

Microservices: Building
Scalable Software

Discover how to easily build and implement
scalable microservices from scratch

A course in three modules

BIRMINGHAM - MUMBAI

Microservices: Building Scalable Software

Copyright © 2016 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course
is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Published on: December 2016

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN: 978-1-78728-583-5

www.packtpub.com

Credits

Authors
Sourabh Sharma

Rajesh RV

David Gonzalez
Reviewers

Guido Grazioli

Yogendra Sharma

Kishore Kumar Yekkanti

Content Development Editor
Onkar Wani

Graphics
Abhinash Sahu

Production Coordinator
Shraddha Falebhai

[i]

Preface
With the introduction of the cloud, enterprise application development moved from
monolithic applications to small, lightweight, and process-driven components called
microservices. Microservices architecture is a style of software architecture, which
makes application development easier and offers great flexibility to utilize various
resources optimally. They are the next big thing in designing scalable, easy-to-
maintain applications. In today’s world, many enterprises use microservices as the
default standard for building large, service-oriented enterprise applications.

Implementing the microservice architecture in Spring Framework, Spring Boot, and
Spring Cloud, helps you build modern, Internet-scale Java applications in no time.
The Spring framework is a popular programming framework among developer
community for many years. Spring Boot removed the need to have a heavyweight
application container and provided a means to deploy lightweight, server-less
applications, with ease.

This course is a hands-on guide to help you build enterprise-ready implementations
of microservices. It explains the domain-driven design and its adoption in
microservices. Teaching you how to build smaller, lighter, and faster services that
can be implemented easily in a production environment. You will dive deep into
Spring Boot, Spring Cloud, Docker, Mesos, and Marathon, to understand how to
deploy autonomous services without the need for the application server and to
manage resources effectively.

Preface

[ii]

What this learning path covers
Module 1, Mastering Microservices with Java, This module teaches you how to build
smaller, lighter, and faster services that can be implemented easily in a production
environment. Giving you the understanding of the complete life cycle of enterprise
app development, from designing and developing to deploying, testing, and
security. The Module starts off with making you understand the core concepts and
frameworks, you will then focus on the high-level design of large software projects.
Gradually moving on to setting up the development environment and configuring
it before implementing continuous integration to deploy your microservice
architecture. At the end, you will know how to build smaller, lighter, and faster
services that can be implemented easily in a production environment.

Module 2, Spring Microservices, The goal of this module is to enlighten you with a
pragmatic approach and guidelines for implementing responsive microservices at
scale. This module will dive deep into Spring Boot, Spring Cloud, Docker, Mesos,
and Marathon. You will also understand how Spring Boot is used in deploying
autonomous services without the need for a heavyweight application server. You
will learn different Spring Cloud capabilities and also realize the use of Docker for
containerization and of Mesos and Marathon for computing resource abstraction
and cluster-wide control, respectively. In the end, you will have learned how to
implement microservice architectures using the Spring framework, Spring Boot, and
Spring Cloud.

Module 3, Developing Microservices with Node.js, This module is a hands-on guide
to start writing microservices using Node.js and the most modern frameworks,
especially Seneca and PM2. You will learn how to design, build, test, and deploy
microservices using the best practices. Also, how to make the right level of
compromise in order to avoid over-designing and get the business requirements
aligned with the technical solutions..

What you need for this learning path
Module 1:

For this module, you can use any operating system (Linux, Windows, or Mac) with
a minimum of 2 GB RAM. You will also require NetBeans with Java, Maven, Spring
Boot, Spring Cloud, Eureka Server, Docker, and CI/CD app. For Docker containers,
you may need a separate VM or a cloud host with preferably 16 GB or more RAM.

Preface

[iii]

Module 2:

Chapter 2, Building Microservices with Spring Boot, introduces Spring Boot, which

requires the following software components to test the code:

•	 JDK 1.8
•	 Spring Tool Suite 3.7.2 (STS)
•	 Maven 3.3.1
•	 Spring Framework 4.2.6.RELEASE
•	 Spring Boot 1.3.5.RELEASE
•	 spring-boot-cli-1.3.5.RELEASE-bin.zip
•	 RabbitMQ 3.5.6
•	 FakeSMTP

Chapter 5, Scaling Microservices with Spring Cloud, you will learn about the Spring
Cloud project. This requires the following software components in addition to the
previously mentioned ones:

•	 Spring Cloud Brixton.RELEASE

Chapter 7, Logging and Monitoring Microservices, we will take a look at how
centralized logging can be implemented for microservices. This requires the
following software stack:

•	 Elasticsearch 1.5.2
•	 kibana-4.0.2-darwin-x64
•	 Logstash 2.1.2

Chapter 8, Containerizing Microservices with Docker, we will demonstrate how we
can use Docker for microservices deployments. This requires the following software
components:

• Docker version 1.10.1

• Docker Hub

Preface

[iv]

Chapter 9, Managing Dockerized Microservices with Mesos and Marathon, uses
Mesos

and Marathon to deploy dockerized microservices into an autoscalable cloud. The
following software components are required for this purpose:

•	 Mesos version 0.27.1
•	 Docker version 1.6.2
•	 Marathon version 0.15.3

Module 3:

In order to follow the module, you will need to install Node.js, PM2 (it is a package
that is installed through npm), and MongoDB. We will also need an editor. It is
recommended to use Atom, but any general purpose editor should be enough.

Who this learning path is for
This course is intended for Java and Spring developers, DevOps engineers, and
system administrators who are familiar with microservice architecture and have a
good understanding of the core elements and microservice applications but now
want to delve into effectively implementing microservices at the enterprise level.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this course—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the course’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt course, we have a number of things to
help you to get the most from your purchase.

Preface

[v]

Downloading the example code
You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the course in the Search box.
5.	 Select the course for which you’re looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this course from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
course’s webpage at the Packt Publishing website. This page can be accessed by
entering the course’s name in the Search box. Please note that you need to be logged
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at https://github.com/
PacktPublishing/Microservices-Building-Scalable-Software. We also have
other code bundles from our rich catalog of books, videos, and courses available at
https://github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our courses—maybe a mistake in the text
or the code—we would be grateful if you could report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this course. If you find any errata, please report them by visiting http://www.
packtpub.com/submit-errata, selecting your course, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the course in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this course, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

i

Module 1: Mastering Microservices with Java	

Chapter 1: A Solution Approach	 3
Evolution of µServices	 4
Monolithic architecture overview	 5
Limitation of monolithic architecture versus its solution with µServices	 5
Summary 17

Chapter 2: Setting Up the Development Environment	 19
Spring Boot configuration	 20
Sample REST program	 24
Setting up the application build	 31
REST API testing using the Postman Chrome extension	 32
NetBeans IDE installation and setup	 39
References 44
Summary 44

Chapter 3: Domain-Driven Design	 45
Domain-driven design fundamentals	 46
Building blocks	 47
Strategic design and principles	 58
Sample domain service	 64
Summary 71

Chapter 4: Implementing a Microservice	 73
OTRS overview	 74
Developing and implementing µServices	 75
Testing	 90
References 94
Summary 94

ii

Table of Contents

Chapter 5: Deployment and Testing	 95
An overview of microservice architecture using Netflix OSS	 95
Load balancing	 97
Circuit breaker and monitoring	 104
Microservice deployment using containers	 111
References 121
Summary 121

Chapter 6: Securing Microservices	 123
Enabling Secure Socket Layer	 123
Authentication and authorization	 127
OAuth implementation using Spring Security	 147
References 159
Summary 159

Chapter 7: Consuming Services Using a Microservice Web App	 161
AngularJS framework overview	 162
Development of OTRS features	 167
Setting up the web app	 189
Summary	 204

Chapter 8: Best Practices and Common Principles	 207
Overview and mindset	 207
Best practices and principals	 209
Microservices frameworks and tools	 215
References 223
Summary 223

Chapter 9: Troubleshooting Guide	 225
Logging and ELK stack	 225
Use of correlation ID for service calls	 232
Dependencies and versions	 232
References 234
Summary 234

Module 2: Spring Microservices

Chapter 1: Demystifying Microservices	 237
The evolution of microservices	 237
What are microservices?	 241
Microservices – the honeycomb analogy	 244

iii

Table of Contents

Principles of microservices	 244
Characteristics of microservices	 246
Microservices examples	 253
Microservices benefits	 259
Relationship with other architecture styles	 269
Microservice use cases	 279
Summary 284

Chapter 2: Building Microservices with Spring Boot	 285
Setting up a development environment	 285
Developing a RESTful service – the legacy approach	 286
Moving from traditional web applications to microservices	 291
Using Spring Boot to build RESTful microservices	 292
Getting started with Spring Boot	 293
Developing the Spring Boot microservice using the CLI	 293
Developing the Spring Boot Java microservice using STS	 294
Developing the Spring Boot microservice using Spring Initializr – the HATEOAS
example	 304
What's next?	 308
The Spring Boot configuration	 309
Changing the default embedded web server	 313
Implementing Spring Boot security	 313
Enabling cross-origin access for microservices	 318
Implementing Spring Boot messaging	 319
Developing a comprehensive microservice example	 322
Spring Boot actuators	 333
Configuring application information	 335
Adding a custom health module	 335
Documenting microservices	 338
Summary	 340

Chapter 3: Applying Microservices Concepts	 341
Patterns and common design decisions	 341
Microservices challenges	 375
The microservices capability model	 380
Summary 385

Chapter 4: Microservices Evolution – A Case Study	 387
Reviewing the microservices capability model	 388
Understanding the PSS application	 389
Death of the monolith	 394
Microservices to the rescue	 400

iv

Table of Contents

The business case	 401
Plan the evolution	 401
Migrate modules only if required	 423
Target architecture	 424
Target implementation view	 430
Summary 437

Chapter 5: Scaling Microservices with Spring Cloud	 439
Reviewing microservices capabilities	 440
Reviewing BrownField's PSS implementation	 440
What is Spring Cloud?	 441
Setting up the environment for BrownField PSS	 446
Spring Cloud Config	 447
Feign as a declarative REST client	 463
Ribbon for load balancing	 465
Eureka for registration and discovery	 468
Zuul proxy as the API gateway	 480
Streams for reactive microservices	 488
Summarizing the BrownField PSS architecture	 492
Summary 494

Chapter 6: Autoscaling Microservices	 495
Reviewing the microservice capability model	 496
Scaling microservices with Spring Cloud	 496
Understanding the concept of autoscaling	 498
Autoscaling approaches	 504
Autoscaling BrownField PSS microservices	 508
Summary 518

Chapter 7: Logging and Monitoring Microservices	 519
Reviewing the microservice capability model	 520
Understanding log management challenges	 520
A centralized logging solution	 522
The selection of logging solutions	 524
Monitoring microservices	 533
Data analysis using data lakes	 546
Summary 547

Chapter 8: Containerizing Microservices with Docker	 549
Reviewing the microservice capability model	 550
Understanding the gaps in BrownField PSS microservices	 550
What are containers?	 552
The difference between VMs and containers	 553

v

Table of Contents

The benefits of containers	 555
Microservices and containers	 556
Introduction to Docker	 557
Deploying microservices in Docker	 562
Running RabbitMQ on Docker	 566
Using the Docker registry	 566
Microservices on the cloud	 568
Running BrownField services on EC2	 568
Updating the life cycle manager	 570
The future of containerization – unikernels and hardened security	 570
Summary 571

Chapter 9: Managing Dockerized Microservices with Mesos and Marathon	
573

Reviewing the microservice capability model	 574
The missing pieces	 574
Why cluster management is important	 576
What does cluster management do?	 577
Relationship with microservices	 580
Relationship with virtualization	 580
Cluster management solutions	 580
Cluster management with Mesos and Marathon	 584
Implementing Mesos and Marathon for BrownField microservices	 589
A place for the life cycle manager	 603
The technology metamodel	 604
Summary	 605

Chapter 10: The Microservices Development Life Cycle	 607
Reviewing the microservice capability model	 608
The new mantra of lean IT – DevOps	 608
Meeting the trio – microservices, DevOps, and cloud	 611
Practice points for microservices development	 613
Microservices development governance, reference architectures, and libraries	

Summary 634

vi

Table of Contents

Module 3: Developing Microservices with Node.js,David
Gonzalez	

Chapter 1: Microservices Architecture	 637
Need for microservices	 637
Key design principles	 640
Key benefits	 649
SOA versus microservices	 655
Why Node.js?	 656
Summary	 659

Chapter 2: Microservices in Node.js – Seneca and PM2 Alternatives	 661
Need for Node.js	 661
Seneca – a microservices framework	 672
PM2 – a task runner for Node.js	 687
Summary	 694

Chapter 3: From the Monolith to Microservices	 695
First, there was the monolith	 696
Then the microservices appeared	 700
Organizational alignment	 709
Summary	 711

Chapter 4: Writing Your First Microservice in Node.js	 713
Micromerce – the big picture	 713
Product Manager – the two-faced core	 715
The e-mailer – a common problem	 726
The order manager	 737
The UI – API aggregation	 744
Debugging	 762
Summary	 765

Chapter 5: Security and Traceability	 767
Infrastructure logical security	 767
Application security	 771
Traceability	 781
Summary	 788

Chapter 6: Testing and Documenting Node.js Microservices	 789
Functional testing	 790
Documenting microservices	 825
Summary	 835

vii

Table of Contents

Chapter 7: Monitoring Microservices	 837
Monitoring services	 837
Simian Army – the active monitoring from Spotify	 854
Summary	 860

Chapter 8: Deploying Microservices	 861
Concepts in software deployment	 861
Deployments with PM2	 863
Docker – a container for software delivery	 867
Node.js event loop – easy to learn and hard to master	 880
Clustering Node.js applications	 882
Load balancing our application	 889
Summary	 896

Module 1

Mastering Microservices with Java

Master the art of implementing microservices in your production environment with ease

[3]

A Solution Approach
As a prerequisite, I believe you have a basic understanding of microservices and
software architecture. If not, I would recommend you Google them and find one of
the many resources that explains and describes them in detail. It will help you to
understand the concepts and book thoroughly.

After reading this book, you could implement microservices for on premise or cloud
production deployment and learn the complete life cycle from design, development,
testing, and deployment with continuous integration and deployment. This book is
specifically written for practical use and to ignite your mind as a solution architect.
Your learning will help you to develop and ship products for any type on premise,
including SaaS, PaaS, and so on. We'll primarily use the Java and Java-based
framework tools such as Spring Boot and Jetty, and we will use Docker as container.

From this point onwards, µServices will be used for
microservices except in quotes.

In this chapter, you will learn the eternal existence of µServices, and how it has
evolved. It highlights the large problems that premise and cloud-based products face
and how µServices deals with it. It also explains the common problems encountered
during the development of SaaS, enterprise, or large applications and their solutions.

In this chapter, we will learn the following topics:

•	 µServices and a brief background
•	 Monolithic architecture
•	 Limitation of monolithic architecture
•	 The benefits and flexibility microservices offers
•	 µServices deployment on containers such as Docker

A Solution Approach

[4]

Evolution of µServices
Martin Fowler explains:

"The term "microservice" was discussed at a workshop of software architects
near Venice in May, 2011 to describe what the participants saw as a common
architectural style that many of them had been recently exploring. In May 2012,
the same group decided on "µServices" as the most appropriate name."

Let's get some background on the way it has evolved over the years. Enterprise
architecture evolved more from historic mainframe computing, through client-server
architecture (2-tier to n-tier) to service-oriented architecture (SOA).

The transformation from SOA to µServices is not a standard defined by any industry
organization, but a practical approach practiced by many organizations. SOA
eventually evolved to become µServices.

Adrian Cockcroft, former Netflix Architect, describes it as:

"Fine grain SOA. So microservice is SOA with emphasis on small
ephemeral components."

Similarly, the following quote from Mike Gancarz (a member that designed
the X windows system), which defines one of the paramount percepts of UNIX
philosophy, suits the µService paradigm as well:

"Small is beautiful."

µServices shares many common characteristics with SOA, such as focus on services
and how one service decouples from another. SOA evolved around monolithic
application integration by exposing API that was mostly Simple Object Access
Protocol (SOAP) based. Therefore, middleware such as Enterprise Service Bus (ESB)
is very important for SOA. µServices is less complex, and even though it may use the
message bus it is only used for message transport and it does not contain any logic.

Tony Pujals defined µServices beautifully:

"In my mental model, I think of self-contained (as in containers) lightweight
processes communicating over HTTP, created and deployed with relatively small
effort and ceremony, providing narrowly-focused APIs to their consumers."

Chapter 1

[5]

Monolithic architecture overview
µServices is not something new, it has been around for many years. Its recent rise
is owing to its popularity and visibility. Before µServices became popular, there was
primarily monolithic architecture that was being used for developing on premise
and cloud applications.

Monolithic architecture allows the development of different components such as
presentation, application logic, business logic, and data access objects (DAO), and
then you either bundle them together in enterprise archive (EAR)/web archive
(WAR), or store them in a single directory hierarchy (for example, Rails, NodeJS,
and so on).

Many famous applications such as Netflix have been developed using µServices
architecture. Moreover, eBay, Amazon, and Groupon have evolved from monolithic
architecture to a µServices architecture.

Now, that you have had an insight into the background and history of µServices,
let's discuss the limitations of a traditional approach, namely monolithic app
development, and compare how µServices would address them.

Limitation of monolithic architecture
versus its solution with µServices
As we know, change is eternal. Humans always look for better solutions. This is how
µServices became what it is today and it may evolve further in the future. Today,
organizations are using agile methodologies to develop applications; it is a fast paced
development environment and is also on a much larger scale after the invention of
cloud and distributed technologies. Many argue that monolithic architecture could
also serve a similar purpose and be aligned with agile methodologies, but µServices
still provides a better solution to many aspects of production-ready applications.

To understand the design differences between monolithic and µServices, let's take an
example of a restaurant table-booking application. This app may have many services
such as customers, bookings, analytics and so on, as well as regular components such
as presentation and database.

We'll explore three different designs here – traditional monolithic design, monolithic
design with services and µServices design.

A Solution Approach

[6]

The following diagram explains the traditional monolithic application design.
This design was widely used before SOA became popular:

Traditional monolithic design

In traditional monolithic design, everything is bundled in the same archive such as
presentation code, application logic and business logic code, and DAO and related
code that interacts with the database files or another source.

After SOA, applications started being developed based on services, where each
component provides the services to other components or external entities. The
following diagram depicts the monolithic application with different services;
here services are being used with a presentation component. All services, the
presentation component, or any other components are bundled together:

Monolithic design with services

Chapter 1

[7]

The following third design depicts the µServices. Here, each component represents
autonomy. Each component could be developed, built, tested, and deployed
independently. Here, even the application UI component could also be a client and
consume the µServices. For the purpose of our example, the layer designed is used
within µService.

The API gateway provides the interface where different clients can access the
individual services and solve the following problems:

•	 What to do when you want to send different responses to different clients
for the same service. For example, a booking service could send different
responses to a mobile client (minimal information) and a desktop client
(detailed information) providing different details and something different
again to a third-party client.

•	 A response may require fetching information from two or more services:

Microservices design

After observing all the sample design diagrams, which are very high-level designs,
you might find out that in monolithic design, the components are bundled together
and tightly coupled.

A Solution Approach

[8]

All the services are part of the same bundle. Similarly, in the second design figure,
you can see a variant of the first figure where all services could have their own
layers and form different APIs, but, as shown in the figure, these are also all
bundled together.

Conversely, in µServices, design components are not bundled On the other hand,
because of its component-based development and design, μServices together and
have loose coupling. Each service has its own layers and DB and is bundled in a
separate archive. All these deployed services provide their specific API such as
Customers, Bookings, or Customer. These APIs are ready to consume. Even the
UI is also deployed separately and designed using µService. For this reason, it
provides various advantages over its monolithic counterpart. I would still remind
you that there are some exceptional cases where monolithic app development is
highly successful, like Etsy, and peer-to-peer e-commerce web applications.

One dimension scalability
Monolithic applications, which are large when scaled, scale everything as all the
components are bundled together. For example, in the case of a restaurant table
reservation application, even if you would like to scale the table-booking service,
it would scale the whole application; it cannot scale the table-booking service
separately. It does not utilize the resource optimally.

In addition, this scaling is one-dimensional. Running more copies of the application
provides scale with increasing transaction volume. An operation team could adjust
the number of application copies that were using a load-balancer based on the load
in a server farm or a cloud. Each of these copies would access the same data source,
therefore increasing the memory consumption, and the resulting I/O operations
make caching less effective.

µServices gives the flexibility to scale only those services where scale is required
and it allows optimal utilization of the resources. As we mentioned previously,
when it is needed, you can scale just the table-booking service without affecting
any of the other components. It also allows two-dimensional scaling; here we can
not only increase the transaction volume but also the data volume using caching
(Platform scale).

A development team can then focus on the delivery and shipping of new features,
instead of worrying about the scaling issues (Product scale).

µServices could help you scale platform, people, and product dimensions as we
have seen previously. People scaling here refers to an increase or decrease in team
size depending on µServices' specific development and focus needs.

Chapter 1

[9]

µService development using RESTful web service development makes it scalable in
the sense that the server-end of REST is stateless; this means that there is not much
communication between servers, which makes it horizontally scalable.

Release rollback in case of failure
Since, monolithic applications are either bundled in the same archive or contained
in a single directory, they prevent the deployment of code modularity. For example,
many of you may have experienced the pain of delaying rolling out the whole release
due to the failure of one feature.

To resolve these situations, µServices gives us flexibility to rollback only those
features that have failed. It's a very flexible and productive approach. For example,
let's assume you are the member of an online shopping portal development team
and want to develop an app based on µServices. You can divide your app based
on different domains such as products, payments, cart and so on, and package all
these components as separate packages. Once you have deployed all these packages
separately, these would act as single components that can be developed, tested and
deployed independently, and called µService.

Now, let's see how that helps you. Let's say that after a production release launching
new features, enhancements, and bug fixes, you find flaws in the payment service that
need an immediate fix. Since the architecture you have used is based on µServices,
you can rollback the payment service instead of rolling back the whole release, if
your application architecture allows, or apply the fixes to the µServics payment
service without affecting the other services. This not only allows you to handle
failure properly, but also helps to deliver the features/fixes swiftly to customer.

Problems in adopting new technologies
Monolithic applications are mostly developed and enhanced based on the technologies
primarily used during the initial development of a project or a product. It makes it
very difficult to introduce new technology at a later stage of the development or once
the product is in a mature state (for example, after a few years). In addition, different
modules in the same project that depend on different versions of the same library
make this more challenging.

Technology is improving year on year. For example, your system might be designed
in Java and then, a few years later, you want to develop a new service in Ruby
on rails or NodeJS because of a business need or to utilize the advantages of new
technologies. It would be very difficult to utilize the new technology in an existing
monolithic application.

A Solution Approach

[10]

It is not just about code-level integration but also about testing and deployment. It is
possible to adopt a new technology by re-writing the entire application, but it is time
consuming and a risky thing to do.

On the other hand, because of its component-based development and design, µServices
gives us the flexibility to use any technology, new or old, for its development. It
does not restrict you to using specific technologies, it gives a new paradigm to your
development and engineering activities. You can use Ruby on Rails, NodeJS or any
other technology at any time.

So, how is it achieved? Well, it's very simple. µServices-based application code does
not bundle into a single archive and is not stored in a single directory. Each µService
has its own archive and is deployed separately. A new service could be developed in
an isolated environment and could be tested and deployed without any technology
issues. As you know, µServices also owns its own separate processes; it serves its
purpose without any conflict such as shared resources with tight coupling, and
processes remain independent.

Since a µService is by definition a small, self-contained function, it provides a low-
risk opportunity to try a new technology. That is definitely not the case where
monolithic systems are concerned.

You can also make your Microservice available as open source software so it can be
used by others, and if required it may interoperate with a closed source proprietary
one, which is not possible with monolithic applications.

Alignment with Agile practices
There is no question that monolithic applications can be developed using agile
practices and these are being developed. Continuous Integration (CI) and Continuous
Deployment (CD) could be used, but, the question is – does it use agile practices
effectively? Let's examine the following points:

•	 For example, when there is a high probability of having stories dependent on
each other, and there could be various scenarios, a story could be taken up
until the dependent story is not complete

•	 The build takes more time as the code size increases
•	 The frequent deployment of a large monolithic application is a difficult task

to achieve
•	 You would have to redeploy the whole application even if you updated a

single component

Chapter 1

[11]

• Redeployment may cause problems to already running components, for
example a job scheduler may change whether components impact it or not

• The risk of redeployment may increase if a single changed component does
not work properly or if it needs more fixes

• UI developers always need more redeployment, which is quite risky and
time-consuming for large monolithic applications

The preceding issues can be tackled very easily by µServices, for example, UI
developers may have their own UI component that can be developed, built, tested,
and deployed separately. Similarly, other µServices might also be deployable
independently and because of their autonomous characteristics, the risk of system
failure is reduced. Another advantage for development purposes is that UI
developers can make use of the JSON object and mock Ajax calls to develop the
UI, which can be taken up in an isolated manner. After development completes,
developers can consume the actual APIs and test the functionality. To summarize,
you could say that µServices development is swift and it aligns well with the
incremental needs of businesses.

Ease of development – could be done better
Generally, large monolithic application code is the toughest to understand for
developers, and it takes time before a new developer can become productive.
Even loading the large monolithic application into IDE is troublesome, and it
makes IDE slower and the developer less productive.

A change in a large monolithic application is difficult to implement and takes more
time due to a large code base, and there will be a high risk of bugs if impact analysis
is not done properly and thoroughly. Therefore, it becomes a prerequisite for
developers to do thorough impact analysis before implementing changes.

In monolithic applications, dependencies build up over time as all components are
bundled together. Therefore, risk associated with code change rises exponentially as
code changes (number of modified lines of code) grows.

When a code base is huge and more than 100 developers are working on it, it
becomes very difficult to build products and implement new features because of
the previously mentioned reason. You need to make sure that everything is in place,
and that everything is coordinated. A well-designed and documented API helps a
lot in such cases.

shraddhaf
Sticky Note
Marked set by shraddhaf

shraddhaf
Sticky Note
Marked set by shraddhaf

A Solution Approach

[12]

Netflix, the on-demand Internet streaming provider, had problems getting their
application developed with around 100 people. Then, they used a cloud and broke
up the app into separate pieces. These ended up being microservices. Microservices
grew from the desire for speed and agility and to deploy teams independently.

Micro-components are made loosely coupled thanks to their exposed API, which
can be continuously integration tested. With µServices' continuous release cycle,
changes are small and developers can rapidly exploit them with a regression test,
then go over them and fix the eventual defects found, reducing the risk of a
deployment. This results in higher velocity with a lower associated risk.

Owing to the separation of functionality and single responsibility principle,
µServices makes teams very productive. You can find a number of examples
online where large projects have been developed with minimum team sizes
such as eight to ten developers.

Developers can have better focus with smaller code and resultant better feature
implementation that leads to a higher empathic relationship with the users of the
product. This conduces better motivation and clarity in feature implementation.
Empathic relationship with the users allows a shorter feedback loop, and better and
speedy prioritization of the feature pipeline. Shorter feedback loop makes defects
detection also faster.

Each µServices team works independently and new features or ideas can be
implemented without being coordinated with larger audiences. The implementation
of end-point failures handling is also easily achieved in the µServices design.

Recently, at one of the conferences, a team demonstrated how they had developed
a µServices-based transport-tracking application including iOS and Android apps
within 10 weeks, which had Uber-type tracking features. A big consulting firm gave
a seven months estimation for the same app to his client. It shows how µServices is
aligned with agile methodologies and CI/CD.

Microservices build pipeline
Microservices could also be built and tested using the popular CI/CD tools such as
Jenkins, TeamCity, and so on. It is very similar to how a build is done in a monolithic
application. In microservices, each microservice is treated like a small application.

For example, once you commit the code in the repository (SCM), CI/CD tools
triggers the build process:

•	 Cleaning code
•	 Code compilation

Chapter 1

[13]

•	 Unit test execution
•	 Building the application archives
•	 Deployment on various servers such as Dev, QA, and so on
•	 Functional and integration test execution
•	 Creating image containers
•	 Any other steps

Then, release-build triggers that change the SNAPSHOT or RELEASE version in
pom.xml (in case of Maven) build the artifacts as described in the normal build
trigger. Publish the artifacts to the artifacts repository. Tag this version in the
repository. If you use the container image then build the container image.

Deployment using a container such as Docker
Owing to the design of µServices, you need to have an environment that provides
flexibility, agility and smoothness for continuous integration and deployment as
well as for shipment. µServices deployments need speed, isolation management
and an agile life cycle.

Products and software can also be shipped using the concept of an intermodal-
container model. An intermodal-container is a large standardized container, designed
for intermodal freight transport. It allows cargo to use different modes of transport
– truck, rail, or ship without unloading and reloading. This is an efficient and secure
way of storing and transporting stuff. It resolves the problem of shipping, which
previously had been a time consuming, labor-intensive process, and repeated
handling often broke fragile goods.

Shipping containers encapsulate their content. Similarly, software containers are
starting to be used to encapsulate their contents (products, apps, dependencies,
and so on).

Previously, virtual machines (VMs) were used to create software images that could
be deployed where needed. Later, containers such as Docker became more popular
as they were compatible with both traditional virtual stations systems and cloud
environments. For example, it is not practical to deploy more than a couple of VMs
on a developer's laptop. Building and booting a VM machine is usually I/O intensive
and consequently slow.

A Solution Approach

[14]

Containers
A container (for example, Linux containers) provides a lightweight runtime
environment consisting of the core features of virtual machines and the isolated
services of operating systems. This makes the packaging and execution of µServices
easy and smooth.

As the following diagram shows, a container runs as an application (µService) within
the operating system. The OS sits on top of the hardware and each OS could have
multiple containers, with a container running the application.

A container makes use of an operating system's kernel interfaces such as cnames and
namespaces that allow multiple containers to share the same kernel while running in
complete isolation to one another. This gives the advantage of not having to complete
an OS installation for each usage; the result being that it removes the overhead. It also
makes optimal use of the hardware.

Layer diagram for containers

Chapter 1

[15]

Docker
Container technology is one of the fastest growing technologies today and Docker
leads this segment. Docker is an open source project and was launched in 2013. Ten
thousand developers tried it after its interactive tutorial launched in August 2013. It
was downloaded 2.75 million times by the time of the launch of its 1.0 release in June
2013. Many large companies have signed the partnership agreement with Docker
such as Microsoft, Red Hat, HP, OpenStack and service providers such as Amazon
web services, IBM, and Google.

As we mentioned earlier, Docker also makes use of the Linux kernel features, such as
cgroups and namespaces to ensure resource isolation and packaging of the application
with its dependencies. This packaging of dependencies enables an application to run as
expected across different Linux operating systems/distributions; supporting a level of
portability. Furthermore this portability allows developers to develop an application in
any language and then easily deploy it from a laptop to a test or production server.

Docker runs natively on Linux. However, you can also run Docker
on Windows and Mac OS using VirtualBox and boot2docker.

Containers are comprised of just the application and its dependencies including the
basic operating system. This makes it lightweight and efficient in terms of resource
utilization.. Developers and system administrators get interested in container's
portability and efficient resource utilization.

Everything in a Docker container executes natively on the host and uses the host
kernel directly. Each container has its own user namespace.

Docker's architecture
As specified on Docker documentation, Docker architecture uses client-server
architecture. As shown in the following figure (sourced from Docker's website),
the Docker client is primary a user interface that is used by an end user; clients
communicate back and forth with a Docker daemon. The Docker daemon does
the heavy lifting of building, running, and distributing your Docker containers.
The Docker client and the daemon can run on the same system, or different
machines. The Docker client and daemon communicate via sockets or through a
RESTful API. Docker registries are public or private Docker image repositories from
which you upload or download images, for example Docker Hub (hub.docker.com)
is a public Docker registry.

The primary components of Docker are a Docker image and a Docker container.

hub.docker.com

A Solution Approach

[16]

Docker image
A Docker image is a read-only template. For example, an image could contain
an Ubuntu operating system with Apache web server and your web application
installed. Docker images are a build component of Docker. Images are used to
create Docker containers. Dockers provides a simple way to build new images
or update existing images. You can also use images created by others.

Docker's architecture

Docker container
A Docker container is created from a Docker image. Docker works so that the
container can only see its own processes, and have its own filesystem layered onto a
host filesystem and a networking stack, which pipes to the host-networking stack.
Docker containers can be run, started, stopped, moved or deleted.

Deployment
µServices deployment with Docker deals with three parts:

1.	 Application packaging, for example, jar
2.	 Building Docker image with jar and dependencies using a Docker

instruction file, the Dockerfile and command docker build. It helps to
repeatedly create the image.

3.	 Docker container execution from this newly built image using command
docker run.

Chapter 1

[17]

The preceding information will help you to understand the basics of Docker. You will
learn more about Docker and its practical usage in Chapter 5, Deployment and Testing.
Source and reference: https://docs.docker.com.

Summary
In this chapter, you have learned or rehearsed the high-level design of large
software projects from traditional monolithic to µServices applications. You
were also introduced to a brief history of µServices, the limitation of monolithic
applications, and the benefits and flexibility that microservices offers. I hope this
chapter helped you to understand the common problems faced in a production
environment by monolithic applications and how microservices can resolve
such problem. You were also introduced to lightweight and efficient Docker
containers, and saw how containerization is an excellent way to simplify
microservices deployment.

In the next chapter, you will get to know about setting up the development
environment from IDE, and other development tools, to different libraries We will
deal with creating basic projects and setting up Spring Boot configuration to build
and develop our first microservice. Here, we will use Java 8 as the language and
Spring Boot for our project.

https://docs.docker.com

[19]

Setting Up the Development
Environment

This chapter focuses on the development environment setup and configurations.
If you are familiar with the tools and libraries, you could skip this chapter and
continue with Chapter 3, Domain-Driven Design where you could explore the
domain driven design.

This chapter will cover the following topics:

•	 Spring Boot configuration
•	 Sample REST program
•	 Build setup
•	 REST API testing using the Postman Chrome extension
•	 NetBeans – installation and setup

This book will use only the open source tools and frameworks for examples and
code. The book will also use Java 8 as its programming language, and the application
framework will be based on the Spring framework. This book makes use of Spring
Boot to develop microservices.

NetBeans Integrated Development Environment (IDE) that provides state of the
art support for both Java and JavaScript, is sufficient for our needs. It has evolved a
lot over the years and has built-in support for most of the technologies used by this
book, such as Maven, Spring Boot and so on. Therefore, I would recommend you to
use NetBeans IDE. You are, however free to use any IDE.

Setting Up the Development Environment

[20]

We will use Spring Boot to develop the REST services and microservices. Opting
for the most popular of Spring frameworks, Spring Boot, or its subset Spring Cloud
in this book was a conscious decision. Because of this, we don't need to write
applications from scratch and it provides default configuration for most of the
stuff for Cloud applications. A Spring Boot overview is provided in Spring Boot's
configuration section. If you are new to Spring Boot, this would definitely help you.

We will use Maven as our build tool. As with the IDE, you can use whichever build
tool you want, for example Gradle or Ant. We will use the embedded Jetty as our
web server but another alternative is to use an embedded Tomcat web server. We
will also use the Postman extension of Chrome for testing our REST services.

We will start with Spring Boot Configurations. If you are new to NetBeans or are
facing issues in setting up the environment, you can refer to the NetBeans IDE
installation section explained in the last section; otherwise you can skip that
section altogether.

Spring Boot configuration
Spring Boot is an obvious choice to develop state of the art production-ready
applications specific to Spring. Its website also states its real advantages:

"Takes an opinionated view of building production-ready Spring applications.
Spring Boot favors convention over configuration and is designed to get you up
and running as quickly as possible."

Spring Boot overview
Spring Boot is an amazing Spring tool created by Pivotal and released in April 2014
(GA). It was developed based on request of SPR-9888 (https://jira.spring.io/
browse/SPR-9888) with the title Improved support for 'containerless' web application
architectures.

You must be wondering why containerless? Because, today's cloud environment or
PaaS provides most of the features offered by container-based web architectures such
as reliability, management or scaling. Therefore, Spring Boot focuses on making itself
an ultra light container.

https://jira.spring.io/browse/SPR-9888
https://jira.spring.io/browse/SPR-9888

Chapter 2

[21]

Spring Boot is preconfigured to make production-ready web applications very
easily. Spring Initializer (http://start.spring.io) is a page where you can select
build tools such as Maven or Gradle, project metadata such as group, artifact and
dependencies. Once, you feed the required fields you can just click on the Generate
Project button, which will give you the Spring Boot project that you can use for your
production application.

On this page, the default packaging option is jar. We'll also use jar packaging for
our microservices development. The reason is very simple: it makes microservices
development easier. Just think how difficult it would be to manage and create an
infrastructure where each microservice runs on its own server instance.

Josh Long shared in his talk in one of the Spring IOs:

"It is better to make Jar, not War."

Later, we will use the Spring Cloud that is a wrapper on top of Spring Boot.

Adding Spring Boot to the rest sample
At the time of writing the book, Spring Boot 1.2.5 release version was available.
You can use the latest released version. Spring Boot uses Spring 4 (4.1.7 release).

Open the pom.xml (available under restsample | Project Files) to add Spring Boot to
your rest sample project:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.
apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packtpub.mmj</groupId>
 <artifactId>restsample</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.2.5.RELEASE</version>
 </parent>

http://start.spring.io

Setting Up the Development Environment

[22]

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.
sourceEncoding>
 <spring-boot-version>1.2.5.RELEASE</spring-boot-version>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <version>${spring-boot-version}</version>
 </dependency>
 </dependencies>
</project>

If you are adding these dependencies for the first time, you need to download the
dependencies by right clicking on the Dependencies folder under restsample project
in the Projects pane shown as follows:

Download Maven Dependencies in NetBeans

Similarly, to resolve the project problems, right-click on the NetBeans project
restsample and opt for the Resolve Project Problems…. It will open the dialog
shown as follows. Click on the Resolve... button to resolve the issues:

Chapter 2

[23]

Resolve project problems dialog

If you are using Maven behind the proxy, then update
the proxies settings in <NetBeans Installation
Directory>\java\maven\conf\settings.xml.
You may need to restart the NetBeans IDE

The preceding steps will download all the required dependencies from a remote
Maven repository if the declared dependencies and transitive dependencies are not
available in a local Maven repository. If you are downloading the dependencies for
the first time, then it may take a bit of time, depending on your Internet speed.

Adding a Jetty-embedded server
Spring Boot by default provides Apache Tomcat as an embedded application
container. This book will use the Jetty-embedded application container in the
place of Apache Tomcat. Therefore, we need to add a Jetty application container
dependency to support the Jetty web server.

Setting Up the Development Environment

[24]

Jetty also allows you to read keys or trust stores using classpath that is, you don't
need to keep these stores outside the JAR files. If you use Tomcat with SSL, then
you will need to access the key store or trust store directly from the filesystem but
you can't do that using the classpath. The result is that you can't read a key store or
a trust store within a JAR file because Tomcat requires that the key store (and trust
store if you're using one) is directly accessible on the filesystem.

This limitation doesn't apply to Jetty, which allows the reading of keys or trust stores
within a JAR file:

<dependencies>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <exclusions>
 <exclusion>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-tomcat</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-jetty</artifactId>
</dependency>
</dependencies>

Sample REST program
You will use a simple approach to building a stand-alone application. It packages
everything into a single, executable JAR file, driven by a main() method. Along
the way, you use Spring's support for embedding the Jetty servlet container as the
HTTP runtime, instead of deploying it to an external instance. Therefore, we would
create the executable JAR in place of the war that needs to be deployed on external
web servers.

Now, as you are ready with Spring Boot in NetBeans IDE, you could create your
sample web service. You will create a Math API that performs simple calculations
and generates the result as JSON.

Let's discuss how we can call and get responses from REST services.

Chapter 2

[25]

The service will handle GET requests for /calculation/sqrt or /calculation/power
and so on. The GET request should return a 200 OK response with JSON in the body
that represents the square root of given number. It should look something like this:

{
 "function": "sqrt",
 "input": [
 "144"
],
 "output": [
 "12.0"
]
}

The input field is the input parameter for the square root function, and the content is
the textual representation of the result.

You could create a resource representation class to model the representation by using
Plain Old Java Object (POJO) with fields, constructors, setters, and getters for the
input, output, and function data:

package com.packtpub.mmj.restsample.model;

import java.util.List;

public class Calculation {

 String function;
 private List<String> input;
 private List<String> output;

 public Calculation(List<String> input, List<String> output, String
function) {
 this.function = function;
 this.input = input;
 this.output = output;
 }

 public List<String> getInput() {
 return input;
 }

 public void setInput(List<String> input) {
 this.input = input;
 }

Setting Up the Development Environment

[26]

 public List<String> getOutput() {
 return output;
 }

 public void setOutput(List<String> output) {
 this.output = output;
 }

 public String getFunction() {
 return function;
 }

 public void setFunction(String function) {
 this.function = function;
 }

}

Writing the REST controller class
Roy Fielding defined and introduced the term REST, Representational State
Transfer in his doctoral dissertation. REST is a style of software architecture for
a distributed hypermedia system such as WWW. RESTful refers to those systems
that conform to REST architecture properties, principles, and constraints.

Now, you'll create a REST controller to handle the calculation resource. The controller
handles the HTTP requests in the Spring RESTful web service implementation.

@RestController
@RestController is a class-level annotation used for the resource class introduced
in Spring 4. It is a combination of @Controller and @ResponseBody, and because of
it, class returns a domain object instead of a view.

In the following code, you can see that the CalculationController class handles
GET requests for /calculation by returning a new instance of the calculation class.

We will implement two URLs for a calculation resource – the square root (Math.
sqrt() function) as /calculations/sqrt URL, and power (Math.pow() function)
as /calculation/power URL.

Chapter 2

[27]

@RequestMapping
@RequestMapping annotation is used at class-level to map the /calculation
URI to CalculationController class that is, it ensures that the HTTP request to
/calculation is mapped to the CalculationController class. Based on the path
defined using the annotation @RequestMapping of the URI (postfix of /calculation,
for example, /calculation/sqrt/144), it would be mapped to respective methods.
Here, the request mapping /calculation/sqrt is mapped to the sqrt() method
and /calculation/power is mapped to the pow() method.

You might have also observed that we have not defined what request method (GET/
POST/PUT, and so on) these methods would use. The @RequestMapping annotation
maps all the HTTP request methods by default. You could use specific methods
by using the method property of RequestMapping. For example, you could write
a @RequestMethod annotation in the following way to use the POST method:

@RequestMapping(value = "/power", method = POST)

For passing the parameters along the way, the sample demonstrates both request
parameters and path parameters using annotations @RequestParam and @
PathVariable respectively.

@RequestParam
@RequestParam is responsible for binding the query parameter to the parameter
of the controller's method. For example, the QueryParam base and exponent
are bound to parameters b and e of method pow() of CalculationController
respectively. Both of the query parameters of the pow() method are required since
we are not using any default value for them. Default values for query parameters
could be set using the defaultValue property of @RequestParam for example
@RequestParam(value="base", defaultValue="2"), here, if the user does not
pass the query parameter base, then the default value 2 would be used for the base.

If no defaultValue is defined, and the user doesn't provide the request parameter,
then RestController returns the HTTP status code 400 with the message 400
Required String parameter base is not present. It always uses the reference of the
first required parameter if more than one of the request parameters is missing:

{
 "timestamp": 1464678493402,
 "status": 400,
 "error": "Bad Request",
 "exception": "org.springframework.web.bind.
MissingServletRequestParameterException",

Setting Up the Development Environment

[28]

 "message": "Required String parameter 'base' is not present",
 "path": "/calculation/power/"
}

@PathVariable
@PathVariable helps you to create the dynamic URIs. @PathVariable
annotation allows you to map Java parameters to a path parameter. It works with
@RequestMapping where placeholder is created in URI then the same placeholder
name is used either as a PathVariable or a method parameter, as you can see in
the CalculationController class's method sqrt(). Here, the value placeholder is
created inside the @RequestMapping and the same value is assigned to the value of
the @PathVariable.

Method sqrt() takes the parameter in the URI in place of the request parameter.
For example, http://localhost:8080/calculation/sqrt/144. Here, the 144
value is passed as the path parameter and this URL should return the square root
of 144 that is, 12.

To use the basic check in place, we use the regular expression "^-?+\\d+\\.?+\\d*$"
to allow only valid numbers in parameters. If non-numeric values are passed, the
respective method adds an error message in the output key of the JSON.

CalculationController also uses the regular expression .+ in
the path variable (path parameter) to allow the decimal point(.) in
numeric values - /path/{variable:.+}. Spring ignores anything
after the last dot. Spring default behavior takes it as a file extension.
There are other alternatives such as adding a slash at the
end (/path/{variable}/) or overriding the method
configurePathMatch() of WebMvcConfigurerAdapter
by setting the useRegisteredSuffixPatternMatch to true,
using PathMatchConfigurer (available in Spring 4.0.1+).

package com.packtpub.mmj.restsample.resources;

package com.packtpub.mmj.restsample.resources;

import com.packtpub.mmj.restsample.model.Calculation;
import java.util.ArrayList;
import java.util.List;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;

Chapter 2

[29]

import static org.springframework.web.bind.annotation.RequestMethod.
GET;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@RestController
@RequestMapping("/calculation")
public class CalculationController {

 private static final String PATTERN = "^-?+\\d+\\.?+\\d*$";

 @RequestMapping("/power")
 public Calculation pow(@RequestParam(value = "base") String b, @
RequestParam(value = "exponent") String e) {
 List<String> input = new ArrayList();
 input.add(b);
 input.add(e);
 List<String> output = new ArrayList();
 String powValue = "";
 if (b != null && e != null && b.matches(PATTERN) &&
e.matches(PATTERN)) {
 powValue = String.valueOf(Math.pow(Double.valueOf(b),
Double.valueOf(e)));
 } else {
 powValue = "Base or/and Exponent is/are not set to numeric
value.";
 }
 output.add(powValue);
 return new Calculation(input, output, "power");
 }

 @RequestMapping(value = "/sqrt/{value:.+}", method = GET)
 public Calculation sqrt(@PathVariable(value = "value") String
aValue) {
 List<String> input = new ArrayList();
 input.add(aValue);
 List<String> output = new ArrayList();
 String sqrtValue = "";
 if (aValue != null && aValue.matches(PATTERN)) {
 sqrtValue = String.valueOf(Math.sqrt(Double.
valueOf(aValue)));
 } else {
 sqrtValue = "Input value is not set to numeric value.";
 }

Setting Up the Development Environment

[30]

 output.add(sqrtValue);
 return new Calculation(input, output, "sqrt");
 }
}

Here, we are exposing only the power and sqrt functions for the Calculation
resource using URI /calculation/power and /calculation/sqrt.

Here, we are using sqrt and power as a part of the URI, which we
have used for demonstration purposes only. Ideally, these should
have been passed as value of a request parameter "function"; or
something similar based on endpoint design formation.

One interesting thing here is that due to Spring's HTTP message converter
support, the Calculation object gets converted to JSON automatically. You don't
need to do this conversion manually. If Jackson 2 is on the classpath, Spring's
MappingJackson2HttpMessageConverter converts the Calculation object to JSON.

Making a sample REST app executable
Create a class RestSampleApp with the annotation SpringBootApplication.
The main() method uses Spring Boot's SpringApplication.run() method to
launch an application.

We will annotate the RestSampleApp class with the @SpringBootApplication that
adds all of the following tags implicitly:

•	 The @Configuration annotation tags the class as a source of Bean definitions
for the application context.

•	 The @EnableAutoConfiguration annotation indicates that Spring Boot is
to start adding beans based on classpath settings, other beans, and various
property settings.

•	 The @EnableWebMvc annotation is added if Spring Boot finds the spring-
webmvc on the classpath. It treats the application as a web application and
activates key behaviors such as setting up a DispatcherServlet.

Chapter 2

[31]

•	 The @ComponentScan annotation tells Spring to look for other components,
configurations, and services in the given package:
package com.packtpub.mmj.restsample;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.
SpringBootApplication;

@SpringBootApplication
public class RestSampleApp {

 public static void main(String[] args) {
 SpringApplication.run(RestSampleApp.class, args);
 }
}

This web application is 100 percent pure Java and you didn't have to deal with
configuring any plumbing or infrastructure using XML; instead it uses the Java
annotation, that is made even simpler by Spring Boot. Therefore, there wasn't a
single line of XML except pom.xml for Maven. There wasn't even a web.xml file.

Setting up the application build
Whatever pom.xml we have used until now is enough to execute our sample REST
service. This service would package the code into a JAR. To make this JAR executable
we need to opt for the following options:

Running the Maven tool
Here, we use the Maven tool to execute the generated JAR, steps for the same are
as follows:

1.	 Right-click on the pom.xml.
2.	 Select run-maven | Goals… from the pop-up menu. It will open the dialog.

Type spring-boot:run in the Goals field. We have used the released
version of Spring Boot in the code. However, if you are using the snapshot
release, you can check the Update Snapshots checkbox. To use it in the
future, type spring-boot-run in the Remember as field.

Setting Up the Development Environment

[32]

3.	 Next time, you could directly click run-maven | Goals | spring-boot-run to
execute the project:

Run Maven dialog

4.	 Click on OK to execute the project.

Executing with the Java command
To build the JAR, perform the mvn clean package Maven goal. It creates the JAR file
in a target directory, then, the JAR can be executed using the command:

java -jar target/restsample-1.0-SNAPSHOT.jar

REST API testing using the Postman
Chrome extension
This book uses the Postman – REST Client extension for Chrome to test our
REST service. We use the 0.8.4.16 version that can be downloaded using
https://chrome.google.com/webstore/detail/postman-rest-client/
fdmmgilgnpjigdojojpjoooidkmcomcm. This extension is no longer searchable but
you can add it to your Chrome using the given link. You can also use the Postman
Chrome app or any other REST Client to test your sample REST application:

https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm
https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm

Chapter 2

[33]

Postman – Rest Client Chrome extension

Let's test our first REST resource once you have the Postman – REST Client installed.
We start the Postman – REST Client from either the start menu or from a shortcut.

By default the embedded web server starts on port 8080. Therefore,
we need to use the http://localhost:8080/<resource>
URL for accessing the sample REST application. Example:
http://localhost:8080/calculation/sqrt/144.

Once it's started, you can type the Calculation REST URL for sqrt and value 144 as
the path parameter. You could see it in the following image. This URL is entered in
the URL (Enter request URL here) input field of the Postman extension. By default,
the request method is GET. We use the default value for the request method, as we
have also written our RESTful service to serve the request GET method.

Setting Up the Development Environment

[34]

Once you are ready with your input data as mentioned above, you can submit
the request by clicking the Send button. You can see in the following image that
the response code 200 is returned by your sample rest service. You can find the
Status label in the following image to see the 200 OK code. A successful request
also returns the JSON data of the Calculation Resource, shown in the Pretty tab
in the screenshot. The returned JSON shows the sqrt, value of the function key.
It also displays 144 and 12.0 as the input and output lists respectively:

Calculation (sqrt) resource test with Postman

Similarly, we also test our sample REST service for the calculating power function.
We input the following data in the Postman extension:

•	 URL: http://localhost:8080/calculation/power?base=2&exponent=4
•	 Request method: GET

Here, we are passing the request parameters base and exponent with values of 2 and
4 respectively. It returns the following JSON with a response status of 200 as shown
in the following screenshot.

Chapter 2

[35]

Returned JSON:

{
 "function": "power",
 "input": [
 "2",
 "4"
],
 "output": [
 "16.0"
]
}

Calculation (power) resource test with Postman

Setting Up the Development Environment

[36]

Some more positive test scenarios
In the following table, all the URLs start with http://localhost:8080:

URL Output JSON
/calculation/sqrt/12344.234 {

 "function": "sqrt",
 "input": [
 "12344.234"
],
 "output": [

"111.1046083652699"
]
}

/calculation/sqrt/-9344.34

Math.sqrt function's special scenario:
•	 If the argument is NaN or less than zero, then

the result is NaN

{
 "function": "sqrt",
 "input": [
 "-9344.34"
],
 "output": [
 "NaN"
]
}

/calculation/
power?base=2.09&exponent=4.5

{
 "function": "power",
 "input": [
 "2.09",
 "4.5"
],
 "output": [

"27.58406626826615"
]
}

Chapter 2

[37]

URL Output JSON
/calculation/power?base=-
92.9&exponent=-4

{
 "function": "power",
 "input": [
 "-92.9",
 "-4"
],
 "output": [

"1.3425706351762353E-8"
]
}

Negative test scenarios
Similarly, you could also perform some negative scenarios as shown in the following
table. In this table, all the URLs start with http://localhost:8080:

URL Output JSON
/calculation/power?base=2a&exponent=4 {

 "function": "power",
 "input": [
 "2a",
 "4"
],
 "output": [
 "Base or/and
Exponent is/are not set
to numeric value."
]
}

/calculation/power?base=2&exponent=4b {
 "function": "power",
 "input": [
 "2",
 "4b"
],
 "output": [
 "Base or/and
Exponent is/are not set
to numeric value."
]
}

Setting Up the Development Environment

[38]

URL Output JSON
/calculation/
power?base=2.0a&exponent=a4

{
 "function": "power",
 "input": [
 "2.0a",
 "a4"
],
 "output": [
 "Base or/and
Exponent is/are not set
to numeric value."
]
}

/calculation/sqrt/144a {
 "function": "sqrt",
 "input": [
 "144a"
],
 "output": [
 "Input value
is not set to numeric
value."
]
}

/calculation/sqrt/144.33$ {
 "function": "sqrt",
 "input": [
 "144.33$"
],
 "output": [
 "Input value
is not set to numeric
value."
]
}

Chapter 2

[39]

NetBeans IDE installation and setup
NetBeans IDE is free and open source, and has a big community of users. You can
download the NetBeans IDE from https://netbeans.org/downloads/, its official
website.

At the time of writing this book, version 8.0.2 was the latest available version.
As shown in the following screenshot, please download all the supported NetBeans
bundles, as we'll use Javascript also:

NetBeans bundles

After downloading the the installation, execute the installer file. Accept the license
agreement as shown in the following screenshot, and follow the rest of the steps to
install the NetBeans IDE. Glassfish Server and Apache Tomcat are optional.

https://netbeans.org/downloads/

Setting Up the Development Environment

[40]

JDK 7 or a later version is required for installing and running the
All NetBeans Bundles. You can download a standalone JDK 8 from
http://www.oracle.com/technetwork/java/javase/
downloads/index.html.

NetBeans Bundles

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 2

[41]

Once NetBeans the IDE is installed, start the NetBeans IDE. NetBeans IDE should
look as follows:

NetBeans start page

Maven and Gradle are both Java build tools. They add dependent libraries to your
project, compile your code, set properties, build archives, or do many more related
activities. Spring Boot or the Spring Cloud support both Maven and Gradle build
tools. However, in this book we'll use the Maven build tool. Please feel free to use
Gradle if you prefer.

Maven is already available in NetBeans IDE. Now, we can start a new Maven project
to build our first REST app.

Steps for creating a new empty Maven project:

1.	 Click on New Project (Ctrl + Shift + N) under the File menu. It will open the
new project wizard.

Setting Up the Development Environment

[42]

2.	 Select Maven in the Categories list. Then, select Java Application in the
Projects list (as shown in following screenshot). Then, click on the Next button:

New Project Wizard

3.	 Now, enter the the project name as restsample. Also, enter the other
properties as shown in the following screenshot. Click on Finish once
all the mandatory fields are entered:

NetBeans Maven project properties

Chapter 2

[43]

Aggelos Karalias has developed a helpful plugin for NetBeans
IDE offering autocomplete support for Spring Boot configuration
properties available at https://github.com/keevosh/nb-
springboot-configuration-support. You can download
it from his project page at http://keevosh.github.io/nb-
springboot-configuration-support/.
You could also use Spring Tool Suite IDE (https://spring.io/
tools) from Pivotal instead of NetBeans IDE. It's a customized
all-in-one Eclipse-based distribution that makes application
development easy.

After finishing all the the preceding steps, NetBeans will display a newly created
Maven project. You will use this project for creating the sample rest application
using Spring Boot.

To use Java 8 as a source, set the Source/Binary Format to 1.8 as shown in the
following screenshot:

NetBeans Maven project properties

https://github.com/keevosh/nb-springboot-configuration-support
https://github.com/keevosh/nb-springboot-configuration-support
http://keevosh.github.io/nb-springboot-configuration-support/
http://keevosh.github.io/nb-springboot-configuration-support/
https://spring.io/tools
https://spring.io/tools

Setting Up the Development Environment

[44]

References
•	 Spring Boot: http://projects.spring.io/spring-boot/
•	 Download NetBeans: https://netbeans.org/downloads
•	 Representational State Transfer (REST): Chapter 5 of Roy Thomas Fielding

Ph.D. dissertation "Architectural Styles and the Design of Network-based
Software Architectures" - https://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm

•	 REST: https://en.wikipedia.org/wiki/Representational_state_
transfer

•	 Maven: https://www.apache.org/
•	 Gradle: http://gradle.org/

Summary
In this chapter, you have explored various aspects of setting up a development
environment such as NetBeans IDE setup and installation, Maven configuration,
Spring Boot configuration and so on.

You have also learned how to make use of Spring Boot to develop a sample REST
service application. We learned how powerful Spring Boot is – it eases development
so much that you only have to worry about the actual code, and not about the
boilerplate code or configurations that you write. We have also packaged our code
into a JAR with an embedded application container Jetty. It allows it to run and
access the web application without worrying about the deployment.

In the next chapter, you will learn the domain-driven design (DDD) using a
sample project that can be used across the rest of the chapters. We'll use the sample
project online table reservation system (OTRS) to go through various phases of
microservices development and understand the DDD. After completing Chapter 3,
Domain-Driven Design you will learn the fundamentals of DDD. You will understand
how to practically use the DDD by design sample services. You will also learn to
design the domain models and REST services on top of it.

http://projects.spring.io/spring-boot/
https://netbeans.org/downloads
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.apache.org/
http://gradle.org/

[45]

Domain-Driven Design
This chapter sets the tone for rest of the chapters by referring to one sample project.
The sample project will be used to explain different microservices concepts from
here onwards. This chapter uses this sample project to drive through different
combinations of functional and domain services or apps to explain the domain-
driven design (DDD). It will help you to learn the fundamentals of DDD and its
practical usage. You will also learn the concepts of designing domain models using
REST services.

This chapter covers the following topics:

•	 Fundamentals of DDD
•	 How to design an application using DDD
•	 Domain models
•	 A sample domain model design based on DDD

A good software design is as much the key to the success of a product or services as
the functionalities offered by it. It carries equal weight to the success of product; for
example, Amazon.com provides the shopping platform but its architecture design
makes it different from other similar sites and contributes to its success. It shows
how important a software or architecture design is for the success of a product/
service. DDD is one of the software design practices and we'll explore it with various
theories and practical examples.

DDD is a key design practice that helps to design the microservices of the product
that you are developing. Therefore, we'll first explore DDD before jumping into
microservices development. DDD uses multilayered architecture as one of its
building blocks. After learning this chapter, you will understand the importance of
DDD for microservices development.

Domain-Driven Design

[46]

Domain-driven design fundamentals
An enterprise or cloud application solves business problems and other real world
problems. These problems cannot be resolved without knowledge of the domain.
For example, you cannot provide a software solution for a financial system such
as online stock trading if you don't understand the stock exchanges and their
functioning. Therefore, having domain knowledge is a must for solving problems.
Now, if you want to offer a solution using software or apps, you need to design it
with the help of domain knowledge. When we combine the domain and software
design, it offers a software design methodology known as DDD.

When we develop software to implement real world scenarios offering the
functionalities of a domain, we create a model of the domain. A model is an
abstraction or a blueprint of the domain.

Eric Evans coined the term DDD in his book Domain-Driven Design:
Tackling Complexity in the Heart of Software, published in 2004.

Designing this model is not rocket science but it does take a lot of effort, refining
and input from domain experts. It is the collective job of software designers, domain
experts, and developers. They organize information, divide it into smaller parts,
group them logically and create modules. Each module can be taken up individually
and can be divided using a similar approach. This process can be followed until
we reach the unit level or we cannot divide it any further. A complex project may
have more of such iterations and similarly a simple project could have just a single
iteration of it.

Once a model is defined and well documented, it can move onto the next stage –
code design. So, here we have a software design – a Domain Model and code design
– and code implementation of the Domain Model. The Domain Model provides a
high level of architecture of a solution (software/app) and the code implementation
gives the domain model a life, as a working model.

DDD makes design and development work together. It provides the ability to
develop software continuously while keeping the design up to date based on
feedback received from the development. It solves one of the limitations offered by
Agile and Waterfall methodologies making software maintainable including design
and code, as well as keeping app minimum viable.

Chapter 3

[47]

Design-driven development involves a developer from the initial stage and all
meetings where software designers discuss the domain with domain experts in
the modeling process. It gives developers the right platform to understand the
domain and provides the opportunity to share early feedback of the Domain
Model implementation. It removes the bottleneck that appears in later stages when
stockholders waits for deliverables.

Building blocks
This section explains the ubiquitous language used and why it is required, the
different patterns to be used in model-driven design and the importance of
multilayered architecture.

Ubiquitous language
As we have seen, designing a model is the collective effort of software designers,
domain experts, and developers and, therefore, it requires a common language
to communicate. DDD makes it necessary to use common language and the
use of ubiquitous language. Domain models use ubiquitous language in their
diagrams, descriptions, presentations, speeches, and meetings. It removes the
misunderstanding, misinterpretation and communication gap among them.

Unified Model Language (UML) is widely used and very popular when creating
models. It also carries few limitations, for example when you have thousands of
classes drawn of a paper, it's difficult to represent class relationships and also
understand their abstraction while taking a meaning out of it. Also UML diagrams
do not represent the concepts of a model and what objects are supposed to do.

There are other ways to communicate the domain model such as – documents, code,
and so on.

Multilayered architecture
Multilayered architecture is a common solution for DDD. It contains four layers:

1.	 Presentation layer or User Interface (UI).
2.	 Application layer.
3.	 Domain layer.

Domain-Driven Design

[48]

4.	 Infrastructure layer.

Layered architecture

You can see here that only the domain layer is responsible for the domain model and
others are related to other components such as UI, app logic and so on. This layered
architecture is very important. It keeps domain-related code separate from other layers.

In this multilayered architecture, each layer contains its respective code and it helps
to achieve loose coupling and avoid mixing code from different layers. It also help
the product/service's long term maintainability and the ease of enhancements as
the change of one layer code does not impact on other components if the change
is intended for the respective layer only. Each layer can be switched with another
implementation easily with multitier architecture.

Presentation layer
This layer represents the UI and provides the user interface for the interaction and
information display. This layer could be a web application, mobile app or a third-
party application consuming your services.

Application layer
This layer is responsible for application logic. It maintains and coordinates the
overall flow of the product/service. It does not contain business logic or UI. It may
hold the state of application objects like tasks in progress. For example, your product
REST services would be the part of this application layer.

Chapter 3

[49]

Domain layer
The domain layer is a very important layer as it contains the domain information
and business logic. It holds the state of the business object. It persists the state of the
business objects, and communicates these persisted states to the infrastructure layer.

Infrastructure layer
This layer provides support to all the other layers and is responsible for
communication among the other layers. It contains the supporting libraries that are
used by the other layers. It also implements the persistence of business objects.

To understand the interaction of the different layers, let us take an example of table
booking at a restaurant. The end user places a request for a table booking using
UI. UI passes the request to the application layer. The application layer fetches the
domain objects such as the restaurant, the table with a date and so on from the
domain layer. The domain layers fetch these existing persisted objects from the
infrastructure and invoke relevant methods to make the booking and persists them
back to infrastructure layer. Once, domain objects are persisted, application layer
shows the booking confirmation to end user.

Artifacts of domain-driven design
There are different artifacts used in DDD to express, create, and retrieve
domain models.

Entities
There are certain categories of objects that are identifiable and remain same
throughout the states of the product/services. These objects are NOT defined by its
attributes, but by its identity and thread of continuity. These are known as entities.

It sounds pretty simple but carries complexity. You need to understand how we
can define the entities. Let's take an example for table booking system, if we have a
restaurant class with attributes such as restaurant name, address, phone number,
establishment data, and so on. We can take two instances of the restaurant
class that are not identifiable using the restaurant name, as there could be other
restaurants with the same name. Similarly, if we go by any other single attributes
we will not find any attributes that can singularly identify a unique restaurant.
If two restaurants have all the same attribute values, these are the same and are
interchangeable with each other. Still, these are not the same entities as both have
different references (memory addresses).

Domain-Driven Design

[50]

Conversely, let's take a class of US citizen. Each citizen has his own social security
number. This number is not only unique but remains unchanged throughout the life
of the citizen and assures continuity. This citizen object would exist in the memory,
would be serialized, and would be removed from the memory and stored in the
database. It even exists after the person is dead. It will be kept in the system as long
as system exists. A citizen's social security number remains the same irrespective of
its representation.

Therefore, creating entities in a product means creating identity. So, now give an
identity to any restaurant in the previous example, then either use a combination of
attributes such as restaurant name, establishment date and street, or add an identifier
such as restaurant_id to identify it. This is the basic rule that two identifiers cannot
be same. Therefore, when we introduce an identifier for any entity we need to be
sure of it.

There are different ways to create a unique identity for objects described as follows:

•	 Using the primary key in a table.
•	 Using an automated generated ID by a domain module. A domain program

generates the identifier and assigns it to objects that are being persisted
among different layers.

•	 A few real life objects carry user-defined identifiers themselves. For example
each country has its own country codes for dialing ISD calls.

•	 An attribute or combination of attributes can also be used for creating an
identifier as explained for the preceding restaurant object.

Entities are very important for domain models, therefore, they should be defined
from the initial stage of the modeling process. When an object can be identified by its
identifier and not by its attributes, a class representing these objects should have a
simple definition and care should be taken with the life cycle continuity and identity.
It's imperative to say that it is a requirement of identifying objects in this class that
have the same attribute values. A defined system should return a unique result for
each object if queried. Designers should take care that the model must define what it
means to be the same thing.

Value objects
Entities have traits such as, identity, a thread of continuity, and attributes that do
not define their identity. Value objects (VOs) just have attributes and no conceptual
identity. A best practice is to keep value Objects as immutable objects. If possible,
you should even keep entity objects immutable too.

Chapter 3

[51]

Entity concepts may bias you to keep all objects as entities, a uniquely identifiable
object in the memory or database with life cycle continuity, but there has to be
one instance for each object. Now, let's say you are creating customers as entity
objects. Each customer object would represent the restaurant guest and this cannot
be used for booking orders for other guests. This may create millions of customer
entity objects in the memory if millions of customers are using the system. There are
not only millions of uniquely identifiable objects that exist in the system, but each
object is being tracked. Both tracking and creating identity is complex. A highly
credible system is required to create and track these objects, which is not only very
complex but also resource heavy. It may result in system performance degradation.
Therefore, it is important to use value objects instead of using entities. The reasons
are explained in the next few paragraphs.

Applications don't always needs to have an identifiable customer object and be
trackable. There are cases when you just need to have some or all attributes of
the domain element. These are the cases when value objects can be used by the
application. It makes things simple and improves the performance.

Value objects can be created and destroyed easily, owing to the absence of identity.
This simplifies the design – it makes value objects available for garbage collection if
no other object has referenced them.

Let's discuss the value object's immutability. Value objects should be designed and
coded as immutable. Once they are created they should never be modified during
their life-cycle. If you need a different value of the VO or any of its objects, then
simply create a new value object, but don't modify the original value object. Here,
immutability carries all the significance from object-oriented programming (OOP).
A value object can be shared and used without impacting on its integrity if and only
if it is immutable.

Frequently asked questions
1.	 Can a value object contain another value object?

Yes, it can

2.	 Can a value object refer to another value object or entity?
Yes, it can

3.	 Can I create a value object using the attributes of different value objects or
entities?
Yes, you can

Domain-Driven Design

[52]

Services
While creating the domain model you may encounter various situations, where
behavior may not be related to any object specifically. These behaviors can be
accommodated in service objects.

Ubiquitous language helps you to identify different objects, identities or value
objects with different attributes and behaviors during the process of domain
modeling. During the course of creating the domain model, you may find different
behaviors or methods that do not belong to any specific object. Such behaviors are
important so cannot be neglected. You can also not add them to entities or value
objects. It would spoil the object to add behavior that does not belong to it. Keep
in mind, that behavior may impact on various objects. The use of object-oriented
programming makes it possible to attach to some objects; this is known as a service.

Services are common in technical frameworks. These are also used in domain layers
in DDD. A service object does not have any internal state, the only purpose of it is
to provide a behavior to the domain. Service objects provides behaviors that cannot
be related with specific entities or value objects. Service objects may provide one
or more related behaviors to one or more entities or value objects. It is a practice to
define the services explicitly in the domain model.

While creating the services, you need to tick all the following points:

•	 Service objects' behavior performs on entities and value objects but it does
not belong to entities or value objects

•	 Service objects' behavior state is not maintained and hence they are stateless
•	 Services are part of the domain model

Services may exist in other layers also. It is very important to keep domain layer
services isolated. It removes the complexities and keeps the design decoupled.

Lets take an example where a restaurant owner wants to see the report of his
monthly table booking. In this case, he will log in as an admin and click the Display
Report button after providing the required input fields such as duration.

Application layers pass the request to the domain layer that owns the report and
templates objects, with some parameters such as report ID and so on. Reports get
created using the template and data is fetched from either the database or other
sources. Then the application layer passes through all the parameters including the
report ID to business layer. Here, a template needs to be fetched from the database or
other source to generate the report based on the ID. This operation does not belong
to either the report object or the template object. Therefore a service object is used
that performs this operation to retrieve the required template from the DB.

Chapter 3

[53]

Aggregates
Aggregate domain pattern is related to the object's life cycle and defines ownership
and boundaries.

When, you reserve a table in your favorite restaurant online, using any app, you
don't need to worry about the internal system and process that takes places to book
your reservation such as searching the available restaurants, then the available tables
during the given date, time, and so on and so forth. Therefore, you can say that a
reservation app is an aggregate of several other objects and works as a root for all the
other objects for a table reservation system.

This root should be an entity that binds collections of objects together. It is also called
the aggregate root. This root object does not pass any reference of inside objects to
external worlds and protects the changes performed in internal objects.

We need to understand why aggregators are required. A domain model can
contains large numbers of domain objects. The bigger the application functionalities
and size and the more complex its design, the greater number of objects will be
there. A relationship exists among these objects. Some may have a many-to-many
relationship, a few may have a one-to-many relationship and others may have a one-
to-one relationship. These relationships are enforced by the model implementation
in the code or in the database that ensures that these relationships among the
objects are kept intact. Relationships are not just unidirectional, they can also
be bi-directional. They can also increase in complexity.

The designer's job is to simplify these relationships in the model. Some relationships
may exist in a real domain, but may not be required in the domain model. Designers
need to ensure that such relationships do not exist in the domain model. Similarly,
multiplicity can be reduced by these constraints. One constraint may do the job
where many objects satisfy the relationship. It is also possible that a bidirectional
relationship could be converted into a unidirectional relationship.

No matter how much simplification you input, you may still end up with
relationships in the model. These relationships need to be maintained in the code.
When one object is removed, the code should remove all the references of this
object from other places. For example, a record removal from one table needs to be
addressed wherever it has references in the form of foreign keys and such to keep the
data consistent and maintain its integrity. Also invariants (rules) need to be forced
and maintained whenever data changes.

Relationships, constraints, and invariants bring a complexity that requires an
efficient handling in code. We find the solution by using the aggregate represented
by the single entity known as the root that is associated with the group of objects that
maintains consistency with respect to data changes.

Domain-Driven Design

[54]

This root is the only object that is accessible from outside, so this root element works
as a boundary gate that separates the internal objects from the external world. Roots
can refer to one or more inside objects and these inside objects can have references to
other inside objects that may or may not have relationships with the root. However,
outside objects can also refer to the root and not to any inside objects.

An aggregate ensures data integrity and enforces the invariant. Outside objects
cannot make any change to inside objects they can only change the root. However,
they can use the root to make a change inside the object by calling exposed
operations. The root should pass the value of inside objects to outside objects if
required.

If an aggregate object is stored in the database then the query should only return the
aggregate object. Traversal associations should be used to return the object when
it is internally linked to the aggregate root. These internal objects may also have
references to other aggregates.

An aggregate root entity holds its global identity and hold local identities inside their
entities.

An easy example of an aggregate in the table booking system is the customer.
Customers can be exposed to external objects and their root object contains their
internal object address and contact information. When requested, the value object of
internal objects like address can be passed to external objects:

The customer as an aggregate

Chapter 3

[55]

Repository
In a domain model, at a given point in time, many domain objects may exist. Each
object may have its own life cycle from the creation of objects to their removal or
persistence. Whenever any domain operation needs a domain object, it should
retrieve the reference of the requested object efficiently. It would be very difficult if
you didn't maintain all the available domain objects in a central object that carries
the references of all the objects and is responsible for returning the requested object
reference. This central object is known as the repository.

The repository is a point that interacts with infrastructures such as the database or
file system. A repository object is the part of the domain model that interacts with
storage such as database, external sources, and so on to retrieve the persisted objects.
When a request is received by the repository for an object's reference, it returns the
existing object's reference. If the requested object does not exist in the repository then
it retrieves the object from storage. For example, if you need a customer, you would
query the repository object to provide the customer with ID 31. The repository
would provide the requested customer object if it is already available within the
repository, and if not would query the persisted stores such as the database, fetch it
and provide its reference.

The main advantage of using the repository is having a consistent way to retrieve
objects where the requestor does not need to interact directly with the storage such
as the database.

A repository may query objects from various storage types such as one or more
databases, filesystems or factory repositories and so on. In such cases, a repository
may have strategies that also point to different sources for different object types or
categories:

Repository object flow

Domain-Driven Design

[56]

As shown in the repository object flow diagram, the repository interacts with the
infrastructure layer and this interface is part of the domain layer. The requestor may
belong to a domain layer or an application layer. The repository helps the system to
manage the life cycle of domain objects.

Factory
The factory is required when a simple constructor is not enough to create the object.
It helps to create complex objects or an aggregate that involves the creation of other
related objects.

A factory is also a part of the life cycle of domain objects as it is responsible for
creating them. Factories and repositories are in some way related to each other as
both refer to domain objects. The factory refers to newly created objects whereas the
repository returns the already existing objects either from in the memory or from
external storages.

Let us see how control flows using a user creation process app. Let's say that a user
signs up with a username user1. This user creation first interacts with the factory,
which creates the name user1 and then caches it in the domain using the repository
which also stores it in the storage for persistence.

When the same user logs in again, the call moves to the repository for a reference.
This uses the storage to load the reference and pass it to the requestor.

The requestor may then use this user1 object to book the table in a specified
restaurant and at a specified time. These values are passed as parameters and a table
booking record is created in storage using the repository:

Chapter 3

[57]

Repository object flow

The factory may use one of the object oriented programming patterns such as the
factory or abstract factory pattern for object creation.

Domain-Driven Design

[58]

Modules
Modules are the best way of separating related business objects. These are best suited
to large projects where the size of domain objects is bigger. For the end user, it makes
sense to divide the domain model into modules and set the relationship between
these modules. Once you understand the modules and their relationship, you start to
see the bigger picture of the domain model, and it is easier to drill down further and
understand the model.

Modules also help in code that is highly cohesive or that maintains low coupling.
Ubiquitous language can be used to name these modules. For the table booking
system, we could have different modules such as user-management, restaurants and
tables, analytics and reports, and reviews, and so on.

Strategic design and principles
An enterprise model is usually very large and complex. It may be distributed among
different departments in an organization. Each department may have a separate
leadership team, so working and designing together can create difficulty and
coordination issues. In such scenarios, maintaining the integrity of the domain model
is not an easy task.

In such cases, working on a unified model is not the solution and large enterprise
models need to be divided into different submodels. These submodels contain the
predefined accurate relationship and contract in minute detail. Each submodel has to
maintain the defined contracts without any exception.

There are various principles that could be followed to maintain the integrity of the
domain model, and these are listed as follows:

•	 Bounded context
•	 Continuous integration
•	 Context map

°° Shared kernel
°° Customer-supplier
°° Conformist
°° Anticorruption layer
°° Separate ways
°° Open host service
°° Distillation

Chapter 3

[59]

Bounded context
When you have different submodels, it is difficult to maintain the code when all
submodels are combined. You need to have a small model that can be assigned to a
single team. You might need to collect the related elements and group them. Context
keeps and maintains the meaning of the domain term defined for its respective
submodel by applying this set of conditions.

These domain terms defines the scope of the model that creates the boundaries of the
context.

Bounded context seems very similar to the module that you learned about in the
previous section. In fact, module is part of the bounded context that defines the
logical frame where a submodel takes place and is developed. Whereas, the module
organizes the elements of the domain model and is visible in design document and
the code.

Now, as a designer you would have to keep each submodel well-defined and
consistent. In this way you can refactor the each model independently without
affecting the other submodels. This gives the software designer the flexibility to
refine and improve it at any point in time.

