.

[294]

Chapter 2

The full source code of this example is available as the
= chapter2.bootrest project in the code files of this book.

1. Open STS, right-click within the Project Explorer window, navigate to
New | Project, and select Spring Starter Project, as shown in the following
screenshot, and click on Next:

[NON) New Project

Select a wizard

Create new Spring Starter Project via the Spring Initializr Web Service |
Wizards:

P =EJB

F (=Java

b (= Java EE

b = JavaScript

b [JAXB

b = JPA

b (= Maven

P (= Plug-in Development

¥ (= Spring
@Impor‘l Spring Getting Started Content
@Spri ng Legacy Project

i Spring Starter Project
» (=Web
b (=~ Examples

@ [Next > RN

Spring Starter Project is a basic template wizard that provides a number of
other starter libraries to select from.

2. Type the project name as chapter2.bootrest or any other name of your
choice. It is important to choose the packaging as JAR. In traditional web
applications, a war file is created and then deployed to a servlet container,
whereas Spring Boot packages all the dependencies to a self-contained,
autonomous JAR file with an embedded HTTP listener.

[295]

Building Microservices with Spring Boot

3. Select 1.8 under Java Version. Java 1.8 is recommended for Spring 4
applications. Change the other Maven properties such as Group, Artifact,
and Package, as shown in the following screenshot:

0@
New Spring Starter Project E
Name chapter2.bootrest| |

Use default location

Location
Type: Maven Packaging: Jar
Java Version: 1.8 Language: Java
Group org.rvslab.chapter2
Artifact bootrest
Version 0.0.1-SMNAPSHOT
Description Demo project for Spring Boot
Package org.rvslab.chapter?
Working sets

| Add project to working sets

Working sets: ~

@

4. Once completed, click on Next.

[296]

Chapter 2

5. The wizard will show the library options. In this case, as the REST service is
developed, select Web under Web. This is an interesting step that tells Spring
Boot that a Spring MVC web application is being developed so that Spring
Boot can include the necessary libraries, including Tomcat as the HTTP
listener and other configurations, as required:

New Spring Starter Project

Boot Version: 1.3.5

Dependencies:
} Frequently Used

Cloud AWS

Cloud Circuit Breaker
Cloud Cluster

Cloud Config

Cloud Core

Cloud Data Flow
Cloud Discovery

Cloud Messaging

]
]
]
]
3
2
2
2
b Cloud Routing
b Cloud Tracing
b Core
[Tie]
b NoSaL
b Ops
b SaL
} Social
} Template Engines
- [Web
& web Websocket

Ratpack Vaadin

C ‘;?) < Back

WS

Rest Repositories

MNext =

Cancel

a6

Jersey (JAX-RS)
HATEOAS

| Finish |

[297]

Building Microservices with Spring Boot

6. Click on Finish.

This will generate a project named chapter2.bootrest in Project Explorer
in STS:

v Ij chapter2.bootrest [boot]
¥ (B sre/mainfjava
¥ £ org.rvslab.chapter2
¥ (B src/main/rescurces
(= static
F = templates
J~' application.properties
¥ B sreitestjava
¥ i org.rvslab.chapter2
L4 m ApplicationTests.java
P B, JRE System Library [JavaSE-1.8]
F =\, Maven Dependencies
b i=esrc
b (= target
=| mvnw

=l

myvnw.cmd

=l

_B pom.xml

7. Take a moment to examine the generated application. Files that are of
interest are:

° pom.xml

° DApplication.java
° DApplication.properties

° DApplicationTests.java

Examining the POM file

The parent element is one of the interesting aspects in the pom.xm1 file. Take a look at
the following:

<parent>
<groupldsorg.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactIds>
<version>1.3.4.RELEASE</version>

</parent>

[298]

Chapter 2

The spring-boot -starter-parent pattern is a bill of materials (BOM), a pattern
used by Maven's dependency management. BOM is a special kind of POM file used

to manage different library versions required for a project. The advantage of using

the spring-boot -starter-parent POM file is that developers need not worry about
finding the right compatible versions of different libraries such as Spring, Jersey, JUnit,
Logback, Hibernate, Jackson, and so on. For instance, in our first legacy example,

a specific version of the Jackson library was added to work with Spring 4. In this
example, these are taken care of by the spring-boot-starter-parent pattern.

The starter POM file has a list of Boot dependencies, sensible resource filtering, and
sensible plug-in configurations required for the Maven builds.

Refer to https://github.com/spring-projects/
M spring-boot/blob/1.3.x/spring-boot-
Q dependencies/pom.xml to take a look at the different
dependencies provided in the starter parent (version 1.3.x).
All these dependencies can be overridden if required.

The starter POM file itself does not add JAR dependencies to the project. Instead,
it will only add library versions. Subsequently, when dependencies are added to
the POM file, they refer to the library versions from this POM file. A snapshot of
some of the properties are as shown as follows:

<spring-boot.version>1.3.5.BUILD-SNAPSHOT</spring-boot.version>
<hibernate.version>4.3.11.Final</hibernate.version>
<jackson.version>2.6.6</jackson.versions>
<jersey.version>2.22.2</jersey.version>
<logback.version>1.1.7</logback.versions>

<spring.version>4.2.6 .RELEASE</spring.version>
<spring-data-releasetrain.version>Gosling-SR4</spring-data-
releasetrain.versions>

<tomcat .version>8.0.33</tomcat.version>

Reviewing the dependency section, one can see that this is a clean and neat POM file
with only two dependencies, as follows:

<dependencies>
<dependency>
<grouplds>org.springframework.boot</groupIds>
<artifactId>spring-boot-starter-web</artifactIds>
</dependency>

[299]

https://github.com/spring-projects/spring-boot/blob/1.3.x/spring-boot-dependencies/pom.xml
https://github.com/spring-projects/spring-boot/blob/1.3.x/spring-boot-dependencies/pom.xml
https://github.com/spring-projects/spring-boot/blob/1.3.x/spring-boot-dependencies/pom.xml

Building Microservices with Spring Boot

<dependency>
<grouplds>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactIds>
<scope>test</scope>
</dependency>
</dependencies>

As web is selected, spring-boot-starter-web adds all dependencies required for
a Spring MVC project. It also includes dependencies to Tomcat as an embedded
HTTP listener. This provides an effective way to get all the dependencies required as
a single bundle. Individual dependencies could be replaced with other libraries, for
example replacing Tomcat with Jetty.

Similar to web, Spring Boot comes up with a number of spring-boot-starter-*
libraries, such as amgp, aop, batch, data-jpa, thymeleaf, and so on.

The last thing to be reviewed in the pom.xml file is the Java 8 property. By default,
the parent POM file adds Java 6. It is recommended to override the Java version to 8
for Spring;:

<java.version>1l.8</java.version>

Examining Application.java
Spring Boot, by default, generated a org.rvslab.chapter2.Application.java
class under src/main/java to bootstrap, as follows:

@SpringBootApplication
public class Application {
public static void main(String[] args) {
SpringApplication.run (Application.class, args);
}
}

There is only a main method in Application, which will be invoked at startup as
per the Java convention. The main method bootstraps the Spring Boot application by
calling the run method on SpringaApplication. Application.class is passed as a
parameter to tell Spring Boot that this is the primary component.

[300]

Chapter 2

More importantly, the magic is done by the @SpringBootApplication annotation.
The @springBootApplication annotation is a top-level annotation that encapsulates
three other annotations, as shown in the following code snippet:

@Configuration
@EnableAutoConfiguration
@ComponentScan

public class Application {

The @Configuration annotation hints that the contained class declares one or
more @Bean definitions. The @Configuration annotation is meta-annotated with
@Component; therefore, it is a candidate for component scanning.

The @EnableAutoConfiguration annotation tells Spring Boot to automatically
configure the Spring application based on the dependencies available in the class path.

Examining application.properties

A default application.properties file is placed under src/main/resources.

It is an important file to configure any required properties for the Spring Boot
application. At the moment, this file is kept empty and will be revisited with some
test cases later in this chapter.

Examining ApplicationTests.java

The last file to be examined is ApplicationTests.java under src/test/java.
This is a placeholder to write test cases against the Spring Boot application.

To implement the first RESTful service, add a REST endpoint, as follows:

1. One can edit Application.java under src/main/java and add a RESTful
service implementation. The RESTful service is exactly the same as what was
done in the previous project. Append the following code at the end of the
Application.java file:

@RestController
class GreetingController({
@RequestMapping ("/")
Greet greet () {
return new Greet ("Hello World!");

}

[301]

Building Microservices with Spring Boot

}

class Greet ({

private String message;
public Greet() {}

public Greet (String message) {
this.message = message;

}

//add getter and setter

}

2. Torun, navigate to Run As | Spring Boot App. Tomcat will be started on the
8080 port:

AN N L () JER W S WY

COP™ DD N T NN

ALV 1 I U O O I B I O T
o [N T I AN (VA

[_1 | ___ =i 4 S

: Spring Boot :: (wl.3.5.RELEASE)

2016-05-11 16:40:18.236 INFO 41138 --- [main]
org.rvslab.chapter2. Application : Starting Application on rvslab.local with
PID 4113G| (FUsers/rajeshrv/work/codebox/chapterd/chapterd .bootrest/target/closses

We can notice from the log that:

° Spring Boot get its own process ID (in this case, it is 41130)
° Spring Boot is automatically started with the Tomcat server at the
localhost, port 8o0so.