Now look at the table reservation example. When you started designing the system,
you would have seen that the guest would visit the app and would request a table
reservation in a selected restaurant, date, and time. Then, there is backend system
that informs the restaurant about the booking information, and similarly, the
restaurant would keep their system updated with respect to table bookings, given
that tables can also be booked by the restaurant themselves. So, when you look at the
systems finer points, you can see two domains models:

•	 The online table reservation system
•	 The offline restaurant management system

Both have their own bounded context and you need to make sure that the interface
between them works fine.

Continuous integration
When you are developing, the code is scattered among many teams and various
technologies. This code may be organized into different modules and has applicable
bounded context for respective submodels.

Domain-Driven Design

[60]

This sort of development may bring with it a certain level of complexity with respect
to duplicate code, a code break or maybe broken-bounded context. It happens
not only because of the large size of code and domain model, but also because of
other factors such as changes in team members, new members or not having a well
documented model to name just a few of them.

When systems are designed and developed using DDD and Agile methodologies,
domain models are not designed fully before coding starts and the domain model
and its elements get evolved over a period of time with continuous improvements
and refinement happening over the time.

Therefore, integration continues and this is currently one of the key reasons for
development today, so it plays a very important role. In continuous integration, code
is merged frequently to avoid any breaks and issues with the domain model. Merged
code not only gets deployed but it is also tested on a regular basis. There are various
continuous integration tools available in the market that merge, build, and deploy
the code at scheduled times. Organizations, these days, put more emphasis on the
automation of continuous integration. Hudson, TeamCity, and Jenkins CI are a few
of the popular tools available today for continuous integration. Hudson and Jenkins
CI are open source tools and TeamCity is a proprietary tool.

Having a test suite attached to each build confirms the consistency and integrity of
the model. A test suite defines the model from a physical point of view, whereas
UML does it logically. It tells you about any error or unexpected outcome that
requires a code change. It also helps to identify errors and anomalies in a domain
model early.

Context map
The context map helps you to understand the overall picture of a large enterprise
application. It shows how many bounded contexts are present in the enterprise
model and how they are interrelated. Therefore we can say that any diagram or
document that explains the bounded contexts and relationship between them is
called a context map.

Context maps helps all team members, whether they are in the same team or in
different team, to understand the high-level enterprise model in the form of various
parts (bounded context or submodels) and relationships. This gives individuals
a clearer picture about the tasks one performs and may allow him to raise any
concern/question about the model's integrity:

Chapter 3

[61]

Context map example

The context map example diagram is a sample of a context map. Here, Table1 and
Table2 both appear in the Table Reservation Context and also in the Restaurant
Ledger Context. The interesting thing is that Table1 and Table2 have their own
respective concept in each bounded context. Here, ubiquitous language is used to
name the bounded context as table reservation and restaurant ledger.

In the following section, we will explore a few patterns that can be used to define the
communication between different contexts in the context map.

Domain-Driven Design

[62]

Shared kernel
As the name suggests, one part of the bounded context is shared with the other's
bounded context. As you can see below the Restaurant entity is being shared
between the Table Reservation Context and the Restaurant Ledger Context:

Shared kernel

Customer-supplier
The customer-supplier pattern represents the relationship between two bounded
contexts when the output of one bounded context is required for the other bounded
context that is, one supplies the information to the other (known as the customer)
who consumes the information.

In a real world example, a car dealer could not sell cars until the car manufacturer
delivers them. Hence, in this domain-model, the car manufacturer is the supplier
and the dealer is the customer. This relationship establishes a customer-supplier
relationship because the output (car) of one bounded context (car-manufacturer) is
required by the other bounded context (dealer).

Here, both customer and supplier teams should meet regularly to establish a contract
and form the right protocol to communicate with each other.

Chapter 3

[63]

Conformist
This pattern is similar to that of the customer and the supplier, where one needs to
provide the contract and information while the other needs to use it. Here, instead
of bounded context, actual teams are involved in having an upstream/downstream
relationship.

Moreover, upstream teams do not provide for the needs of the downstream team
because of their lack of motivation. Therefore, it is possible that the downstream
team may need to plan and work on items which will never be available. To resolve
such cases, either the customer team could develop their own models if the supplier
provides information that is not worth enough. If the supplier provided information
is really of worth or of partial worth, then the customer can use the interface or
translators that can be used to consume the supplier-provided information with
the customer's own models.

Anticorruption layer
The anticorruption layer remains part of a domain and it is used when a system
needs data from external systems or from their own legacy systems. Here,
anticorruption is the layer that interacts with external systems and uses external
system data in the domain model without affecting the integrity and originality of
the domain model.

For the most part, a service can be used as an anticorruption layer that may use a
facade pattern with an adapter and translator to consume external domain data
within the internal model. Therefore, your system would always use the service to
retrieve the data. The service layer can be designed using the façade pattern. This
would make sure that it would work with the domain model to provide the required
data in a given format. The service could then also use the adapter and translator
patterns that would make sure that whatever format and hierarchy the data is sent
in, by external sources, the service would be provided in a desired format and the
hierarchy would use adapters and translators.

Separate ways
When you have a large enterprise application and a domain where different
domains have no common elements and it's made of large submodels that can work
independently, this still works as a single application for an end user.

In such cases, a designer could create separate models that have no relationship and
develop a small application on top of them. These small applications become a single
application when merged together.

Domain-Driven Design

[64]

An employer's Intranet application that offers various small applications such as
those that are HR-related, issue trackers, transport or intra-company social networks,
is one such application where a designer could use the separate ways pattern.

It would be very challenging and complex to integrate applications that were
developed using separate models. Therefore, you should take care before
implementing this pattern.

Open host service
A translation layer is used when two submodels interact with each other. This
translation layer is used when you integrate models with an external system. This
works fine when you have one submodel that uses this external system. The open
host service is required when this external system is being used by many submodels
to remove the extra and duplicated code because then you need to write a translation
layer for each submodel external system.

An open host service provides the services of an external system using a wrapper to
all sub-models.

Distillation
As you know, distillation is the process of purifying liquid. Similarly, in DDD,
distillation is the process that filters out the information that is not required, and
keeps only the meaningful information. It helps you to identify the core domain and
the essential concepts for your business domain. It helps you to filter out the generic
concepts until you get the code domain concept.

Core domain should be designed, developed and implemented with the highest
attention to detail, using the developers and designers, as it is crucial for the success
of the whole system.

In our table reservation system example, which is not a large, or a complex domain
application, it is not difficult to identify the core domain. The core domain here exists
to share the real-time accurate vacant tables in the restaurants and allows the user to
reserve them in a hassle free process.

Sample domain service
Let us create a sample domain service based on our table reservation system. As
discussed in this chapter, the importance of an efficient domain layer is the key to
successful products or services. Projects developed based on the domain layer are more
maintainable, highly cohesive, and decoupled. They provide high scalability in terms of
business requirement change and have a low impact on the design of other layers.

Chapter 3

[65]

Domain-driven development is based on domain, hence it is not recommended that
you use a top-down approach where the UI would be developed first, followed
by the rest of the layers and finally the persistence layer, or a bottom-up approach
where the persistence layer like the DB is designed first and then the rest of the
layers, with the UI at last.

Having a domain model developed first, using the patterns described in this
book, gives clarity to all team members functionality wise and an advantage to the
software designer to build a flexible, maintainable and consistent system that helps
the organization to launch a world class product with less maintenance costs.

Here, you will create a restaurant service that provides the feature to add and
retrieve restaurants. Based on implementation, you can add other functionalities
such as finding restaurants based on cuisine or on rating.

Start with the entity. Here, the restaurant is our entity as each restaurant is unique
and has an identifier. You can use an interface or set of interfaces to implement the
entity in our table reservation system. Ideally, if you go by the interface segregation
principle, you will use a set of interfaces rather than a single interface.

The Interface Segregation Principle (ISP): clients should not be
forced to depend upon interfaces that they do not use.

Entity implementation
For the first interface you could have an abstract class or interface that is required
by all the entities. For example if we consider ID and name, attributes would be
common for all entities. Therefore, you could use the abstract class Entity as an
abstraction of entity in your domain layer:

public abstract class Entity<T> {

 T id;
 String name;

}

Based on that you can also have another abstract class that inherits Entity, an
abstract class:

public abstract class BaseEntity<T> extends Entity<T> {

 private T id;

Domain-Driven Design

[66]

 public BaseEntity(T id, String name) {
 super.id = id;
 super.name = name;

 }
 ... (getter/setter and other relevant code)
}

Based on the preceding abstractions, we could create the Restaurant entity for
restaurant management.

Now since we are developing the table reservation system, Table is another important
entity in terms of the domain model. So, if we go by the aggregate pattern, restaurant
would work as a root, and table would be internal to the Restaurant entity. Therefore,
the Table entity would always be accessible using the Restaurant entity.

You can create the Table entity using the following implementation, and you can
add attributes as you wish. For demonstration purpose only, basic attributes are
used:

public class Table extends BaseEntity<BigInteger> {

 private int capacity;

 public Table(String name, BigInteger id, int capacity) {
 super(id, name);
 this.capacity = capacity;
 }

 public void setCapacity(int capacity) {
 this.capacity = capacity;
 }

 public int getCapacity() {
 return capacity;
 }
}

Now, we can implement the aggregator Restaurant shown as follows. Here,
only basic attributes are used. You could add as many you want or may add other
features also:

public class Restaurant extends BaseEntity<String> {

 private List<Table> tables = new ArrayList<>();

Chapter 3

[67]

 public Restaurant(String name, String id, List<Table> tables) {
 super(id, name);
 this.tables = tables;
 }

 public void setTables(List<Table> tables) {
 this.tables = tables;
 }

 public List<Table> getTables() {
 return tables;
 }
}

Repository implementation
Now, we can implement the repository pattern as learned in this chapter. To start
with, you will first create the two interfaces Repository and ReadOnlyRepository.
ReadOnlyRepository will be used to provide abstraction for read only operations
whereas Repository abstraction will be used to perform all types of operations:

public interface ReadOnlyRepository<TE, T> {

 boolean contains(T id);

 Entity get(T id);

 Collection<TE> getAll();
}

Based on this interface, we could create the abstraction of the repository that would
do additional operations such as adding, removing, and updating:

public interface Repository<TE, T> extends ReadOnlyRepository<TE, T> {

 void add(TE entity);

 void remove(T id);

 void update(TE entity);
}

Domain-Driven Design

[68]

Repository abstraction as defined previously could be implemented in a way that
suits you to persist your objects. The change in persistence code, that is a part of
infrastructure layer, won't impact on your domain layer code as the contract and
abstraction are defined by the domain layer. The domain layer uses the abstraction
classes and interfaces that remove the use of direct concrete class and provides
the loose coupling. For demonstration purpose, we could simple use the map that
remains in the memory to persist the objects:

public interface RestaurantRepository<Restaurant, String> extends
Repository<Restaurant, String> {

 boolean ContainsName(String name);
}

public class InMemRestaurantRepository implements RestaurantRepository
<Restaurant, String> {

 private Map<String, Restaurant> entities;

 public InMemRestaurantRepository() {
 entities = new HashMap();
 }

 @Override
 public boolean ContainsName(String name) {
 return entities.containsKey(name);
 }

 @Override
 public void add(Restaurant entity) {
 entities.put(entity.getName(), entity);
 }

 @Override
 public void remove(String id) {
 if (entities.containsKey(id)) {
 entities.remove(id);
 }
 }

 @Override
 public void update(Restaurant entity) {
 if (entities.containsKey(entity.getName())) {
 entities.put(entity.getName(), entity);

Chapter 3

[69]

 }
 }

 @Override
 public boolean contains(String id) {
 throw new UnsupportedOperationException("Not supported yet.");
 //To change body of generated methods, choose Tools | Templates.
 }

 @Override
 public Entity get(String id) {
 throw new UnsupportedOperationException("Not supported yet.");
 //To change body of generated methods, choose Tools | Templates.
 }

 @Override
 public Collection<Restaurant> getAll() {
 return entities.values();
 }

}

Service implementation
In the same way as the preceding approach, you could divide the abstraction of
domain service into two parts: main service abstraction and read only service
abstraction:

public abstract class ReadOnlyBaseService<TE, T> {

 private Repository<TE, T> repository;

 ReadOnlyBaseService(Repository<TE, T> repository) {
 this.repository = repository;
 }
 ...
}

Now, we could use this ReadOnlyBaseService to create the BaseService. Here, we
are using the dependency inject pattern via a constructor to map the concrete objects
with abstraction:

public abstract class BaseService<TE, T> extends
ReadOnlyBaseService<TE, T> {

Domain-Driven Design

[70]

 private Repository<TE, T> _repository;

 BaseService(Repository<TE, T> repository) {
 super(repository);
 _repository = repository;
 }

 public void add(TE entity) throws Exception {
 _repository.add(entity);
 }

 public Collection<TE> getAll() {
 return _repository.getAll();
 }
}

Now, after defining the service abstraction services, we could implement the
RestaurantService in the following way:

public class RestaurantService extends BaseService<Restaurant,
BigInteger> {

 private RestaurantRepository<Restaurant, String>
restaurantRepository;

 public RestaurantService(RestaurantRepository repository) {
 super(repository);
 restaurantRepository = repository;
 }

 public void add(Restaurant restaurant) throws Exception {
 if (restaurantRepository.ContainsName(restaurant.getName())) {
 throw new Exception(String.format("There is already a
product with the name - %s", restaurant.getName()));
 }

 if (restaurant.getName() == null || "".equals(restaurant.
getName())) {
 throw new Exception("Restaurant name cannot be null or
empty string.");
 }
 super.add(restaurant);
 }
}

Chapter 3

[71]

Similarly, you could write the implementation for other entities. This code is a basic
implementation and you might add various implementations and behaviors in the
production code.

Summary
In this chapter, you have learned the fundamentals of DDD. You have also explored
multilayered architecture and different patterns one can use to develop software
using DDD. By this time, you might be aware that the domain model design is very
important for the success of the software. At the end, there is also one domain service
implementation shown using the restaurant table reservation system.

In the next chapter, you will learn how to use the design is used to implement the
sample project. The explanation of the design of this sample project is derived from
the last chapter and the DDD will be used to build the microservices. This chapter
not only covers the coding, but also the different aspects of the microservices such
as build, unit-testing, and packaging. At the end of the next chapter, the sample
microservice project will be ready for deployment and consumption.

[73]

Implementing a Microservice
This chapter takes you from the design stage to the implementation of our sample
project – an Online Table Reservation System (OTRS). Here, you will use the same
design explained in the last chapter and enhance it to build the µService. At the end of
this chapter, you will not only have learned to implement the design, but also learned
the different aspects of µServices – building, testing, and packaging. Although the
focus is on building and implementing the Restaurant µService, you can use the same
approach to build and implement other µServices used in the OTRS.

In this chapter, we will cover the following topics:

•	 OTRS overview
•	 Developing and implementing µService
•	 Testing

We will use the domain-driven design key concepts demonstrated in the last chapter.
In the last chapter, you saw how domain-driven design is used to develop the domain
model using core Java. Now, we will move from a sample domain implementation
to a Spring framework-driven implementation. You'll make use of Spring Boot to
implement the domain-driven design concepts and transform them from core Java
to a Spring framework-based model.

In addition, we'll also use the Spring Cloud, which provides a cloud-ready solution.
Spring Cloud also uses Spring Boot, which allows you to use an embedded application
container relying on Tomcat or Jetty inside your service, which is packages as a JAR or
as a WAR. This JAR is executed as a separate process, a µService that would serve and
provide the response to all requests and, point to endpoints defined in the service.

Spring Cloud can also be integrated easily with Netflix Eureka, a service registry
and discovery component. The OTRS will use it for registration and the discovery
of µServices.

Implementing a Microservice

[74]

OTRS overview
Based on µService principles, we need to have separate µServices for each functionality
that can function independently. After looking at the OTRS, we can easily divide
the OTRS into three main µServices – Restaurant service, Booking service, and User
service. There can be other µServices that can be defined in the OTRS. Our focus is on
these three µServices. The idea is to make them independent, including having their
own separate databases.

We can summarize the functionalities of these services as follows:

•	 Restaurant service: This service provides the functionality for the Restaurant
resource – create, read, update, delete (CRUD) operation and searching
based on criteria. It provides the association between restaurants and tables.
Restaurant would also provide the access to the Table entity.

•	 User service: This service, as the name suggests, allows the end user to
perform CRUD operations on User entities.

•	 Booking service: This makes use of the Restaurant service and User service to
perform CRUD operations on booking. It would use the Restaurant searching,
its associated tables lookup and allocation based on table availability for a
specified time duration. It creates the relationship between the Restaurant/
Table and the User.

Different µServices, Registration and Discovery

Chapter 4

[75]

The preceding diagram shows how each µService works independently. This is the
reason µServices can be developed, enhanced, and maintained separately, without
affecting others. These services can each have their own layered architecture and
database. There is no restriction to use same technologies, frameworks, and languages
to develop these services. At any given point in time, you can also introduce new
µServices. For example, for accounting purposes, we can introduce an accounting
service that can be exposed to Restaurant for book keeping. Similarly, analytics and
reporting are other services that can be integrated and exposed.

For demonstration purposes, we will only implement the three services shown in the
preceding diagram.

Developing and implementing µServices
We will use the domain-driven implementation and approach described in the last
chapter to implement the µServices using Spring Cloud. Let's revisit the key artifacts:

•	 Entities: These are categories of objects that are identifiable and remain the
same throughout the states of the product/services. These objects are NOT
defined by their attributes, but by their identities and threads of continuity.
Entities have traits such as identity, a thread of continuity, and attributes that
do not define their identity. Value Objects (VO) just have the attributes and
no conceptual identity. A best practice is to keep Value Objects as immutable
objects. In the Spring framework, entities are pure POJOs, therefore we'll also
use them as VO.

•	 Services: These are common in technical frameworks. These are also used in
the Domain layer in domain-driven design. A Service object does not have an
internal state; the only purpose of it is to provide the behavior to the domain.
Service objects provide behaviors that cannot be related with specific entities
or value objects. Service objects may provide one or more related behaviors
to one or more entities or value objects. It is a best practice to define the
Services explicitly in the domain model.

•	 Repository object: A Repository object is a part of the domain model that
interacts with storage, such as databases, external sources and so on, to
retrieve the persisted objects. When a request is received by the repository
for an object reference, it returns the existing object reference. If the requested
object does not exist in the repository, then it retrieves the object from storage.

Implementing a Microservice

[76]

•	 Each OTRS µService API represents a RESTful web service. The OTRS API
uses HTTP verbs such as GET, POST, and so on, and a RESTful endpoint
structure. Request and response payloads are formatted as JSON. If required,
XML can also be used.

Restaurant µService
The Restaurant µService will be exposed to the external world using REST endpoints
for consumption. We'll find the following endpoints in the Restaurant µService
example. One can add as many endpoints as per the requirements:

Endpoint GET /v1/restaurants/<Restaurant-Id>

Parameters
Name Description
Restaurant_Id Path parameter that represents the unique restaurant associated

with this ID
Request
Property Type Description
None
Response
Property Type Description
Restaurant Restaurant object Restaurant object that

is associated with the
given ID

Endpoint GET /v1/restaurants/

Parameters
Name Description

None

Request

Property Type Description
Name String Query parameter

that represents
the name, or
substring of the
name, of the
restaurant

Response
Property Type Description

Chapter 4

[77]

Restaurants Array of restaurant objects Returns all the
restaurants
whose names
contain the given
name value

Endpoint POST /v1/restaurants/

Parameters
Name Description
None
Request
Property Type Description
Restaurant Restaurant object A JSON representation of

the restaurant object
Response
Property Type Description
Restaurant Restaurant object A newly created

Restaurant object

Similarly, we can add various endpoints and their implementations. For demonstration
purposes, we'll implement the preceding endpoints using Spring Cloud.

Controller class
The Restaurant Controller uses the @RestController annotation to build the
restaurant service endpoints. We have already gone through the details of
@RestController in Chapter 2, Setting Up the Development Environment.
@RestController is a class-level annotation that is used for resource classes. It is
a combination of @Controller and @ResponseBody. It returns the domain object.

API versioning
As we move forward, I would like to share with you that we are using the v1 prefix
on our REST endpoint. That represents the version of the API. I would also like
to brief you on the importance of API versioning. Versioning APIs is important,
because APIs change over time. Your knowledge and experience improves with
time, which leads to changes to your API. A change of API may break existing client
integrations.

Implementing a Microservice

[78]

Therefore, there are various ways of managing API versions. One of these is using
the version in path or some use the HTTP header. The HTTP header can be a custom
request header or an Accept header to represent the calling API version. Please
refer to RESTful Java Patterns and Best Practices by Bhakti Mehta, Packt Publishing,
https://www.packtpub.com/application-development/restful-java-
patterns-and-best-practices, for more information.

@RestController
@RequestMapping("/v1/restaurants")
public class RestaurantController {

 protected Logger logger = Logger.getLogger(RestaurantController.
class.getName());

 protected RestaurantService restaurantService;

 @Autowired
 public RestaurantController(RestaurantService restaurantService) {
 this.restaurantService = restaurantService;
 }

 /**
 * Fetch restaurants with the specified name. A partial case-
insensitive
 * match is supported. So <code>http://.../restaurants/rest</code>
will find
 * any restaurants with upper or lower case 'rest' in their name.
 *
 * @param name
 * @return A non-null, non-empty collection of restaurants.
 */
 @RequestMapping(method = RequestMethod.GET)
 public ResponseEntity<Collection<Restaurant>> findByName(@
RequestParam("name") String name) {

logger.info(String.format("restaurant-service findByName() invoked:{}
for {} ", restaurantService.getClass().getName(), name));
 name = name.trim().toLowerCase();
 Collection<Restaurant> restaurants;
 try {
 restaurants = restaurantService.findByName(name);
 } catch (Exception ex) {
 logger.log(Level.WARNING, "Exception raised findByName
REST Call", ex);
 return new ResponseEntity< Collection<

https://www.packtpub.com/application-development/restful-java-patterns-and-best-practices
https://www.packtpub.com/application-development/restful-java-patterns-and-best-practices

Chapter 4

[79]

Restaurant>>(HttpStatus.INTERNAL_SERVER_ERROR);
 }
 return restaurants.size() > 0 ? new ResponseEntity<
Collection< Restaurant>>(restaurants, HttpStatus.OK)
 : new ResponseEntity< Collection<
Restaurant>>(HttpStatus.NO_CONTENT);
 }

 /**
 * Fetch restaurants with the given id.
 * <code>http://.../v1/restaurants/{restaurant_id}</code> will
return
 * restaurant with given id.
 *
 * @param retaurant_id
 * @return A non-null, non-empty collection of restaurants.
 */
 @RequestMapping(value = "/{restaurant_id}", method =
RequestMethod.GET)
 public ResponseEntity<Entity> findById(@PathVariable("restaurant_
id") String id) {

 logger.info(String.format("restaurant-service findById()
invoked:{} for {} ", restaurantService.getClass().getName(), id));
 id = id.trim();
 Entity restaurant;
 try {
 restaurant = restaurantService.findById(id);
 } catch (Exception ex) {
 logger.log(Level.SEVERE, "Exception raised findById REST
Call", ex);
 return new ResponseEntity<Entity>(HttpStatus.INTERNAL_
SERVER_ERROR);
 }
 return restaurant != null ? new ResponseEntity<Entity>(restaur
ant, HttpStatus.OK)
 : new ResponseEntity<Entity>(HttpStatus.NO_CONTENT);
 }

 /**
 * Add restaurant with the specified information.
 *
 * @param Restaurant
 * @return A non-null restaurant.
 * @throws RestaurantNotFoundException If there are no matches at

Implementing a Microservice

[80]

all.
 */
 @RequestMapping(method = RequestMethod.POST)
 public ResponseEntity<Restaurant> add(@RequestBody RestaurantVO
restaurantVO) {

 logger.info(String.format("restaurant-service add() invoked:
%s for %s", restaurantService.getClass().getName(), restaurantVO.
getName());

 Restaurant restaurant = new Restaurant(null, null, null);
 BeanUtils.copyProperties(restaurantVO, restaurant);
 try {
 restaurantService.add(restaurant);
 } catch (Exception ex) {
 logger.log(Level.WARNING, "Exception raised add Restaurant
REST Call "+ ex);
 return new ResponseEntity<Restaurant>(HttpStatus.
UNPROCESSABLE_ENTITY);
 }
 return new ResponseEntity<Restaurant>(HttpStatus.CREATED);
 }
}

Service classes
RestaurantController uses RestaurantService. RestaurantService is an
interface that defines CRUD and some search operations and is defined as follows:

public interface RestaurantService {

 public void add(Restaurant restaurant) throws Exception;

 public void update(Restaurant restaurant) throws Exception;

 public void delete(String id) throws Exception;

 public Entity findById(String restaurantId) throws Exception;

 public Collection<Restaurant> findByName(String name) throws
Exception;

 public Collection<Restaurant> findByCriteria(Map<String,
ArrayList<String>> name) throws Exception;
}

Chapter 4

[81]

Now, we can implement the RestaurantService we have just defined. It also
extends the BaseService you created in the last chapter. We use @Service Spring
annotation to define it as a service:

@Service("restaurantService")
public class RestaurantServiceImpl extends BaseService<Restaurant,
String>
 implements RestaurantService {

 private RestaurantRepository<Restaurant, String>
restaurantRepository;

 @Autowired
 public RestaurantServiceImpl(RestaurantRepository<Restaurant,
String> restaurantRepository) {
 super(restaurantRepository);
 this.restaurantRepository = restaurantRepository;
 }

 public void add(Restaurant restaurant) throws Exception {
 if (restaurant.getName() == null || "".equals(restaurant.
getName())) {
 throw new Exception("Restaurant name cannot be null or
empty string.");
 }

 if (restaurantRepository.containsName(restaurant.getName())) {
 throw new Exception(String.format("There is already a
product with the name - %s", restaurant.getName()));
 }

 super.add(restaurant);
 }

 @Override
 public Collection<Restaurant> findByName(String name) throws
Exception {
 return restaurantRepository.findByName(name);
 }

 @Override
 public void update(Restaurant restaurant) throws Exception {
 restaurantRepository.update(restaurant);
 }

Implementing a Microservice

[82]

 @Override
 public void delete(String id) throws Exception {
 restaurantRepository.remove(id);
 }

 @Override
 public Entity findById(String restaurantId) throws Exception {
 return restaurantRepository.get(restaurantId);
 }

 @Override
 public Collection<Restaurant> findByCriteria(Map<String,
ArrayList<String>> name) throws Exception {
 throw new UnsupportedOperationException("Not supported yet.");
//To change body of generated methods, choose Tools | Templates.
 }
}

Repository classes
The RestaurantRepository interface defines two new methods: the containsName
and findByName methods. It also extends the Repository interface:

public interface RestaurantRepository<Restaurant, String> extends
Repository<Restaurant, String> {

 boolean containsName(String name) throws Exception;

 Collection<Restaurant> findByName(String name) throws Exception;
}

The Repository interface defines three methods: add, remove, and update. It also
extends the ReadOnlyRepository interface:

public interface Repository<TE, T> extends ReadOnlyRepository<TE, T> {

 void add(TE entity);

 void remove(T id);

 void update(TE entity);
}

Chapter 4

[83]

The ReadOnlyRepository interface definition contains the get and getAll methods,
which return Boolean values, Entity, and collection of Entity respectively. It is useful
if you want to expose only a read-only abstraction of the repository:

public interface ReadOnlyRepository<TE, T> {

 boolean contains(T id);

 Entity get(T id);

 Collection<TE> getAll();
}

Spring framework makes use of the @Repository annotation to define the repository
bean that implements the repository. In the case of RestaurantRepository, you can
see that a map is used in place of the actual database implementation. This keeps all
entities saved in memory only. Therefore, when we start the service, we find only
two restaurants in memory. We can use JPA for database persistence. This is the
general practice for production-ready implementations:

@Repository("restaurantRepository")
public class InMemRestaurantRepository implements RestaurantRepository
<Restaurant, String> {
 private Map<String, Restaurant> entities;

 public InMemRestaurantRepository() {
 entities = new HashMap();
 Restaurant restaurant = new Restaurant("Big-O Restaurant",
"1", null);
 entities.put("1", restaurant);
 restaurant = new Restaurant("O Restaurant", "2", null);
 entities.put("2", restaurant);
 }

 @Override
 public boolean containsName(String name) {
 try {
 return this.findByName(name).size() > 0;
 } catch (Exception ex) {
 //Exception Handler
 }
 return false;
 }

 @Override

Implementing a Microservice

[84]

 public void add(Restaurant entity) {
 entities.put(entity.getId(), entity);
 }

 @Override
 public void remove(String id) {
 if (entities.containsKey(id)) {
 entities.remove(id);
 }
 }

 @Override
 public void update(Restaurant entity) {
 if (entities.containsKey(entity.getId())) {
 entities.put(entity.getId(), entity);
 }
 }

 @Override
 public Collection<Restaurant> findByName(String name) throws
Exception {
 Collection<Restaurant> restaurants = new ArrayList();
 int noOfChars = name.length();
 entities.forEach((k, v) -> {
 if (v.getName().toLowerCase().contains(name.subSequence(0,
noOfChars))) {
 restaurants.add(v);
 }
 });
 return restaurants;
 }

 @Override
 public boolean contains(String id) {
 throw new UnsupportedOperationException("Not supported yet.");
//To change body of generated methods, choose Tools | Templates.
 }

 @Override
 public Entity get(String id) {
 return entities.get(id);
 }

 @Override

Chapter 4

[85]

 public Collection<Restaurant> getAll() {
 return entities.values();
 }
}

Entity classes
The Restaurant entity, which extends BaseEntity, is defined as follows:

public class Restaurant extends BaseEntity<String> {

 private List<Table> tables = new ArrayList<>();

 public Restaurant(String name, String id, List<Table> tables) {
 super(id, name);
 this.tables = tables;
 }

 public void setTables(List<Table> tables) {
 this.tables = tables;
 }

 public List<Table> getTables() {

 return tables;
 }

 @Override
 public String toString() {
 StringBuilder sb = new StringBuilder();
 sb.append(String.format("id: {}, name: {}, capacity: {}",
this.getId(), this.getName(), this.getCapacity()));
 return sb.toString();
 }

}

Since, we are using POJO classes for our entity definitions, we do not
need to create a Value object in many cases. The idea is that the state
of the object should not be persisted across.

Implementing a Microservice

[86]

The Table entity, which extends BaseEntity, is defined as follows:

public class Table extends BaseEntity<BigInteger> {

 private int capacity;

 public Table(String name, BigInteger id, int capacity) {
 super(id, name);
 this.capacity = capacity;
 }

 public void setCapacity(int capacity) {
 this.capacity = capacity;
 }

 public int getCapacity() {
 return capacity;
 }

 @Override
 public String toString() {
 StringBuilder sb = new StringBuilder();
 sb.append(String.format("id: {}, name: {}", this.getId(),
this.getName()));
 sb.append(String.format("Tables: {}" + Arrays.asList(this.
getTables())));
 return sb.toString();
 }

}

The Entity abstract class is defined as follows:

public abstract class Entity<T> {

 T id;
 String name;

 public T getId() {
 return id;
 }

 public void setId(T id) {
 this.id = id;
 }

 public String getName() {
 return name;

Chapter 4

[87]

 }

 public void setName(String name) {
 this.name = name;
 }

}

The BaseEntity abstract class is defined as follows. It extends the Entity
abstract class:

public abstract class BaseEntity<T> extends Entity<T> {

 private T id;
 private boolean isModified;
 private String name;

 public BaseEntity(T id, String name) {
 this.id = id;
 this.name = name;
 }

 public T getId() {
 return id;
 }

 public void setId(T id) {
 this.id = id;

 }

 public boolean isIsModified() {
 return isModified;
 }

 public void setIsModified(boolean isModified) {
 this.isModified = isModified;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

}

Implementing a Microservice

[88]

Booking and user services
We can use the RestaurantService implementation to develop the Booking and
User services. The User service can offer the endpoint related to the User resource
with respect to CRUD operations. The Booking service can offer the endpoints
related to the Booking resource with respect to CRUD operations and the availability
of table slots. You can find the sample code of these services on the Packt website.

Registration and Discovery service
(Eureka service)
Spring Cloud provides state-of-the-art support to Netflix Eureka, a service registry
and discovery tool. All services executed by you get listed and discovered by
Eureka service, which it reads from the Eureka client Spring configuration inside
your service project.

It needs a Spring Cloud dependency as shown here and a startup class with the
@EnableEurekaApplication annotation in pom.xml:

Maven dependency:

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka-server</artifactId>
 </dependency>

Startup class:

The startup class App would run the Eureka service seamlessly by just using the
@EnableEurekaApplication class annotation:

package com.packtpub.mmj.eureka.service;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.server.
EnableEurekaServer;

@SpringBootApplication
@EnableEurekaServer
public class App {

 public static void main(String[] args) {
 SpringApplication.run(App.class, args);
 }
}

Chapter 4

[89]

Use <start-class>com.packtpub.mmj.eureka.service.App</
start-class> under the <properties> tag in the pom.xml project.

Spring configurations:

Eureka Service also needs the following Spring configuration for Eureka Server
configuration (src/main/resources/application.yml):

server:
 port: ${vcap.application.port:8761} # HTTP port

eureka:
 instance:
 hostname: localhost
 client:
 registerWithEureka: false
 fetchRegistry: false
 server:
 waitTimeInMsWhenSyncEmpty: 0

Similar to Eureka Server, each OTRS service should also contain the Eureka Client
configuration, so that a connection between Eureka Server and the client can be
established. Without this, the registration and discovery of services is not possible.

Eureka Client: your services can use the following spring configuration to configure
Eureka Server:

eureka:
 client:
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/

Execution
To see how our code works, we need to first build it and then execute it. We'll use
Maven clean package to build the service JARs.

Now to execute these service JARs, simply execute the following command from the
service home directory:

 java -jar target/<service_jar_file>

Implementing a Microservice

[90]

For example:

 java -jar target/restaurant-service.jar
 java -jar target/eureka-service.jar

Testing
To enable testing, add the following dependency in pom.xml:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
</dependency>

To test the RestaurantController, the following files have been added:

•	 RestaurantControllerIntegrationTests, which uses the
@SpringApplicationConfiguration annotation to pick the same
configuration that Spring Boot uses:
@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = RestaurantApp.class)
public class RestaurantControllerIntegrationTests extends
 AbstractRestaurantControllerTests {

}

•	 An abstract class to write our tests:
public abstract class AbstractRestaurantControllerTests {

 protected static final String RESTAURANT = "1";
 protected static final String RESTAURANT_NAME = "Big-O
Restaurant";

 @Autowired
 RestaurantController restaurantController;

 @Test
 public void validResturantById() {
 Logger.getGlobal().info("Start validResturantById test");
 ResponseEntity<Entity> restaurant = restaurantController.
findById(RESTAURANT);

 Assert.assertEquals(HttpStatus.OK, restaurant.
getStatusCode());
 Assert.assertTrue(restaurant.hasBody());

Chapter 4

[91]

 Assert.assertNotNull(restaurant.getBody());
 Assert.assertEquals(RESTAURANT, restaurant.getBody().
getId());
 Assert.assertEquals(RESTAURANT_NAME, restaurant.getBody().
getName());
 Logger.getGlobal().info("End validResturantById test");
 }

 @Test
 public void validResturantByName() {
 Logger.getGlobal().info("Start validResturantByName
test");
 ResponseEntity<Collection<Restaurant>> restaurants =
restaurantController.findByName(RESTAURANT_NAME);
 Logger.getGlobal().info("In validAccount test");

 Assert.assertEquals(HttpStatus.OK, restaurants.
getStatusCode());
 Assert.assertTrue(restaurants.hasBody());
 Assert.assertNotNull(restaurants.getBody());
 Assert.assertFalse(restaurants.getBody().isEmpty());
 Restaurant restaurant = (Restaurant) restaurants.
getBody().toArray()[0];
 Assert.assertEquals(RESTAURANT, restaurant.getId());
 Assert.assertEquals(RESTAURANT_NAME, restaurant.
getName());
 Logger.getGlobal().info("End validResturantByName test");
 }

 @Test
 public void validAdd() {
 Logger.getGlobal().info("Start validAdd test");
 RestaurantVO restaurant = new RestaurantVO();
 restaurant.setId("999");
 restaurant.setName("Test Restaurant");

 ResponseEntity<Restaurant> restaurants =
restaurantController.add(restaurant);
 Assert.assertEquals(HttpStatus.CREATED, restaurants.
getStatusCode());
 Logger.getGlobal().info("End validAdd test");
 }
}

Implementing a Microservice

[92]

•	 Finally, RestaurantControllerTests, which extends the previously
created abstract class and also creates the RestaurantService and
RestaurantRepository implementations:
public class RestaurantControllerTests extends
AbstractRestaurantControllerTests {

 protected static final Restaurant restaurantStaticInstance =
new Restaurant(RESTAURANT,
 RESTAURANT_NAME, null);

 protected static class TestRestaurantRepository implements Res
taurantRepository<Restaurant, String> {

 private Map<String, Restaurant> entities;

 public TestRestaurantRepository() {
 entities = new HashMap();
 Restaurant restaurant = new Restaurant("Big-O
Restaurant", "1", null);
 entities.put("1", restaurant);
 restaurant = new Restaurant("O Restaurant", "2",
null);
 entities.put("2", restaurant);
 }

 @Override
 public boolean containsName(String name) {
 try {
 return this.findByName(name).size() > 0;
 } catch (Exception ex) {
 //Exception Handler
 }
 return false;
 }

 @Override
 public void add(Restaurant entity) {
 entities.put(entity.getId(), entity);
 }

 @Override
 public void remove(String id) {
 if (entities.containsKey(id)) {
 entities.remove(id);
 }
 }

 @Override
 public void update(Restaurant entity) {

Chapter 4

[93]

 if (entities.containsKey(entity.getId())) {
 entities.put(entity.getId(), entity);
 }
 }

 @Override
 public Collection<Restaurant> findByName(String name)
throws Exception {
 Collection<Restaurant> restaurants = new ArrayList();
 int noOfChars = name.length();
 entities.forEach((k, v) -> {
 if (v.getName().toLowerCase().contains(name.
subSequence(0, noOfChars))) {
 restaurants.add(v);
 }
 });
 return restaurants;
 }

 @Override
 public boolean contains(String id) {
 throw new UnsupportedOperationException("Not supported
yet."); //To change body of generated methods, choose Tools |
Templates.
 }

 @Override
 public Entity get(String id) {
 return entities.get(id);
 }
 @Override
 public Collection<Restaurant> getAll() {
 return entities.values();
 }
 }

 protected TestRestaurantRepository testRestaurantRepository =
new TestRestaurantRepository();
 protected RestaurantService restaurantService = new Restaurant
ServiceImpl(testRestaurantRepository);

 @Before
 public void setup() {
 restaurantController = new RestaurantController(restaurant
Service);

 }
}

Implementing a Microservice

[94]

References
•	 RESTful Java Patterns and Best Practices by Bhakti Mehta, Packt Publishing:

https://www.packtpub.com/application-development/restful-java-
patterns-and-best-practices

•	 Spring Cloud: http://cloud.spring.io/
•	 Netflix Eureka: https://github.com/netflix/eureka

Summary
In this chapter, we have learned how the domain-driven design model can be used
in a µService. After running the demo application, we can see how each µService
can be developed, deployed, and tested independently. You can create µServices
using Spring Cloud very easily. We have also explored how one can use the Eureka
registry and Discovery component with Spring Cloud.

In the next chapter, we will learn to deploy µServices in containers such as Docker.
We will also understand µService testing using REST Java clients and other tools.

https://www.packtpub.com/application-development/restful-java-patterns-and-best-practices
https://www.packtpub.com/application-development/restful-java-patterns-and-best-practices
http://cloud.spring.io/
https://github.com/netflix/eureka

[95]

Deployment and Testing
This chapter will explain how to deploy microservices in different forms, from
standalone to containers such as Docker. It will also demonstrate how Docker
can be used to deploy our sample project on a cloud service such as AWS. Before
implementing Docker, first we'll explore other factors about microservices, such as
load balancing and Edge Server. You will also come to understand microservice
testing using different REST clients such as RestTemplate, Netflix Feign, and so on.

In this chapter, we will cover the following topics:

•	 An overview of microservice architecture using Netflix OSS
•	 Load balancing microservices
•	 Edge Server
•	 Circuit breakers and monitoring
•	 Microservice deployment using containers
•	 Microservice integration testing using Docker containers

An overview of microservice architecture
using Netflix OSS
Netflix are pioneers in microservice architecture. They were the first to successfully
implement microservice architecture on a large scale. They also helped increase its
popularity and contributed immensely to microservices by open sourcing most of
their microservice tools with Netflix Open Source Software Center (OSS).

Deployment and Testing

[96]

According to the Netflix blog, when Netflix was developing their platform, they used
Apache Cassandra for data storage, which is an open source tool from Apache. They
started contributing to Cassandra with fixes and optimization extensions. This led to
Netflix seeing the benefits of releasing Netflix projects with the name Open Source
Software Center.

Spring took the opportunity to integrate many Netflix OSS projects, such as Zuul,
Ribbon, Hystrix, Eureka Server, and Turbine, into Spring Cloud. This is one of the
reasons Spring Cloud provides a ready-made platform for developing production-
ready microservices. Now, let's take a look at a few important Netflix tools and how
they fit into microservice architecture:

Microservice architecture diagram

As you can see in the preceding diagram, for each of the microservice practices,
we have Netflix tool associated with it. We can go through the following mapping
to understand it. Detailed information is covered in the respective sections of this
chapter except concerning Eureka, which is elaborated on in the last chapter.

•	 Edge Server: We use Netflix Zuul Server as an Edge Server.
•	 Load balancing: Netflix Ribbon is used for load balancing.

Chapter 5

[97]

•	 Circuit breaker: Netflix Hystrix is used as a circuit breaker and helps to keep
the system up.

•	 Service discovery and registration: Netflix Eureka Server is used for service
discovery and registration.

•	 Monitoring dashboard: Hystrix Dashboard is used with Netflix Turbine
for microservice monitoring. It provides a dashboard to check the health
of running microservices.

Load balancing
Load balancing is required to service requests in a manner that maximizes speed,
capacity utilization, and it makes sure that no server is overloaded with requests.
The load balancer also redirects requests to the remaining host servers if a server
goes down. In microservice architecture, a microservice can serve internal or external
requests. Based on this, we can have two types of load balancing – client-side and
server-side load balancing.

Client-side load balancing
Microservices need interprocess communication so that services can communicate
with each other. Spring Cloud uses Netflix Ribbon, a client-side load balancer that
plays this critical role and can handle both HTTP and TCP. Ribbon is cloud-enabled
and provides built-in failure resiliency. Ribbon also allows you to use multiple and
pluggable load balancing rules. It integrates clients with load balancers.

In the last chapter, we added Eureka Server. Ribbon is integrated with Eureka Server
in Spring Cloud by default. This integration provides the following features:

•	 You don't need to hardcode remote server URLs for discovery when Eureka
Server is used. This is a prominent advantage, although you can still use the
configured server list (listOfServers) in application.yml if required.

•	 The server list gets populated from Eureka Server. Eureka Server overrides
ribbonServerList with DiscoveryEnabledNIWSServerList.

•	 The request to find out whether the server is up is delegated to Eureka.
The DiscoveryEnabledNIWSServerList interface is used in place of
Ribbon's IPing.

Deployment and Testing

[98]

There are different clients available in Spring Cloud that use Ribbon, such as
RestTemplate or FeignClient. These clients allow microservices to communicate
with each other. Clients use instance IDs in place of hostnames and ports for making
an HTTP call to service instances when Eureka Server is used. The client passes the
service ID to Ribbon, Ribbon then uses the load balancer to pick the instance from
the Eureka Server.

If there are multiple instances of services available in Eureka, as shown in the
following screenshot, Ribbon picks only one for the request, based on load
balancing algorithms:

Multiple service registration – Restaurant service

We can use DiscoveryClient to find all the available service instances in Eureka
Server, as shown in the following code. Method getLocalServiceInstance() of
class DiscoveryClientSample returns the all local service instances available in
Eureka Server.

DiscoveryClient sample:

@Component
class DiscoveryClientSample implements CommandLineRunner {

 @Autowired
 private DiscoveryClient;

 @Override
 public void run(String... strings) throws Exception {
 //print the Discovery Client Description
 System.out.println(discoveryClient.description());
 // Get restaurant-service instances and prints its info
 discoveryClient.getInstances("restaurant-service").
forEach((ServiceInstance serviceInstance) -> {
 System.out.println(new StringBuilder("Instance -->
").append(serviceInstance.getServiceId())

Chapter 5

[99]

 .append("\nServer: ").append(serviceInstance.
getHost()).append(":").append(serviceInstance.getPort())
 .append("\nURI: ").append(serviceInstance.
getUri()).append("\n\n\n"));
 });
 }
}

When executed, this code prints the following information. It shows two instances of
the Restaurant service:

Spring Cloud Eureka Discovery Client
Instance: RESTAURANT-SERVICE
Server: SOUSHARM-IN:3402
URI: http://SOUSHARM-IN:3402
Instance --> RESTAURANT-SERVICE
Server: SOUSHARM-IN:3368
URI: http://SOUSHARM-IN:3368

The following samples showcase how these clients can be used. You can see that
in both clients, the service name restaurant-service is used in place of a service
hostname and port. These clients call /v1/restaurants to get a list of restaurants
containing the name given in the name query parameter:

Rest Template sample:

@Override
public void run(String... strings) throws Exception {
ResponseEntity<Collection<Restaurant>> exchange
= this.restTemplate.exchange(
"http://restaurant-service/v1/restaurants?name=o",
 HttpMethod.GET,
 null,
 new ParameterizedTypeReference<Collection<Restaura
nt>>() {
 },
 ("restaurants");
exchange.getBody().forEach((Restaurant restaurant) -> {
System.out.println(new StringBuilder("\n\n\n[").append(restaurant.
getId()).append(" ").append(restaurant.getName()).append("]"));
});
}

Deployment and Testing

[100]

FeignClient sample:

@Component
class FeignSample implements CommandLineRunner {

 @Autowired
 private RestaurantClient restaurantClient;

 @Override
 public void run(String... strings) throws Exception {
 this.restaurantClient.getRestaurants("o").forEach((Restaurant
restaurant) -> {
 System.out.println(restaurant);
 });
 }
}

@FeignClient("restaurant-service")
interface RestaurantClient {

 @RequestMapping(method = RequestMethod.GET, value = "/v1/
restaurants")
 Collection<Restaurant> getRestaurants(@RequestParam("name") String
name);
}

All preceding examples will print the following output:

[1 Big-O Restaurant]
[2 O Restaurant]

Server-side load balancing
After client-side load balancing, it is important for us to define server-side load
balancing. In addition, from the microservice architecture's point of view, it is
important to define the routing mechanism for our OTRS app. For example, /
may be mapped to our UI application, /restaurantapi is mapped to restaurant
service, and /userapi is mapped to user service.

We'll use the Netflix Zuul Server as our Edge Server. Zuul is a JVM-based router and
server-side load balancer. Zuul supports any JVM language for writing rules and
filters and having the in-built support for Java and Groovy.

Chapter 5

[101]

The external world (the UI and other clients) calls the Edge server, which uses
the routes defined in application.yml to call internal services and provide the
response. Your guess is right if you think it acts as a proxy server, carries gateway
responsibility for internal networks, and calls internal services for defined and
configured routes.

Normally, it is recommended to have a single Edge Server for all requests. However,
few companies use a single Edge Server per client to scale. For example, Netflix uses
a dedicated Edge Server for each device type.

An Edge Server will also be used in the next chapter, when we configure and
implement microservice security.

Configuring and using the Edge Server is pretty simple in Spring Cloud. You need to
use the following steps:

1.	 Define the Zuul Server dependency in pom.xml:
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-zuul</artifactId>
</dependency>

2.	 Use the @EnableZuulProxy annotation in your application class. It also
internally uses @EnableDiscoveryClient: therefore it is also registered to
Eureka Server automatically. You can find the registered Zuul Server in the
last figure: Multiple service registration – Restaurant service".

3.	 Update the Zuul configuration in application.yml, as the following shows:
°° zuul:ignoredServices: This skips the automatic addition of

services. We can define service ID patterns here. * denotes that we
are ignoring all services. In the following sample, all services are
ignored except restaurant-service.

°° Zuul.routes: This contains the path attribute that defines the URI's
pattern. Here, /restaurantapi is mapped to Restaurant Service
using serviceId. serviceId represents the service in Eureka
Server. You can use a URL in place of a service, if Eureka Server is
not used. We have also used the stripPrefix attribute to strip the
prefix (/restaurantapi), and the resultant /restaurantapi/v1/
restaurants/1 call converts to /v1/restaurants/1 while
calling the service:
application.yml
info:
 component: Zuul Server

Deployment and Testing

[102]

Spring properties
spring:
 application:
 name: zuul-server # Service registers under this name

endpoints:
 restart:
 enabled: true
 shutdown:
 enabled: true
 health:
 sensitive: false

zuul:
 ignoredServices: "*"
 routes:
 restaurantapi:
 path: / restaurantapi/**
 serviceId: restaurant-service
 stripPrefix: true

server:
 port: 8765

Discovery Server Access
eureka:
 instance:
 leaseRenewalIntervalInSeconds: 3
 metadataMap:
 instanceId: ${vcap.application.instance_id:${spring.
application.name}:${spring.application.instance_id:${random.
value}}}
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/
 fetchRegistry: false

Chapter 5

[103]

Let's see a working Edge Server. First, we'll call the restaurant service deployed on
port 3402, shown as follows:

Direct Restaurant service call

Then, we'll call the same service using the Edge Server that is deployed on
port 8765. You can see that the /restaurantapi prefix is used for calling
/v1/restaurants?name=o, and it gives the same result:

Restaurant Service call using Edge Server

Deployment and Testing

[104]

Circuit breaker and monitoring
In general terms, a circuit breaker is:

An automatic device for stopping the flow of current in an electric circuit as a safety measure.

The same concept is used for microservice development, known as the Circuit
Breaker design pattern. It tracks the availability of external services such as Eureka
Server, API services such as restaurant-service, and so on, and prevents service
consumers from performing any action on any service that is not available.

It is another important aspect of microservice architecture, a safety measure
(failsafe mechanism) when the service does not respond to a call made by the
service consumer – circuit breaker.

We'll use Netflix Hystrix as a circuit breaker. It calls the internal fallback method in
the service consumer when failures occur (for example due to a communication error
or timeout). It executes embedded within its consumer of service. In the next section,
you will find the code that implements this feature.

Hystrix opens the circuit and fail-fast when the service fails to respond repeatedly,
until the service is available again. You must be wondering, if Hystrix opens the
circuit, then how does it know that the service is available? It exceptionally allows
some requests to call the service.

Using Hystrix's fallback methods
There are three steps for implementing fallback methods:

1.	 Enable the circuit breaker: The main class of microservice that consumes
other services should be annotated with @EnableCircuitBreaker.
For example, if a user service would like to get the restaurant details,
where a user has reserved the table:
@SpringBootApplication
@EnableCircuitBreaker
@ComponentScan({"com.packtpub.mmj.user.service", "com.packtpub.
mmj.common"})
public class UsersApp {

Chapter 5

[105]

2.	 Configure the fallback method: To configure the fallbackMethod, the
@HystrixCommand annotation is used:
@HystrixCommand(fallbackMethod = "defaultRestaurant")
public ResponseEntity<Restaurant> getRestaurantById(int
restaurantId) {

 LOG.debug("Get Restaurant By Id with Hystrix protection");

 URI uri = util.getServiceUrl("restaurant-service");

 String url = uri.toString() + "/v1/restaurants/" +
restaurantId;
 LOG.debug("Get Restaurant By Id URL: {}", url);

 ResponseEntity<Restaurant> response = restTemplate.
getForEntity(url, Restaurant.class);
 LOG.debug("Get Restaurant By Id http-status: {}", response.
getStatusCode());
 LOG.debug("GET Restaurant body: {}", response.getBody());

 Restaurant restaurant = response.getBody();
 LOG.debug("Restaurant ID: {}", restaurant.getId());

 return serviceHelper.createOkResponse(restaurant);
}

3.	 Define fallback method: A method that handles the failure and performs the
steps for safety:
public ResponseEntity<Restaurant> defaultRestaurant(int
restaurantId) {
 LOG.warn("Fallback method for restaurant-service is being
used.");
 return serviceHelper.createResponse(null, HttpStatus.BAD_
GATEWAY);
}

These steps should be enough to failsafe the service calls and return a more
appropriate response to the service consumer.

Deployment and Testing

[106]

Monitoring
Hystrix provides the dashboard with a web UI that provides nice graphics of
circuit breakers:

Default Hystrix dashboard

Netflix Turbine is a web application that connects to the instances of your Hystrix
applications in a cluster and aggregates information, which it does in real time
(updated every 0.5 seconds). Turbine provides information using a stream that is
known as a turbine stream.

If you combine Hystrix with Netflix Turbine, then you can get all the information
from Eureka Server on the Hystrix dashboard. This gives you a landscape view of all
the information about the circuit breakers.

To use Turbine with Hystrix, just type in the Turbine URL http://localhost:8989/
turbine.stream (port 8989 is configured for the Turbine server in application.yml)
in first textbox shown before, and click on Monitory Stream.

Chapter 5

[107]

Netflix Hystrix and Turbine uses RabbitMQ, an open source message queuing
software. RabbitMQ works on Advance Messaging Queue Protocol (AMQP). It
is a software in which queues can be defined, where applications can establish a
connection and transfer a message through it. A message can include any kind
of information. A message can be stored in the RabbitMQ queue until a receiver
application connects and receives the message (taking the message off the queue).

Hystrix uses RabbitMQ to send a metrics data feed to Turbine.

Before we configure Hystrix and Turbine, please install the RabbitMQ
application on your platform. Hystrix and Turbine use RabbitMQ to
communicate between themselves.

Setting up the Hystrix Dashboard
We'll add the new Maven dependency, dashboard-server for Hystrix Server.
Configuring and using the Hystrix Dashboard is pretty simple in Spring Cloud
like others. You just need to follow these steps:

1.	 Define the Hystrix Dashboard dependency in pom.xml:
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter- hystrix-dashboard</
artifactId>
</dependency>

2.	 The @EnableHystrixDashboard annotation in the main Java class does
everything for you to use it. We'll also use the @Controller to forward
the request from the root to Hystrix, as shown here:
@SpringBootApplication
@Controller
@EnableHystrixDashboard
public class DashboardApp extends SpringBootServletInitializer {

 @RequestMapping("/")
 public String home() {
 return "forward:/hystrix";
 }

 @Override
 protected SpringApplicationBuilder configure(SpringApplication
Builder application) {

Deployment and Testing

[108]

 return application.sources(DashboardApp.class).web(true);
 }

 public static void main(String[] args) {
 SpringApplication.run(DashboardApp.class, args);
 }
}

3.	 Update the Dashboard application configuration in application.yml,
as shown here:
application.yml
Hystrix Dashboard properties
spring:
 application:
 name: dashboard-server

endpoints:
 restart:
 enabled: true
 shutdown:
 enabled: true

server:
 port: 7979

eureka:
 instance:
 leaseRenewalIntervalInSeconds: 3
 metadataMap:
 instanceId: ${vcap.application.instance_id:${spring.
application.name}:${spring.application.instance_id:${random.
value}}}

 client:
 # Default values comes from org.springframework.cloud.
netflix.eurek.EurekaClientConfigBean
 registryFetchIntervalSeconds: 5
 instanceInfoReplicationIntervalSeconds: 5
 initialInstanceInfoReplicationIntervalSeconds: 5
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/
 fetchRegistry: false

logging:

Chapter 5

[109]

 level:
 ROOT: WARN
 org.springframework.web: WARN

Setting up Turbine
We'll create one more Maven dependency for Turbine. When you run the Hystrix
Dashboard application, it will look like the Default Hystrix Dashboard screenshot
shown earlier.

Now, we will configure the Turbine Server using the following steps:

1.	 Define the Turbine Server dependency in pom.xml:
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-turbine-amqp</artifactId>
</dependency>

2.	 Use the @EnableTurbineAmqp annotation in your application class as
shown here. We are also defining a bean that will return the RabbitMQ
Connection Factory:
@SpringBootApplication
@EnableTurbineAmqp
@EnableDiscoveryClient
public class TurbineApp {

 private static final Logger LOG = LoggerFactory.
getLogger(TurbineApp.class);

 @Value("${app.rabbitmq.host:localhost}")
 String rabbitMQHost;

 @Bean
 public ConnectionFactory connectionFactory() {
 LOG.info("Creating RabbitMQHost ConnectionFactory for
host: {}", rabbitMQHost);
 CachingConnectionFactory cachingConnectionFactory = new Ca
chingConnectionFactory(rabbitMQHost);
 return cachingConnectionFactory;
 }

 public static void main(String[] args) {
 SpringApplication.run(TurbineApp.class, args);
 }
}

Deployment and Testing

[110]

3.	 Update the Turbine configuration in application.yml, as shown here:
server:port: The main port used by the the turbine HTTP
management:port: Port of turbine Actuator endpoints
application.yml
spring:
 application:
 name: turbine-server

server:
 port: 8989

management:
 port: 8990

PREFIX:

endpoints:
 restart:
 enabled: true
 shutdown:
 enabled: true

eureka:
 instance:
 leaseRenewalIntervalInSeconds: 10
 client:
 registryFetchIntervalSeconds: 5
 instanceInfoReplicationIntervalSeconds: 5
 initialInstanceInfoReplicationIntervalSeconds: 5
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/

logging:
 level:
 root: WARN
 com.netflix.discovery: 'OFF'

Please be aware the preceding steps always create the respective
servers with default configurations. If required, you can override
the default configuration with specific settings.

Chapter 5

[111]

Microservice deployment using containers
You might have got the point about Docker after reading Chapter 1, A Solution Approach.

A Docker container provides a lightweight runtime environment, consisting of the
core features of a virtual machine and the isolated services of operating systems,
known as a docker image. Docker makes the packaging and execution of µServices
easier and smoother. Each operating system can have multiple Dockers, and each
Docker can run multiple applications.

Installation and configuration
Docker needs a virtualized server if you are not using a Linux OS. You can install
VirtualBox or similar tools such as Docker Toolbox to make it work for you. The
Docker installation page gives more details about it and lets you know how to do it.
So, leave it to the Docker installation guide available on Docker's website.

You can install Docker, based on your platform, by following the instructions given
at https://docs.docker.com/engine/installation/.

DockerToolbox-1.9.1f was the latest version available at the time of writing. This is
the version we used.

Docker Machine with 4 GB
Default machines are created with 2 GB of memory. We'll recreate a Docker Machine
with 4 GB of memory:

docker-machine rm default

docker-machine create -d virtualbox --virtualbox-memory 4096 default

Building Docker images with Maven
There are various Docker maven plugins that can be used:

•	 https://github.com/rhuss/docker-maven-plugin

•	 https://github.com/alexec/docker-maven-plugin

•	 https://github.com/spotify/docker-maven-plugin

You can use any of these, based on your choice. I found the Docker Maven plugin by
@rhuss to be best suited for us. It is updated regularly and has many extra features
when compared to the others.

https://docs.docker.com/engine/installation/
https://github.com/rhuss/docker-maven-plugin
https://github.com/alexec/docker-maven-plugin
https://github.com/spotify/docker-maven-plugin

Deployment and Testing

[112]

We need to introduce the Docker Spring Profile in application.yml before we
start discussing the configuration of docker-maven-plugin. It will make our job
easier when building services for various platforms. We need to configure the
following four properties:

•	 We'll use the Spring profile identified as Docker.
•	 There won't be any conflict of ports among embedded Tomcat, since

services will be executed in their own respective containers. We can now
use port 8080.

•	 We will prefer to use an IP address to register our services in Eureka.
Therefore, the Eureka instance property preferIpAddress will be set
to true.

•	 Finally, we'll use the Eureka Server host name in serviceUrl:defaultZone.

To add a Spring profile in your project, add the following lines in application.yml
after the existing content:

For deployment in Docker containers
spring:
 profiles: docker

server:
 port: 8080

eureka:
 instance:
 preferIpAddress: true
 client:
 serviceUrl:
 defaultZone: http://eureka:8761/eureka/

We will also add the following code in pom.xml to activate the Spring profile Docker,
while building a Docker container JAR. (This will create the JAR using the previously
defined properties, for example port:8080.)

<profiles>
 <profile>
 <id>docker</id>
 <properties>
 <spring.profiles.active>docker</spring.profiles.active>
 </properties>
 </profile>
</profiles>

Chapter 5

[113]

We just need to use Maven docker profile while building the service, shown as follows:

mvn -P docker clean package

The preceding command will generate the service JAR with Tomcat's 8080 port and
will get registered on Eureka Server with the hostname eureka.

Now, let's configure docker-maven-plugin to build the image with our restaurant
microservice. This plugin has to create a Dockerfile first. The Dockerfile is configured
in two places – in pom.xml and docker-assembly.xml. We'll use the following
plugin configuration in pom.xml:

<properties>
<!-- For Docker hub leave empty; use "localhost:5000/" for a local
Docker Registry -->
 <docker.registry.name>localhost:5000/</docker.registry.name>
 <docker.repository.name>${docker.registry.name}sourabhh /${project.
artifactId}</docker.repository.name>
</properties>
...
<plugin>
 <groupId>org.jolokia</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <version>0.13.7</version>
 <configuration>
 <images>
 
 </images>
 </configuration>
</plugin>

Above the Docker Maven plugin configuration, create a Dockerfile that creates the
JRE 8 (java:8-jre) -based image. This exposes ports 8080 and 8081.

Next, we'll configure docker-assembly.xml, which tells the plugin which files
should be put into the container. It will be placed under src/main/docker:

<assembly xmlns="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.2 http://maven.apache.org/xsd/assembly-1.1.2.xsd">
 <id>${project.artifactId}</id>
 <files>
 <file>
 <source>{basedir}/target/${project.build.finalName}.jar</source>
 <outputDirectory>/</outputDirectory>
 </file>
 <file>
 <source>src/main/resources/docker-config.yml</source>
 <outputDirectory>/</outputDirectory>
 </file>
 </files>
</assembly>

Above assembly, add the service JAR and docker-config.yml in the generated
Dockerfile. This Dockerfile is located under target/docker/. On opening this file,
you will find the content to be similar to this:

FROM java:8-jre
MAINTAINER sourabhh
EXPOSE 8080
COPY maven /maven/
CMD java -jar \
 /maven/restaurant-service.jar server \
 /maven/docker-config.yml

Chapter 5

[115]

The preceding file can be found at restaurant-service\target\docker\sousharm\
restaurant-service\PACKT-SNAPSHOT\build. The build directory also contains
the maven directory, which contains everything mentioned in docker-assembly.xml.

Lets' build the Docker Image:

mvn docker:build

Once this command completes, we can validate the image in the local repository
using Docker Images, or by running the following command:

docker run -it -p 8080:8080 sourabhh/restaurant-service:PACKT-SNAPSHOT

Use -it to execute this command in the foreground, in place of –d.

Running Docker using Maven
To execute a Docker Image with Maven, we need to add the following configuration
in the pom.xml. <run> block, to be put where we marked the To Do under the image
block of docker-maven-plugin section in the pom.xml file:

<properties>
 <docker.host.address>localhost</docker.host.address>
 <docker.port>8080</docker.port>
</properties>
...
<run>
 <namingStrategy>alias</namingStrategy>
 <ports>
 <port>${docker.port}:8080</port>
 </ports>
 <volumes>
 <bind>
 <volume>${user.home}/logs:/logs</volume>
 </bind>
 </volumes>
 <wait>
 <url>http://${docker.host.address}:${docker.port}/v1/
restaurants/1</url>
 <time>100000</time>
 </wait>
 <log>
 <prefix>${project.artifactId}</prefix>
 <color>cyan</color>
 </log>
</run>

Deployment and Testing

[116]

Here, we have defined the parameters for running our Restaurant service container.
We have mapped Docker container ports 8080 and 8081 to the host system's ports,
which allows us to access the service. Similarly, we have also bound the containers'
logs directory to the host systems' <home>/logs directory.

The Docker Maven plugin can detect if the container has finished starting up by
polling the ping URL of the admin backend until it receives an answer.

Please note that Docker host is not localhost if you are using DockerToolbox or
boot2docker on Windows or Mac OS X. You can check the Docker Image IP by
executing docker-machine ip default. It is also shown while starting up.

The Docker container is ready to start. Use the following command to start it
using Maven:

mvn docker:start .

Integration testing with Docker
Starting and stopping a Docker container can be done by binding the following
executions to the docker-maven-plugin life cycle phase in pom.xml:

<execution>
 <id>start</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>build</goal>
 <goal>start</goal>
 </goals>
</execution>
<execution>
 <id>stop</id>
 <phase>post-integration-test</phase>
 <goals>
 <goal>stop</goal>
 </goals>
</execution>

We will now configure the failsafe plugin to perform integration testing with Docker.
This allows us to execute the integration tests. We are passing the service URL in the
service.url tag, so that our integration test can use it to perform integration testing.

Chapter 5

[117]

We'll use the DockerIntegrationTest marker to mark our Docker integration tests.
It is defined as follows:

package com.packtpub.mmj.restaurant.resources.docker;

public interface DockerIntegrationTest {
 // Marker for Docker integratino Tests
}

Look at the following integration plugin code. You can see that
DockerIntegrationTest is configured for the inclusion of integration tests
(failsafe plugin), whereas it is used for excluding in unit tests (Surefire plugin):

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>2.18.1</version>
 <configuration>
 <phase>integration-test</phase>
 <includes>
 <include>**/*.java</include>
 </includes>
 <groups>com.packtpub.mmj.restaurant.resources.docker.
DockerIntegrationTest</groups>
 <systemPropertyVariables>
 <service.url>http://${docker.host.address}:${docker.port}/</
service.url>
 </systemPropertyVariables>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 </goals>
 </execution>
 </executions>
</plugin>
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.18.1</version>
 <configuration>
 <excludedGroups>com.packtpub.mmj.restaurant.resources.docker.
DockerIntegrationTest</excludedGroups>
 </configuration>
</plugin>

Deployment and Testing

[118]

A simple integration test looks like this:

@Category(DockerIntegrationTest.class)
public class RestaurantAppDockerIT {

 @Test
 public void testConnection() throws IOException {
 String baseUrl = System.getProperty("service.url");
 URL serviceUrl = new URL(baseUrl + "v1/restaurants/1");
 HttpURLConnection connection = (HttpURLConnection) serviceUrl.
openConnection();
 int responseCode = connection.getResponseCode();
 assertEquals(200, responseCode);
 }
}

You can use the following command to perform integration testing using Maven:

mvn integration-test

Pushing the image to a registry
Add the following tags under docker-maven-plugin to publish the Docker Image to
Docker Hub:

<execution>
 <id>push-to-docker-registry</id>
 <phase>deploy</phase>
 <goals>
 <goal>push</goal>
 </goals>
</execution>

You can skip JAR publishing by using the following configuration for maven-
deploy-plugin:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-deploy-plugin</artifactId>
 <version>2.7</version>
 <configuration>
 <skip>true</skip>
 </configuration>
</plugin>

Chapter 5

[119]

Publishing a Docker image in Docker Hub also requires a username and password:

mvn -Ddocker.username=<username> -Ddocker.password=<password> deploy

You can also push a Docker image to your own Docker registry. To do this, add
the docker.registry.name tag as shown in the following code. For example,
if your Docker registry is available at xyz.domain.com on port 4994, then define
it by adding the following line of code:

<docker.registry.name>xyz.domain.com: 4994</docker.registry.name>

This does the job and we can not only deploy, but also test our Dockerized service.

Managing Docker containers
Each microservice will have its own Docker container. Therefore, we'll use the Docker
Compose Docker container manager to manage our containers.

Docker Compose will help us to specify the number of containers and how these will
be executed. We can specify the Docker Image, ports, and each container's links to
other Docker containers.

We'll create a file called docker-compose.yml in our root project directory and add
all the microservice containers to it. We'll first specify the Eureka Server as follows:

eureka:
 image: localhost:5000/sourabhh/eureka-server
 ports:
 - "8761:8761"

Here, image represents the published Docker image for Eureka Server and ports
represents the mapping between the host being used for executing the Docker Image
and the Docker host.

This will start Eureka Server and publish the specified ports for external access.

Now, our services can use these containers (dependent containers such as Eureka).
Let's see how restaurant-service can be linked to dependent containers. It is
simple; just use the links directive:

restaurant-service:
 image: localhost:5000/sourabhh/restaurant-service
 ports:
 - "8080:8080"
 links:
 - eureka

Deployment and Testing

[120]

The preceding links declaration will update the /etc/hosts file in the restaurant-
service container with one line per service that the restaurant-service depends
on (let's assume the security container is also linked), for example:

192.168.0.22 security
192.168.0.31 eureka

If you don't have a docker local registry set up, then please do this
first for issue-less or smoother execution.
Build the docker local registry by:
docker run -d -p 5000:5000 --restart=always --name
registry registry:2

Then, perform push and pull commands for the local images:
docker push localhost:5000/sourabhh/restaurant-
service:PACKT-SNAPSHOT

docker-compose pull

Finally, execute docker-compose:
docker-compose up -d

Once all the microservice containers (service and server) are configured, we can start
all Docker containers with a single command:

docker-compose up –d

This will start up all Docker containers configured in Docker Composer. The following
command will list them:

docker-compose ps

Name Command

 State Ports

onlinetablereservation5_eureka_1 /bin/sh -c java -jar ...
Up 0.0.0.0:8761->8761/tcp

onlinetablereservation5_restaurant-service_1 /bin/sh -c java -jar
... Up 0.0.0.0:8080->8080/tcp

You can also check docker image logs using the following command:

docker-compose logs

[36mrestaurant-service_1 | ←[0m2015-12-23 08:20:46.819 INFO 7 --- [pool-
3-thread-1] com.netflix.discovery.DiscoveryClient : DiscoveryClient_
RESTAURANT-SERVICE/172.17

Chapter 5

[121]

0.4:restaurant-service:93d93a7bd1768dcb3d86c858e520d3ce - Re-registering
apps/RESTAURANT-SERVICE

[36mrestaurant-service_1 | ←[0m2015-12-23 08:20:46.820 INFO 7 --- [pool-
3-thread-1] com.netflix.discovery.DiscoveryClient : DiscoveryClient_
RESTAURANT-SERVICE/172.17

0.4:restaurant-service:93d93a7bd1768dcb3d86c858e520d3ce: registering
service...

[36mrestaurant-service_1 | ←[0m2015-12-23 08:20:46.917 INFO 7 --- [pool-
3-thread-1] com.netflix.discovery.DiscoveryClient : DiscoveryClient_
RESTAURANT-SERVICE/172.17

References
The following links will give you more information:

•	 Netflix Ribbon: https://github.com/Netflix/ribbon
•	 Netflix Zuul: https://github.com/Netflix/zuul
•	 RabbitMQ: https://www.rabbitmq.com/download.html
•	 Hystrix: https://github.com/Netflix/Hystrix
•	 Turbine: https://github.com/Netflix/Turbine
•	 Docker: https://www.docker.com/

Summary
In this chapter, we have learned about various microservice management features: –
load balancing, Edge Server (Gateway), circuit breakers, and monitoring. You should
now know how to implement load balancing and routing after going through this
chapter. We have also learned how Edge Server can be set up and configured. The
failsafe mechanism is another important part that you have learned in this chapter.
Deployment can be made simple by using Docker or any other container. Docker
was demonstrated and integrated using Maven Build.

From a testing point of view, we performed the integration testing on the Docker image
of the service. We also explored the way we can write clients such as RestTemplate and
Netflix Feign.

In the next chapter, we will learn to secure the µServices with respect to authentication
and authorization. We will also explore the other aspects of microservice securities.

https://github.com/Netflix/ribbon
https://github.com/Netflix/zuul
https://www.rabbitmq.com/download.html
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Turbine
https://www.docker.com/

[123]

Securing Microservices
As you know, microservices are the components that we deploy in on-premises
or cloud infrastructure. Microservices may offer APIs or web applications. Our
sample application, OTRS, offers APIs. This chapter will focus on how to secure
these APIs using Spring Security and Spring OAuth2. We'll also focus on OAuth
2.0 fundamentals. We'll use OAuth 2.0 to secure the OTRS APIs. For more
understanding on securing REST APIs, you can refer to RESTful Java Web Services
Security, Packt Publishing book. You can also refer to Spring Security [Video], Packt
Publishing video, for more information on Spring Security. We'll also learn about
Cross Origin Request Site filters, and cross-site scripting blockers.

In this chapter, we will cover the following topics:

•	 Enabling Secure Socket Layer (SSL)
•	 Authentication and authorization
•	 OAuth 2.0

Enabling Secure Socket Layer
So far, we are using the Hyper Text Transfer Protocol (HTTP). HTTP transfers data
in plain text, but data transfer over the Internet in plain text is not a good idea at all.
It makes hackers' jobs easy and allows them to get your private information, such as
your user ID, passwords, and credit card details easily using a packet sniffer.

We definitely don't want to compromise user data, so we will provide the most
secure way to access our web application. Therefore, we need to encrypt the
information that is exchanged between the end user and our application. We'll use
Secure Socket Layer (SSL) or Transport Security Layer (TSL) to encrypt the data.

Securing Microservices

[124]

SSL is a protocol designed to provide security (encryption) for network
communications. HTTP associates with SSL to provide the secure implementation
of HTTP, known as Hyper Text Transfer Protocol Secure, or Hyper Text Transfer
Protocol over SSL (HTTPS). HTTPS makes sure that the privacy and integrity of
the exchanged data is protected. It also ensures the authenticity of websites visited.
This security centers around the distribution of signed digital certificates between the
server hosting the application, the end user's machine, and a third-party trust store
server. Let's see how this process takes place:

1.	 The end user sends the request to the web application, for example http://
twitter.com, using a web browser.

2.	 On receiving the request, the server redirects the browser to https://
twitter.com using the HTTP code 302.

3.	 The end user's browser connects to https://twitter.com and, in response,
the server provides the certificate containing the digital signature to the end
user's browser.

4.	 The end user's browser receives this certificate and sends it to a trusted
Certificate Authority (CA) for verification.

5.	 Once the certificate gets verified all the way to the root CA, an encrypted
communication is established between the end user's browser and the
application hosting server.

Secure HTTP communication

http://twitter.com
http://twitter.com
https://twitter.com
https://twitter.com
https://twitter.com

Chapter 6

[125]

Although SSL ensures security in terms of encryption and web
application authenticity, it does not safeguard against phishing and
other attacks. Professional hackers can decrypt information sent
using HTTPS.

Now, after going over the basics of SSL, let's implement it for our sample OTRS
project. We don't need to implement SSL for all microservices. All microservices
will be accessed using our proxy or edge server; Zuul-server by the external
environment, except our new microservice, security-service, which we will introduce
in this chapter for authentication and authorization.

First, we'll set up SSL in edge server. We need to have the keystore that is required
for enabling SSL in embedded Tomcat. We'll use the self-signed certificate for
demonstration. We'll use Java keytool to generate the keystore using the following
command. You can use any other tool also:

keytool -genkey -keyalg RSA -alias selfsigned -keystore keystore.jks -ext
san=dns:localhost -storepass password -validity 365 -keysize 2048

It asks for information such as name, address details, organization, and so on (see the
following screenshot):

The keytool generates keys

Securing Microservices

[126]

Be aware of the following points to ensure the proper functioning of self-signed
certificates:

•	 Use –ext to define Subject Alternative Names (SAN). You can also use
IP (for example, san=ip:190.19.0.11). Earlier, use of the hostname of
the machine, where application deployment takes place was being used
as most common name (CN). It prevents the java.security.cert.
CertificateException for No name matching localhost found.

•	 You can use a browser or OpenSSL to download the certificate. Add the
newly generated certificate to the cacerts keystore located at jre/lib/
security/cacerts inside active JDK/JRE home directory by using the
keytool –importcert command. Note that changeit is the default
password for the cacerts keystore. Run the following command:
keytool -importcert -file path/to/.crt -alias <cert alias>
-keystore <JRE/JAVA_HOME>/jre/lib/security/cacerts -storepass
changeit

Self-signed certificates can be used only for development and testing
purposes. The use of these certificates in a production environment
does not provide the required security. Always use the certificates
provided and signed by trusted signing authorities in production
environments. Store your private keys safely.

Now, after putting the generated keystore.jks in the src/main/resources
directory of the OTRS project, along with application.yml, we can update this
information in EdgeServer application.yml as follows:

server:
 ssl:
 key-store: classpath:keystore.jks
 key-store-password: password
 key-password: password
 port: 8765

Rebuild the Zuul-server JAR to use the HTTPS.

The key store file can be stored in the preceding class path in Tomcat
version 7.0.66+ and 8.0.28+. For older versions, you can use the path
of the key store file for the server:ssl:key-store value.