3. Next, open a browser and point to http://localhost:8080. This will show
the JSON response as shown in the following screenshot:

= B " |httpuilocalhost:8080/ i B

{"message"”" :"Hello World!"}

A key difference between the legacy service and this one is that the Spring Boot
service is self-contained. To make this clearer, run the Spring Boot application
outside STS. Open a terminal window, go to the project folder, and run Maven,
as follows:

$ maven install

[302]

Chapter 2

This will generate a fat JAR file under the target folder of the project. Running the
application from the command line shows:

$java -jar target/bootrest-0.0.1-SNAPSHOT.jar

As one can see, bootrest-0.0.1-SNAPSHOT. jar is self-contained and could be run
as a standalone application. At this point, the JAR is as thin as 13 MB. Even though
the application is no more than just "Hello World", the Spring Boot service just
developed, practically follows the principles of microservices.

Testing the Spring Boot microservice

There are multiple ways to test REST/JSON Spring Boot microservices. The easiest
way is to use a web browser or a curl command pointing to the URL, as follows:

curl http://localhost:8080

There are number of tools available to test RESTful services, such as Postman,
Advanced REST client, SOAP U, Paw, and so on.

In this example, to test the service, the default test class generated by Spring Boot
will be used.

Adding a new test case to ApplicatonTests.java results in:

@RunWith (SpringdUnit4ClassRunner.class)
@SpringApplicationConfiguration (classes = Application.class)
@WebIntegrationTest
public class ApplicationTests {
@Test
public void testVanillaService() {
RestTemplate restTemplate = new RestTemplate() ;

Greet greet = restTemplate.getForObject
("http://localhost:8080", Greet.class);

Assert.assertEquals ("Hello World!", greet.getMessage()) ;

}
}

Note that @eWebIntegrationTest is added and eWebAppConfiguration removed
at the class level. The @WebIntegrationTest annotation is a handy annotation that
ensures that the tests are fired against a fully up-and-running server. Alternately,

a combination of @WebAppConfiguration and @eIntegrationTest will give the
same result.

[303]

Building Microservices with Spring Boot

Also note that RestTemplate is used to call the RESTful service. RestTemplate is a
utility class that abstracts the lower-level details of the HTTP client.

To test this, one can open a terminal window, go to the project folder, and run
mvn install.

Developing the Spring Boot microservice
using Spring Initializr — the HATEOAS
example

In the next example, Spring Initializr will be used to create a Spring Boot project.
Spring Initializr is a drop-in replacement for the STS project wizard and provides

a web UI to configure and generate a Spring Boot project. One of the advantages of
Spring Initializr is that it can generate a project through the website that then can be
imported into any IDE.

In this example, the concept of HATEOAS (short for Hypermedia As The Engine
Of Application State) for REST-based services and the HAL (Hypertext Application
Language) browser will be examined.

HATEOAS is a REST service pattern in which navigation links are provided as part
of the payload metadata. The client application determines the state and follows the
transition URLs provided as part of the state. This methodology is particularly useful
in responsive mobile and web applications in which the client downloads additional
data based on user navigation patterns.

The HAL browser is a handy API browser for hal+json data. HAL is a format based
on JSON that establishes conventions to represent hyperlinks between resources.
HAL helps APIs be more explorable and discoverable.

The full source code of this example is available as the
s chapter2.boothateoas project in the code files of this book.

[304]

Chapter 2

Here are the concrete steps to develop a HATEOAS sample using Spring Initilizr:

1. Inorder to use Spring Initilizr, go to https://start.spring.io:

SPRING INITIALIZR

Generate a mawenroec ¢ With Spring Boot 135

Project Metadata Dependencies
Amifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies

AEdaFyslah.chaptard
Artifact Selected Dependencies

Don't know what to look for? Want more options? Switch 1o the full versio

2. Fill the details, such as whether it is a Maven project, Spring Boot version,
group, and artifact ID, as shown earlier, and click on Switch to the full
version link under the Generate Project button. Select Web, HATEOAS,
and Rest Repositories HAL Browser. Make sure that the Java version is 8
and the package type is selected as JAR:

Web

1 Web
Full-stack web development with Tomcat and Spring MVC

| Websocket
Websocket development with SockJS and STOMP
1 WS
Contract-first SOAP service development with Spring Web Services

7| Jersey (JAX-RS)
the Jersey RESTful Web Services framework

| Ratpack
Spring Boot integration for the Ratpack framework

I Vaadin
Vaadin

Rest Repositories
Exposing Spring Data repositories over REST via spring-data-rest-webmvc

~| HATEQAS
HATEOAS-based RESTful services

Rest Repositories HAL Browser
Browsing Spring Data REST repositories with an HTML Ul

~I Mobile

Simplify the development of mobile web applications with spring-mobile

~| REST Docs

Document RESTful services by combining hand-written and autc-generated
documentation

[305]

https://start.spring.io

Building Microservices with Spring Boot

3. Once selected, hit the Generate Project button. This will generate a Maven
project and download the project as a ZIP file into the download directory of

the browser.

Unzip the file and save it to a directory of your choice.

5. Open STS, go to the File menu and click on Import:

[JoN
Select

Import

Impeort Existing Maven Projects I_g - 5 i

Select an import source:

F=Git

F (= Install

F (= Java EE

¥ = Maven
f._j‘Check out Maven Projects from SCM
:n‘InslaII or deploy an artifact to a Maven repository
ﬂj‘ Materialize Maven Projects from SCM

F (= Plug-in Development

P [=- Remote Systems

» = Run/Debug

» = Spring

b (= Tasks

b (= Team

b Web

P (= Web services

P = XML

Navigate to Maven | Existing Maven Projects and click on Next.

Click on Browse next to Root Directory and select the unzipped folder.
Click on Finish. This will load the generated Maven project into STS'
Project Explorer.

[306]

Chapter 2

10.

11.

12.

Edit the Application.java file to add a new REST endpoint, as follows:
@RequestMapping (" /greeting")

@ResponseBody
public HttpEntity<Greets> greeting(@RequestParam(value = "name",
required = false, defaultValue = "HATEOAS") String name) {

Greet greet = new Greet ("Hello " + name);

greet.add (linkTo (methodOn (GreetingController.
class) .greeting(name)) .withSelfRel ()) ;

return new ResponseEntity<Greets>(greet,
HttpStatus.OK) ;

}

Note that this is the same GreetingController class as in the previous
example. However, a method was added this time named greeting. In
this new method, an additional optional request parameter is defined and
defaulted to HATEOAS. The following code adds a link to the resulting JSON
code. In this case, it adds the link to the same API:

greet.add (1linkTo (methodOn (GreetingController.class) .
greeting(name)) .withSelfRel ()) ;

In order to do this, we need to extend the Greet class from
ResourceSupport, as shown here. The rest of the code remains the same:

class Greet extends ResourceSupport

The add method is a method in ResourceSupport. The 1inkTo and
methodOn methods are static methods of ControllerLinkBuilder, a utility
class for creating links on controller classes. The methodon method will do
a dummy method invocation, and 1inkTo will create a link to the controller
class. In this case, we will use withSelfRel to point it to itself.

This will essentially produce a link, /greeting?name=HATEOAS, by default.
A client can read the link and initiate another call.

Run this as a Spring Boot app. Once the server startup is complete, point the
browser to http://localhost:8080.

[307]

Building Microservices with Spring Boot

13. This will open the HAL browser window. In the Explorer field,
type /greeting?name=World! and click on the Go button. If everything
is fine, the HAL browser will show the response details as shown in the
following screenshot:

Explorer Inspector
Agresating Tnamas\Vorid! Gal Response HeaderS
Custom Request Headers 200 0
Date: Sat, 12 Dec 2015 18:12:43 GMT
Server: Apache-Coyotes1.1
Transfer-Encoding: Tdentity
. Content-Type: application/hal+json;charset=UTF-8
Properties

. Response Body
"message”: “Hello World!®

3 {

ol “message”: "Hello Worldl”,
. =_links=: {

Links “self": {

“href": “http://localhost:8880/greetingTnane=Horld! "™

§
§
§

ol e name | index docs

et (%3] (1] }

As shown in the screenshot, the Response Body section has the result with a link
with href pointing back to the same service. This is because we pointed the reference
to itself. Also, review the Links section. The little green box against self is the
navigable link.

It does not make much sense in this simple example, but this could be handy in
larger applications with many related entities. Using the links provided, the client
can easily navigate back and forth between these entities with ease.

What's next?

A number of basic Spring Boot examples have been reviewed so far. The rest of this
chapter will examine some of the Spring Boot features that are important from a
microservices development perspective. In the upcoming sections, we will take a
look at how to work with dynamically configurable properties, change the default
embedded web server, add security to the microservices, and implement cross-origin
behavior when dealing with microservices.

The full source code of this example is available as the
s chapter2.boot-advanced project in the code files of this book.

[308]

Chapter 2

The Spring Boot configuration

In this section, the focus will be on the configuration aspects of Spring Boot. The
chapter2.bootrest project, already developed, will be modified in this section
to showcase configuration capabilities. Copy and paste chapter2.bootrest and
rename the project as chapter2.boot-advanced.