Similarly, you can configure SSL for other microservices.

Chapter 6

[127]

Authentication and authorization
Providing authentication and authorization is de facto for web applications. We'll
discuss authentication and authorization in this section. The new paradigm that
has evolved over the past few years is OAuth. We'll learn and use OAuth 2.0
for implementation. OAuth is an open authorization mechanism, implemented
in every major web application. Web applications can access each other's data
by implementing the OAuth standard. It has become the most popular way to
authenticate oneself for various web applications. Like on www.quora.com, you
can register, and login using your Google or Twitter login IDs. It is also more user
friendly, as client applications (for example, www.quora.com) don't need to store the
user's passwords. The end user does not need to remember one more user ID and
password.

OAuth 2.0 example usage

www.quora.com
www.quora.com

Securing Microservices

[128]

OAuth 2.0
The Internet Engineering Task Force (IETF) governs the standards and
specifications of OAuth. OAuth 1.0a was the most recent version before OAuth 2.0
that was having a fix for session-fixation security flaw in the OAuth 1.0. OAuth 1.0
and 1.0a were very different from OAuth 2.0. OAuth 1.0 relies on security certificates
and channel binding. OAuth 2.0 does not support security certification and channel
binding. It works completely on Transport Security Layer (TSL). Therefore, OAuth
2.0 does not provide backward compatibility.

Usage of OAuth
•	 As discussed, it can be used for authentication. You might have seen it in

various applications, displaying messages such as sign in using Facebook
or sign in using Twitter.

•	 Applications can use it to read data from other applications, such as by
integrating a Facebook widget into the application, or having a Twitter
feed on your blog.

•	 Or, the opposite of the previous point can be true: you enable other
applications to access the end user's data.

OAuth 2.0 specification – concise details
We'll try to discuss and understand the OAuth 2.0 specifications in a concise manner.
Let's first see how signing in using Twitter works.

Please note that the process mentioned here was used at the time of writing. It may
change in future. However, this process describes one of the OAuth 2.0 processes
properly:

1.	 The user visits the Quora home page. It shows various login options. We'll
explore the process of the Continue with Twitter link.

2.	 When the user clicks on the Continue with Twitter link, Quora opens a
new window (in Chrome) that redirects the user to the www.twitter.com
application. During this process few web applications redirect the user to
the same opened tab/window.

3.	 In this new window/tab, the user signs in to www.twitter.com with their
credentials.

4.	 If the user has not authorized the Quora application to use their data earlier,
Twitter asks for the user's permission to authorize Quora to access the user's
information. If the user has already authorized Quora, then this step is skipped.

www.twitter.com
www.twitter.com

Chapter 6

[129]

5.	 After proper authentication, Twitter redirects the user to Quora's redirect
URI with an authentication code.

6.	 Quora sends the client ID, client secret token, and authentication code (sent
by Twitter in step 5) to Twitter when Quora redirect URI entered in the
browser.

7.	 After validating these parameters, Twitter sends the access token to Quora.
8.	 The user is logged in to Quora on successful retrieval of the access token.
9.	 Quora may use this access token to retrieve user information from Quora.

You must be wondering how Twitter got Quora's redirect URI, client ID, and secret
token. Quora works as a client application and Twitter as an authorization server.
Quora, as a client, registered on Twitter by using Twitter's OAuth implementation
to use resource owner (end user) information. Quora provides a redirect URI at
the time of registration. Twitter provides the client ID and secret token to Quora. It
works this way. In OAuth 2.0, user information is known as user resources. Twitter
provides a resource server and an authorization server. We'll discuss more of these
OAuth terms in the next sections.

OAuth 2.0 example process for signing in with Twitter

Securing Microservices

[130]

OAuth 2.0 roles
There are four roles defined in the OAuth 2.0 specifications:

•	 Resource owner
•	 Resource server
•	 Client
•	 Authorization server

OAuth 2.0 roles

Resource owner
For the Quora sign in using Twitter example, the Twitter user was the resource
owner. The resource owner is an entity that owns the protected resources (for
example user handle, tweets and so on) that are to be shared. This entity can be an
application or a person. We call this entity the resource owner because it can only
grant access to its resources. Specification also defines, when resource owner is a
person, it is referred to as an end user.

Chapter 6

[131]

Resource server
The resource server hosts the protected resources. It should be capable of serving the
access requests to these resources using access tokens. For the Quora sign in using
Twitter example, Twitter is the resource server.

Client
For the Quora sign in using Twitter example, Quora is the client. The client is the
application that makes access requests for protected resources to the resource server
on behalf of the resource owner.

Authorization server
The authorization server provides different tokens to the client application, such
as access tokens or refresh tokens, only after the resource owner authenticates
themselves.

OAuth 2.0 does not provide any specifications for interactions between the resource
server and the authorization server. Therefore, the authorization server and resource
server can be on the same server, or can be on a separate one.

A single authorization server can also be used to issue access tokens for multiple
resource servers.

OAuth 2.0 client registration
The client that communicates with the authorization server to obtain the access key
for a resource should first be registered with the authorization server. The OAuth 2.0
specification does not specify the way a client registers with the authorization server.
Registration does not require direct communication between the client and the
authorization server. Registration can be done using self-issued or third-party-issued
assertions. The authorization server obtains the required client properties using one
of these assertions. Let's see what the client properties are:

•	 Client type (discussed in the next section).
•	 Client redirect URI, as we discussed in the Quora sign in using Twitter

example. This is one of the endpoints used for OAuth 2.0. We will discuss
other endpoints in the Endpoints section.

•	 Any other information required by the authorization server, for example
client name, description, logo image, contact details, acceptance of legal
terms and conditions, and so on.

Securing Microservices

[132]

Client types
There are two types of client described by the specification, based on their ability
to maintain the confidentiality of client credentials: confidential and public. Client
credentials are secret tokens issued by the authorization server to clients in order to
communicate with them.

Confidential client type
This is a client application that keeps passwords and other credentials securely
or maintains them confidentially. In the Quora sign in using Twitter example, the
Quora app server is secure and has restricted access implementation. Therefore, it is
of the confidential client type. Only the Quora app administrator has access to client
credentials.

Public client type
These are client applications that do not keep passwords and other credentials
securely or maintain them confidentially. Any native app on mobile or desktop, or
an app that runs on browser, are perfect examples of the public client type, as these
keep client credentials embedded inside them. Hackers can crack these apps and the
client credentials can be revealed.

A client can be a distributed component-based application, for example, it could
have both a web browser component and a server-side component. In this case,
both components will have different client types and security contexts. Such a client
should register each component as a separate client if the authorization server does
not support such clients.

Based on the OAuth 2.0 client types, a client can have the following profiles:

•	 Web application
•	 User agent-based application
•	 Native application

Chapter 6

[133]

Web application
The Quora web application used in the Quora sign in using Twitter example
is a perfect example of an OAuth 2.0 web application client profile. Quora is a
confidential client running on a web server. The resource owner (end user) accesses
the Quora application (OAuth 2.0 client) on the browser (user agent) using a HTML
user interface on his device (desktop/tablet/cell phone). The resource owner cannot
access the client (Quora OAuth 2.0 client) credentials and access tokens, as these are
stored on the web server. You can see this behavior in the diagram of the OAuth 2.0
sample flow. See steps 6 to 8 in the following figure:

OAuth 2.0 client web application profile

Securing Microservices

[134]

User agent-based application
User agent-based applications are of the public client type. Here, though, the
application resides in the web server, but the resource owner downloads it on the
user agent (for example, a web browser) and then executes the application. Here, the
downloaded application that resides in the user agent on the resource owner's device
communicates with the authorization server. The resource owner can access the
client credentials and access tokens. A gaming application is a good example of such
an application profile.

OAuth 2.0 client user agent application profile

Native application
Native applications are similar to user agent-based applications, except these are
installed on the resource owner's device and execute natively, instead of being
downloaded from the web server, and then executes inside the user agent. Many
native clients (mobile apps) you download on your mobile are of the native
application type. Here, the platform makes sure that other application on the device
do not access the credentials and access tokens of other applications. In addition,
native applications should not share client credentials and OAuth tokens with
servers that communicate with native applications.

Chapter 6

[135]

OAuth 2.0 client native application profile

Client identifier
It is the authorization server's responsibility to provide a unique identifier to the
registered client. This client identifier is a string representation of the information
provided by the registered client. The authorization server needs to make sure that
this identifier is unique. The authorization server should not use it on its own for
authentication.

The OAuth 2.0 specification does not specify the size of the client identifier. The
authorization server can set the size, and it should document the size of the client
identifier it issues.

Client authentication
The authorization server should authenticate the client based on their client type.
The authorization server should determine the authentication method that suits and
meets security requirements. It should only use one authentication method in each
request.

Typically, the authorization server uses a set of client credentials, such as the client
password and some key tokens, to authenticate confidential clients.

Securing Microservices

[136]

The authorization server may establish a client authentication method with public
clients. However, it must not rely on this authentication method to identify the client,
for security reasons.

A client possessing a client password can use basic HTTP authentication. OAuth 2.0
does not recommend sending client credentials in the request body. It recommends
using TLS and brute force attack protection on endpoints required for authentication.

OAuth 2.0 protocol endpoints
An endpoint is nothing but a URI we use for REST or web components such as
Servlet or JSP. OAuth 2.0 defines three types of endpoint. Two are authorization
server endpoints and one is a client endpoint:

•	 Authorization endpoint (authorization server endpoint)
•	 Token endpoint (authorization server endpoint)
•	 Redirection endpoint (client endpoint)

Authorization endpoint
This endpoint is responsible for verifying the identity of the resource owner and,
once verified, obtaining the authorization grant. We'll discuss the authorization grant
in the next section.

The authorization server require TLS for the authorization endpoint. The endpoint
URI must not include the fragment component. The authorization endpoint must
support the HTTP GET method.

The specification does not specify the following:

•	 The way the authorization server authenticates the client.
•	 How the client will receive the authorization endpoint URI. Normally,

documentation contains the authorization endpoint URI, or the client
obtains it at the time of registration.

Token endpoint
The client calls the token endpoint to receive the access token by sending the
authorization grant or refresh token. The token endpoint is used by all authorization
grants except an implicit grant.

Like the authorization endpoint, the token endpoint also requires TLS. The client
must use the HTTP POST method to make the request to the token endpoint.

Chapter 6

[137]

Like the authorization endpoint, the specification does not specify how the client will
receive the token endpoint URI.

Redirection endpoint
The authorization server redirects the resource owner's user agent (for example,
a web browser) back to the client using the redirection endpoint, once the
authorization endpoint's interactions are completed between the resource owner and
the authorization server. The client provides the redirection endpoint at the time of
registration. The redirection endpoint must be an absolute URI and not contain a
fragment component.

OAuth 2.0 endpoints

Securing Microservices

[138]

OAuth 2.0 grant types
The client requests an access token from the authorization server, based on the
obtained authorization from the resource owner. The resource owner gives
authorization in the form of an authorization grant. OAuth 2.0 defines four types of
authorization grant:

•	 Authorization code grant
•	 Implicit grant
•	 Resource owner password credentials grant
•	 Client credentials grant

OAuth 2.0 also provides an extension mechanism to define additional grant types.
You can explore this in the official OAuth 2.0 specifications.

Authorization code grant
The first sample flow that we discussed in the OAuth 2.0 example flow for signing
in with Twitter depicts an authorization code grant. We'll add a few more steps for
the complete flow. As you know, after the eighth step, the end user logs in to the
Quora application. Let's assume the user is logging in to Quora for the first time and
requests their Quora profile page:

1.	 After logging in, the Quora user clicks on their Quora profile page.
2.	 The OAuth client Quora requests the Quora user's (resource owner)

resources (for example, Twitter profile photo and so on) from the Twitter
resource server and sends the access token received in the previous step.

3.	 The Twitter resource server verifies the access token using the Twitter
authorization server.

4.	 After successful validation of the access token, the Twitter resource server
provides the requested resources to Quora (OAuth client).

5.	 Quora uses these resources and displays the Quora profile page of the
end user.

Authorization code requests and responses
If you looked at all the steps (a total of 13) of the authorization code flow, you can see
that there are a total of two requests made by the client to the authorization server,
and the authorization server in reply provides two responses: one request-response
for the authentication token and one request-response for the access token.

Let's discuss the parameters used for each of these requests and responses.

Chapter 6

[139]

OAuth 2.0 authorization code grant flow

Securing Microservices

[140]

The authorization request (step 4) to the authorization endpoint URI:

Parameter Required /
Optional

Description

response_
type

Required code (this value must be used).

client_id Required It represents the ID issued by the authorization server
to the client at the time of registration.

redirect_
uri

Optional It represents the redirect URI given by the client at the
time of registration.

scope Optional The scope of the request. If not provided, then the
authorization server provides the scope based on the
defined policy.

state Recommended The client uses this parameter to maintain the client
state between the requests and callback (from the
authorization server). The specification recommends it
to protect against cross site request forgery attacks.

Authorization response (step 5):

Parameter Required /
Optional

Description

code Required Code (authorization code) generated by the
authorization server.
Code should be expired after it is generated; the
maximum recommended lifetime is 10 minutes.
The client must not use the code more than once.
If the client uses it more than once, then the request
must be denied and all previous tokens issued based on
the code should be revoked.
Code is bound to the client ID and redirect URI.

state Required It represents the ID issued by the authorization server
to the client at the time of registration.

Token request (step 7) to token endpoint URI:

Parameter Required /
Optional

Description

grant_type Required authorization_code (this value must be used).

Chapter 6

[141]

Parameter Required /
Optional

Description

code Required Code (authorization code) received from the
authorization server.

redirect_
uri

Required Required if it was included in the authorization code
request and the values should match.

client_id Required It represents the ID issued by the authorization server
to the client at the time of registration.

Token response (step 8):

Parameter Required /
Optional

Description

access_
token

Required The access token issued by the authorization server.

token_type Required The token type defined by the authorization server.
Based on this, the client can utilize the access token.
For example, bearer or mac.

refresh_
token

Optional This token can be used by the client to get a new
access token using the same authorization grant.

expires_in Recommended Denotes the lifetime of the access token in seconds.
A value of 600 denotes 10 minutes of lifetime for the
access token. If this parameter is not provided in the
response, then the document should highlight the
lifetime of the access token.

scope Optional/
Required

Optional if identical to the scope requested by the
client.
Required if the access token scope is different from
the one the client provided in their request to inform
the client about the actual scope of the access token
granted.
If the client does not provide the scope while
requesting the access token, then the authorization
server should provide the default scope, or deny the
request, indicating the invalid scope.

Securing Microservices

[142]

Error response:

Parameter Required /
Optional

Description

error Required One of the error codes defined in the specification,
for example, unauthorized_client, invalid_
scope.

error_
description

Optional Short description of the error.

error_uri Optional The URI of the error page describing the error.

An additional error parameter state is also sent in the error response if the state was
passed in the client authorization request.

Implicit grant
The first sample flow that we discussed in the OAuth 2.0 example flow for signing
in with Twitter depicts the authorization code grant. We'll add a few more steps
for its complete flow. As you know after eighth steps, end user logs in to the Quora
application. Let's assume user is logging in first time on Quora and requests for its
Quora profile page:

1.	 Step 9: After login, the Quora user clicks on their Quora profile page.
2.	 Step 10: The OAuth client Quora requests the Quora user's (resource owner)

resources (for example, Twitter profile photo and so on) from the Twitter
resource server and sends the access token received in the previous step.

3.	 Step 11: The Twitter resource server verifies the access token using the
Twitter authorization server.

4.	 Step 12: After successful validation of the access token, the Twitter resource
server provides the requested resources to Quora (OAuth client).

5.	 Step 13: Quora uses these resources and displays the Quora profile page of
the end user.

Implicit grant requests and responses
If you looked at all the steps (a total of 13) of the authorization code flow, you can see
that there are total of two request made by the client to the authorization server, and
the authorization server in reply provides two responses: one request-response for
the authentication token and one request-response for the access token.

Chapter 6

[143]

Let's discuss the parameters used for each of these requests and responses.

Authorization request to the authorization endpoint URI:

Parameter Required /
Optional

Description

response_
type

Required Token (this value must be used).

client_id Required It represents the ID issued by the authorization server
to the client at the time of registration.

redirect_
uri

Optional It represents the redirect URI given by the client at the
time of registration.

scope Optional The scope of the request. If not provided, then the
authorization server provides the scope based on the
defined policy.

state Recommended The client uses this parameter to maintain the client
state between the requests and the callback (from the
authorization server). The specification recommends it
to protect against cross site request forgery attacks.

Access token response:

Parameter Required /
Optional

Description

access_
token

Required The access token issued by the authorization server.

token_type Required The token type defined by the authorization server.
Based on this, the client can utilize the access token.
For example, bearer or mac.

refresh_
token

Optional This token can be used by the client to get a new access
token using the same authorization grant.

expires_in Recommended Denotes the lifetime of the access token in seconds.
A value of 600 denotes 10 minutes of lifetime for the
access token. If this parameter is not provided in the
response, then the document should highlight the
lifetime of the access token.

Securing Microservices

[144]

Parameter Required /
Optional

Description

scope Optional/
Required

Optional if identical to the scope requested by the
client.
Required if the access token scope is different from
the one the client provided in the request to inform
the client about the actual scope of the access token
granted.
If the client does not provide the scope while
requesting the access token, then the authorization
server should provide the default scope, or deny the
request, indicating the invalid scope.

State Optional/
Requried

Required if the state was passed in the client
authorization request.

Error response:

Parameter Required /
Optional

Description

error Required One of the error codes defined in the specification, for
example, unauthorized_client, invalid_scope.

error_
description

Optional Short description of the error.

error_uri Optional The URI of the error page describing the error.

An additional error parameter state is also sent in the error response if the state was
passed in the client authorization request.

Resource owner password credentials grant
The first sample flow that we discussed in the OAuth 2.0 example flow for signing
in with Twitter depicts the authorization code grant. We'll add a few more steps
for its complete flow. As you know, after the eighth step, the end user logs in to the
Quora application. Let's assume the user is logging in to Quora for the first time and
requests their Quora profile page:

1.	 Step 9: After login, the Quora user clicks on their Quora profile page.
2.	 Step 10: The OAuth client Quora requests the Quora user's (resource owner)

resources (for example, Twitter profile photo and so on) from the Twitter
resource server and sends the access token received in the previous step.

Chapter 6

[145]

3.	 Step 11: The Twitter resource server verifies the access token using the
Twitter authorization server.

4.	 Step 12: After successful validation of the access token, the Twitter resource
server provides the requested resources to Quora (OAuth client).

5.	 Step 13: Quora uses these resources and displays the Quora profile page of
the end user.

Resource owner password credentials grant requests and responses.

As seen in the previous section, in all the steps (a total of 13) of the authorization
code flow, you can see that there are total of two requests made by the client to the
authorization server, and the authorization server in reply provides two responses:
one request-response for the authentication token and one request-response for the
access token.

Let's discuss the parameters used for each of these requests and responses.

Access token request to the token endpoint URI:

Parameter Required /
Optional

Description

grant_type Required Password (this value must be used).

username Required Username of the resource owner.

password Required Password of the resource owner.

scope Optional The scope of the request. If not provided, then the
authorization server provides the scope based on the
defined policy.

Access token response (step 8):

Parameter Required /
Optional

Description

access_
token

Required The access token issued by the authorization server.

token_type Required The token type defined by the authorization server.
Based on this, the client can utilize the access token.
For example, bearer or mac.

refresh_
token

Optional This token can be used by the client to get a new access
token using the same authorization grant.

Securing Microservices

[146]

Parameter Required /
Optional

Description

expires_in Recommended Denotes the lifetime of the access token in seconds.
A value of 600 denotes 10 minutes of lifetime for the
access token. If this parameter is not provided in the
response, then the document should highlight the
lifetime of the access token.

Optional
parameter

Optional Additional parameter.

Client credentials grant
The first sample flow that we discussed in the OAuth 2.0 example flow for signing
in with Twitter depicts the authorization code grant. We'll add a few more steps
for its complete flow. As you know, after the eighth step, the end user logs in to the
Quora application. Let's assume the user is logging in to Quora for the first time and
requests their Quora profile page:

1.	 Step 9: After login, the Quora user clicks on their Quora profile page.
2.	 Step 10: The OAuth client Quora requests the Quora user's (resource owner)

resources (for example, Twitter profile photo and so on) from the Twitter
resource server and sends the access token received in the previous step.

3.	 Step 11: The Twitter resource server verifies the access token using the
Twitter authorization server.

4.	 Step 12: After successful validation of the access token, the Twitter resource
server provides the requested resources to Quora (OAuth client).

5.	 Step 13: Quora uses these resources and displays the Quora profile page of
the end user.

Client credentials grant requests and responses.

If you looked at all the steps (a total of 13) of the authorization code flow, you can
see that there are total of two requests made by the client to the authorization server,
and the authorization server in reply provides two responses: one request-response
for the authentication token and one request-response for the access token.

Let's discuss the parameters used for each of these requests and responses.

Chapter 6

[147]

Access token request to the token endpoint URI:

Parameter Required /
Optional

Description

grant_type Required client_credentials (this value must be used).

scope Optional The scope of the request. If not provided, then the
authorization server provides the scope based on the
defined policy.

Access token response:

Parameter Required /
Optional

Description

access_
token

Required The access token issued by the authorization server.

token_type Required The token type defined by the authorization server.
Based on this, the client can utilize the access token.
For example, bearer or mac.

expires_in Recommended Denotes the lifetime of the access token in seconds.
A value of 600 denotes 10 minutes of lifetime for the
access token. If this parameter is not provided in the
response, then the document should highlight the
lifetime of the access token.

OAuth implementation using Spring
Security
OAuth 2.0 is a way of securing APIs. Spring Security provides Spring Cloud
Security and Spring Cloud OAuth2 components for implementing the rant flows
we discussed above.

We'll create one more service, security-service, which will control authentication
and authorization.

Create a new Maven project and follow these steps:

1.	 Add the Spring Security and Spring Security OAuth2 dependencies
in pom.xml:
 <dependency>
 <groupId>org.springframework.cloud</groupId>

Securing Microservices

[148]

 <artifactId>spring-cloud-starter-security</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-oauth2</artifactId>
</dependency>

2.	 Use the @EnableResourceServer annotation in your application
class. This will allow this application to work as a resource server.
@EnableAuthorizationServer is another annotation we will use
to enable the authorization server as per OAuth 2.0 specifications:
@SpringBootApplication
@RestController
@EnableResourceServer
public class SecurityApp {

 @RequestMapping("/user")
 public Principal user(Principal user) {
 return user;
 }

 public static void main(String[] args) {
 SpringApplication.run(SecurityApp.class, args);
 }

 @Configuration
 @EnableAuthorizationServer
 protected static class OAuth2Config extends
AuthorizationServerConfigurerAdapter {

 @Autowired
 private AuthenticationManager authenticationManager;

 @Override
 public void configure(AuthorizationServerEndpointsConfigur
er endpointsConfigurer) throws Exception {
 endpointsConfigurer.authenticationManager(authenticati
onManager);
 }

 @Override
 public void configure(ClientDetailsServiceConfigurer
clientDetailsServiceConfigurer) throws Exception {
 // Using hardcoded inmemory mechanism because it is just an
example

Chapter 6

[149]

 clientDetailsServiceConfigurer.inMemory()
 .withClient("acme")
 .secret("acmesecret")
 .authorizedGrantTypes("authorization_code", "refresh_
token", "implicit", "password", "client_credentials")
 .scopes("webshop");
 }
 }
}

3.	 Update the security-service configuration in application.yml, as shown in
the following code:

°° server.contextPath: It denotes the context path.
°° security.user.password: We'll use the hardcoded password for

this demonstration. You can re-configure it for real use:
application.yml
info:
 component:
 Security Server

server:
 port: 9001
 ssl:
 key-store: classpath:keystore.jks
 key-store-password: password
 key-password: password
 contextPath: /auth

security:
 user:
 password: password

logging:
 level:
 org.springframework.security: DEBUG

Now we have our security server in place, we'll expose our APIs using the new
microservice api-service, which will be used for communicating with external
applications and UIs.

Securing Microservices

[150]

Create a new Maven project and follow these steps:

1.	 Add the Spring Security and Spring Security OAuth2 dependencies
in pom.xml:
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-undertow</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

<dependency>
 <groupId>com.packtpub.mmj</groupId>
 <artifactId>online-table-reservation-common</artifactId>
 <version>PACKT-SNAPSHOT</version>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-security</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-oauth2</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-hystrix</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-bus-amqp</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-rabbit</artifactId>
</dependency>
<dependency>
 <groupId>org.apache.httpcomponents</groupId>

Chapter 6

[151]

 <artifactId>httpclient</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
 <!-- Testing starter -->
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
</dependency>

2.	 Use the @EnableResourceServer annotation in your application class.
This will allow this application to work as a resource server:
@SpringBootApplication
@EnableDiscoveryClient
@EnableCircuitBreaker
@EnableResourceServer
@ComponentScan({"com.packtpub.mmj.api.service", "com.packtpub.mmj.
common"})
public class ApiApp {

 private static final Logger LOG = LoggerFactory.
getLogger(ApiApp.class);

 static {
 // for localhost testing only
 LOG.warn("Will now disable hostname check in SSL, only to
be used during development");
 HttpsURLConnection.setDefaultHostnameVerifier((hostname,
sslSession) -> true);
 }

 @Value("${app.rabbitmq.host:localhost}")
 String rabbitMqHost;

 @Bean
 public ConnectionFactory connectionFactory() {
 LOG.info("Create RabbitMqCF for host: {}", rabbitMqHost);
 CachingConnectionFactory connectionFactory = new CachingCo
nnectionFactory(rabbitMqHost);
 return connectionFactory;
 }

 public static void main(String[] args) {

Securing Microservices

[152]

 LOG.info("Register MDCHystrixConcurrencyStrategy");
 HystrixPlugins.getInstance().
registerConcurrencyStrategy(new MDCHystrixConcurrencyStrategy());
 SpringApplication.run(ApiApp.class, args);
 }
}

3.	 Update the api-service configuration in application.yml, as shown in the
following code:

°° security.oauth2.resource.userInfoUri: It denotes the security
service user URI.
application.yml
info:
 component: API Service

spring:
 application:
 name: api-service
 aop:
 proxyTargetClass: true

server:
 port: 7771

security:
 oauth2:
 resource:
 userInfoUri: https://localhost:9001/auth/user

management:
 security:
 enabled: false
Other properties like Eureka, Logging and so on

Now we have our security server in place, we'll expose our APIs using the new
microservice api-service, which will be used for communicating with external
applications and UIs.

Now let's test and explore how it works for different OAuth 2.0 grant types.

We'll make use of the postman extension to the Chrome browser to
test the different flows.

Chapter 6

[153]

Authorization code grant
We will enter the following URL in our browser. A request for authorization code is
as follows:

https://localhost:9001/auth/oauth/authorize?response_
type=code&client_id=client&redirect_uri=http://localhost:7771/1&scope
=apiAccess&state=1234

Here, we provide the client ID (hardcoded client is by default we have registered in
our security service), redirect URI, scope (hardcoded value apiAccess in security
service) and state. You must be wondering about the state parameter. It contains the
random number that we re-validate in response to prevent cross site request forgery.

If the resource owner (user) is not already authenticated, it will ask for the user name
and password. Provide user as the username and password as the password; we
have hardcoded these values in security service.

Once the login is successful, it will ask to provide your (resource owner) approval:

OAuth 2.0 authorization code grant – resource grant approval

Select Approve and click on Authorize. This action will redirect the application to
http://localhost:7771/1?code=o8t4fi&state=1234.

As you can see, it has returned the authorization code and state.

Securing Microservices

[154]

Now, we'll use this code to retrieve the access code. We'll use the postman Chrome
extension. First we'll add the authorization header using Username as client and
Password as clientsecret, as shown in the following screenshot:

OAuth 2.0 authorization code grant – access token request – adding the authentication

This will add the Authorization header to the request with the value Basic
Y2xpZW50OmNsaWVudHNlY3JldA==.

Now, we'll add a few other parameters to the request, as shown in the following
screenshot, and then submit the request:

Chapter 6

[155]

OAuth 2.0 authorization code grant – access token request and response

This returns the following response, as per the OAuth 2.0 specification:

{
 "access_token": "6a233475-a5db-476d-8e31-d0aeb2d003e9",
 "token_type": "bearer",
 "refresh_token": "8d91b9be-7f2b-44d5-b14b-dbbdccd848b8",
 "expires_in": 43199,
 "scope": "apiAccess"
}

Now we can use this information to access the resources owned by the resource
owner. For example, if https://localhost:8765/api/restaurant/1 represents
the restaurant with the ID of 1, then it should return the respective restaurant details.

Without the access token, if we enter the URL, it returns the error Unauthorized,
with the message Full authentication is required to access this
resource.

Securing Microservices

[156]

Now, let's access this URL with the access token, as shown in the following screenshot:

OAuth 2.0 authorization code grant – using the access token for API access

As you can see, we have added the Authorization header with the access token.

Now, we will explore implicit grant implementation.

Implicit grant
Implicit grants are very similar to authorization code grants, except for the code
grant step. If you remove the first step—the code grant step (where the client
application receives the authorization token from the authorization server)—from
the authorization code grant, the rest of the steps are the same. Let's check it out.

Enter the following URL and parameters in the browser and press Enter. Also, make
sure to add basic authentication, with client as the username and password as the
password if asked:

https://localhost:9001/auth/oauth/authorize?response_
type=token&redirect_uri=https://localhost:8765&scope=apiAccess&state=
553344&client_id=client

Here, we are calling the authorization endpoint with the following request
parameters: Response type, client ID, redirect URI, scope, and state.

Chapter 6

[157]

When the request is successful, the browser will be redirected to the following URL
with new request parameters and values:

https://localhost:8765/#access_token=6a233475-a5db-476d-8e31-
d0aeb2d003e9&token_type=bearer&state=553344&expires_in=19592

Here, we receive the access_token, token_type, state, and expiry duration for the
token. Now, we can make use of this access token to access the APIs, as used in the
authorization code grant.

Resource owner password credential grant
In this grant, we provide the username and password as parameters when
requesting the access token, along with the grant_type, client, and scope
parameters. We also need to use the client ID and secret to authenticate the request.
These grant flows use client applications in place of browsers, and are normally used
in mobile and desktop apps.

In the following postman tool screenshot, the authorization header has already been
added using basic authentication with client_id and password:

OAuth 2.0 resource owner password credentials grant – access token request and response

Securing Microservices

[158]

Once the access token is received by the client, it can be used in a similar way to how
it is used in the authorization code grant.

Client credentials grant
In this flow, the client provides their own credentials and retrieves the access token.
It does not use the resource owner's credentials and permissions.

As you can see in the following screenshot, we directly enter the token endpoint with
only two parameters: grant_type and scope. The authorization header is added
using client_id and client secret:

OAuth 2.0 client credentials grant – access token request and response

You can use the access token similarly as it is explained for the authorization
code grant.

Chapter 6

[159]

References
For more information, you refer to these links:

•	 RESTful Java Web Services Security, Packt Publishing, by René Enríquez, Andrés
Salazar C: https://www.packtpub.com/application-development/
restful-java-web-services-security

•	 Spring Security [Video], Packt Publishing: https://www.packtpub.com/
application-development/spring-security-video

•	 The OAuth 2.0 Authorization Framework: https://tools.ietf.org/html/
rfc6749

•	 Spring Security: http://projects.spring.io/spring-security
•	 Spring OAuth2: http://projects.spring.io/spring-security-oauth/

Summary
In this chapter, we have learned how important it is to have the TLS layer or HTTPS
in place for all web traffic. We have added a self-signed certificate to our sample
application. I would like to reiterate that, for a production application, you must
use the certificates offered by certificate signing authorities. We have also explored
the fundamentals of OAuth 2.0 and various OAuth 2.0 grant flows. Different OAuth
2.0 grant flows are implemented using Spring Security and OAuth 2.0. In the next
chapter, we'll implement the UI for the sample OTRS project and will explore how
all the components work together.

https://www.packtpub.com/application-development/restful-java-web-services-security
https://www.packtpub.com/application-development/restful-java-web-services-security
https://www.packtpub.com/application-development/spring-security-video
https://www.packtpub.com/application-development/spring-security-video
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
http://projects.spring.io/spring-security
http://projects.spring.io/spring-security-oauth/

[161]

Consuming Services Using a
Microservice Web App

Now, after developing the microservices, it would be interesting to see how
the services offered by the Online Table Reservation System (OTRS) could be
consumed by web or mobile applications. We will develop the web application
(UI) using AngularJS/bootstrap to build the prototype of the web application.
This sample application will display the data and flow of this sample project – a
small utility project. This web application will also be a sample project and will
run independently. Earlier, web applications were being developed in single web
archives (files with .war extensions) that contain both UI and server-side code. The
reason for doing so was pretty simple as UI was also developed using Java with
JSPs, servlets, JSF, and so on. Nowadays, UIs are being developed independently
using JavaScript. Therefore, these UI apps also deploy as a single microservice.
In this chapter, we'll explore how these independent UI applications are being
developed. We will develop and implement the OTRS sample app without login
and authorization flow. We'll deploy a very limited functionality implementation
and cover the high level AngularJS concepts. For more information on AngularJS,
you can refer to AngularJS by Example, Chandermani, Packt publishing.

In this chapter, we will cover the following topics:

•	 AngularJS framework overview
•	 Development of OTRS features
•	 Setting up a web app (UI)

Consuming Services Using a Microservice Web App

[162]

AngularJS framework overview
Now since we are ready with our HTML5 web app setup, we can go through the
basics of AngularJS. This will help us to understand the AngularJS code. This section
depicts the high level of understanding that you can utilize to understand the sample
app and explore further using AngularJS documentation or by referring to other
Packt publications.

AngularJS is a client side JavaScript framework. It is flexible enough to be used as
a MVC (Model View Controller) or MVVM (Model-View-ViewModel). It also
provides built-in services like $http or $log using a dependency injection pattern.

MVC
MVC is well-known design pattern. Struts and Spring MVC are popular examples.
Let's see how they fit in the JavaScript world:

•	 Model: Models are JavaScript objects that contain the application data. They
also represent the state of the application.

•	 View: View is a presentation layer that consists of HTML files. Here, you can
show the data from models and provide the interactive interface to the user.

•	 Controller: You can define the controller in JavaScript and it contains the
application logic.

MVVM
MVVM is an architecture design pattern that specifically targets the UI development.
MVVM is designed to make two-way data binding easier. Two-way data binding
provides the synchronization between the Model and View. When the Model (data)
changes, it reflects immediately on the View. Similarly, when the user changes the
data on the View, it reflects on the Model.

•	 Model: This is very similar to MVC and contains the business logic and data.
•	 View: Like MVC, it contains the presentation logic or user interface.
•	 ViewModel: ViewModel contains the data binding between the View and

Model. Therefore, it is an interface between the View and Model.

Chapter 7

[163]

Modules
A module is the first thing we define for any AngularJS application. A module is a
container that contains the different parts of the app such as controllers, services,
filters, and so on. An AngularJS app can be written in a single module or multiple
modules. An AngularJS module can contain other modules also.

Many other JavaScript frameworks use the main method for instantiating and wiring
the different parts of the app. AngularJS does not have the main method. It uses the
module as an entry point due to following reasons:

•	 Modularity: You can divide and create your application feature-wise or with
reusable components.

•	 Simplicity: You might have come across complex and large application
code, which makes maintenance and enhancement a headache. No more,
AngularJS makes code simple, readable, and easy to understand.

•	 Testing: It makes unit testing and end-to-end testing easier as you can
override configuration and load only those modules which are required.

Each AngularJS app needs to have a single module for bootstrapping the AngularJS
app. Bootstrapping our app requires the following three parts:

•	 App module: A JavaScript file (app.js) that contains the AngularJS module
as shown:
var otrsApp = AngularJS.module('otrsApp', [])
// [] contains the reference to other modules

•	 Loading Angular library and app module: An index.html file containing
the reference to the JavaScript file with other AngularJS libraries:
<script type="text/javascript" src="AngularJS/AngularJS.js"/>
<script type="text/javascript" src="scripts/app.js"/></script>

•	 App DOM configuration: This tells the AngularJS location of the DOM
element where bootstrapping should take place. It can be done in either
of two ways:

°° Index.html file that also contains an HTML element (typically
<html>) with the ng-app (AngularJS directive) attribute having
the value given in app.js. AngularJS directives are prefixed with
ng (AngularJS): <html lang="en" ng-app="otrsApp" class="no-
js">.

°° Or use this command if you are loading the JavaScript
files asynchronously: AngularJS.bootstrap(document.
documentElement, ['otrsApp']);.

Consuming Services Using a Microservice Web App

[164]

An AngularJS module has two important parts, config() and run(), apart from
other components like controllers, services, filters, and so on.

•	 config() is used for registering and configuring the modules and it only
entertains the providers and constants using $injector. $injector is an
AngularJS service. We'll cover providers and $injector in the next section.
You cannot use instances here. It prevents the use of services before it is fully
configured.

•	 run() is used for executing the code after $injector is created using the
preceding config method. This only entertains the instances and constants.
You cannot use providers here to avoid configuration at run time.

Providers and services
Let's have a look at the following code:

.controller('otrsAppCtrl', function ($injector) {
var log = $injector.get('$log');

$log is an inbuilt AngularJS service that provides the logging API. Here, we are
using another inbuilt service, $injector, that allows us to use the $log service.
$injector is an argument in the controller. AngularJS uses function definitions
and regex to provide the $injector service to a caller, also known as the controller.
These are examples of how AngularJS effectively uses the dependency injection
pattern.

AngularJS heavily uses the dependency injection pattern. AngularJS uses the
injector service ($injector) to instantiate and wire most of the objects we use in our
AngularJS app. This injector creates two types of objects – services and specialized
objects.

For simplification, you can say that we (developers) define services. On the contrary,
specialized objects are AngularJS stuff like controllers, filters, directives, and so on.

AngularJS provides five recipe types that tell the injector how to create service
objects – provider, value, factory, service, and constant.

•	 The provider is the core and most complex recipe type. Other recipes are
synthetic sugar on it. We generally avoid using the provider except when we
need to create reusable code that requires global configuration.

•	 The value and constant recipe types works as their name suggests. Both
cannot have dependencies. Moreover, the difference between them lies with
their usage. You cannot use value service objects in the configuration phase.

Chapter 7

[165]

•	 The factory and service are the most used services types. They are of a
similar type. We use the factory recipe when we want to produce JavaScript
primitives and functions. On the other hand, the service is used when we
want to produce custom defined types.

As we have now some understanding of services, we can say that there are two
common uses of services – organizing code and sharing code across apps. Services are
singleton objects, which are lazily instantiated by the AngularJS service factory. By
now, we have already seen a few of the in-built AngularJS services like $injector,
$log, and so on. AngularJS services are prefixed with the $ symbol.

Scopes
In AngularJS apps, two types of scopes are widely used: $rootScope and $scope:

•	 $rootScope is the top most object in the scope hierarchy and has the global
scope associated with it. That means that any variable you attached to it
will be available everywhere and therefore use of $rootScope should be a
carefully considered decision.

•	 Controllers have $scope as an argument in the callback function. It is used
for binding data from the controller to the view. Its scope is limited to the
use of the controller it is associated with.

Controllers
The controller is defined by the JavaScript constructor function as having a $scope
as an argument. The controller's main purpose is to tie the data to the view. The
controller function is also used for writing business logic – setting up the initial state
of the $scope object and adding the behavior to $scope. The controller signature
looks like the following:

RestModule.controller('RestaurantsCtrl', function ($scope,
restaurantService) {

Here, the controller is a part of RestModule. The name of the controller is
RestaurantCtrl. $scope and restaurantService are passed as arguments.

Consuming Services Using a Microservice Web App

[166]

Filters
The purpose of filters is to format the value of a given expression. In the following
code we have defined the datetime1 filter that takes date as an argument and
changes the value in dd MMM yyyy HH:mm format like 04 Apr 2016 04:13 PM.

.filter('datetime1', function ($filter) {
 return function (argDateTime) {
 if (argDateTime) {
 return $filter('date')(new Date(argDateTime), 'dd MMM yyyy
HH:mm a');
 }
 return "";
 };
});

Directives
As we have seen in the Modules section, AngularJS directives are HTML attributes
with an ng prefix. Some of the popular directives are:

•	 ng-app: This directive defines the AngularJS application
•	 ng-model: This directive binds the HTML form input to data
•	 ng-bind: This directive binds the data to the HTML view
•	 ng-submit: This directive submits the HTML form
•	 ng-repeat: This directive iterates the collection

<div ng-app="">
 <p>Search: <input type="text" ng-model="searchValue"></p>
 <p ng-bind="searchedTerm"></p>
</div>

UI-Router
In single page applications (SPAs), the page only loads once and the user navigates
through different links without page refresh. It is all possible because of routing.
Routing is a way to make SPA navigation feel like a normal site. Therefore, routing is
very important for SPA.

Chapter 7

[167]

The AngularUI team built UI-Router, an AngularJS routing framework. UI-Router
is not a part of core AngularJS. UI-Router not only changes the route URL, but it
also changes the state of the application when the user clicks on any link in the SPA.
Because UI-Router can also make state changes, you can change the view of the
page without changing the URL. This is possible because of the application state
management by UI-Router.

If we consider the SPA as a state machine then the state is a current state of the
application. We will use the attribute ui-sref in a HTML link tag when we create
the route link. The attribute href in the link will be generated from this and point
to certain states of the application which are created in app.js.

We use the ui-view attribute in the HTML div to use UI-Router: for example,
<div ui-view></div>.

Development of OTRS features
As you know, we are developing the SPA. Therefore, once the application loads, you
can perform all the operations without page refresh. All interactions with the server
are performed using AJAX calls. Now, we'll make use of the AngularJS concepts that
we have covered in the first section. We'll cover the following scenarios:

•	 A page that will display a list of restaurants. This will also be our home page.
•	 Search restaurants.
•	 Restaurant details with reservation options.
•	 Login (not from the server, but used for displaying the flow).
•	 Reservation confirmation.

For the home page, we will create index.html and a template that will contain the
restaurant listing in the middle section or the content area.

Home page/restaurant list page
The home page is the main page of any web application. To design the home page,
we are going to use the Angular-UI bootstrap rather than the actual bootstrap.
Angular-UI is an Angular version of the bootstrap. The home page will be divided
into three sections:

•	 The header section will contain the app name, search restaurants form, and
user name at top-right corner.

Consuming Services Using a Microservice Web App

[168]

•	 The content or middle section will contain the restaurant listing which will
have the restaurant name as the link. This link will point to the restaurant
details and reservation page.

•	 The footer section will contain the app name with the copyright mark.

You must be interested in viewing the home page before designing or implementing it.
Therefore, let us first see how it will look like once we have our content ready:

OTRS home page with restaurants listing

Now, to design our home page, we need to add following four files:

•	 index.html: Our main HTML file
•	 app.js: Our main AngularJS module
•	 restaurants.js: The restaurants module that also contains the restaurant

Angular service
•	 restaurants.html: The HTML template that will display the list

of restaurants

Chapter 7

[169]

index.html
First, we'll add the ./app/index.html in our project workspace. The contents of
index.html will be as explained here onwards.

I have added comments in between the code to make the code more
readable and make it easier to understand.

index.html is divided into many parts. We'll discuss a few of the key parts here.
First, we will see how to address old Internet Explorer versions. If you want to target
the Internet Explorer browser versions greater than 8 or IE version 9 onwards, then
we need to add following block that will prevent JavaScript rendering and give the
no-js output to the end-user.

<!--[if lt IE 7]> <html lang="en" ng-app="otrsApp" class="no-js
lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html lang="en" ng-app="otrsApp" class="no-js
lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html lang="en" ng-app="otrsApp" class="no-js
lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html lang="en" ng-app="otrsApp" class="no-js">
<!--<![endif]-->

Then, after adding a few meta tags and the title of the application, we'll also define
the important meta tag viewport. The viewport is used for responsive UI designs.

The width property defined in the content attribute controls the size of the viewport.
It can be set to a specific number of pixels like width = 600 or to the special value
device-width value which is the width of the screen in CSS pixels at a scale of 100%.

The initial-scale property controls the zoom level when the page is first loaded. The
maximum-scale, minimum-scale, and user-scalable properties control how users are
allowed to zoom the page in or out.

 <meta name="viewport" content="width=device-width, initial-
scale=1">

In the next few lines, we'll define the style sheets of our application. We are adding
normalize.css and main.css from HTML5 boilerplate code. We are also adding
our application's customer CSS app.css. Finally, we are adding the bootstrap 3 CSS.
Apart from the customer app.css, other CSS are referenced in it. There is no change
in these CSS files.

<link rel="stylesheet" href="bower_components/html5-boilerplate/dist/
css/normalize.css">

Consuming Services Using a Microservice Web App

[170]

 <link rel="stylesheet" href="bower_components/html5-
boilerplate/dist/css/main.css">
 <link rel="stylesheet" href="public/css/app.css">
 <link data-require="bootstrap-css@*" data-server="3.0.0"
rel="stylesheet" href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/
bootstrap.min.css" />

Then we'll define the scripts using the script tag. We are adding the modernizer,
Angular, Angular-route, and our own developed custom JavaScript file app.js.
We have already discussed Angular and Angular-UI. app.js will be discussed in
the next section.

Modernizer allows web developers to use new CSS3 and HTML5 features while
maintaining a fine level of control over browsers that don't support them. Basically,
modernizer performs the next generation feature detection (checking the availability
of those features) while the page loads in the browser and reports the results. Based
on these results you can detect what are the latest features available in the browser
and based on that you can provide an interface to the end user. If the browser does
not support a few of the features then an alternate flow or UI is provided to the
end user.

We are also adding the bootstrap templates which are written in JavaScript using the
ui-bootstrap-tpls javascript file.

 <script src="bower_components/html5-boilerplate/dist/js/
vendor/modernizr-2.8.3.min.js"></script>
 <script src="bower_components/angular/angular.min.js"></
script>
 <script src="bower_components/angular-route/angular-route.min.
js"></script>
 <script src="app.js"></script>
 <script data-require="ui-bootstrap@0.5.0" data-semver="0.5.0"
src="http://angular-ui.github.io/bootstrap/ui-bootstrap-tpls-
0.6.0.js"></script>

We can also add style to the head tag as shown in the following. This style allows
drop-down menus to work.

 <style>
 div.navbar-collapse.collapse {
 display: block;
 overflow: hidden;
 max-height: 0px;
 -webkit-transition: max-height .3s ease;
 -moz-transition: max-height .3s ease;
 -o-transition: max-height .3s ease;
 transition: max-height .3s ease;

Chapter 7

[171]

 }
 div.navbar-collapse.collapse.in {
 max-height: 2000px;
 }
 </style>

In the body tag we are defining the controller of the application using the
ng-controller attribute. While the page loads, it tells the controller the
name of the application to Angular.

 <body ng-controller="otrsAppCtrl">

Then, we define the header section of the home page. In the header section, we'll
define the application title, Online Table Reservation System. Also, we'll define
the search form that will search the restaurants.

<!-- BEGIN HEADER -->
 <nav class="navbar navbar-default" role="navigation">

 <div class="navbar-header">

 Online Table Reservation System

 </div>
 <div class="collapse navbar-collapse" ng-
class="!navCollapsed && 'in'" ng-click="navCollapsed = true">
 <form class="navbar-form navbar-left" role="search"
ng-submit="search()">
 <div class="form-group">
 <input type="text" id="searchedValue" ng-
model="searchedValue" class="form-control" placeholder="Search
Restaurants">
 </div>
 <button type="submit" class="btn btn-default" ng-
click="">Go</button>
 </form>
 <!-- END HEADER -->

Then, in the next section, the middle section, includes where we actually bind the
different views, marked with actual content comments. The ui-view attribute in div
gets its content dynamically from Angular such as restaurant details, restaurant list,
and so on. We have also added a warning dialog and spinner to the middle section
that will be visible as and when required.

 <div class="clearfix"></div>
 <!-- BEGIN CONTAINER -->

Consuming Services Using a Microservice Web App

[172]

 <div class="page-container container">
 <!-- BEGIN CONTENT -->
 <div class="page-content-wrapper">
 <div class="page-content">
 <!-- BEGIN ACTUAL CONTENT -->
 <div ui-view class="fade-in-up"></div>
 <!-- END ACTUAL CONTENT -->
 </div>
 </div>
 <!-- END CONTENT -->
 </div>
 <!-- loading spinner -->
 <div id="loadingSpinnerId" ng-show="isSpinnerShown()"
style="top:0; left:45%; position:absolute; z-index:999">
 <script type="text/ng-template" id="alert.html">
 <div class="alert alert-warning" role="alert">
 <div ng-transclude></div>
 </div>
 </script>
 <uib-alert type="warning" template-url="alert.
html">Loading...</uib-alert>
 </div>
 <!-- END CONTAINER -->

The final section of the index.html is the footer. Here, we are just adding the static
content and copyright text. You can add whatever content you want here.

 <!-- BEGIN FOOTER -->
 <div class="page-footer">
 <hr/><div style="padding: 0 39%">© 2016 Online Table
Reservation System</div>
 </div>
 <!-- END FOOTER -->
 </body>
</html>

app.js
app.js is our main application file. Because we have defined it in index.html,
it gets loaded as soon as our index.html is called.

We need to take care that we do not mix, route (URI) with REST
endpoints. Routes represents the state/view of the SPA.

Chapter 7

[173]

As we are using the Edge Server (Proxy Server), everything will be accessible from
it including our REST endpoints. External applications including the UI will use
the Edge Server host to access the application. You can configure it in some global
constants file and then use it wherever it is required. This will allow you to configure
the REST host at a single place and use it at other places.

'use strict';
/*
This call initializes our application and registers all the modules,
which are passed as an array in the second argument.
*/
var otrsApp = angular.module('otrsApp', [
 'ui.router',
 'templates',
 'ui.bootstrap',
 'ngStorage',
 'otrsApp.httperror',
 'otrsApp.login',
 'otrsApp.restaurants'
])
/*
 Then we have defined the default route /restaurants
*/
 .config([
 '$stateProvider', '$urlRouterProvider',
 function ($stateProvider, $urlRouterProvider) {
 $urlRouterProvider.otherwise('/restaurants');
 }])
/*
	 This functions controls the flow of the application and handles
the events.
*/
 .controller('otrsAppCtrl', function ($scope, $injector,
restaurantService) {
 var controller = this;

 var AjaxHandler = $injector.get('AjaxHandler');
 var $rootScope = $injector.get('$rootScope');
 var log = $injector.get('$log');
 var sessionStorage = $injector.get('$sessionStorage');
 $scope.showSpinner = false;
/*
	 This function gets called when the user searches any restaurant.
It uses the Angular restaurant service that we'll define in the next
section to search the given search string.

Consuming Services Using a Microservice Web App

[174]

*/
 $scope.search = function () {
 $scope.restaurantService = restaurantService;
 restaurantService.async().then(function () {
 $scope.restaurants = restaurantService.
search($scope.searchedValue);
 });
 }
/*
	 When the state is changed, the new controller controls the flows
based on the view and configuration and the existing controller is
destroyed. This function gets a call on the destroy event.
*/
 $scope.$on('$destroy', function destroyed() {
 log.debug('otrsAppCtrl destroyed');
 controller = null;
 $scope = null;
 });

 $rootScope.fromState;
 $rootScope.fromStateParams;
 $rootScope.$on('$stateChangeSuccess', function (event,
toState, toParams, fromState, fromStateParams) {
 $rootScope.fromState = fromState;
 $rootScope.fromStateParams = fromStateParams;
 });

 // utility method
 $scope.isLoggedIn = function () {
 if (sessionStorage.session) {
 return true;
 } else {
 return false;
 }
 };

 /* spinner status */
 $scope.isSpinnerShown = function () {
 return AjaxHandler.getSpinnerStatus();
 };

 })
/*
	 This function gets executed when this object loads. Here we are
setting the user object which is defined for the root scope.

Chapter 7

[175]

*/
 .run(['$rootScope', '$injector', '$state', function
($rootScope, $injector, $state) {
 $rootScope.restaurants = null;
 // self reference
 var controller = this;
 // inject external references
 var log = $injector.get('$log');
 var $sessionStorage = $injector.
get('$sessionStorage');
 var AjaxHandler = $injector.get('AjaxHandler');

 if (sessionStorage.currentUser) {
 $rootScope.currentUser = $sessionStorage.
currentUser;
 } else {
 $rootScope.currentUser = "Guest";
 $sessionStorage.currentUser = ""
 }
 }])

restaurants.js
restaurants.js represents an Angular service for our app which we'll use for the
restaurants. We know that there are two common uses of services – organizing code
and sharing code across apps. Therefore, we have created a restaurants service which
will be used among different modules like search, list, details, and so on.

Services are singleton objects, which are lazily instantiated by the
AngularJS service factory.

The following section initializes the restaurant service module and loads the required
dependencies.

angular.module('otrsApp.restaurants', [
 'ui.router',
 'ui.bootstrap',
 'ngStorage',
 'ngResource'
])

In the configuration, we are defining the routes and state of the otrsApp.restaurants
module using UI-Router.

Consuming Services Using a Microservice Web App

[176]

First we define the restaurants state by passing the JSON object containing the
URL that points the router URI, the template URL that points to the HTML template
that display the restaurants state, and the controller that will handle the events on
the restaurants view.

On top of the restaurants view (route - /restaurants), a nested state
restaurants.profile is also defined that will represent the specific restaurant. For
example, /restaurant/1 would open and display the restaurant profile (details) page
of a restaurant which is represented by Id 1. This state is called when a link is clicked
in the restaurants template. In this ui-sref="restaurants.profile({id: rest.
id})" rest represents the restaurant object retrieved from the restaurants view.

Notice that the state name is 'restaurants.profile' which tells the AngularJS UI
Router that the profile is a nested state of the restaurants state.

 .config([
 '$stateProvider', '$urlRouterProvider',
 function ($stateProvider, $urlRouterProvider) {
 $stateProvider.state('restaurants', {
 url: '/restaurants',
 templateUrl: 'restaurants/restaurants.html',
 controller: 'RestaurantsCtrl'
 })
 // Restaurant show page
 .state('restaurants.profile', {
 url: '/:id',
 views: {
 '@': {
 templateUrl: 'restaurants/
restaurant.html',
 controller: 'RestaurantCtrl'
 }
 }
 });
 }])

In the next code section, we are defining the restaurant service using the Angular
factory service type. This restaurant service on load fetches the list of restaurants
from the server using a REST call. It provides a list and searches restaurant
operations and restaurant data.

 .factory('restaurantService', function ($injector, $q) {
 var log = $injector.get('$log');
 var ajaxHandler = $injector.get('AjaxHandler');
 var deffered = $q.defer();

Chapter 7

[177]

 var restaurantService = {};
 restaurantService.restaurants = [];
 restaurantService.orignalRestaurants = [];
 restaurantService.async = function () {
 ajaxHandler.startSpinner();
 if (restaurantService.restaurants.length === 0) {
 ajaxHandler.get('/api/restaurant')
 .success(function (data, status, headers,
config) {
 log.debug('Getting restaurants');
 sessionStorage.apiActive = true;
 log.debug("if Restaurants --> " +
restaurantService.restaurants.length);
 restaurantService.restaurants = data;
 ajaxHandler.stopSpinner();
 deffered.resolve();
 })
 .error(function (error, status, headers,
config) {
 restaurantService.restaurants =
mockdata;
 ajaxHandler.stopSpinner();
 deffered.resolve();
 });
 return deffered.promise;
 } else {
 deffered.resolve();
 ajaxHandler.stopSpinner();
 return deffered.promise;
 }
 };
 restaurantService.list = function () {
 return restaurantService.restaurants;
 };
 restaurantService.add = function () {
 console.log("called add");
 restaurantService.restaurants.push(
 {
 id: 103,
 name: 'Chi Cha\'s Noodles',
 address: '13 W. St., Eastern Park, New
County, Paris',
 });
 };

Consuming Services Using a Microservice Web App

[178]

 restaurantService.search = function (searchedValue) {
 ajaxHandler.startSpinner();
 if (!searchedValue) {
 if (restaurantService.orignalRestaurants.length >
0) {
 restaurantService.restaurants =
restaurantService.orignalRestaurants;
 }
 deffered.resolve();
 ajaxHandler.stopSpinner();
 return deffered.promise;
 } else {
 ajaxHandler.get('/api/restaurant?name=' +
searchedValue)
 .success(function (data, status, headers,
config) {
 log.debug('Getting restaurants');
 sessionStorage.apiActive = true;
 log.debug("if Restaurants --> " +
restaurantService.restaurants.length);
 if (restaurantService.
orignalRestaurants.length < 1) {
 restaurantService.
orignalRestaurants = restaurantService.restaurants;
 }
 restaurantService.restaurants = data;
 ajaxHandler.stopSpinner();
 deffered.resolve();
 })
 .error(function (error, status, headers,
config) {
 if (restaurantService.
orignalRestaurants.length < 1) {
 restaurantService.
orignalRestaurants = restaurantService.restaurants;
 }
 restaurantService.restaurants = [];
 restaurantService.restaurants.push(
 {
 id: 104,
 name: 'Gibsons - Chicago
Rush St.',
 address: '1028 N. Rush
St., Rush & Division, Cook County, Paris'
 });

Chapter 7

[179]

 restaurantService.restaurants.push(
 {
 id: 105,
 name: 'Harry Caray\'s
Italian Steakhouse',
 address: '33 W. Kinzie
St., River North, Cook County, Paris',
 });
 ajaxHandler.stopSpinner();
 deffered.resolve();
 });
 return deffered.promise;
 }
 };
 return restaurantService;
 })

In the next section of the restaurants.js module, we'll add two controllers that
we defined for the restaurants and restaurants.profile states in the routing
configuration. These two controllers are RestaurantsCtrl and RestaurantCtrl that
handle the restaurants state and the restaurants.profiles states respectively.

RestaurantsCtrl is pretty simple in that it loads the restaurants data using the
restaurants service list method.

 .controller('RestaurantsCtrl', function ($scope,
restaurantService) {
 $scope.restaurantService = restaurantService;
 restaurantService.async().then(function () {
 $scope.restaurants = restaurantService.list();
 });
 })

RestaurantCtrl is responsible for showing the restaurant details of a given ID.
This is also responsible for performing the reservation operations on the displayed
restaurant. This control will be used when we design the restaurant details page with
reservation options.

 .controller('RestaurantCtrl', function ($scope, $state,
$stateParams, $injector, restaurantService) {
 var $sessionStorage = $injector.get('$sessionStorage');
 $scope.format = 'dd MMMM yyyy';
 $scope.today = $scope.dt = new Date();
 $scope.dateOptions = {
 formatYear: 'yy',

Consuming Services Using a Microservice Web App

[180]

 maxDate: new Date().setDate($scope.today.getDate() +
180),
 minDate: $scope.today.getDate(),
 startingDay: 1
 };

 $scope.popup1 = {
 opened: false
 };
 $scope.altInputFormats = ['M!/d!/yyyy'];
 $scope.open1 = function () {
 $scope.popup1.opened = true;
 };
 $scope.hstep = 1;
 $scope.mstep = 30;

 if ($sessionStorage.reservationData) {
 $scope.restaurant = $sessionStorage.reservationData.
restaurant;
 $scope.dt = new Date($sessionStorage.reservationData.
tm);
 $scope.tm = $scope.dt;
 } else {
 $scope.dt.setDate($scope.today.getDate() + 1);
 $scope.tm = $scope.dt;
 $scope.tm.setHours(19);
 $scope.tm.setMinutes(30);
 restaurantService.async().then(function () {
 angular.forEach(restaurantService.list(), function
(value, key) {
 if (value.id === parseInt($stateParams.id)) {
 $scope.restaurant = value;
 }
 });
 });
 }
 $scope.book = function () {
 var tempHour = $scope.tm.getHours();
 var tempMinute = $scope.tm.getMinutes();
 $scope.tm = $scope.dt;
 $scope.tm.setHours(tempHour);
 $scope.tm.setMinutes(tempMinute);
 if ($sessionStorage.currentUser) {
 console.log("$scope.tm --> " + $scope.tm);

Chapter 7

[181]

 alert("Booking Confirmed!!!");
 $sessionStorage.reservationData = null;
 $state.go("restaurants");
 } else {
 $sessionStorage.reservationData = {};
 $sessionStorage.reservationData.restaurant =
$scope.restaurant;
 $sessionStorage.reservationData.tm = $scope.tm;
 $state.go("login");
 }
 }
 })

We have also added a few of the filters in the restaurants.js module to format the
date and time. These filters perform the following formatting on the input data:

•	 date1: Returns the input date in 'dd MMM yyyy' format, for example 13-
Apr-2016

•	 time1: Returns the input time in 'HH:mm:ss' format, for example 11:55:04
•	 dateTime1: Returns the input date and time in 'dd MMM yyyy HH:mm:ss'

format, for example 13-Apr-2016 11:55:04

In the following code snippet we've applied these three filters:

 .filter('date1', function ($filter) {
 return function (argDate) {
 if (argDate) {
 var d = $filter('date')(new Date(argDate), 'dd MMM
yyyy');
 return d.toString();
 }
 return "";
 };
 })
 .filter('time1', function ($filter) {
 return function (argTime) {
 if (argTime) {
 return $filter('date')(new Date(argTime),
'HH:mm:ss');
 }
 return "";
 };
 })
 .filter('datetime1', function ($filter) {
 return function (argDateTime) {

Consuming Services Using a Microservice Web App

[182]

 if (argDateTime) {
 return $filter('date')(new Date(argDateTime), 'dd
MMM yyyy HH:mm a');
 }
 return "";
 };
 });

restaurants.html
We need to add the templates that we have defined for the restaurants.profile
state. As you can see in the template we are using the ng-repeat directive to
iterate the list of objects returned by restaurantService.restaurants. The
restaurantService scope variable is defined in the controller. 'RestaurantsCtrl'
is associated with this template in the restaurants state.

<h3>Famous Gourmet Restaurants in Paris</h3>
<div class="row">
 <div class="col-md-12">
 <table class="table table-bordered table-striped">
 <thead>
 <tr>
 <th>#Id</th>
 <th>Name</th>
 <th>Address</th>
 </tr>
 </thead>
 <tbody>
 <tr ng-repeat="rest in restaurantService.restaurants">
 <td>{{rest.id}}</td>
 <td><a ui-sref="restaurants.profile({id: rest.
id})">{{rest.name}}</td>
 <td>{{rest.address}}</td>
 </tr>
 </tbody>
 </table>
 </div>
</div>

Chapter 7

[183]

Search Restaurants
On the home page index.html we have added the search form in the header section
that allows us to search restaurants. The Search Restaurants functionality will use
the same files as described earlier. It makes use of the app.js (search form handler),
restaurants.js (restaurant service), and restaurants.html to display the
searched records.

OTRS home page with restaurants listing

Restaurant details with reservation option
Restaurant details with reservation option will be the part of the content area (middle
section of the page). This will contain a breadcrumb at the top with restaurants
as a link to the restaurant listing page, followed by the name and address of the
restaurant. The last section will contain the reservation section containing date time
selection boxes and reserve button.

Consuming Services Using a Microservice Web App

[184]

This page will look like the following screenshot:

Restaurants Detail Page with Reservation Option

Here, we will make use of the same restaurant service declared in restaurants.js.
The only change will be the template as described for the state restaurants.profile.
This template will be defined using the restaurant.html.

restaurant.html
As you can see, the breadcrumb is using the restaurants route, which is defined
using the ui-sref attribute. The reservation form designed in this template calls
the book() function defined in the controller RestaurantCtrl using the directive
ng-submit on the form submit.

<div class="row">
<div class="row">
 <div class="col-md-12">
 <ol class="breadcrumb">
 <a ui-sref="restaurants">Restaurants

Chapter 7

[185]

 <li class="active">{{restaurant.name}}

 <div class="bs-docs-section">
 <h1 class="page-header">{{restaurant.name}}</h1>
 <div>
 Address: {{restaurant.address}}
 </div>
 </br></br>
 <form ng-submit="book()">
 <div class="input-append date form_datetime">
 <div class="row">
 <div class="col-md-7">
 <p class="input-group">
 <span style="display: table-cell;
vertical-align: middle; font-weight: bolder; font-size: 1.2em">Select
Date & Time for Booking:
 <span style="display: table-cell;
vertical-align: middle">
 <input type="text" size=20
class="form-control" uib-datepicker-popup="{{format}}" ng-model="dt"
is-open="popup1.opened" datepicker-options="dateOptions" ng-
required="true" close-text="Close" alt-input-formats="altInputFormats"
/>

 <button type="button" class="btn
btn-default" ng-click="open1()"><i class="glyphicon glyphicon-
calendar"></i></button>

 <uib-timepicker ng-model="tm" ng-
change="changed()" hour-step="hstep" minute-step="mstep"></uib-
timepicker>
 </p>
 </div>
 </div></div>
 <div class="form-group">
 <button class="btn btn-primary"
type="submit">Reserve</button>
 </div>
 </form></br></br>
 </div>
 </div>
</div>

Consuming Services Using a Microservice Web App

[186]

Login page
When a user clicks on the Reserve button on the Restaurant Detail page after
selecting the date and time of the reservation, the Restaurant Detail page checks
whether the user is already logged in or not. If the user is not logged in, then the
Login page displays. It looks like the following screenshot:

Login page

We are not authenticating the user from the server. Instead, we are
just populating the user name in the session storage and rootscope for
implementing the flow.

Once the user logs in, the user is redirected back to same booking page with the
persisted state. Then the user can proceed with the reservation. The Login page uses
basically two files: login.html and login.js.

login.html
The login.html template consists of only two input fields, username and password,
with the Login button and Cancel link. The Cancel link resets the form and the
Login button submits the login form.

Chapter 7

[187]

Here, we are using the LoginCtrl with the ng-controller directive. The Login
form is submitted using the ng-submit directive that calls the submit function of
LoginCtrl. Input values are first collected using the ng-model directive and then
submitted using their respective properties - _email and _password.

<div ng-controller="LoginCtrl as loginC" style="max-width: 300px">
 <h3>Login</h3>
 <div class="form-container">
 <form ng-submit="loginC.submit(_email, _password)">
 <div class="form-group">
 <label for="username" class="sr-only">Username</label>
 <input type="text" id="username" class="form-control"
placeholder="username" ng-model="_email" required autofocus />
 </div>
 <div class="form-group">
 <label for="password" class="sr-only">Password</label>
 <input type="password" id="password" class="form-
control" placeholder="password" ng-model="_password" />
 </div>
 <div class="form-group">
 <button class="btn btn-primary" type="submit">Login</
button>
 <button class="btn btn-link" ng-click="loginC.
cancel()">Cancel</button>
 </div>
 </form>
 </div>
</div>

login.js
The login module is defined in the login.js that contains and loads the
dependencies using the module function. The state login is defined with the help
of the config function that takes the JSON object containing the url, controller, and
templateUrl properties.

Inside the controller, we define the cancel and submit operations, which are called
from the login.html template.

angular.module('otrsApp.login', [
 'ui.router',
 'ngStorage'
])
 .config(function config($stateProvider) {
 $stateProvider.state('login', {

Consuming Services Using a Microservice Web App

[188]

 url: '/login',
 controller: 'LoginCtrl',
 templateUrl: 'login/login.html'
 });
 })
 .controller('LoginCtrl', function ($state, $scope, $rootScope,
$injector) {
 var $sessionStorage = $injector.get('$sessionStorage');
 if ($sessionStorage.currentUser) {
 $state.go($rootScope.fromState.name, $rootScope.
fromStateParams);
 }
 var controller = this;
 var log = $injector.get('$log');
 var http = $injector.get('$http');

 $scope.$on('$destroy', function destroyed() {
 log.debug('LoginCtrl destroyed');
 controller = null;
 $scope = null;
 });
 this.cancel = function () {
 $scope.$dismiss;
 $state.go('restaurants');
 }
 console.log("Current --> " + $state.current);
 this.submit = function (username, password) {
 $rootScope.currentUser = username;
 $sessionStorage.currentUser = username;
 if ($rootScope.fromState.name) {
 $state.go($rootScope.fromState.name, $rootScope.
fromStateParams);
 } else {
 $state.go("restaurants");
 }
 };
 });

Chapter 7

[189]

Reservation confirmation
Once the user is logged in and has clicked on the Reservation button, the restaurant
controller shows the alert box with confirmation as shown in the following screenshot.

Restaurants detail page with reservation confirmation

Setting up the web app
As we are planning to use the latest technology stack for our UI app development,
we will use the Node.js and npm (Node.js package manager) that provides the
open-source runtime environment for developing the server side JavaScript web
application.

I would recommend to go through this section once. It will introduce
you to JavaScript build tooling and stack. However, you can skip if
you know the JavaScript build tools or do not want to explore them.

Consuming Services Using a Microservice Web App

[190]

Node.js is built on Chrome's V8 JavaScript engine and uses an event-driven, non-
blocking I/O, which makes it lightweight and efficient. The default package manager
of Node.js, npm, is the largest ecosystem of open source libraries. It allows installing
node programs and makes it easier to specify and link dependencies.

1.	 First we need to install npm if it's not already installed. It is a prerequisite.
You can check the link at https://docs.npmjs.com/getting-started/
installing-node to install npm.

2.	 To check if npm is set up correctly execute the npm -v command on CLI.
It should return the installed npm version in the output. We can switch to
NetBeans for creating a new AngularJS JS HTML 5 project in NetBeans. At
the time of writing this chapter, I have used NetBeans 8.1.

3.	 Navigate to File | New Project. A new project dialog should appear. Select
the HTML5/JavaScript under the Categories list and HTML5/JS Application
under the Projects options as shown in the following screenshot:

NetBeans – New HTML5/JavaScript project

https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node

Chapter 7

[191]

4.	 Click on the Next button. Then feed the Project Name, Project Location,
and Project Folder on the Name and Location dialog and click on the
Next button.

NetBeans New Project – Name and Location

Consuming Services Using a Microservice Web App

[192]

5.	 On the Site Template dialog, select the AngularJS Seed item under the
Download Online Template: option and click on the Next button. The
AngularJS Seed project is available at https://github.com/angular/
angular-seed:

NetBeans New Project – Site Template

https://github.com/angular/angular-seed
https://github.com/angular/angular-seed

Chapter 7

[193]

6.	 On the Tools dialog, select Create package.json, Create bower.json, and
Create gulpfile.js. We'll use gulp as our build tool. Gulp and Grunt are two
of the most popular build framework for JS. As a Java programmer, you can
correlate these tools to ANT. Both are awesome in their own way. If you
want, you can also use Gruntfile.js as a build tool.

Netbeans New Project - Tools

Consuming Services Using a Microservice Web App

[194]

7.	 Now, once you click on Finish, you can see the HTML5/JS Application
directories and files. The directory structure will look like the following
screenshot:

AngularJS seed directory structure

Chapter 7

[195]

8.	 You will also see an exclamation mark in your project if all the required
dependencies are not configured properly. You can resolve project problems
by right clicking the project and then selecting the Resolve Project Problems
option.

Resolve Project Problems dialog

9.	 Ideally, NetBeans resolves project problems if you click on the
Resolve… button.

10.	 You can also resolve a few of the problems by giving the correct path for
some of the JS modules like bower, gulp, and node:

°° Bower: Required to manage the JavaScript libraries for the OTRS app
°° Gulp: A task runner, required for building our projects like ANT
°° Node: For executing our server side OTRS app

Consuming Services Using a Microservice Web App

[196]

Bower is a dependencies management tool that works like npm. npm
is used for installing the Node.js modules, whereas bower is used for
managing your web application's libraries/components.

11.	 Click on the Tools menu and select Options. Now, set the path of bower,
gulp, and node.js as shown in the HTML/JS tools (top bar icon) in the
following screenshot. For setting up the bower path click on the Bower
tab as shown in the following screenshot and update the path:

Setting Bower path

12.	 For setting up the Gulp Path click on the Gulp tab as shown in the following
screenshot and update the path:

Setting Gulp path

13.	 For setting up the Node Path click on the Node.js tab as shown in the
following screenshot and update the path:

Chapter 7

[197]

Setting Node path

14.	 Once this is done, package.json will look like the following. We have
modified the values for a few of the entries like name, descriptions,
dependencies, and so on:
{
 "name": "otrs-ui",
 "private": true,
 "version": "1.0.0",
 "description": "Online Table Reservation System",
 "main": "index.js",
 "license": "MIT",
 "dependencies": {
 "coffee-script": "^1.10.0",
 "gulp-AngularJS-templatecache": "^1.8.0",
 "del": "^1.1.1",
 "gulp-connect": "^3.1.0",
 "gulp-file-include": "^0.13.7",
 "gulp-sass": "^2.2.0",
 "gulp-util": "^3.0.7",
 "run-sequence": "^1.1.5"
 },
 "devDependencies": {
 "coffee-script": "*",
 "gulp-sass": "*",
 "bower": "^1.3.1",
 "http-server": "^0.6.1",
 "jasmine-core": "^2.3.4",
 "karma": "~0.12",
 "karma-chrome-launcher": "^0.1.12",
 "karma-firefox-launcher": "^0.1.6",
 "karma-jasmine": "^0.3.5",
 "karma-junit-reporter": "^0.2.2",

Consuming Services Using a Microservice Web App

[198]

 "protractor": "^2.1.0",
 "shelljs": "^0.2.6"
 },
 "scripts": {
 "postinstall": "bower install",
 "prestart": "npm install",
 "start": "http-server -a localhost -p 8000 -c-1",
 "pretest": "npm install",
 "test": "karma start karma.conf.js",
 "test-single-run": "karma start karma.conf.js --single-
run",
 "preupdate-webdriver": "npm install",
 "update-webdriver": "webdriver-manager update",
 "preprotractor": "npm run update-webdriver",
 "protractor": "protractor e2e-tests/protractor.conf.js",
 "update-index-async": "node -e \"require('shelljs/
global'); sed('-i', /\\/\\/@@NG_LOADER_START@@
[\\s\\S]*\\/\\/@@NG_LOADER_END@@/, '//@@NG_LOADER_
START@@\\n' + sed(/sourceMappingURL=AngularJS-loader.min.
js.map/,'sourceMappingURL=bower_components/AngularJS-loader/
AngularJS-loader.min.js.map','app/bower_components/AngularJS-
loader/AngularJS-loader.min.js') + '\\n//@@NG_LOADER_END@@', 'app/
index-async.html');\""
 }
}

15.	 Then, we'll update the bower.json as shown in the following:
{
 "name": "OTRS-UI",
 "description": "OTRS-UI",
 "version": "0.0.1",
 "license": "MIT",
 "private": true,
 "dependencies": {
 "AngularJS": "~1.5.0",
 "AngularJS-ui-router": "~0.2.18",
 "AngularJS-mocks": "~1.5.0",
 "AngularJS-bootstrap": "~1.2.1",
 "AngularJS-touch": "~1.5.0",
 "bootstrap-sass-official": "~3.3.6",
 "AngularJS-route": "~1.5.0",
 "AngularJS-loader": "~1.5.0",
 "ngstorage": "^0.3.10",
 "AngularJS-resource": "^1.5.0",

Chapter 7

[199]

 "html5-boilerplate": "~5.2.0"
 }
}

16.	 Next, we'll modify the .bowerrc file as shown in the following to specify the
directory where bower will store the components defined in bower.json.
We'll store the bower component under the app directory.
{
 "directory": "app/bower_components"
}

17.	 Next, we'll set up the gulpfile.js. We'll use CoffeeScript to define the
gulp tasks. Therefore, we will just define the CoffeeScript in gulpfile.js
and the actual task will be defined in gulpfile.coffee. Let's see the content
of gulpfile.js:
require('coffee-script/register');
require('./gulpfile.coffee');

18.	 In this step, we'll define the gulp configuration. We are using CoffeeScript
to define the gulp file. The name of the gulp file written in CoffeeScript is
gulpfile.coffee. The default task is defined as default_sequence:
default_sequence = ['connect', 'build', 'watch']

As per the defined default sequence task, first it will connect to the server,
then build the web app, and keep a watch on the changes. The watch
will help to render changes we make in the code and will be displayed
immediately on the UI.
The most important parts in this script are connect and watch. Others are
self-explanatory.

°° gulp-connect: This is a gulp plugin to run the web server. It also
allows live reload.