Understanding the Spring Boot
autoconfiguration

Spring Boot uses convention over configuration by scanning the dependent

libraries available in the class path. For each spring-boot-starter-* dependency
in the POM file, Spring Boot executes a default AutoConfiguration class.
AutoConfiguration classes use the *AutoConfiguration lexical pattern, where *
represents the library. For example, the autoconfiguration of JPA repositories is done
through JpaRepositoriesAutoConfiguration

Run the application with - -debug to see the autoconfiguration report. The following
command shows the autoconfiguration report for the chapter2.boot-advanced
project:

$java -jar target/bootadvanced-0.0.1-SNAPSHOT.jar --debug
Here are some examples of the autoconfiguration classes:

® ServerPropertiesAutoConfiguration
® RepositoryRestMvcAutoConfiguration
® JpaRepositoriesAutoConfiguration

® JmsAutoConfiguration

It is possible to exclude the autoconfiguration of certain libraries if the application
has special requirements and you want to get full control of the configurations.
The following is an example of excluding DataSourceAutoConfiguration:

@EnableAutoConfiguration (exclude={DataSourceAutoConfiguration.class})

[309]

Building Microservices with Spring Boot

Overriding default configuration values

It is also possible to override default configuration values using the application.
properties file. STS provides an easy-to-autocomplete, contextual help on
application.properties, as shown in the following screenshot:

server.port 9808

spring.j
spring.jackson.date-format : String
spring.jackson.deserialization : Map<com.fasterkml.jackson.databind. DeserializationFeatu
spring.jackson.generator : Map<com.fasterxml.jackson.core.JsonGenerator.Feature[AUTO
spring.jackson.joda-date-time-format | String
spring.jackson.locale : Locale
spring.jackson.mapper : Map<com.fastersml.jackson.databind. MapperFeature[USE_ANNC
spring.jackson.parser : Map<com.fasterkxml.jackson.core.JsonParser.Feature[AUTO_CLOS
spring.jacksen.property-naming-strategy : String
spring.jackson.serialization : Map<com.fasterxml.jackson.databind.SerializationFeature[WI
spring.jackson.serialization-inclusion : com.fasterxml.jackson.annotation.Jsonlnclude$inc
spring.jackson.time-zong : TimeZone
spring.jersey.application-path : String
spring.jersey.filter.order @ int
spring.jersey.init : Map<String, String>
spring.jersey.type : org.springframewerk.boot.autoconfigure.jersey.JerseyProperties3Type|

Lomwimm imne imeliomarae o Seeine

In the preceding screenshot, server.port is edited to be set as 9090. Running this
application again will start the server on port 9090.

Changing the location of the configuration file

In order to align with the Twelve-Factor app, configuration parameters need to
be externalized from the code. Spring Boot externalizes all configurations into
application.properties. However, it is still part of the application's build.
Furthermore, properties can be read from outside the package by setting the
following properties:

spring.config.name= # config file name
spring.config.location= # location of config file

Here, spring.config. location could be a local file location.

The following command starts the Spring Boot application with an externally
provided configuration file:

$java -jar target/bootadvanced-0.0.1-SNAPSHOT.jar --spring.config.
name=bootrest.properties

[310]

Chapter 2

Reading custom properties

At startup, SpringaApplication loads all the properties and adds them to the Spring
Environment class. Add a custom property to the application.properties file.

In this case, the custom property is named bootrest . customproperty. Autowire
the Spring Environment class into the GreetingController class. Edit the
GreetingController class to read the custom property from Environment

and add a log statement to print the custom property to the console.

Perform the following steps to do this:

1. Add the following property to the application.properties file:

bootrest.customproperty=hello

2. Then, edit the GreetingController class as follows:

@Autowired
Environment env;

Greet greet () {
logger.info ("bootrest.customproperty "+
env.getProperty ("bootrest.customproperty")) ;
return new Greet ("Hello World!") ;

}

3. Rerun the application. The log statement prints the custom variable in the
console, as follows:

org.rvslab.chapter2.GreetingController : bootrest.customproperty
hello

Using a .yaml file for configuration

As an alternate to application.properties, one may use a .yaml file. YAML
provides a JSON-like structured configuration compared to the flat properties file.

To see this in action, simply replace application.properties with application.
yaml and add the following property:

server
port: 9080

Rerun the application to see the port printed in the console.

[311]

Building Microservices with Spring Boot

Using multiple configuration profiles

Furthermore, it is possible to have different profiles such as development, testing,
staging, production, and so on. These are logical names. Using these, one can
configure different values for the same properties for different environments.
This is quite handy when running the Spring Boot application against different
environments. In such cases, there is no rebuild required when moving from one
environment to another.

Update the .yaml file as follows. The Spring Boot group profiles properties based on
the dotted separator:

spring:
profiles: development
server:
port: 9090

spring:
profiles: production
server:
port: 8080

Run the Spring Boot application as follows to see the use of profiles:

mvn -Dspring.profiles.active=production install

mvn -Dspring.profiles.active=development install

Active profiles can be specified programmatically using the @ActiveProfiles
annotation, which is especially useful when running test cases, as follows:

@ActiveProfiles ("test")

Other options to read properties

The properties can be loaded in a number of ways, such as the following;:

¢ Command-line parameters (-Dhost.port =9090)
* Operating system environment variables

* JNDI (java:comp/env)

[312]

Chapter 2

Changing the default embedded web
server

Embedded HTTP listeners can easily be customized as follows. By default, Spring
Boot supports Tomcat, Jetty, and Undertow. In the following example, Tomcat is
replaced with Undertow:

<dependency>
<grouplds>org.springframework.boot</groupIld>
<artifactIdsspring-boot-starter-web</artifactId>
<exclusionss>
<exclusion>
<grouplds>org.springframework.boot</groupIld>
<artifactId>spring-boot-starter-tomcat</artifactIds>
</exclusion>
</exclusions>
</dependency>
<dependency>
<grouplds>org.springframework.boot</groupIld>
<artifactIdsspring-boot-starter-undertow</artifactIds>

</dependency>

Implementing Spring Boot security

It is important to secure microservices. In this section, some basic measures to
secure Spring Boot microservices will be reviewed using chapter2.bootrest to
demonstrate the security features.

Securing microservices with basic security

Adding basic authentication to Spring Boot is pretty simple. Add the following
dependency to pom.xml. This will include the necessary Spring security library files:

<dependencys>
<groupIds>org.springframework.boot</groupIds>
<artifactId>spring-boot-starter-security</artifactId>

</dependency>

[313]

Building Microservices with Spring Boot

Open Application.java and add @EnableGlobalMethodSecurity to the
Application class. This annotation will enable method-level security:

@EnableGlobalMethodSecurity
@SpringBootApplication
public class Application {
public static void main(String[] args) {
SpringApplication.run (Application.class, args);

}

The default basic authentication assumes the user as being user. The default
password will be printed in the console at startup. Alternately, the username
and password can be added in application.properties, as shown here:

security.user.name=guest
security.user.password=guestl123

Add a new test case in ApplicationTests to test the secure service results,
as in the following:

@Test
public void testSecureService () {
String plainCreds = "guest:guestl23";

HttpHeaders headers = new HttpHeaders() ;

headers.add ("Authorization", "Basic " + new String(Baseé64.
encode (plainCreds.getBytes())));

HttpEntity<String> request = new HttpEntity<Strings> (headers) ;
RestTemplate restTemplate = new RestTemplate() ;

ResponseEntity<Greet> response = restTemplate.exchange ("http://
localhost:8080", HttpMethod.GET, request, Greet.class);

Assert.assertEquals ("Hello World!", response.getBody () .
getMessage ()) ;

}

As shown in the code, a new Authorization request header with Base64 encoding
the username-password string is created.

Rerun the application using Maven. Note that the new test case passed, but the old
test case failed with an exception. The earlier test case now runs without credentials,
and as a result, the server rejected the request with the following message:

org.springframework.web.client.HttpClientErrorException: 401 Unauthorized

[314]

Chapter 2

Securing a microservice with OAuth2

In this section, we will take a look at the basic Spring Boot configuration for OAuth?2.
When a client application requires access to a protected resource, the client sends

a request to an authorization server. The authorization server validates the request
and provides an access token. This access token is validated for every client-to-server
request. The request and response sent back and forth depends on the grant type.

~\l
Q Read more about OAuth and grant types at http://ocauth.net.

The resource owner password credentials grant approach will be used in this
example:

(2) Request Access Token

submitting
usermname / sword _—
Client pas Autgc;rrlig:mn
(3) Grant Access Token
with optional
Refresh Token
(1) supply
usemame / password (4) Call AP! with
Access Token
Resource
Server
Resource
Owner

In this case, as shown in the preceding diagram, the resource owner provides the
client with a username and password. The client then sends a token request to the
authorization server by providing the credential information. The authorization
server authorizes the client and returns with an access token. On every subsequent
request, the server validates the client token.

[315]

http://oauth.net

Building Microservices with Spring Boot

To implement OAuth2 in our example, perform the following steps:

1.

As a first step, update pom.xml with the OAuth2 dependency, as follows:

<dependency>
<grouplds>org.springframework.security.oauth</groupIds>
<artifactId>spring-security-oauth2</artifactIds>
<version>2.0.9.RELEASE</version>

</dependency>

Next, add two new annotations, @EnableAuthorizationServer

and @EnableResourceServer, to the Application.java file. The
@EnableAuthorizationServer annotation creates an authorization server
with an in-memory repository to store client tokens and provide clients with
a username, password, client ID, and secret. The @EnableResourceServer
annotation is used to access the tokens. This enables a spring security filter
that is authenticated via an incoming OAuth2 token.

In our example, both the authorization server and resource server are the
same. However, in practice, these two will run separately. Take a look at the
following code:

@EnableResourceServer
@EnableAuthorizationServer
@SpringBootApplication
public class Application {

Add the following properties to the application.properties file:

security.user.name=guest
security.user.password=guestl123
security.ocauth2.client.clientId: trustedclient
security.oauth2.client.clientSecret: trustedclientl23

security.oauth2.client.authorized-grant-types: authorization
code, refresh token,password

security.oauth2.client.scope: openid

[316]

Chapter 2

4. Then, add another test case to test OAuth2, as follows:

@Test
public void testOAuthService () {
ResourceOwnerPasswordResourceDetails resource = new
ResourceOwnerPasswordResourceDetails () ;
resource.setUsername ("guest") ;
resource.setPassword ("guestl23") ;

resource.setAccessTokenUri ("http://localhost:8080/0auth/
token") ;

resource.setClientId("trustedclient") ;
resource.setClientSecret ("trustedclientl123") ;
resource.setGrantType ("password") ;

DefaultOAuth2ClientContext clientContext = new
DefaultOAuth2ClientContext () ;

OAuth2RestTemplate restTemplate = new
OAuth2RestTemplate (resource, clientContext) ;

Greet greet = restTemplate.getForObject ("http://
localhost:8080", Greet.class);

Assert.assertEquals ("Hello World!", greet.getMessage()) ;

}

As shown in the preceding code, a special REST template,
OAuth2RestTemplate, is created by passing the resource details
encapsulated in a resource details object. This REST template handles the
OAuth2 processes underneath. The access token URI is the endpoint for
the token access.

5. Rerun the application using mvn install. The first two test cases will
fail, and the new one will succeed. This is because the server only accepts
OAuth2-enabled requests.

These are quick configurations provided by Spring Boot out of the box but

are not good enough to be production grade. We may need to customize
ResourceServerConfigurer and AuthorizationServerConfigurer to make
them production-ready. This notwithstanding, the approach remains the same.

[317]

Building Microservices with Spring Boot

Enabling cross-origin access for
microservices

Browsers are generally restricted when client-side web applications running from
one origin request data from another origin. Enabling cross-origin access is generally
termed as CORS (Cross-Origin Resource Sharing).

Web Server 1 Web Server 2

(2) Response Web Page

1) Request Web Page
(1) Reg 9 (3) Request Web Page

Client
Error 111

This example shows how to enable cross-origin requests. With microservices, as each
service runs with its own origin, it will easily get into the issue of a client-side web
application consuming data from multiple origins. For instance, a scenario where

a browser client accessing Customer from the Customer microservice and Order
History from the Order microservices is very common in the microservices world.

Spring Boot provides a simple declarative approach to enabling cross-origin
requests. The following example shows how to enable a microservice to enable cross-
origin requests:

@RestController
class GreetingController({
@CrossOrigin
@RequestMapping ("/")
Greet greet () {
return new Greet ("Hello World!");
}
}

[318]

Chapter 2

By default, all the origins and headers are accepted. We can further customize
the cross-origin annotations by giving access to specific origins, as follows. The
@CrossOrigin annotation enables a method or class to accept cross-origin requests:

@CrossOrigin ("http://mytrustedorigin.com")

Global CORS can be enabled using the webMvcConfigurer bean and customizing
the addCorsMappings (CorsRegistry registry) method.

Implementing Spring Boot messaging
In an ideal case, all microservice interactions are expected to happen asynchronously

using publish-subscribe semantics. Spring Boot provides a hassle-free mechanism to
configure messaging solutions:

Rabhbit MQ
Q

Send Receive

Sender Receiver

In this example, we will create a Spring Boot application with a sender and receiver,
both connected though an external queue. Perform the following steps:

The full source code of this example is available as the
i chapter2.bootmessaging project in the code files of this book.

[319]

Building Microservices with Spring Boot

1. Create a new project using STS to demonstrate this capability. In this

example, instead of selecting Web, select AMQP under I/O:

Boot Version: 1.3.5 ﬁ

Dependencies:
b Freguently Used

Cloud AWS

Cloud Circuit Breaker
Cloud Cluster

Cloud Config

Cloud Core

Cloud Data Flow
Cloud Discovery
Cloud Messaging
Cloud Reuting

Cloud Tracing

- v v w w v v v v v v

Core

- |0
Batch Integration Activiti
JMS (Artemis) JMS {HornetQ) AMGP

NoSGL

Ops

SaL

Social

Template Engines

- v v v v v

Web

Apache Camel
Mail

2. Rabbit MQ will also be needed for this example. Download and install the
latest version of Rabbit MQ from https://www.rabbitmg.com/download.

html.
Rabbit MQ 3.5.6 is used in this book.

3. Follow the installation steps documented on the site. Once ready, start the

RabbitMQ server via the following command:

$./rabbitmg-server

4. Make the configuration changes to the application.properties file to
reflect the RabbitMQ configuration. The following configuration uses the

default port, username, and password of RabbitMQ:

spring.rabbitmg.host=1localhost
spring.rabbitmg.port=5672

spring.rabbitmg.username=guest
spring.rabbitmg.password=guest

[320]

https://www.rabbitmq.com/download.html
https://www.rabbitmq.com/download.html

Chapter 2

Add a message sender component and a queue named TestQ of the org.
springframework.amgp.core.Queue type to the Application.java file
under src/main/java. RabbitMessagingTemplate is a convenient way to
send messages, which will abstract all the messaging semantics. Spring Boot
provides all boilerplate configurations to send messages:

@Component

class Sender ({
@Autowired
RabbitMessagingTemplate template;

@Bean
Queue queue () {
return new Queue ("TestQ", false);

}

public void send(String message) {
template.convertAndSend ("TestQ", message) ;

}

To receive the message, all that needs to be used is a @RabbitListener
annotation. Spring Boot autoconfigures all the required boilerplate
configurations:

@Component
class Receiver ({
@RabbitListener (queues = "TestQ")
public void processMessage (String content)
System.out.println (content) ;

}

The last piece of this exercise is to wire the sender to our main application
and implement the run method of CommandLineRunner to initiate the
message sending. When the application is initialized, it invokes the run
method of commandLineRunner, as follows:

@SpringBootApplication

public class Application implements CommandLineRunner

@Autowired
Sender sender;

public static void main(String[] args) {

[321]

Building Microservices with Spring Boot

SpringApplication.run (Application.class, args);

}

@Override
public void run(String... args) throws Exception {
sender.send("Hello Messaging..!!!");

}
}

8. Run the application as a Spring Boot application and verify the output.
The following message will be printed in the console:

Hello Messaging..!!!

Developing a comprehensive
microservice example

So far, the examples we have considered are no more than just a simple "Hello
world." Putting together what we have learned, this section demonstrates an
end-to-end Customer Profile microservice implementation. The Customer Profile
microservices will demonstrate interaction between different microservices. It also
demonstrates microservices with business logic and primitive data stores.

In this example, two microservices, the Customer Profile and Customer Notification
services, will be developed:

Get Profile By Name CRUD Register Send Email
Customer Profile Customer Notification SMTP
Service Service Server

As shown in the diagram, the Customer Profile microservice exposes methods to
create, read, update, and delete (CRUD) a customer and a registration service to
register a customer. The registration process applies certain business logic, saves the
customer profile, and sends a message to the Customer Notification microservice.
The Customer Notification microservice accepts the message sent by the registration
service and sends an e-mail message to the customer using an SMTP server.
Asynchronous messaging is used to integrate Customer Profile with the Customer

Notification service.

[322]

Chapter 2

The Customer microservices class domain model diagram is as shown here:

<<RestControllers> <<Componentss <<JPA Entity=> <<JpaRepository=:
CustomerController CustomerComponent Customer CustomerRepository
register : Customer register : Customer + id: Long findByName: Customer

+ name: String

+ email: String

CustomerController in the diagram is the REST endpoint, which invokes a
component class, CustomerComponent. The component class/bean handles all the
business logic. CustomerRepository is a Spring data JPA repository defined to
handle the persistence of the Customer entity.

» The full source code of this example is available as the

chapter2.bootcustomer and chapter2.
’ bootcustomernotification projects in the code files of this book.

1. Create a new Spring Boot project and call it chapter2.bootcustomer, the
same way as earlier. Select the options as in the following screenshot in the
starter module selection screen:

* Data
JDBC JBA JOOG MangoDB
Cassandra Redis Gemfire Solr

Elasticsearch

~ Database

H2 HSOLDB Apache Derby MySQL

PostgreSQL

- /O
Batch Integration Activiti JMS (Artemis)
JMS (HornetQ) AMQP Mail

b Ops

} Sccial

b Template Engines

* Web
Web Websocket WS Jersey (JAX-RS)
Ratpack Vaadin Rest Repositories HATECAS
Rest Repositories HAL Browser Mobile REST Docs

[323]

Building Microservices with Spring Boot

This will create a web project with JPA, the REST repository, and H2

as a database. H2 is a tiny in-memory embedded database with which it is
easy to demonstrate database features. In the real world, it is recommended
to use an appropriate enterprise-grade database. This example uses JPA to
define persistence entities and the REST repository to expose REST-based
repository services.

The project structure will be similar to the following screenshot:

w2 chapter2.bootcustomer [boot]
¥ (B src/main/java
¥ f# org.rvslab.customer
4 Eﬁﬁppﬁcaﬂonjava
¥ (® src/main/rescurces
- application.properties
¥ (B sroitestfava
¥ H3 org.rvslab.customer
> |1| ApplicationTests. java
P B, JRE System Library [JavaSE-1.8]
F B Maven Dependencies
¥ (== src
[—=target
@ porm.xmil

2. Start building the application by adding an Entity class named customer. For
simplicity, there are only three fields added to the Customer Entity class: the
autogenerated id field, name, and email. Take a look at the following code:

@Entity
class Customer {
@Id
@GeneratedValue (strategy = GenerationType.AUTO)
private Long id;
private String name;
private String email;

3. Add arepository class to handle the persistence handling of Customer.
CustomerRepository extends the standard JPA repository. This means
that all CRUD methods and default finder methods are automatically
implemented by the Spring Data JPA repository, as follows:

@RepositoryRestResource

interface CustomerRespository extends JpaRepository
<Customer, Long>{

Optional<Customer> findByName (@Param("name") String name) ;

}

[324]

Chapter 2

In this example, we added a new method to the repository class, £indByName,
which essentially searches the customer based on the customer name and
returns a Customer object if there is a matching name.

The @repositoryRestResource annotation enables the repository

access through RESTful services. This will also enable HATEOAS and HAL
by default. As for CRUD methods there is no additional business logic
required, we will leave it as it is without controller or component classes.
Using HATEOAS will help us navigate through Customer Repository
methods effortlessly.

Note that there is no configuration added anywhere to point to any database.
As H2 libraries are in the class path, all the configuration is done by default
by Spring Boot based on the H2 autoconfiguration.