°° gulp-watch: This is a file watcher that uses chokidar and emits vinyl
objects (objects describe the file – its path and content). In simple
words, we can say that gulp-watch watches files for changes and
triggers tasks.

gulpfile.coffee:
gulp = require('gulp')
gutil = require('gulp-util')
del = require('del');
clean = require('gulp-clean')
connect = require('gulp-connect')

Consuming Services Using a Microservice Web App

[200]

fileinclude = require('gulp-file-include')
runSequence = require('run-sequence')
templateCache = require('gulp-AngularJS-templatecache')
sass = require('gulp-sass')

paths =
 scripts:
 src: ['app/src/scripts/**/*.js']
 dest: 'public/scripts'
 scripts2:
 src: ['app/src/views/**/*.js']
 dest: 'public/scripts'
 styles:
 src: ['app/src/styles/**/*.scss']
 dest: 'public/styles'
 fonts:
 src: ['app/src/fonts/**/*']
 dest: 'public/fonts'
 images:
 src: ['app/src/images/**/*']
 dest: 'public/images'
 templates:
 src: ['app/src/views/**/*.html']
 dest: 'public/scripts'
 html:
 src: ['app/src/*.html']
 dest: 'public'
 bower:
 src: ['app/bower_components/**/*']
 dest: 'public/bower_components'

#copy bower modules to public directory
gulp.task 'bower', ->
 gulp.src(paths.bower.src)
 .pipe gulp.dest(paths.bower.dest)
 .pipe connect.reload()

#copy scripts to public directory
gulp.task 'scripts', ->
 gulp.src(paths.scripts.src)
 .pipe gulp.dest(paths.scripts.dest)
 .pipe connect.reload()

#copy scripts2 to public directory

Chapter 7

[201]

gulp.task 'scripts2', ->
 gulp.src(paths.scripts2.src)
 .pipe gulp.dest(paths.scripts2.dest)
 .pipe connect.reload()

#copy styles to public directory
gulp.task 'styles', ->
 gulp.src(paths.styles.src)
 .pipe sass()
 .pipe gulp.dest(paths.styles.dest)
 .pipe connect.reload()

#copy images to public directory
gulp.task 'images', ->
 gulp.src(paths.images.src)
 .pipe gulp.dest(paths.images.dest)
 .pipe connect.reload()

#copy fonts to public directory
gulp.task 'fonts', ->
 gulp.src(paths.fonts.src)
 .pipe gulp.dest(paths.fonts.dest)
 .pipe connect.reload()

#copy html to public directory
gulp.task 'html', ->
 gulp.src(paths.html.src)
 .pipe gulp.dest(paths.html.dest)
 .pipe connect.reload()

#compile AngularJS template in a single js file
gulp.task 'templates', ->
 gulp.src(paths.templates.src)
 .pipe(templateCache({standalone: true}))
 .pipe(gulp.dest(paths.templates.dest))

#delete contents from public directory
gulp.task 'clean', (callback) ->
 del ['./public/**/*'], callback;

#Gulp Connect task, deploys the public directory
gulp.task 'connect', ->
 connect.server
 root: ['./public']

Consuming Services Using a Microservice Web App

[202]

 port: 1337
 livereload: true

gulp.task 'watch', ->
 gulp.watch paths.scripts.src, ['scripts']
 gulp.watch paths.scripts2.src, ['scripts2']
 gulp.watch paths.styles.src, ['styles']
 gulp.watch paths.fonts.src, ['fonts']
 gulp.watch paths.html.src, ['html']
 gulp.watch paths.images.src, ['images']
 gulp.watch paths.templates.src, ['templates']

gulp.task 'build', ['bower', 'scripts', 'scripts2', 'styles',
'fonts', 'images', 'templates', 'html']

default_sequence = ['connect', 'build', 'watch']

gulp.task 'default', default_sequence

gutil.log 'Server started and waiting for changes'

19.	 Once we are ready with the preceding changes, we will install the gulp using
the following command:
npm install --no-optional gulp

20.	 Also, we'll install the other gulp libraries like gulp-clean, gulp-connect,
and so on using the following command:
npm install --save --no-optional gulp-util gulp-clean gulp-connect
gulp-file-include run-sequence gulp-AngularJS-templatecache gulp-
sass

21.	 Now, we can install the bower dependencies defined in the bower.json file
using the following command:
bower install --save

Chapter 7

[203]

Sample output - bower install --save

22.	 This is the last step in the setup. Here, we will confirm that the directory
structure should look like the following. We'll keep the src and published
artifacts (in ./public directory) as separate directories. Therefore, the
following directory structure is different from the default AngularJS seed
project:

+---app
| +---bower_components
| | +---AngularJS
| | +---AngularJS-bootstrap
| | +---AngularJS-loader
| | +---AngularJS-mocks
| | +---AngularJS-resource
| | +---AngularJS-route
| | +---AngularJS-touch
| | +---AngularJS-ui-router
| | +---bootstrap-sass-official
| | +---html5-boilerplate

Consuming Services Using a Microservice Web App

[204]

| | +---jquery
| | \---ngstorage
| +---components
| | \---version
| +---node_modules
| +---public
| | \---css
| \---src
| +---scripts
| +---styles
| +---views
+---e2e-tests
+---nbproject
| \---private
+---node_modules
+---public
| +---bower_components
| +---scripts
| +---styles
\---test

References to some good reads:

•	 AngularJS by Example, Packt Publishing (https://www.packtpub.com/web-
development/angularjs-example)

•	 Angular Seed Project (https://github.com/angular/angular-seed)
•	 Angular UI (https://angular-ui.github.io/bootstrap/)
•	 Gulp (http://gulpjs.com/)

Summary
In this chapter, we have learned the new dynamic web application development.
It has changed completely over the years. The web application frontend is completely
developed in pure HTML and JavaScript instead of using any server side technologies
like JSP, servlets, ASP, and so on. UI app development with JavaScript now has its
own development environment like npm, bower, and so on. We have explored the
AngularJS framework to develop our web app. It made things easier by providing
inbuilt features and support to bootstrap and the $http service that deals with the
AJAX calls.

https://www.packtpub.com/web-development/angularjs-example
https://www.packtpub.com/web-development/angularjs-example
https://github.com/angular/angular-seed
https://angular-ui.github.io/bootstrap/
http://gulpjs.com/

Chapter 7

[205]

I hope you have grasped the UI development overview and the way modern
applications are developed and integrated with server side microservices. In the
next chapter, we will learn the best practices and common principals of microservice
design. The chapter will provide details about microservices development
using industry practices and examples. It will also contain examples of where
microservices implementation goes wrong and how you can avoid such problems.

[207]

Best Practices and
Common Principles

After all the hard work put in by you towards gaining the experience of developing
the microservice sample project, you must be wondering how to avoid common
mistakes and improve the overall process of developing microservices-based
products and services. We can follow these principles or guidelines to simplify the
process of developing the microservices and avoid/reduce the potential limitations.
We will focus on these key concepts in this chapter.

This chapter is spread across the following three sections:

•	 Overview and mindset
•	 Best practices and principals
•	 Microservices frameworks and tools

Overview and mindset
You can implement microservices-based design on both new and existing products
and services. Contrary to the belief that it is easier to develop and design a new
system from scratch rather than making changes to an existing one that is already
live, each approach has its own respective challenges and advantages.

Best Practices and Common Principles

[208]

For example, since there is no existing system design for a new product or service,
you have freedom and flexibility to design the system without giving any thought
to its impact. However, you don't have the clarity on both functional and system
requirements for a new system, as these mature and take shape over time. On the
other hand, for mature products and services, you have detailed knowledge and
information of the functional and system requirements. Nevertheless, you have
a challenge to mitigate the risk of impact that design change brings to the table.
Therefore, when it comes to updating a production system from monolithic to
microservices, you will need to plan better than if you were building a system
from scratch.

Experienced and successful software design experts and architects always evaluate
the pros and cons and take a cautious approach to making any change to existing
live systems. One should not make changes to existing live system design simply
because it may be cool or trendy. Therefore, if you would like to update the design
of your existing production system to microservices, you need to evaluate all the
pros and cons before making this call.

I believe that monolithic systems provide a great platform to upgrade to a successful
microservices-based design. Obviously, we are not discussing cost here. You have
ample knowledge of the existing system and functionality, which enables you to
divide the existing system and build microservices based on functionalities and how
those would interact with each other. Also, if your monolithic product is already
modularized in some way, then directly transforming microservices by exposing
an API instead of Application Binary Interface (ABI) is possibly the easiest way of
achieving a microservice architecture. A successful microservices-based system is more
dependent on microservices and their interaction protocol rather than anything else.

Having said that, it does not mean that you cannot have a successful microservices-
based system if you are starting from scratch. However, it is recommended to
start a new project based on monolithic design that gives you perspective and
understanding of the system and functionality. It allows you to find bottlenecks
quickly and guides you to identify any potential feature that can be developed
using microservices. Here, we have not discussed the size of the project, which is
another important factor. We'll discuss this in the next section.

In today's cloud age and agile development world, it takes an hour between making
any change and the change going live. In today's competitive environment, every
organization would like to have an edge for quickly delivering features to the user.
Continuous development, integration, and deployment are part of the production
delivery process, a completely automatic process.

Chapter 8

[209]

It makes more sense if you are offering cloud-based products or services. Then, a
microservices-based system enables the team to respond with agility to fix any issue
or provide a new feature to the user.

Therefore, you need to evaluate all pros and cons before you make a call for starting
a new microservices-based project from scratch or planning to upgrade the design
of an existing monolithic system to a microservices-based system. You have to listen
to and understand the different ideas and perspectives shared across your team, and
you need to take a cautious approach.

Finally, I would like to share the importance of having better processes and an
efficient system in place for a successful production system. Having a microservices-
based system does not guarantee a successful production system, and monolithic
application does not mean you cannot have a successful production system in
today's age. Netflix, a microservices-based cloud video rental service, and Etsy, a
monolithic e-commerce platform, are both examples of successful live production
systems (see an interesting Twitter discussion link in the Reference section later in
the chapter). Therefore, processes and agility are also key to a successful
production system.

Best practices and principals
As we have learned from the first chapter, microservices are a lightweight style of
implementing Service Oriented Architecture (SOA). On top of that, microservices
are not strictly defined, which gives you the flexibility of developing microservices
the way you want and according to need. At the same time, you need to make sure
that you follow a few of the standard practices and principals to make your job easier
and implement microservices-based architecture successfully.

Nanoservice (not recommended), size, and
monolithic
Each microservice in your project should be small in size and perform one
functionality or feature (for example, user management), independently enough
to perform the function on its own.

The following two quotes from Mike Gancarz (a member that designed the
X windows system), which defines one of the paramount precepts of UNIX
philosophy, suits the microservice paradigm as well:

"Small is beautiful."
"Make each program do one thing well."

Best Practices and Common Principles

[210]

Now, how to define the size, in today's age, when you have a framework (for example
Finangle) that reduces the lines of code (LOC)? In addition, many modern languages,
such as Python and Erlang, are less verbose. This makes it difficult to decide whether
you want to make this code microservice or not.

Apparently, you may implement a microservice for a small number of LOC, that is
actually not a microservice but a nanoservice.

Arnon Rotem-Gal-Oz defined nanoservice as follows:

"Nanoservice is an antipattern where a service is too fine-grained. A nanoservice
is a service whose overhead (communications, maintenance, and so on) outweighs
its utility."

Therefore, it always makes sense to design microservices based on functionality.
Domain driven design makes it easier to define functionality at a domain level.

As discussed previously, the size of your project is a key factor when deciding
whether to implement microservices or determining the number of microservices
you want to have for your project. In a simple and small project, it makes sense
to use monolithic architecture. For example, based on the domain design that we
learned in Chapter 3, Domain-Driven Design you would get a clear understanding of
your functional requirements and it makes facts available to draw the boundaries
between various functionalities or features. For example, in the sample project
(OTRS) we have implemented, it is very easy to develop the same project using
monolithic design; provided you don't want to expose the APIs to the customer,
or you don't want to use it as SaaS, or there are plenty of similar parameters that
you want to evaluate before making a call.

You can migrate the monolithic project to microservices design later, when the need
arises. Therefore, it is important that you should develop the monolithic project in
modular fashion and have the loose coupling at every level and layer, and ensure there
are predefined contact points and boundaries between different functionalities and
features. In addition, your data source, such as DB, should be designed accordingly.
Even if you are not planning to migrate to a microservices-based system, it would
make bug fixes and enhancement easier to implement.

Paying attention to the previous points will mitigate any possible difficulties you
may encounter when you migrate to microservices.

Generally, large or complex projects should be developed using microservices-
based architecture, due to the many advantages it provides, as discussed in
previous chapters.

Chapter 8

[211]

Even I recommended developing your initial project as monolithic; once you gain a
better understanding of project functionalities and project complexity, then you can
migrate it to microservices. Ideally, a developed initial prototype should give you the
functional boundaries that will enable you to make the right choice.

Continuous integration and deployment
You must have a continuous integration and deployment process in place. It gives
you an edge to deliver changes faster and detect bugs early. Therefore, each service
should have its own integration and deployment process. In addition, it must be
automated. There are many tools available, such as Teamcity, Jenkins, and so on, that
are used widely. It helps you to automate the build process—which catches build
failure early, especially when you integrate your changes with mainline.

You can also integrate your tests with each automated integration and deployment
process. Integration Testing tests the interactions of different parts of the system,
like between two interfaces (API provider and consumer), or among different
components or modules in a system, such as between DAO and database, and so
on. Integration testing is important as it tests the interfaces between the modules.
Individual modules are first tested in isolation. Then, integration testing is performed
to check the combined behavior and validate that requirements are implemented
correctly. Therefore, in microservices, integration testing is a key tool to validate the
APIs. We will cover more about it in the next section.

Finally, you can see the update mainline changes on your DIT machine where this
process deploys the build.

The process does not end here; you can make a container, like docker and hand it
over to your WebOps team, or have a separate process that delivers to a configured
location or deploy to a WebOps stage environment. From here it could be deployed
directly to your production system once approved by the designated authority.

System/end-to-end test automation
Testing is a very important part of any product and service delivery. You do not
want to deliver buggy applications to customers. Earlier, at the time when the
waterfall model was popular, an organization used to take one to six months or more
for the testing stage before delivering to the customer. In recent years, after agile
process became popular, more emphasis is given to automation. Similar to prior
point testing, automation is also mandatory.

Best Practices and Common Principles

[212]

Whether you follow Test Driven Development (TDD) or not, we must have system
or end-to-end test automation in place. It's very important to test your business
scenarios and that is also the case with end-to-end testing that may start from your
REST call to database checks, or from UI app to database checks.

Also, it is important to test your APIs if you have public APIs.

Doing this makes sure that any change does not break any of the functionality and
ensures seamless, bug-free production delivery. As discussed in the last section, each
module is tested in isolation using unit testing to check everything is working as
expected, then integration testing is performed among different modules to check the
expected combined behavior and validate the requirements, whether implemented
correctly or not. After integration tests, functional tests are executed that validate the
functional and feature requirements.

So, if unit testing makes sure individual modules are working fine in isolation,
integration testing makes sure that interaction among different modules works as
expected. If unit tests are working fine, it implies that the chances of integration
test failure is greatly reduced. Similarly, integration testing ensures that functional
testing is likely to be successful.

It is presumed that one always keeps all types of tests updated,
whether these are unit-level tests or end-to-end test scenarios.

Self-monitoring and logging
Microservices should provide service information about itself and the state of the
various resources it depends on. Service information represents the statistics such
as the average, minimum, and maximum time to process a request, the number of
successful and failed requests, being able to track a request, memory usage, and
so on.

Adrian Cockcroft highlighted a few practices, which are very important for
monitoring the microservices, in Glue Conference (Glue Con) 2015. Most of them
are valid for any monitoring system:

•	 Spend more time working on code that analyzes the meaning of metrics than
code that collects, moves, stores, and displays metrics.
This helps to not only increase the productivity, but also provides important
parameters to fine-tune the microservices and increase the system efficiency.
The idea is to develop more analysis tools rather than developing more
monitoring tools.

Chapter 8

[213]

•	 The metric to display latency needs to be less than the human attention span.
That means less than 10 seconds, according to Adrian.

•	 Validate that your measurement system has enough accuracy and precision.
Collect histograms of response time.

•	 Accurate data makes decision making faster and allows you to fine-tune till
precision level. He also suggests that the best graph to show the response
time is a histogram.

•	 Monitoring systems need to be more available and scalable than the systems
being monitored.

•	 The statement says it all: you cannot rely on a system which itself is not
stable or available 24/7.

•	 Optimize for distributed, ephemeral, cloud native, containerized microservices.
•	 Fit metrics to models to understand relationships.

Monitoring is a key component of microservice architecture. You may have a dozen
to thousands of microservices (true for a big enterprise's large project) based on
project size. Even for scaling and high availability, organizations create a clustered
or load-balanced pool/pod for each microservice, even separate pools for each
microservice based on versions. Ultimately, it increases the number of resources you
need to monitor, including each microservice instance. In addition, it is important
that you should have a process in place so that whenever something goes wrong,
you know it immediately, or better, receive a warning notification in advance before
something goes wrong. Therefore, effective and efficient monitoring is crucial for
building and using the microservice architecture. Netflix uses security monitoring
using tools like Netflix Atlas (real-time operational monitoring which processes
1.2 billion metrics), Security Monkey (for monitoring security on AWS-based
environments), Scumblr (intelligence gathering tool) and FIDO (for analyzing events
and automated incident reporting).

Logging is another important aspect for microservices that should not be ignored.
Having effective logging makes all the difference. As there could be 10 or more
microservices, managing logging is a huge task.

For our sample project, we have used MDC logging, which is sufficient, in a way,
for individual microservice logging. However, we also need logging for an entire
system, or central logging. We also need aggregated statistics of logs. There are tools
that do the job, like Loggly or Logspout.

Best Practices and Common Principles

[214]

A request and generated correlated events gives you an overall view
of the request. For tracing of any event and request, it is important
to associate the event and request with service ID and request ID
respectively. You can also associate the content of the event, such as
message, severity, class name, and so on, to service ID.

A separate data store for each microservice
If you remember, the most important characteristics of microservices you can find
out about is the way microservices run in isolation from other microservices, most
commonly as standalone applications.

Abiding by this rule, it is recommended that you not use the same database, or
any other data store across multiple microservices. In large projects, you may have
different teams working on the same project, and you want the flexibility to choose
the database for each microservice that best suits the microservice.

Now, this also brings some challenges.

For instance, the following is relevant to teams who may be working on different
microservices within the same project, if that project shares the same database
structure. There is a possibility that a change in one microservice may impact the
other microservices model. In such cases, change in one may affect the dependent
microservice, so you also need to change the dependent model structure.

To resolve this issue, microservices should be developed based on an API-driven
platform. Each microservice would expose its APIs, which could be consumed by
the other microservices. Therefore, you also need to develop the APIs, which is
required for the integration of different microservices.

Similarly, due to different data stores, actual project data is also spread across multiple
data stores and it makes data management more complicated, because the separate
storage systems can more easily get out of sync or become inconsistent, and foreign
keys can change unexpectedly. To resolve such an issue, you need to use Master
Data Management (MDM) tools. MDM tools operate in the background and fix
inconsistencies if they find any. For the OTRS sample example, it might check every
database that stores booking request IDs, to verify that the same IDs exist in all of
them (in other words, that there aren't any missing or extra IDs in any one database).
MDM tools available in the market include Informatica, IBM MDM Advance Edition,
Oracle Siebel UCM, Postgres (master streaming replication), mariadb (master/master
configuration), and so on.

Chapter 8

[215]

If none of the existing products suit your requirements, or you are not interested
in any proprietary product, then you can write your own. Presently, API-driven
development and platform reduce such complexities; therefore, it is important that
microservices should be developed along with an API platform.

Transaction boundaries
We have gone through domain driven design concepts in Chapter 3, Domain-Driven
Design. Please review this if you have not grasped it thoroughly, as it gives you an
understanding of the state vertically. Since we are focusing on microservices-based
design, the result is that we have a system of systems, where each microservice
represents a system. In this environment, finding the state of a whole system at
any given point in time is very challenging. If you are familiar with distributed
applications, then you may be comfortable in such an environment, with respect
to state.

It is very important to have transaction boundaries in place that describe which
microservice owns a message at any given time. You need a way or process that
can participate in transactions, transacted routes and error handlers, idempotent
consumers, and compensating actions. It is not an easy task to ensure transactional
behavior across heterogeneous systems, but there are tools available that do the job
for you.

For example, Camel has great transactional capabilities that help developers easily
create services with transactional behavior.

Microservices frameworks and tools
It is always better not to reinvent the wheel. Therefore, we would like to explore
what tools are already available and provide the platform, framework, and features
that make microservices development and deployment easier.

Throughout the book, we have used the Spring Cloud extensively, due to the
same reason; it provides all the tools and platform required to make microservice
development very easy. Spring Cloud uses the Netflix Open Source Software (OSS).
Let us explore Netflix OSS—a complete package.

I have also added a brief overview about how each tool will help to build good
microservice architecture.

Best Practices and Common Principles

[216]

Netflix Open Source Software (OSS)
Netflix OSS center is the most popular and widely-used open source software for
Java-based microservice open source projects. The world's most successful video
renting service is dependent on it. Netflix has more than 40 million users and is used
across the globe. Netflix is a pure cloud-based solution, developed on microservice-
based architecture. You can say that whenever anybody talks about microservices,
Netflix is the first name that comes to mind. Let us discuss the wide variety of tools
it provides. We have already discussed many of them while developing the sample
OTRS app. However, there are a few which we have not explored. Here, we'll cover
only the overview of each tool, instead of going into detail. It will give you an overall
idea of the practical characteristics of microservices architecture and its use in Cloud.

Build – Nebula
Netflix Nebula is a collection of Gradle plugins that makes your microservice builds
easier using Gradle (a Maven-like build tool). For our sample project, we have made
use of Maven, therefore we haven't had the opportunity to explore Nebula in this
book. However, exploring it would be fun. The most significant Nebula feature for
developers is eliminating the boilerplate code in Gradle build files, which allows
developers to focus on coding.

Having a good build environment, especially CI/CD (continuous
integration and continuous deployment) is a must for microservice
development and keeping aligned with agile development. Netflix
Nebula makes your build easier and more efficient.

Deployment and delivery – Spinnaker with Aminator
Once your build is ready, you want to move that build to Amazon Web Services
(AWS) EC2. Aminator creates and packages images of builds in the form of Amazon
Machine Image (AMI). Spinnaker then deploys these AMIs to AWS.

Spinnaker is a continuous delivery platform for releasing code changes with high
velocity and efficiency. Spinnaker also supports other cloud services, such as Google
Computer Engine and Cloud Foundry.

You would like to deploy your latest microservice builds to cloud
environments like EC2. Spinnaker and Aminator helps you to do
that in an autonomous way.

Chapter 8

[217]

Service registration and discovery – Eureka
Eureka, as we have explored in this book provides a service that is responsible for
microservice registration and discovery. On top of that, Eureka is also used for load-
balancing the middle-tier (processes hosting different microservices). Netflix also
uses Eureka, along with other tools, like Cassandra or memcached, to enhance its
overall usability.

Service registration and discovery is a must for microservice
architecture. Eureka serves this purpose. Please refer to Chapter 4,
Implementing Microservices for more information about Eureka.

Service communication – Ribbon
Microservice architecture is of no use if there is no inter-process or service
communication. The Ribbon application provides this feature. Ribbon works with
Eureka for load balancing and with Hystrix for fault tolerance or circuit breaker
operations.

Ribbon also supports TCP and UDP protocols, apart from HTTP. It provides these
protocol supports in both asynchronous and reactive models. It also provides the
caching and batching capabilities.

Since you will have many microservices in your project, you
need a way to process information using inter-process or service
communication. Netflix provides the Ribbon tool for this purpose.

Circuit breaker – Hystrix
Hystrix tool is for circuit breaker operations, that is, latency and fault tolerance.
Therefore, Hystrix stops cascading failures. Hystrix performs the real-time
operations for monitoring the services and property changes, and supports
concurrency.

Circuit breaker, or fault tolerance, is an important concept for any
project, including microservices. Failure of one microservice should
not halt your entire system; to prevent this, and provide meaningful
information to the customer on failure, is the job of Netflix Hystrix.

Best Practices and Common Principles

[218]

Edge (proxy) server – Zuul
Zuul is an edge server or proxy server, and serves the requests of external
applications such as UI client, Android/iOS app, or any third-party consumer
of APIs offered by the product or service. Conceptually, it is a door to external
applications.

Zuul allows dynamic routing and monitoring of requests. It also performs security
operations like authentication. It can identify authentication requirements for each
resource and reject any request that does not satisfy them.

You need an edge server or API gateway for your microservices.
Netflix Zuul provides this feature. Please refer to Chapter 5,
Deployment and Testing for more information.

Operational monitoring – Atlas
Atlas is an operational monitoring tool that provides near real-time information on
dimensional time-series data. It captures operational intelligence that provides a
picture of what is currently happening within a system. It features in-memory data
storage, allowing it to gather and report very large numbers of metrics very quickly.
At present, it processes 1.3 billion metrics for Netflix.

Atlas is a scalable tool. This is why it can now process 1.3 billion metrics, from 1
million metrics a few years back. Atlas not only provides scalability in terms of
reading the data, but also aggregating it as a part of graph request.

Atlas uses the Netflix Spectator library for recording dimensional time-series data.

Once you deploy microservices in Cloud environment,
you need to have a monitoring system in place to track and
monitor all microservices. Netflix Atlas does this job for you

Reliability monitoring service – Simian Army
In Cloud, no single component can guarantee 100% uptime. Therefore, it is a
requirement for successful microservice architecture to make the entire system
available in case a single cloud component fails. Netflix has developed a tool named
Simian Army to avoid system failure. Simian Army keeps a cloud environment safe,
secure, and highly available. To achieve high availability and security, it uses various
services (Monkeys) in the cloud for generating various kinds of failures, detecting
abnormal conditions, and testing the cloud's ability to survive these challenges.
It uses the following services (Monkeys), which are taken from the Netflix blog:

Chapter 8

[219]

•	 Chaos Monkey: Chaos Monkey is a service which identifies groups
of systems and randomly terminates one of the systems in a group.
The service operates at a controlled time and interval. Chaos Monkey
only runs in business hours with the intent that engineers will be alert
and able to respond.

•	 Janitor Monkey: Janitor Monkey is a service which runs in the AWS cloud
looking for unused resources to clean up. It can be extended to work with
other cloud providers and cloud resources. The schedule of service is
configurable. Janitor Monkey determines whether a resource should be
a cleanup candidate, by applying a set of rules on it. If any of the rules
determines that the resource is a cleanup candidate, Janitor Monkey marks
the resource and schedules a time to clean it up. For exceptional cases, when
you want to keep an unused resource longer, before Janitor Monkey deletes a
resource, the owner of the resource will receive a notification a configurable
number of days ahead of the cleanup time.

•	 Conformity Monkey: Conformity Monkey is a service which runs in the
AWS cloud looking for instances that are not conforming to predefined rules
for the best practices. It can be extended to work with other cloud providers
and cloud resources. The schedule of service is configurable.
If any of the rules determines that the instance is not conforming, the monkey
sends an e-mail notification to the owner of the instance. There could be
exceptional cases where you want to ignore warnings of a specific conformity
rule for some applications.

•	 Security Monkey: Security Monkey monitors policy changes and alerts on
insecure configurations in an AWS account. The main purpose of Security
Monkey is security, though it also proves a useful tool for tracking down
potential problems, as it is essentially a change-tracking system.

•	 Successful microservice architecture makes sure that your system is always
up, and failure of a single cloud component should not fail the entire system.
Simian Army uses many services to achieve high availability.

AWS resource monitoring – Edda
In a cloud environment, nothing is static. For example, virtual host instance changes
frequently, an IP address could be reused by various applications, or a firewall or
related changes may take place.

Best Practices and Common Principles

[220]

Edda is a service that keeps track of these dynamic AWS resources. Netflix named it
Edda (meaning a tale of Norse mythology), as it records the tales of cloud management
and deployments. Edda uses the AWS APIs to poll AWS resources and records the
results. These records allow you to search and see how the cloud has changed over
time. For instance, if any host of the API server is causing any issue, then you need
to find out what that host is and which team is responsible for it.

These are the features it offers:

•	 Dynamic querying: Edda provides the REST APIs, and it supports the
matrix arguments and provides fields selectors that let you retrieve only
the desired data.

•	 History/Changes: Edda maintains the history of all AWS resources.
This information helps you when you analyze the causes and impact of
outage. Edda can also provide the different view of current and historical
information about resources. It stores the information in MongoDB at the
time of writing.

•	 Configuration: Edda supports many configuration options. In general, you
can poll information from multiple accounts and multiple regions and can
use the combination of account and regions that account points. Similarly, it
provides different configurations for AWS, Crawler, Elector, and MongoDB.

•	 If you are using the AWS for hosting your microservice based product,
then Edda serves the purpose of monitoring the AWS resources.

On-host performance monitoring – Vector
Vector is a static web application and runs inside a web browser. It allows it to
monitor the performance of those hosts where Performance Co-Pilot (PCP) is
installed. Vector supports PCP version 3.10+. PCP collects metrics and makes them
available to Vector.

It provides high-resolution right metrics available on demand. This helps engineers
to understand how a system behaves and correctly troubleshoot performance issues.

A monitoring tool that helps you to monitor the performance of
a remote host.

Chapter 8

[221]

Distributed configuration management – Archaius
Archaius is a distributed configuration management tool that allows you to do
the following:

•	 Use dynamic and typed properties
•	 Perform thread-safe configuration operations
•	 Check for property changes using a polling framework
•	 Use a callback mechanism in an ordered hierarchy of configurations
•	 Inspect and perform operations on properties using JConsole, as Archaius

provides the JMX MBean
•	 A good configuration management tool is required when you have a

microservices-based product. Archaius helps to configure different types
of properties in a distributed environment.

Scheduler for Apache Mesos – Fenzo
Fenzo is a scheduler library for Apache Mesos frameworks written in Java. Apache
Mesos frameworks match and assign resources to pending tasks. The following are
its key features:

•	 It supports long-running service style tasks and for batch
•	 It can auto-scale the execution host cluster, based on resource demands
•	 It supports plugins that you can create based on requirements
•	 You can monitor resource-allocation failures, which allows you to debug

the root cause

Cost and cloud utilization – Ice
Ice provides a bird's eye view of cloud resources from a cost and usage perspective.
It provides the latest information of provisioned cloud resources allocation to
different teams that add value for optimal utilization of the cloud resources.

Ice is a grail project. Users interacts with the Ice UI component that displays the
information sent via the Ice reader component. The reader fetches information from
the data generated by the Ice processor component. The Ice processor component
reads data information from a detailed cloud billing file and converts it into data
that is readable by the Ice reader component.

Best Practices and Common Principles

[222]

Other security tools – Scumblr and FIDO
Along with Security Monkey, Netflix OSS also makes use of Scumblr and Fully
Integrated Defense Operation (FIDO) tools.

To keep track and protect your microservices from regular threats
and attacks, you need an automated way to secure and monitor
your microservices. Netflix Scumblr and FIDO do this job for you.

Scumblr
Scumblr is a Ruby on Rails-based web application that allows you to perform
periodic searches and store/take action on the identified results. Basically, it gathers
intelligence that leverages Internet-wide targeted searches to surface specific security
issues for investigation.

Scumblr makes use of Workflowable gem to allow setting up flexible workflows for
different types of results. Scumblr searches utilize plugins called Search Providers.
It checks the anomaly like following. Since it is extensible, you can add as many as
you want:

•	 Compromised credentials
•	 Vulnerability/hacking discussion
•	 Attack discussion
•	 Security-relevant social media discussion

Fully Integrated Defence Operation (FIDO)
FIDO is a security orchestration framework for analyzing events and automating
incident responses. It automates the incident response process by evaluating,
assessing and responding to malware. FIDO's primary purpose is to handle the
heavy manual effort needed to evaluate threats coming from today's security stack
and the large number of alerts generated by them.

As an orchestration platform, FIDO can make using your existing security tools more
efficient and accurate by heavily reducing the manual effort needed to detect, notify,
and respond to attacks against a network. For more information, you can refer these
following links:

https://github.com/Netflix/Fido https://github.com/Netflix

https://github.com/Netflix/Fido https://github.com/Netflix

Chapter 8

[223]

References
•	 Monolithic (Etsy) versus Microservices (Netflix) Twitter discussion

https://twitter.com/adrianco/status/441169921863860225

•	 Monitoring Microservice and Containers Presentation by Adrian Cockcroft:
http://www.slideshare.net/adriancockcroft/gluecon-monitoring-
microservices-and-containers-a-challenge

•	 Nanoservice Antipattern: http://arnon.me/2014/03/services-
microservices-nanoservices/

•	 Apache Camel for Microservice Architectures: https://www.
javacodegeeks.com/2014/09/apache-camel-for-micro%C2%ADservice-
architectures.html

•	 Teamcity: https://www.jetbrains.com/teamcity/
•	 Jenkins: https://jenkins-ci.org/
•	 Loggly: https://www.loggly.com/

Summary
In this chapter, we have explored various practices and principles, which are best-
suited for microservices-based products and services. Microservices architecture is
a result of cloud environments, which are being used widely in comparison to on-
premise-based monolithic systems. We have identified a few of the principals related
to size, agility, and testing, that have to be in place for successful implementation.

We have also got an overview of different tools used by Netflix OSS for the various
key features required for successful implementation of microservices architecture-
based products and services. Netflix offers a video rental service, using the same
tools successfully.

In the next chapter, readers may encounter issues and they may get stuck at those
problems. The chapter explains the common problems encountered during the
development of microservices, and their solutions.

https://twitter.com/adrianco/status/441169921863860225
http://www.slideshare.net/adriancockcroft/gluecon-monitoring-microservices-and-containers-a-challenge
http://www.slideshare.net/adriancockcroft/gluecon-monitoring-microservices-and-containers-a-challenge
http://arnon.me/2014/03/services-microservices-nanoservices/
http://arnon.me/2014/03/services-microservices-nanoservices/
https://www.javacodegeeks.com/2014/09/apache-camel-for-micro%C2%ADservice-architectures.html
https://www.javacodegeeks.com/2014/09/apache-camel-for-micro%C2%ADservice-architectures.html
https://www.javacodegeeks.com/2014/09/apache-camel-for-micro%C2%ADservice-architectures.html
https://www.jetbrains.com/teamcity/
https://jenkins-ci.org/
https://www.loggly.com/

[225]

Troubleshooting Guide
We have come so far and I am sure you are enjoying each and every moment of
this challenging and joyful learning journey. I will not say that this book ends
after this chapter, but rather you are completing the first milestone. This milestone
opens the doors for learning and implementing a new paradigm in the cloud with
microservice-based design. I would like to reaffirm that integration testing is an
important way to test interaction among microservices and APIs. While working on
your sample app Online Table Reservation System (OTRS), I am sure you faced
many challenges, especially while debugging the app. Here, we will cover a few of
the practices and tools that will help you to troubleshoot the deployed application,
Docker containers, and host machines.

This chapter covers the following three topics:

•	 Logging and ELK stack
•	 Use of correlation ID for service calls
•	 Dependencies and versions

Logging and ELK stack
Can you imagine debugging any issue without seeing a log on the production
system? Simply, no, as it would be difficult to go back in time. Therefore, we need
logging. Logs also give us warning signals about the system if they are designed and
coded that way. Logging and log analysis is an important step for troubleshooting
any issue, and also for throughput, capacity, and monitoring the health of the
system. Therefore, having a very good logging platform and strategy will enable
effective debugging. Logging is one of the most important key components of
software development in the initial days.

Troubleshooting Guide

[226]

Microservices are generally deployed using image containers like Docker that
provide the log with commands that help you to read logs of services deployed
inside the containers. Docker and Docker Compose provide commands to stream the
log output of running services within the container and in all containers respectively.
Please refer to the following logs command of Docker and Docker Compose:

Docker logs command:
Usage: docker logs [OPTIONS] <CONTAINER NAME>
Fetch the logs of a container:

 -f, --follow Follow log output

 --help Print usage

 --since="" Show logs since
timestamp

 -t, --timestamps Show timestamps

 --tail="all" Number of lines to show
from the end of the logs

Docker Compose logs Command:
Usage: docker-compose logs [options] [SERVICE...]

Options:
--no-color Produce monochrome output

-f, --follow Follow log output

-t, --timestamps Show timestamps

--tail Number of lines to show from the end of the
logs for each container

[SERVICES…] Service representing the container - you
can give multiple

These commands help you to explore the logs of microservices and other processes
running inside the containers. As you can see, using the above commands would
be a challenging task when you have a higher number of services. For example,
if you have 10s or 100s of microservices, it would be very difficult to track each
microservice log. Similarly, you can imagine, even without containers, how difficult
it would be to monitor logs individually. Therefore, you can assume the difficulty of
exploring and correlating the logs of 10s to 100s of containers. It is time-consuming
and adds very little value.

Therefore, a log aggregator and visualizing tools like the ELK stack come to our
rescue. It will be used for centralizing logging. We'll explore this in the next section.

Chapter 9

[227]

A brief overview
The Elasticsearch, Logstash, Kibana (ELK) stack is a chain of tools that performs
log aggregation, analysis, visualization, and monitoring. The ELK stack provides
a complete logging platform that allows you to analyze, visualize, and monitor all
your logs, including all types of product logs and system logs. If you already know
about the ELK stack, please skip to the next section. Here, we'll provide a brief
introduction to each tool in the ELK Stack.

Elasticsearch
Elasticsearch is one of the most popular enterprise full text search engines. It is
open sourced software. It is distributable and supports multitenancy. A single
Elasticsearch server stores multiple indexes (each index represents a database),
and a single query can search data of multiple indexes. It is a distributed search
engine and supports clustering.

It is readily scalable and can provide near real-time searches with a latency of 1
second. It is developed in Java using Apache Lucene. Apache Lucene is also free,
open sourced, and it provides the core of Elasticsearch, aka the informational
retrieval software library.

Elasticsearch APIs are extensive in nature and very elaborative. Elasticsearch
provides a JSON-based schema, less storage, and represents data models in JSON.
Elasticsearch APIs use JSON documents for HTTP requests and responses.

Logstash
Logstash is an open source data collection engine with real-time pipeline capabilities.
In simple words, it collects, parses, processes, and stores the data. Since Logstash has
data pipeline capabilities, helping you to process any event data, like logs, from a
variety of systems. Logstash runs as an agent that collects the data, parses it, filters it,
and sends the output to a designated app, such as Elasticsearch, or simple standard
output on a console.

Troubleshooting Guide

[228]

It is also has a very good plugin ecosystem (image sourced from www.elastic.co):

Logstash ecosystem

Kibana
Kibana is an open source analytics and visualization web application. It is designed
to work with Elasticsearch. You use Kibana to search, view, and interact with data
stored in Elasticsearch indices.

It is a browser-based web application that lets you perform advanced data analysis
and visualize your data in a variety of charts, tables, and maps. Moreover, it is a
zero-configuration application. Therefore, it neither needs any coding nor additional
infrastructure after installation.

ELK stack setup
Generally, these tools are installed individually and then configured to communicate
with each other. The installation of these components is pretty straight forward.
Download the installable artifact from the designated location and follow the
installation steps as shown in the next section.

The installation steps provided below are part of a basic setup, which is required
for setting up the ELK stack you want to run. Since this installation was done on my
localhost machine, I have used the host localhost. It can be changed easily with any
respective host name that you want.

www.elastic.co

Chapter 9

[229]

Installing Elasticsearch
We can install Elasticsearch by following these steps:

1.	 Download the latest Elasticsearch distribution from https://www.elastic.
co/downloads/elasticsearch.

2.	 Unzip it to the desired location in your system.
3.	 Make sure the latest Java version is installed and the JAVA_HOME environment

variable is set.
4.	 Go to Elasticsearch home and run bin/elasticsearch on Unix-based

systems and bin/elasticsearch.bat on Windows.
5.	 Open any browser and hit http://localhost:9200/. On successful

installation it should provide you a JSON object similar to that shown
as follows:
{
 "name" : "Leech",
 "cluster_name" : "elasticsearch",
 "version" : {
 "number" : "2.3.1",
 "build_hash" : "bd980929010aef404e7cb0843e61d0665269fc39",
 "build_timestamp" : "2016-04-04T12:25:05Z",
 "build_snapshot" : false,
 "lucene_version" : "5.5.0"
 },
 "tagline" : "You Know, for Search"
}

By default, the GUI is not installed. You can install one by executing the
following command from the bin directory; make sure the system is
connected to the Internet:

plugin -install mobz/elasticsearch-head

6.	 Now you can access the GUI interface with the URL
http://localhost:9200/_plugin/head/.
You can replace localhost and 9200 with your respective hostname and
port number.

Troubleshooting Guide

[230]

Installing Logstash
We can install Logstash by following the given steps:

1.	 Download the latest Logstash distribution from https://www.elastic.co/
downloads/logstash.

2.	 Unzip it to the desired location in your system.
Prepare a configuration file, as shown below. It instructs Logstash to read
input from given files and passes it to Elasticsearch (see the following config
file; Elasticsearch is represented by localhost and 9200 port). It is the simplest
configuration file. To add filters and learn more about Logstash, you can
explore the Logstash reference documentation available at https://www.
elastic.co/guide/en/logstash/current/index.html.

As you can see, the OTRS service log and edge-server
log are added as input. Similarly, you can also add log files
of other microservices.

input {
 ### OTRS ###
 file {
 path => "\logs\otrs-service.log"
 type => "otrs-api"
 codec => "json"
 start_position => "beginning"
 }

 ### edge ###
 file {
 path => "/logs/edge-server.log"
 type => "edge-server"
 codec => "json"
 }
}

output {
 stdout {
 codec => rubydebug
 }
 elasticsearch {
 hosts => "localhost:9200"
 }
}

https://www.elastic.co/downloads/logstash
https://www.elastic.co/downloads/logstash
https://www.elastic.co/guide/en/logstash/current/index.html
https://www.elastic.co/guide/en/logstash/current/index.html

Chapter 9

[231]

3.	 Go to Logstash home and run bin/logstash agent -f logstash.conf
on Unix-based systems and bin/logstash.bat agent -f logstash.
conf on Windows. Here, Logstash is executed using the agent command.
Logstash agent collects data from the sources provided in the input field in
the configuration file and sends the output to Elasticsearch. Here, we have
not used the filters, because otherwise it may process the input data before
providing it to Elasticsearch.

Installing Kibana
We can install the Kibana web application by following the given steps:

1.	 Download the latest Kibana distribution from https://www.elastic.co/
downloads/kibana.

2.	 Unzip it to the desired location in your system.
3.	 Open the configuration file config/kibana.yml from the Kibana home

directory and point the elasticsearch.url to the previously configured
Elasticsearch instance:
elasticsearch.url: "http://localhost:9200"

4.	 Go to Kibana home and run bin/kibana agent -f logstash.conf on
Unix-based systems and bin/kibana.bat agent -f logstash.conf on
Windows.

5.	 Now you can access the Kibana app from your browser using the URL
http://localhost:5601/.
To learn more about Kibana, explore the Kibana reference documentation at
https://www.elastic.co/guide/en/kibana/current/getting-started.
html.

As we followed the above steps, you may have noticed that it requires some amount
of effort. If you want to avoid a manual setup, you can Dockerize it. If you don't
want to put effort into creating the Docker container of the ELK stack, you can
choose one from Docker Hub. On Docker Hub there are many ready-made ELK stack
Docker images. You can try different ELK containers and choose the one that suits
you the most. willdurand/elk is the most downloaded container and is easy to start,
working well with Docker Compose.

Tips for ELK stack implementation
•	 To avoid any data loss and handle the sudden spike of input load, using

a broker, such as Redis or RabbitMQ, is recommended between Logstash
and Elasticsearch.

https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/guide/en/kibana/current/getting-started.html
https://www.elastic.co/guide/en/kibana/current/getting-started.html

Troubleshooting Guide

[232]

•	 Use an odd number of nodes for Elasticsearch if you are using clustering to
prevent the split-brain problem.

•	 In Elasticsearch, always use the appropriate field type for given data.
This will allow you to perform different checks, for example, the int
field type will allow you to perform ("http_status: <400") or ("http_
status:=200"). Similarly, other field types also allow you to perform
similar checks.

Use of correlation ID for service calls
When you make a call to any REST endpoint and if any issue pops up, it is difficult
to trace the issue and its root origin because each call is made to server, and this call
may call another and so on and so forth. This makes it very difficult to figure out
how one particular request was transformed and what it was called. Normally, an
issue that is caused by one service can cause service elsewhere. It is very difficult to
track and may require an enormous amount of effort. If it is monolithic, you know
that you are looking in the right direction but microservices make it difficult to
understand what the source of the issue is and where you should get your data.

Let's see how we can tackle this problem
By using a correlation ID that is passed across all calls, it allows you to track each
request and track the route easily. Each request will have its unique correlation ID.
Therefore, when we debug any issue, the correlation ID is our starting point. We can
follow it, and along the way, we can find out what went wrong.

The correlation ID requires some extra development effort, but it's effort well spent as
it helps a lot in the long run. When a request travels between different microservices,
you will be able to see all interactions and which service has problems.

This is not something new or invented for microservices. This pattern is already
being used by many popular products such as Microsoft SharePoint.

Dependencies and versions
Two common problems that we face in product development are cyclic dependencies
and API versions. We'll discuss them in terms of microservice based architectures.

Chapter 9

[233]

Cyclic dependencies and their impact
Generally, monolithic architecture has a typical layer model, whereas microservices
carry the graph model. Therefore, microservices may have cyclic dependencies.

Therefore, it is necessary to keep a dependency check on microservice relationships.

Let us have a look at the following two cases:

•	 If you have a cycle of dependencies between your microservices, you are
vulnerable to distributed stack overflow errors when a certain transaction
might be stuck in a loop. For example, when a restaurant table is being
reserved by a person. In this case, the restaurant needs to know the person
(findBookedUser), and the person needs to know the restaurant at a given
time (findBookedRestaurant). If it is not designed well, these services may
call each other in loop. The result may be a stack overflow generated by JVM.

•	 If two services share a dependency and you update that other service's API
in a way that could affect them, you'll need to updated all three at once. This
brings up questions like, which should you update first? In addition, how do
you make this a safe transition?

It needs to be analyzed while designing the system
Therefore, it is important while designing the microservices to establish the proper
relationship between different services internally to avoid any cyclic dependencies.
It is a design issue and must be addressed even if it requires a refactoring of the code.

Maintaining different versions
When you have more services, it means different release cycles for each of them,
which adds to this complexity by introducing different versions of services, in that
there will be different versions of the same REST services. Reproducing the solution
to a problem will prove to be very difficult when it has gone in one version and
returns in a newer one.

Let's explore more
The versioning of APIs is important because with time APIs change. Your knowledge
and experience improves with time, and that leads to changes in APIs. Changing
APIs may break existing client integrations.

Troubleshooting Guide

[234]

Therefore, there are various ways for managing the API versions. One of these is
using the version in the path that we have used in this book; some also use the HTTP
header. The HTTP header could be a custom request header or you could use the
Accept Header for representing the calling API version. For more information on how
versions are handled using HTTP headers, please refer to RESTful Java Patterns and
Best Practices by Bhakti Mehta, Packt Publishing: https://www.packtpub.com/
application-development/restful-java-patterns-and-best-practices.

It is very important while troubleshooting any issue that your microservices are
implemented to produce the version numbers in logs. In addition, ideally, you
should avoid any instance where you have too many versions of any microservice.

References
This following links will have more information:

•	 Elasticsearch: https://www.elastic.co/products/elasticsearch
•	 Logstash: https://www.elastic.co/products/logstash
•	 Kibana: https://www.elastic.co/products/kibana
•	 willdurand/elk: ELK Docker image
•	 Mastering Elasticsearch – Second Edition: https://www.packtpub.com/web-

development/mastering-elasticsearch-second-edition

Summary
In this chapter, we have explored the ELK stack overview and installation. In the
ELK stack, Elasticsearch is used for storing the logs and service queries from Kibana.
Logstash is an agent that runs on each server that you wish to collect logs from.
Logstash reads the logs, filters/transforms them, and provides them to Elasticsearch.
Kibana reads/queries the data from Elasticsearch and presents it in tabular or
graphical visualizations.

We also understand the utility of having the correlation ID while debugging issues.
At the end of this chapter, we also discovered the shortcomings of a few microservice
designs. It was a challenging task to cover all the topics relating to microservices
in this book, so I tried to include as much relevant information as possible with
precise sections with references, which allow you to explore more. Now I would
like to let you start implementing the concepts we have learned in this chapter to
your workplace or in your personal projects. This will not only give you hands-on
experience, but may also allow you to master microservices. In addition, you will
also be able to participate in local meetups and conferences.

https://www.packtpub.com/application-development/restful-java-patterns-and-best-practices
https://www.packtpub.com/application-development/restful-java-patterns-and-best-practices
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana
https://www.packtpub.com/web-development/mastering-elasticsearch-second-edition
https://www.packtpub.com/web-development/mastering-elasticsearch-second-edition

Module 2

Spring Microservices

Build scalable microservices with Spring, Docker, and Mesos

[237]

Demystifying Microservices
Microservices are an architecture style and an approach for software development to
satisfy modern business demands. Microservices are not invented; they are more of
an evolution from the previous architecture styles.

We will start the chapter by taking a closer look at the evolution of the microservices
architecture from the traditional monolithic architectures. We will also examine the
definition, concepts, and characteristics of microservices. Finally, we will analyze
typical use cases of microservices and establish the similarities and relationships
between microservices and other architecture approaches such as Service Oriented
Architecture (SOA) and Twelve-Factor Apps. Twelve-Factor Apps defines a set of
software engineering principles of developing applications targeting the cloud.

In this chapter you, will learn about:

•	 The evolution of microservices
•	 The definition of the microservices architecture with examples
•	 Concepts and characteristics of the microservices architecture
•	 Typical use cases of the microservices architecture
•	 The relationship of microservices with SOA and Twelve-Factor Apps

The evolution of microservices
Microservices are one of the increasingly popular architecture patterns next to
SOA, complemented by DevOps and cloud. The microservices evolution is greatly
influenced by the disruptive digital innovation trends in modern business and the
evolution of technologies in the last few years. We will examine these two factors
in this section.

Demystifying Microservices

[238]

Business demand as a catalyst for
microservices evolution
In this era of digital transformation, enterprises increasingly adopt technologies as
one of the key enablers for radically increasing their revenue and customer base.
Enterprises primarily use social media, mobile, cloud, big data, and Internet of
Things as vehicles to achieve the disruptive innovations. Using these technologies,
enterprises find new ways to quickly penetrate the market, which severely pose
challenges to the traditional IT delivery mechanisms.

The following graph shows the state of traditional development and microservices
against the new enterprise challenges such as agility, speed of delivery, and scale.

Microservices promise more agility, speed of delivery, and scale
compared to traditional monolithic applications.

Gone are the days when businesses invested in large application developments
with the turnaround time of a few years. Enterprises are no longer interested in
developing consolidated applications to manage their end-to-end business functions
as they did a few years ago.

The following graph shows the state of traditional monolithic applications and
microservices in comparison with the turnaround time and cost.

Chapter 1

[239]

Microservices provide an approach for developing quick and agile
applications, resulting in less overall cost.

Today, for instance, airlines or financial institutions do not invest in rebuilding
their core mainframe systems as another monolithic monster. Retailers and other
industries do not rebuild heavyweight supply chain management applications, such
as their traditional ERPs. Focus has shifted to building quick-win point solutions that
cater to specific needs of the business in the most agile way possible.

Let's take an example of an online retailer running with a legacy monolithic
application. If the retailer wants to innovate his/her sales by offering their products
personalized to a customer based on the customer's past shopping, preferences, and
so on and also wants to enlighten customers by offering products based on their
propensity to buy them, they will quickly develop a personalization engine or offers
based on their immediate needs and plug them into their legacy application.

As shown in the preceding diagram, rather than investing in rebuilding the core
legacy system, this will be either done by passing the responses through the new
functions, as shown in the diagram marked A, or by modifying the core legacy
system to call out these functions as part of the processing, as shown in the diagram
marked B. These functions are typically written as microservices.

This approach gives organizations a plethora of opportunities to quickly try out new
functions with lesser cost in an experimental mode. Businesses can later validate key
performance indicators and alter or replace these implementations if required.

Demystifying Microservices

[240]

Modern architectures are expected to maximize the ability to replace
their parts and minimize the cost of replacing their parts. The
microservices approach is a means to achieving this.

Technology as a catalyst for the
microservices evolution
Emerging technologies have also made us rethink the way we build software
systems. For example, a few decades back, we couldn't even imagine a distributed
application without a two-phase commit. Later, NoSQL databases made us think
differently.

Similarly, these kinds of paradigm shifts in technology have reshaped all the layers
of the software architecture.

The emergence of HTML 5 and CSS3 and the advancement of mobile applications
repositioned user interfaces. Client-side JavaScript frameworks such as Angular,
Ember, React, Backbone, and so on are immensely popular due to their client-side
rendering and responsive designs.

With cloud adoptions steamed into the mainstream, Platform as a Services
(PaaS) providers such as Pivotal CF, AWS, Salesforce.com, IBMs Bluemix, RedHat
OpenShift, and so on made us rethink the way we build middleware components.
The container revolution created by Docker radically influenced the infrastructure
space. These days, an infrastructure is treated as a commodity service.

The integration landscape has also changed with Integration Platform as a Service
(iPaaS), which is emerging. Platforms such as Dell Boomi, Informatica, MuleSoft,
and so on are examples of iPaaS. These tools helped organizations stretch integration
boundaries beyond the traditional enterprise.

NoSQLs have revolutionized the databases space. A few years ago, we had only a
few popular databases, all based on relational data modeling principles. We have
a long list of databases today: Hadoop, Cassandra, CouchDB, and Neo 4j to name
a few. Each of these databases addresses certain specific architectural problems.

Imperative architecture evolution
Application architecture has always been evolving alongside demanding business
requirements and the evolution of technologies. Architectures have gone through
the evolution of age-old mainframe systems to fully abstract cloud services such
as AWS Lambda.

Chapter 1

[241]

Using AWS Lambda, developers can now drop their "functions" into
a fully managed compute service.
Read more about Lambda at: https://aws.amazon.com/
documentation/lambda/

Different architecture approaches and styles such as mainframes, client server,
N-tier, and service-oriented were popular at different timeframes. Irrespective of
the choice of architecture styles, we always used to build one or the other forms
of monolithic architectures. The microservices architecture evolved as a result
of modern business demands such as agility and speed of delivery, emerging
technologies, and learning from previous generations of architectures.

Microservices help us break the boundaries of monolithic applications and build a
logically independent smaller system of systems, as shown in the preceding diagram.

If we consider monolithic applications as a set of logical
subsystems encompassed with a physical boundary, microservices
are a set of independent subsystems with no enclosing physical
boundary.

What are microservices?
Microservices are an architecture style used by many organizations today as a game
changer to achieve a high degree of agility, speed of delivery, and scale. Microservices
give us a way to develop more physically separated modular applications.

Microservices are not invented. Many organizations such as Netflix, Amazon, and
eBay successfully used the divide-and-conquer technique to functionally partition
their monolithic applications into smaller atomic units, each performing a single
function. These organizations solved a number of prevailing issues they were
experiencing with their monolithic applications.

https://aws.amazon.com/documentation/lambda/
https://aws.amazon.com/documentation/lambda/

Demystifying Microservices

[242]

Following the success of these organizations, many other organizations started
adopting this as a common pattern to refactor their monolithic applications. Later,
evangelists termed this pattern as the microservices architecture.

Microservices originated from the idea of hexagonal architecture coined by Alistair
Cockburn. Hexagonal architecture is also known as the Ports and Adapters pattern.

Read more about hexagonal architecture at http://alistair.
cockburn.us/Hexagonal+architecture.

Microservices are an architectural style or an approach to building IT systems as a set
of business capabilities that are autonomous, self-contained, and loosely coupled:

The preceding diagram depicts a traditional N-tier application architecture having
a presentation layer, business layer, and database layer. The modules A, B, and C
represent three different business capabilities. The layers in the diagram represent a
separation of architecture concerns. Each layer holds all three business capabilities
pertaining to this layer. The presentation layer has web components of all the three
modules, the business layer has business components of all the three modules, and
the database hosts tables of all the three modules. In most cases, layers are physically
spreadable, whereas modules within a layer are hardwired.

http://alistair.cockburn.us/Hexagonal+architecture
http://alistair.cockburn.us/Hexagonal+architecture

Chapter 1

[243]

Let's now examine a microservices-based architecture.

As we can note in the preceding diagram, the boundaries are inversed in the
microservices architecture. Each vertical slice represents a microservice. Each
microservice has its own presentation layer, business layer, and database layer.
Microservices are aligned towards business capabilities. By doing so, changes
to one microservice do not impact others.

There is no standard for communication or transport mechanisms for microservices.
In general, microservices communicate with each other using widely adopted
lightweight protocols, such as HTTP and REST, or messaging protocols, such as
JMS or AMQP. In specific cases, one might choose more optimized communication
protocols, such as Thrift, ZeroMQ, Protocol Buffers, or Avro.

As microservices are more aligned to business capabilities and have independently
manageable life cycles, they are the ideal choice for enterprises embarking on
DevOps and cloud. DevOps and cloud are two facets of microservices.

DevOps is an IT realignment to narrow the gap between traditional IT
development and operations for better efficiency.
Read more about DevOps:
http://dev2ops.org/2010/02/what-is-devops/

http://dev2ops.org/2010/02/what-is-devops/

Demystifying Microservices

[244]

Microservices – the honeycomb analogy
The honeycomb is an ideal analogy for representing the evolutionary microservices
architecture.

In the real world, bees build a honeycomb by aligning hexagonal wax cells. They
start small, using different materials to build the cells. Construction is based on
what is available at the time of building. Repetitive cells form a pattern and result
in a strong fabric structure. Each cell in the honeycomb is independent but also
integrated with other cells. By adding new cells, the honeycomb grows organically
to a big, solid structure. The content inside each cell is abstracted and not visible
outside. Damage to one cell does not damage other cells, and bees can reconstruct
these cells without impacting the overall honeycomb.

Principles of microservices
In this section, we will examine some of the principles of the microservices
architecture. These principles are a "must have" when designing and developing
microservices.

Single responsibility per service
The single responsibility principle is one of the principles defined as part of the
SOLID design pattern. It states that a unit should only have one responsibility.

Read more about the SOLID design pattern at:
http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDes
ign

http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign
http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign

Chapter 1

[245]

This implies that a unit, either a class, a function, or a service, should have only one
responsibility. At no point should two units share one responsibility or one unit have
more than one responsibility. A unit with more than one responsibility indicates
tight coupling.

As shown in the preceding diagram, Customer, Product, and Order are different
functions of an e-commerce application. Rather than building all of them into one
application, it is better to have three different services, each responsible for exactly
one business function, so that changes to one responsibility will not impair others.
In the preceding scenario, Customer, Product, and Order will be treated as three
independent microservices.

Microservices are autonomous
Microservices are self-contained, independently deployable, and autonomous
services that take full responsibility of a business capability and its execution.
They bundle all dependencies, including library dependencies, and execution
environments such as web servers and containers or virtual machines that abstract
physical resources.

One of the major differences between microservices and SOA is in their level of
autonomy. While most SOA implementations provide service-level abstraction,
microservices go further and abstract the realization and execution environment.

Demystifying Microservices

[246]

In traditional application developments, we build a WAR or an EAR, then deploy
it into a JEE application server, such as with JBoss, WebLogic, WebSphere, and
so on. We may deploy multiple applications into the same JEE container. In the
microservices approach, each microservice will be built as a fat Jar, embedding all
dependencies and run as a standalone Java process.

Microservices may also get their own containers for execution, as shown in the
preceding diagram. Containers are portable, independently manageable, lightweight
runtime environments. Container technologies, such as Docker, are an ideal choice
for microservices deployment.

Characteristics of microservices
The microservices definition discussed earlier in this chapter is arbitrary. Evangelists
and practitioners have strong but sometimes different opinions on microservices.
There is no single, concrete, and universally accepted definition for microservices.
However, all successful microservices implementations exhibit a number of common
characteristics. Therefore, it is important to understand these characteristics rather
than sticking to theoretical definitions. Some of the common characteristics are
detailed in this section.

Chapter 1

[247]

Services are first-class citizens
In the microservices world, services are first-class citizens. Microservices expose
service endpoints as APIs and abstract all their realization details. The internal
implementation logic, architecture, and technologies (including programming
language, database, quality of services mechanisms, and so on) are completely
hidden behind the service API.

Moreover, in the microservices architecture, there is no more application
development; instead, organizations focus on service development. In most
enterprises, this requires a major cultural shift in the way that applications are built.

In a Customer Profile microservice, internals such as the data structure, technologies,
business logic, and so on are hidden. They aren't exposed or visible to any external
entities. Access is restricted through the service endpoints or APIs. For instance,
Customer Profile microservices may expose Register Customer and Get Customer
as two APIs for others to interact with.

Characteristics of services in a microservice
As microservices are more or less like a flavor of SOA, many of the service
characteristics defined in the SOA are applicable to microservices as well.

The following are some of the characteristics of services that are applicable to
microservices as well:

•	 Service contract: Similar to SOA, microservices are described through
well-defined service contracts. In the microservices world, JSON and REST
are universally accepted for service communication. In the case of JSON/
REST, there are many techniques used to define service contracts. JSON
Schema, WADL, Swagger, and RAML are a few examples.

•	 Loose coupling: Microservices are independent and loosely coupled. In
most cases, microservices accept an event as input and respond with another
event. Messaging, HTTP, and REST are commonly used for interaction
between microservices. Message-based endpoints provide higher levels
of decoupling.

•	 Service abstraction: In microservices, service abstraction is not just an
abstraction of service realization, but it also provides a complete abstraction
of all libraries and environment details, as discussed earlier.

•	 Service reuse: Microservices are course-grained reusable business
services. These are accessed by mobile devices and desktop channels,
other microservices, or even other systems.

Demystifying Microservices

[248]

•	 Statelessness: Well-designed microservices are stateless and share nothing
with no shared state or conversational state maintained by the services.
In case there is a requirement to maintain state, they are maintained in
a database, perhaps in memory.

•	 Services are discoverable: Microservices are discoverable. In a typical
microservices environment, microservices self-advertise their existence
and make themselves available for discovery. When services die, they
automatically take themselves out from the microservices ecosystem.

•	 Service interoperability: Services are interoperable as they use standard
protocols and message exchange standards. Messaging, HTTP, and so on are
used as transport mechanisms. REST/JSON is the most popular method for
developing interoperable services in the microservices world. In cases where
further optimization is required on communications, other protocols such as
Protocol Buffers, Thrift, Avro, or Zero MQ could be used. However, the use
of these protocols may limit the overall interoperability of the services.

•	 Service composeability: Microservices are composeable. Service
composeability is achieved either through service orchestration or
service choreography.

More detail on SOA principles can be found at:
http://serviceorientation.com/serviceorientation/index

Microservices are lightweight
Well-designed microservices are aligned to a single business capability, so they
perform only one function. As a result, one of the common characteristics we see
in most of the implementations are microservices with smaller footprints.

When selecting supporting technologies, such as web containers, we will have
to ensure that they are also lightweight so that the overall footprint remains
manageable. For example, Jetty or Tomcat are better choices as application containers
for microservices compared to more complex traditional application servers such as
WebLogic or WebSphere.

Container technologies such as Docker also help us keep the infrastructure footprint
as minimal as possible compared to hypervisors such as VMWare or Hyper-V.

http://serviceorientation.com/serviceorientation/index

Chapter 1

[249]

As shown in the preceding diagram, microservices are typically deployed in Docker
containers, which encapsulate the business logic and needed libraries. This help us
quickly replicate the entire setup on a new machine or on a completely different
hosting environment or even to move across different cloud providers. As there is no
physical infrastructure dependency, containerized microservices are easily portable.

Microservices with polyglot architecture
As microservices are autonomous and abstract everything behind service APIs, it is
possible to have different architectures for different microservices. A few common
characteristics that we see in microservices implementations are:

•	 Different services use different versions of the same technologies. One
microservice may be written on Java 1.7, and another one could be on Java 1.8.

•	 Different languages are used to develop different microservices, such as one
microservice is developed in Java and another one in Scala.

•	 Different architectures are used, such as one microservice using the Redis
cache to serve data, while another microservice could use MySQL as a
persistent data store.

Demystifying Microservices

[250]

In the preceding example, as Hotel Search is expected to have high transaction
volumes with stringent performance requirements, it is implemented using Erlang.
In order to support predictive searching, Elasticsearch is used as the data store.
At the same time, Hotel Booking needs more ACID transactional characteristics.
Therefore, it is implemented using MySQL and Java. The internal implementations
are hidden behind service endpoints defined as REST/JSON over HTTP.

Automation in a microservices environment
Most of the microservices implementations are automated to a maximum from
development to production.

As microservices break monolithic applications into a number of smaller services,
large enterprises may see a proliferation of microservices. A large number of
microservices is hard to manage until and unless automation is in place. The smaller
footprint of microservices also helps us automate the microservices development to
the deployment life cycle. In general, microservices are automated end to end—for
example, automated builds, automated testing, automated deployment, and elastic
scaling.

As indicated in the preceding diagram, automations are typically applied during the
development, test, release, and deployment phases:

•	 The development phase is automated using version control tools such as Git
together with Continuous Integration (CI) tools such as Jenkins, Travis CI,
and so on. This may also include code quality checks and automation of unit
testing. Automation of a full build on every code check-in is also achievable
with microservices.

•	 The testing phase will be automated using testing tools such as Selenium,
Cucumber, and other AB testing strategies. As microservices are aligned to
business capabilities, the number of test cases to automate is fewer compared
to monolithic applications, hence regression testing on every build also
becomes possible.

•	 Infrastructure provisioning is done through container technologies such as
Docker, together with release management tools such as Chef or Puppet, and
configuration management tools such as Ansible. Automated deployments are
handled using tools such as Spring Cloud, Kubernetes, Mesos, and Marathon.

Chapter 1

[251]

Microservices with a supporting ecosystem
Most of the large-scale microservices implementations have a supporting ecosystem
in place. The ecosystem capabilities include DevOps processes, centralized log
management, service registry, API gateways, extensive monitoring, service routing,
and flow control mechanisms.

Microservices work well when supporting capabilities are in place, as represented in
the preceding diagram.

Microservices are distributed and dynamic
Successful microservices implementations encapsulate logic and data within the
service. This results in two unconventional situations: distributed data and logic
and decentralized governance.

Compared to traditional applications, which consolidate all logic and data into
one application boundary, microservices decentralize data and logic. Each service,
aligned to a specific business capability, owns its data and logic.

Logical System Boundary (as in monolithic)

Microservice A

A

Data

A

Logic

Microservice B

B

Data

B

Logic

Microservice C

C

Data

C

Logic

The outer rectangle in the preceding diagram implies the logical monolithic
application boundary. When we migrate this to microservices, each microservice
A, B, and C creates its own physical boundaries.

Demystifying Microservices

[252]

Microservices don't typically use centralized governance mechanisms the way
they are used in SOA. One of the common characteristics of microservices
implementations is that they do not relay on heavyweight enterprise-level products,
such as Enterprise Service Bus (ESB). Instead, the business logic and intelligence are
embedded as a part of the services themselves.

A typical SOA implementation is shown in the preceding diagram. Shopping logic is
fully implemented in ESB by orchestrating different services exposed by Customer,
Order, and Product. In the microservices approach, on the other hand, Shopping
itself will run as a separate microservice, which interacts with Customer, Product,
and Order in a fairly decoupled way.

SOA implementations heavily relay on static registry and repository configurations
to manage services and other artifacts. Microservices bring a more dynamic nature
into this. Hence, a static governance approach is seen as an overhead in maintaining
up-to-date information. This is why most of the microservices implementations use
automated mechanisms to build registry information dynamically from the runtime
topologies.

Antifragility, fail fast, and self-healing
Antifragility is a technique successfully experimented at Netflix. It is one of the most
powerful approaches to building fail-safe systems in modern software development.

The antifragility concept is introduced by Nassim Nicholas Taleb in his
book Antifragile: Things That Gain from Disorder.

In the antifragility practice, software systems are consistently challenged. Software
systems evolve through these challenges and, over a period of time, get better and
better at withstanding these challenges. Amazon's GameDay exercise and Netflix'
Simian Army are good examples of such antifragility experiments.

Chapter 1

[253]

Fail fast is another concept used to build fault-tolerant, resilient systems. This
philosophy advocates systems that expect failures versus building systems that never
fail. Importance should be given to how quickly the system can fail and if it fails,
how quickly it can recover from this failure. With this approach, the focus is shifted
from Mean Time Between Failures (MTBF) to Mean Time To Recover (MTTR).
A key advantage of this approach is that if something goes wrong, it kills itself, and
downstream functions aren't stressed.

Self-healing is commonly used in microservices deployments, where the system
automatically learns from failures and adjusts itself. These systems also prevent
future failures.

Microservices examples
There is no "one size fits all" approach when implementing microservices. In this
section, different examples are analyzed to crystalize the microservices concept.

An example of a holiday portal
In the first example, we will review a holiday portal, Fly By Points. Fly By Points
collects points that are accumulated when a customer books a hotel, flight, or car
through the online website. When the customer logs in to the Fly By Points website,
he/she is able to see the points accumulated, personalized offers that can be availed
of by redeeming the points, and upcoming trips if any.

Demystifying Microservices

[254]

Let's assume that the preceding page is the home page after login. There are two
upcoming trips for Jeo, four personalized offers, and 21,123 loyalty points. When
the user clicks on each of the boxes, the details are queried and displayed.

The holiday portal has a Java Spring-based traditional monolithic application
architecture, as shown in the following:

As shown in the preceding diagram, the holiday portal's architecture is web-based
and modular, with a clear separation between layers. Following the usual practice,
the holiday portal is also deployed as a single WAR file on a web server such as
Tomcat. Data is stored on an all-encompassing backing relational database. This is a
good fit for the purpose architecture when the complexities are few. As the business
grows, the user base expands, and the complexity also increases. This results in a
proportional increase in transaction volumes. At this point, enterprises should look
to rearchitecting the monolithic application to microservices for better speed of
delivery, agility, and manageability.

Chapter 1

[255]

Examining the simple microservices version of this application, we can immediately
note a few things in this architecture:

•	 Each subsystem has now become an independent system by itself, a
microservice. There are three microservices representing three business
functions: Trips, Offers, and Points. Each one has its internal data store
and middle layer. The internal structure of each service remains the same.

•	 Each service encapsulates its own database as well as its own HTTP listener.
As opposed to the previous model, there is no web server or WAR. Instead,
each service has its own embedded HTTP listener, such as Jetty, Tomcat,
and so on.

•	 Each microservice exposes a REST service to manipulate the resources/entity
that belong to this service.

It is assumed that the presentation layer is developed using a client-side JavaScript
MVC framework such as Angular JS. These client-side frameworks are capable of
invoking REST calls directly.

When the web page is loaded, all the three boxes, Trips, Offers, and Points will be
displayed with details such as points, the number of offers, and the number of trips.
This will be done by each box independently making asynchronous calls to the
respective backend microservices using REST. There is no dependency between the
services at the service layer. When the user clicks on any of the boxes, the screen will
be transitioned and will load the details of the item clicked on. This will be done by
making another call to the respective microservice.

Demystifying Microservices

[256]

A microservice-based order management
system
Let's examine another microservices example: an online retail website. In this
case, we will focus more on the backend services, such as the Order Service which
processes the Order Event generated when a customer places an order through
the website:

This microservices system is completely designed based on reactive programming
practices.

Read more on reactive programming at:
http://www.reactivemanifesto.org

When an event is published, a number of microservices are ready to kick-start upon
receiving the event. Each one of them is independent and does not rely on other
microservices. The advantage of this model is that we can keep adding or replacing
microservices to achieve specific needs.

http://www.reactivemanifesto.org

Chapter 1

[257]

In the preceding diagram, there are eight microservices shown. The following
activities take place upon the arrival of Order Event:

1.	 Order Service kicks off when Order Event is received. Order Service creates
an order and saves the details to its own database.

2.	 If the order is successfully saved, Order Successful Event is created by Order
Service and published.

3.	 A series of actions take place when Order Successful Event arrives.
4.	 Delivery Service accepts the event and places Delivery Record to deliver the

order to the customer. This, in turn, generates Delivery Event and publishes
the event.

5.	 Trucking Service picks up Delivery Event and processes it. For instance,
Trucking Service creates a trucking plan.

6.	 Customer Notification Service sends a notification to the customer informing
the customer that an order is placed.

7.	 Inventory Cache Service updates the inventory cache with the available
product count.

8.	 Stock Reorder Service checks whether the stock limits are adequate and
generates Replenish Event if required.

9.	 Customer Points Service recalculates the customer's loyalty points based
on this purchase.

10.	 Customer Account Service updates the order history in the customer's
account.

In this approach, each service is responsible for only one function. Services
accept and generate events. Each service is independent and is not aware of its
neighborhood. Hence, the neighborhood can organically grow as mentioned in the
honeycomb analogy. New services can be added as and when necessary. Adding
a new service does not impact any of the existing services.

Demystifying Microservices

[258]

An example of a travel agent portal
This third example is a simple travel agent portal application. In this example, we
will see both synchronous REST calls as well as asynchronous events.

In this case, the portal is just a container application with multiple menu items or
links in the portal. When specific pages are requested—for example, when the menu
or a link is clicked on—they will be loaded from the specific microservices.

When a customer requests a booking, the following events take place internally:

1.	 The travel agent opens the flight UI, searches for a flight, and identifies the
right flight for the customer. Behind the scenes, the flight UI is loaded from
the Flight microservice. The flight UI only interacts with its own backend
APIs within the Flight microservice. In this case, it makes a REST call to the
Flight microservice to load the flights to be displayed.

2.	 The travel agent then queries the customer details by accessing the customer
UI. Similar to the flight UI, the customer UI is loaded from the Customer
microservice. Actions in the customer UI will invoke REST calls on the
Customer microservice. In this case, customer details are loaded by
invoking appropriate APIs on the Customer microservice.

3.	 Then, the travel agent checks the visa details for the customer's eligibility
to travel to the selected country. This also follows the same pattern as
mentioned in the previous two points.

Chapter 1

[259]

4.	 Next, the travel agent makes a booking using the booking UI from the
Booking microservice, which again follows the same pattern.

5.	 The payment pages are loaded from the Payment microservice. In general,
the payment service has additional constraints such as PCIDSS compliance
(protecting and encrypting data in motion and data at rest). The advantage
of the microservices approach is that none of the other microservices need
to be considered under the purview of PCIDSS as opposed to the monolithic
application, where the complete application comes under the governing rules
of PCIDSS. Payment also follows the same pattern as described earlier.

6.	 Once the booking is submitted, the Booking microservice calls the flight
service to validate and update the flight booking. This orchestration is
defined as part of the Booking microservice. Intelligence to make a booking is
also held within the Booking microservice. As part of the booking process, it
also validates, retrieves, and updates the Customer microservice.

7.	 Finally, the Booking microservice sends the Booking Event, which the
Notification service picks up and sends a notification of to the customer.

The interesting factor here is that we can change the user interface, logic, and data
of a microservice without impacting any other microservices.

This is a clean and neat approach. A number of portal applications can be built by
composing different screens from different microservices, especially for different
user communities. The overall behavior and navigation will be controlled by the
portal application.

The approach has a number of challenges unless the pages are designed with this
approach in mind. Note that the site layouts and static content will be loaded by the
Content Management System (CMS) as layout templates. Alternately, this could be
stored in a web server. The site layout may have fragments of UIs that will be loaded
from the microservices at runtime.

Microservices benefits
Microservices offer a number of benefits over the traditional multitier, monolithic
architectures. This section explains some key benefits of the microservices
architecture approach.

Supports polyglot architecture
With microservices, architects and developers can choose fit for purpose
architectures and technologies for each microservice. This gives the flexibility
to design better-fit solutions in a more cost-effective way.

Demystifying Microservices

[260]

As microservices are autonomous and independent, each service can run with its
own architecture or technology or different versions of technologies.

The following shows a simple, practical example of a polyglot architecture with
microservices.

There is a requirement to audit all system transactions and record transaction details
such as request and response data, the user who initiated the transaction, the service
invoked, and so on.

As shown in the preceding diagram, while core services such as the Order and
Products microservices use a relational data store, the Audit microservice persists
data in Hadoop File System (HDFS). A relational data store is neither ideal nor
cost effective in storing large data volumes such as in the case of audit data. In the
monolithic approach, the application generally uses a shared, single database that
stores Order, Products, and Audit data.

In this example, the audit service is a technical microservice using a different
architecture. Similarly, different functional services could also use different
architectures.

In another example, there could be a Reservation microservice running on Java
7, while a Search microservice could be running on Java 8. Similarly, an Order
microservice could be written on Erlang, whereas a Delivery microservice could be
on the Go language. None of these are possible with a monolithic architecture.

Enabling experimentation and innovation
Modern enterprises are thriving towards quick wins. Microservices are one of the
key enablers for enterprises to do disruptive innovation by offering the ability to
experiment and fail fast.

Chapter 1

[261]

As services are fairly simple and smaller in size, enterprises can afford to experiment
new processes, algorithms, business logics, and so on. With large monolithic
applications, experimentation was not easy; nor was it straightforward or cost
effective. Businesses had to spend huge money to build or change an application
to try out something new. With microservices, it is possible to write a small
microservice to achieve the targeted functionality and plug it into the system in a
reactive style. One can then experiment with the new function for a few months, and
if the new microservice does not work as expected, we can change or replace it with
another one. The cost of change will be considerably less compared to that of the
monolithic approach.