Update the Application.java file by adding CommandLineRunner to
initialize the repository with some customer records, as follows:

@SpringBootApplication
public class Application {
public static void main(String[] args) {
SpringApplication.run (Application.class, args);

@Bean
CommandLineRunner init (CustomerRespository repo) {
return (evt) -> {
repo.save (new Customer ("Adam", "adam@boot.com")) ;
repo.save (new Customer ("John", "john@boot.com")) ;
repo.save (new Customer ("Smith", "smith@boot.com")) ;
repo.save (new Customer ("Edgar", "edgar@boot.com")) ;
repo.save (new Customer ("Martin", "martin@boot.com")) ;
repo.save (new Customer ("Tom", "tom@boot.com")) ;
(

repo.save (new Customer ("Sean", "sean@boot.com")) ;

Vi
}
}

CommandLineRunner, defined as a bean, indicates that it should run when
it is contained in SpringApplication. This will insert six sample customer
records into the database at startup.

At this point, run the application as Spring Boot App. Open the HAL
browser and point the browser to http://localhost:8080.

[325]

Building Microservices with Spring Boot

8.

10.

In the Explorer section, point to http://localhost:8080/customers and
click on Go. This will list all the customers in the Response Body section of
the HAL browser.

In the Explorer section, enter http://localhost:8080/customers?size=2
&page=1&sort=name and click on Go. This will automatically execute paging
and sorting on the repository and return the result.

As the page size is set to 2 and the first page is requested, it will come back
with two records in a sorted order.

Review the Links section. As shown in the following screenshot, it will
facilitate navigating first, next, prev, and last. These are done using the
HATEOAS links automatically generated by the repository browser:

Links

rel

first

self

next

last

profile

search

11.

]

title name / index docs ET NON-GET

N NN N NN,
(

Also, one can explore the details of a customer by selecting the appropriate
link, such as http://localhost:8080/customers/2.

[326]

Chapter 2

12. As the next step, add a controller class, CustomercController, to handle
service endpoints. There is only one endpoint in this class, /register, which
is used to register a customer. If successful, it returns the customer object as
the response, as follows:

@RestController
class CustomerController({

@Autowired
CustomerRegistrar customerRegistrar;

@RequestMapping (path="/register", method = RequestMethod.POST)
Customer register (@RequestBody Customer customer) {
return customerRegistrar.register (customer) ;

}

13. A customerRegistrar component is added to handle the business logic.
In this case, there is only minimal business logic added to the component.
In this component class, while registering a customer, we will just check
whether the customer name already exists in the database or not. If it does
not exist, then we will insert a new record, and otherwise, we will send an
error message back, as follows:

@Component
class CustomerRegistrar {

CustomerRespository customerRespository;

@Autowired
CustomerRegistrar (CustomerRespository customerRespository) {
this.customerRespository = customerRespository;

Customer register (Customer customer) {
Optional<Customer> existingCustomer = customerRespository.
findByName (customer.getName ()) ;
if (existingCustomer.isPresent ()) {
throw new RuntimeException("is already exists");
} else {
customerRespository.save (customer) ;

}

return customer;

[327]

Building Microservices with Spring Boot

14. Restart the Boot application and test using the HAL browser via the URL
http://localhost:8080.

15. Point the Explorer field to http://localhost:8080/customers. Review the
results in the Links section:

Links

rel title name / index docs GET NOM-GET
self -_ 1]
p— . Perform non-GET rec
profile - Ew
search i | 1]

16. Click on the NON-GET option against self. This will open a form to create a
new customer:

Create/Update

Customer

Name

World

Email

world@hello.com

Action:

POST

mto:.f',"localhost:&DSOr‘reg\steﬂ

Make Request

17. Fill the form and change the Action as shown in the diagram. Click on the
Make Request button. This will call the register service and register the
customer. Try giving a duplicate name to test the negative case.

[328]

Chapter 2

18.

19.

20.

Let's complete the last part in the example by integrating the Customer
Notification service to notify the customer. When registration is successful,
send an e-mail to the customer by asynchronously calling the Customer
Notification microservice.

First update customerRegistrar to call the second service. This is done
through messaging. In this case, we injected a Sender component to send a
notification to the customer by passing the customer's e-mail address to the
sender, as follows:

@Component
@Lazy
class CustomerRegistrar {

CustomerRespository customerRespository;
Sender sender;

@Autowired
CustomerRegistrar (CustomerRespository customerRespository,
Sender sender) {
this.customerRespository = customerRespository;
this.sender = sender;

Customer register (Customer customer) {
Optional<Customer> existingCustomer = customerRespository.
findByName (customer.getName ()) ;

if (existingCustomer.isPresent ()) {
throw new RuntimeException("is already exists");

} else {
customerRespository.save (customer) ;
sender.send (customer.getEmail ()) ;

}

return customer;

}

The sender component will be based on RabbitMQ and AMQP. In this
example, RabbitMessagingTemplate is used as explored in the last
messaging example; take a look at the following:

@Component

@Lazy

class Sender ({

@Autowired

[329]

Building Microservices with Spring Boot

21.

22.

23.

RabbitMessagingTemplate template;

@Bean
Queue queue () {
return new Queue ("CustomerQ", false);

public void send(String message) {
template.convertAndSend ("CustomerQ", message) ;

}

The eLazy annotation is a useful one and it helps to increase the boot startup
time. These beans will be initialized only when the need arises.

We will also update the application.property file to include Rabbit MQ-
related properties, as follows:

spring.rabbitmg.host=1ocalhost
spring.rabbitmg.port=5672

spring.rabbitmg.username=guest
spring.rabbitmg.password=guest

We are ready to send the message. To consume the message and send
e-mails, we will create a notification service. For this, let's create another
Spring Boot service, chapter2.bootcustomernotification. Make sure that
the AMQP and Mail starter libraries are selected when creating the Spring
Boot service. Both AMQP and Mail are under I/O.

The package structure of the chapter2.bootcustomernotification project
is as shown here:

g chapterZ.bootcustomernotifcation [boot)
¥ [src/main/java
¥ £ org.rvslab.customernotification
L4 E.ﬁpplication.java
¥ (® sro/main/resocurces
S application.properties
¥ B sro/testfava
¥ £ org.rvslab.customernotification
b [J] ApplicationTests java
P B\ JRE System Library [JavaSE-1.8]
F = Maven Dependencies
P (=-src
= target
|| poorn.xmi

[330]

Chapter 2

24. Add a receiver class. The Receiver class waits for a message on customer.
This will receive a message sent by the Customer Profile service. On the
arrival of a message, it sends an e-mail, as follows:

@Component

class Receiver ({
@Autowired
Mailer mailer;

@Bean
Queue queue () {

return new Queue ("CustomerQ", false);
@RabbitListener (queues = "CustomerQ")

public void processMessage (String email)
System.out.println (email) ;
mailer.sendMail (email) ;

}

25. Add another component to send an e-mail to the customer. We will use
JavaMailSender to send an e-mail via the following code:

@Component
class Mailer ({
@Autowired
private JavaMailSender javaMailService;
public void sendMail (String email){
SimpleMailMessage mailMessage=new
SimpleMailMessage () ;
mailMessage.setTo (email) ;
mailMessage.setSubject ("Registration") ;
mailMessage.setText ("Successfully Registered");
javaMailService.send (mailMessage) ;

}

Behind the scenes, Spring Boot automatically configures all the parameters
required by JavaMailSender

26. To test SMTP, a test setup for SMTP is required to ensure that the mails
are going out. In this example, FakeSMTP will be used. You can download

FakeSMTP from http://nilhcem.github.io/FakeSMTP

[331]

http://nilhcem.github.io/FakeSMTP

Building Microservices with Spring Boot

27.

28.

29.

Once you download fakeSMTP-2.0.jar, run the SMTP server by executing
the following command:

$ java -jar fakeSMTP-2.0.jar

This will open a GUI to monitor e-mail messages. Click on the Start Server
button next to the listening port textbox.

Update application.properties with the following configuration
parameters to connect to RabbitMQ as well as to the mail server:
spring.rabbitmg.host=1localhost

spring.rabbitmg.port=5672

spring.rabbitmg.username=guest
spring.rabbitmg.password=guest

spring.mail.host=1localhost
spring.mail.port=2525

We are ready to test our microservices end to end. Start both the Spring Boot
apps. Open the browser and repeat the customer creation steps through the
HAL browser. In this case, immediately after submitting the request, we will
be able to see the e-mail in the SMTP GUI.

Internally, the Customer Profile service asynchronously calls the
Customer Notification service, which, in turn, sends the e-mail message
to the SMTP server:

[JON] Fake SMTP Server

Listening port: 2525 Server started

Save message(s) to: received-emails

m SMTP log = Last message |

Received From To Subject

12:56:02 PM |rajeshrv@rvslab.local |world@hello.com Registration

Message(s) received: 1

| Clearall |

[332]

Chapter 2

Spring Boot actuators

The previous sections explored most of the Spring Boot features required to develop
a microservice. In this section, some of the production-ready operational aspects of
Spring Boot will be explored.

Spring Boot actuators provide an excellent out-of-the-box mechanism to monitor
and manage Spring Boot applications in production:

The full source code of this example is available as the
s chapter2.bootactuator project in the code files of this book.

1. Create another Spring Starter Project and name it chapter2.bootactuator.
This time, select Web and Actuators under Ops. Similar to the chapter2.
bootrest project, add a GreeterController endpoint with the
greet method.

Start the application as Spring Boot app.

Point the browser to localhost:8080/actuator. This will open the HAL
browser. Then, review the Links section.