In another example of an airline booking website, the airline wants to show
personalized hotel recommendations in their booking page. The recommendations
must be displayed on the booking confirmation page.

As shown in the preceding diagram, it is convenient to write a microservice that can
be plugged into the monolithic applications booking flow rather than incorporating
this requirement in the monolithic application itself. The airline may choose to start
with a simple recommendation service and keep replacing it with newer versions till
it meets the required accuracy.

Elastically and selectively scalable
As microservices are smaller units of work, they enable us to implement selective
scalability.

Scalability requirements may be different for different functions in an application.
A monolithic application, packaged as a single WAR or an EAR, can only be scaled
as a whole. An I/O-intensive function when streamed with high velocity data could
easily bring down the service levels of the entire application.

Demystifying Microservices

[262]

In the case of microservices, each service could be independently scaled up or
down. As scalability can be selectively applied at each service, the cost of scaling is
comparatively less with the microservices approach.

In practice, there are many different ways available to scale an application and
is largely subject to the architecture and behavior of the application. Scale Cube
defines primarily three approaches to scaling an application:

•	 Scaling the x axis by horizontally cloning the application
•	 Scaling the y axis by splitting different functionality
•	 Scaling the z axis by partitioning or sharding the data

Read more about Scale Cube in the following site:
http://theartofscalability.com/

When y axis scaling is applied to monolithic applications, it breaks the monolithic
to smaller units aligned with business functions. Many organizations successfully
applied this technique to move away from monolithic applications. In principle, the
resulting units of functions are in line with the microservices characteristics.

For instance, in a typical airline website, statistics indicate that the ratio of flight
searching to flight booking could be as high as 500:1. This means one booking
transaction for every 500 search transactions. In this scenario, the search needs
500 times more scalability than the booking function. This is an ideal use case for
selective scaling.

http://theartofscalability.com/

Chapter 1

[263]

The solution is to treat search requests and booking requests differently. With
a monolithic architecture, this is only possible with z scaling in the scale cube.
However, this approach is expensive because in the z scale, the entire code base
is replicated.

In the preceding diagram, Search and Booking are designed as different microservices
so that Search can be scaled differently from Booking. In the diagram, Search has
three instances, and Booking has two instances. Selective scalability is not limited
to the number of instances, as shown in the diagram, but also in the way in which
the microservices are architected. In the case of Search, an in-memory data grid
(IMDG) such as Hazelcast can be used as the data store. This will further increase the
performance and scalability of Search. When a new Search microservice instance is
instantiated, an additional IMDG node is added to the IMDG cluster. Booking does
not require the same level of scalability. In the case of Booking, both instances of the
Booking microservice are connected to the same instance of the database.

Allowing substitution
Microservices are self-contained, independent deployment modules enabling the
substitution of one microservice with another similar microservice.

Many large enterprises follow buy-versus-build policies to implement software
systems. A common scenario is to build most of the functions in house and buy
certain niche capabilities from specialists outside. This poses challenges in traditional
monolithic applications as these application components are highly cohesive.
Attempting to plug in third-party solutions to the monolithic applications results in
complex integrations. With microservices, this is not an afterthought. Architecturally,
a microservice can be easily replaced by another microservice developed either
in-house or even extended by a microservice from a third party.

Demystifying Microservices

[264]

A pricing engine in the airline business is complex. Fares for different routes are
calculated using complex mathematical formulas known as the pricing logic. Airlines
may choose to buy a pricing engine from the market instead of building the product
in house. In the monolithic architecture, Pricing is a function of Fares and Booking. In
most cases Pricing, Fares, and Booking are hardwired, making it almost impossible
to detach.

In a well-designed microservices system, Booking, Fares, and Pricing would
be independent microservices. Replacing the Pricing microservice will have
only a minimal impact on any other services as they are all loosely coupled and
independent. Today, it could be a third-party service; tomorrow, it could be easily
substituted by another third-party or home-grown service.

Enabling to build organic systems
Microservices help us build systems that are organic in nature. This is significantly
important when migrating monolithic systems gradually to microservices.

Organic systems are systems that grow laterally over a period of time by adding
more and more functions to it. In practice, an application grows unimaginably
large in its lifespan, and in most cases, the manageability of the application reduces
dramatically over this same period of time.

Microservices are all about independently manageable services. This enable us to
keep adding more and more services as the need arises with minimal impact on the
existing services. Building such systems does not need huge capital investments.
Hence, businesses can keep building as part of their operational expenditure.

A loyalty system in an airline was built years ago, targeting individual passengers.
Everything was fine until the airline started offering loyalty benefits to their
corporate customers. Corporate customers are individuals grouped under
corporations. As the current systems core data model is flat, targeting individuals,
the corporate environment needs a fundamental change in the core data model,
and hence huge reworking, to incorporate this requirement.

Chapter 1

[265]

As shown in the preceding diagram, in a microservices-based architecture, customer
information would be managed by the Customer microservice and loyalty by the
Loyalty Points microservice.

In this situation, it is easy to add a new Corporate Customer microservice to manage
corporate customers. When a corporation is registered, individual members will
be pushed to the Customer microservice to manage them as usual. The Corporate
Customer microservice provides a corporate view by aggregating data from the
Customer microservice. It will also provide services to support corporate-specific
business rules. With this approach, adding new services will have only a minimal
impact on the existing services.

Helping reducing technology debt
As microservices are smaller in size and have minimal dependencies, they allow the
migration of services that use end-of-life technologies with minimal cost.

Technology changes are one of the barriers in software development. In many
traditional monolithic applications, due to the fast changes in technologies, today's
next-generation applications could easily become legacy even before their release
to production. Architects and developers tend to add a lot of protection against
technology changes by adding layers of abstractions. However, in reality, this
approach does not solve the issue but, instead, results in over-engineered systems.
As technology upgrades are often risky and expensive with no direct returns to
business, the business may not be happy to invest in reducing the technology
debt of the applications.

With microservices, it is possible to change or upgrade technology for each service
individually rather than upgrading an entire application.

Upgrading an application with, for instance, five million lines written on EJB 1.1 and
Hibernate to the Spring, JPA, and REST services is almost similar to rewriting the
entire application. In the microservices world, this could be done incrementally.

Demystifying Microservices

[266]

As shown in the preceding diagram, while older versions of the services are running
on old versions of technologies, new service developments can leverage the latest
technologies. The cost of migrating microservices with end-of-life technologies is
considerably less compared to enhancing monolithic applications.

Allowing the coexistence of different versions
As microservices package the service runtime environment along with the service
itself, this enables having multiple versions of the service to coexist in the same
environment.

There will be situations where we will have to run multiple versions of the same
service at the same time. Zero downtime promote, where one has to gracefully
switch over from one version to another, is one example of a such a scenario as
there will be a time window where both services will have to be up and running
simultaneously. With monolithic applications, this is a complex procedure because
upgrading new services in one node of the cluster is cumbersome as, for instance,
this could lead to class loading issues. A canary release, where a new version is
only released to a few users to validate the new service, is another example where
multiple versions of the services have to coexist.

With microservices, both these scenarios are easily manageable. As each microservice
uses independent environments, including service listeners such as Tomcat or Jetty
embedded, multiple versions can be released and gracefully transitioned without
many issues. When consumers look up services, they look for specific versions of
services. For example, in a canary release, a new user interface is released to user
A. When user A sends a request to the microservice, it looks up the canary release
version, whereas all other users will continue to look up the last production version.

Care needs to be taken at the database level to ensure the database design is always
backward compatible to avoid breaking the changes.

Chapter 1

[267]

As shown in the preceding diagram, version 1 and 2 of the Customer service can
coexist as they are not interfering with each other, given their respective deployment
environments. Routing rules can be set at the gateway to divert traffic to specific
instances, as shown in the diagram. Alternatively, clients can request specific
versions as part of the request itself. In the diagram, the gateway selects the version
based on the region from which the request is originated.

Supporting the building of self-organizing
systems
Microservices help us build self-organizing systems. A self-organizing system
support will automate deployment, be resilient, and exhibit self-healing and self-
learning capabilities.

In a well-architected microservices system, a service is unaware of other services. It
accepts a message from a selected queue and processes it. At the end of the process, it
may send out another message, which triggers other services. This allows us to drop
any service into the ecosystem without analyzing the impact on the overall system.
Based on the input and output, the service will self-organize into the ecosystem. No
additional code changes or service orchestration is required. There is no central brain
to control and coordinate the processes.

Imagine an existing notification service that listens to an INPUT queue and sends
notifications to an SMTP server, as shown in the following figure:

Let's assume, later, a personalization engine, responsible for changing the language
of the message to the customer's native language, needs to be introduced to
personalize messages before sending them to the customer, the personalization
engine is responsible for changing the language of the message to the customer's
native language.

Demystifying Microservices

[268]

With microservices, a new personalization microservice will be created to do this job.
The input queue will be configured as INPUT in an external configuration server,
and the personalization service will pick up the messages from the INPUT queue
(earlier, this was used by the notification service) and send the messages to the
OUTPUT queue after completing process. The notification service will read messages
from OUTPUT and send to SMTP. From the very next moment onward, the system
automatically adopts this new message flow.

Supporting event-driven architecture
Microservices enable us to develop transparent software systems. Traditional
systems communicate with each other through native protocols and hence behave
like a black box application. Business events and system events, unless published
explicitly, are hard to understand and analyze. Modern applications require data
for business analysis, to understand dynamic system behaviors, and analyze market
trends, and they also need to respond to real-time events. Events are useful
mechanisms for data extraction.

A well-architected microservice always works with events for both input and output.
These events can be tapped by any service. Once extracted, events can be used for
a variety of use cases.

For example, the business wants to see the velocity of orders categorized by product
type in real time. In a monolithic system, we need to think about how to extract these
events. This may impose changes in the system.

In the microservices world, Order Event is already published whenever an order is
created. This means that it is just a matter of adding a new service to subscribe to the
same topic, extract the event, perform the requested aggregations, and push another
event for the dashboard to consume.

Chapter 1

[269]

Enabling DevOps
Microservices are one of the key enablers of DevOps. DevOps is widely adopted
as a practice in many enterprises, primarily to increase the speed of delivery and
agility. A successful adoption of DevOps requires cultural changes, process changes,
as well as architectural changes. DevOps advocates to have agile development,
high-velocity release cycles, automatic testing, automatic infrastructure provisioning,
and automated deployment.

Automating all these processes is extremely hard to achieve with traditional
monolithic applications. Microservices are not the ultimate answer, but microservices
are at the center stage in many DevOps implementations. Many DevOps tools and
techniques are also evolving around the use of microservices.

Consider a monolithic application that takes hours to complete a full build and 20
to 30 minutes to start the application; one can see that this kind of application is not
ideal for DevOps automation. It is hard to automate continuous integration on every
commit. As large, monolithic applications are not automation friendly, continuous
testing and deployments are also hard to achieve.

On the other hand, small footprint microservices are more automation-friendly and
therefore can more easily support these requirements.

Microservices also enable smaller, focused agile teams for development. Teams will
be organized based on the boundaries of microservices.

Relationship with other architecture
styles
Now that we have seen the characteristics and benefits of microservices, in this
section, we will explore the relationship of microservices with other closely related
architecture styles such as SOA and Twelve-Factor Apps.

Relations with SOA
SOA and microservices follow similar concepts. Earlier in this chapter, we discussed
that microservices are evolved from SOA, and many service characteristics are
common in both approaches.

However, are they the same or are they different?

As microservices are evolved from SOA, many characteristics of microservices are
similar to SOA. Let's first examine the definition of SOA.

Demystifying Microservices

[270]

The definition of SOA from The Open Group consortium is as follows:

"Service-Oriented Architecture (SOA) is an architectural style that supports
service orientation. Service orientation is a way of thinking in terms of services
and service-based development and the outcomes of services.

A service:

Is a logical representation of a repeatable business activity that has a specified
outcome (e.g., check customer credit, provide weather data, consolidate drilling
reports)

It is self-contained.

It may be composed of other services.

It is a "black box" to consumers of the service."

We observed similar aspects in microservices as well. So, in what way are
microservices different? The answer is: it depends.

The answer to the previous question could be yes or no, depending upon the
organization and its adoption of SOA. SOA is a broader term, and different
organizations approached SOA differently to solve different organizational
problems. The difference between microservices and SOA is in a way based
on how an organization approaches SOA.

In order to get clarity, a few cases will be examined.

Service-oriented integration
Service-oriented integration refers to a service-based integration approach used by
many organizations.

Chapter 1

[271]

Many organizations would have used SOA primarily to solve their integration
complexities, also known as integration spaghetti. Generally, this is termed as
Service-Oriented Integration (SOI). In such cases, applications communicate
with each other through a common integration layer using standard protocols and
message formats such as SOAP/XML-based web services over HTTP or JMS. These
types of organizations focus on Enterprise Integration Patterns (EIP) to model their
integration requirements. This approach strongly relies on heavyweight ESB such
as TIBCO Business Works, WebSphere ESB, Oracle ESB, and the likes. Most ESB
vendors also packed a set of related products such as rules engines, business process
management engines, and so on as an SOA suite. Such organizations' integrations are
deeply rooted into their products. They either write heavy orchestration logic in the
ESB layer or the business logic itself in the service bus. In both cases, all enterprise
services are deployed and accessed via ESB. These services are managed through an
enterprise governance model. For such organizations, microservices are altogether
different from SOA.

Legacy modernization
SOA is also used to build service layers on top of legacy applications.

Another category of organizations would use SOA in transformation projects or
legacy modernization projects. In such cases, the services are built and deployed
in the ESB layer connecting to backend systems using ESB adapters. For these
organizations, microservices are different from SOA.

Demystifying Microservices

[272]

Service-oriented application
Some organizations adopt SOA at an application level.

In this approach, lightweight integration frameworks, such as Apache Camel or Spring
Integration, are embedded within applications to handle service-related cross-cutting
capabilities such as protocol mediation, parallel execution, orchestration, and service
integration. As some of the lightweight integration frameworks have native Java object
support, such applications would even use native Plain Old Java Objects (POJO)
services for integration and data exchange between services. As a result, all services
have to be packaged as one monolithic web archive. Such organizations could see
microservices as the next logical step of their SOA.

Monolithic migration using SOA

The last possibility is transforming a monolithic application into smaller units
after hitting the breaking point with the monolithic system. They would break the
application into smaller, physically deployable subsystems, similar to the y axis
scaling approach explained earlier, and deploy them as web archives on web servers
or as JARs deployed on some home-grown containers. These subsystems as service
would use web services or other lightweight protocols to exchange data between
services. They would also use SOA and service design principles to achieve this. For
such organizations, they may tend to think that microservices are the same old wine
in a new bottle.

Chapter 1

[273]

Relations with Twelve-Factor apps
Cloud computing is one of the rapidly evolving technologies. Cloud computing
promises many benefits, such as cost advantage, speed, agility, flexibility, and
elasticity. There are many cloud providers offering different services. They lower the
cost models to make it more attractive to the enterprises. Different cloud providers
such as AWS, Microsoft, Rackspace, IBM, Google, and so on use different tools,
technologies, and services. On the other hand, enterprises are aware of this evolving
battlefield and, therefore, they are looking for options for de-risking from lockdown
to a single vendor.

Many organizations do lift and shift their applications to the cloud. In such cases,
the applications may not realize all the benefits promised by cloud platforms. Some
applications need to undergo overhaul, whereas some may need minor tweaking
before moving to cloud. This by and large depends upon how the application is
architected and developed.

For example, if the application has its production database server URLs hardcoded
as part of the applications WAR, it needs to be modified before moving the
application to cloud. In the cloud, the infrastructure is transparent to the application,
and especially, the physical IP addresses cannot be assumed.

How do we ensure that an application, or even microservices, can run seamlessly
across multiple cloud providers and take advantages of cloud services such as
elasticity?

It is important to follow certain principles while developing cloud native applications.

Cloud native is a term used for developing applications that can work
efficiently in a cloud environment, understanding and utilizing cloud
behaviors such as elasticity, utilization based charging, fail aware, and
so on.

Twelve-Factor App, forwarded by Heroku, is a methodology describing the
characteristics expected from modern cloud-ready applications. Twelve-Factor App
is equally applicable for microservices as well. Hence, it is important to understand
Twelve-Factor App.

Demystifying Microservices

[274]

A single code base
The code base principle advises that each application has a single code base. There
can be multiple instances of deployment of the same code base, such as development,
testing, and production. Code is typically managed in a source control system such
as Git, Subversion, and so on.

Extending the same philosophy for microservices, each microservice should have its
own code base, and this code base is not shared with any other microservice. It also
means that one microservice has exactly one code base.

Bundling dependencies
As per this principle, all applications should bundle their dependencies along with
the application bundle. With build tools such as Maven and Gradle, we explicitly
manage dependencies in a pom.xml or the .gradle file and link them using a central
build artifact repository such as Nexus or Archiva. This ensures that the versions
are managed correctly. The final executables will be packaged as a WAR file or an
executable JAR file, embedding all the dependencies.

In the context of microservices, this is one of the fundamental principles to be followed.
Each microservice should bundle all the required dependencies and execution libraries
such as the HTTP listener and so on in the final executable bundle.

Chapter 1

[275]

Externalizing configurations
This principle advises the externalization of all configuration parameters from the
code. An application's configuration parameters vary between environments, such as
support to the e-mail IDs or URL of an external system, username, passwords, queue
name, and so on. These will be different for development, testing, and production.
All service configurations should be externalized.

The same principle is obvious for microservices as well. The microservices
configuration parameters should be loaded from an external source. This will also
help to automate the release and deployment process as the only difference between
these environments is the configuration parameters.

Backing services are addressable
All backing services should be accessible through an addressable URL. All services
need to talk to some external resources during the life cycle of their execution.
For example, they could be listening or sending messages to a messaging system,
sending an e-mail, persisting data to database, and so on. All these services should
be reachable through a URL without complex communication requirements.

Demystifying Microservices

[276]

In the microservices world, microservices either talk to a messaging system to send
or receive messages, or they could accept or send messages to other service APIs. In
a regular case, these are either HTTP endpoints using REST and JSON or TCP- or
HTTP-based messaging endpoints.

Isolation between build, release, and run
This principle advocates a strong isolation between the build, release, and run stages.
The build stage refers to compiling and producing binaries by including all the
assets required. The release stage refers to combining binaries with environment-
specific configuration parameters. The run stage refers to running application on a
specific execution environment. The pipeline is unidirectional, so it is not possible
to propagate changes from the run stages back to the build stage. Essentially, it also
means that it is not recommended to do specific builds for production; rather, it has
to go through the pipeline.

In microservices, the build will create executable JAR files, including the service
runtime such as an HTTP listener. During the release phase, these executables will be
combined with release configurations such as production URLs and so on and create
a release version, most probably as a container similar to Docker. In the run stage,
these containers will be deployed on production via a container scheduler.

Stateless, shared nothing processes
This principle suggests that processes should be stateless and share nothing. If the
application is stateless, then it is fault tolerant and can be scaled out easily.

All microservices should be designed as stateless functions. If there is any
requirement to store a state, it should be done with a backing database or
in an in-memory cache.

Chapter 1

[277]

Exposing services through port bindings
A Twelve-Factor application is expected to be self-contained. Traditionally,
applications are deployed to a server: a web server or an application server such as
Apache Tomcat or JBoss. A Twelve-Factor application does not rely on an external
web server. HTTP listeners such as Tomcat or Jetty have to be embedded in the
service itself.

Port binding is one of the fundamental requirements for microservices to be
autonomous and self-contained. Microservices embed service listeners as a part
of the service itself.

Concurrency to scale out
This principle states that processes should be designed to scale out by replicating the
processes. This is in addition to the use of threads within the process.

In the microservices world, services are designed to scale out rather than scale up.
The x axis scaling technique is primarily used for a scaling service by spinning up
another identical service instance. The services can be elastically scaled or shrunk
based on the traffic flow. Further to this, microservices may make use of parallel
processing and concurrency frameworks to further speed up or scale up the
transaction processing.

Disposability with minimal overhead
This principle advocates building applications with minimal startup and shutdown
times with graceful shutdown support. In an automated deployment environment,
we should be able bring up or bring down instances as quick as possible. If the
application's startup or shutdown takes considerable time, it will have an adverse
effect on automation. The startup time is proportionally related to the size of the
application. In a cloud environment targeting auto-scaling, we should be able to
spin up new instance quickly. This is also applicable when promoting new versions
of services.

In the microservices context, in order to achieve full automation, it is extremely
important to keep the size of the application as thin as possible, with minimal startup
and shutdown time. Microservices also should consider a lazy loading of objects
and data.

Demystifying Microservices

[278]

Development and production parity
This principle states the importance of keeping development and production
environments as identical as possible. For example, let's consider an application with
multiple services or processes, such as a job scheduler service, cache services, and
one or more application services. In a development environment, we tend to run all
of them on a single machine, whereas in production, we will facilitate independent
machines to run each of these processes. This is primarily to manage the cost
of infrastructure. The downside is that if production fails, there is no identical
environment to re-produce and fix the issues.

Not only is this principle valid for microservices, but it is also applicable to any
application development.

Externalizing logs
A Twelve-Factor application never attempts to store or ship log files. In a cloud, it is
better to avoid local I/Os. If the I/Os are not fast enough in a given infrastructure,
it could create a bottleneck. The solution to this is to use a centralized logging
framework. Splunk, Greylog, Logstash, Logplex, and Loggly are some examples
of log shipping and analysis tools. The recommended approach is to ship logs to
a central repository by tapping the logback appenders and write to one of the
shippers' endpoints.

In a microservices ecosystem, this is very important as we are breaking a system
into a number of smaller services, which could result in decentralized logging. If they
store logs in a local storage, it would be extremely difficult to correlate logs between
services.

In development, the microservice may direct the log stream to stdout, whereas in
production, these streams will be captured by the log shippers and sent to a central
log service for storage and analysis.

Chapter 1

[279]

Package admin processes
Apart from application services, most applications provide admin tasks as well. This
principle advises to use the same release bundle as well as an identical environment
for both application services and admin tasks. Admin code should also be packaged
along with the application code.

Not only is this principle valid for microservices, but also it is applicable to any
application development.

Microservice use cases
A microservice is not a silver bullet and will not solve all the architectural challenges
of today's world. There is no hard-and-fast rule or rigid guideline on when to use
microservices.

Microservices may not fit in each and every use case. The success of microservices
largely depends on the selection of use cases. The first and the foremost activity is
to do a litmus test of the use case against the microservices' benefits. The litmus test
must cover all the microservices' benefits we discussed earlier in this chapter. For a
given use case, if there are no quantifiable benefits or the cost outweighs the benefits,
then the use case may not be the right choice for microservices.

Let's discuss some commonly used scenarios that are suitable candidates for a
microservices architecture:

•	 Migrating a monolithic application due to improvements required in
scalability, manageability, agility, or speed of delivery. Another similar
scenario is rewriting an end-of-life heavily used legacy application. In
both cases, microservices present an opportunity. Using a microservices
architecture, it is possible to replatform a legacy application by slowly
transforming functions to microservices. There are benefits in this approach.
There is no humongous upfront investment required, no major disruption
to business, and no severe business risks. As the service dependencies are
known, the microservices dependencies can be well managed.

•	 Utility computing scenarios such as integrating an optimization service,
forecasting service, price calculation service, prediction service, offer service,
recommendation service, and so on are good candidates for microservices.
These are independent stateless computing units that accept certain data,
apply algorithms, and return the results. Independent technical services such
as the communication service, the encryption service, authentication services,
and so on are also good candidates for microservices.

Demystifying Microservices

[280]

•	 In many cases, we can build headless business applications or services that
are autonomous in nature—for instance, the payment service, login service,
flight search service, customer profile service, notification service, and so on.
These are normally reused across multiple channels and, hence, are good
candidates for building them as microservices.

•	 There could be micro or macro applications that serve a single purpose and
performing a single responsibility. A simple time tracking application is an
example of this category. All it does is capture the time, duration, and task
performed. Common-use enterprise applications are also candidates for
microservices.

•	 Backend services of a well-architected, responsive client-side MVC web
application (the Backend as a Service (BaaS) scenario) load data on demand
in response to the user navigation. In most of these scenarios, data could be
coming from multiple logically different data sources as described in the Fly
By Points example mentioned earlier.

•	 Highly agile applications, applications demanding speed of delivery or time
to market, innovation pilots, applications selected for DevOps, applications
of the System of Innovation type, and so on could also be considered as
potential candidates for the microservices architecture.

•	 Applications that we could anticipate getting benefits from microservices
such as polyglot requirements, applications that require Command Query
Responsibility segregations (CQRS), and so on are also potential candidates
of the microservices architecture.

If the use case falls into any of these categories, it is a potential candidate for the
microservices architecture.

There are few scenarios in which we should consider avoiding microservices:

•	 If the organization's policies are forced to use centrally managed
heavyweight components such as ESB to host a business logic or if the
organization has any other policies that hinder the fundamental principles
of microservices, then microservices are not the right solution unless the
organizational process is relaxed.

•	 If the organization's culture, processes, and so on are based on the
traditional waterfall delivery model, lengthy release cycles, matrix teams,
manual deployments and cumbersome release processes, no infrastructure
provisioning, and so on, then microservices may not be the right fit. This
is underpinned by Conway's Law. This states that there is a strong link
between the organizational structure and software it creates.

Chapter 1

[281]

Read more about the Conway's Law at:
http://www.melconway.com/Home/Conways_Law.html

Microservices early adopters
Many organizations have already successfully embarked on their journey to the
microservices world. In this section, we will examine some of the frontrunners on the
microservices space to analyze why they did what they did and how they did it. We
will conduct some analysis at the end to draw some conclusions:

•	 Netflix (www.netflix.com): Netflix, an international on-demand media
streaming company, is a pioneer in the microservices space. Netflix
transformed their large pool of developers developing traditional monolithic
code to smaller development teams producing microservices. These
microservices work together to stream digital media to millions of Netflix
customers. At Netflix, engineers started with monolithic, went through
the pain, and then broke the application into smaller units that are loosely
coupled and aligned to the business capability.

•	 Uber (www.uber.com): Uber, an international transportation network
company, began in 2008 with a monolithic architecture with a single code
base. All services were embedded into the monolithic application. When
Uber expanded their business from one city to multiple cities, the challenges
started. Uber then moved to SOA-based architecture by breaking the system
into smaller independent units. Each module was given to different teams and
empowered them to choose their language, framework, and database. Uber
has many microservices deployed in their ecosystem using RPC and REST.

•	 Airbnb (www.airbnb.com): Airbnb, a world leader providing a trusted
marketplace for accommodation, started with a monolithic application that
performed all the required functions of the business. Airbnb faced scalability
issues with increased traffic. A single code base became too complicated to
manage, resulted in a poor separation of concerns, and ran into performance
issues. Airbnb broke their monolithic application into smaller pieces with
separate code bases running on separate machines with separate deployment
cycles. Airbnb developed their own microservices or SOA ecosystem around
these services.

http://www.melconway.com/Home/Conways_Law.html
www.netflix.com
www.uber.com
www.airbnb.com

Demystifying Microservices

[282]

•	 Orbitz (www.orbitz.com): Orbitz, an online travel portal, started with a
monolithic architecture in the 2000s with a web layer, a business layer, and a
database layer. As Orbitz expanded their business, they faced manageability
and scalability issues with monolithic-tiered architecture. Orbitz then went
through continuous architecture changes. Later, Orbitz broke down their
monolithic to many smaller applications.

•	 eBay (www.ebay.com): eBay, one of the largest online retailers, started
in the late 1990s with a monolithic Perl application and FreeBSD as the
database. eBay went through scaling issues as the business grew. It was
consistently investing in improving its architecture. In the mid 2000s, eBay
moved to smaller decomposed systems based on Java and web services.
They employed database partitions and functional segregation to meet the
required scalability.

•	 Amazon (www.amazon.com): Amazon, one of the largest online retailer
websites, was run on a big monolithic application written on C++
in 2001. The well-architected monolithic application was based on a
tiered architecture with many modular components. However, all these
components were tightly coupled. As a result, Amazon was not able to speed
up their development cycle by splitting teams into smaller groups. Amazon
then separated out the code as independent functional services, wrapped
with web services, and eventually advanced to microservices.

•	 Gilt (www.gilt.com): Gilt, an online shopping website, began in 2007 with
a tiered monolithic Rails application and a Postgres database at the back.
Similarly to many other applications, as traffic volumes increased, the web
application was not able to provide the required resiliency. Gilt went through
an architecture overhaul by introducing Java and polyglot persistence. Later,
Gilt moved to many smaller applications using the microservices concept.

•	 Twitter (www.twitter.com): Twitter, one of the largest social websites,
began with a three-tiered monolithic rails application in the mid 2000s. Later,
when Twitter experienced growth in its user base, they went through an
architecture-refactoring cycle. With this refactoring, Twitter moved away
from a typical web application to an API-based event driven core. Twitter
uses Scala and Java to develop microservices with polyglot persistence.

•	 Nike (www.nike.com): Nike, the world leader in apparel and footwear,
transformed their monolithic applications to microservices. Similarly to many
other organizations, Nike too was run with age-old legacy applications that
were hardly stable. In their journey, Nike moved to heavyweight commercial
products with an objective to stabilize legacy applications but ended up in
monolithic applications that were expensive to scale, had long release cycles,
and needed too much manual work to deploy and manage applications.
Later, Nike moved to a microservices-based architecture that brought down
the development cycle considerably.

www.orbitz.com
www.ebay.com
www.amazon.com
www.gilt.com
www.twitter.com
www.nike.com

Chapter 1

[283]

The common theme is monolithic migrations
When we analyze the preceding enterprises, there is one common theme. All these
enterprises started with monolithic applications and transitioned to a microservices
architecture by applying learning and pain points from their previous editions.

Even today, many start-ups begin with monolith as it is easy to start, conceptualize,
and then slowly move to microservices when the demand arises. Monolithic to
microservices migration scenarios have an added advantage: they have all the
information upfront, readily available for refactoring.

Though, for all these enterprises, it is monolithic transformation, the catalysts were
different for different organizations. Some of the common motivations are a lack
of scalability, long development cycles, process automation, manageability, and
changes in the business models.

While monolithic migrations are no-brainers, there are opportunities to build
microservices from the ground up. More than building ground-up systems, look
for opportunities to build smaller services that are quick wins for business—for
example, adding a trucking service to an airline's end-to-end cargo management
system or adding a customer scoring service to a retailer's loyalty system. These
could be implemented as independent microservices exchanging messages with
their respective monolithic applications.

Another point is that many organizations use microservices only for their business-
critical customer engagement applications, leaving the rest of the legacy monolithic
applications to take their own trajectory.

Another important observation is that most of the organizations examined
previously are at different levels of maturity in their microservices journey. When
eBay transitioned from a monolithic application in the early 2000s, they functionally
split the application into smaller, independent, and deployable units. These logically
divided units are wrapped with web services. While single responsibility and
autonomy are their underpinning principles, the architectures are limited to the
technologies and tools available at that point in time. Organizations such as Netflix
and Airbnb built capabilities of their own to solve the specific challenges they faced.
To summarize, all of these are not truly microservices, but are small, business-
aligned services following the same characteristics.

There is no state called "definite or ultimate microservices". It is a journey and is
evolving and maturing day by day. The mantra for architects and developers is the
replaceability principle; build an architecture that maximizes the ability to replace its
parts and minimizes the cost of replacing its parts. The bottom line is that enterprises
shouldn't attempt to develop microservices by just following the hype.

Demystifying Microservices

[284]

Summary
In this chapter, you learned about the fundamentals of microservices with the help of
a few examples.

We explored the evolution of microservices from traditional monolithic applications.
We examined some of the principles and the mind shift required for modern
application architectures. We also took a look at the characteristics and benefits
of microservices and use cases. In this chapter, we established the microservices'
relationship with service-oriented architecture and Twelve-Factor Apps. Lastly, we
analyzed examples of a few enterprises from different industries.

We will develop a few sample microservices in the next chapter to bring more clarity
to our learnings in this chapter.

[285]

Building Microservices with
Spring Boot

Developing microservices is not so tedious anymore thanks to the powerful
Spring Boot framework. Spring Boot is a framework to develop production-ready
microservices in Java.

This chapter will move from the microservices theory explained in the previous
chapter to hands-on practice by reviewing code samples. This chapter will introduce
the Spring Boot framework and explain how Spring Boot can help build RESTful
microservices in line with the principles and characteristics discussed in the previous
chapter. Finally, some of the features offered by Spring Boot to make microservices
production-ready will be reviewed.

By the end of this chapter, you will have learned about:

•	 Setting up the latest Spring development environment
•	 Developing RESTful services using the Spring framework
•	 Using Spring Boot to build fully qualified microservices
•	 Useful Spring Boot features to build production-ready microservices

Setting up a development environment
To crystalize microservices concepts, a couple of microservices will be built. For this,
it is assumed that the following components are installed:

•	 JDK 1.8: http://www.oracle.com/technetwork/java/javase/
downloads/jdk8-downloads-2133151.html

•	 Spring Tool Suite 3.7.2 (STS): https://spring.io/tools/sts/all
•	 Maven 3.3.1: https://maven.apache.org/download.cgi

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://spring.io/tools/sts/all
https://maven.apache.org/download.cgi

Building Microservices with Spring Boot

[286]

Alternately, other IDEs such as IntelliJ IDEA, NetBeans, or Eclipse could be used.
Similarly, alternate build tools such as Gradle can be used. It is assumed that the
Maven repository, class path, and other path variables are set properly to run STS
and Maven projects.

This chapter is based on the following versions of Spring libraries:

•	 Spring Framework 4.2.6.RELEASE
•	 Spring Boot 1.3.5.RELEASE

Detailed steps to download the code bundle are mentioned in the
Preface of this book. Have a look.
The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Spring-
Microservices. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Developing a RESTful service – the
legacy approach
This example will review the traditional RESTful service development before
jumping deep into Spring Boot.

STS will be used to develop this REST/JSON service.

The full source code of this example is available as the
legacyrest project in the code files of this book.

https://github.com/PacktPublishing/Spring-Microservices
https://github.com/PacktPublishing/Spring-Microservices
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Chapter 2

[287]

The following are the steps to develop the first RESTful service:

1.	 Start STS and set a workspace of choice for this project.
2.	 Navigate to File | New | Project.
3.	 Select Spring Legacy Project as shown in the following screenshot and click

on Next:

Building Microservices with Spring Boot

[288]

4.	 Select Spring MVC Project as shown in the following diagram and click
on Next:

5.	 Select a top-level package name of choice. This example uses org.rvslab.
chapter2.legacyrest as the top-level package.

6.	 Then, click on Finish.
7.	 This will create a project in the STS workspace with the name legacyrest.

Before proceeding further, pom.xml needs editing.

Chapter 2

[289]

8.	 Change the Spring version to 4.2.6.RELEASE, as follows:
<org.springframework-version>4.2.6.RELEASE</org.springframework-
version>

9.	 Add Jackson dependencies in the pom.xml file for JSON-to-POJO and
POJO-to-JSON conversions. Note that the 2.*.* version is used to ensure
compatibility with Spring 4.
<dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>2.6.4</version>
</dependency>

10.	 Some Java code needs to be added. In Java Resources, under legacyrest,
expand the package and open the default HomeController.java file:

11.	 The default implementation is targeted more towards the MVC project.
Rewriting HomeController.java to return a JSON value in response to the
REST call will do the trick. The resulting HomeController.java file will look
similar to the following:
@RestController
public class HomeController {
 @RequestMapping("/")
 public Greet sayHello(){
 return new Greet("Hello World!");
 }
}

Building Microservices with Spring Boot

[290]

class Greet {
 private String message;
 public Greet(String message) {
 this.message = message;
 }
 //add getter and setter
}

Examining the code, there are now two classes:
°° Greet: This is a simple Java class with getters and setters to represent

a data object. There is only one attribute in the Greet class, which is
message.

°° HomeController.java: This is nothing but a Spring controller REST
endpoint to handle HTTP requests.

Note that the annotation used in HomeController is @RestController,
which automatically injects @Controller and @ResponseBody and has the
same effect as the following code:

@Controller
@ResponseBody
public class HomeController { }

12.	 The project can now be run by right-clicking on legacyrest, navigating to
Run As | Run On Server, and then selecting the default server (Pivotal tc
Server Developer Edition v3.1) that comes along with STS.
This should automatically start the server and deploy the web application on
the TC server.
If the server started properly, the following message will appear in the
console:

INFO : org.springframework.web.servlet.DispatcherServlet -
FrameworkServlet 'appServlet': initialization completed in 906 ms

May 08, 2016 8:22:48 PM org.apache.catalina.startup.Catalina start

INFO: Server startup in 2289 ms

Chapter 2

[291]

13.	 If everything is fine, STS will open a browser window to http://
localhost:8080/legacyrest/ and display the JSON object as shown in
the browser. Right-click on and navigate to legacyrest | Properties | Web
Project Settings and review Context Root to identify the context root of the
web application:

The alternate build option is to use Maven. Right-click on the project and navigate
to Run As | Maven install. This will generate chapter2-1.0.0-BUILD-SNAPSHOT.
war under the target folder. This war is deployable in any servlet container such as
Tomcat, JBoss, and so on.

Moving from traditional web applications
to microservices
Carefully examining the preceding RESTful service will reveal whether this really
constitutes a microservice. At first glance, the preceding RESTful service is a fully
qualified interoperable REST/JSON service. However, it is not fully autonomous
in nature. This is primarily because the service relies on an underlying application
server or web container. In the preceding example, a war was explicitly created and
deployed on a Tomcat server.

This is a traditional approach to developing RESTful services as a web application.
However, from the microservices point of view, one needs a mechanism to develop
services as executables, self-contained JAR files with an embedded HTTP listener.

Spring Boot is a tool that allows easy development of such kinds of services.
Dropwizard and WildFly Swarm are alternate server-less RESTful stacks.

Building Microservices with Spring Boot

[292]

Using Spring Boot to build RESTful
microservices
Spring Boot is a utility framework from the Spring team to bootstrap Spring-
based applications and microservices quickly and easily. The framework uses an
opinionated approach over configurations for decision making, thereby reducing the
effort required in writing a lot of boilerplate code and configurations. Using the 80-20
principle, developers should be able to kickstart a variety of Spring applications with
many default values. Spring Boot further presents opportunities for the developers
to customize applications by overriding the autoconfigured values.

Spring Boot not only increases the speed of development but also provides a set
of production-ready ops features such as health checks and metrics collection. As
Spring Boot masks many configuration parameters and abstracts many lower-level
implementations, it minimizes the chance of error to a certain extent. Spring Boot
recognizes the nature of the application based on the libraries available in the class
path and runs the autoconfiguration classes packaged in these libraries.

Often, many developers mistakenly see Spring Boot as a code generator, but in
reality, it is not. Spring Boot only autoconfigures build files—for example, POM files
in the case of Maven. It also sets properties, such as data source properties, based on
certain opinionated defaults. Take a look at the following code:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
 <groupId>org.hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <scope>runtime</scope>
</dependency>

For instance, in the preceding case, Spring Boot understands that the project is set to
use the Spring Data JPA and HSQL databases. It automatically configures the driver
class and other connection parameters.

One of the great outcomes of Spring Boot is that it almost eliminates the need to have
traditional XML configurations. Spring Boot also enables microservices' development
by packaging all the required runtime dependencies in a fat executable JAR file.

Chapter 2

[293]

Getting started with Spring Boot
There are different ways that Spring Boot-based application development can be
started:

•	 Using the Spring Boot CLI as a command-line tool
•	 Using IDEs such as STS to provide Spring Boot, which are supported out of

the box
•	 Using the Spring Initializr project at http://start.spring.io

All these three options will be explored in this chapter, developing a variety of
sample services.

Developing the Spring Boot microservice
using the CLI
The easiest way to develop and demonstrate Spring Boot's capabilities is using the
Spring Boot CLI, a command-line tool. Perform the following steps:

1.	 Install the Spring Boot command-line tool by downloading the spring-
boot-cli-1.3.5.RELEASE-bin.zip file from http://repo.spring.io/
release/org/springframework/boot/spring-boot-cli/1.3.5.RELEASE/
spring-boot-cli-1.3.5.RELEASE-bin.zip.

2.	 Unzip the file into a directory of your choice. Open a terminal window and
change the terminal prompt to the bin folder.
Ensure that the bin folder is added to the system path so that Spring Boot
can be run from any location.

3.	 Verify the installation with the following command. If successful, the Spring
CLI version will be printed in the console:
$spring –-version

Spring CLI v1.3.5.RELEASE

http://start.spring.io
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.3.5.RELEASE/spring-boot-cli-1.3.5.RELEASE-bin.zip
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.3.5.RELEASE/spring-boot-cli-1.3.5.RELEASE-bin.zip
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.3.5.RELEASE/spring-boot-cli-1.3.5.RELEASE-bin.zip

Building Microservices with Spring Boot

[294]

4.	 As the next step, a quick REST service will be developed in Groovy, which
is supported out of the box in Spring Boot. To do so, copy and paste the
following code using any editor of choice and save it as myfirstapp.groovy
in any folder:
@RestController
class HelloworldController {
 @RequestMapping("/")
 String sayHello() {
 "Hello World!"
 }
}

5.	 In order to run this Groovy application, go to the folder where myfirstapp.
groovy is saved and execute the following command. The last few lines of
the server start-up log will be similar to the following:
$spring run myfirstapp.groovy

2016-05-09 18:13:55.351 INFO 35861 --- [nio-8080-exec-1]
o.s.web.servlet.DispatcherServlet : FrameworkServlet
'dispatcherServlet': initialization started

2016-05-09 18:13:55.375 INFO 35861 --- [nio-8080-exec-1]
o.s.web.servlet.DispatcherServlet : FrameworkServlet
'dispatcherServlet': initialization completed in 24 ms

6.	 Open a browser window and go to http://localhost:8080; the browser
will display the following message:

Hello World!

There is no war file created, and no Tomcat server was run. Spring Boot
automatically picked up Tomcat as the webserver and embedded it into the
application. This is a very basic, minimal microservice. The @RestController
annotation, used in the previous code, will be examined in detail in the next example.

Developing the Spring Boot Java
microservice using STS
In this section, developing another Java-based REST/JSON Spring Boot service using
STS will be demonstrated.

Chapter 2

[295]

The full source code of this example is available as the
chapter2.bootrest project in the code files of this book.

1.	 Open STS, right-click within the Project Explorer window, navigate to
New | Project, and select Spring Starter Project, as shown in the following
screenshot, and click on Next:

Spring Starter Project is a basic template wizard that provides a number of
other starter libraries to select from.

2.	 Type the project name as chapter2.bootrest or any other name of your
choice. It is important to choose the packaging as JAR. In traditional web
applications, a war file is created and then deployed to a servlet container,
whereas Spring Boot packages all the dependencies to a self-contained,
autonomous JAR file with an embedded HTTP listener.

Building Microservices with Spring Boot

[296]

3.	 Select 1.8 under Java Version. Java 1.8 is recommended for Spring 4
applications. Change the other Maven properties such as Group, Artifact,
and Package, as shown in the following screenshot:

4.	 Once completed, click on Next.

Chapter 2

[297]

5.	 The wizard will show the library options. In this case, as the REST service is
developed, select Web under Web. This is an interesting step that tells Spring
Boot that a Spring MVC web application is being developed so that Spring
Boot can include the necessary libraries, including Tomcat as the HTTP
listener and other configurations, as required:

Building Microservices with Spring Boot

[298]

6.	 Click on Finish.
This will generate a project named chapter2.bootrest in Project Explorer
in STS:

7.	 Take a moment to examine the generated application. Files that are of
interest are:

°° pom.xml

°° Application.java

°° Application.properties

°° ApplicationTests.java

Examining the POM file
The parent element is one of the interesting aspects in the pom.xml file. Take a look at
the following:

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.4.RELEASE</version>
</parent>

Chapter 2

[299]

The spring-boot-starter-parent pattern is a bill of materials (BOM), a pattern
used by Maven's dependency management. BOM is a special kind of POM file used
to manage different library versions required for a project. The advantage of using
the spring-boot-starter-parent POM file is that developers need not worry about
finding the right compatible versions of different libraries such as Spring, Jersey, JUnit,
Logback, Hibernate, Jackson, and so on. For instance, in our first legacy example,
a specific version of the Jackson library was added to work with Spring 4. In this
example, these are taken care of by the spring-boot-starter-parent pattern.

The starter POM file has a list of Boot dependencies, sensible resource filtering, and
sensible plug-in configurations required for the Maven builds.

Refer to https://github.com/spring-projects/
spring-boot/blob/1.3.x/spring-boot-
dependencies/pom.xml to take a look at the different
dependencies provided in the starter parent (version 1.3.x).
All these dependencies can be overridden if required.

The starter POM file itself does not add JAR dependencies to the project. Instead,
it will only add library versions. Subsequently, when dependencies are added to
the POM file, they refer to the library versions from this POM file. A snapshot of
some of the properties are as shown as follows:

<spring-boot.version>1.3.5.BUILD-SNAPSHOT</spring-boot.version>
<hibernate.version>4.3.11.Final</hibernate.version>
<jackson.version>2.6.6</jackson.version>
<jersey.version>2.22.2</jersey.version>
<logback.version>1.1.7</logback.version>
<spring.version>4.2.6.RELEASE</spring.version>
<spring-data-releasetrain.version>Gosling-SR4</spring-data-
releasetrain.version>
<tomcat.version>8.0.33</tomcat.version>

Reviewing the dependency section, one can see that this is a clean and neat POM file
with only two dependencies, as follows:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

https://github.com/spring-projects/spring-boot/blob/1.3.x/spring-boot-dependencies/pom.xml
https://github.com/spring-projects/spring-boot/blob/1.3.x/spring-boot-dependencies/pom.xml
https://github.com/spring-projects/spring-boot/blob/1.3.x/spring-boot-dependencies/pom.xml

Building Microservices with Spring Boot

[300]

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>

As web is selected, spring-boot-starter-web adds all dependencies required for
a Spring MVC project. It also includes dependencies to Tomcat as an embedded
HTTP listener. This provides an effective way to get all the dependencies required as
a single bundle. Individual dependencies could be replaced with other libraries, for
example replacing Tomcat with Jetty.

Similar to web, Spring Boot comes up with a number of spring-boot-starter-*
libraries, such as amqp, aop, batch, data-jpa, thymeleaf, and so on.

The last thing to be reviewed in the pom.xml file is the Java 8 property. By default,
the parent POM file adds Java 6. It is recommended to override the Java version to 8
for Spring:

<java.version>1.8</java.version>

Examining Application.java
Spring Boot, by default, generated a org.rvslab.chapter2.Application.java
class under src/main/java to bootstrap, as follows:

@SpringBootApplication
public class Application {
 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

There is only a main method in Application, which will be invoked at startup as
per the Java convention. The main method bootstraps the Spring Boot application by
calling the run method on SpringApplication. Application.class is passed as a
parameter to tell Spring Boot that this is the primary component.

Chapter 2

[301]

More importantly, the magic is done by the @SpringBootApplication annotation.
The @SpringBootApplication annotation is a top-level annotation that encapsulates
three other annotations, as shown in the following code snippet:

@Configuration
@EnableAutoConfiguration
@ComponentScan
public class Application {

The @Configuration annotation hints that the contained class declares one or
more @Bean definitions. The @Configuration annotation is meta-annotated with
@Component; therefore, it is a candidate for component scanning.

The @EnableAutoConfiguration annotation tells Spring Boot to automatically
configure the Spring application based on the dependencies available in the class path.

Examining application.properties
A default application.properties file is placed under src/main/resources.
It is an important file to configure any required properties for the Spring Boot
application. At the moment, this file is kept empty and will be revisited with some
test cases later in this chapter.

Examining ApplicationTests.java
The last file to be examined is ApplicationTests.java under src/test/java.
This is a placeholder to write test cases against the Spring Boot application.

To implement the first RESTful service, add a REST endpoint, as follows:

1.	 One can edit Application.java under src/main/java and add a RESTful
service implementation. The RESTful service is exactly the same as what was
done in the previous project. Append the following code at the end of the
Application.java file:
@RestController
class GreetingController{
 @RequestMapping("/")
 Greet greet(){
 return new Greet("Hello World!");
 }

Building Microservices with Spring Boot

[302]

}
class Greet {
 private String message;
public Greet() {}

 public Greet(String message) {
 this.message = message;
 }
//add getter and setter
}

2.	 To run, navigate to Run As | Spring Boot App. Tomcat will be started on the
8080 port:

We can notice from the log that:

°° Spring Boot get its own process ID (in this case, it is 41130)
°° Spring Boot is automatically started with the Tomcat server at the

localhost, port 8080.

3.	 Next, open a browser and point to http://localhost:8080. This will show
the JSON response as shown in the following screenshot:

A key difference between the legacy service and this one is that the Spring Boot
service is self-contained. To make this clearer, run the Spring Boot application
outside STS. Open a terminal window, go to the project folder, and run Maven,
as follows:

$ maven install

Chapter 2

[303]

This will generate a fat JAR file under the target folder of the project. Running the
application from the command line shows:

$java -jar target/bootrest-0.0.1-SNAPSHOT.jar

As one can see, bootrest-0.0.1-SNAPSHOT.jar is self-contained and could be run
as a standalone application. At this point, the JAR is as thin as 13 MB. Even though
the application is no more than just "Hello World", the Spring Boot service just
developed, practically follows the principles of microservices.

Testing the Spring Boot microservice
There are multiple ways to test REST/JSON Spring Boot microservices. The easiest
way is to use a web browser or a curl command pointing to the URL, as follows:

curl http://localhost:8080

There are number of tools available to test RESTful services, such as Postman,
Advanced REST client, SOAP UI, Paw, and so on.

In this example, to test the service, the default test class generated by Spring Boot
will be used.

Adding a new test case to ApplicatonTests.java results in:

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = Application.class)
@WebIntegrationTest
public class ApplicationTests {
 @Test
 public void testVanillaService() {
 RestTemplate restTemplate = new RestTemplate();
 Greet greet = restTemplate.getForObject
 ("http://localhost:8080", Greet.class);
 Assert.assertEquals("Hello World!", greet.getMessage());
 }
}

Note that @WebIntegrationTest is added and @WebAppConfiguration removed
at the class level. The @WebIntegrationTest annotation is a handy annotation that
ensures that the tests are fired against a fully up-and-running server. Alternately,
a combination of @WebAppConfiguration and @IntegrationTest will give the
same result.

Building Microservices with Spring Boot

[304]

Also note that RestTemplate is used to call the RESTful service. RestTemplate is a
utility class that abstracts the lower-level details of the HTTP client.

To test this, one can open a terminal window, go to the project folder, and run
mvn install.

Developing the Spring Boot microservice
using Spring Initializr – the HATEOAS
example
In the next example, Spring Initializr will be used to create a Spring Boot project.
Spring Initializr is a drop-in replacement for the STS project wizard and provides
a web UI to configure and generate a Spring Boot project. One of the advantages of
Spring Initializr is that it can generate a project through the website that then can be
imported into any IDE.

In this example, the concept of HATEOAS (short for Hypermedia As The Engine
Of Application State) for REST-based services and the HAL (Hypertext Application
Language) browser will be examined.

HATEOAS is a REST service pattern in which navigation links are provided as part
of the payload metadata. The client application determines the state and follows the
transition URLs provided as part of the state. This methodology is particularly useful
in responsive mobile and web applications in which the client downloads additional
data based on user navigation patterns.

The HAL browser is a handy API browser for hal+json data. HAL is a format based
on JSON that establishes conventions to represent hyperlinks between resources.
HAL helps APIs be more explorable and discoverable.

The full source code of this example is available as the
chapter2.boothateoas project in the code files of this book.

Chapter 2

[305]

Here are the concrete steps to develop a HATEOAS sample using Spring Initilizr:

1.	 In order to use Spring Initilizr, go to https://start.spring.io:

2.	 Fill the details, such as whether it is a Maven project, Spring Boot version,
group, and artifact ID, as shown earlier, and click on Switch to the full
version link under the Generate Project button. Select Web, HATEOAS,
and Rest Repositories HAL Browser. Make sure that the Java version is 8
and the package type is selected as JAR:

https://start.spring.io

Building Microservices with Spring Boot

[306]

3.	 Once selected, hit the Generate Project button. This will generate a Maven
project and download the project as a ZIP file into the download directory of
the browser.

4.	 Unzip the file and save it to a directory of your choice.
5.	 Open STS, go to the File menu and click on Import:

6.	 Navigate to Maven | Existing Maven Projects and click on Next.
7.	 Click on Browse next to Root Directory and select the unzipped folder.

Click on Finish. This will load the generated Maven project into STS'
Project Explorer.

Chapter 2

[307]

8.	 Edit the Application.java file to add a new REST endpoint, as follows:
@RequestMapping("/greeting")
@ResponseBody
public HttpEntity<Greet> greeting(@RequestParam(value = "name",
required = false, defaultValue = "HATEOAS") String name) {
 Greet greet = new Greet("Hello " + name);
 greet.add(linkTo(methodOn(GreetingController.
 class).greeting(name)).withSelfRel());

 return new ResponseEntity<Greet>(greet,
 HttpStatus.OK);
}

9.	 Note that this is the same GreetingController class as in the previous
example. However, a method was added this time named greeting. In
this new method, an additional optional request parameter is defined and
defaulted to HATEOAS. The following code adds a link to the resulting JSON
code. In this case, it adds the link to the same API:
greet.add(linkTo(methodOn(GreetingController.class).
greeting(name)).withSelfRel());

In order to do this, we need to extend the Greet class from
ResourceSupport, as shown here. The rest of the code remains the same:

class Greet extends ResourceSupport{

10.	 The add method is a method in ResourceSupport. The linkTo and
methodOn methods are static methods of ControllerLinkBuilder, a utility
class for creating links on controller classes. The methodOn method will do
a dummy method invocation, and linkTo will create a link to the controller
class. In this case, we will use withSelfRel to point it to itself.

11.	 This will essentially produce a link, /greeting?name=HATEOAS, by default.
A client can read the link and initiate another call.

12.	 Run this as a Spring Boot app. Once the server startup is complete, point the
browser to http://localhost:8080.

Building Microservices with Spring Boot

[308]

13.	 This will open the HAL browser window. In the Explorer field,
type /greeting?name=World! and click on the Go button. If everything
is fine, the HAL browser will show the response details as shown in the
following screenshot:

As shown in the screenshot, the Response Body section has the result with a link
with href pointing back to the same service. This is because we pointed the reference
to itself. Also, review the Links section. The little green box against self is the
navigable link.

It does not make much sense in this simple example, but this could be handy in
larger applications with many related entities. Using the links provided, the client
can easily navigate back and forth between these entities with ease.

What's next?
A number of basic Spring Boot examples have been reviewed so far. The rest of this
chapter will examine some of the Spring Boot features that are important from a
microservices development perspective. In the upcoming sections, we will take a
look at how to work with dynamically configurable properties, change the default
embedded web server, add security to the microservices, and implement cross-origin
behavior when dealing with microservices.

The full source code of this example is available as the
chapter2.boot-advanced project in the code files of this book.

Chapter 2

[309]

The Spring Boot configuration
In this section, the focus will be on the configuration aspects of Spring Boot. The
chapter2.bootrest project, already developed, will be modified in this section
to showcase configuration capabilities. Copy and paste chapter2.bootrest and
rename the project as chapter2.boot-advanced.

Understanding the Spring Boot
autoconfiguration
Spring Boot uses convention over configuration by scanning the dependent
libraries available in the class path. For each spring-boot-starter-* dependency
in the POM file, Spring Boot executes a default AutoConfiguration class.
AutoConfiguration classes use the *AutoConfiguration lexical pattern, where *
represents the library. For example, the autoconfiguration of JPA repositories is done
through JpaRepositoriesAutoConfiguration.

Run the application with --debug to see the autoconfiguration report. The following
command shows the autoconfiguration report for the chapter2.boot-advanced
project:

$java -jar target/bootadvanced-0.0.1-SNAPSHOT.jar --debug

Here are some examples of the autoconfiguration classes:

•	 ServerPropertiesAutoConfiguration

•	 RepositoryRestMvcAutoConfiguration

•	 JpaRepositoriesAutoConfiguration

•	 JmsAutoConfiguration

It is possible to exclude the autoconfiguration of certain libraries if the application
has special requirements and you want to get full control of the configurations.
The following is an example of excluding DataSourceAutoConfiguration:

@EnableAutoConfiguration(exclude={DataSourceAutoConfiguration.class})

Building Microservices with Spring Boot

[310]

Overriding default configuration values
It is also possible to override default configuration values using the application.
properties file. STS provides an easy-to-autocomplete, contextual help on
application.properties, as shown in the following screenshot:

In the preceding screenshot, server.port is edited to be set as 9090. Running this
application again will start the server on port 9090.

Changing the location of the configuration file
In order to align with the Twelve-Factor app, configuration parameters need to
be externalized from the code. Spring Boot externalizes all configurations into
application.properties. However, it is still part of the application's build.
Furthermore, properties can be read from outside the package by setting the
following properties:

spring.config.name= # config file name
spring.config.location= # location of config file

Here, spring.config.location could be a local file location.

The following command starts the Spring Boot application with an externally
provided configuration file:

$java -jar target/bootadvanced-0.0.1-SNAPSHOT.jar --spring.config.
name=bootrest.properties

Chapter 2

[311]

Reading custom properties
At startup, SpringApplication loads all the properties and adds them to the Spring
Environment class. Add a custom property to the application.properties file.
In this case, the custom property is named bootrest.customproperty. Autowire
the Spring Environment class into the GreetingController class. Edit the
GreetingController class to read the custom property from Environment
and add a log statement to print the custom property to the console.

Perform the following steps to do this:

1.	 Add the following property to the application.properties file:
bootrest.customproperty=hello

2.	 Then, edit the GreetingController class as follows:
@Autowired
Environment env;

Greet greet(){
 logger.info("bootrest.customproperty "+
 env.getProperty("bootrest.customproperty"));
 return new Greet("Hello World!");
}

3.	 Rerun the application. The log statement prints the custom variable in the
console, as follows:
org.rvslab.chapter2.GreetingController : bootrest.customproperty
hello

Using a .yaml file for configuration
As an alternate to application.properties, one may use a .yaml file. YAML
provides a JSON-like structured configuration compared to the flat properties file.

To see this in action, simply replace application.properties with application.
yaml and add the following property:

server
port: 9080

Rerun the application to see the port printed in the console.

Building Microservices with Spring Boot

[312]

Using multiple configuration profiles
Furthermore, it is possible to have different profiles such as development, testing,
staging, production, and so on. These are logical names. Using these, one can
configure different values for the same properties for different environments.
This is quite handy when running the Spring Boot application against different
environments. In such cases, there is no rebuild required when moving from one
environment to another.

Update the .yaml file as follows. The Spring Boot group profiles properties based on
the dotted separator:

spring:
 profiles: development
server:
 port: 9090

spring:
 profiles: production
server:
 port: 8080

Run the Spring Boot application as follows to see the use of profiles:

mvn -Dspring.profiles.active=production install

mvn -Dspring.profiles.active=development install

Active profiles can be specified programmatically using the @ActiveProfiles
annotation, which is especially useful when running test cases, as follows:

@ActiveProfiles("test")

Other options to read properties
The properties can be loaded in a number of ways, such as the following:

•	 Command-line parameters (-Dhost.port =9090)
•	 Operating system environment variables
•	 JNDI (java:comp/env)

Chapter 2

[313]

Changing the default embedded web
server
Embedded HTTP listeners can easily be customized as follows. By default, Spring
Boot supports Tomcat, Jetty, and Undertow. In the following example, Tomcat is
replaced with Undertow:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-undertow</artifactId>
</dependency>

Implementing Spring Boot security
It is important to secure microservices. In this section, some basic measures to
secure Spring Boot microservices will be reviewed using chapter2.bootrest to
demonstrate the security features.

Securing microservices with basic security
Adding basic authentication to Spring Boot is pretty simple. Add the following
dependency to pom.xml. This will include the necessary Spring security library files:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

Building Microservices with Spring Boot

[314]

Open Application.java and add @EnableGlobalMethodSecurity to the
Application class. This annotation will enable method-level security:

@EnableGlobalMethodSecurity
@SpringBootApplication
public class Application {
 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

The default basic authentication assumes the user as being user. The default
password will be printed in the console at startup. Alternately, the username
and password can be added in application.properties, as shown here:

security.user.name=guest
security.user.password=guest123

Add a new test case in ApplicationTests to test the secure service results,
as in the following:

 @Test
 public void testSecureService() {
 String plainCreds = "guest:guest123";
 HttpHeaders headers = new HttpHeaders();
 headers.add("Authorization", "Basic " + new String(Base64.
encode(plainCreds.getBytes())));
 HttpEntity<String> request = new HttpEntity<String>(headers);
 RestTemplate restTemplate = new RestTemplate();

 ResponseEntity<Greet> response = restTemplate.exchange("http://
localhost:8080", HttpMethod.GET, request, Greet.class);
 Assert.assertEquals("Hello World!", response.getBody().
getMessage());
 }

As shown in the code, a new Authorization request header with Base64 encoding
the username-password string is created.

Rerun the application using Maven. Note that the new test case passed, but the old
test case failed with an exception. The earlier test case now runs without credentials,
and as a result, the server rejected the request with the following message:

org.springframework.web.client.HttpClientErrorException: 401 Unauthorized

Chapter 2

[315]

Securing a microservice with OAuth2
In this section, we will take a look at the basic Spring Boot configuration for OAuth2.
When a client application requires access to a protected resource, the client sends
a request to an authorization server. The authorization server validates the request
and provides an access token. This access token is validated for every client-to-server
request. The request and response sent back and forth depends on the grant type.

Read more about OAuth and grant types at http://oauth.net.

The resource owner password credentials grant approach will be used in this
example:

In this case, as shown in the preceding diagram, the resource owner provides the
client with a username and password. The client then sends a token request to the
authorization server by providing the credential information. The authorization
server authorizes the client and returns with an access token. On every subsequent
request, the server validates the client token.

http://oauth.net

Building Microservices with Spring Boot

[316]

To implement OAuth2 in our example, perform the following steps:

1.	 As a first step, update pom.xml with the OAuth2 dependency, as follows:
<dependency>
 <groupId>org.springframework.security.oauth</groupId>
 <artifactId>spring-security-oauth2</artifactId>
 <version>2.0.9.RELEASE</version>
</dependency>

2.	 Next, add two new annotations, @EnableAuthorizationServer
and @EnableResourceServer, to the Application.java file. The
@EnableAuthorizationServer annotation creates an authorization server
with an in-memory repository to store client tokens and provide clients with
a username, password, client ID, and secret. The @EnableResourceServer
annotation is used to access the tokens. This enables a spring security filter
that is authenticated via an incoming OAuth2 token.
In our example, both the authorization server and resource server are the
same. However, in practice, these two will run separately. Take a look at the
following code:

@EnableResourceServer
@EnableAuthorizationServer
@SpringBootApplication
public class Application {

3.	 Add the following properties to the application.properties file:
security.user.name=guest
security.user.password=guest123
security.oauth2.client.clientId: trustedclient
security.oauth2.client.clientSecret: trustedclient123
security.oauth2.client.authorized-grant-types: authorization_
code,refresh_token,password
security.oauth2.client.scope: openid

Chapter 2

[317]

4.	 Then, add another test case to test OAuth2, as follows:
 @Test
 public void testOAuthService() {
 ResourceOwnerPasswordResourceDetails resource = new
ResourceOwnerPasswordResourceDetails();
 resource.setUsername("guest");
 resource.setPassword("guest123");
 resource.setAccessTokenUri("http://localhost:8080/oauth/
token");
 resource.setClientId("trustedclient");
 resource.setClientSecret("trustedclient123");
 resource.setGrantType("password");

 DefaultOAuth2ClientContext clientContext = new
DefaultOAuth2ClientContext();
 OAuth2RestTemplate restTemplate = new
OAuth2RestTemplate(resource, clientContext);

 Greet greet = restTemplate.getForObject("http://
localhost:8080", Greet.class);

 Assert.assertEquals("Hello World!", greet.getMessage());
 }

As shown in the preceding code, a special REST template,
OAuth2RestTemplate, is created by passing the resource details
encapsulated in a resource details object. This REST template handles the
OAuth2 processes underneath. The access token URI is the endpoint for
the token access.

5.	 Rerun the application using mvn install. The first two test cases will
fail, and the new one will succeed. This is because the server only accepts
OAuth2-enabled requests.

These are quick configurations provided by Spring Boot out of the box but
are not good enough to be production grade. We may need to customize
ResourceServerConfigurer and AuthorizationServerConfigurer to make
them production-ready. This notwithstanding, the approach remains the same.

Building Microservices with Spring Boot

[318]

Enabling cross-origin access for
microservices
Browsers are generally restricted when client-side web applications running from
one origin request data from another origin. Enabling cross-origin access is generally
termed as CORS (Cross-Origin Resource Sharing).

This example shows how to enable cross-origin requests. With microservices, as each
service runs with its own origin, it will easily get into the issue of a client-side web
application consuming data from multiple origins. For instance, a scenario where
a browser client accessing Customer from the Customer microservice and Order
History from the Order microservices is very common in the microservices world.

Spring Boot provides a simple declarative approach to enabling cross-origin
requests. The following example shows how to enable a microservice to enable cross-
origin requests:

@RestController
class GreetingController{
 @CrossOrigin
 @RequestMapping("/")
 Greet greet(){
 return new Greet("Hello World!");
 }
}

Chapter 2

[319]

By default, all the origins and headers are accepted. We can further customize
the cross-origin annotations by giving access to specific origins, as follows. The
@CrossOrigin annotation enables a method or class to accept cross-origin requests:

@CrossOrigin("http://mytrustedorigin.com")

Global CORS can be enabled using the WebMvcConfigurer bean and customizing
the addCorsMappings(CorsRegistry registry) method.

Implementing Spring Boot messaging
In an ideal case, all microservice interactions are expected to happen asynchronously
using publish-subscribe semantics. Spring Boot provides a hassle-free mechanism to
configure messaging solutions:

In this example, we will create a Spring Boot application with a sender and receiver,
both connected though an external queue. Perform the following steps:

The full source code of this example is available as the
chapter2.bootmessaging project in the code files of this book.

Building Microservices with Spring Boot

[320]

1.	 Create a new project using STS to demonstrate this capability. In this
example, instead of selecting Web, select AMQP under I/O:

2.	 Rabbit MQ will also be needed for this example. Download and install the
latest version of Rabbit MQ from https://www.rabbitmq.com/download.
html.
Rabbit MQ 3.5.6 is used in this book.

3.	 Follow the installation steps documented on the site. Once ready, start the
RabbitMQ server via the following command:
$./rabbitmq-server

4.	 Make the configuration changes to the application.properties file to
reflect the RabbitMQ configuration. The following configuration uses the
default port, username, and password of RabbitMQ:
spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest

https://www.rabbitmq.com/download.html
https://www.rabbitmq.com/download.html

Chapter 2

[321]

5.	 Add a message sender component and a queue named TestQ of the org.
springframework.amqp.core.Queue type to the Application.java file
under src/main/java. RabbitMessagingTemplate is a convenient way to
send messages, which will abstract all the messaging semantics. Spring Boot
provides all boilerplate configurations to send messages:
@Component
class Sender {
 @Autowired
 RabbitMessagingTemplate template;
 @Bean
 Queue queue() {
 return new Queue("TestQ", false);
 }
 public void send(String message){
 template.convertAndSend("TestQ", message);
 }
}

6.	 To receive the message, all that needs to be used is a @RabbitListener
annotation. Spring Boot autoconfigures all the required boilerplate
configurations:
@Component
class Receiver {
 @RabbitListener(queues = "TestQ")
 public void processMessage(String content) {
 System.out.println(content);
 }
}

7.	 The last piece of this exercise is to wire the sender to our main application
and implement the run method of CommandLineRunner to initiate the
message sending. When the application is initialized, it invokes the run
method of CommandLineRunner, as follows:
@SpringBootApplication
public class Application implements CommandLineRunner{

 @Autowired
 Sender sender;

 public static void main(String[] args) {

Building Microservices with Spring Boot

[322]

 SpringApplication.run(Application.class, args);
 }

 @Override
 public void run(String... args) throws Exception {
 sender.send("Hello Messaging..!!!");
 }
}

8.	 Run the application as a Spring Boot application and verify the output.
The following message will be printed in the console:
Hello Messaging..!!!

Developing a comprehensive
microservice example
So far, the examples we have considered are no more than just a simple "Hello
world." Putting together what we have learned, this section demonstrates an
end-to-end Customer Profile microservice implementation. The Customer Profile
microservices will demonstrate interaction between different microservices. It also
demonstrates microservices with business logic and primitive data stores.

In this example, two microservices, the Customer Profile and Customer Notification
services, will be developed:

As shown in the diagram, the Customer Profile microservice exposes methods to
create, read, update, and delete (CRUD) a customer and a registration service to
register a customer. The registration process applies certain business logic, saves the
customer profile, and sends a message to the Customer Notification microservice.
The Customer Notification microservice accepts the message sent by the registration
service and sends an e-mail message to the customer using an SMTP server.
Asynchronous messaging is used to integrate Customer Profile with the Customer
Notification service.

Chapter 2

[323]

The Customer microservices class domain model diagram is as shown here:

CustomerController in the diagram is the REST endpoint, which invokes a
component class, CustomerComponent. The component class/bean handles all the
business logic. CustomerRepository is a Spring data JPA repository defined to
handle the persistence of the Customer entity.

The full source code of this example is available as the
chapter2.bootcustomer and chapter2.
bootcustomernotification projects in the code files of this book.

1.	 Create a new Spring Boot project and call it chapter2.bootcustomer, the
same way as earlier. Select the options as in the following screenshot in the
starter module selection screen:

Building Microservices with Spring Boot

[324]

This will create a web project with JPA, the REST repository, and H2
as a database. H2 is a tiny in-memory embedded database with which it is
easy to demonstrate database features. In the real world, it is recommended
to use an appropriate enterprise-grade database. This example uses JPA to
define persistence entities and the REST repository to expose REST-based
repository services.
The project structure will be similar to the following screenshot:

2.	 Start building the application by adding an Entity class named Customer. For
simplicity, there are only three fields added to the Customer Entity class: the
autogenerated id field, name, and email. Take a look at the following code:
@Entity
class Customer {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;
 private String name;
 private String email;

3.	 Add a repository class to handle the persistence handling of Customer.
CustomerRepository extends the standard JPA repository. This means
that all CRUD methods and default finder methods are automatically
implemented by the Spring Data JPA repository, as follows:
@RepositoryRestResource
interface CustomerRespository extends JpaRepository
<Customer,Long>{
 Optional<Customer> findByName(@Param("name") String name);
}

Chapter 2

[325]

In this example, we added a new method to the repository class, findByName,
which essentially searches the customer based on the customer name and
returns a Customer object if there is a matching name.

4.	 The @RepositoryRestResource annotation enables the repository
access through RESTful services. This will also enable HATEOAS and HAL
by default. As for CRUD methods there is no additional business logic
required, we will leave it as it is without controller or component classes.
Using HATEOAS will help us navigate through Customer Repository
methods effortlessly.
Note that there is no configuration added anywhere to point to any database.
As H2 libraries are in the class path, all the configuration is done by default
by Spring Boot based on the H2 autoconfiguration.

5.	 Update the Application.java file by adding CommandLineRunner to
initialize the repository with some customer records, as follows:
@SpringBootApplication
public class Application {
 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

 @Bean
 CommandLineRunner init(CustomerRespository repo) {
 return (evt) -> {
 repo.save(new Customer("Adam","adam@boot.com"));
 repo.save(new Customer("John","john@boot.com"));
 repo.save(new Customer("Smith","smith@boot.com"));
 repo.save(new Customer("Edgar","edgar@boot.com"));
 repo.save(new Customer("Martin","martin@boot.com"));
 repo.save(new Customer("Tom","tom@boot.com"));
 repo.save(new Customer("Sean","sean@boot.com"));
 };
 }
}

6.	 CommandLineRunner, defined as a bean, indicates that it should run when
it is contained in SpringApplication. This will insert six sample customer
records into the database at startup.

7.	 At this point, run the application as Spring Boot App. Open the HAL
browser and point the browser to http://localhost:8080.

Building Microservices with Spring Boot

[326]

8.	 In the Explorer section, point to http://localhost:8080/customers and
click on Go. This will list all the customers in the Response Body section of
the HAL browser.

9.	 In the Explorer section, enter http://localhost:8080/customers?size=2
&page=1&sort=name and click on Go. This will automatically execute paging
and sorting on the repository and return the result.
As the page size is set to 2 and the first page is requested, it will come back
with two records in a sorted order.

10.	 Review the Links section. As shown in the following screenshot, it will
facilitate navigating first, next, prev, and last. These are done using the
HATEOAS links automatically generated by the repository browser:

11.	 Also, one can explore the details of a customer by selecting the appropriate
link, such as http://localhost:8080/customers/2.

Chapter 2

[327]

12.	 As the next step, add a controller class, CustomerController, to handle
service endpoints. There is only one endpoint in this class, /register, which
is used to register a customer. If successful, it returns the Customer object as
the response, as follows:
@RestController
class CustomerController{

 @Autowired
 CustomerRegistrar customerRegistrar;

 @RequestMapping(path="/register", method = RequestMethod.POST)
 Customer register(@RequestBody Customer customer){
 return customerRegistrar.register(customer);
 }
}

13.	 A CustomerRegistrar component is added to handle the business logic.
In this case, there is only minimal business logic added to the component.
In this component class, while registering a customer, we will just check
whether the customer name already exists in the database or not. If it does
not exist, then we will insert a new record, and otherwise, we will send an
error message back, as follows:
@Component
class CustomerRegistrar {

 CustomerRespository customerRespository;

 @Autowired
 CustomerRegistrar(CustomerRespository customerRespository){
 this.customerRespository = customerRespository;
 }

 Customer register(Customer customer){
 Optional<Customer> existingCustomer = customerRespository.
findByName(customer.getName());
 if (existingCustomer.isPresent()){
 throw new RuntimeException("is already exists");
 } else {
 customerRespository.save(customer);
 }
 return customer;
 }
}

Building Microservices with Spring Boot

[328]

14.	 Restart the Boot application and test using the HAL browser via the URL
http://localhost:8080.

15.	 Point the Explorer field to http://localhost:8080/customers. Review the
results in the Links section:

16.	 Click on the NON-GET option against self. This will open a form to create a
new customer:

17.	 Fill the form and change the Action as shown in the diagram. Click on the
Make Request button. This will call the register service and register the
customer. Try giving a duplicate name to test the negative case.

Chapter 2

[329]

18.	 Let's complete the last part in the example by integrating the Customer
Notification service to notify the customer. When registration is successful,
send an e-mail to the customer by asynchronously calling the Customer
Notification microservice.

19.	 First update CustomerRegistrar to call the second service. This is done
through messaging. In this case, we injected a Sender component to send a
notification to the customer by passing the customer's e-mail address to the
sender, as follows:
@Component
@Lazy
class CustomerRegistrar {

 CustomerRespository customerRespository;
 Sender sender;

 @Autowired
 CustomerRegistrar(CustomerRespository customerRespository,
Sender sender){
 this.customerRespository = customerRespository;
 this.sender = sender;
 }

 Customer register(Customer customer){
 Optional<Customer> existingCustomer = customerRespository.
findByName(customer.getName());
 if (existingCustomer.isPresent()){
 throw new RuntimeException("is already exists");
 } else {
 customerRespository.save(customer);
 sender.send(customer.getEmail());
 }
 return customer;
 }
}

20.	 The sender component will be based on RabbitMQ and AMQP. In this
example, RabbitMessagingTemplate is used as explored in the last
messaging example; take a look at the following:
@Component
@Lazy
class Sender {

 @Autowired

Building Microservices with Spring Boot

[330]

 RabbitMessagingTemplate template;

 @Bean
 Queue queue() {
 return new Queue("CustomerQ", false);
 }

 public void send(String message){
 template.convertAndSend("CustomerQ", message);
 }
}

The @Lazy annotation is a useful one and it helps to increase the boot startup
time. These beans will be initialized only when the need arises.

21.	 We will also update the application.property file to include Rabbit MQ-
related properties, as follows:
spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest

22.	 We are ready to send the message. To consume the message and send
e-mails, we will create a notification service. For this, let's create another
Spring Boot service, chapter2.bootcustomernotification. Make sure that
the AMQP and Mail starter libraries are selected when creating the Spring
Boot service. Both AMQP and Mail are under I/O.