A number of links are available under the Links section. These are
automatically exposed by the Spring Boot actuator:

Links

rel title name / index docs

[2]
=

NON-GET

self

dump

configprops

env

mappings

info

health

autoconfig

metrics

trace

MM NN HENNNN.
[

beans

[333]

Building Microservices with Spring Boot

Some of the important links are listed as follows:

* dump: This performs a thread dump and displays the result

* mappings: This lists all the HTTP request mappings

e info: This displays information about the application

* health: This displays the application's health conditions

* autoconfig: This displays the autoconfiguration report

* metrics: This shows different metrics collected from the application

Monitoring using JConsole

Alternately, we can use the J]MX console to see the Spring Boot information. Connect

to the remote Spring Boot instance from JConsole. The Boot information will be
shown as follows:

Connection Window Help

Java Menitoring & Management Console

800 pid: 12368 org.rvslab.actuator.Application
| Overview | Memory Threads Classes = VM Summary fi=

» [DefaultDomain r MBeaninfo
» [)Mimplementation Name Value
» [Tomcat Info: _ _ _
» [com.sun.management ObjectName org.sprmgframework.boot:tvpe:Endpommzme:healthEndpomt

: ClassName org.springframework.boot.actuate.endpoint.jmx.DataEnd pointMBean
» [java.lang Description
» [java.nio
» [java.util.logging
¥ [org.springframework.boot

¥ [Admin
» @ SpringApplication
¥ [Endpoint
» @ autoConfigurationReportEnd point
» @ beansEndpoint
» @ configurationPropertiesReportEnd)
» @ dumpEndpoint
b @ environmentEndpoint
> ®
» @ infoEnd point
» @ metricsEndpoint
» @ requestMappingEndpoint
» @ traceEndpoint

r Descriptor

Name

Infao:
descriptorType
displayName
log

name
persistPolicy
visibility

Value

mbean
org.springframework.boot.actuate.end point.jmx.DataEnd pointMBean

org.springframework.boot.actuate.endpoint.jmx.DataEnd pointMBean
never
1

[334]

Chapter 2

Monitoring using SSH
Spring Boot provides remote access to the Boot application using SSH. The following
command connects to the Spring Boot application from a terminal window:

$ ssh -p 2000 user@localhost

The password can be customized by adding the shell.auth.simple.user.
password property in the application.properties file. The updated
application.properties file will look similar to the following:

shell.auth.simple.user.password=admin

When connected with the preceding command, similar actuator information can be
accessed. Here is an example of the metrics information accessed through the CLI:

* help: This lists out all the options available

* dashboard: This is one interesting feature that shows a lot of system-level
information

Configuring application information

The following properties can be set in application.properties to customize
application-related information. After adding, restart the server and visit the /info
endpoint of the actuator to take a look at the updated information, as follows:

info.app.name=Boot actuator
info.app.description= My Greetings Service
info.app.version=1.0.0

Adding a custom health module

Adding a new custom module to the Spring Boot application is not so complex.
To demonstrate this feature, assume that if a service gets more than two transactions
in a minute, then the server status will be set as Out of Service.

In order to customize this, we have to implement the HealthIndicator interface
and override the health method. The following is a quick and dirty implementation
to do the job:

class TPSCounter ({
LongAdder count;
int threshold = 2;

[335]

Building Microservices with Spring Boot

Calendar expiry = null;

TPSCounter () {
this.count = new LongAdder() ;
this.expiry = Calendar.getInstance() ;
this.expiry.add(Calendar.MINUTE, 1) ;

boolean isExpired()
return Calendar.getInstance () .after (expiry) ;

boolean isWeak ()
return (count.intValue() > threshold);

void increment () {
count.increment () ;

}

The preceding class is a simple POJO class that maintains the transaction counts in the
window. The iswWeak method checks whether the transaction in a particular window
reached its threshold. The isExpired method checks whether the current window is
expired or not. The increment method simply increases the counter value.

For the next step, implement our custom health indicator class, TPSHealth. This is
done by extending HealthIndicator, as follows:

@Component
class TPSHealth implements HealthIndicator ({
TPSCounter counter;

@Override
public Health health() {
boolean health = counter.isWeak(); // perform some specific

health check
if (health) {
return Health.outOfService() .withDetail ("Too many
requests", "OutofService") .build() ;

}

return Health.up () .build() ;

[336]

Chapter 2

void updateTx () {
if (counter == null || counter.isExpired()) {
counter = new TPSCounter () ;

}

counter.increment () ;

}
}

The health method checks whether the counter is weak or not. A weak counter
means the service is handling more transactions than it can handle. If it is weak,
it marks the instance as Out of Service.

Finally, we will autowire TPSHealth into the GreetingController class and then
call health.updateTx () in the greet method, as follows:

Greet greet () {
logger.info("Serving Request....!!!l");
health.updateTx () ;
return new Greet ("Hello World!");

}

Go to the /health end point in the HAL browser and take a look at the status
of the server.

Now, open another browser, point to http://localhost:8080, and fire the
service twice or thrice. Go back to the /health endpoint and refresh to see the
status. It should be changed to Out of Service.

In this example, as there is no action taken other than collecting the health status,
even though the status is Out of Service, new service calls will still go through.
However, in the real world, a program should read the /health endpoint and block
further requests from going to this instance.

Building custom metrics

Similar to health, customization of the metrics is also possible. The following example
shows how to add counter service and gauge service, just for demonstration purposes:

@Autowired
CounterService counterService;

@Autowired
GaugeService gaugeService;

[337]

Building Microservices with Spring Boot

Add the following methods in the greet method:

this.counterService.increment ("greet.txnCount") ;
this.gaugeService.submit ("greet.customgauge", 1.0) ;

Restart the server and go to /metrics to see the new gauge and counter added
already reflected there.

Documenting microservices

The traditional approach of API documentation is either by writing service
specification documents or using static service registries. With a large number of
microservices, it would be hard to keep the documentation of APIs in sync.

Microservices can be documented in many ways. This section will explore how
microservices can be documented using the popular Swagger framework. The
following example will use Springfox libraries to generate REST API documentation.
Springfox is a set of Java- and Spring-friendly libraries.

Create a new Spring Starter Project and select Web in the library selection window.
Name the project chapter2 . swagger.

The full source code of this example is available as the
S chapter2. swagger project in the code files of this book.

As Springfox libraries are not part of the Spring suite, edit pom.xml and add
Springfox Swagger library dependencies. Add the following dependencies to
the project:

<dependencys>
<groupId>io.springfox</groupIds>
<artifactId>springfox-swagger2</artifactId>
<versions>2.3.1l</versions>

</dependency>

<dependencys>
<groupId>io.springfox</groupId>
<artifactId>springfox-swagger-ui</artifactId>
<versions>2.3.1l</versions>

</dependency>

[338]

Chapter 2

Create a REST service similar to the services created earlier, but also add the
@EnableSwagger2 annotation, as follows:

@SpringBootApplication
@EnableSwagger?2
public class Application ({

This is all that's required for a basic Swagger documentation. Start the application
and point the browser to http://localhost:8080/swagger-ui.html. This will
open the Swagger API documentation page:

¢+ swagger

Api Documentation

Api Documentation

Created by Contact Email
Apache 2.0

basic-error-controller : Basic Error Controller

greet-controller : Greet Controller

DELETE [

HI

G /

/

opTIoNS [l

PATCH [

rosT (4
L /

[BAse urL: /, APt version: 1.0]

List Operations | Expand Operations
List Operations ~ Expand Operations
greet

greet

greet
greet
greet

greet

As shown in the diagram, the Swagger lists out the possible operations on Greet
Controller. Click on the GET operation. This expands the GET row, which provides

an option to try out the operation.

[339]

Building Microservices with Spring Boot

Summary

In this chapter, you learned about Spring Boot and its key features to build
production-ready applications.

We explored the previous-generation web applications and then how Spring Boot
makes developers' lives easier to develop fully qualified microservices. We also
discussed the asynchronous message-based interaction between services. Further,
we explored how to achieve some of the key capabilities required for microservices,
such as security, HATEOAS, cross-origin, configurations, and so on with practical
examples. We also took a look at how Spring Boot actuators help the operations
teams and also how we can customize it to our needs. Finally, documenting
microservices APIs was also explored.

In the next chapter, we will take a deeper look at some of the practical issues that
may arise when implementing microservices. We will also discuss a capability
model that essentially helps organizations when dealing with large microservices
implementations.

[340]

Applying Microservices
Concepts

Microservices are good, but can also be an evil if they are not properly conceived.
Wrong microservice interpretations could lead to irrecoverable failures.

This chapter will examine the technical challenges around practical implementations
of microservices. It will also provide guidelines around critical design decisions for
successful microservices development. The solutions and patterns for a number of
commonly raised concerns around microservices will also be examined. This chapter
will also review the challenges in enterprise scale microservices development, and
how to overcome those challenges. More importantly, a capability model for a
microservices ecosystem will be established at the end.

In this chapter you will learn about the following;:

* Trade-offs between different design choices and patterns to be considered
when developing microservices

* Challenges and anti-patterns in developing enterprise grade microservices

* A capability model for a microservices ecosystem

Patterns and common design decisions

Microservices have gained enormous popularity in recent years. They have evolved
as the preferred choice of architects, putting SOA into the backyards. While
acknowledging the fact that microservices are a vehicle for developing scalable cloud
native systems, successful microservices need to be carefully designed to avoid
catastrophes. Microservices are not the one-size-fits-all, universal solution for all
architecture problems.

[341]

Applying Microservices Concepts

Generally speaking, microservices are a great choice for building a lightweight,
modular, scalable, and distributed system of systems. Over-engineering, wrong

use cases, and misinterpretations could easily turn the system into a disaster. While
selecting the right use cases is paramount in developing a successful microservice, it
is equally important to take the right design decisions by carrying out an appropriate
trade-off analysis. A number of factors are to be considered when designing
microservices, as detailed in the following sections.

Establishing appropriate microservice
boundaries

One of the most common questions relating to microservices is regarding the size of
the service. How big (mini-monolithic) or how small (nano service) can a microservice
be, or is there anything like right-sized services? Does size really matter?

A quick answer could be "one REST endpoint per microservice", or "less than 300
lines of code", or "a component that performs a single responsibility". But before we
pick up any of these answers, there is lot more analysis to be done to understand the
boundaries for our services.

Domain-driven design (DDD) defines the concept of a bounded context. A
bounded context is a subdomain or a subsystem of a larger domain or system
that is responsible for performing a particular function.

[Q Read more about DDD at http://domainlanguage.com/ddd/.]

The following diagram is an example of the domain model:

<<bounded contexts: <<bounded contexts:=>

Bigundod camexts> Accounting Billing

Invoice

Finance Back Office Domain

In a finance back office, system invoices, accounting, billing, and the like represent
different bounded contexts. These bounded contexts are strongly isolated domains
that are closely aligned with business capabilities. In the financial domain, the
invoices, accounting, and billing are different business capabilities often handled
by different subunits under the finance department.

[342]

http://domainlanguage.com/ddd/

Chapter 3

A bounded context is a good way to determine the boundaries of microservices.
Each bounded context could be mapped to a single microservice. In the real world,
communication between bounded contexts are typically less coupled, and often,
disconnected.

Even though real world organizational boundaries are the simplest mechanisms

for establishing a bounded context, these may prove wrong in some cases due to
inherent problems within the organization's structures. For example, a business
capability may be delivered through different channels such as front offices, online,
roaming agents, and so on. In many organizations, the business units may be
organized based on delivery channels rather than the actual underlying business
capabilities. In such cases, organization boundaries may not provide accurate service
boundaries.

A top-down domain decomposition could be another way to establish the right
bounded contexts.

There is no silver bullet to establish microservices boundaries, and often, this
is quite challenging. Establishing boundaries is much easier in the scenario of
monolithic application to microservices migration, as the service boundaries and
dependencies are known from the existing system. On the other hand, in a green
field microservices development, the dependencies are hard to establish upfront.

The most pragmatic way to design microservices boundaries is to run the scenario
at hand through a number of possible options, just like a service litmus test. Keep in
mind that there may be multiple conditions matching a given scenario that will lead
to a trade-off analysis.

The following scenarios could help in defining the microservice boundaries.

Autonomous functions

If the function under review is autonomous by nature, then it can be taken as

a microservices boundary. Autonomous services typically would have fewer
dependencies on external functions. They accept input, use its internal logic and
data for computation, and return a result. All utility functions such as an encryption
engine or a notification engine are straightforward candidates.

A delivery service that accepts an order, processes it, and then informs the trucking
service is another example of an autonomous service. An online flight search based
on cached seat availability information is yet another example of an autonomous
function.

[343]

Applying Microservices Concepts

Size of a deployable unit

Most of the microservices ecosystems will take advantage of automation, such as
automatic integration, delivery, deployment, and scaling. Microservices covering
broader functions result in larger deployment units. Large deployment units pose
challenges in automatic file copy, file download, deployment, and start up times.
For instance, the size of a service increases with the density of the functions that
it implements.

A good microservice ensures that the size of its deployable units remains manageable.

Most appropriate function or subdomain

It is important to analyze what would be the most useful component to detach from

the monolithic application. This is particularly applicable when breaking monolithic
applications into microservices. This could be based on parameters such as resource-
intensiveness, cost of ownership, business benefits, or flexibility.

In a typical hotel booking system, approximately 50-60% of the requests are search-
based. In this case, moving out the search function could immediately bring in
flexibility, business benefits, cost reduction, resource free up, and so on.

Polyglot architecture

One of the key characteristics of microservices is its support for polyglot architecture.
In order to meet different non-functional and functional requirements, components
may require different treatments. It could be different architectures, different
technologies, different deployment topologies, and so on. When components are
identified, review them against the requirement for polyglot architectures.

In the hotel booking scenario mentioned earlier, a Booking microservice may need
transactional integrity, whereas a Search microservice may not. In this case, the
Booking microservice may use an ACID compliance database such as MySQL,
whereas the Search microservice may use an eventual consistent database such

as Cassandra.

Selective scaling

Selective scaling is related to the previously discussed polyglot architecture. In
this context, all functional modules may not require the same level of scalability.
Sometimes, it may be appropriate to determine boundaries based on scalability
requirements.

[344]

Chapter 3

For example, in the hotel booking scenario, the Search microservice has to scale
considerably more than many of the other services such as the Booking microservice
or the Notification microservice due to the higher velocity of search requests. In this
case, a separate Search microservice could run on top of an Elasticsearch or an
in-memory data grid for better response.

Small, agile teams

Microservices enable Agile development with small, focused teams developing
different parts of the pie. There could be scenarios where parts of the systems
are built by different organizations, or even across different geographies, or by
teams with varying skill sets. This approach is a common practice, for example,
in manufacturing industries.

In the microservices world, each of these teams builds different microservices, and
then assembles them together. Though this is not the desired way to break down the
system, organizations may end up in such situations. Hence, this approach cannot
be completely ruled out.

In an online product search scenario, a service could provide personalized options
based on what the customer is looking for. This may require complex machine
learning algorithms, and hence need a specialist team. In this scenario, this function
could be built as a microservice by a separate specialist team.

Single responsibility
In theory, the single responsibility principle could be applied at a method, at a class,

or at a service. However, in the context of microservices, it does not necessarily map
to a single service or endpoint.

A more practical approach could be to translate single responsibility into single
business capability or a single technical capability. As per the single responsibility
principle, one responsibility cannot be shared by multiple microservices. Similarly,
one microservice should not perform multiple responsibilities.

There could, however, be special cases where a single business capability is divided
across multiple services. One of such cases is managing the customer profile,

where there could be situations where you may use two different microservices for
managing reads and writes using a Command Query Responsibility Segregation
(CQRS) approach to achieve some of the quality attributes.

[345]

Applying Microservices Concepts

Replicability or changeability

Innovation and speed are of the utmost importance in IT delivery. Microservices
boundaries should be identified in such a way that each microservice is easily
detachable from the overall system, with minimal cost of re-writing. If part of
the system is just an experiment, it should ideally be isolated as a microservice.

An organization may develop a recommendation engine or a customer ranking
engine as an experiment. If the business value is not realized, then throw away
that service, or replace it with another one.

Many organizations follow the startup model, where importance is given to meeting
functions and quick delivery. These organizations may not worry too much about the
architecture and technologies. Instead, the focus will be on what tools or technologies
can deliver solutions faster. Organizations increasingly choose the approach of
developing Minimum Viable Products (MVPs) by putting together a few services,
and allowing the system to evolve. Microservices play a vital role in such cases where
the system evolves, and services gradually get rewritten or replaced.

Coupling and cohesion

Coupling and cohesion are two of the most important parameters for deciding
service boundaries. Dependencies between microservices have to be evaluated
carefully to avoid highly coupled interfaces. A functional decomposition, together
with a modeled dependency tree, could help in establishing a microservices
boundary. Avoiding too chatty services, too many synchronous request-response
calls, and cyclic synchronous dependencies are three key points, as these could
easily break the system. A successful equation is to keep high cohesion within a
microservice, and loose coupling between microservices. In addition to this, ensure
that transaction boundaries are not stretched across microservices. A first class
microservice will react upon receiving an event as an input, execute a number

of internal functions, and finally send out another event. As part of the compute
function, it may read and write data to its own local store.

Think microservice as a product

DDD also recommends mapping a bounded context to a product. As per DDD, each
bounded context is an ideal candidate for a product. Think about a microservice

as a product by itself. When microservice boundaries are established, assess them
from a product's point of view to see whether they really stack up as product. It is
much easier for business users to think boundaries from a product point of view.

A product boundary may have many parameters, such as a targeted community,
flexibility in deployment, sell-ability, reusability, and so on.

[346]

Chapter 3

Designing communication styles

Communication between microservices can be designed either in synchronous
(request-response) or asynchronous (fire and forget) styles.

Synchronous style communication

The following diagram shows an example request/response style service:

Request Response

Service

In synchronous communication, there is no shared state or object. When a caller
requests a service, it passes the required information and waits for a response.
This approach has a number of advantages.

An application is stateless, and from a high availability standpoint, many

active instances can be up and running, accepting traffic. Since there are no

other infrastructure dependencies such as a shared messaging server, there are
management fewer overheads. In case of an error at any stage, the error will be
propagated back to the caller immediately, leaving the system in a consistent state,
without compromising data integrity.

The downside in a synchronous request-response communication is that the user

or the caller has to wait until the requested process gets completed. As a result, the
calling thread will wait for a response, and hence, this style could limit the scalability
of the system.

A synchronous style adds hard dependencies between microservices. If one service
in the service chain fails, then the entire service chain will fail. In order for a service
to succeed, all dependent services have to be up and running. Many of the failure
scenarios have to be handled using timeouts and loops.

[347]

Applying Microservices Concepts

Asynchronous style communication

The following diagram is a service designed to accept an asynchronous message as
input, and send the response asynchronously for others to consume:

Service

NI
ng

The asynchronous style is based on reactive event loop semantics which decouple
microservices. This approach provides higher levels of scalability, because services
are independent, and can internally spawn threads to handle an increase in

load. When overloaded, messages will be queued in a messaging server for later
processing. That means that if there is a slowdown in one of the services, it will not
impact the entire chain. This provides higher levels of decoupling between services,
and therefore maintenance and testing will be simpler.

The downside is that it has a dependency to an external messaging server. It is
complex to handle the fault tolerance of a messaging server. Messaging typically
works with an active/passive semantics. Hence, handling continuous availability of
messaging systems is harder to achieve. Since messaging typically uses persistence,
a higher level of I/O handling and tuning is required.