23.	 The package structure of the chapter2.bootcustomernotification project
is as shown here:

Chapter 2

[331]

24.	 Add a Receiver class. The Receiver class waits for a message on customer.
This will receive a message sent by the Customer Profile service. On the
arrival of a message, it sends an e-mail, as follows:
@Component
class Receiver {
 @Autowired
 Mailer mailer;

 @Bean
 Queue queue() {
 return new Queue("CustomerQ", false);
 }

 @RabbitListener(queues = "CustomerQ")
 public void processMessage(String email) {
 System.out.println(email);
 mailer.sendMail(email);
 }
}

25.	 Add another component to send an e-mail to the customer. We will use
JavaMailSender to send an e-mail via the following code:
@Component
class Mailer {
 @Autowired
 private JavaMailSender javaMailService;
 public void sendMail(String email){
 SimpleMailMessage mailMessage=new
 SimpleMailMessage();
 mailMessage.setTo(email);
 mailMessage.setSubject("Registration");
 mailMessage.setText("Successfully Registered");
 javaMailService.send(mailMessage);
 }
}

Behind the scenes, Spring Boot automatically configures all the parameters
required by JavaMailSender.

26.	 To test SMTP, a test setup for SMTP is required to ensure that the mails
are going out. In this example, FakeSMTP will be used. You can download
FakeSMTP from http://nilhcem.github.io/FakeSMTP.

http://nilhcem.github.io/FakeSMTP

Building Microservices with Spring Boot

[332]

27.	 Once you download fakeSMTP-2.0.jar, run the SMTP server by executing
the following command:
$ java -jar fakeSMTP-2.0.jar

This will open a GUI to monitor e-mail messages. Click on the Start Server
button next to the listening port textbox.

28.	 Update application.properties with the following configuration
parameters to connect to RabbitMQ as well as to the mail server:
spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest

spring.mail.host=localhost
spring.mail.port=2525

29.	 We are ready to test our microservices end to end. Start both the Spring Boot
apps. Open the browser and repeat the customer creation steps through the
HAL browser. In this case, immediately after submitting the request, we will
be able to see the e-mail in the SMTP GUI.

Internally, the Customer Profile service asynchronously calls the
Customer Notification service, which, in turn, sends the e-mail message
to the SMTP server:

Chapter 2

[333]

Spring Boot actuators
The previous sections explored most of the Spring Boot features required to develop
a microservice. In this section, some of the production-ready operational aspects of
Spring Boot will be explored.

Spring Boot actuators provide an excellent out-of-the-box mechanism to monitor
and manage Spring Boot applications in production:

The full source code of this example is available as the
chapter2.bootactuator project in the code files of this book.

1.	 Create another Spring Starter Project and name it chapter2.bootactuator.
This time, select Web and Actuators under Ops. Similar to the chapter2.
bootrest project, add a GreeterController endpoint with the
greet method.

2.	 Start the application as Spring Boot app.
3.	 Point the browser to localhost:8080/actuator. This will open the HAL

browser. Then, review the Links section.
A number of links are available under the Links section. These are
automatically exposed by the Spring Boot actuator:

Building Microservices with Spring Boot

[334]

Some of the important links are listed as follows:

•	 dump: This performs a thread dump and displays the result
•	 mappings: This lists all the HTTP request mappings
•	 info: This displays information about the application
•	 health: This displays the application's health conditions
•	 autoconfig: This displays the autoconfiguration report
•	 metrics: This shows different metrics collected from the application

Monitoring using JConsole
Alternately, we can use the JMX console to see the Spring Boot information. Connect
to the remote Spring Boot instance from JConsole. The Boot information will be
shown as follows:

Chapter 2

[335]

Monitoring using SSH
Spring Boot provides remote access to the Boot application using SSH. The following
command connects to the Spring Boot application from a terminal window:

$ ssh -p 2000 user@localhost

The password can be customized by adding the shell.auth.simple.user.
password property in the application.properties file. The updated
application.properties file will look similar to the following:

shell.auth.simple.user.password=admin

When connected with the preceding command, similar actuator information can be
accessed. Here is an example of the metrics information accessed through the CLI:

•	 help: This lists out all the options available
•	 dashboard: This is one interesting feature that shows a lot of system-level

information

Configuring application information
The following properties can be set in application.properties to customize
application-related information. After adding, restart the server and visit the /info
endpoint of the actuator to take a look at the updated information, as follows:

info.app.name=Boot actuator
info.app.description= My Greetings Service
info.app.version=1.0.0

Adding a custom health module
Adding a new custom module to the Spring Boot application is not so complex.
To demonstrate this feature, assume that if a service gets more than two transactions
in a minute, then the server status will be set as Out of Service.

In order to customize this, we have to implement the HealthIndicator interface
and override the health method. The following is a quick and dirty implementation
to do the job:

class TPSCounter {
 LongAdder count;
 int threshold = 2;

Building Microservices with Spring Boot

[336]

 Calendar expiry = null;

 TPSCounter(){
 this.count = new LongAdder();
 this.expiry = Calendar.getInstance();
 this.expiry.add(Calendar.MINUTE, 1);
 }

 boolean isExpired(){
 return Calendar.getInstance().after(expiry);
 }

 boolean isWeak(){
 return (count.intValue() > threshold);
 }

 void increment(){
 count.increment();
 }
}

The preceding class is a simple POJO class that maintains the transaction counts in the
window. The isWeak method checks whether the transaction in a particular window
reached its threshold. The isExpired method checks whether the current window is
expired or not. The increment method simply increases the counter value.

For the next step, implement our custom health indicator class, TPSHealth. This is
done by extending HealthIndicator, as follows:

@Component
class TPSHealth implements HealthIndicator {
 TPSCounter counter;

@Override
 public Health health() {
 boolean health = counter.isWeak(); // perform some specific
health check
 if (health) {
 return Health.outOfService().withDetail("Too many
requests", "OutofService").build();
 }
 return Health.up().build();
 }

Chapter 2

[337]

 void updateTx(){
 if(counter == null || counter.isExpired()){
 counter = new TPSCounter();

 }
 counter.increment();
 }
}

The health method checks whether the counter is weak or not. A weak counter
means the service is handling more transactions than it can handle. If it is weak,
it marks the instance as Out of Service.

Finally, we will autowire TPSHealth into the GreetingController class and then
call health.updateTx() in the greet method, as follows:

 Greet greet(){
 logger.info("Serving Request....!!!");
 health.updateTx();
 return new Greet("Hello World!");
 }

Go to the /health end point in the HAL browser and take a look at the status
of the server.

Now, open another browser, point to http://localhost:8080, and fire the
service twice or thrice. Go back to the /health endpoint and refresh to see the
status. It should be changed to Out of Service.

In this example, as there is no action taken other than collecting the health status,
even though the status is Out of Service, new service calls will still go through.
However, in the real world, a program should read the /health endpoint and block
further requests from going to this instance.

Building custom metrics
Similar to health, customization of the metrics is also possible. The following example
shows how to add counter service and gauge service, just for demonstration purposes:

 @Autowired
 CounterService counterService;

 @Autowired
 GaugeService gaugeService;

Building Microservices with Spring Boot

[338]

Add the following methods in the greet method:

 this.counterService.increment("greet.txnCount");
 this.gaugeService.submit("greet.customgauge", 1.0);

Restart the server and go to /metrics to see the new gauge and counter added
already reflected there.

Documenting microservices
The traditional approach of API documentation is either by writing service
specification documents or using static service registries. With a large number of
microservices, it would be hard to keep the documentation of APIs in sync.

Microservices can be documented in many ways. This section will explore how
microservices can be documented using the popular Swagger framework. The
following example will use Springfox libraries to generate REST API documentation.
Springfox is a set of Java- and Spring-friendly libraries.

Create a new Spring Starter Project and select Web in the library selection window.
Name the project chapter2.swagger.

The full source code of this example is available as the
chapter2.swagger project in the code files of this book.

As Springfox libraries are not part of the Spring suite, edit pom.xml and add
Springfox Swagger library dependencies. Add the following dependencies to
the project:

<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger2</artifactId>
 <version>2.3.1</version>
</dependency>
<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger-ui</artifactId>
 <version>2.3.1</version>
</dependency>

Chapter 2

[339]

Create a REST service similar to the services created earlier, but also add the
@EnableSwagger2 annotation, as follows:

@SpringBootApplication
@EnableSwagger2
public class Application {

This is all that's required for a basic Swagger documentation. Start the application
and point the browser to http://localhost:8080/swagger-ui.html. This will
open the Swagger API documentation page:

As shown in the diagram, the Swagger lists out the possible operations on Greet
Controller. Click on the GET operation. This expands the GET row, which provides
an option to try out the operation.

Building Microservices with Spring Boot

[340]

Summary
In this chapter, you learned about Spring Boot and its key features to build
production-ready applications.

We explored the previous-generation web applications and then how Spring Boot
makes developers' lives easier to develop fully qualified microservices. We also
discussed the asynchronous message-based interaction between services. Further,
we explored how to achieve some of the key capabilities required for microservices,
such as security, HATEOAS, cross-origin, configurations, and so on with practical
examples. We also took a look at how Spring Boot actuators help the operations
teams and also how we can customize it to our needs. Finally, documenting
microservices APIs was also explored.

In the next chapter, we will take a deeper look at some of the practical issues that
may arise when implementing microservices. We will also discuss a capability
model that essentially helps organizations when dealing with large microservices
implementations.

[341]

Applying Microservices
Concepts

Microservices are good, but can also be an evil if they are not properly conceived.
Wrong microservice interpretations could lead to irrecoverable failures.

This chapter will examine the technical challenges around practical implementations
of microservices. It will also provide guidelines around critical design decisions for
successful microservices development. The solutions and patterns for a number of
commonly raised concerns around microservices will also be examined. This chapter
will also review the challenges in enterprise scale microservices development, and
how to overcome those challenges. More importantly, a capability model for a
microservices ecosystem will be established at the end.

In this chapter you will learn about the following:

•	 Trade-offs between different design choices and patterns to be considered
when developing microservices

•	 Challenges and anti-patterns in developing enterprise grade microservices
•	 A capability model for a microservices ecosystem

Patterns and common design decisions
Microservices have gained enormous popularity in recent years. They have evolved
as the preferred choice of architects, putting SOA into the backyards. While
acknowledging the fact that microservices are a vehicle for developing scalable cloud
native systems, successful microservices need to be carefully designed to avoid
catastrophes. Microservices are not the one-size-fits-all, universal solution for all
architecture problems.

Applying Microservices Concepts

[342]

Generally speaking, microservices are a great choice for building a lightweight,
modular, scalable, and distributed system of systems. Over-engineering, wrong
use cases, and misinterpretations could easily turn the system into a disaster. While
selecting the right use cases is paramount in developing a successful microservice, it
is equally important to take the right design decisions by carrying out an appropriate
trade-off analysis. A number of factors are to be considered when designing
microservices, as detailed in the following sections.

Establishing appropriate microservice
boundaries
One of the most common questions relating to microservices is regarding the size of
the service. How big (mini-monolithic) or how small (nano service) can a microservice
be, or is there anything like right-sized services? Does size really matter?

A quick answer could be "one REST endpoint per microservice", or "less than 300
lines of code", or "a component that performs a single responsibility". But before we
pick up any of these answers, there is lot more analysis to be done to understand the
boundaries for our services.

Domain-driven design (DDD) defines the concept of a bounded context. A
bounded context is a subdomain or a subsystem of a larger domain or system
that is responsible for performing a particular function.

Read more about DDD at http://domainlanguage.com/ddd/.

The following diagram is an example of the domain model:

In a finance back office, system invoices, accounting, billing, and the like represent
different bounded contexts. These bounded contexts are strongly isolated domains
that are closely aligned with business capabilities. In the financial domain, the
invoices, accounting, and billing are different business capabilities often handled
by different subunits under the finance department.

http://domainlanguage.com/ddd/

Chapter 3

[343]

A bounded context is a good way to determine the boundaries of microservices.
Each bounded context could be mapped to a single microservice. In the real world,
communication between bounded contexts are typically less coupled, and often,
disconnected.

Even though real world organizational boundaries are the simplest mechanisms
for establishing a bounded context, these may prove wrong in some cases due to
inherent problems within the organization's structures. For example, a business
capability may be delivered through different channels such as front offices, online,
roaming agents, and so on. In many organizations, the business units may be
organized based on delivery channels rather than the actual underlying business
capabilities. In such cases, organization boundaries may not provide accurate service
boundaries.

A top-down domain decomposition could be another way to establish the right
bounded contexts.

There is no silver bullet to establish microservices boundaries, and often, this
is quite challenging. Establishing boundaries is much easier in the scenario of
monolithic application to microservices migration, as the service boundaries and
dependencies are known from the existing system. On the other hand, in a green
field microservices development, the dependencies are hard to establish upfront.

The most pragmatic way to design microservices boundaries is to run the scenario
at hand through a number of possible options, just like a service litmus test. Keep in
mind that there may be multiple conditions matching a given scenario that will lead
to a trade-off analysis.

The following scenarios could help in defining the microservice boundaries.

Autonomous functions
If the function under review is autonomous by nature, then it can be taken as
a microservices boundary. Autonomous services typically would have fewer
dependencies on external functions. They accept input, use its internal logic and
data for computation, and return a result. All utility functions such as an encryption
engine or a notification engine are straightforward candidates.

A delivery service that accepts an order, processes it, and then informs the trucking
service is another example of an autonomous service. An online flight search based
on cached seat availability information is yet another example of an autonomous
function.

Applying Microservices Concepts

[344]

Size of a deployable unit
Most of the microservices ecosystems will take advantage of automation, such as
automatic integration, delivery, deployment, and scaling. Microservices covering
broader functions result in larger deployment units. Large deployment units pose
challenges in automatic file copy, file download, deployment, and start up times.
For instance, the size of a service increases with the density of the functions that
it implements.

A good microservice ensures that the size of its deployable units remains manageable.

Most appropriate function or subdomain
It is important to analyze what would be the most useful component to detach from
the monolithic application. This is particularly applicable when breaking monolithic
applications into microservices. This could be based on parameters such as resource-
intensiveness, cost of ownership, business benefits, or flexibility.

In a typical hotel booking system, approximately 50-60% of the requests are search-
based. In this case, moving out the search function could immediately bring in
flexibility, business benefits, cost reduction, resource free up, and so on.

Polyglot architecture
One of the key characteristics of microservices is its support for polyglot architecture.
In order to meet different non-functional and functional requirements, components
may require different treatments. It could be different architectures, different
technologies, different deployment topologies, and so on. When components are
identified, review them against the requirement for polyglot architectures.

In the hotel booking scenario mentioned earlier, a Booking microservice may need
transactional integrity, whereas a Search microservice may not. In this case, the
Booking microservice may use an ACID compliance database such as MySQL,
whereas the Search microservice may use an eventual consistent database such
as Cassandra.

Selective scaling
Selective scaling is related to the previously discussed polyglot architecture. In
this context, all functional modules may not require the same level of scalability.
Sometimes, it may be appropriate to determine boundaries based on scalability
requirements.

Chapter 3

[345]

For example, in the hotel booking scenario, the Search microservice has to scale
considerably more than many of the other services such as the Booking microservice
or the Notification microservice due to the higher velocity of search requests. In this
case, a separate Search microservice could run on top of an Elasticsearch or an
in-memory data grid for better response.

Small, agile teams
Microservices enable Agile development with small, focused teams developing
different parts of the pie. There could be scenarios where parts of the systems
are built by different organizations, or even across different geographies, or by
teams with varying skill sets. This approach is a common practice, for example,
in manufacturing industries.

In the microservices world, each of these teams builds different microservices, and
then assembles them together. Though this is not the desired way to break down the
system, organizations may end up in such situations. Hence, this approach cannot
be completely ruled out.

In an online product search scenario, a service could provide personalized options
based on what the customer is looking for. This may require complex machine
learning algorithms, and hence need a specialist team. In this scenario, this function
could be built as a microservice by a separate specialist team.

Single responsibility
In theory, the single responsibility principle could be applied at a method, at a class,
or at a service. However, in the context of microservices, it does not necessarily map
to a single service or endpoint.

A more practical approach could be to translate single responsibility into single
business capability or a single technical capability. As per the single responsibility
principle, one responsibility cannot be shared by multiple microservices. Similarly,
one microservice should not perform multiple responsibilities.

There could, however, be special cases where a single business capability is divided
across multiple services. One of such cases is managing the customer profile,
where there could be situations where you may use two different microservices for
managing reads and writes using a Command Query Responsibility Segregation
(CQRS) approach to achieve some of the quality attributes.

Applying Microservices Concepts

[346]

Replicability or changeability
Innovation and speed are of the utmost importance in IT delivery. Microservices
boundaries should be identified in such a way that each microservice is easily
detachable from the overall system, with minimal cost of re-writing. If part of
the system is just an experiment, it should ideally be isolated as a microservice.

An organization may develop a recommendation engine or a customer ranking
engine as an experiment. If the business value is not realized, then throw away
that service, or replace it with another one.

Many organizations follow the startup model, where importance is given to meeting
functions and quick delivery. These organizations may not worry too much about the
architecture and technologies. Instead, the focus will be on what tools or technologies
can deliver solutions faster. Organizations increasingly choose the approach of
developing Minimum Viable Products (MVPs) by putting together a few services,
and allowing the system to evolve. Microservices play a vital role in such cases where
the system evolves, and services gradually get rewritten or replaced.

Coupling and cohesion
Coupling and cohesion are two of the most important parameters for deciding
service boundaries. Dependencies between microservices have to be evaluated
carefully to avoid highly coupled interfaces. A functional decomposition, together
with a modeled dependency tree, could help in establishing a microservices
boundary. Avoiding too chatty services, too many synchronous request-response
calls, and cyclic synchronous dependencies are three key points, as these could
easily break the system. A successful equation is to keep high cohesion within a
microservice, and loose coupling between microservices. In addition to this, ensure
that transaction boundaries are not stretched across microservices. A first class
microservice will react upon receiving an event as an input, execute a number
of internal functions, and finally send out another event. As part of the compute
function, it may read and write data to its own local store.

Think microservice as a product
DDD also recommends mapping a bounded context to a product. As per DDD, each
bounded context is an ideal candidate for a product. Think about a microservice
as a product by itself. When microservice boundaries are established, assess them
from a product's point of view to see whether they really stack up as product. It is
much easier for business users to think boundaries from a product point of view.
A product boundary may have many parameters, such as a targeted community,
flexibility in deployment, sell-ability, reusability, and so on.

Chapter 3

[347]

Designing communication styles
Communication between microservices can be designed either in synchronous
(request-response) or asynchronous (fire and forget) styles.

Synchronous style communication
The following diagram shows an example request/response style service:

In synchronous communication, there is no shared state or object. When a caller
requests a service, it passes the required information and waits for a response.
This approach has a number of advantages.

An application is stateless, and from a high availability standpoint, many
active instances can be up and running, accepting traffic. Since there are no
other infrastructure dependencies such as a shared messaging server, there are
management fewer overheads. In case of an error at any stage, the error will be
propagated back to the caller immediately, leaving the system in a consistent state,
without compromising data integrity.

The downside in a synchronous request-response communication is that the user
or the caller has to wait until the requested process gets completed. As a result, the
calling thread will wait for a response, and hence, this style could limit the scalability
of the system.

A synchronous style adds hard dependencies between microservices. If one service
in the service chain fails, then the entire service chain will fail. In order for a service
to succeed, all dependent services have to be up and running. Many of the failure
scenarios have to be handled using timeouts and loops.

Applying Microservices Concepts

[348]

Asynchronous style communication
The following diagram is a service designed to accept an asynchronous message as
input, and send the response asynchronously for others to consume:

The asynchronous style is based on reactive event loop semantics which decouple
microservices. This approach provides higher levels of scalability, because services
are independent, and can internally spawn threads to handle an increase in
load. When overloaded, messages will be queued in a messaging server for later
processing. That means that if there is a slowdown in one of the services, it will not
impact the entire chain. This provides higher levels of decoupling between services,
and therefore maintenance and testing will be simpler.

The downside is that it has a dependency to an external messaging server. It is
complex to handle the fault tolerance of a messaging server. Messaging typically
works with an active/passive semantics. Hence, handling continuous availability of
messaging systems is harder to achieve. Since messaging typically uses persistence,
a higher level of I/O handling and tuning is required.

How to decide which style to choose?
Both approaches have their own merits and constraints. It is not possible to develop
a system with just one approach. A combination of both approaches is required
based on the use cases. In principle, the asynchronous approach is great for building
true, scalable microservice systems. However, attempting to model everything as
asynchronous leads to complex system designs.

How does the following example look in the context where an end user clicks on a
UI to get profile details?

Chapter 3

[349]

This is perhaps a simple query to the backend system to get a result in a request-
response model. This can also be modeled in an asynchronous style by pushing
a message to an input queue, and waiting for a response in an output queue till
a response is received for the given correlation ID. However, though we use
asynchronous messaging, the user is still blocked for the entire duration of the query.

Another use case is that of a user clicking on a UI to search hotels, which is depicted
in the following diagram:

This is very similar to the previous scenario. However, in this case, we assume that
this business function triggers a number of activities internally before returning
the list of hotels back to the user. For example, when the system receives this
request, it calculates the customer ranking, gets offers based on the destination, gets
recommendations based on customer preferences, optimizes the prices based on
customer values and revenue factors, and so on. In this case, we have an opportunity
to do many of these activities in parallel so that we can aggregate all these results
before presenting them to the customer. As shown in the preceding diagram,
virtually any computational logic could be plugged in to the search pipeline
listening to the IN queue.

An effective approach in this case is to start with a synchronous request response,
and refactor later to introduce an asynchronous style when there is value in doing that.

Applying Microservices Concepts

[350]

The following example shows a fully asynchronous style of service interactions:

The service is triggered when the user clicks on the booking function. It is again, by
nature, a synchronous style communication. When booking is successful, it sends
a message to the customer's e-mail address, sends a message to the hotel's booking
system, updates the cached inventory, updates the loyalty points system, prepares an
invoice, and perhaps more. Instead of pushing the user into a long wait state, a better
approach is to break the service into pieces. Let the user wait till a booking record
is created by the Booking Service. On successful completion, a booking event will
be published, and return a confirmation message back to the user. Subsequently,
all other activities will happen in parallel, asynchronously.

In all three examples, the user has to wait for a response. With the new web
application frameworks, it is possible to send requests asynchronously, and define
the callback method, or set an observer for getting a response. Therefore, the users
won't be fully blocked from executing other activities.

In general, an asynchronous style is always better in the microservices world, but
identifying the right pattern should be purely based on merits. If there are no merits
in modeling a transaction in an asynchronous style, then use the synchronous style
till you find an appealing case. Use reactive programming frameworks to avoid
complexity when modeling user-driven requests, modeled in an asynchronous style.

Chapter 3

[351]

Orchestration of microservices
Composability is one of the service design principles. This leads to confusion
around who is responsible for the composing services. In the SOA world, ESBs are
responsible for composing a set of finely-grained services. In some organizations,
ESBs play the role of a proxy, and service providers themselves compose and expose
coarse-grained services. In the SOA world, there are two approaches for handling
such situations.

The first approach is orchestration, which is depicted in the following diagram:

In the orchestration approach, multiple services are stitched together to get a
complete function. A central brain acts as the orchestrator. As shown in the diagram,
the order service is a composite service that will orchestrate other services. There
could be sequential as well as parallel branches from the master process. Each task
will be fulfilled by an atomic task service, typically a web service. In the SOA world,
ESBs play the role of orchestration. The orchestrated service will be exposed by ESBs
as a composite service.

The second approach is choreography, which is shown in the following diagram:

Applying Microservices Concepts

[352]

In the choreography approach, there is no central brain. An event, a booking event in
this case, is published by a producer, a number of consumers wait for the event, and
independently apply different logics on the incoming event. Sometimes, events could
even be nested where the consumers can send another event which will be consumed
by another service. In the SOA world, the caller pushes a message to the ESB, and the
downstream flow will be automatically determined by the consuming services.

Microservices are autonomous. This essentially means that in an ideal situation,
all required components to complete their function should be within the service.
This includes the database, orchestration of its internal services, intrinsic state
management, and so on. The service endpoints provide coarse-grained APIs. This
is perfectly fine as long as there are no external touch points required. But in reality,
microservices may need to talk to other microservices to fulfil their function.

In such cases, choreography is the preferred approach for connecting multiple
microservices together. Following the autonomy principle, a component sitting
outside a microservice and controlling the flow is not the desired option. If the use
case can be modeled in choreographic style, that would be the best possible way to
handle the situation.

But it may not be possible to model choreography in all cases. This is depicted in the
following diagram:

In the preceding example, Reservation and Customer are two microservices, with
clearly segregated functional responsibilities. A case could arise when Reservation
would want to get Customer preferences while creating a reservation. These are
quite normal scenarios when developing complex systems.

Can we move Customer to Reservation so that Reservation will be complete by
itself? If Customer and Reservation are identified as two microservices based on
various factors, it may not be a good idea to move Customer to Reservation.
In such a case, we will meet another monolithic application sooner or later.

Chapter 3

[353]

Can we make the Reservation to Customer call asynchronous? This example is
shown in the following diagram:

Customer preference is required for Reservation to progress, and hence, it may
require a synchronous blocking call to Customer. Retrofitting this by modeling
asynchronously does not really make sense.

Can we take out just the orchestration bit, and create another composite
microservice, which then composes Reservation and Customer?

This is acceptable in the approach for composing multiple components within a
microservice. But creating a composite microservice may not be a good idea. We will
end up creating many microservices with no business alignment, which would not
be autonomous, and could result in many fine-grained microservices.

Applying Microservices Concepts

[354]

Can we duplicate customer preference by keeping a slave copy of the preference data
into Reservation?

Changes will be propagated whenever there is a change in the master. In this
case, Reservation can use customer preference without fanning out a call. It is a
valid thought, but we need to carefully analyze this. Today we replicate customer
preference, but in another scenario, we may want to reach out to customer service
to see whether the customer is black-listed from reserving. We have to be extremely
careful in deciding what data to duplicate. This could add to the complexity.

How many endpoints in a microservice?
In many situations, developers are confused with the number of endpoints per
microservice. The question really is whether to limit each microservice with one
endpoint or multiple endpoints:

Chapter 3

[355]

The number of endpoints is not really a decision point. In some cases, there may
be only one endpoint, whereas in some other cases, there could be more than one
endpoint in a microservice. For instance, consider a sensor data service which
collects sensor information, and has two logical endpoints: create and read. But in
order to handle CQRS, we may create two separate physical microservices as shown
in the case of Booking in the preceding diagram. Polyglot architecture could be
another scenario where we may split endpoints into different microservices.

Considering a notification engine, notifications will be send out in response to an
event. The process of notification such as preparation of data, identification of a
person, and delivery mechanisms, are different for different events. Moreover, we
may want to scale each of these processes differently at different time windows. In
such situations, we may decide to break each notification endpoint in to a separate
microservice.

In yet another example, a Loyalty Points microservice may have multiple services
such as accrue, redeem, transfer, and balance. We may not want to treat each of these
services differently. All of these services are connected and use the points table for
data. If we go with one endpoint per service, we will end up in a situation where
many fine-grained services access data from the same data store or replicated
copies of the same data store.

In short, the number of endpoints is not a design decision. One microservice
may host one or more endpoints. Designing appropriate bounded context for
a microservice is more important.

One microservice per VM or multiple?
One microservice could be deployed in multiple Virtual Machines (VMs) by
replicating the deployment for scalability and availability. This is a no brainer.
The question is whether multiple microservices could be deployed in one virtual
machine? There are pros and cons for this approach. This question typically arises
when the services are simple, and the traffic volume is less.

Consider an example where we have a couple of microservices, and the overall
transaction per minute is less than 10. Also assume that the smallest possible VM size
available is 2-core 8 GB RAM. A further assumption is that in such cases, a 2-core 8
GB VM can handle 10-15 transactions per minute without any performance concerns.
If we use different VMs for each microservice, it may not be cost effective, and we
will end up paying more for infrastructure and license, since many vendors charge
based on the number of cores.

Applying Microservices Concepts

[356]

The simplest way to approach this problem is to ask a few questions:

•	 Does the VM have enough capacity to run both services under peak usage?
•	 Do we want to treat these services differently to achieve SLAs (selective

scaling)? For example, for scalability, if we have an all-in-one VM, we will
have to replicate VMs which replicate all services.

•	 Are there any conflicting resource requirements? For example, different OS
versions, JDK versions, and others.

If all your answers are No, then perhaps we can start with collocated deployment,
until we encounter a scenario to change the deployment topology. However, we
will have to ensure that these services are not sharing anything, and are running
as independent OS processes.

Having said that, in an organization with matured virtualized infrastructure or cloud
infrastructure, this may not be a huge concern. In such environments, the developers
need not worry about where the services are running. Developers may not even think
about capacity planning. Services will be deployed in a compute cloud. Based on the
infrastructure availability, SLAs and the nature of the service, the infrastructure self-
manages deployments. AWS Lambda is a good example of such a service.

Rules engine – shared or embedded?
Rules are an essential part of any system. For example, an offer eligibility service
may execute a number of rules before making a yes or no decision. Either we hand
code rules, or we may use a rules engine. Many enterprises manage rules centrally
in a rules repository as well as execute them centrally. These enterprise rule engines
are primarily used for providing the business an opportunity to author and manage
rules as well as reuse rules from the central repository. Drools is one of the popular
open source rules engines. IBM, FICO, and Bosch are some of the pioneers in the
commercial space. These rule engines improve productivity, enable reuse of rules,
facts, vocabularies, and provide faster rule execution using the rete algorithm.

In the context of microservices, a central rules engine means fanning out calls from
microservices to the central rules engine. This also means that the service logic is now
in two places, some within the service, and some external to the service. Nevertheless,
the objective in the context of microservices is to reduce external dependencies:

Chapter 3

[357]

If the rules are simple enough, few in numbers, only used within the boundaries of
a service, and not exposed to business users for authoring, then it may be better to
hand-code business rules than rely on an enterprise rule engine:

If the rules are complex, limited to a service context, and not given to business users,
then it is better to use an embedded rules engine within the service:

If the rules are managed and authored by business, or if the rules are complex, or if
we are reusing rules from other service domains, then a central authoring repository
with a locally embedded execution engine could be a better choice.

Note that this has to be carefully evaluated since all vendors may not support the
local rule execution approach, and there could be technology dependencies such as
running rules only within a specific application server, and so on.

Role of BPM and workflows
Business Process Management (BPM) and Intelligent Business Process
Management (iBPM) are tool suites for designing, executing, and monitoring
business processes.

Typical use cases for BPM are:

•	 Coordinating a long-running business process, where some processes are
realized by existing assets, whereas some other areas may be niche, and there
is no concrete implementation of the processes being in place. BPM allows
composing both types, and provides an end-to-end automated process. This
often involves systems and human interactions.

Applying Microservices Concepts

[358]

•	 Process-centric organizations, such as those that have implemented Six
Sigma, want to monitor their processes for continuous improvement
on efficiency.

•	 Process re-engineering with a top-down approach by redefining the business
process of an organization.

There could be two scenarios where BPM fits in the microservices world:

The first scenario is business process re-engineering, or threading an end-to-end long
running business process, as stated earlier. In this case, BPM operates at a higher level,
where it may automate a cross-functional, long-running business process by stitching
a number of coarse-grained microservices, existing legacy connectors, and human
interactions. As shown in the preceding diagram, the loan approval BPM invokes
microservices as well as legacy application services. It also integrates human tasks.

In this case, microservices are headless services that implement a subprocess. From
the microservices' perspective, BPM is just another consumer. Care needs to be taken
in this approach to avoid accepting a shared state from a BPM process as well as
moving business logic to BPM:

Chapter 3

[359]

The second scenario is monitoring processes, and optimizing them for efficiency.
This goes hand in hand with a completely automated, asynchronously
choreographed microservices ecosystem. In this case, microservices and BPM work
as independent ecosystems. Microservices send events at various timeframes such
as the start of a process, state changes, end of a process, and so on. These events are
used by the BPM engine to plot and monitor process states. We may not require
a full-fledged BPM solution for this, as we are only mocking a business process
to monitor its efficiency. In this case, the order delivery process is not a BPM
implementation, but it is more of a monitoring dashboard that captures and displays
the progress of the process.

To summarize, BPM could still be used at a higher level for composing multiple
microservices in situations where end-to-end cross-functional business processes
are modeled by automating systems and human interactions. A better and simpler
approach is to have a business process dashboard to which microservices feed state
change events as mentioned in the second scenario.

Can microservices share data stores?
In principle, microservices should abstract presentation, business logic, and data
stores. If the services are broken as per the guidelines, each microservice logically
could use an independent database:

In the preceding diagram, both Product and Order microservices share one
database and one data model. Shared data models, shared schema, and shared
tables are recipes for disasters when developing microservices. This may be good
at the beginning, but when developing complex microservices, we tend to add
relationships between data models, add join queries, and so on. This can result in
tightly coupled physical data models.

Applying Microservices Concepts

[360]

If the services have only a few tables, it may not be worth investing a full instance of
a database like an Oracle database instance. In such cases, a schema level segregation
is good enough to start with:

There could be scenarios where we tend to think of using a shared database for
multiple services. Taking an example of a customer data repository or master
data managed at the enterprise level, the customer registration and customer
segmentation microservices logically share the same customer data repository:

As shown in the preceding diagram, an alternate approach in this scenario is to
separate the transactional data store for microservices from the enterprise data
repository by adding a local transactional data store for these services. This will
help the services to have flexibility in remodeling the local data store optimized for
its purpose. The enterprise customer repository sends change events when there is
any change in the customer data repository. Similarly, if there is any change in any
of the transactional data stores, the changes have to be sent to the central customer
repository.

Chapter 3

[361]

Setting up transaction boundaries
Transactions in operational systems are used to maintain the consistency of data
stored in an RDBMS by grouping a number of operations together into one atomic
block. They either commit or rollback the entire operation. Distributed systems
follow the concept of distributed transactions with a two-phase commit. This is
particularly required if heterogeneous components such as an RPC service, JMS,
and so on participate in a transaction.

Is there a place for transactions in microservices? Transactions are not bad, but one
should use transactions carefully, by analyzing what we are trying do.

For a given microservice, an RDBMS like MySQL may be selected as a backing store
to ensure 100% data integrity, for example, a stock or inventory management service
where data integrity is key. It is appropriate to define transaction boundaries within
the microsystem using local transactions. However, distributed global transactions
should be avoided in the microservices context. Proper dependency analysis is
required to ensure that transaction boundaries do not span across two different
microservices as much as possible.

Altering use cases to simplify transactional
requirements
Eventual consistency is a better option than distributed transactions that span
across multiple microservices. Eventual consistency reduces a lot of overheads,
but application developers may need to re-think the way they write application
code. This could include remodeling functions, sequencing operations to minimize
failures, batching insert and modify operations, remodeling data structure, and
finally, compensating operations that negate the effect.

A classical problem is that of the last room selling scenario in a hotel booking use
case. What if there is only one room left, and there are multiple customers booking
this singe available room? A business model change sometimes makes this scenario
less impactful. We could set an "under booking profile", where the actual number of
bookable rooms can go below the actual number of rooms (bookable = available - 3) in
anticipation of some cancellations. Anything in this range will be accepted as "subject
to confirmation", and customers will be charged only if payment is confirmed.
Bookings will be confirmed in a set time window.

Applying Microservices Concepts

[362]

Now consider the scenario where we are creating customer profiles in a NoSQL
database like CouchDB. In more traditional approaches with RDBMS, we insert
a customer first, and then insert the customer's address, profile details, then
preferences, all in one transaction. When using NoSQL, we may not do the same
steps. Instead, we may prepare a JSON object with all the details, and insert this
into CouchDB in one go. In this second case, no explicit transaction boundaries
are required.

Distributed transaction scenarios
The ideal scenario is to use local transactions within a microservice if required,
and completely avoid distributed transactions. There could be scenarios where at
the end of the execution of one service, we may want to send a message to another
microservice. For example, say a tour reservation has a wheelchair request. Once the
reservation is successful, we will have to send a message for the wheelchair booking
to another microservice that handles ancillary bookings. The reservation request
itself will run on a local transaction. If sending this message fails, we are still in the
transaction boundary, and we can roll back the entire transaction. What if we create
a reservation and send the message, but after sending the message, we encounter
an error in the reservation, the reservation transaction fails, and subsequently,
the reservation record is rolled back? Now we end up in a situation where we've
unnecessarily created an orphan wheelchair booking:

There are a couple of ways we can address this scenario. The first approach is to
delay sending the message till the end. This ensures that there are less chances
for any failure after sending the message. Still, if failure occurs after sending the
message, then the exception handling routine is run, that is, we send a compensating
message to reverse the wheelchair booking.

Chapter 3

[363]

Service endpoint design consideration
One of the important aspects of microservices is service design. Service design has
two key elements: contract design and protocol selection.

Contract design
The first and foremost principle of service design is simplicity. The services should
be designed for consumers to consume. A complex service contract reduces the
usability of the service. The KISS (Keep It Simple Stupid) principle helps us
to build better quality services faster, and reduces the cost of maintenance and
replacement. The YAGNI (You Ain't Gonna Need It) is another principle supporting
this idea. Predicting future requirements and building systems are, in reality, not
future-proofed. This results in large upfront investment as well as higher cost of
maintenance.

Evolutionary design is a great concept. Do just enough design to satisfy today's
wants, and keep changing and refactoring the design to accommodate new features
as and when they are required. Having said that, this may not be simple unless there
is a strong governance in place.

Consumer Driven Contracts (CDC) is a great idea that supports evolutionary
design. In many cases, when the service contract gets changed, all consuming
applications have to undergo testing. This makes change difficult. CDC helps in
building confidence in consumer applications. CDC advocates each consumer to
provide their expectation to the provider in the form of test cases so that the provider
uses them as integration tests whenever the service contract is changed.

Postel's law is also relevant in this scenario. Postel's law primarily addresses TCP
communications; however, this is also equally applicable to service design. When
it comes to service design, service providers should be as flexible as possible when
accepting consumer requests, whereas service consumers should stick to the contract
as agreed with the provider.

Protocol selection
In the SOA world, HTTP/SOAP, and messaging were kinds of default service
protocols for service interactions. Microservices follow the same design principles for
service interaction. Loose coupling is one of the core principles in the microservices
world too.

Microservices fragment applications into many physically independent deployable
services. This not only increases the communication cost, it is also susceptible to
network failures. This could also result in poor performance of services.

Applying Microservices Concepts

[364]

Message-oriented services
If we choose an asynchronous style of communication, the user is disconnected,
and therefore, response times are not directly impacted. In such cases, we may
use standard JMS or AMQP protocols for communication with JSON as payload.
Messaging over HTTP is also popular, as it reduces complexity. Many new entrants
in messaging services support HTTP-based communication. Asynchronous REST is
also possible, and is handy when calling long-running services.

HTTP and REST endpoints
Communication over HTTP is always better for interoperability, protocol handling,
traffic routing, load balancing, security systems, and the like. Since HTTP is stateless,
it is more compatible for handling stateless services with no affinity. Most of the
development frameworks, testing tools, runtime containers, security systems, and so
on are friendlier towards HTTP.

With the popularity and acceptance of REST and JSON, it is the default choice for
microservice developers. The HTTP/REST/JSON protocol stack makes building
interoperable systems very easy and friendly. HATEOAS is one of the design
patterns emerging for designing progressive rendering and self-service navigations.
As discussed in the previous chapter, HATEOAS provides a mechanism to
link resources together so that the consumer can navigate between resources.
RFC 5988 – Web Linking is another upcoming standard.

Optimized communication protocols
If the service response times are stringent, then we need to pay special attention to
the communication aspects. In such cases, we may choose alternate protocols such
as Avro, Protocol Buffers, or Thrift for communicating between services. But this
limits the interoperability of services. The trade-off is between performance and
interoperability requirements. Custom binary protocols need careful evaluation as
they bind native objects on both sides—consumer and producer. This could run into
release management issues such as class version mismatch in Java-based RPC style
communications.

API documentations
Last thing: a good API is not only simple, but should also have enough
documentation for the consumers. There are many tools available today for
documenting REST-based services like Swagger, RAML, and API Blueprint.

Chapter 3

[365]

Handling shared libraries
The principle behind microservices is that they should be autonomous and
self-contained. In order to adhere to this principle, there may be situations where
we will have to duplicate code and libraries. These could be either technical libraries
or functional components.

For example, the eligibility for a flight upgrade will be checked at the time of
check-in as well as when boarding. If check-in and boarding are two different
microservices, we may have to duplicate the eligibility rules in both the services.
This was the trade-off between adding a dependency versus code duplication.

It may be easy to embed code as compared to adding an additional dependency,
as it enables better release management and performance. But this is against the
DRY principle.

DRY principle
Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system.

The downside of this approach is that in case of a bug or an enhancement on the
shared library, it has to be upgraded in more than one place. This may not be a
severe setback as each service can contain a different version of the shared library:

An alternative option of developing the shared library as another microservice
itself needs careful analysis. If it is not qualified as a microservice from the business
capability point of view, then it may add more complexity than its usefulness. The
trade-off analysis is between overheads in communication versus duplicating the
libraries in multiple services.

Applying Microservices Concepts

[366]

User interfaces in microservices
The microservices principle advocates a microservice as a vertical slice from the
database to presentation:

In reality, we get requirements to build quick UI and mobile applications mashing
up the existing APIs. This is not uncommon in the modern scenario, where a
business wants quick turnaround time from IT:

Penetration of mobile applications is one of the causes of this approach. In many
organizations, there will be mobile development teams sitting close to the business
team, developing rapid mobile applications by combining and mashing up APIs
from multiple sources, both internal and external. In such situations, we may just
expose services, and leave it for the mobile teams to realize in the way the business
wants. In this case, we will build headless microservices, and leave it to the mobile
teams to build a presentation layer.

Chapter 3

[367]

Another category of problem is that the business may want to build consolidated
web applications targeted to communities:

For example, the business may want to develop a departure control application
targeting airport users. A departure control web application may have functions
such as check-in, lounge management, boarding, and so on. These may be designed
as independent microservices. But from the business standpoint, it all needs to be
clubbed into a single web application. In such cases, we will have to build web
applications by mashing up services from the backend.

One approach is to build a container web application or a placeholder web
application, which links to multiple microservices at the backend. In this case,
we develop full stack microservices, but the screens coming out of this could be
embedded in to another placeholder web application. One of the advantages of
this approach is that you can have multiple placeholder web applications targeting
different user communities, as shown in the preceding diagram. We may use an API
gateway to avoid those crisscross connections. We will explore the API gateway in
the next section.

Use of API gateways in microservices
With the advancement of client-side JavaScript frameworks like AngularJS, the
server is expected to expose RESTful services. This could lead to two issues. The first
issue is the mismatch in contract expectations. The second issue is multiple calls to
the server to render a page.

Applying Microservices Concepts

[368]

We start with the contract mismatch case. For example, GetCustomer may return
a JSON with many fields:

Customer {
 Name:
 Address:
 Contact:
}

In the preceding case, Name, Address, and Contact are nested JSON objects. But a
mobile client may expect only basic information such as first name, and last name.
In the SOA world, an ESB or a mobile middleware did this job of transformation of
data for the client. The default approach in microservices is to get all the elements of
Customer, and then the client takes up the responsibility to filter the elements. In this
case, the overhead is on the network.

There are several approaches we can think about to solve this case:

Customer {
 Id: 1
 Name: /customer/name/1
 Address: /customer/address/1
 Contact: /customer/contact/1
}

In the first approach, minimal information is sent with links as explained in the
section on HATEOAS. In the preceding case, for customer ID 1, there are three links,
which will help the client to access specific data elements. The example is a simple
logical representation, not the actual JSON. The mobile client in this case will get
basic customer information. The client further uses the links to get the additional
required information.

The second approach is used when the client makes the REST call; it also sends the
required fields as part of the query string. In this scenario, the client sends a request
with firstname and lastname as the query string to indicate that the client only
requires these two fields. The downside is that it ends up in complex server-side
logic as it has to filter based on the fields. The server has to send different elements
based on the incoming query.

The third approach is to introduce a level of indirection. In this, a gateway component
sits between the client and the server, and transforms data as per the consumer's
specification. This is a better approach as we do not compromise on the backend
service contract. This leads to what is called UI services. In many cases, the API
gateway acts as a proxy to the backend, exposing a set of consumer-specific APIs:

Chapter 3

[369]

There are two ways we can deploy an API gateway. The first one is one API gateway
per microservice as shown in diagram A. The second approach (diagram B) is to
have a common API gateway for multiple services. The choice really depends on
what we are looking for. If we are using an API gateway as a reverse proxy, then
off-the-shelf gateways such as Apigee, Mashery, and the like could be used as a
shared platform. If we need fine-grained control over traffic shaping and complex
transformations, then per service custom API gateways may be more useful.

A related problem is that we will have to make many calls from the client to the server.
If we refer to our holiday example in Chapter 1, Demystifying Microservices, you know
that for rendering each widget, we had to make a call to the server. Though we transfer
only data, it can still add a significant overhead on the network. This approach is not
fully wrong, as in many cases, we use responsive design and progressive design. The
data will be loaded on demand, based on user navigations. In order to do this, each
widget in the client should make independent calls to the server in a lazy mode. If
bandwidth is an issue, then an API gateway is the solution. An API gateway acts as a
middleman to compose and transform APIs from multiple microservices.

Use of ESB and iPaaS with microservices
Theoretically, SOA is not all about ESBs, but the reality is that ESBs have always been
at the center of many SOA implementations. What would be the role of an ESB in
the microservices world?

In general, microservices are fully cloud native systems with smaller footprints.
The lightweight characteristics of microservices enable automation of deployments,
scaling, and so on. On the contrary, enterprise ESBs are heavyweight in nature, and
most of the commercial ESBs are not cloud friendly. The key features of an ESB are
protocol mediation, transformation, orchestration, and application adaptors. In a
typical microservices ecosystem, we may not need any of these features.

Applying Microservices Concepts

[370]

The limited ESB capabilities that are relevant for microservices are already available
with more lightweight tools such as an API gateway. Orchestration is moved from
the central bus to the microservices themselves. Therefore, there is no centralized
orchestration capability expected in the case of microservices. Since the services are
set up to accept more universal message exchange styles using REST/JSON calls,
no protocol mediation is required. The last piece of capability that we get from ESBs
are the adaptors to connect back to the legacy systems. In the case of microservices,
the service itself provides a concrete implementation, and hence, there are no legacy
connectors required. For these reasons, there is no natural space for ESBs in the
microservices world.

Many organizations established ESBs as the backbone for their application
integrations (EAI). Enterprise architecture policies in such organizations are built
around ESBs. There could be a number of enterprise-level policies such as auditing,
logging, security, validation, and so on that would have been in place when
integrating using ESB. Microservices, however, advocate a more decentralized
governance. ESBs will be an overkill if integrated with microservices.

Not all services are microservices. Enterprises have legacy applications, vendor
applications, and so on. Legacy services use ESBs to connect with microservices.
ESBs still hold their place for legacy integration and vendor applications to integrate
at the enterprise level.

With the advancement of clouds, the capabilities of ESBs are not sufficient to manage
integration between clouds, cloud to on-premise, and so on. Integration Platform as
a Service (iPaaS) is evolving as the next generation application integration platform,
which further reduces the role of ESBs. In typical deployments, iPaaS invokes API
gateways to access microservices.

Service versioning considerations
When we allow services to evolve, one of the important aspect to consider is
service versioning. Service versioning should be considered upfront, and not as
an afterthought. Versioning helps us to release new services without breaking the
existing consumers. Both the old version and the new version will be deployed
side by side.

Semantic versions are widely used for service versioning. A semantic version has
three components: major, minor, and patch. Major is used when there is a breaking
change, minor is used when there is a backward compatible change, and patch is
used when there is a backward compatible bug fix.

Chapter 3

[371]

Versioning could get complicated when there is more than one service in a
microservice. It is always simple to version services at the service level compared
to the operations level. If there is a change in one of the operations, the service is
upgraded and deployed to V2. The version change is applicable to all operations
in the service. This is the notion of immutable services.

There are three different ways in which we can version REST services:

•	 URI versioning
•	 Media type versioning
•	 Custom header

In URI versioning, the version number is included in the URL itself. In this case,
we just need to be worried about the major versions only. Hence, if there is a minor
version change or a patch, the consumers do not need to worry about the changes.
It is a good practice to alias the latest version to a non-versioned URI, which is done
as follows:

/api/v3/customer/1234
/api/customer/1234 - aliased to v3.

@RestController("CustomerControllerV3")
@RequestMapping("api/v3/customer")
public class CustomerController {

}

A slightly different approach is to use the version number as part of the URL
parameter:

api/customer/100?v=1.5

In case of media type versioning, the version is set by the client on the HTTP Accept
header as follows:

Accept: application/vnd.company.customer-v3+json

A less effective approach for versioning is to set the version in the custom header:

@RequestMapping(value = "/{id}", method = RequestMethod.GET, headers =
{"version=3"})
public Customer getCustomer(@PathVariable("id") long id) {
 //other code goes here.
}

Applying Microservices Concepts

[372]

In the URI approach, it is simple for the clients to consume services. But this has
some inherent issues such as the fact that versioning-nested URI resources could
be complex. Indeed, migrating clients is slightly complex as compared to media
type approaches, with caching issues for multiple versions of the services, and
others. However, these issues are not significant enough for us to not go with a URI
approach. Most of the big Internet players such as Google, Twitter, LinkedIn, and
Salesforce are following the URI approach.

Design for cross origin
With microservices, there is no guarantee that the services will run from the
same host or same domain. Composite UI web applications may call multiple
microservices for accomplishing a task, and these could come from different
domains and hosts.

CORS allows browser clients to send requests to services hosted on different
domains. This is essential in a microservices-based architecture.

One approach is to enable all microservices to allow cross origin requests from other
trusted domains. The second approach is to use an API gateway as a single trusted
domain for the clients.

Handling shared reference data
When breaking large applications, one of the common issues which we see is the
management of master data or reference data. Reference data is more like shared
data required between different microservices. City master, country master, and so
on will be used in many services such as flight schedules, reservations, and others.

There are a few ways in which we can solve this. For instance, in the case of
relatively static, never changing data, then every service can hardcode this data
within all the microservices themselves:

Chapter 3

[373]

Another approach, as shown in the preceding diagram, is to build it as another
microservice. This is good, clean, and neat, but the downside is that every service
may need to call the master data multiple times. As shown in the diagram for the
Search and Booking example, there are transactional microservices, which use the
Geography microservice to access shared data:

Another option is to replicate the data with every microservice. There is no single
owner, but each service has its required master data. When there is an update, all
the services are updated. This is extremely performance friendly, but one has to
duplicate the code in all the services. It is also complex to keep data in sync across all
microservices. This approach makes sense if the code base and data is simple or the
data is more static.

Yet another approach is similar to the first approach, but each service has a local near
cache of the required data, which will be loaded incrementally. A local embedded
cache such as Ehcache or data grids like Hazelcast or Infinispan could also be used
based on the data volumes. This is the most preferred approach for a large number
of microservices that have dependency on the master data.

Applying Microservices Concepts

[374]

Microservices and bulk operations
Since we have broken monolithic applications into smaller, focused services, it is no
longer possible to use join queries across microservice data stores. This could lead to
situations where one service may need many records from other services to perform
its function.

For example, a monthly billing function needs the invoices of many customers
to process the billing. To make it a bit more complicated, invoices may have
many orders. When we break billing, invoices, and orders into three different
microservices, the challenge that arises is that the Billing service has to query the
Invoices service for each customer to get all the invoices, and then for each invoice,
call the Order service for getting the orders. This is not a good solution, as the
number of calls that goes to other microservices are high:

There are two ways we can think about for solving this. The first approach is to
pre-aggregate data as and when it is created. When an order is created, an event
is sent out. Upon receiving the event, the Billing microservice keeps aggregating
data internally for monthly processing. In this case, there is no need for the Billing
microservice to go out for processing. The downside of this approach is that there is
duplication of data.

Chapter 3

[375]

A second approach, when pre-aggregation is not possible, is to use batch APIs. In
such cases, we call GetAllInvoices, then we use multiple batches, and each batch
further uses parallel threads to get orders. Spring Batch is useful in these situations.

Microservices challenges
In the previous section, you learned about the right design decisions to be taken, and
the trade-offs to be applied. In this section, we will review some of the challenges with
microservices, and how to address them for a successful microservice development.

Data islands
Microservices abstract their own local transactional store, which is used for their own
transactional purposes. The type of store and the data structure will be optimized for
the services offered by the microservice.

For example, if we want to develop a customer relationship graph, we may use a
graph database like Neo4j, OrientDB, and the like. A predictive text search to find
out a customer based on any related information such as passport number, address,
e-mail, phone, and so on could be best realized using an indexed search database
like Elasticsearch or Solr.

This will place us into a unique situation of fragmenting data into heterogeneous
data islands. For example, Customer, Loyalty Points, Reservations, and others are
different microservices, and hence, use different databases. What if we want to do a
near real-time analysis of all high value customers by combining data from all three
data stores? This was easy with a monolithic application, because all the data was
present in a single database:

Applying Microservices Concepts

[376]

In order to satisfy this requirement, a data warehouse or a data lake is required.
Traditional data warehouses like Oracle, Teradata, and others are used primarily
for batch reporting. But with NoSQL databases (like Hadoop) and microbatching
techniques, near real-time analytics is possible with the concept of data lakes. Unlike
the traditional warehouses that are purpose-built for batch reporting, data lakes
store raw data without assuming how the data is going to be used. Now the question
really is how to port the data from microservices into data lakes.

Data porting from microservices to a data lake or a data warehouse can be done in
many ways. Traditional ETL could be one of the options. Since we allow backdoor
entry with ETL, and break the abstraction, this is not considered an effective way for
data movement. A better approach is to send events from microservices as and when
they occur, for example, customer registration, customer update events, and so on.
Data ingestion tools consume these events, and propagate the state change to the
data lake appropriately. The data ingestion tools are highly scalable platforms such
as Spring Cloud Data Flow, Kafka, Flume, and so on.

Logging and monitoring
Log files are a good piece of information for analysis and debugging. Since each
microservice is deployed independently, they emit separate logs, maybe to a local disk.
This results in fragmented logs. When we scale services across multiple machines, each
service instance could produce separate log files. This makes it extremely difficult to
debug and understand the behavior of the services through log mining.

Examining Order, Delivery, and Notification as three different microservices, we
find no way to correlate a customer transaction that runs across all three of them:

Chapter 3

[377]

When implementing microservices, we need a capability to ship logs from each
service to a centrally managed log repository. With this approach, services do not
have to rely on the local disk or local I/Os. A second advantage is that the log files
are centrally managed, and are available for all sorts of analysis such as historical,
real time, and trending. By introducing a correlation ID, end-to-end transactions
can be easily tracked.

With a large number of microservices, and with multiple versions and service
instances, it would be difficult to find out which service is running on which server,
what's the health of these services, the service dependencies, and so on. This was
much easier with monolithic applications that are tagged against a specific or a
fixed set of servers.

Apart from understanding the deployment topology and health, it also poses a
challenge in identifying service behaviors, debugging, and identifying hotspots.
Strong monitoring capabilities are required to manage such an infrastructure.

We will cover the logging and monitoring aspects in Chapter 7, Logging and Monitoring
Microservices.

Dependency management
Dependency management is one of the key issues in large microservice deployments.
How do we identify and reduce the impact of a change? How do we know whether
all the dependent services are up and running? How will the service behave if one
of the dependent services is not available?

Too many dependencies could raise challenges in microservices. Four important
design aspects are stated as follows:

•	 Reducing dependencies by properly designing service boundaries.
•	 Reducing impacts by designing dependencies as loosely coupled as possible.

Also, designing service interactions through asynchronous communication
styles.

•	 Tackling dependency issues using patterns such as circuit breakers.
•	 Monitoring dependencies using visual dependency graphs.

Applying Microservices Concepts

[378]

Organization culture
One of the biggest challenges in microservices implementation is the organization
culture. To harness the speed of delivery of microservices, the organization should
adopt Agile development processes, continuous integration, automated QA checks,
automated delivery pipelines, automated deployments, and automatic infrastructure
provisioning.

Organizations following a waterfall development or heavyweight release management
processes with infrequent release cycles are a challenge for microservices development.
Insufficient automation is also a challenge for microservices deployment.

In short, Cloud and DevOps are supporting facets of microservice development.
These are essential for successful microservices implementation.

Governance challenges
Microservices impose decentralized governance, and this is quite in contrast with
the traditional SOA governance. Organizations may find it hard to come up with
this change, and that could negatively impact the microservices development.

There are number of challenges that comes with a decentralized governance model.
How do we understand who is consuming a service? How do we ensure service
reuse? How do we define which services are available in the organization? How
do we ensure enforcement of enterprise polices?

The first thing is to have a set of standards, best practices, and guidelines on how to
implement better services. These should be available to the organization in the form
of standard libraries, tools, and techniques. This ensures that the services developed
are top quality, and that they are developed in a consistent manner.

The second important consideration is to have a place where all stakeholders
can not only see all the services, but also their documentations, contracts, and
service-level agreements. Swagger and API Blueprint are commonly used for
handling these requirements.

Operation overheads
Microservices deployment generally increases the number of deployable units and
virtual machines (or containers). This adds significant management overheads and
increases the cost of operations.

Chapter 3

[379]

With a single application, a dedicated number of containers or virtual machines in
an on-premise data center may not make much sense unless the business benefit is
very high. The cost generally goes down with economies of scale. A large number of
microservices that are deployed in a shared infrastructure which is fully automated
makes more sense, since these microservices are not tagged against any specific
VMs or containers. Capabilities around infrastructure automation, provisioning,
containerized deployment, and so on are essential for large scale microservices
deployments. Without this automation, it would result in a significant operation
overhead and increased cost.

With many microservices, the number of configurable items (CIs) becomes too
high, and the number of servers in which these CIs are deployed might also be
unpredictable. This makes it extremely difficult to manage data in a traditional
Configuration Management Database (CMDB). In many cases, it is more useful
to dynamically discover the current running topology than a statically configured
CMDB-style deployment topology.

Testing microservices
Microservices also pose a challenge for the testability of services. In order to achieve
a full-service functionality, one service may rely on another service, and that, in turn,
on another service—either synchronously or asynchronously. The issue is how do we
test an end-to-end service to evaluate its behavior? The dependent services may or
may not be available at the time of testing.

Service virtualization or service mocking is one of the techniques used for testing
services without actual dependencies. In testing environments, when the services
are not available, mock services can simulate the behavior of the actual service. The
microservices ecosystem needs service virtualization capabilities. However, this may
not give full confidence, as there may by many corner cases that mock services do
not simulate, especially when there are deep dependencies.

Another approach, as discussed earlier, is to use a consumer driven contract.
The translated integration test cases can cover more or less all corner cases of the
service invocation.

Test automation, appropriate performance testing, and continuous delivery
approaches such as A/B testing, future flags, canary testing, blue-green deployments,
and red-black deployments, all reduce the risks of production releases.

Applying Microservices Concepts

[380]

Infrastructure provisioning
As briefly touched on under operation overheads, manual deployment could
severely challenge the microservices rollouts. If a deployment has manual elements,
the deployer or operational administrators should know the running topology,
manually reroute traffic, and then deploy the application one by one till all services
are upgraded. With many server instances running, this could lead to significant
operational overheads. Moreover, the chances of errors are high in this manual
approach.

Microservices require a supporting elastic cloud-like infrastructure which can
automatically provision VMs or containers, automatically deploy applications,
adjust traffic flows, replicate new version to all instances, and gracefully phase
out older versions. The automation also takes care of scaling up elastically by
adding containers or VMs on demand, and scaling down when the load falls
below threshold.

In a large deployment environment with many microservices, we may also need
additional tools to manage VMs or containers that can further initiate or destroy
services automatically.

The microservices capability model
Before we conclude this chapter, we will review a capability model for microservices
based on the design guidelines and common pattern and solutions described in
this chapter.

The following diagram depicts the microservices capability model:

Chapter 3

[381]

The capability model is broadly classified in to four areas:

•	 Core capabilities: These are part of the microservices themselves
•	 Supporting capabilities: These are software solutions supporting core

microservice implementations
•	 Infrastructure capabilities: These are infrastructure level expectations for

a successful microservices implementation
•	 Governance capabilities: These are more of process, people, and reference

information

Core capabilities
The core capabilities are explained as follows:

•	 Service listeners (HTTP/messaging): If microservices are enabled for a
HTTP-based service endpoint, then the HTTP listener is embedded within
the microservices, thereby eliminating the need to have any external
application server requirement. The HTTP listener is started at the time
of the application startup. If the microservice is based on asynchronous
communication, then instead of an HTTP listener, a message listener is
started. Optionally, other protocols could also be considered. There may not
be any listeners if the microservice is a scheduled service. Spring Boot and
Spring Cloud Streams provide this capability.

•	 Storage capability: The microservices have some kind of storage mechanisms
to store state or transactional data pertaining to the business capability. This
is optional, depending on the capabilities that are implemented. The storage
could be either a physical storage (RDBMS such as MySQL; NoSQL such
as Hadoop, Cassandra, Neo 4J, Elasticsearch, and so on), or it could be an
in-memory store (cache like Ehcache, data grids like Hazelcast, Infinispan,
and so on)

•	 Business capability definition: This is the core of microservices, where
the business logic is implemented. This could be implemented in any
applicable language such as Java, Scala, Conjure, Erlang, and so on. All
required business logic to fulfill the function will be embedded within
the microservices themselves.

•	 Event sourcing: Microservices send out state changes to the external world
without really worrying about the targeted consumers of these events.
These events could be consumed by other microservices, audit services,
replication services, or external applications, and the like. This allows other
microservices and applications to respond to state changes.

Applying Microservices Concepts

[382]

•	 Service endpoints and communication protocols: These define the APIs
for external consumers to consume. These could be synchronous endpoints
or asynchronous endpoints. Synchronous endpoints could be based on
REST/JSON or any other protocols such as Avro, Thrift, Protocol Buffers,
and so on. Asynchronous endpoints are through Spring Cloud Streams
backed by RabbitMQ, other messaging servers, or other messaging style
implementations such as ZeroMQ.

•	 API gateway: The API gateway provides a level of indirection by either
proxying service endpoints or composing multiple service endpoints. The
API gateway is also useful for policy enforcements. It may also provide real
time load balancing capabilities. There are many API gateways available
in the market. Spring Cloud Zuul, Mashery, Apigee, and 3scale are some
examples of the API gateway providers.

•	 User interfaces: Generally, user interfaces are also part of microservices for
users to interact with the business capabilities realized by the microservices.
These could be implemented in any technology, and are channel- and
device-agnostic.

Infrastructure capabilities
Certain infrastructure capabilities are required for a successful deployment, and
managing large scale microservices. When deploying microservices at scale, not
having proper infrastructure capabilities can be challenging, and can lead to failures:

•	 Cloud: Microservices implementation is difficult in a traditional data center
environment with long lead times to provision infrastructures. Even a large
number of infrastructures dedicated per microservice may not be very cost
effective. Managing them internally in a data center may increase the cost
of ownership and cost of operations. A cloud-like infrastructure is better
for microservices deployment.

•	 Containers or virtual machines: Managing large physical machines is not
cost effective, and they are also hard to manage. With physical machines, it
is also hard to handle automatic fault tolerance. Virtualization is adopted by
many organizations because of its ability to provide optimal use of physical
resources. It also provides resource isolation. It also reduces the overheads in
managing large physical infrastructure components. Containers are the next
generation of virtual machines. VMWare, Citrix, and so on provide virtual
machine technologies. Docker, Drawbridge, Rocket, and LXD are some of
the containerizer technologies.

Chapter 3

[383]

•	 Cluster control and provisioning: Once we have a large number of
containers or virtual machines, it is hard to manage and maintain
them automatically. Cluster control tools provide a uniform operating
environment on top of the containers, and share the available capacity across
multiple services. Apache Mesos and Kubernetes are examples of cluster
control systems.

•	 Application lifecycle management: Application lifecycle management
tools help to invoke applications when a new container is launched, or
kill the application when the container shuts down. Application life cycle
management allows for script application deployments and releases. It
automatically detects failure scenario, and responds to those failures thereby
ensuring the availability of the application. This works in conjunction with
the cluster control software. Marathon partially addresses this capability.

Supporting capabilities
Supporting capabilities are not directly linked to microservices, but they are essential
for large scale microservices development:

•	 Software defined load balancer: The load balancer should be smart enough
to understand the changes in the deployment topology, and respond
accordingly. This moves away from the traditional approach of configuring
static IP addresses, domain aliases, or cluster addresses in the load balancer.
When new servers are added to the environment, it should automatically
detect this, and include them in the logical cluster by avoiding any manual
interactions. Similarly, if a service instance is unavailable, it should take it out
from the load balancer. A combination of Ribbon, Eureka, and Zuul provide
this capability in Spring Cloud Netflix.

•	 Central log management: As explored earlier in this chapter, a capability is
required to centralize all logs emitted by service instances with the correlation
IDs. This helps in debugging, identifying performance bottlenecks, and
predictive analysis. The result of this is fed back into the life cycle manager
to take corrective actions.

•	 Service registry: A service registry provides a runtime environment for
services to automatically publish their availability at runtime. A registry
will be a good source of information to understand the services topology at
any point. Eureka from Spring Cloud, Zookeeper, and Etcd are some of the
service registry tools available.

Applying Microservices Concepts

[384]

•	 Security service: A distributed microservices ecosystem requires a central
server for managing service security. This includes service authentication
and token services. OAuth2-based services are widely used for microservices
security. Spring Security and Spring Security OAuth are good candidates for
building this capability.

•	 Service configuration: All service configurations should be externalized as
discussed in the Twelve-Factor application principles. A central service for
all configurations is a good choice. Spring Cloud Config server, and Archaius
are out-of-the-box configuration servers.

•	 Testing tools (anti-fragile, RUM, and so on): Netflix uses Simian Army for
anti-fragile testing. Matured services need consistent challenges to see the
reliability of the services, and how good fallback mechanisms are. Simian
Army components create various error scenarios to explore the behavior of
the system under failure scenarios.

•	 Monitoring and dashboards: Microservices also require a strong monitoring
mechanism. This is not just at the infrastructure-level monitoring but also
at the service level. Spring Cloud Netflix Turbine, Hysterix Dashboard, and
the like provide service level information. End-to-end monitoring tools like
AppDynamic, New Relic, Dynatrace, and other tools like statd, Sensu, and
Spigo could add value to microservices monitoring.

•	 Dependency and CI management: We also need tools to discover runtime
topologies, service dependencies, and to manage configurable items. A
graph-based CMDB is the most obvious tool to manage these scenarios.

•	 Data lake: As discussed earlier in this chapter, we need a mechanism to
combine data stored in different microservices, and perform near real-time
analytics. A data lake is a good choice for achieving this. Data ingestion tools
like Spring Cloud Data Flow, Flume, and Kafka are used to consume data.
HDFS, Cassandra, and the like are used for storing data.

•	 Reliable messaging: If the communication is asynchronous, we may need
a reliable messaging infrastructure service such as RabbitMQ or any other
reliable messaging service. Cloud messaging or messaging as a service is a
popular choice in Internet scale message-based service endpoints.

Process and governance capabilities
The last piece in the puzzle is the process and governance capabilities that are
required for microservices:

•	 DevOps: The key to successful implementation of microservices is to adopt
DevOps. DevOps compliment microservices development by supporting
Agile development, high velocity delivery, automation, and better change
management.

Chapter 3

[385]

•	 DevOps tools: DevOps tools for Agile development, continuous integration,
continuous delivery, and continuous deployment are essential for successful
delivery of microservices. A lot of emphasis is required on automated
functioning, real user testing, synthetic testing, integration, release, and
performance testing.

•	 Microservices repository: A microservices repository is where the versioned
binaries of microservices are placed. These could be a simple Nexus
repository or a container repository such as a Docker registry.

•	 Microservice documentation: It is important to have all microservices
properly documented. Swagger or API Blueprint are helpful in achieving
good microservices documentation.

•	 Reference architecture and libraries: The reference architecture provides a
blueprint at the organization level to ensure that the services are developed
according to certain standards and guidelines in a consistent manner. Many
of these could then be translated to a number of reusable libraries that
enforce service development philosophies.

Summary
In this chapter, you learned about handling practical scenarios that will arise in
microservices development.

You learned various solution options and patterns that could be applied to
solve common microservices problems. We reviewed a number of challenges
when developing large scale microservices, and how to address those challenges
effectively.

We also built a capability reference model for a microservices-based ecosystem.
The capability model helps in addressing gaps when building Internet scale
microservices. The capability model learned in this chapter will be the backbone
for this book. The remaining chapters will deep dive into the capability model.

In the next chapter, we will take a real-world problem and model it using the
microservices architecture to see how to translate our learnings into practice.

[387]

Microservices Evolution – A
Case Study

Like SOA, a microservices architecture can be interpreted differently by different
organizations, based on the problem in hand. Unless a sizable, real world problem
is examined in detail, microservices concepts are hard to understand.

This chapter will introduce BrownField Airline (BF), a fictitious budget airline, and
their journey from a monolithic Passenger Sales and Service (PSS) application
to a next generation microservices architecture. This chapter examines the PSS
application in detail, and explains the challenges, approach, and transformation
steps of a monolithic system to a microservices-based architecture, adhering to the
principles and practices that were explained in the previous chapter.

The intention of this case study is to get us as close as possible to a live scenario so
that the architecture concepts can be set in stone.

By the end of this chapter, you will have learned about the following:

•	 A real world case for migrating monolithic systems to microservices-based
ones, with the BrownField Airline's PSS application as an example

•	 Various approaches and transition strategies for migrating a monolithic
application to microservices

•	 Designing a new futuristic microservices system to replace the PSS
application using Spring Framework components

Microservices Evolution – A Case Study

[388]

Reviewing the microservices capability
model
The examples in this chapter explore the following microservices capabilities
from the microservices capability model discussed in Chapter 3, Applying
Microservices Concepts:

•	 HTTP Listener
•	 Message Listener
•	 Storage Capabilities (Physical/In-Memory)
•	 Business Capability Definitions
•	 Service Endpoints & Communication Protocols
•	 User Interfaces
•	 Security Service
•	 Microservice Documentation

Chapter 4

[389]

In Chapter 2, Building Microservices with Spring Boot, we explored all these capabilities
in isolation including how to secure Spring Boot microservices. This chapter will
build a comprehensive microservices example based on a real world case study.

The full source code of this chapter is available under the
Chapter 4 projects in the code files.

Understanding the PSS application
BrownField Airline is one of the fastest growing low-cost, regional airlines,
flying directly to more than 100 destinations from its hub. As a start-up airline,
BrownField Airline started its operations with few destinations and few aircrafts.
BrownField developed its home-grown PSS application to handle their passenger
sales and services.

Business process view
This use case is considerably simplified for discussion purposes. The process view
in the following diagram shows BrownField Airline's end-to-end passenger services
operations covered by the current PSS solution:

The current solution is automating certain customer-facing functions as well as
certain internally facing functions. There are two internally facing functions,
Pre-flight and Post-flight. Pre-flight functions include the planning phase, used for
preparing flight schedules, plans, aircrafts, and so on. Post-flight functions are used
by the back office for revenue management, accounting, and so on. The Search and
Reserve functions are part of the online seat reservation process, and the Check-in
function is the process of accepting passengers at the airport. The Check-in function
is also accessible to the end users over the Internet for online check-in.

Microservices Evolution – A Case Study

[390]

The cross marks at the beginning of the arrows in the preceding diagram indicate
that they are disconnected, and occur at different timelines. For example, passengers
are allowed to book 360 days in advance, whereas the check-in generally happens 24
hours before flight departure.

Functional view
The following diagram shows the functional building blocks of BrownField Airline's
PSS landscape. Each business process and its related subfunctions are represented in
a row:

Each subfunction shown in the preceding diagram explains its role in the overall
business process. Some subfunctions participate in more than one business process.
For example, inventory is used in both search as well as in booking. To avoid any
complication, this is not shown in the diagram. Data management and cross-cutting
subfunctions are used across many business functions.

Architectural view
In order to effectively manage the end-to-end passenger operations, BrownField had
developed an in-house PSS application, almost ten years back. This well-architected
application was developed using Java and JEE technologies combined with the best-
of-the-breed open source technologies available at the time.

Chapter 4

[391]

The overall architecture and technologies are shown in the following diagram:

The architecture has well-defined boundaries. Also, different concerns are separated
into different layers. The web application was developed as an N-tier, component-
based modular system. The functions interact with each other through well-defined
service contracts defined in the form of EJB endpoints.

Design view
The application has many logical functional groupings or subsystems. Further, each
subsystem has many components organized as depicted in the next diagram:

Subsystems interact with each other through remote EJB calls using the IIOP
protocol. The transactional boundaries span across subsystems. Components
within the subsystems communicate with each other through local EJB component
interfaces. In theory, since subsystems use remote EJB endpoints, they could run on
different physically separated application servers. This was one of the design goals.

Microservices Evolution – A Case Study

[392]

Implementation view
The implementation view in the following diagram showcases the internal
organization of a subsystem and its components. The purpose of the diagram is also
to show the different types of artifacts:

In the preceding diagram, the gray-shaded boxes are treated as different Maven
projects, and translate into physical artifacts. Subsystems and components are
designed adhering to the program to an interface principle. Interfaces are packaged
as separate JAR files so that clients are abstracted from the implementations. The
complexity of the business logic is buried in the domain model. Local EJBs are used
as component interfaces. Finally, all subsystems are packaged into a single all-in-one
EAR, and deployed in the application server.

Chapter 4

[393]

Deployment view
The application's initial deployment was simple and straightforward as shown in
the next diagram:

The web modules and business modules were deployed into separate application
server clusters. The application was scaled horizontally by adding more and more
application servers to the cluster.

Zero downtime deployments were handled by creating a standby cluster, and
gracefully diverting the traffic to that cluster. The standby cluster is destroyed once
the primary cluster is patched with the new version and brought back to service.
Most of the database changes were designed for backward compatibility, but
breaking changes were promoted with application outages.

Microservices Evolution – A Case Study

[394]

Death of the monolith
The PSS application was performing well, successfully supporting all business
requirements as well as the expected service levels. The system had no issues in
scaling with the organic growth of the business in the initial years.

The business has seen tremendous growth over a period of time. The fleet size
increased significantly, and new destinations got added to the network. As a result of
this rapid growth, the number of bookings has gone up, resulting in a steep increase
in transaction volumes, up to 200 - to 500 - fold of what was originally estimated.

Pain points
The rapid growth of the business eventually put the application under pressure. Odd
stability issues and performance issues surfaced. New application releases started
breaking the working code. Moreover, the cost of change and the speed of delivery
started impacting the business operations profoundly.

An end-to-end architecture review was ordered, and it exposed the weaknesses of
the system as well as the root causes of many failures, which were as follows:

•	 Stability: The stability issues are primarily due to stuck threads, which limit
the application server's capability to accept more transactions. The stuck
threads are mainly due to database table locks. Memory issues are another
contributor to the stability issues. There were also issues in certain resource
intensive operations that were impacting the whole application.

•	 Outages: The outage window increased largely because of the increase in
server startup time. The root cause of this issue boiled down to the large size
of the EAR. Message pile up during any outage windows causes heavy usage
of the application immediately after an outage window. Since everything
is packaged in a single EAR, any small application code change resulted in
full redeployment. The complexity of the zero downtime deployment model
described earlier, together with the server startup times increased both the
number of outages and their duration.

•	 Agility: The complexity of the code also increased considerably over time,
partially due to the lack of discipline in implementing the changes. As a
result, changes became harder to implement. Also, the impact analysis
became too complex to perform. As a result, inaccurate impact analysis often
led to fixes that broke the working code. The application build time went
up severely, from a few minutes to hours, causing unacceptable drops in
development productivity. The increase in build time also led to difficulty in
build automation, and eventually stopped continuous integration (CI) and
unit testing.

Chapter 4

[395]

Stop gap fix
Performance issues were partially addressed by applying the Y-axis scale method
in the scale cube, as described in Chapter 1, Demystifying Microservices. The all-
encompassing EAR is deployed into multiple disjoint clusters. A software proxy
was installed to selectively route the traffic to designated clusters as shown in the
following diagram:

This helped BrownField's IT to scale the application servers. Therefore, the stability
issues were controlled. However, this soon resulted in a bottleneck at the database
level. Oracle's Real Application Cluster (RAC) was implemented as a solution to
this problem at the database layer.

This new scaling model reduced the stability issues, but at a premium of increased
complexity and cost of ownership. The technology debt also increased over a period
of time, leading to a state where a complete rewrite was the only option for reducing
this technology debt.

Microservices Evolution – A Case Study

[396]

Retrospection
Although the application was well-architected, there was a clear segregation between
the functional components. They were loosely coupled, programmed to interfaces,
with access through standards-based interfaces, and had a rich domain model.

The obvious question is, how come such a well-architected application failed to live
up to the expectations? What else could the architects have done?

It is important to understand what went wrong over a period of time. In the context
of this book, it is also important to understand how microservices can avoid the
recurrence of these scenarios. We will examine some of these scenarios in the
subsequent sections.

Shared data
Almost all functional modules require reference data such as the airline's details,
airplane details, a list of airports and cities, countries, currencies, and so on. For
example, fare is calculated based on the point of origin (city), a flight is between an
origin and a destination (airports), check-in is at the origin airport (airport), and so
on. In some functions, the reference data is a part of the information model, whereas
in some other functions, it is used for validation purposes.