How to decide which style to choose?

Both approaches have their own merits and constraints. It is not possible to develop
a system with just one approach. A combination of both approaches is required
based on the use cases. In principle, the asynchronous approach is great for building
true, scalable microservice systems. However, attempting to model everything as
asynchronous leads to complex system designs.

How does the following example look in the context where an end user clicks on a
Ul to get profile details?

User User

Get Customer Profile

Customer Profile Customer Profile

A) synchronous B) asynchronous
request - response request - response

[348]

Chapter 3

This is perhaps a simple query to the backend system to get a result in a request-
response model. This can also be modeled in an asynchronous style by pushing

a message to an input queue, and waiting for a response in an output queue till

a response is received for the given correlation ID. However, though we use
asynchronous messaging, the user is still blocked for the entire duration of the query.

Another use case is that of a user clicking on a Ul to search hotels, which is depicted
in the following diagram:

user

1. Hotel Search
Request
Receive Hotels
N ouT Aggregator
S.result
2. Receive 2. Receive 2. Recelive 2. Recaive
4, receive
A.individual
Customer response
Ranking Offers Recommendations Pricing
3.individual)
response rnrerm;dlale
3.individual
response
3.individual

response

This is very similar to the previous scenario. However, in this case, we assume that
this business function triggers a number of activities internally before returning

the list of hotels back to the user. For example, when the system receives this
request, it calculates the customer ranking, gets offers based on the destination, gets
recommendations based on customer preferences, optimizes the prices based on
customer values and revenue factors, and so on. In this case, we have an opportunity
to do many of these activities in parallel so that we can aggregate all these results
before presenting them to the customer. As shown in the preceding diagram,
virtually any computational logic could be plugged in to the search pipeline
listening to the IN queue.

An effective approach in this case is to start with a synchronous request response,
and refactor later to introduce an asynchronous style when there is value in doing that.

[349]

Applying Microservices Concepts

The following example shows a fully asynchronous style of service interactions:

User

Booking Service
Booking
Queue
s E
2 = = o o
3 § g @ g
38 £33z 9 E
2 S c =c s o
F o @ =
8 Z4 20 g g
; CANEEE A 3
- [=}] =% el =
9 T S g a
5] 3

The service is triggered when the user clicks on the booking function. It is again, by
nature, a synchronous style communication. When booking is successful, it sends

a message to the customer's e-mail address, sends a message to the hotel's booking
system, updates the cached inventory, updates the loyalty points system, prepares an
invoice, and perhaps more. Instead of pushing the user into a long wait state, a better
approach is to break the service into pieces. Let the user wait till a booking record

is created by the Booking Service. On successful completion, a booking event will

be published, and return a confirmation message back to the user. Subsequently,

all other activities will happen in parallel, asynchronously.

In all three examples, the user has to wait for a response. With the new web
application frameworks, it is possible to send requests asynchronously, and define
the callback method, or set an observer for getting a response. Therefore, the users
won't be fully blocked from executing other activities.

In general, an asynchronous style is always better in the microservices world, but
identifying the right pattern should be purely based on merits. If there are no merits
in modeling a transaction in an asynchronous style, then use the synchronous style
till you find an appealing case. Use reactive programming frameworks to avoid
complexity when modeling user-driven requests, modeled in an asynchronous style.

[350]

Chapter 3

Orchestration of microservices

Composability is one of the service design principles. This leads to confusion
around who is responsible for the composing services. In the SOA world, ESBs are
responsible for composing a set of finely-grained services. In some organizations,
ESBs play the role of a proxy, and service providers themselves compose and expose
coarse-grained services. In the SOA world, there are two approaches for handling
such situations.

The first approach is orchestration, which is depicted in the following diagram:

Customer Service

Order Service

(Composite Service) Product Service

Delivery Service

In the orchestration approach, multiple services are stitched together to get a
complete function. A central brain acts as the orchestrator. As shown in the diagram,
the order service is a composite service that will orchestrate other services. There
could be sequential as well as parallel branches from the master process. Each task
will be fulfilled by an atomic task service, typically a web service. In the SOA world,
ESBs play the role of orchestration. The orchestrated service will be exposed by ESBs
as a composite service.

The second approach is choreography, which is shown in the following diagram:

Notification Service

Booking
Event Booking History

Booking Service Service

Inventory Service

[351]

Applying Microservices Concepts

In the choreography approach, there is no central brain. An event, a booking event in
this case, is published by a producer, a number of consumers wait for the event, and
independently apply different logics on the incoming event. Sometimes, events could
even be nested where the consumers can send another event which will be consumed
by another service. In the SOA world, the caller pushes a message to the ESB, and the
downstream flow will be automatically determined by the consuming services.

Microservices are autonomous. This essentially means that in an ideal situation,

all required components to complete their function should be within the service.
This includes the database, orchestration of its internal services, intrinsic state
management, and so on. The service endpoints provide coarse-grained APIs. This
is perfectly fine as long as there are no external touch points required. But in reality,
microservices may need to talk to other microservices to fulfil their function.

In such cases, choreography is the preferred approach for connecting multiple
microservices together. Following the autonomy principle, a component sitting
outside a microservice and controlling the flow is not the desired option. If the use
case can be modeled in choreographic style, that would be the best possible way to
handle the situation.

But it may not be possible to model choreography in all cases. This is depicted in the
following diagram:

reserve()
Reservation Get Customer Preferences Customer
Microservice Microservice

In the preceding example, Reservation and Customer are two microservices, with
clearly segregated functional responsibilities. A case could arise when Reservation
would want to get Customer preferences while creating a reservation. These are
quite normal scenarios when developing complex systems.

Can we move Customer to Reservation so that Reservation will be complete by
itself? If Customer and Reservation are identified as two microservices based on
various factors, it may not be a good idea to move Customer to Reservation.

In such a case, we will meet another monolithic application sooner or later.

[352]

Chapter 3

Can we make the Reservation to Customer call asynchronous? This example is
shown in the following diagram:

reserve()
Reservation Customer
Microservice Microservice

Customer preference is required for Reservation to progress, and hence, it may
require a synchronous blocking call to Customer. Retrofitting this by modeling
asynchronously does not really make sense.

Can we take out just the orchestration bit, and create another composite
microservice, which then composes Reservation and Customer?

reserve

Reservation
Composite
Microservice

Reservation Customer
Microservice Microservice

This is acceptable in the approach for composing multiple components within a
microservice. But creating a composite microservice may not be a good idea. We will
end up creating many microservices with no business alignment, which would not
be autonomous, and could result in many fine-grained microservices.

[353]

Applying Microservices Concepts

Can we duplicate customer preference by keeping a slave copy of the preference data
into Reservation?

reserve()
cache
Reservation update praference Customer
Microservice Microservice

Changes will be propagated whenever there is a change in the master. In this

case, Reservation can use customer preference without fanning out a call. It is a
valid thought, but we need to carefully analyze this. Today we replicate customer
preference, but in another scenario, we may want to reach out to customer service
to see whether the customer is black-listed from reserving. We have to be extremely
careful in deciding what data to duplicate. This could add to the complexity.

How many endpoints in a microservice?
In many situations, developers are confused with the number of endpoints per

microservice. The question really is whether to limit each microservice with one
endpoint or multiple endpoints:

Read Write Create Booking Read Booking

Make Booking Retrive Hotel Booking

Sensor Data service Microservice Microservice

[354]

Chapter 3

The number of endpoints is not really a decision point. In some cases, there may

be only one endpoint, whereas in some other cases, there could be more than one
endpoint in a microservice. For instance, consider a sensor data service which
collects sensor information, and has two logical endpoints: create and read. But in
order to handle CQRS, we may create two separate physical microservices as shown
in the case of Booking in the preceding diagram. Polyglot architecture could be
another scenario where we may split endpoints into different microservices.

Considering a notification engine, notifications will be send out in response to an
event. The process of notification such as preparation of data, identification of a
person, and delivery mechanisms, are different for different events. Moreover, we
may want to scale each of these processes differently at different time windows. In
such situations, we may decide to break each notification endpoint in to a separate
microservice.

In yet another example, a Loyalty Points microservice may have multiple services
such as accrue, redeem, transfer, and balance. We may not want to treat each of these
services differently. All of these services are connected and use the points table for
data. If we go with one endpoint per service, we will end up in a situation where
many fine-grained services access data from the same data store or replicated

copies of the same data store.

In short, the number of endpoints is not a design decision. One microservice
may host one or more endpoints. Designing appropriate bounded context for
a microservice is more important.

One microservice per VM or multiple?

One microservice could be deployed in multiple Virtual Machines (VMs) by
replicating the deployment for scalability and availability. This is a no brainer.
The question is whether multiple microservices could be deployed in one virtual
machine? There are pros and cons for this approach. This question typically arises
when the services are simple, and the traffic volume is less.

Consider an example where we have a couple of microservices, and the overall
transaction per minute is less than 10. Also assume that the smallest possible VM size
available is 2-core 8 GB RAM. A further assumption is that in such cases, a 2-core 8
GB VM can handle 10-15 transactions per minute without any performance concerns.
If we use different VMs for each microservice, it may not be cost effective, and we
will end up paying more for infrastructure and license, since many vendors charge
based on the number of cores.

[355]

Applying Microservices Concepts

The simplest way to approach this problem is to ask a few questions:

* Does the VM have enough capacity to run both services under peak usage?

* Do we want to treat these services differently to achieve SLAs (selective
scaling)? For example, for scalability, if we have an all-in-one VM, we will
have to replicate VMs which replicate all services.

* Are there any conflicting resource requirements? For example, different OS
versions, JDK versions, and others.

If all your answers are No, then perhaps