Much of this reference data is neither fully static nor fully dynamic. Addition of
a country, city, airport, or the like could happen when the airline introduces new
routes. Aircraft reference data could change when the airline purchases a new
aircraft, or changes an existing airplane's seat configuration.

One of the common usage scenarios of reference data is to filter the operational data
based on certain reference data. For instance, say a user wishes to see all the flights to
a country. In this case, the flow of events could be as follows: find all the cities in the
selected country, then all airports in the cities, and then fire a request to get all the
flights to the list of resulting airports identified in that country.

The architects considered multiple approaches when designing the system.
Separating the reference data as an independent subsystem like other subsystems
was one of the options considered, but this could lead to performance issues. The
team took the decision to follow an exception approach for handling reference data
as compared to other transactions. Considering the nature of the query patterns
discussed earlier, the approach was to use the reference data as a shared library.

Chapter 4

[397]

In this case, the subsystems were allowed to access the reference data directly using
pass-by-reference semantic data instead of going through the EJB interfaces. This also
meant that irrespective of the subsystems, hibernate entities could use the reference
data as a part of their entity relationships:

As depicted in the preceding diagram, the Booking entity in the reservation
subsystem is allowed to use the reference data entities, in this case Airport,
as part of their relationships.

Single database
Though enough segregation was enforced at the middle tier, all functions pointed to
a single database, even to the same database schema. The single schema approach
opened a plethora of issues.

Native queries
The Hibernate framework provides a good abstraction over the underlying
databases. It generates efficient SQL statements, in most of the cases targeting the
database using specific dialects. However, sometimes, writing native JDBC SQLs
offers better performance and resource efficiency. In some cases, using native
database functions gives an even better performance.

The single database approach worked well at the beginning. But over a period of
time, it opened up a loophole for the developers by connecting database tables
owned by different subsystems. Native JDBC SQL was a good vehicle for doing this.

Microservices Evolution – A Case Study

[398]

The following diagram shows an example of connecting two tables owned by two
subsystems using a native JDBC SQL:

As shown in the preceding diagram, the Accounting component requires all
booking records for a day, for a given city, from the Booking component to process
the day-end billing. The subsystem-based design enforces Accounting to make
a service call to Booking to get all booking records for a given city. Assume this
results in N booking records. Now, for each booking record, Accounting has to
execute a database call to find the applicable rules based on the fare code attached
to each booking record. This could result in N+1 JDBC calls, which is inefficient.
Workarounds, such as batch queries or parallel and batch executions, are available,
but this would lead to increased coding efforts and higher complexity. The
developers tackled this issue with a native JDBC query as an easy-to-implement
shortcut. Essentially, this approach could reduce the number of calls from N+1 to a
single database call, with minimal coding efforts.

This habit continued with many JDBC native queries connecting tables across
multiple components and subsystems. This resulted not only in tightly coupled
components, but also led to undocumented, hard-to-detect code.

Chapter 4

[399]

Stored procedures
Another issue that surfaced as a result of the use of a single database was the use of
complex stored procedures. Some of the complex data-centric logic written at the
middle layer was not performing well, causing slow response, memory issues, and
thread-blocking issues.

In order to address this problem, the developers took the decision to move some of
the complex business logic from the middle tier to the database tier by implementing
the logic directly within the stored procedures. This decision resulted in better
performance of some of the transactions, and removed some of the stability issues.
More and more procedures were added over a period of time. However, this
eventually broke the application's modularity.

Domain boundaries
Though the domain boundaries were well established, all the components were
packaged as a single EAR file. Since all the components were set to run on a single
container, there was no stopping the developers referencing objects across these
boundaries. Over a period of time, the project teams changed, delivery pressure
increased, and the complexity grew tremendously. The developers started looking
for quick solutions rather than the right ones. Slowly, but steadily, the modular
nature of the application went away.

As depicted in the following diagram, hibernate relationships were created across
subsystem boundaries:

Microservices Evolution – A Case Study

[400]

Microservices to the rescue
There are not many improvement opportunities left to support the growing demand
of BrownField Airline's business. BrownField Airline was looking to re-platform the
system with an evolutionary approach rather than a revolutionary model.

Microservices is an ideal choice in these situations—for transforming a legacy
monolithic application with minimal disruption to the business:

As shown in the preceding diagram, the objective is to move to a microservices-
based architecture aligned to the business capabilities. Each microservice will hold
the data store, the business logic, and the presentation layer.

The approach taken by BrownField Airline is to build a number of web portal
applications targeting specific user communities such as customer facing, front office,
and back office. The advantage of this approach lies in the flexibility for modeling,
and also in the possibility to treat different communities differently. For example,
the policies, architecture, and testing approaches for the Internet facing layer are
different from the intranet-facing web application. Internet-facing applications may
take advantage of CDNs (Content Delivery Networks) to move pages as close to the
customer as possible, whereas intranet applications could serve pages directly from
the data center.

Chapter 4

[401]

The business case
When building business cases for migration, one of the commonly asked questions
is "how does the microservices architecture avoid resurfacing of the same issues in
another five years' time?"

Microservices offers a full list of benefits, which you learned in Chapter 1,
Demystifying Microservices, but it is important to list a few here that are critical
in this situation:

•	 Service dependencies: While migrating from monolithic applications to
microservices, the dependencies are better known, and therefore the architects
and developers are much better placed to avoid breaking dependencies and
to future-proof dependency issues. Lessons from the monolithic application
helps architects and developers to design a better system.

•	 Physical boundaries: Microservices enforce physical boundaries in all areas
including the data store, the business logic, and the presentation layer.
Access across subsystems or microservices are truly restricted due to their
physical isolation. Beyond the physical boundaries, they could even run on
different technologies.

•	 Selective scaling: Selective scale out is possible in microservices architecture.
This provides a much more cost-effective scaling mechanism compared to
the Y-scale approach used in the monolithic scenario.

•	 Technology obsolescence: Technology migrations could be applied at a
microservices level rather than at the overall application level. Therefore,
it does not require a humongous investment.

Plan the evolution
It is not simple to break an application that has millions of lines of code, especially if
the code has complex dependencies. How do we break it? More importantly, where
do we start, and how do we approach this problem?

Microservices Evolution – A Case Study

[402]

Evolutionary approach
The best way to address this problem is to establish a transition plan, and gradually
migrate the functions as microservices. At every step, a microservice will be created
outside of the monolithic application, and traffic will be diverted to the new service
as shown in the following diagram:

In order to run this migration successfully, a number of key questions need to be
answered from the transition point of view:

•	 Identification of microservices' boundaries
•	 Prioritizing microservices for migration
•	 Handling data synchronization during the transition phase
•	 Handling user interface integration, working with old and new user

interfaces

Chapter 4

[403]

•	 Handling of reference data in the new system
•	 Testing strategy to ensure the business capabilities are intact and correctly

reproduced
•	 Identification of any prerequisites for microservice development such as

microservices capabilities, frameworks, processes, and so on

Identification of microservices boundaries
The first and foremost activity is to identify the microservices' boundaries. This
is the most interesting part of the problem, and the most difficult part as well. If
identification of the boundaries is not done properly, the migration could lead to
more complex manageability issues.

Like in SOA, a service decomposition is the best way to identify services. However,
it is important to note that decomposition stops at a business capability or bounded
context. In SOA, service decomposition goes further into an atomic, granular service
level.

A top-down approach is typically used for domain decomposition. The bottom-up
approach is also useful in the case of breaking an existing system, as it can utilize
a lot of practical knowledge, functions, and behaviors of the existing monolithic
application.

The previous decomposition step will give a potential list of microservices. It is
important to note that this isn't the final list of microservices, but it serves as a good
starting point. We will run through a number of filtering mechanisms to get to a
final list. The first cut of functional decomposition will, in this case, be similar to the
diagram shown under the functional view introduced earlier in this chapter.

Analyze dependencies
The next step is to analyze the dependencies between the initial set of candidate
microservices that we created in the previous section. At the end of this activity,
a dependency graph will be produced.

A team of architects, business analysts, developers, release
management and support staff is required for this exercise.

Microservices Evolution – A Case Study

[404]

One way to produce a dependency graph is to list out all the components of the
legacy system and overlay dependencies. This could be done by combining one or
more of the approaches listed as follows:

•	 Analyzing the manual code and regenerating dependencies.
•	 Using the experience of the development team to regenerate dependencies.
•	 Using a Maven dependency graph. There are a number of tools we could use

to regenerate the dependency graph, such as PomExplorer, PomParser, and
so on.

•	 Using performance engineering tools such as AppDynamics to identify the
call stack and roll up dependencies.

Let us assume that we reproduce the functions and their dependencies as shown in
the following diagram:

Chapter 4

[405]

There are many dependencies going back and forth between different modules.
The bottom layer shows cross-cutting capabilities that are used across multiple
modules. At this point, the modules are more like spaghetti than autonomous units.

The next step is to analyze these dependencies, and come up with a better, simplified
dependency map.

Events as opposed to query
Dependencies could be query-based or event-based. Event-based is better for
scalable systems. Sometimes, it is possible to convert query-based communications
to event-based ones. In many cases, these dependencies exist because either the
business organizations are managed like that, or by virtue of the way the old system
handled the business scenario.

From the previous diagram, we can extract the Revenue Management and the
Fares services:

Revenue Management is a module used for calculating optimal fare values, based
on the booking demand forecast. In case of a fare change between an origin and a
destination, Update Fare on the Fare module is called by Revenue Management to
update the respective fares in the Fare module.

An alternate way of thinking is that the Fare module is subscribed to Revenue
Management for any changes in fares, and Revenue Management publishes
whenever there is a fare change. This reactive programming approach gives an
added flexibility by which the Fares and the Revenue Management modules could
stay independent, and connect them through a reliable messaging system. This same
pattern could be applied in many other scenarios from Check-In to the Loyalty and
Boarding modules.

Next, examine the scenario of CRM and Booking:

Microservices Evolution – A Case Study

[406]

This scenario is slightly different from the previously explained scenario. The CRM
module is used to manage passenger complaints. When CRM receives a complaint,
it retrieves the corresponding passenger's Booking data. In reality, the number of
complaints are negligibly small when compared to the number of bookings. If we
blindly apply the previous pattern where CRM subscribes to all bookings, we will
find that it is not cost effective:

Examine another scenario between the Check-in and Booking modules. Instead of
Check-in calling the Get Bookings service on Booking, can Check-in listen to booking
events? This is possible, but the challenge here is that a booking can happen 360
days in advance, whereas Check-in generally starts only 24 hours before the fight
departure. Duplicating all bookings and booking changes in the Check-in module
360 days in advance would not be a wise decision as Check-in does not require this
data until 24 hours before the flight departure.

An alternate option is that when check-in opens for a flight (24 hours before
departure), Check-in calls a service on the Booking module to get a snapshot of the
bookings for a given flight. Once this is done, Check-in could subscribe for booking
events specifically for that flight. In this case, a combination of query-based as well as
event-based approaches is used. By doing so, we reduce the unnecessary events and
storage apart from reducing the number of queries between these two services.

In short, there is no single policy that rules all scenarios. Each scenario requires
logical thinking, and then the most appropriate pattern is applied.

Events as opposed to synchronous updates
Apart from the query model, a dependency could be an update transaction as well.
Consider the scenario between Revenue Management and Booking:

Chapter 4

[407]

In order to do a forecast and analysis of the current demand, Revenue Management
requires all bookings across all flights. The current approach, as depicted in the
dependency graph, is that Revenue Management has a schedule job that calls Get
Booking on Booking to get all incremental bookings (new and changed) since the last
synchronization.

An alternative approach is to send new bookings and the changes in bookings
as soon as they take place in the Booking module as an asynchronous push. The
same pattern could be applied in many other scenarios such as from Booking to
Accounting, from Flight to Inventory, and also from Flight to Booking. In this
approach, the source service publishes all state-change events to a topic. All
interested parties could subscribe to this event stream and store locally. This
approach removes many hard wirings, and keeps the systems loosely coupled.

The dependency is depicted in the next diagram:

In this case depicted in the preceding diagram, we changed both dependencies and
converted them to asynchronous events.

One last case to analyze is the Update Inventory call from the Booking module to the
Inventory module:

Microservices Evolution – A Case Study

[408]

When a booking is completed, the inventory status is updated by depleting the
inventory stored in the Inventory service. For example, when there are 10 economy
class seats available, at the end of the booking, we have to reduce it to 9. In the
current system, booking and updating inventory are executed within the same
transaction boundaries. This is to handle a scenario in which there is only one seat
left, and multiple customers are trying to book. In the new design, if we apply the
same event-driven pattern, sending the inventory update as an event to Inventory
may leave the system in an inconsistent state. This needs further analysis, which we
will address later in this chapter.

Challenge requirements
In many cases, the targeted state could be achieved by taking another look at the
requirements:

There are two Validate Flight calls, one from Booking and another one from the
Search module. The Validate Flight call is to validate the input flight data coming
from different channels. The end objective is to avoid incorrect data stored or serviced.
When a customer does a flight search, say "BF100", the system validates this flight to
see the following things:

•	 Whether this is a valid flight?
•	 Whether the flight exists on that particular date?
•	 Are there any booking restrictions set on this flight?

Chapter 4

[409]

An alternate way of solving this is to adjust the inventory of the flight based on
these given conditions. For example, if there is a restriction on the flight, update the
inventory as zero. In this case, the intelligence will remain with Flight, and it keeps
updating the inventory. As far as Search and Booking are concerned, both just look
up the inventory instead of validating flights for every request. This approach is
more efficient as compared to the original approach.

Next we will review the Payment use case. Payment is typically a disconnected
function due to the nature of security constraints such as PCIDSS-like standards. The
most obvious way to capture a payment is to redirect a browser to a payment page
hosted in the Payment service. Since card handling applications come under the
purview of PCIDSS, it is wise to remove any direct dependencies from the Payment
service. Therefore, we can remove the Booking-to-Payment direct dependency, and
opt for a UI-level integration.

Challenge service boundaries
In this section, we will review some of the service boundaries based on the
requirements and dependency graph, considering Check-in and its dependencies to
Seating and Baggage.

The Seating function runs a few algorithms based on the current state of the seat
allocation in the airplane, and finds out the best way to position the next passenger
so that the weight and balance requirements can be met. This is based on a number
of predefined business rules. However, other than Check-in, no other module is
interested in the Seating function. From a business capability perspective, Seating is
just a function of Check-in, not a business capability by itself. Therefore, it is better to
embed this logic inside Check-in itself.

The same is applicable to Baggage as well. BrownField has a separate baggage
handling system. The Baggage function in the PSS context is to print the baggage tag
as well as store the baggage data against the Check-in records. There is no business
capability associated with this particular functionality. Therefore, it is ideal to move
this function to Check-in itself.

Microservices Evolution – A Case Study

[410]

The Book, Search, and Inventory functions, after redesigning, are shown in the
following diagram:

Similarly, Inventory and Search are more supporting functions of the Booking
module. They are not aligned with any of the business capabilities as such. Similar to
the previous judgement, it is ideal to move both the Search and Inventory functions
to Booking. Assume, for the time being, that Search, Inventory, and Booking are
moved to a single microservice named Reservation.

As per the statistics of BrownField, search transactions are 10 times more
frequent than the booking transactions. Moreover, search is not a revenue-generating
transaction when compared to booking. Due to these reasons, we need different
scalability models for search and booking. Booking should not get impacted if
there is a sudden surge of transactions in search. From the business point of view,
dropping a search transaction in favor of saving a valid booking transaction is
more acceptable.

Chapter 4

[411]

This is an example of a polyglot requirement, which overrules the business capability
alignment. In this case, it makes more sense to have Search as a service separate
from the Booking service. Let us assume that we remove Search. Only Inventory and
Booking remain under Reservation. Now Search has to hit back to Reservation to
perform inventory searches. This could impact the booking transactions:

A better approach is to keep Inventory along with the Booking module, and keep a
read-only copy of the inventory under Search, while continuously synchronizing the
inventory data over a reliable messaging system. Since both Inventory and Booking
are collocated, this will also solve the need to have two-phase commits. Since both of
them are local, they could work well with local transactions.

Let us now challenge the Fare module design. When a customer searches for a
flight between A and B for a given date, we would like to show the flights and fares
together. That means that our read-only copy of inventory can also combine both
fares as well as inventory. Search will then subscribe to Fare for any fare change
events. The intelligence still stays with the Fare service, but it keeps sending fare
updates to the cached fare data under Search.

Microservices Evolution – A Case Study

[412]

Final dependency graph
There are still a few synchronized calls, which, for the time being, we will keep as
they are.

By applying all these changes, the final dependency diagram will look like the
following one:

Now we can safely consider each box in the preceding diagram as a microservice.
We have nailed down many dependencies, and modeled many of them as
asynchronous as well. The overall system is more or less designed in the reactive style.
There are still some synchronized calls shown in the diagram with bold lines, such as
Get Bulk from Check-In, Get Booking from CRM, and Get Fare from Booking. These
synchronous calls are essentially required as per the trade-off analysis.

Chapter 4

[413]

Prioritizing microservices for migration
We have identified a first-cut version of our microservices-based architecture. As the
next step, we will analyze the priorities, and identify the order of migration. This
could be done by considering multiple factors explained as follows:

•	 Dependency: One of the parameters for deciding the priority is the
dependency graph. From the service dependency graph, services with less
dependency or no dependency at all are easy to migrate, whereas complex
dependencies are way harder. Services with complex dependencies will also
need dependent modules to be migrated along with them.
Accounting, Loyalty, CRM, and Boarding have less dependencies as
compared to Booking and Check-in. Modules with high dependencies will
also have higher risks in their migration.

•	 Transaction volume: Another parameter that can be applied is analyzing the
transaction volumes. Migrating services with the highest transaction volumes
will relieve the load on the existing system. This will have more value from
an IT support and maintenance perspective. However, the downside of this
approach is the higher risk factor.
As stated earlier, Search requests are ten times higher in volume as compared
to Booking requests. Requests for Check-in are the third-highest in volume
transaction after Search and Booking.

•	 Resource utilization: Resource utilization is measured based on the current
utilizations such as CPU, memory, connection pools, thread pools, and so on.
Migrating resource intensive services out of the legacy system provides relief
to other services. This helps the remaining modules to function better.
Flight, Revenue Management, and Accounting are resource-intensive
services, as they involve data-intensive transactions such as forecasting,
billing, flight schedule changes, and so on.

•	 Complexity: Complexity is perhaps measured in terms of the business logic
associated with a service such as function points, lines of code, number of
tables, number of services, and others. Less complex modules are easy to
migrate as compared to the more complex ones.
Booking is extremely complex as compared to the Boarding, Search, and
Check-in services.

Microservices Evolution – A Case Study

[414]

•	 Business criticality: The business criticality could be either based on
revenue or customer experience. Highly critical modules deliver higher
business value.
Booking is the most revenue-generating service from the business stand
point, whereas Check-in is business critical as it could lead to flight departure
delays, which could lead to revenue loss as well as customer dissatisfaction.

•	 Velocity of changes: Velocity of change indicates the number of change
requests targeting a function in a short time frame. This translates to speed
and agility of delivery. Services with high velocity of change requests are
better candidates for migration as compared to stable modules.
Statistics show that Search, Booking, and Fares go through frequent changes,
whereas Check-in is the most stable function.

•	 Innovation: Services that are part of a disruptive innovative process need
to get priority over back office functions that are based on more established
business processes. Innovations in legacy systems are harder to achieve as
compared to applying innovations in the microservices world.

Most of the innovations are around Search, Booking, Fares, Revenue
Management, and Check-in as compared to back office Accounting.

Based on BrownField's analysis, Search has the highest priority, as it requires
innovation, has high velocity of changes, is less business critical, and gives better
relief for both business and IT. The Search service has minimal dependency with no
requirements to synchronize data back to the legacy system.

Data synchronization during migration
During the transition phase, the legacy system and the new microservices will
run in parallel. Therefore, it is important to keep the data synchronized between
the two systems.

The simplest option is to synchronize the data between the two systems at
the database level by using any data synchronization tool. This approach works
well when both the old and the new systems are built on the same data store
technologies. The complexity will be higher if the data store technologies are
different. The second problem with this approach is that we allow a backdoor entry,
hence exposing the microservices' internal data store outside. This is against the
principle of microservices.

Chapter 4

[415]

Let us take this on a case-by-case basis before we can conclude with a generic
solution. The following diagram shows the data migration and synchronization
aspect once Search is taken out:

Let us assume that we use a NoSQL database for keeping inventory and fares under
the Search service. In this particular case, all we need is the legacy system to supply
data to the new service using asynchronous events. We will have to make some
changes in the existing system to send the fare changes or any inventory changes as
events. The Search service then accepts these events, and stores them locally into the
local NoSQL store.

This is a bit more tedious in the case of the complex Booking service.

Microservices Evolution – A Case Study

[416]

In this case, the new Booking microservice sends the inventory change events to the
Search service. In addition to this, the legacy application also has to send the fare
change events to Search. Booking will then store the new Booking service in its My
SQL data store.

The most complex piece, the Booking service, has to send the booking events
and the inventory events back to the legacy system. This is to ensure that the
functions in the legacy system continue to work as before. The simplest approach
is to write an update component which accepts the events and updates the old
booking records table so that there are no changes required in the other legacy
modules. We will continue this until none of the legacy components are referring
the booking and inventory data. This will help us minimize changes in the legacy
system, and therefore, reduce the risk of failures.

In short, a single approach may not be sufficient. A multi-pronged approach based
on different patterns is required.

Chapter 4

[417]

Managing reference data
One of the biggest challenges in migrating monolithic applications to microservices
is managing reference data. A simple approach is to build the reference data as
another microservice itself as shown in the following diagram:

In this case, whoever needs reference data should access it through the microservice
endpoints. This is a well-structured approach, but could lead to performance issues
as encountered in the original legacy system.

An alternate approach is to have reference data as a microservice service for all the
admin and CRUD functions. A near cache will then be created under each service to
incrementally cache data from the master services. A thin reference data access proxy
library will be embedded in each of these services. The reference data access proxy
abstracts whether the data is coming from cache or from a remote service.

Microservices Evolution – A Case Study

[418]

This is depicted in the next diagram. The master node in the given diagram is the
actual reference data microservice:

The challenge is to synchronize the data between the master and the slave. A
subscription mechanism is required for those data caches that change frequently.

A better approach is to replace the local cache with an in-memory data grid, as
shown in the following diagram:

Chapter 4

[419]

The reference data microservice will write to the data grid, whereas the proxy
libraries embedded in other services will have read-only APIs. This eliminates the
requirement to have subscription of data, and is much more efficient and consistent.

User interfaces and web applications
During the transition phase, we have to keep both the old and new user interfaces
together. There are three general approaches usually taken in this scenario.

The first approach is to have the old and new user interfaces as separate user
applications with no link between them, as depicted in the following diagram:

A user signs in to the new application as well as into the old application, much
like two different applications, with no single sign-on (SSO) between them. This
approach is simple, and there is no overhead. In most of the cases, this may not be
acceptable to the business unless it is targeted at two different user communities.

The second approach is to use the legacy user interface as the primary application,
and then transfer page controls to the new user interfaces when the user requests
pages of the new application:

Microservices Evolution – A Case Study

[420]

In this case, since the old and the new applications are web-based applications
running in a web browser window, users will get a seamless experience. SSO has to
be implemented between the old and the new user interfaces.

The third approach is to integrate the existing legacy user interface directly to the
new microservices backend, as shown in the next diagram:

In this case, the new microservices are built as headless applications with no
presentation layer. This could be challenging, as it may require many changes
in the old user interface such as introducing service calls, data model conversions,
and so on.

Another issue in the last two cases is how to handle the authentication of resources
and services.

Session handling and security
Assume that the new services are written based on Spring Security with a
token-based authorization strategy, whereas the old application uses a
custom-built authentication with its local identity store.

Chapter 4

[421]

The following diagram shows how to integrate between the old and the new
services:

The simplest approach, as shown in the preceding diagram, is to build a new
identity store with an authentication service as a new microservice using Spring
Security. This will be used for all our future resource and service protections,
for all microservices.

The existing user interface application authenticates itself against the new
authentication service, and secures a token. This token will be passed to the new user
interface or new microservice. In both cases, the user interface or microservice will
make a call to the authentication service to validate the given token. If the token is
valid, then the UI or microservice accepts the call.

The catch here is that the legacy identity store has to be synchronized with the
new one.

Microservices Evolution – A Case Study

[422]

Test strategy
One important question to answer from a testing point of view is how can we ensure
that all functions work in the same way as before the migration?

Integration test cases should be written for the services that are getting migrated
before the migration or refactoring. This ensures that once migrated, we get the same
expected result, and the behavior of the system remains the same. An automated
regression test pack has to be in place, and has to be executed every time we make a
change in the new or old system.

In the following diagram, for each service we need one test against the EJB endpoint,
and another one against the microservices endpoint:

Chapter 4

[423]

Building ecosystem capabilities
Before we embark on actual migration, we have to build all of the microservice's
capabilities mentioned under the capability model, as documented in Chapter 3,
Applying Microservices Concepts. These are the prerequisites for developing
microservices-based systems.

In addition to these capabilities, certain application functions are also required
to be built upfront such as reference data, security and SSO, and Customer and
Notification. A data warehouse or a data lake is also required as a prerequisite. An
effective approach is to build these capabilities in an incremental fashion, delaying
development until it is really required.

Migrate modules only if required
In the previous chapters, we have examined approaches and steps for transforming
from a monolithic application to microservices. It is important to understand that it is
not necessary to migrate all modules to the new microservices architecture, unless it
is really required. A major reason is that these migrations incur cost.

We will review a few such scenarios here. BrownField has already taken a decision
to use an external revenue management system in place of the PSS revenue
management function. BrownField is also in the process of centralizing their
accounting functions, and therefore, need not migrate the accounting function from
the legacy system. Migration of CRM does not add much value at this point to the
business. Therefore, it is decided to keep the CRM in the legacy system itself. The
business has plans to move to a SaaS-based CRM solution as part of their cloud
strategy. Also note that stalling the migration halfway through could seriously
impact the complexity of the system.

Microservices Evolution – A Case Study

[424]

Target architecture
The architecture blueprint shown in the following diagram consolidates earlier
discussions into an architectural view. Each block in the diagram represents a
microservice. The shaded boxes are core microservices, and the others are supporting
microservices. The diagram also shows the internal capabilities of each microservice.
User management is moved under security in the target architecture:

Chapter 4

[425]

Each service has its own architecture, typically consisting of a presentation layer,
one or more service endpoints, business logic, business rules, and database. As
we can see, we use different selections of databases that are more suitable for each
microservice. Each one is autonomous with minimal orchestration between the
services. Most of the services interact with each other using the service endpoints.

Internal layering of microservices
In this section, we will further explore the internal structure of microservices. There
is no standard to be followed for the internal architecture of a microservice. The rule
of thumb is to abstract realizations behind simple service endpoints.

A typical structure would look like the one shown in the following diagram:

The UI accesses REST services through a service gateway. The API gateway may be
one per microservice or one for many microservices—it depends on what we want
to do with the API gateway. There could be one or more rest endpoints exposed by
microservices. These endpoints, in turn, connect to one of the business components
within the service. Business components then execute all the business functions with
the help of domain entities. A repository component is used for interacting with the
backend data store.

Microservices Evolution – A Case Study

[426]

Orchestrating microservices
The logic of the booking orchestration and the execution of rules sits within the
Booking service. The brain is still inside the Booking service in the form of one or
more booking business components. Internally, business components orchestrate
private APIs exposed by other business components or even external services:

As shown in the preceding diagram, the booking service internally calls to update
the inventory of its own component other than calling the Fare service.

Is there any orchestration engine required for this activity? It depends on the
requirements. In complex scenarios, we may have to do a number of things in
parallel. For example, creating a booking internally applies a number of booking
rules, it validates the fare, and it validates the inventory before creating a
booking. We may want to execute them in parallel. In such cases, we may use Java
concurrency APIs or reactive Java libraries.

In extremely complex situations, we may opt for an integration framework such as
Spring Integration or Apache Camel in embedded mode.

Chapter 4

[427]

Integration with other systems
In the microservices world, we use an API gateway or a reliable message bus for
integrating with other non-microservices.

Let us assume that there is another system in BrownField that needs booking data.
Unfortunately, the system is not capable of subscribing to the booking events that
the Booking microservice publishes. In such cases, an Enterprise Application
integration (EAI) solution could be employed, which listens to our booking events,
and then uses a native adaptor to update the database.

Managing shared libraries
Certain business logic is used in more than one microservice. Search and
Reservation, in this case, use inventory rules. In such cases, these shared libraries will
be duplicated in both the microservices.

Handling exceptions
Examine the booking scenario to understand the different exception handling
approaches. In the following service sequence diagram, there are three lines marked
with a cross mark. These are the potential areas where exceptions could occur:

Microservices Evolution – A Case Study

[428]

There is a synchronous communication between Booking and Fare. What if the Fare
service is not available? If the Fare service is not available, throwing an error back
to the user may cause revenue loss. An alternate thought is to trust the fare which
comes as part of the incoming request. When we serve search, the search results will
have the fare as well. When the user selects a flight and submits, the request will
have the selected fare. In case the Fare service is not available, we trust the incoming
request, and accept the Booking. We will use a circuit breaker and a fallback service
which simply creates the booking with a special status, and queues the booking for
manual action or a system retry.

What if creating the booking fails? If creating a booking fails unexpectedly, a better
option is to throw a message back to the user. We could try alternative options, but
that could increase the overall complexity of the system. The same is applicable for
inventory updates.

In the case of creating a booking and updating the inventory, we avoid a situation
where a booking is created, and an inventory update somehow fails. As the
inventory is critical, it is better to have both, create booking and update inventory,
to be in a local transaction. This is possible as both components are under the same
subsystem.

If we consider the Check-in scenario, Check-in sends an event to Boarding and
Booking as shown in the next diagram:

Chapter 4

[429]

Consider a scenario where the Check-in services fail immediately after the Check-in
Complete event is sent out. The other consumers processed this event, but the actual
check-in is rolled back. This is because we are not using a two-phase commit. In this
case, we need a mechanism for reverting that event. This could be done by catching
the exception, and sending another Check-in Cancelled event.

In this case, note that to minimize the use of compensating transactions, sending the
Check-in event is moved towards the end of the Check-in transaction. This reduces
the chance of failure after sending out the event.

Microservices Evolution – A Case Study

[430]

On the other hand, what if the check-in is successful, but sending the event failed?
We could think of two approaches. The first approach would be to invoke a fallback
service to store it locally, and then use another sweep-and-scan program to send
the event at a later time. It could even retry multiple times. This could add more
complexity and may not be efficient in all cases. An alternate approach is to throw
the exception back to the user so that the user can retry. However, this might not
always be good from a customer engagement standpoint. On the other hand, the
earlier option is better for the system's health. A trade-off analysis is required to find
out the best solution for the given situation.

Target implementation view
The next diagram represents the implementation view of the BrownField PSS
microservices system:

As shown in the preceding diagram, we are implementing four microservices as an
example: Search, Fare, Booking, and Check-in. In order to test the application, there
is a website application developed using Spring MVC with Thymeleaf templates.
The asynchronous messaging is implemented with the help of RabbitMQ. In this
sample implementation, the default H2 database is used as the in-memory store for
demonstration purposes.

The code in this section demonstrates all the capabilities highlighted in the Reviewing
the microservices capability model section of this chapter.

Chapter 4

[431]

Implementation projects
The basic implementation of the BrownField Airline's PSS microservices system has
five core projects as summarized in the following table. The table also shows the port
range used for these projects to ensure consistency throughout the book:

Microservice Projects Port Range
Book microservice chapter4.book 8060-8069
Check-in microservice chapter4.checkin 8070-8079
Fare microservice chapter4.fares 8080-8089
Search microservice chapter4.search 8090-8099
Website chapter4.website 8001

The website is the UI application for testing the PSS microservices.

All microservice projects in this example follow the same pattern for package
structure as shown in the following screenshot:

Microservices Evolution – A Case Study

[432]

The different packages and their purposes are explained as follows:

•	 The root folder (com.brownfield.pss.book) contains the default Spring
Boot application.

•	 The component package hosts all the service components where the business
logic is implemented.

•	 The controller package hosts the REST endpoints and the messaging
endpoints. Controller classes internally utilize the component classes for
execution.

•	 The entity package contains the JPA entity classes for mapping to the
database tables.

•	 Repository classes are packaged inside the repository package, and are
based on Spring Data JPA.

Running and testing the project
Follow the steps listed next to build and test the microservices developed in this
chapter:

1.	 Build each of the projects using Maven. Ensure that the test flag is switched
off. The test programs assume other dependent services are up and running.
It fails if the dependent services are not available. In our example, Booking
and Fare have direct dependencies. We will learn how to circumvent this
dependency in Chapter 7, Logging and Monitoring Microservices:
mvn -Dmaven.test.skip=true install

2.	 Run the RabbitMQ server:
rabbitmq_server-3.5.6/sbin$./rabbitmq-server

3.	 Run the following commands in separate terminal windows:
java -jar target/fares-1.0.jar

java -jar target/search-1.0.jar

java -jar target/checkin-1.0.jar

java -jar target/book-1.0.jar

java -jar target/website-1.0.jar

Chapter 4

[433]

4.	 The website project has a CommandLineRunner, which executes all the test
cases at startup. Once all the services are successfully started, open http://
localhost:8001 in a browser.

5.	 The browser asks for basic security credentials. Use guest or guest123 as
the credentials. This example only shows the website security with a basic
authentication mechanism. As explained in Chapter 2, Building Microservices
with Spring Boot, service-level security can be achieved using OAuth2.

6.	 Entering the correct security credentials displays the following screen. This is
the home screen of our BrownField PSS application:

7.	 The SUBMIT button invokes the Search microservice to fetch the available
flights that meet the conditions mentioned on the screen. A few flights are
pre-populated at the startup of the Search microservice. Edit the Search
microservice code to feed in additional flights, if required.

Microservices Evolution – A Case Study

[434]

8.	 The output screen with a list of flights is shown in the next screenshot.
The Book link will take us to the booking screen for the selected flight:

9.	 The following screenshot shows the booking screen. The user can enter the
passenger details, and create a booking by clicking on the CONFIRM button.
This invokes the Booking microservice, and internally, the Fare service as
well. It also sends a message back to the Search microservice:

Chapter 4

[435]

10.	 If booking is successful, the next confirmation screen is displayed with a
booking reference number:

11.	 Let us test the Check-in microservice. This can be done by clicking on
CheckIn in the menu at the top of the screen. Use the booking reference
number obtained in the previous step to test Check-in. This is shown in the
following screenshot:

Microservices Evolution – A Case Study

[436]

12.	 Clicking on the SEARCH button in the previous screen invokes the Booking
microservice, and retrieves the booking information. Click on the CheckIn
link to perform the check-in. This invokes the Check-in microservice:

13.	 If check-in is successful, it displays the confirmation message, as shown in
the next screenshot, with a confirmation number. This is done by calling the
Check-in service internally. The Check-in service sends a message to Booking
to update the check-in status:

Chapter 4

[437]

Summary
In this chapter, we implemented and tested the BrownField PSS microservice with
basic Spring Boot capabilities. We learned how to approach a real use case with a
microservices architecture.

We examined the various stages of a real-world evolution towards microservices
from a monolithic application. We also evaluated the pros and cons of multiple
approaches, and the obstacles encountered when migrating a monolithic application.
Finally, we explained the end-to-end microservices design for the use case
that we examined. Design and implementation of a fully-fledged microservice
implementation was also validated.

In the next chapter, we will see how the Spring Cloud project helps us to transform
the developed BrownField PSS microservices to an Internet-scale deployment.

[439]

Scaling Microservices with
Spring Cloud

In order to manage Internet-scale microservices, one requires more capabilities than
what are offered by the Spring Boot framework. The Spring Cloud project has a suite
of purpose-built components to achieve these additional capabilities effortlessly.

This chapter will provide a deep insight into the various components of the Spring
Cloud project such as Eureka, Zuul, Ribbon, and Spring Config by positioning
them against the microservices capability model discussed in Chapter 3, Applying
Microservices Concepts. It will demonstrate how the Spring Cloud components help
to scale the BrownField Airline's PSS microservices system, developed in the
previous chapter.

By the end of this chapter, you will learn about the following:

•	 The Spring Config server for externalizing configuration
•	 The Eureka server for service registration and discovery
•	 The relevance of Zuul as a service proxy and gateway
•	 The implementation of automatic microservice registration and

service discovery
•	 Spring Cloud messaging for asynchronous microservice composition

Scaling Microservices with Spring Cloud

[440]

Reviewing microservices capabilities
The examples in this chapter explore the following microservices capabilities from
the microservices capability model discussed in Chapter 3, Applying Microservices
Concepts:

•	 Software Defined Load Balancer
•	 Service Registry
•	 Configuration Service
•	 Reliable Cloud Messaging
•	 API Gateways

Reviewing BrownField's PSS
implementation
In Chapter 4, Microservices Evolution – A Case Study, we designed and developed a
microservice-based PSS system for BrownField Airlines using the Spring framework
and Spring Boot. The implementation is satisfactory from the development point of
view, and it serves the purpose for low volume transactions. However, this is not
good enough for deploying large, enterprise-scale deployments with hundreds or
even thousands of microservices.

Chapter 5

[441]

In Chapter 4, Microservices Evolution – A Case Study, we developed four microservices:
Search, Booking, Fares, and Check-in. We also developed a website to test the
microservices.

We have accomplished the following items in our microservice implementation
so far:

•	 Each microservice exposes a set of REST/JSON endpoints for accessing
business capabilities

•	 Each microservice implements certain business functions using the
Spring framework.

•	 Each microservice stores its own persistent data using H2, an in-memory
database

•	 Microservices are built with Spring Boot, which has an embedded Tomcat
server as the HTTP listener

•	 RabbitMQ is used as an external messaging service. Search, Booking, and
Check-in interact with each other through asynchronous messaging

•	 Swagger is integrated with all microservices for documenting the REST APIs.
•	 An OAuth2-based security mechanism is developed to protect the

microservices

What is Spring Cloud?
The Spring Cloud project is an umbrella project from the Spring team that implements
a set of common patterns required by distributed systems, as a set of easy-to-use Java
Spring libraries. Despite its name, Spring Cloud by itself is not a cloud solution. Rather,
it provides a number of capabilities that are essential when developing applications
targeting cloud deployments that adhere to the Twelve-Factor application principles.
By using Spring Cloud, developers just need to focus on building business capabilities
using Spring Boot, and leverage the distributed, fault-tolerant, and
self-healing capabilities available out of the box from Spring Cloud.

The Spring Cloud solutions are agnostic to the deployment environment, and can
be developed and deployed in a desktop PC or in an elastic cloud. The cloud-ready
solutions that are developed using Spring Cloud are also agnostic and portable across
many cloud providers such as Cloud Foundry, AWS, Heroku, and so on. When not
using Spring Cloud, developers will end up using services natively provided by the
cloud vendors, resulting in deep coupling with the PaaS providers. An alternate option
for developers is to write quite a lot of boilerplate code to build these services. Spring
Cloud also provides simple, easy-to-use Spring-friendly APIs, which abstract the cloud
provider's service APIs such as those APIs coming with AWS Notification Service.

Scaling Microservices with Spring Cloud

[442]

Built on Spring's "convention over configuration" approach, Spring Cloud defaults
all configurations, and helps the developers get off to a quick start. Spring Cloud
also hides the complexities, and provides simple declarative configurations to build
systems. The smaller footprints of the Spring Cloud components make it developer
friendly, and also make it easy to develop cloud-native applications.

Spring Cloud offers many choices of solutions for developers based on their
requirements. For example, the service registry can be implemented using popular
options such as Eureka, ZooKeeper, or Consul. The components of Spring Cloud
are fairly decoupled, hence, developers get the flexibility to pick and choose what
is required.

What is the difference between Spring Cloud and Cloud Foundry?
Spring Cloud is a developer kit for developing Internet-scale Spring Boot
applications, whereas Cloud Foundry is an open-source Platform as a
Service for building, deploying, and scaling applications.

Spring Cloud releases
The Spring Cloud project is an overarching Spring project that includes
a combination of different components. The versions of these components
are defined in the spring-cloud-starter-parent BOM.

In this book, we are relying on the Brixton.RELEASE version of the Spring Cloud:
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>Brixton.RELEASE</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>

The spring-cloud-starter-parent defines different versions of its subcomponents
as follows:

<spring-cloud-aws.version>1.1.0.RELEASE</spring-cloud-aws.version>
<spring-cloud-bus.version>1.1.0.RELEASE</spring-cloud-bus.version>
<spring-cloud-cloudfoundry.version>1.0.0.RELEASE</spring-cloud-
cloudfoundry.version>
<spring-cloud-commons.version>1.1.0.RELEASE</spring-cloud-commons.
version>
<spring-cloud-config.version>1.1.0.RELEASE</spring-cloud-config.
version>
<spring-cloud-netflix.version>1.1.0.RELEASE</spring-cloud-netflix.
version>

Chapter 5

[443]

<spring-cloud-security.version>1.1.0.RELEASE</spring-cloud-security.
version>
<spring-cloud-cluster.version>1.0.0.RELEASE</spring-cloud-cluster.
version>
<spring-cloud-consul.version>1.0.0.RELEASE</spring-cloud-consul.
version>
<spring-cloud-sleuth.version>1.0.0.RELEASE</spring-cloud-sleuth.
version>
<spring-cloud-stream.version>1.0.0.RELEASE</spring-cloud-stream.
version>
<spring-cloud-zookeeper.version>1.0.0.RELEASE </spring-cloud-
zookeeper.version>

The names of the Spring Cloud releases are in an alphabetic sequence,
starting with A, following the names of the London Tube stations. Angel
was the first release, and Brixton is the second release.

Components of Spring Cloud
Each Spring Cloud component specifically addresses certain distributed system
capabilities. The grayed-out boxes at the bottom of the following diagram show the
capabilities, and the boxes placed on top of these capabilities showcase the Spring
Cloud subprojects addressing these capabilities:

Scaling Microservices with Spring Cloud

[444]

The Spring Cloud capabilities are explained as follows:

•	 Distributed configuration: Configuration properties are hard to manage when
there are many microservice instances running under different profiles such as
development, test, production, and so on. It is, therefore, important to manage
them centrally, in a controlled way. The distributed configuration management
module is to externalize and centralize microservice configuration parameters.
Spring Cloud Config is an externalized configuration server with Git or SVN
as the backing repository. Spring Cloud Bus provides support for propagating
configuration changes to multiple subscribers, generally a microservice
instance. Alternately, ZooKeeper or HashiCorp's Consul can also be used
for distributed configuration management.

•	 Routing: Routing is an API gateway component, primarily used similar
to a reverse proxy that forwards requests from consumers to service
providers. The gateway component can also perform software-based
routing and filtering. Zuul is a lightweight API gateway solution that
offers fine-grained controls to developers for traffic shaping and request/
response transformations.

•	 Load balancing: The load balancer capability requires a software-defined
load balancer module which can route requests to available servers using a
variety of load balancing algorithms. Ribbon is a Spring Cloud subproject
which supports this capability. Ribbon can work as a standalone component,
or integrate and work seamlessly with Zuul for traffic routing.

•	 Service registration and discovery: The service registration and discovery
module enables services to programmatically register with a repository when
a service is available and ready to accept traffic. The microservices advertise
their existence, and make them discoverable. The consumers can then look
up the registry to get a view of the service availability and the endpoint
locations. The registry, in many cases, is more or less a dump. But the
components around the registry make the ecosystem intelligent. There are
many subprojects existing under Spring Cloud which support registry and
discovery capability. Eureka, ZooKeeper, and Consul are three subprojects
implementing the registry capability.

•	 Service-to-service calls: The Spring Cloud Feign subproject under Spring
Cloud offers a declarative approach for making RESTful service-to-service
calls in a synchronous way. The declarative approach allows applications
to work with POJO (Plain Old Java Object) interfaces instead of low-level
HTTP client APIs. Feign internally uses reactive libraries for communication.

Chapter 5

[445]

•	 Circuit breaker: The circuit breaker subproject implements the circuit
breaker pattern. The circuit breaker breaks the circuit when it encounters
failures in the primary service by diverting traffic to another temporary
fallback service. It also automatically reconnects back to the primary
service when the service is back to normal. It finally provides a monitoring
dashboard for monitoring the service state changes. The Spring Cloud
Hystrix project and Hystrix Dashboard implement the circuit breaker
and the dashboard respectively.

•	 Global locks, leadership election and cluster state: This capability is
required for cluster management and coordination when dealing with
large deployments. It also offers global locks for various purposes such as
sequence generation. The Spring Cloud Cluster project implements these
capabilities using Redis, ZooKeeper, and Consul.

•	 Security: Security capability is required for building security for cloud-
native distributed systems using externalized authorization providers such
as OAuth2. The Spring Cloud Security project implements this capability
using customizable authorization and resource servers. It also offers SSO
capabilities, which are essential when dealing with many microservices.

•	 Big data support: The big data support capability is a capability that is
required for data services and data flows in connection with big data
solutions. The Spring Cloud Streams and the Spring Cloud Data Flow
projects implement these capabilities. The Spring Cloud Data Flow is
the re-engineered version of Spring XD.

•	 Distributed tracing: The distributed tracing capability helps to thread and
correlate transitions that are spanned across multiple microservice instances.
Spring Cloud Sleuth implements this by providing an abstraction on top of
various distributed tracing mechanisms such as Zipkin and HTrace with the
support of a 64-bit ID.

•	 Distributed messaging: Spring Cloud Stream provides declarative
messaging integration on top of reliable messaging solutions such as Kafka,
Redis, and RabbitMQ.

•	 Cloud support: Spring Cloud also provides a set of capabilities that offers
various connectors, integration mechanisms, and abstraction on top of
different cloud providers such as the Cloud Foundry and AWS.

Scaling Microservices with Spring Cloud

[446]

Spring Cloud and Netflix OSS
Many of the Spring Cloud components which are critical for microservices'
deployment came from the Netflix Open Source Software (Netflix OSS) center.
Netflix is one of the pioneers and early adaptors in the microservices space. In
order to manage large scale microservices, engineers at Netflix came up with a
number of homegrown tools and techniques for managing their microservices.
These are fundamentally crafted to fill some of the software gaps recognized in
the AWS platform for managing Netflix services. Later, Netflix open-sourced these
components, and made them available under the Netflix OSS platform for public use.
These components are extensively used in production systems, and are battle-tested
with large scale microservice deployments at Netflix.

Spring Cloud offers higher levels of abstraction for these Netflix OSS components,
making it more Spring developer friendly. It also provides a declarative mechanism,
well-integrated and aligned with Spring Boot and the Spring framework.

Setting up the environment for
BrownField PSS
In this chapter, we will amend the BrownField PSS microservices developed in
Chapter 4, Microservices Evolution – A Case Study, using Spring Cloud capabilities.
We will also examine how to make these services enterprise grade using Spring
Cloud components.

Subsequent sections of this chapter will explore how to scale the microservices
developed in the previous chapter for cloud scale deployments, using some out-of-
the-box capabilities provided by the Spring Cloud project. The rest of this chapter
will explore Spring Cloud capabilities such as configuration using the Spring Config
server, Ribbon-based service load balancing, service discovery using Eureka, Zuul
for API gateway, and finally, Spring Cloud messaging for message-based service
interactions. We will demonstrate the capabilities by modifying the BrownField PSS
microservices developed in Chapter 4, Microservices Evolution – A Case Study.

In order to prepare the environment for this chapter, import and rename
(chapter4.* to chapter5.*) projects into a new STS workspace.

The full source code of this chapter is available under the Chapter 5
projects in the code files.

Chapter 5

[447]

Spring Cloud Config
The Spring Cloud Config server is an externalized configuration server in which
applications and services can deposit, access, and manage all runtime configuration
properties. The Spring Config server also supports version control of the
configuration properties.

In the earlier examples with Spring Boot, all configuration parameters were read
from a property file packaged inside the project, either application.properties or
application.yaml. This approach is good, since all properties are moved out of code
to a property file. However, when microservices are moved from one environment
to another, these properties need to undergo changes, which require an application
re-build. This is violation of one of the Twelve-Factor application principles, which
advocate one-time build and moving of the binaries across environments.

A better approach is to use the concept of profiles. Profiles, as discussed in Chapter
2, Building Microservices with Spring Boot, is used for partitioning different properties
for different environments. The profile-specific configuration will be named
application-{profile}.properties. For example, application-development.
properties represents a property file targeted for the development environment.

However, the disadvantage of this approach is that the configurations are statically
packaged along with the application. Any changes in the configuration properties
require the application to be rebuilt.

There are alternate ways to externalize the configuration properties from the
application deployment package. Configurable properties can also be read
from an external source in a number of ways:

•	 From an external JNDI server using JNDI namespace (java:comp/env)
•	 Using the Java system properties (System.getProperties()) or using

the –D command line option
•	 Using the PropertySource configuration:

@PropertySource("file:${CONF_DIR}/application.properties")
 public class ApplicationConfig {
}

•	 Using a command-line parameter pointing a file to an external location:
java -jar myproject.jar --spring.config.location=

Scaling Microservices with Spring Cloud

[448]

JNDI operations are expensive, lack flexibility, have difficulties in replication, and
are not version controlled. System.properties is not flexible enough for large-scale
deployments. The last two options rely on a local or a shared filesystem mounted
on the server.

For large scale deployments, a simple yet powerful centralized configuration
management solution is required:

As shown in the preceding diagram, all microservices point to a central server to get
the required configuration parameters. The microservices then locally cache these
parameters to improve performance. The Config server propagates the configuration
state changes to all subscribed microservices so that the local cache's state can be
updated with the latest changes. The Config server also uses profiles to resolve
values specific to an environment.

As shown in the following screenshot, there are multiple options available under
the Spring Cloud project for building the configuration server. Config Server,
Zookeeper Configuration, and Consul Configuration are available as options.
However, this chapter will only focus on the Spring Config server implementation:

Chapter 5

[449]

The Spring Config server stores properties in a version-controlled repository such as
Git or SVN. The Git repository can be local or remote. A highly available remote Git
server is preferred for large scale distributed microservice deployments.

The Spring Cloud Config server architecture is shown in the following diagram:

As shown in the preceding diagram, the Config client embedded in the Spring Boot
microservices does a configuration lookup from a central configuration server using
a simple declarative mechanism, and stores properties into the Spring environment.
The configuration properties can be application-level configurations such as
trade limit per day, or infrastructure-related configurations such as server URLs,
credentials, and so on.

Unlike Spring Boot, Spring Cloud uses a bootstrap context, which is a parent context
of the main application. Bootstrap context is responsible for loading configuration
properties from the Config server. The bootstrap context looks for bootstrap.yaml
or bootstrap.properties for loading initial configuration properties. To make this
work in a Spring Boot application, rename the application.* file to bootstrap.*.

Scaling Microservices with Spring Cloud

[450]

What's next?
The next few sections demonstrate how to use the Config server in a real-world
scenario. In order to do this, we will modify our search microservice (chapter5.
search) to use the Config server. The following diagram depicts the scenario:

In this example, the Search service will read the Config server at startup by passing
the service name. In this case, the service name of the search service will be search-
service. The properties configured for the search-service include the RabbitMQ
properties as well as a custom property.

The full source code of this section is available under the
chapter5.configserver project in the code files.

Setting up the Config server
The following steps need to be followed to create a new Config server using STS:

1.	 Create a new Spring Starter Project, and select Config Server and Actuator
as shown in the following diagram:

Chapter 5

[451]

2.	 Set up a Git repository. This can be done by pointing to a remote Git
configuration repository like the one at https://github.com/spring-cloud-
samples/config-repo. This URL is an indicative one, a Git repository used
by the Spring Cloud examples. We will have to use our own Git repository
instead.

3.	 Alternately, a local filesystem-based Git repository can be used. In a real
production scenario, an external Git is recommended. The Config server in
this chapter will use a local filesystem-based Git repository for demonstration
purposes.

4.	 Enter the commands listed next to set up a local Git repository:
$ cd $HOME

$ mkdir config-repo

$ cd config-repo

$ git init .

$ echo message : helloworld > application.properties

$ git add -A .

$ git commit -m "Added sample application.properties"

This code snippet creates a new Git repository on the local filesystem. A
property file named application.properties with a message property
and value helloworld is also created.

https://github.com/spring-cloud-samples/config-repo
https://github.com/spring-cloud-samples/config-repo

Scaling Microservices with Spring Cloud

[452]

The file application.properties is created for demonstration purposes.
We will change this in the subsequent sections.

5.	 The next step is to change the configuration in the Config server to use the
Git repository created in the previous step. In order to do this, rename the
file application.properties to bootstrap.properties:

6.	 Edit the contents of the new bootstrap.properties file to match
the following:
server.port=8888
spring.cloud.config.server.git.uri: file://${user.home}/config-
repo

Port 8888 is the default port for the Config server. Even without configuring
server.port, the Config server should bind to 8888. In the Windows
environment, an extra / is required in the file URL.

7.	 Optionally, rename the default package of the auto-generated Application.
java from com.example to com.brownfield.configserver. Add
@EnableConfigServer in Application.java:
@EnableConfigServer
@SpringBootApplication
public class ConfigserverApplication {

8.	 Run the Config server by right-clicking on the project, and running it as a
Spring Boot app.

9.	 Visit http://localhost:8888/env to see whether the server is running.
If everything is fine, this will list all environment configurations. Note that
/env is an actuator endpoint.

Chapter 5

[453]

10.	 Check http://localhost:8888/application/default/master to see
the properties specific to application.properties, which were added
in the earlier step. The browser will display the properties configured in
application.properties. The browser should display contents similar to
the following:
{"name":"application","profiles":["default"],"label":"master","ver
sion":"6046fd2ff4fa09d3843767660d963866ffcc7d28","propertySources"
:[{"name":"file:///Users/rvlabs /config-repo /application.properti
es","source":{"message":"helloworld"}}]}

Understanding the Config server URL
In the previous section, we used http://localhost:8888/application/default/
master to explore the properties. How do we interpret this URL?

The first element in the URL is the application name. In the given example, the
application name should be application. The application name is a logical
name given to the application, using the spring.application.name property in
bootstrap.properties of the Spring Boot application. Each application must
have a unique name. The Config server will use the name to resolve and pick up
appropriate properties from the Config server repository. The application name is
also sometimes referred to as service ID. If there is an application with the name
myapp, then there should be a myapp.properties in the configuration repository
to store all the properties related to that application.

The second part of the URL represents the profile. There can be more than one
profile configured within the repository for an application. The profiles can be
used in various scenarios. The two common scenarios are segregating different
environments such as Dev, Test, Stage, Prod, and the like, or segregating server
configurations such as Primary, Secondary, and so on. The first one represents
different environments of an application, whereas the second one represents
different servers where an application is deployed.

The profile names are logical names that will be used for matching the file name in
the repository. The default profile is named default. To configure properties for
different environments, we have to configure different files as given in the following
example. In this example, the first file is for the development environment whereas
the second is for the production environment:

application-development.properties
application-production.properties

Scaling Microservices with Spring Cloud

[454]

These are accessible using the following URLs respectively:

•	 http://localhost:8888/application/development

•	 http://localhost:8888/application/production

The last part of the URL is the label, and is named master by default. The label is an
optional Git label that can be used, if required.

In short, the URL is based on the following pattern: http://localhost:8888/
{name}/{profile}/{label}.

The configuration can also be accessed by ignoring the profile. In the preceding
example, all the following three URLs point to the same configuration:

•	 http://localhost:8888/application/default

•	 http://localhost:8888/application/master

•	 http://localhost:8888/application/default/master

There is an option to have different Git repositories for different profiles. This
makes sense for production systems, since the access to different repositories
could be different.

Accessing the Config Server from clients
In the previous section, a Config server is set up and accessed using a web browser.
In this section, the Search microservice will be modified to use the Config server.
The Search microservice will act as a Config client.

Follow these steps to use the Config server instead of reading properties from the
application.properties file:

1.	 Add the Spring Cloud Config dependency and the actuator (if the actuator
is not already in place) to the pom.xml file. The actuator is mandatory for
refreshing the configuration properties:
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-config</artifactId>
 </dependency>

2.	 Since we are modifying the Spring Boot Search microservice from the earlier
chapter, we will have to add the following to include the Spring Cloud
dependencies. This is not required if the project is created from scratch:
 <dependencyManagement>
 <dependencies>
 <dependency>

http://localhost:8888/application/development
http://localhost:8888/application/production
http://localhost:8888/application/default
http://localhost:8888/application/master
http://localhost:8888/application/default/master

Chapter 5

[455]

 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>Brixton.RELEASE</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

3.	 The next screenshot shows the Cloud starter library selection screen. If the
application is built from the ground up, select the libraries as shown in the
following screenshot:

4.	 Rename application.properties to bootstrap.properties, and add an
application name and a configuration server URL. The configuration server
URL is not mandatory if the Config server is running on the default port
(8888) on the local host:
The new bootstrap.properties file will look as follows:
spring.application.name=search-service
spring.cloud.config.uri=http://localhost:8888

server.port=8090

Scaling Microservices with Spring Cloud

[456]

spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest

search-service is a logical name given to the Search microservice. This will
be treated as service ID. The Config server will look for search-service.
properties in the repository to resolve the properties.

5.	 Create a new configuration file for search-service. Create a new
search-service.properties under the config-repo folder where the Git
repository is created. Note that search-service is the service ID given to the
Search microservice in the bootstrap.properties file. Move service-specific
properties from bootstrap.properties to the new search-service.
properties file. The following properties will be removed from bootstrap.
properties, and added to search-service.properties:
spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest

6.	 In order to demonstrate the centralized configuration of properties and
propagation of changes, add a new application-specific property to the
property file. We will add originairports.shutdown to temporarily take
out an airport from the search. Users will not get any flights when searching
for an airport mentioned in the shutdown list:
originairports.shutdown=SEA

In this example, we will not return any flights when searching with SEA
as origin.

7.	 Commit this new file into the Git repository by executing the following
commands:
git add –A .

git commit –m "adding new configuration"

8.	 The final search-service.properties file should look as follows:
spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest
originairports.shutdown:SEA

Chapter 5

[457]

9.	 The chapter5.search project's bootstrap.properties should look like
the following:
spring.application.name=search-service
server.port=8090
spring.cloud.config.uri=http://localhost:8888

10.	 Modify the Search microservice code to use the configured parameter,
originairports.shutdown. A RefreshScope annotation has to be added at
the class level to allow properties to be refreshed when there is a change. In
this case, we are adding a refresh scope to the SearchRestController class:
@RefreshScope

11.	 Add the following instance variable as a place holder for the new property
that is just added in the Config server. The property names in the search-
service.properties file must match:
 @Value("${originairports.shutdown}")
 private String originAirportShutdownList;

12.	 Change the application code to use this property. This is done by modifying
the search method as follows:
 @RequestMapping(value="/get", method =
 RequestMethod.POST)
 List<Flight> search(@RequestBody SearchQuery query){
 logger.info("Input : "+ query);
 if(Arrays.asList(originAirportShutdownList.split(","))
 .contains(query.getOrigin())){
 logger.info("The origin airport is in shutdown state");
 return new ArrayList<Flight>();
 }
 return searchComponent.search(query);
 }

The search method is modified to read the parameter
originAirportShutdownList and see whether the requested origin is in the
shutdown list. If there is a match, then instead of proceeding with the actual
search, the search method will return an empty flight list.

13.	 Start the Config server. Then start the Search microservice. Make sure that
the RabbitMQ server is running.

14.	 Modify the chapter5.website project to match the bootstrap.properties
content as follows to utilize the Config server:
spring.application.name=test-client
server.port=8001
spring.cloud.config.uri=http://localhost:8888

Scaling Microservices with Spring Cloud

[458]

15.	 Change the run method of CommandLineRunner in Application.java to
query SEA as the origin airport:
SearchQuery searchQuery = new SearchQuery("SEA","SFO","22-JAN-16");

16.	 Run the chapter5.website project. The CommandLineRunner will now
return an empty flight list. The following message will be printed in
the server:
The origin airport is in shutdown state

Handling configuration changes
This section will demonstrate how to propagate configuration properties when there
is a change:

1.	 Change the property in the search-service.properties file to the following:
originairports.shutdown:NYC

Commit the change in the Git repository. Refresh the Config server URL
(http://localhost:8888/search-service/default) for this service and
see whether the property change is reflected. If everything is fine, we will see
the property change. The preceding request will force the Config server to
read the property file again from the repository.

2.	 Rerun the website project again, and observe the CommandLineRunner
execution. Note that in this case, we are not restarting the Search
microservice nor the Config server. The service returns an empty
flight list as earlier, and still complains as follows:
The origin airport is in shutdown state

This means the change is not reflected in the Search service, and the service is
still working with an old copy of the configuration properties.

3.	 In order to force reloading of the configuration properties, call the /refresh
endpoint of the Search microservice. This is actually the actuator's refresh
endpoint. The following command will send an empty POST to the /refresh
endpoint:
curl –d {} localhost:8090/refresh

4.	 Rerun the website project, and observe the CommandLineRunner execution.
This should return the list of flights that we have requested from SEA. Note
that the website project may fail if the Booking service is not up and running.
The /refresh endpoint will refresh the locally cached configuration
properties, and reload fresh values from the Config server.

Chapter 5

[459]

Spring Cloud Bus for propagating
configuration changes
With the preceding approach, configuration parameters can be changed without
restarting the microservices. This is good when there are only one or two instances
of the services running. What happens if there are many instances? For example, if
there are five instances, then we have to hit /refresh against each service instance.
This is definitely a cumbersome activity:

The Spring Cloud Bus provides a mechanism to refresh configurations across
multiple instances without knowing how many instances there are, or their locations.
This is particularly handy when there are many service instances of a microservice
running or when there are many microservices of different types running. This is
done by connecting all service instances through a single message broker. Each
instance subscribes for change events, and refreshes its local configuration when
required. This refresh is triggered by making a call to any one instance by hitting the
/bus/refresh endpoint, which then propagates the changes through the cloud bus
and the common message broker.

In this example, RabbitMQ is used as the AMQP message broker. Implement this by
following the steps documented as follows:

1.	 Add a new dependency in the chapter5.search project's pom.xml file to
introduce the Cloud Bus dependency:
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-bus-amqp</artifactId>
</dependency>

Scaling Microservices with Spring Cloud

[460]

2.	 The Search microservice also needs connectivity to the RabbitMQ, but this is
already provided in search-service.properties.

3.	 Rebuild and restart the Search microservice. In this case, we will run two
instances of the Search microservice from a command line, as follows:
java -jar -Dserver.port=8090 search-1.0.jar

java -jar -Dserver.port=8091 search-1.0.jar

The two instances of the Search service will be now running, one on port
8090 and another one on 8091.

4.	 Rerun the website project. This is just to make sure that everything is
working. The Search service should return one flight at this point.

5.	 Now, update search-service.properties with the following value,
and commit to Git:
originairports.shutdown:SEA

6.	 Run the following command to /bus/refresh. Note that we are running
a new bus endpoint against one of the instances, 8090 in this case:
curl –d {} localhost:8090/bus/refresh

7.	 Immediately, we will see the following message for both instances:
Received remote refresh request. Keys refreshed [originairports.
shutdown]

The bus endpoint sends a message to the message broker internally, which is
eventually consumed by all instances, reloading their property files. Changes
can also be applied to a specific application by specifying the application
name like so:

/bus/refresh?destination=search-service:**

We can also refresh specific properties by setting the property name as a parameter.

Setting up high availability for the Config
server
The previous sections explored how to set up the Config server, allowing real-time
refresh of configuration properties. However, the Config server is a single point of
failure in this architecture.

There are three single points of failure in the default architecture that was established
in the previous section. One of them is the availability of the Config server itself, the
second one is the Git repository, and the third one is the RabbitMQ server.

Chapter 5

[461]

The following diagram shows a high availability architecture for the Config server:

The architecture mechanisms and rationale are explained as follows:

The Config server requires high availability, since the services won't be able to
bootstrap if the Config server is not available. Hence, redundant Config servers
are required for high availability. However, the applications can continue to run
if the Config server is unavailable after the services are bootstrapped. In this case,
services will run with the last known configuration state. Hence, the Config server
availability is not at the same critical level as the microservices availability.

In order to make the Config server highly available, we need multiple instances
of the Config servers. Since the Config server is a stateless HTTP service, multiple
instances of configuration servers can be run in parallel. Based on the load on the
configuration server, a number of instances have to be adjusted. The bootstrap.
properties file is not capable of handling more than one server address. Hence,
multiple configuration servers should be configured to run behind a load balancer or
behind a local DNS with failover and fallback capabilities. The load balancer or DNS
server URL will be configured in the microservices' bootstrap.properties file.
This is with the assumption that the DNS or the load balancer is highly available
and capable of handling failovers.

In a production scenario, it is not recommended to use a local file-based Git
repository. The configuration server should be typically backed with a highly
available Git service. This is possible by either using an external highly available Git
service or a highly available internal Git service. SVN can also be considered.

Scaling Microservices with Spring Cloud

[462]

Having said that, an already bootstrapped Config server is always capable of
working with a local copy of the configuration. Hence, we need a highly available Git
only when the Config server needs to be scaled. Therefore, this too is not as critical
as the microservices availability or the Config server availability.

The GitLab example for setting up high availability is available at
https://about.gitlab.com/high-availability/.

RabbitMQ also has to be configured for high availability. The high availability for
RabbitMQ is needed only to push configuration changes dynamically to all instances.
Since this is more of an offline controlled activity, it does not really require the same
high availability as required by the components.

RabbitMQ high availability can be achieved by either using a cloud service or a
locally configured highly available RabbitMQ service.

Setting up high availability for Rabbit MQ is documented at
https://www.rabbitmq.com/ha.html.

Monitoring the Config server health
The Config server is nothing but a Spring Boot application, and is, by default,
configured with an actuator. Hence, all actuator endpoints are applicable for
the Config server. The health of the server can be monitored using the following
actuator URL: http://localhost:8888/health.

Config server for configuration files
We may run into scenarios where we need a complete configuration file such
as logback.xml to be externalized. The Config server provides a mechanism to
configure and store such files. This is achievable by using the URL format as follows:
/{name}/{profile}/{label}/{path}.

The name, profile, and label have the same meanings as explained earlier. The path
indicates the file name such as logback.xml.

https://about.gitlab.com/high-availability/
https://www.rabbitmq.com/ha.html

Chapter 5

[463]

Completing changes to use the Config server
In order to build this capability to complete BrownField Airline's PSS, we have
to make use of the configuration server for all services. All microservices in the
examples given in chapter5.* need to make similar changes to look to the Config
server for getting the configuration parameters.

The following are a few key change considerations:

•	 The Fare service URL in the booking component will also be externalized:
private static final String FareURL = "/fares";

@Value("${fares-service.url}")
private String fareServiceUrl;

Fare = restTemplate.getForObject(fareServiceUrl+FareURL +"/
get?flightNumber="+record.getFlightNumber()+"&flightDate="+record.
getFlightDate(),Fare.class);

As shown in the preceding code snippet, the Fare service URL is fetched
through a new property: fares-service.url.

•	 We are not externalizing the queue names used in the Search, Booking, and
Check-in services at the moment. Later in this chapter, these will be changed
to use Spring Cloud Streams.

Feign as a declarative REST client
In the Booking microservice, there is a synchronous call to Fare. RestTemplate
is used for making the synchronous call. When using RestTemplate, the URL
parameter is constructed programmatically, and data is sent across to the other
service. In more complex scenarios, we will have to get to the details of the HTTP
APIs provided by RestTemplate or even to APIs at a much lower level.

Feign is a Spring Cloud Netflix library for providing a higher level of abstraction
over REST-based service calls. Spring Cloud Feign works on a declarative principle.
When using Feign, we write declarative REST service interfaces at the client, and
use those interfaces to program the client. The developer need not worry about the
implementation of this interface. This will be dynamically provisioned by Spring at
runtime. With this declarative approach, developers need not get into the details of
the HTTP level APIs provided by RestTemplate.

Scaling Microservices with Spring Cloud

[464]

The following code snippet is the existing code in the Booking microservice for
calling the Fare service:

Fare fare = restTemplate.getForObject(FareURL +"/
get?flightNumber="+record.getFlightNumber()+"&flightDate="+record.
getFlightDate(),Fare.class);

In order to use Feign, first we need to change the pom.xml file to include the Feign
dependency as follows:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-feign</artifactId>
</dependency>

For a new Spring Starter project, Feign can be selected from the starter library
selection screen, or from http://start.spring.io/. This is available under
Cloud Routing as shown in the following screenshot:

The next step is to create a new FareServiceProxy interface. This will act as a proxy
interface of the actual Fare service:

@FeignClient(name="fares-proxy", url="localhost:8080/fares")
public interface FareServiceProxy {
 @RequestMapping(value = "/get", method=RequestMethod.GET)
 Fare getFare(@RequestParam(value="flightNumber") String
 flightNumber, @RequestParam(value="flightDate") String
 flightDate);
}

http://start.spring.io/

Chapter 5

[465]

The FareServiceProxy interface has a @FeignClient annotation. This annotation
tells Spring to create a REST client based on the interface provided. The value could
be a service ID or a logical name. The url indicates the actual URL where the target
service is running. Either name or value is mandatory. In this case, since we have
url, the name attribute is irrelevant.

Use this service proxy to call the Fare service. In the Booking microservice, we have
to tell Spring that Feign clients exist in the Spring Boot application, which are to be
scanned and discovered. This will be done by adding @EnableFeignClients at the
class level of BookingComponent. Optionally, we can also give the package names
to scan.

Change BookingComponent, and make changes to the calling part. This is as simple
as calling another Java interface:

Fare = fareServiceProxy.getFare(record.getFlightNumber(), record.
getFlightDate());

Rerun the Booking microservice to see the effect.

The URL of the Fare service in the FareServiceProxy interface is hardcoded:
url="localhost:8080/fares".

For the time being, we will keep it like this, but we are going to change this later in
this chapter.

Ribbon for load balancing
In the previous setup, we were always running with a single instance of the
microservice. The URL is hardcoded both in client as well as in the service-to-service
calls. In the real world, this is not a recommended approach, since there could be more
than one service instance. If there are multiple instances, then ideally, we should use
a load balancer or a local DNS server to abstract the actual instance locations, and
configure an alias name or the load balancer address in the clients. The load balancer
then receives the alias name, and resolves it with one of the available instances. With
this approach, we can configure as many instances behind a load balancer. It also helps
us to handle server failures transparent to the client.

Scaling Microservices with Spring Cloud

[466]

This is achievable with Spring Cloud Netflix Ribbon. Ribbon is a client-side load
balancer which can do round-robin load balancing across a set of servers. There
could be other load balancing algorithms possible with the Ribbon library. Spring
Cloud offers a declarative way to configure and use the Ribbon client.

As shown in the preceding diagram, the Ribbon client looks for the Config server to
get the list of available microservice instances, and, by default, applies a round-robin
load balancing algorithm.

In order to use the Ribbon client, we will have to add the following dependency
to the pom.xml file:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-ribbon</artifactId>
</dependency>

In case of development from ground up, this can be selected from the Spring
Starter libraries, or from http://start.spring.io/. Ribbon is available under
Cloud Routing:

http://start.spring.io/

Chapter 5

[467]

Update the Booking microservice configuration file, booking-service.properties,
to include a new property to keep the list of the Fare microservices:

fares-proxy.ribbon.listOfServers=localhost:8080,localhost:8081

Going back and editing the FareServiceProxy class created in the previous section
to use the Ribbon client, we note that the value of the @RequestMapping annotations
is changed from /get to /fares/get so that we can move the host name and port to
the configuration easily:

@FeignClient(name="fares-proxy")
@RibbonClient(name="fares")
public interface FareServiceProxy {
 @RequestMapping(value = "fares/get", method=RequestMethod.GET)

We can now run two instances of the Fares microservices. Start one of them on 8080,
and the other one on 8081:

java -jar -Dserver.port=8080 fares-1.0.jar

java -jar -Dserver.port=8081 fares-1.0.jar

Run the Booking microservice. When the Booking microservice is bootstrapped, the
CommandLineRunner automatically inserts one booking record. This will go to the
first server.

When running the website project, it calls the Booking service. This request will go
to the second server.

On the Booking service, we see the following trace, which says there are two servers
enlisted:

DynamicServerListLoadBalancer:{NFLoadBalancer:name=fares-proxy,current

list of Servers=[localhost:8080, localhost:8081],Load balancer stats=Zone
stats: {unknown=[Zone:unknown; Instance count:2; Active connections
count: 0; Circuit breaker tripped count: 0; Active connections per
server: 0.0;]

},

Scaling Microservices with Spring Cloud

[468]

Eureka for registration and discovery
So far, we have achieved externalizing configuration parameters as well as load
balancing across many service instances.

Ribbon-based load balancing is sufficient for most of the microservices requirements.
However, this approach falls short in a couple of scenarios:

•	 If there is a large number of microservices, and if we want to optimize
infrastructure utilization, we will have to dynamically change the number
of service instances and the associated servers. It is not easy to predict and
preconfigure the server URLs in a configuration file.

•	 When targeting cloud deployments for highly scalable microservices, static
registration and discovery is not a good solution considering the elastic
nature of the cloud environment.

•	 In the cloud deployment scenarios, IP addresses are not predictable, and
will be difficult to statically configure in a file. We will have to update the
configuration file every time there is a change in address.

The Ribbon approach partially addresses this issue. With Ribbon, we can
dynamically change the service instances, but whenever we add new service
instances or shut down instances, we will have to manually update the Config
server. Though the configuration changes will be automatically propagated to all
required instances, the manual configuration changes will not work with large scale
deployments. When managing large deployments, automation, wherever possible,
is paramount.

To fix this gap, the microservices should self-manage their life cycle by dynamically
registering service availability, and provision automated discovery for consumers.

Understanding dynamic service registration
and discovery
Dynamic registration is primarily from the service provider's point of view. With
dynamic registration, when a new service is started, it automatically enlists its
availability in a central service registry. Similarly, when a service goes out of service,
it is automatically delisted from the service registry. The registry always keeps
up-to-date information of the services available, as well as their metadata.

Chapter 5

[469]

Dynamic discovery is applicable from the service consumer's point of view. Dynamic
discovery is where clients look for the service registry to get the current state of
the services topology, and then invoke the services accordingly. In this approach,
instead of statically configuring the service URLs, the URLs are picked up from the
service registry.

The clients may keep a local cache of the registry data for faster access. Some registry
implementations allow clients to keep a watch on the items they are interested in.
In this approach, the state changes in the registry server will be propagated to the
interested parties to avoid using stale data.

There are a number of options available for dynamic service registration and
discovery. Netflix Eureka, ZooKeeper, and Consul are available as part of Spring
Cloud, as shown in the http://start.spring.io/ screenshot given next. Etcd
is another service registry available outside of Spring Cloud to achieve dynamic
service registration and discovery. In this chapter, we will focus on the Eureka
implementation:

http://start.spring.io/

Scaling Microservices with Spring Cloud

[470]

Understanding Eureka
Spring Cloud Eureka also comes from Netflix OSS. The Spring Cloud project
provides a Spring-friendly declarative approach for integrating Eureka with
Spring-based applications. Eureka is primarily used for self-registration, dynamic
discovery, and load balancing. Eureka uses Ribbon for load balancing internally:

As shown in the preceding diagram, Eureka consists of a server component
and a client-side component. The server component is the registry in which all
microservices register their availability. The registration typically includes service
identity and its URLs. The microservices use the Eureka client for registering
their availability. The consuming components will also use the Eureka client for
discovering the service instances.

When a microservice is bootstrapped, it reaches out to the Eureka server, and
advertises its existence with the binding information. Once registered, the service
endpoint sends ping requests to the registry every 30 seconds to renew its lease. If a
service endpoint cannot renew its lease in a few attempts, that service endpoint will
be taken out of the service registry. The registry information will be replicated to
all Eureka clients so that the clients have to go to the remote Eureka server for each
and every request. Eureka clients fetch the registry information from the server, and
cache it locally. After that, the clients use that information to find other services. This
information is updated periodically (every 30 seconds) by getting the delta updates
between the last fetch cycle and the current one.

Chapter 5

[471]

When a client wants to contact a microservice endpoint, the Eureka client provides
a list of currently available services based on the requested service ID. The Eureka
server is zone aware. Zone information can also be supplied when registering a
service. When a client requests for a services instance, the Eureka service tries to find
the service running in the same zone. The Ribbon client then load balances across
these available service instances supplied by the Eureka client. The communication
between the Eureka client and the server is done using REST and JSON.

Setting up the Eureka server
In this section, we will run through the steps required for setting up the
Eureka server.

The full source code of this section is available under the
chapter5.eurekaserver project in the code files. Note that the
Eureka server registration and refresh cycles take up to 30 seconds.
Hence, when running services and clients, wait for 40-50 seconds.

1.	 Start a new Spring Starter project, and select Config Client, Eureka Server,
and Actuator:

Scaling Microservices with Spring Cloud

[472]

The project structure of the Eureka server is shown in the following image:

Note that the main application is named EurekaserverApplication.java.

2.	 Rename application.properties to bootstrap.properties since this is
using the Config server. As we did earlier, configure the details of the Config
server in the bootsratp.properties file so that it can locate the Config
server instance. The bootstrap.properties file will look as follows:
spring.application.name=eureka-server1
server.port:8761
spring.cloud.config.uri=http://localhost:8888

The Eureka server can be set up in a standalone mode or in a clustered
mode. We will start with the standalone mode. By default, the Eureka server
itself is another Eureka client. This is particularly useful when there are
multiple Eureka servers running for high availability. The client component
is responsible for synchronizing state from the other Eureka servers. The
Eureka client is taken to its peers by configuring the eureka.client.
serviceUrl.defaultZone property.
In the standalone mode, we point eureka.client.serviceUrl.
defaultZone back to the same standalone instance. Later we will
see how we can run Eureka servers in a clustered mode.

Chapter 5

[473]

3.	 Create a eureka-server1.properties file, and update it in the Git
repository. eureka-server1 is the name of the application given in the
application's bootstrap.properties file in the previous step. As shown
in the following code, serviceUrl points back to the same server. Once the
following properties are added, commit the file to the Git repository:
spring.application.name=eureka-server1
eureka.client.serviceUrl.defaultZone:http://localhost:8761/eureka/
eureka.client.registerWithEureka:false
eureka.client.fetchRegistry:false

4.	 Change the default Application.java. In this example, the package is
also renamed as com.brownfield.pss.eurekaserver, and the class name
changed to EurekaserverApplication. In EurekaserverApplication,
add @EnableEurekaServer:
@EnableEurekaServer
@SpringBootApplication
public class EurekaserverApplication {

5.	 We are now ready to start the Eureka server. Ensure that the Config server is
also started. Right-click on the application and then choose Run As | Spring
Boot App. Once the application is started, open http://localhost:8761 in
a browser to see the Eureka console.

6.	 In the console, note that there is no instance registered under Instances
currently registered with Eureka. Since no services have been started with
the Eureka client enabled, the list is empty at this point.

Scaling Microservices with Spring Cloud

[474]

7.	 Making a few changes to our microservice will enable dynamic registration
and discovery using the Eureka service. To do this, first we have to add the
Eureka dependencies to the pom.xml file. If the services are being built up
fresh using the Spring Starter project, then select Config Client, Actuator,
Web as well as Eureka discovery client as follows:

8.	 Since we are modifying our microservices, add the following additional
dependency to all microservices in their pom.xml files:
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>

9.	 The following property has to be added to all microservices in their
respective configuration files under config-repo. This will help the
microservices to connect to the Eureka server. Commit to Git once updates
are completed:
eureka.client.serviceUrl.defaultZone: http://localhost:8761/
eureka/

Chapter 5

[475]

10.	 Add @EnableDiscoveryClient to all microservices in their respective
Spring Boot main classes. This asks Spring Boot to register these services at
start up to advertise their availability.

11.	 Start all servers except Booking. Since we are using the Ribbon client on the
Booking service, the behavior could be different when we add the Eureka
client in the class path. We will fix this soon.

12.	 Going to the Eureka URL (http://localhost:8761), you can see that all
three instances are up and running:

Time to fix the issue with Booking. We will remove our earlier Ribbon client,
and use Eureka instead. Eureka internally uses Ribbon for load balancing.
Hence, the load balancing behavior will not change.

13.	 Remove the following dependency:
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-ribbon</artifactId>
</dependency>

14.	 Also remove the @RibbonClient(name="fares") annotation from the
FareServiceProxy class.

15.	 Update @FeignClient(name="fares-service") to match the actual
Fare microservices' service ID. In this case, fare-service is the service ID
configured in the Fare microservices' bootstrap.properties. This is the
name that the Eureka discovery client sends to the Eureka server. The service
ID will be used as a key for the services registered in the Eureka server.

16.	 Also remove the list of servers from the booking-service.properties
file. With Eureka, we are going to dynamically discover this list from the
Eureka server:
fares-proxy.ribbon.listOfServers=localhost:8080, localhost:8081

Scaling Microservices with Spring Cloud

[476]

17.	 Start the Booking service. You will see that CommandLineRunner successfully
created a booking, which involves calling the Fare services using the Eureka
discovery mechanism. Go back to the URL to see all the registered services:

18.	 Change the website project's bootstrap.properties file to make use of
Eureka rather than connecting directly to the service instances. We will not
use the Feign client in this case. Instead, for demonstration purposes, we
will use the load balanced RestTemplate. Commit these changes to the
Git repository:
spring.application.name=test-client
eureka.client.serviceUrl.defaultZone: http://localhost:8761/
eureka/

19.	 Add @EnableDiscoveryClient to the Application class to make the client
Eureka-aware.

20.	 Edit both Application.java as well as BrownFieldSiteController.
java. Add three RestTemplate instances. This time, we annotate them with
@Loadbalanced to ensure that we use the load balancing features using
Eureka and Ribbon. RestTemplate cannot be automatically injected.
Hence, we have to provide a configuration entry as follows:
@Configuration
class AppConfiguration {
 @LoadBalanced
 @Bean
 RestTemplate restTemplate() {
 return new RestTemplate();
 }
}
@Autowired
RestTemplate searchClient;

@Autowired
RestTemplate bookingClient;

@Autowired
RestTemplate checkInClient;

Chapter 5

[477]

21.	 We use these RestTemplate instances to call the microservices. Replace the
hardcoded URLs with service IDs that are registered in the Eureka server.
In the following code, we use the service names search-service, book-
service, and checkin-service instead of explicit host names and ports:
Flight[] flights = searchClient.postForObject("http://search-
service/search/get", searchQuery, Flight[].class);

long bookingId = bookingClient.postForObject("http://book-service/
booking/create", booking, long.class);

long checkinId = checkInClient.postForObject("http://checkin-
service/checkin/create", checkIn, long.class);

22.	 We are now ready to run the client. Run the website project. If everything
is fine, the website project's CommandLineRunner will successfully perform
search, booking, and check-in. The same can also be tested using the browser
by pointing the browser to http://localhost:8001.

High availability for Eureka
In the previous example, there was only one Eureka server in standalone mode.
This is not good enough for a real production system.

The Eureka client connects to the server, fetches registry information, and stores it
locally in a cache. The client always works with this local cache. The Eureka client
checks the server periodically for any state changes. In the case of a state change, it
downloads the changes from the server, and updates the cache. If the Eureka server
is not reachable, then the Eureka clients can still work with the last-known state of
the servers based on the data available in the client cache. However, this could lead
to stale state issues quickly.

Scaling Microservices with Spring Cloud

[478]

This section will explore the high availability for the Eureka server. The high
availability architecture is shown in the following diagram:

The Eureka server is built with a peer-to-peer data synchronization mechanism.
The runtime state information is not stored in a database, but managed using an in-
memory cache. The high availability implementation favors availability and partition
tolerance in the CAP theorem, leaving out consistency. Since the Eureka server
instances are synchronized with each other using an asynchronous mechanism,
the states may not always match between server instances. The peer-to-peer
synchronization is done by pointing serviceUrls to each other. If there is more than
one Eureka server, each one has to be connected to at least one of the peer servers.
Since the state is replicated across all peers, Eureka clients can connect to any one of
the available Eureka servers.

The best way to achieve high availability for Eureka is to cluster multiple Eureka
servers, and run them behind a load balancer or a local DNS. The clients always
connect to the server using the DNS/load balancer. At runtime, the load balancer
takes care of selecting the appropriate servers. This load balancer address will be
provided to the Eureka clients.

This section will showcase how to run two Eureka servers in a cluster for high
availability. For this, define two property files: eureka-server1 and eureka-
server2. These are peer servers; if one fails, the other one will take over. Each of
these servers will also act as a client for the other so that they can sync their states.
Two property files are defined in the following snippet. Upload and commit these
properties to the Git repository.

Chapter 5

[479]

The client URLs point to each other, forming a peer network as shown in the
following configuration:

eureka-server1.properties
eureka.client.serviceUrl.defaultZone:http://localhost:8762/eureka/
eureka.client.registerWithEureka:false
eureka.client.fetchRegistry:false

eureka-server2.properties
eureka.client.serviceUrl.defaultZone:http://localhost:8761/eureka/
eureka.client.registerWithEureka:false
eureka.client.fetchRegistry:false

Update the bootstrap.properties file of Eureka, and change the application name
to eureka. Since we are using two profiles, based on the active profile supplied at
startup, the Config server will look for either eureka-server1 or eureka-server2:

spring.application.name=eureka
spring.cloud.config.uri=http://localhost:8888

Start two instances of the Eureka servers, server1 on 8761 and server2 on 8762:

java -jar –Dserver.port=8761 -Dspring.profiles.active=server1 demo-0.0.1-
SNAPSHOT.jar

java -jar –Dserver.port=8762 -Dspring.profiles.active=server2 demo-0.0.1-
SNAPSHOT.jar

All our services still point to the first server, server1. Open both the browser
windows: http://localhost:8761 and http://localhost:8762.

Start all microservices. The one which opened 8761 will immediately reflect the
changes, whereas the other one will take 30 seconds for reflecting the states. Since
both the servers are in a cluster, the state is synchronized between these two servers.
If we keep these servers behind a load balancer/DNS, then the client will always
connect to one of the available servers.

After completing this exercise, switch back to the standalone mode for the remaining
exercises.

Scaling Microservices with Spring Cloud

[480]

Zuul proxy as the API gateway
In most microservice implementations, internal microservice endpoints are not
exposed outside. They are kept as private services. A set of public services will be
exposed to the clients using an API gateway. There are many reasons to do this:

•	 Only a selected set of microservices are required by the clients.
•	 If there are client-specific policies to be applied, it is easy to apply them in

a single place rather than in multiple places. An example of such a scenario
is the cross-origin access policy.

•	 It is hard to implement client-specific transformations at the service endpoint.
•	 If there is data aggregation required, especially to avoid multiple client calls

in a bandwidth-restricted environment, then a gateway is required in the
middle.

Zuul is a simple gateway service or edge service that suits these situations well.
Zuul also comes from the Netflix family of microservice products. Unlike many
enterprise API gateway products, Zuul provides complete control for the developers
to configure or program based on specific requirements:

The Zuul proxy internally uses the Eureka server for service discovery, and Ribbon
for load balancing between service instances.

The Zuul proxy is also capable of routing, monitoring, managing resiliency, security,
and so on. In simple terms, we can consider Zuul a reverse proxy service. With Zuul,
we can even change the behaviors of the underlying services by overriding them at
the API layer.

Chapter 5

[481]

Setting up Zuul
Unlike the Eureka server and the Config server, in typical deployments, Zuul
is specific to a microservice. However, there are deployments in which one API
gateway covers many microservices. In this case, we are going to add Zuul for each
of our microservices: Search, Booking, Fare, and Check-in:

The full source code of this section is available under the chapter5.*-
apigateway project in the code files.

1.	 Convert the microservices one by one. Start with Search API Gateway.
Create a new Spring Starter project, and select Zuul, Config Client, Actuator,
and Eureka Discovery:

Scaling Microservices with Spring Cloud

[482]

The project structure for search-apigateway is shown in the following
diagram:

2.	 The next step is to integrate the API gateway with Eureka and the Config
server. Create a search-apigateway.property file with the contents given
next, and commit to the Git repository.
This configuration also sets a rule on how to forward traffic. In this case, any
request coming on the /api endpoint of the API gateway should be sent to
search-service:
spring.application.name=search-apigateway
zuul.routes.search-apigateway.serviceId=search-service
zuul.routes.search-apigateway.path=/api/**
eureka.client.serviceUrl.defaultZone:http://localhost:8761/eureka/

search-service is the service ID of the Search service, and it will be
resolved using the Eureka server.

3.	 Update the bootstrap.properties file of search-apigateway as follows.
There is nothing new in this configuration—a name to the service, the port,
and the Config server URL:
spring.application.name=search-apigateway
server.port=8095
spring.cloud.config.uri=http://localhost:8888

Chapter 5

[483]

4.	 Edit Application.java. In this case, the package name and the class
name are also changed to com.brownfield.pss.search.apigateway and
SearchApiGateway respectively. Also add @EnableZuulProxy to tell Spring
Boot that this is a Zuul proxy:
@EnableZuulProxy
@EnableDiscoveryClient
@SpringBootApplication
public class SearchApiGateway {

5.	 Run this as a Spring Boot app. Before that, ensure that the Config server, the
Eureka server, and the Search microservice are running.

6.	 Change the website project's CommandLineRunner as well as
BrownFieldSiteController to make use of the API gateway:

Flight[] flights = searchClient.postForObject("http://search-
apigateway/api/search/get", searchQuery, Flight[].class);

In this case, the Zuul proxy acts as a reverse proxy which proxies all microservice
endpoints to consumers. In the preceding example, the Zuul proxy does not add
much value, as we just pass through the incoming requests to the corresponding
backend service.

Zuul is particularly useful when we have one or more requirements like the
following:

•	 Enforcing authentication and other security policies at the gateway instead of
doing that on every microservice endpoint. The gateway can handle security
policies, token handling, and so on before passing the request to the relevant
services behind. It can also do basic rejections based on some business
policies such as blocking requests coming from certain black-listed users.

•	 Business insights and monitoring can be implemented at the gateway
level. Collect real-time statistical data, and push it to an external system
for analysis. This will be handy as we can do this at one place rather than
applying it across many microservices.

•	 API gateways are useful in scenarios where dynamic routing is required
based on fine-grained controls. For example, send requests to different
service instances based on business specific values such as "origin country".
Another example is all requests coming from a region to be sent to one group
of service instances. Yet another example is all requests requesting for a
particular product have to be routed to a group of service instances.

Scaling Microservices with Spring Cloud

[484]

•	 Handling the load shredding and throttling requirements is another scenario
where API gateways are useful. This is when we have to control load based
on set thresholds such as number of requests in a day. For example, control
requests coming from a low-value third party online channel.

•	 The Zuul gateway is useful for fine-grained load balancing scenarios. The
Zuul, Eureka client, and Ribbon together provide fine-grained controls over
the load balancing requirements. Since the Zuul implementation is nothing
but another Spring Boot application, the developer has full control over the
load balancing.

•	 The Zuul gateway is also useful in scenarios where data aggregation
requirements are in place. If the consumer wants higher level coarse-grained
services, then the gateway can internally aggregate data by calling more than
one service on behalf of the client. This is particularly applicable when the
clients are working in low bandwidth environments.

Zuul also provides a number of filters. These filters are classified as pre filters,
routing filters, post filters, and error filters. As the names indicate, these are applied
at different stages of the life cycle of a service call. Zuul also provides an option for
developers to write custom filters. In order to write a custom filter, extend from the
abstract ZuulFilter, and implement the following methods:

public class CustomZuulFilter extends ZuulFilter{
public Object run(){}
public boolean shouldFilter(){}
public int filterOrder(){}
public String filterType(){}

Once a custom filter is implemented, add that class to the main context. In our
example case, add this to the SearchApiGateway class as follows:

@Bean
public CustomZuulFilter customFilter() {
 return new CustomZuulFilter();
}

As mentioned earlier, the Zuul proxy is a Spring Boot service. We can customize the
gateway programmatically in the way we want. As shown in the following code,
we can add custom endpoints to the gateway, which, in turn, can call the backend
services:

@RestController
class SearchAPIGatewayController {

 @RequestMapping("/")
 String greet(HttpServletRequest req){

Chapter 5

[485]

 return "<H1>Search Gateway Powered By Zuul</H1>";
 }
}

In the preceding case, it just adds a new endpoint, and returns a value from the
gateway. We can further use @Loadbalanced RestTemplate to call a backend
service. Since we have full control, we can do transformations, data aggregation,
and so on. We can also use the Eureka APIs to get the server list, and implement
completely independent load-balancing or traffic-shaping mechanisms instead
of the out-of-the-box load balancing features provided by Ribbon.

High availability of Zuul
Zuul is just a stateless service with an HTTP endpoint, hence, we can have as many
Zuul instances as we need. There is no affinity or stickiness required. However,
the availability of Zuul is extremely critical as all traffic from the consumer to the
provider flows through the Zuul proxy. However, the elastic scaling requirements
are not as critical as the backend microservices where all the heavy lifting happens.

The high availability architecture of Zuul is determined by the scenario in which we
are using Zuul. The typical usage scenarios are:

•	 When a client-side JavaScript MVC such as AngularJS accesses Zuul services
from a remote browser.

•	 Another microservice or non-microservice accesses services via Zuul

In some cases, the client may not have the capabilities to use the Eureka client
libraries, for example, a legacy application written on PL/SQL. In some cases,
organization policies do not allow Internet clients to handle client-side load
balancing. In the case of browser-based clients, there are third-party Eureka
JavaScript libraries available.

It all boils down to whether the client is using Eureka client libraries or not. Based on
this, there are two ways we can set up Zuul for high availability.

Scaling Microservices with Spring Cloud

[486]

High availability of Zuul when the client is also a
Eureka client
In this case, since the client is also another Eureka client, Zuul can be configured just
like other microservices. Zuul registers itself to Eureka with a service ID. The clients
then use Eureka and the service ID to resolve Zuul instances:

As shown in the preceding diagram, Zuul services register themselves with Eureka
with a service ID, search-apigateway in our case. The Eureka client asks for the
server list with the ID search-apigateway. The Eureka server returns the list of
servers based on the current Zuul topology. The Eureka client, based on this list
picks up one of the servers, and initiates the call.

As we saw earlier, the client uses the service ID to resolve the Zuul instance. In the
following case, search-apigateway is the Zuul instance ID registered with Eureka:

Flight[] flights = searchClient.postForObject("http://search-
apigateway/api/search/get", searchQuery, Flight[].class);

Chapter 5

[487]

High availability when the client is not a Eureka
client
In this case, the client is not capable of handling load balancing by using the Eureka
server. As shown in the following diagram, the client sends the request to a load
balancer, which in turn identifies the right Zuul service instance. The Zuul instance,
in this case, will be running behind a load balancer such as HAProxy or a hardware
load balancer like NetScaler:

The microservices will still be load balanced by Zuul using the Eureka server.

Completing Zuul for all other services
In order to complete this exercise, add API gateway projects (name them as
*-apigateway) for all our microservices. The following steps are required to achieve
this task:

1.	 Create new property files per service, and check in to the Git repositories.
2.	 Change application.properties to bootstrap.properties, and add the

required configurations.
3.	 Add @EnableZuulProxy to Application.java in each of the *-apigateway

projects.

Scaling Microservices with Spring Cloud

[488]

4.	 Add @EnableDiscoveryClient in all the Application.java files under
each of the *-apigateway projects.

5.	 Optionally, change the package names and file names generated by default.

In the end, we will have the following API gateway projects:

•	 chapter5.fares-apigateway

•	 chapter5.search-apigateway

•	 chapter5.checkin-apigateway

•	 chapter5.book-apigateway

Streams for reactive microservices
Spring Cloud Stream provides an abstraction over the messaging infrastructure. The
underlying messaging implementation can be RabbitMQ, Redis, or Kafka. Spring
Cloud Stream provides a declarative approach for sending and receiving messages:

As shown in the preceding diagram, Cloud Stream works on the concept of a source
and a sink. The source represents the sender perspective of the messaging, and sink
represents the receiver perspective of the messaging.

In the example shown in the diagram, the sender defines a logical queue called
Source.OUTPUT to which the sender sends messages. The receiver defines a logical
queue called Sink.INPUT from which the receiver retrieves messages. The physical
binding of OUTPUT to INPUT is managed through the configuration. In this case,
both link to the same physical queue—MyQueue on RabbitMQ. So, while at one end,
Source.OUTPUT points to MyQueue, on the other end, Sink.INPUT points to the
same MyQueue.

Chapter 5

[489]

Spring Cloud offers the flexibility to use multiple messaging providers in one
application such as connecting an input stream from Kafka to a Redis output stream,
without managing the complexities. Spring Cloud Stream is the basis for message-
based integration. The Cloud Stream Modules subproject is another Spring Cloud
library that provides many endpoint implementations.

As the next step, rebuild the inter-microservice messaging communication with
the Cloud Streams. As shown in the next diagram, we will define a SearchSink
connected to InventoryQ under the Search microservice. Booking will define a
BookingSource for sending inventory change messages connected to InventoryQ.
Similarly, Check-in defines a CheckinSource for sending the check-in messages.
Booking defines a sink, BookingSink, for receiving messages, both bound to the
CheckinQ queue on the RabbitMQ:

In this example, we will use RabbitMQ as the message broker:

1.	 Add the following Maven dependency to Booking, Search, and Check-in, as
these are the three modules using messaging:
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-rabbit
 </artifactId>
</dependency>

Scaling Microservices with Spring Cloud

[490]

2.	 Add the following two properties to book-service.properties. These
properties bind the logical queue inventoryQ to physical inventoryQ, and
the logical checkinQ to the physical checkinQ:
spring.cloud.stream.bindings.inventoryQ.destination=inventoryQ
spring.cloud.stream.bindings.checkInQ.destination=checkInQ

3.	 Add the following property to search-service.properties. This property
binds the logical queue inventoryQ to the physical inventoryQ:
spring.cloud.stream.bindings.inventoryQ.destination=inventoryQ

4.	 Add the following property to checkin-service.properties. This
property binds the logical queue checkinQ to the physical checkinQ:
spring.cloud.stream.bindings.checkInQ.destination=checkInQ

5.	 Commit all files to the Git repository.
6.	 The next step is to edit the code. The Search microservice consumes a

message from the Booking microservice. In this case, Booking is the source
and Search is the sink.
Add @EnableBinding to the Sender class of the Booking service. This
enables the Cloud Stream to work on autoconfigurations based on the
message broker library available in the class path. In our case, it is RabbitMQ.
The parameter BookingSource defines the logical channels to be used for
this configuration:

@EnableBinding(BookingSource.class)
public class Sender {

7.	 In this case, BookingSource defines a message channel called inventoryQ,
which is physically bound to RabbitMQ's inventoryQ, as configured in the
configuration. BookingSource uses an annotation, @Output, to indicate that
this is of the output type—a message that is outgoing from a module. This
information will be used for autoconfiguration of the message channel:
interface BookingSource {
 public static String InventoryQ="inventoryQ";
 @Output("inventoryQ")
 public MessageChannel inventoryQ();
}

8.	 Instead of defining a custom class, we can also use the default Source class
that comes with Spring Cloud Stream if the service has only one source
and sink:
public interface Source {
 @Output("output")

Chapter 5

[491]

 MessageChannel output();
}

9.	 Define a message channel in the sender, based on BookingSource. The
following code will inject an output message channel with the name
inventory, which is already configured in BookingSource:
 @Output (BookingSource.InventoryQ)
 @Autowired
 private MessageChannel;

10.	 Reimplement the send message method in BookingSender:
public void send(Object message){
 messageChannel.
 send(MessageBuilder.withPayload(message).
 build());
}

11.	 Now add the following to the SearchReceiver class the same way we did
for the Booking service:
@EnableBinding(SearchSink.class)
public class Receiver {

12.	 In this case, the SearchSink interface will look like the following. This will
define the logical sink queue it is connected with. The message channel in
this case is defined as @Input to indicate that this message channel is to
accept messages:
interface SearchSink {
 public static String INVENTORYQ="inventoryQ";
 @Input("inventoryQ")
 public MessageChannel inventoryQ();
}

13.	 Amend the Search service to accept this message:
@ServiceActivator(inputChannel = SearchSink.INVENTORYQ)
public void accept(Map<String,Object> fare){
 searchComponent.updateInventory((String)fare.
 get("FLIGHT_NUMBER"),(String)fare.
 get("FLIGHT_DATE"),(int)fare.
 get("NEW_INVENTORY"));
}

Scaling Microservices with Spring Cloud

[492]

14.	 We will still need the RabbitMQ configurations that we have in our
configuration files to connect to the message broker:
spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest
server.port=8090

15.	 Run all services, and run the website project. If everything is fine, the
website project successfully executes the Search, Booking, and Check-in
functions. The same can also be tested using the browser by pointing
to http://localhost:8001.

Summarizing the BrownField PSS
architecture
The following diagram shows the overall architecture that we have created with
the Config server, Eureka, Feign, Zuul, and Cloud Streams. The architecture also
includes the high availability of all components. In this case, we assume that the
client uses the Eureka client libraries:

Chapter 5

[493]

The summary of the projects and the port they are listening on is given in the
following table:

Microservice Projects Port
Book microservice chapter5.book 8060 to 8064
Check-in microservice chapter5.checkin 8070 to 8074
Fare microservice chapter5.fares 8080 to 8084
Search microservice chapter5.search 8090 to 8094
Website client chapter5.website 8001

Spring Cloud Config server chapter5.configserver 8888/8889
Spring Cloud Eureka server chapter5.eurekaserver 8761/8762
Book API gateway chapter5.book-

apigateway
8095 to 8099

Check-in API gateway chapter5.checkin-
apigateway

8075 to 8079

Fares API gateway chapter5.fares-
apigateway

8085 to 8089

Search API gateway chapter5.search-
apigateway

8065 to 8069

Follow these steps to do a final run:

1.	 Run RabbitMQ.
2.	 Build all projects using pom.xml at the root level:

mvn –Dmaven.test.skip=true clean install

3.	 Run the following projects from their respective folders. Remember to wait
for 40 to 50 seconds before starting the next service. This will ensure that
the dependent services are registered and are available before we start a
new service:
java -jar target/fares-1.0.jar

java -jar target/search-1.0.jar

java -jar target/checkin-1.0.jar

java -jar target/book-1.0.jar

java –jar target/fares-apigateway-1.0.jar

java –jar target/search-apigateway-1.0.jar

java –jar target/checkin-apigateway-1.0.jar

java –jar target/book-apigateway-1.0.jar

java -jar target/website-1.0.jar

Scaling Microservices with Spring Cloud

[494]

4.	 Open the browser window, and point to http://localhost:8001. Follow
the steps mentioned in the Running and testing the project section in Chapter 4,
Microservices Evolution – A Case Study.

Summary
In this chapter, you learned how to scale a Twelve-Factor Spring Boot microservice
using the Spring Cloud project. What you learned was then applied to the
BrownField Airline's PSS microservice that we developed in the previous chapter.

We then explored the Spring Config server for externalizing the microservices'
configuration, and the way to deploy the Config server for high availability.
We also discussed the declarative service calls using Feign, examined the use of
Ribbon and Eureka for load balancing, dynamic service registration, and discovery.
Implementation of an API gateway was examined by implementing Zuul. Finally,
we concluded with a reactive style integration of microservices using Spring
Cloud Stream.

BrownField Airline's PSS microservices are now deployable on the Internet scale.
Other Spring Cloud components such as Hyterix, Sleuth, and so on will be covered
in Chapter 7, Logging and Monitoring Microservices. The next chapter will demonstrate
autoscaling features, extending the BrownField PSS implementation.

[495]

Autoscaling Microservices
Spring Cloud provides the support essential for the deployment of microservices at
scale. In order to get the full power of a cloud-like environment, the microservices
instances should also be capable of scaling out and shrinking automatically based
on traffic patterns.

This chapter will detail out how to make microservices elastically grow and shrink
by effectively using the actuator data collected from Spring Boot microservices to
control the deployment topology by implementing a simple life cycle manager.

By the end of this chapter, you will learn about the following topics:

•	 The basic concept of autoscaling and different approaches for autoscaling
•	 The importance and capabilities of a life cycle manager in the context

of microservices
•	 Examining the custom life cycle manager to achieve autoscaling
•	 Programmatically collecting statistics from the Spring Boot actuator and

using it to control and shape incoming traffic

Autoscaling Microservices

[496]

Reviewing the microservice capability
model
This chapter will cover the Application Lifecycle Management capability in the
microservices capability model discussed in Chapter 3, Applying Microservices
Concepts, highlighted in the following diagram:

We will see a basic version of the life cycle manager in this chapter, which will be
enhanced in later chapters.

Scaling microservices with Spring Cloud
In Chapter 5, Scaling Microservices with Spring Cloud, you learned how to scale Spring
Boot microservices using Spring Cloud components. The two key concepts of Spring
Cloud that we implemented are self-registration and self-discovery. These two
capabilities enable automated microservices deployments. With self-registration,
microservices can automatically advertise the service availability by registering
service metadata to a central service registry as soon as the instances are ready
to accept traffic. Once the microservices are registered, consumers can consume
the newly registered services from the very next moment by discovering service
instances using the registry service. Registry is at the heart of this automation.

Chapter 6

[497]

This is quite different from the traditional clustering approach employed by the
traditional JEE application servers. In the case of JEE application servers, the server
instances' IP addresses are more or less statically configured in a load balancer.
Therefore, the cluster approach is not the best solution for automatic scaling in
Internet-scale deployments. Also, clusters impose other challenges, such as they
have to have exactly the same version of binaries on all cluster nodes. It is also
possible that the failure of one cluster node can poison other nodes due to the
tight dependency between nodes.

The registry approach decouples the service instances. It also eliminates the need to
manually maintain service addresses in the load balancer or configure virtual IPs:

As shown in the diagram, there are three key components in our automated
microservices deployment topology:

•	 Eureka is the central registry component for microservice registration and
discovery. REST APIs are used by both consumers as well as providers to
access the registry. The registry also holds the service metadata such as the
service identity, host, port, health status, and so on.

•	 The Eureka client, together with the Ribbon client, provide client-side
dynamic load balancing. Consumers use the Eureka client to look up the
Eureka server to identify the available instances of a target service. The
Ribbon client uses this server list to load-balance between the available
microservice instances. In a similar way, if the service instance goes out of
service, these instances will be taken out of the Eureka registry. The load
balancer automatically reacts to these dynamic topology changes.

•	 The third component is the microservices instances developed using Spring
Boot with the actuator endpoints enabled.

Autoscaling Microservices

[498]

However, there is one gap in this approach. When there is need for an additional
microservice instance, a manual task is required to kick off a new instance. In an
ideal scenario, the starting and stopping of microservice instances also require
automation.

For example, when there is a requirement to add another Search microservice
instance to handle the increase in traffic volumes or a load burst scenario, the
administrator has to manually bring up a new instance. Also, when the Search
instance is idle for some time, it needs to be manually taken out of service to
have optimal infrastructure usage. This is especially relevant when services
run on a pay-as-per-usage cloud environment.

Understanding the concept of
autoscaling
Autoscaling is an approach to automatically scaling out instances based on the
resource usage to meet the SLAs by replicating the services to be scaled.

The system automatically detects an increase in traffic, spins up additional instances,
and makes them available for traffic handling. Similarly, when the traffic volumes
go down, the system automatically detects and reduces the number of instances by
taking active instances back from the service:

As shown in the preceding diagram, autoscaling is done, generally, using a set of
reserve machines.

Chapter 6

[499]

As many of the cloud subscriptions are based on a pay-as-you-go model, this is an
essential capability when targeting cloud deployments. This approach is often called
elasticity. It is also called dynamic resource provisioning and deprovisioning.
Autoscaling is an effective approach specifically for microservices with varying
traffic patterns. For example, an Accounting service would have high traffic during
month ends and year ends. There is no point in permanently provisioning instances
to handle these seasonal loads.

In the autoscaling approach, there is often a resource pool with a number of spare
instances. Based on the demand, instances will be moved from the resource pool to
the active state to meet the surplus demand. These instances are not pretagged for
any particular microservices or prepackaged with any of the microservice binaries.
In advanced deployments, the Spring Boot binaries are downloaded on demand
from an artifact repository such as Nexus or Artifactory.

The benefits of autoscaling
There are many benefits in implementing the autoscaling mechanism. In traditional
deployments, administrators reserve a set of servers against each application. With
autoscaling, this preallocation is no longer required. This prefixed server allocation
may result in underutilized servers. In this case, idle servers cannot be utilized even
when neighboring services struggle for additional resources.

With hundreds of microservice instances, preallocating a fixed number of servers to
each of the microservices is not cost effective. A better approach is to reserve a number
of server instances for a group of microservices without preallocating or tagging them
against a microservice. Instead, based on the demand, a group of services can share a
set of available resources. By doing so, microservices can be dynamically moved across
the available server instances by optimally using the resources:

Autoscaling Microservices

[500]

As shown in the preceding diagram, there are three instances of the M1 microservice,
one instance of M2, and one instance of M3 up and running. There is another server
kept unallocated. Based on the demand, the unallocated server can be used for
any of the microservices: M1, M2, or M3. If M1 has more service requests, then the
unallocated instance will be used for M1. When the service usage goes down, the
server instance will be freed up and moved back to the pool. Later, if the M2 demand
increases, the same server instance can be activated using M2.

Some of the key benefits of autoscaling are:

•	 It has high availability and is fault tolerant: As there are multiple service
instances, even if one fails, another instance can take over and continue
serving clients. This failover will be transparent to the consumers. If no other
instance of this service is available, the autoscaling service will recognize this
situation and bring up another server with the service instance. As the whole
process of bringing up or bringing down instances is automatic, the overall
availability of the services will be higher than the systems implemented
without autoscaling. The systems without autoscaling require manual
intervention to add or remove service instances, which will be hard to
manage in large deployments.
For example, assume that two of instances of the Booking service are
running. If there is an increase in the traffic flow, in a normal scenario,
the existing instance might become overloaded. In most of the scenarios,
the entire set of services will be jammed, resulting in service unavailability.
In the case of autoscaling, a new Booking service instance can be brought
up quickly. This will balance the load and ensure service availability.

•	 It increases scalability: One of the key benefits of autoscaling is horizontal
scalability. Autoscaling allows us to selectively scale up or scale down
services automatically based on traffic patterns.

•	 It has optimal usage and is cost saving: In a pay-as-you-go subscription
model, billing is based on actual resource utilization. With the autoscaling
approach, instances will be started and shut down based on the demand.
Hence, resources are optimally utilized, thereby saving cost.

Chapter 6

[501]

•	 It gives priority to certain services or group of services: With autoscaling,
it is possible to give priority to certain critical transactions over low-value
transactions. This will be done by removing an instance from a low-value
service and reallocating it to a high-value service. This will also eliminate
situations where a low-priority transaction heavily utilizes resources when
high-value transactions are cramped up for resources.

For instance, the Booking and Reports services run with two instances, as
shown in the preceding diagram. Let's assume that the Booking service is a
revenue generation service and therefore has a higher value than the Reports
service. If there are more demands for the Booking service, then one can set
policies to take one Reports service out of the service and release this server
for the Booking service.

Different autoscaling models
Autoscaling can be applied at the application level or at the infrastructure level.
In a nutshell, application scaling is scaling by replicating application binaries only,
whereas infrastructure scaling is replicating the entire virtual machine, including
application binaries.

Autoscaling Microservices

[502]

Autoscaling an application
In this scenario, scaling is done by replicating the microservices, not the underlying
infrastructure, such as virtual machines. The assumption is that there is a pool of
VMs or physical infrastructures available to scale up microservices. These VMs have
the basic image fused with any dependencies, such as JRE. It is also assumed that
microservices are homogeneous in nature. This gives flexibility in reusing the same
virtual or physical machines for different services:

As shown in the preceding diagram, in scenario A, VM3 is used for Service 1,
whereas in scenario B, the same VM3 is used for Service 2. In this case, we only
swapped the application library and not the underlying infrastructure.

This approach gives faster instantiation as we are only handling the application
binaries and not the underlying VMs. The switching is easier and faster as the
binaries are smaller in size and there is no OS boot required either. However, the
downside of this approach is that if certain microservices require OS-level tuning
or use polyglot technologies, then dynamically swapping microservices will not
be effective.

Autoscaling the infrastructure
In contrast to the previous approach, in this case, the infrastructure is also provisioned
automatically. In most cases, this will create a new VM on the fly or destroy the VMs
based on the demand:

Chapter 6

[503]

As shown in the preceding diagram, the reserve instances are created as VM images
with predefined service instances. When there is demand for Service 1, VM3 is
moved to an active state. When there is a demand for Service 2, VM4 is moved
to the active state.

This approach is efficient if the applications depend upon the parameters and
libraries at the infrastructure level, such as the operating system. Also, this approach
is better for polyglot microservices. The downside is the heavy nature of VM images
and the time required to spin up a new VM. Lightweight containers such as Dockers
are preferred in such cases instead of traditional heavyweight virtual machines.

Autoscaling in the cloud
Elasticity or autoscaling is one of the fundamental features of most cloud providers.
Cloud providers use infrastructure scaling patterns, as discussed in the previous
section. These are typically based on a set of pooled machines.

For example, in AWS, these are based on introducing new EC2 instances with a
predefined AMI. AWS supports autoscaling with the help of autoscaling groups.
Each group is set with a minimum and maximum number of instances. AWS
ensures that the instances are scaled on demand within these bounds. In case of
predictable traffic patterns, provisioning can be configured based on timelines.
AWS also provides ability for applications to customize autoscaling policies.

Microsoft Azure also supports autoscaling based on the utilization of resources such
as the CPU, message queue length, and so on. IBM Bluemix supports autoscaling
based on resources such as CPU usage.

Other PaaS platforms, such as CloudBees and OpenShift, also support autoscaling
for Java applications. Pivotal Cloud Foundry supports autoscaling with the help of
Pivotal Autoscale. Scaling policies are generally based on resource utilization, such
as the CPU and memory thresholds.

Autoscaling Microservices

[504]

There are components that run on top of the cloud and provide fine-grained controls
to handle autoscaling. Netflix Fenzo, Eucalyptus, Boxfuse, and Mesosphere are some
of the components in this category.

Autoscaling approaches
Autoscaling is handled by considering different parameters and thresholds. In this
section, we will discuss the different approaches and policies that are typically
applied to take decisions on when to scale up or down.

Scaling with resource constraints
This approach is based on real-time service metrics collected through monitoring
mechanisms. Generally, the resource-scaling approach takes decisions based on
the CPU, memory, or the disk of machines. This can also be done by looking at the
statistics collected on the service instances themselves, such as heap memory usage.

A typical policy may be spinning up another instance when the CPU utilization
of the machine goes beyond 60%. Similarly, if the heap size goes beyond a certain
threshold, we can add a new instance. The same applies to downsizing the compute
capacity when the resource utilization goes below a set threshold. This is done by
gradually shutting down servers:

In typical production scenarios, the creation of additional services is not done on the
first occurrence of a threshold breach. The most appropriate approach is to define a
sliding window or a waiting period.

Chapter 6

[505]

The following are some of the examples:

•	 An example of a response sliding window is if 60% of the response time of
a particular transaction is consistently more than the set threshold value in a
60-second sampling window, increase service instances

•	 In a CPU sliding window, if the CPU utilization is consistently beyond 70%
in a 5 minutes sliding window, then a new instance is created

•	 An example of the exception sliding window is if 80% of the transactions
in a sliding window of 60 seconds or 10 consecutive executions result in a
particular system exception, such as a connection timeout due to exhausting
the thread pool, then a new service instance is created

In many cases, we will set a lower threshold than the actual expected thresholds.
For example, instead of setting the CPU utilization threshold at 80%, set it at 60% so
that the system gets enough time to spin up an instance before it stops responding.
Similarly, when scaling down, we use a lower threshold than the actual. For example,
we will use 40% CPU utilization to scale down instead of 60%. This allows us to have
a cool-down period so that there will not be any resource struggle when shutting
down instances.

Resource-based scaling is also applicable to service-level parameters such as the
throughput of the service, latency, applications thread pool, connection pool, and
so on. These can also be at the application level, such as the number of sales orders
processing in a service instance, based on internal benchmarking.

Scaling during specific time periods
Time-based scaling is an approach to scaling services based on certain periods of
the day, month, or year to handle seasonal or business peaks. For example, some
services may experience a higher number of transactions during office hours and
a considerably low number of transactions outside office hours. In this case, during
the day, services autoscale to meet the demand and automatically downsize during
the non-office hours:

Autoscaling Microservices

[506]

Many airports worldwide impose restrictions on night-time landing. As a result,
the number of passengers checking in at the airports during the night time is less
compared to the day time. Hence, it is cost effective to reduce the number of instances
during the night time.

Scaling based on the message queue length
This is particularly useful when the microservices are based on asynchronous
messaging. In this approach, new consumers are automatically added when the
messages in the queue go beyond certain limits:

This approach is based on the competing consumer pattern. In this case, a pool
of instances is used to consume messages. Based on the message threshold, new
instances are added to consume additional messages.

Scaling based on business parameters
In this case, adding instances is based on certain business parameters—for example,
spinning up a new instance just before handling sales closing transactions. As soon
as the monitoring service receives a preconfigured business event (such as sales
closing minus 1 hour), a new instance will be brought up in anticipation of large
volumes of transactions. This will provide fine-grained control on scaling based
on business rules:

Chapter 6

[507]

Predictive autoscaling
Predictive scaling is a new paradigm of autoscaling that is different from the
traditional real-time metrics-based autoscaling. A prediction engine will take
multiple inputs, such as historical information, current trends, and so on, to predict
possible traffic patterns. Autoscaling is done based on these predictions. Predictive
autoscaling helps avoid hardcoded rules and time windows. Instead, the system
can automatically predict such time windows. In more sophisticated deployments,
predictive analysis may use cognitive computing mechanisms to predict autoscaling.

In the cases of sudden traffic spikes, traditional autoscaling may not help. Before
the autoscaling component can react to the situation, the spike would have hit and
damaged the system. The predictive system can understand these scenarios and
predict them before their actual occurrence. An example will be handling a flood
of requests immediately after a planned outage.

Netflix Scryer is an example of such a system that can predict resource requirements
in advance.

Autoscaling Microservices

[508]

Autoscaling BrownField PSS
microservices
In this section, we will examine how to enhance microservices developed in
Chapter 5, Scaling Microservices with Spring Cloud, for autoscaling. We need a
component to monitor certain performance metrics and trigger autoscaling.
We will call this component the life cycle manager.

The service life cycle manager, or the application life cycle manager, is responsible
for detecting scaling requirements and adjusting the number of instances accordingly.
It is responsible for starting and shutting down instances dynamically.

In this section, we will take a look at a primitive autoscaling system to understand
the basic concepts, which will be enhanced in later chapters.

The capabilities required for an autoscaling
system
A typical autoscaling system has capabilities as shown in the following diagram:

Chapter 6

[509]

The components involved in the autoscaling ecosystem in the context of microservices
are explained as follows:

•	 Microservices: These are sets of the up-and-running microservice instances
that keep sending health and metrics information. Alternately, these services
expose actuator endpoints for metrics collection. In the preceding diagram,
these are represented as Microservice 1 through Microservice 4.

•	 Service Registry: A service registry keeps track of all the services, their
health states, their metadata, and their endpoint URI.

•	 Load Balancer: This is a client-side load balancer that looks up the service
registry to get up-to-date information about the available service instances.

•	 Lifecycle Manager: The life cycle manger is responsible for autoscaling,
which has the following subcomponents:

°° Metrics Collector: A metrics collection unit is responsible for
collecting metrics from all service instances. The life cycle manager
will aggregate the metrics. It may also keep a sliding time window.
The metrics could be infrastructure-level metrics, such as CPU usage,
or application-level metrics, such as transactions per minute.

°° Scaling policies: Scaling policies are nothing but sets of rules
indicating when to scale up and scale down microservices—for
example, 90% of CPU usage above 60% in a sliding window of 5
minutes.

°° Decision Engine: A decision engine is responsible for making
decisions to scale up and scale down based on the aggregated
metrics and scaling policies.

°° Deployment Rules: The deployment engine uses deployment rules
to decide which parameters to consider when deploying services.
For example, a service deployment constraint may say that the
instance must be distributed across multiple availability regions
or a 4 GB minimum of memory required for the service.

°° Deployment Engine: The deployment engine, based on the
decisions of the decision engine, can start or stop microservice
instances or update the registry by altering the health states of
services. For example, it sets the health status as "out of service"
to take out a service temporarily.

Autoscaling Microservices

[510]

Implementing a custom life cycle manager
using Spring Boot
The life cycle manager introduced in this section is a minimal implementation
to understand autoscaling capabilities. In later chapters, we will enhance this
implementation with containers and cluster management solutions. Ansible,
Marathon, and Kubernetes are some of the tools useful in building this capability.

In this section, we will implement an application-level autoscaling component
using Spring Boot for the services developed in Chapter 5, Scaling Microservices
with Spring Cloud.

Understanding the deployment topology
The following diagram shows a sample deployment topology of BrownField
PSS microservices:

As shown in the diagram, there are four physical machines. Eight VMs are created
from four physical machines. Each physical machine is capable of hosting two VMs,
and each VM is capable of running two Spring Boot instances, assuming that all
services have the same resource requirements.

Chapter 6

[511]

Four VMs, VM1 through VM4, are active and are used to handle traffic. VM5 to
VM8 are kept as reserve VMs to handle scalability. VM5 and VM6 can be used for
any of the microservices and can also be switched between microservices based
on scaling demands. Redundant services use VMs created from different physical
machines to improve fault tolerance.

Our objective is to scale out any services when there is increase in traffic flow using
four VMs, VM5 through VM8, and scale down when there is not enough load. The
architecture of our solution is as follows.

Understanding the execution flow
Have a look at the following flowchart:

As shown in the preceding diagram, the following activities are important for us:

•	 The Spring Boot service represents microservices such as Search, Book, Fares,
and Check-in. Services at startup automatically register endpoint details
to the Eureka registry. These services are actuator-enabled, so the life cycle
manager can collect metrics from the actuator endpoints.

Autoscaling Microservices

[512]

•	 The life cycle manager service is nothing but another Spring Boot application.
The life cycle manager has a metrics collector that runs a background job,
periodically polls the Eureka server, and gets details of all the service
instances. The metrics collector then invokes the actuator endpoints of each
microservice registered in the Eureka registry to get the health and metrics
information. In a real production scenario, a subscription approach for data
collection is better.

•	 With the collected metrics information, the life cycle manager executes a
list of policies and derives decisions on whether to scale up or scale down
instances. These decisions are either to start a new service instance of a
particular type on a particular VM or to shut down a particular instance.

•	 In the case of shutdown, it connects to the server using an actuator endpoint
and calls the shutdown service to gracefully shut down an instance.

•	 In the case of starting a new instance, the deployment engine of the life cycle
manager uses the scaling rules and decides where to start the new instance
and what parameters are to be used when starting the instance. Then, it
connects to the respective VMs using SSH. Once connected, it executes a
preinstalled script (or passes this script as a part of the execution) by passing
the required constraints as a parameter. This script fetches the application
library from a central Nexus repository in which the production binaries
are kept and initiates it as a Spring Boot application. The port number is
parameterized by the life cycle manager. SSH needs to be enabled on the
target machines.

In this example, we will use TPM (Transactions Per Minute) or RPM (Requests Per
Minute) as sampler metrics for decision making. If the Search service has more than
10 TPM, then it will spin up a new Search service instance. Similarly, if the TPM is
below 2, one of the instances will be shut down and released back to the pool.

When starting a new instance, the following policies will be applied:

•	 The number of service instances at any point should be a minimum of 1 and a
maximum of 4. This also means that at least one service instance will always
be up and running.

•	 A scaling group is defined in such a way that a new instance is created on a
VM that is on a different physical machine. This will ensure that the services
run across different physical machines.

These policies could be further enhanced. The life cycle manager ideally provides
options to customize these rules through REST APIs or Groovy scripts.

Chapter 6

[513]

A walkthrough of the life cycle manager code
We will take a look at how a simple life cycle manager is implemented. This section
will be a walkthrough of the code to understand the different components of the life
cycle manager.

The full source code is available under the Chapter 6 project
in the code files. The chapter5.configserver, chapter5.
eurekaserver, chapter5.search, and chapter5.search-
apigateway are copied and renamed as chapter6.*, respectively.

Perform the following steps to implement the custom life cycle manager:

1.	 Create a new Spring Boot application and name it chapter6.
lifecyclemanager. The project structure is shown in the following diagram:

Autoscaling Microservices

[514]

The flowchart for this example is as shown in the following diagram:

The components of this diagram are explained in details here.

2.	 Create a MetricsCollector class with the following method. At the
startup of the Spring Boot application, this method will be invoked using
CommandLineRunner, as follows:
public void start(){
 while(true){
 eurekaClient.getServices().forEach(service -> { System.
out.println("discovered service "+ service);
 Map metrics = restTemplate.getForObject("http://"+service+"/
metrics",Map.class);
 decisionEngine.execute(service, metrics);
 });
 }
}

The preceding method looks for the services registered in the Eureka
server and gets all the instances. In the real world, rather than polling,
the instances should publish metrics to a common place, where metrics
aggregation will happen.

Chapter 6

[515]

3.	 The following DecisionEngine code accepts the metric and applies certain
scaling policies to determine whether the service requires scaling up or not:
 public boolean execute(String serviceId, Map metrics){
 if(scalingPolicies.getPolicy(serviceId).
 execute(serviceId, metrics)){
 return deploymentEngine.scaleUp(deploymentRules.
getDeploymentRules(serviceId), serviceId);
 }
 return false;
 }

4.	 Based on the service ID, the policies that are related to the services will
be picked up and applied. In this case, a minimal TPM scaling policy is
implemented in TpmScalingPolicy, as follows:
public class TpmScalingPolicy implements ScalingPolicy {
 public boolean execute(String serviceId, Map metrics){
 if(metrics.containsKey("gauge.servo.tpm")){
 Double tpm = (Double) metrics.get("gauge.servo.tpm");
 System.out.println("gauge.servo.tpm " + tpm);
 return (tpm > 10);
 }
 return false;
 }
}

5.	 If the policy returns true, DecisionEngine then invokes
DeploymentEngine to spin up another instance. DeploymentEngine
makes use of DeploymentRules to decide how to execute scaling. The
rules can enforce the number of min and max instances, in which region
or machine the new instance has to be started, the resources required for
the new instance, and so on. DummyDeploymentRule simply makes sure
the max instance is not more than 2.

6.	 DeploymentEngine, in this case, uses the JSch (Java Secure Channel) library
from JCraft to SSH to the destination server and start the service. This requires
the following additional Maven dependency:
<dependency>
 <groupId>com.jcraft</groupId>
 <artifactId>jsch</artifactId>
 <version>0.1.53</version>
</dependency>

Autoscaling Microservices

[516]

7.	 The current SSH implementation is kept simple enough as we will change
this in future chapters. In this example, DeploymentEngine sends the
following command over the SSH library on the target machine:
 String command ="java -jar -Dserver.port=8091 ./work/codebox/
chapter6/chapter6.search/target/search-1.0.jar";

Integration with Nexus happens from the target machine using Linux scripts
with Nexus CLI or using curl. In this example, we will not explore Nexus.

8.	 The next step is to change the Search microservice to expose a new gauge for
TPM. We have to change all the microservices developed earlier to submit
this additional metric.
We will only examine Search in this chapter, but in order to complete it,
all the services have to be updated. In order to get the gauge.servo.tpm
metrics, we have to add TPMCounter to all the microservices.
The following code counts the transactions over a sliding window of 1
minute:

class TPMCounter {
 LongAdder count;
 Calendar expiry = null;
 TPMCounter(){
 reset();
 }
 void reset (){
 count = new LongAdder();
 expiry = Calendar.getInstance();
 expiry.add(Calendar.MINUTE, 1);
 }
 boolean isExpired(){
 return Calendar.getInstance().after(expiry);
 }
 void increment(){
 if(isExpired()){
 reset();
 }
 count.increment();
 }
}

Chapter 6

[517]

9.	 The following code needs to be added to SearchController to set the
tpm value:
class SearchRestController {
 TPMCounter tpm = new TPMCounter();
 @Autowired
 GaugeService gaugeService;
 //other code

10.	 The following code is from the get REST endpoint (the search method) of
SearchRestController, which submits the tpm value as a gauge to the
actuator endpoint:
tpm.increment();
gaugeService.submit("tpm", tpm.count.intValue());

Running the life cycle manager
Perform the following steps to run the life cycle manager developed in the
previous section:

1.	 Edit DeploymentEngine.java and update the password to reflect the
machine's password, as follows. This is required for the SSH connection:
session.setPassword("rajeshrv");

2.	 Build all the projects by running Maven from the root folder (Chapter 6)
via the following command:
mvn -Dmaven.test.skip=true clean install

3.	 Then, run RabbitMQ, as follows:
./rabbitmq-server

4.	 Ensure that the Config server is pointing to the right configuration
repository. We need to add a property file for the life cycle manager.

5.	 Run the following commands from the respective project folders:
java -jar target/config-server-0.0.1-SNAPSHOT.jar

java -jar target/eureka-server-0.0.1-SNAPSHOT.jar

java -jar target/lifecycle-manager-0.0.1-SNAPSHOT.jar

java -jar target/search-1.0.jar

java -jar target/search-apigateway-1.0.jar

java -jar target/website-1.0.jar

Autoscaling Microservices

[518]

6.	 Once all the services are started, open a browser window and load
http://localhost:8001.

7.	 Execute the flight search 11 times, one after the other, within a minute.
This will trigger the decision engine to instantiate another instance
of the Search microservice.

8.	 Open the Eureka console (http://localhost:8761) and watch for a
second SEARCH-SERVICE. Once the server is started, the instances
will appear as shown here:

Summary
In this chapter, you learned the importance of autoscaling when deploying
large-scale microservices.

We also explored the concept of autoscaling and the different models of
and approaches to autoscaling, such as the time-based, resource-based, queue
length-based, and predictive ones. We then reviewed the role of a life cycle
manager in the context of microservices and reviewed its capabilities. Finally,
we ended this chapter by reviewing a sample implementation of a simple
custom life cycle manager in the context of BrownField PSS microservices.

Autoscaling is an important supporting capability required when dealing with
large-scale microservices. We will discuss a more mature implementation of
the life cycle manager in Chapter 9, Managing Dockerized Microservices with
Mesos and Marathon.

The next chapter will explore the logging and monitoring capabilities that are
indispensable for successful microservice deployments.

[519]

Logging and Monitoring
Microservices

One of the biggest challenges due to the very distributed nature of Internet-scale
microservices deployment is the logging and monitoring of individual microservices.
It is difficult to trace end-to-end transactions by correlating logs emitted by different
microservices. As with monolithic applications, there is no single pane of glass to
monitor microservices.

This chapter will cover the necessity and importance of logging and monitoring in
microservice deployments. This chapter will further examine the challenges and
solutions to address logging and monitoring with a number of potential architectures
and technologies.

By the end of this chapter, you will learn about:

•	 The different options, tools, and technologies for log management
•	 The use of Spring Cloud Sleuth in tracing microservices
•	 The different tools for end-to-end monitoring of microservices
•	 The use of Spring Cloud Hystrix and Turbine for circuit monitoring
•	 The use of data lakes in enabling business data analysis

Logging and Monitoring Microservices

[520]

Reviewing the microservice capability
model
In this chapter, we will explore the following microservice capabilities from the
microservices capability model discussed in Chapter 3, Applying Microservices Concepts:

•	 Central Log Management
•	 Monitoring and Dashboards
•	 Dependency Management (part of Monitoring and Dashboards)
•	 Data Lake

Understanding log management
challenges
Logs are nothing but streams of events coming from a running process. For
traditional JEE applications, a number of frameworks and libraries are available to
log. Java Logging (JUL) is an option off the shelf from Java itself. Log4j, Logback,
and SLF4J are some of the other popular logging frameworks available. These
frameworks support both UDP as well as TCP protocols for logging. Applications
send log entries to the console or to the filesystem. File recycling techniques are
generally employed to avoid logs filling up all the disk space.

Chapter 7

[521]

One of the best practices of log handling is to switch off most of the log entries in
production due to the high cost of disk IOs. Not only do disk IOs slow down the
application, but they can also severely impact scalability. Writing logs into the disk
also requires high disk capacity. An out-of-disk-space scenario can bring down the
application. Logging frameworks provide options to control logging at runtime to
restrict what is to be printed and what not. Most of these frameworks provide fine-
grained control over the logging controls. They also provide options to change these
configurations at runtime.

On the other hand, logs may contain important information and have high value if
properly analyzed. Therefore, restricting log entries essentially limits our ability to
understand the application's behavior.

When moved from traditional to cloud deployment, applications are no longer
locked to a particular, predefined machine. Virtual machines and containers are not
hardwired with an application. The machines used for deployment can change from
time to time. Moreover, containers such as Docker are ephemeral. This essentially
means that one cannot rely on the persistent state of the disk. Logs written to the disk
are lost once the container is stopped and restarted. Therefore, we cannot rely on the
local machine's disk to write log files.

As we discussed in Chapter 1, Demystifying Microservices, one of the principles of the
Twelve-Factor app is to avoid routing or storing log files by the application itself. In
the context of microservices, they will run on isolated physical or virtual machines,
resulting in fragmented log files. In this case, it is almost impossible to trace end-to-
end transactions that span multiple microservices:

Logging and Monitoring Microservices

[522]

As shown in the diagram, each microservice emits logs to a local filesystem. In
this case, microservice M1 calls M3. These services write their logs to their own
local filesystems. This makes it harder to correlate and understand the end-to-end
transaction flow. Also, as shown in the diagram, there are two instances of M1 and
two instances of M3 running on two different machines. In this case, log aggregation
at the service level is hard to achieve.

A centralized logging solution
In order to address the challenges stated earlier, traditional logging solutions
require serious rethinking. The new logging solution, in addition to addressing the
preceding challenges, is also expected to support the capabilities summarized here:

•	 The ability to collect all log messages and run analytics on top of the log
messages

•	 The ability to correlate and track transactions end to end
•	 The ability to keep log information for longer time periods for trending and

forecasting
•	 The ability to eliminate dependency on the local disk system
•	 The ability to aggregate log information coming from multiple sources such

as network devices, operating system, microservices, and so on

The solution to these problems is to centrally store and analyze all log messages,
irrespective of the source of log. The fundamental principle employed in the new
logging solution is to detach log storage and processing from service execution
environments. Big data solutions are better suited to storing and processing large
numbers of log messages more effectively than storing and processing them in
microservice execution environments.

In the centralized logging solution, log messages will be shipped from the execution
environment to a central big data store. Log analysis and processing will be handled
using big data solutions:

Chapter 7

[523]

As shown in the preceding logical diagram, there are a number of components in the
centralized logging solution, as follows:

•	 Log streams: These are streams of log messages coming out of source
systems. The source system can be microservices, other applications, or
even network devices. In typical Java-based systems, these are equivalent to
streaming Log4j log messages.

•	 Log shippers: Log shippers are responsible for collecting the log messages
coming from different sources or endpoints. The log shippers then send these
messages to another set of endpoints, such as writing to a database, pushing
to a dashboard, or sending it to stream-processing endpoint for further real-
time processing.

•	 Log store: A log store is the place where all log messages are stored for real-
time analysis, trending, and so on. Typically, a log store is a NoSQL database,
such as HDFS, capable of handling large data volumes.

•	 Log stream processor: The log stream processor is capable of analyzing real-
time log events for quick decision making. A stream processor takes actions
such as sending information to a dashboard, sending alerts, and so on. In
the case of self-healing systems, stream processors can even take actions to
correct the problems.

•	 Log dashboard: A dashboard is a single pane of glass used to display log
analysis results such as graphs and charts. These dashboards are meant for
the operational and management staff.

The benefit of this centralized approach is that there is no local I/O or blocking
disk writes. It also does not use the local machine's disk space. This architecture is
fundamentally similar to the lambda architecture for big data processing.

To read more on the Lambda architecture, go to http://lambda-
architecture.net.

It is important to have in each log message a context, message, and correlation ID.
The context typically has the timestamp, IP address, user information, process details
(such as service, class, and functions), log type, classification, and so on. The message
will be plain and simple free text information. The correlation ID is used to establish
the link between service calls so that calls spanning microservices can be traced.

Logging and Monitoring Microservices

[524]

The selection of logging solutions
There are a number of options available to implement a centralized logging solution.
These solutions use different approaches, architectures, and technologies. It is
important to understand the capabilities required and select the right solution that
meets the needs.

Cloud services
There are a number of cloud logging services available, such as the SaaS solution.

Loggly is one of the most popular cloud-based logging services. Spring Boot
microservices can use Loggly's Log4j and Logback appenders to directly stream log
messages into the Loggly service.

If the application or service is deployed in AWS, AWS CloudTrail can be integrated
with Loggly for log analysis.

Papertrial, Logsene, Sumo Logic, Google Cloud Logging, and Logentries are
examples of other cloud-based logging solutions.

The cloud logging services take away the overhead of managing complex
infrastructures and large storage solutions by providing them as simple-to-integrate
services. However, latency is one of the key factors to be considered when selecting
cloud logging as a service.

Off-the-shelf solutions
There are many purpose-built tools to provide end-to-end log management
capabilities that are installable locally in an on-premises data center or in the cloud.

Graylog is one of the popular open source log management solutions. Graylog uses
Elasticsearch for log storage and MongoDB as a metadata store. Graylog also uses
GELF libraries for Log4j log streaming.

Splunk is one of the popular commercial tools available for log management and
analysis. Splunk uses the log file shipping approach, compared to log streaming used
by other solutions to collect logs.

Best-of-breed integration
The last approach is to pick and choose best-of-breed components and build a
custom logging solution.

Chapter 7

[525]

Log shippers
There are log shippers that can be combined with other tools to build an end-to-end
log management solution. The capabilities differ between different log shipping
tools.

Logstash is a powerful data pipeline tool that can be used to collect and ship log
files. Logstash acts as a broker that provides a mechanism to accept streaming
data from different sources and sync them to different destinations. Log4j and
Logback appenders can also be used to send log messages directly from Spring Boot
microservices to Logstash. The other end of Logstash is connected to Elasticsearch,
HDFS, or any other database.

Fluentd is another tool that is very similar to Logstash, as is Logspout, but the latter
is more appropriate in a Docker container-based environment.

Log stream processors
Stream-processing technologies are optionally used to process log streams on the
fly. For example, if a 404 error is continuously occurring as a response to a particular
service call, it means there is something wrong with the service. Such situations have
to be handled as soon as possible. Stream processors are pretty handy in such cases
as they are capable of reacting to certain streams of events that a traditional reactive
analysis can't.

A typical architecture used for stream processing is a combination of Flume and
Kafka together with either Storm or Spark Streaming. Log4j has Flume appenders,
which are useful to collect log messages. These messages are pushed into distributed
Kafka message queues. The stream processors collect data from Kafka and process
them on the fly before sending it to Elasticsearch and other log stores.

Spring Cloud Stream, Spring Cloud Stream Modules, and Spring Cloud Data Flow
can also be used to build the log stream processing.

Log storage
Real-time log messages are typically stored in Elasticsearch. Elasticsearch allows
clients to query based on text-based indexes. Apart from Elasticsearch, HDFS is also
commonly used to store archived log messages. MongoDB or Cassandra is used to
store summary data, such as monthly aggregated transaction counts. Offline log
processing can be done using Hadoop's MapReduce programs.

Logging and Monitoring Microservices

[526]

Dashboards
The last piece required in the central logging solution is a dashboard. The most
commonly used dashboard for log analysis is Kibana on top of an Elasticsearch data
store. Graphite and Grafana are also used to display log analysis reports.

A custom logging implementation
The tools mentioned before can be leveraged to build a custom end-to-end logging
solution. The most commonly used architecture for custom log management is a
combination of Logstash, Elasticsearch, and Kibana, also known as the ELK stack.

The full source code of this chapter is available under the Chapter
7 project in the code files. Copy chapter5.configserver,
chapter5.eurekaserver, chapter5.search, chapter5.
search-apigateway, and chapter5.website into a new STS
workspace and rename them chapter7.*.

The following diagram shows the log monitoring flow:

In this section, a simple implementation of a custom logging solution using the ELK
stack will be examined.

Follow these steps to implement the ELK stack for logging:

1.	 Download and install Elasticsearch, Kibana, and Logstash from https://
www.elastic.co.

2.	 Update the Search microservice (chapter7.search). Review and ensure that
there are some log statements in the Search microservice. The log statements
are nothing special but simple log statements using slf4j, as follows:
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
 //other code goes here
 private static final Logger logger = LoggerFactory.
 getLogger(SearchRestController.class);
//other code goes here

https://www.elastic.co
https://www.elastic.co

Chapter 7

[527]

logger.info("Looking to load flights...");
for (Flight flight : flightRepository.
 findByOriginAndDestinationAndFlightDate
 ("NYC", "SFO", "22-JAN-16")) {
 logger.info(flight.toString());
}

3.	 Add the logstash dependency to integrate logback to Logstash in the
Search service's pom.xml file, as follows:
<dependency>
 <groupId>net.logstash.logback</groupId>
 <artifactId>logstash-logback-encoder</artifactId>
 <version>4.6</version>
</dependency>

4.	 Also, downgrade the logback version to be compatible with Spring
1.3.5.RELEASE via the following line:
<logback.version>1.1.6</logback.version>

5.	 Override the default Logback configuration. This can be done by adding a
new logback.xml file under src/main/resources, as follows:
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <include resource="org/springframework/boot/logging/logback/
defaults.xml"/>
 <include resource="org/springframework/boot/logging/logback/
console-appender.xml" />
 <appender name="stash" class="net.logstash.logback.
 appender.LogstashTcpSocketAppender">
 <destination>localhost:4560</destination>
 <!-- encoder is required -->
 <encoder class="net.logstash.logback.encoder.
 LogstashEncoder" />
 </appender>
 <root level="INFO">
 <appender-ref ref="CONSOLE" />
 <appender-ref ref="stash" />
 </root>
</configuration>

The preceding configuration overrides the default Logback configuration by
adding a new TCP socket appender, which streams all the log messages to
a Logstash service, which is listening on port 4560. It is important to add an
encoder, as mentioned in the previous configuration.

Logging and Monitoring Microservices

[528]

6.	 Create a configuration as shown in the following code and store it in a
logstash.conf file. The location of this file is irrelevant as it will be passed
as an argument when starting Logstash. This configuration will take input
from the socket listening on 4560 and send the output to Elasticsearch
running on 9200. The stdout is optional and is set to debug:
input {
 tcp {
 port => 4560
 host => localhost
 }
}
output {
elasticsearch { hosts => ["localhost:9200"] }
 stdout { codec => rubydebug }
}

7.	 Run Logstash, Elasticsearch, and Kibana from their respective installation
folders, as follows:
./bin/logstash -f logstash.conf

./bin/elasticsearch

./bin/kibana

8.	 Run the Search microservice. This will invoke the unit test cases and result in
printing the log statements mentioned before.

9.	 Go to a browser and access Kibana, at http://localhost:5601.
10.	 Go to Settings | Configure an index pattern, as shown here:

Chapter 7

[529]

11.	 Go to the Discover menu to see the logs. If everything is successful, we
will see the Kibana screenshot as follows. Note that the log messages are
displayed in the Kibana screen.

Kibana provides out-of-the-box features to build summary charts and graphs
using log messages:

Distributed tracing with Spring Cloud Sleuth
The previous section addressed microservices' distributed and fragmented logging
issue by centralizing the log data. With the central logging solution, we can have all
the logs in a central storage. However, it is still almost impossible to trace end-to-end
transactions. In order to do end-to-end tracking, transactions spanning microservices
need to have a correlation ID.

Twitter's Zipkin, Cloudera's HTrace, and Google's Dapper systems are examples of
distributed tracing systems. Spring Cloud provides a wrapper component on top of
these using the Spring Cloud Sleuth library.

Logging and Monitoring Microservices

[530]

Distributed tracing works with the concepts of span and trace. The span is a unit of
work; for example, calling a service is identified by a 64-bit span ID. A set of spans
form a tree-like structure is called a trace. Using the trace ID, the call can be tracked
end to end:

As shown in the diagram, Microservice 1 calls Microservice 2, and Microservice
2 calls Microservice 3. In this case, as shown in the diagram, the same trace ID is
passed across all microservices, which can be used to track transactions end to end.

In order to demonstrate this, we will use the Search API Gateway and Search
microservices. A new endpoint has to be added in Search API Gateway (chapter7.
search-apigateway) that internally calls the Search service to return data. Without
the trace ID, it is almost impossible to trace or link calls coming from the Website to
Search API Gateway to Search microservice. In this case, it only involves two to three
services, whereas in a complex environment, there could be many interdependent
services.

Follow these steps to create the example using Sleuth:

1.	 Update Search and Search API Gateway. Before this, the Sleuth dependency
needs to be added to the respective POM files, which can be done via the
following code:
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>

2.	 In the case of building a new service, select Sleuth and Web, as shown here:

Chapter 7

[531]

3.	 Add the Logstash dependency to the Search service as well as the Logback
configuration, as in the previous example.

4.	 The next step is to add two more properties in the Logback configuration,
as follows:
<property name="spring.application.name" value="search-service"/>
<property name="CONSOLE_LOG_PATTERN" value="%d{yyyy-MM-dd
HH:mm:ss.SSS} [${spring.application.name}] [trace=%X{X-Trace-Id:-
},span=%X{X-Span-Id:-}] [%15.15t] %-40.40logger{39}: %m%n"/>

The first property is the name of the application. The names given in this are
the service IDs: search-service and search-apigateway in Search and
Search API Gateway, respectively. The second property is an optional pattern
used to print the console log messages with a trace ID and span ID. The
preceding change needs to be applied to both the services.

5.	 Add the following piece of code to advise Sleuth when to start a new span ID
in the Spring Boot Application class. In this case, AlwaysSampler is used to
indicate that the span ID has to be created every time a call hits the service.
This change needs to be applied in both the services:
 @Bean
 public AlwaysSampler defaultSampler() {
 return new AlwaysSampler();
 }

Logging and Monitoring Microservices

[532]

6.	 Add a new endpoint to Search API Gateway, which will call the Search
service as follows. This is to demonstrate the propagation of the trace ID
across multiple microservices. This new method in the gateway returns the
operating hub of the airport by calling the Search service, as follows:
 @RequestMapping("/hubongw")
 String getHub(HttpServletRequest req){
 logger.info("Search Request in API gateway for getting Hub,
forwarding to search-service ");
 String hub = restTemplate.getForObject("http://search-service/
search/hub", String.class);
 logger.info("Response for hub received, Hub "+ hub);
 return hub;
 }

7.	 Add another endpoint in the Search service, as follows:
 @RequestMapping("/hub")
 String getHub(){
 logger.info("Searching for Hub, received from search-
apigateway ");
 return "SFO";
 }

8.	 Once added, run both the services. Hit the gateway's new hub on the
gateway (/hubongw) endpoint using a browser (http://localhost:8095/
hubongw).
As mentioned earlier, the Search API Gateway service is running on 8095
and the Search service is running on 8090.

9.	 Look at the console logs to see the trace ID and span IDs printed. The first
print is from Search API Gateway, and the second one came from the Search
service. Note that the trace IDs are the same in both the cases, as follows:
2016-04-02 17:24:37.624 [search-apigateway] [trace=8a7e278f-7b2b-
43e3-a45c-69d3ca66d663,span=8a7e278f-7b2b-43e3-a45c-69d3ca66d663]
[io-8095-exec-10] c.b.p.s.a.SearchAPIGatewayController :
Response for hub received, Hub DXB

2016-04-02 17:24:37.612 [search-service] [trace=8a7e278f-7b2b-
43e3-a45c-69d3ca66d663,span=fd309bba-5b4d-447f-a5e1-7faaab90cfb1]
[nio-8090-exec-1] c.b.p.search.component.SearchComponent :
Searching for Hub, received from search-apigateway

Chapter 7

[533]

10.	 Open the Kibana console and search for the trace ID using this trace ID
printed in the console. In this case, it is 8a7e278f-7b2b-43e3-a45c-
69d3ca66d663. As shown in the following screenshot, with a trace ID,
one can trace service calls that span multiple services:

Monitoring microservices
Microservices are truly distributed systems with a fluid deployment topology.
Without sophisticated monitoring in place, operations teams may run into trouble
managing large-scale microservices. Traditional monolithic application deployments
are limited to a number of known services, instances, machines, and so on. This
is easier to manage compared to the large number of microservices instances
potentially running across different machines. To add more complication, these
services dynamically change their topologies. A centralized logging capability only
addresses part of the issue. It is important for operations teams to understand the
runtime deployment topology and also the behavior of the systems. This demands
more than a centralized logging can offer.

In general application, monitoring is more a collection of metrics, aggregation, and
their validation against certain baseline values. If there is a service-level breach,
then monitoring tools generate alerts and send them to administrators. With
hundreds and thousands of interconnected microservices, traditional monitoring
does not really offer true value. The one-size-fits-all approach to monitoring or
monitoring everything with a single pane of glass is not easy to achieve in large-scale
microservices.

Logging and Monitoring Microservices

[534]

One of the main objectives of microservice monitoring is to understand the behavior
of the system from a user experience point of view. This will ensure that the end-to-
end behavior is consistent and is in line with what is expected by the users.

Monitoring challenges
Similar to the fragmented logging issue, the key challenge in monitoring
microservices is that there are many moving parts in a microservice ecosystem.

The typical issues are summarized here:

•	 The statistics and metrics are fragmented across many services, instances,
and machines.

•	 Heterogeneous technologies may be used to implement microservices, which
makes things even more complex. A single monitoring tool may not give all
the required monitoring options.

•	 Microservices deployment topologies are dynamic, making it impossible to
preconfigure servers, instances, and monitoring parameters.

Many of the traditional monitoring tools are good to monitor monolithic applications
but fall short in monitoring large-scale, distributed, interlinked microservice systems.
Many of the traditional monitoring systems are agent-based preinstall agents on the
target machines or application instances. This poses two challenges:

•	 If the agents require deep integration with the services or operating systems,
then this will be hard to manage in a dynamic environment

•	 If these tools impose overheads when monitoring or instrumenting the
application, it may lead to performance issues

Many traditional tools need baseline metrics. Such systems work with preset rules,
such as if the CPU utilization goes above 60% and remains at this level for 2 minutes,
then an alert should be sent to the administrator. It is extremely hard to preconfigure
these values in large, Internet-scale deployments.

New-generation monitoring applications learn the application's behavior by
themselves and set automatic threshold values. This frees up administrators from
doing this mundane task. Automated baselines are sometimes more accurate than
human forecasts:

Chapter 7

[535]

As shown in the diagram, the key areas of microservices monitoring are:

•	 Metrics sources and data collectors: Metrics collection at the source is done
either by the server pushing metrics information to a central collector or
by embedding lightweight agents to collect information. Data collectors
collect monitoring metrics from different sources, such as network, physical
machines, containers, software components, applications, and so on. The
challenge is to collect this data using autodiscovery mechanisms instead of
static configurations.
This is done by either running agents on the source machines, streaming data
from the sources, or polling at regular intervals.

•	 Aggregation and correlation of metrics: Aggregation capability is required
for aggregating metrics collected from different sources, such as user
transaction, service, infrastructure, network, and so on. Aggregation can be
challenging as it requires some level of understanding of the application's
behavior, such as service dependencies, service grouping, and so on. In many
cases, these are automatically formulated based on the metadata provided by
the sources.
Generally, this is done by an intermediary that accept the metrics.

•	 Processing metrics and actionable insights: Once data is aggregated, the
next step is to do the measurement. Measurements are typically done using
set thresholds. In the new-generation monitoring systems, these thresholds
are automatically discovered. Monitoring tools then analyze the data and
provide actionable insights.
These tools may use big data and stream analytics solutions.

•	 Alerting, actions, and dashboards: As soon as issues are detected, they have
to be notified to the relevant people or systems. Unlike traditional systems,
the microservices monitoring systems should be capable of taking actions on
a real-time basis. Proactive monitoring is essential to achieving self-healing.
Dashboards are used to display SLAs, KPIs, and so on.
Dashboards and alerting tools are capable of handling these requirements.

Logging and Monitoring Microservices

[536]

Microservice monitoring is typically done with three approaches. A combination of
these is really required for effective monitoring:

•	 Application performance monitoring (APM): This is more of a traditional
approach to system metrics collection, processing, alerting, and dashboard
rendering. These are more from the system's point of view. Application
topology discovery and visualization are new capabilities implemented
by many of the APM tools. The capabilities vary between different APM
providers.

•	 Synthetic monitoring: This is a technique that is used to monitor the
system's behavior using end-to-end transactions with a number of test
scenarios in a production or production-like environment. Data is collected to
validate the system's behavior and potential hotspots. Synthetic monitoring
helps understand the system dependencies as well.

•	 Real user monitoring (RUM) or user experience monitoring: This is
typically a browser-based software that records real user statistics, such as
response time, availability, and service levels. With microservices, with more
frequent release cycle and dynamic topology, user experience monitoring is
more important.

Monitoring tools
There are many tools available to monitor microservices. There are also overlaps
between many of these tools. The selection of monitoring tools really depends upon
the ecosystem that needs to be monitored. In most cases, more than one tool is
required to monitor the overall microservice ecosystem.

The objective of this section is to familiarize ourselves with a number of common
microservices-friendly monitoring tools:

•	 AppDynamics, Dynatrace, and New Relic are top commercial vendors
in the APM space, as per Gartner Magic Quadrant 2015. These tools are
microservice friendly and support microservice monitoring effectively
in a single console. Ruxit, Datadog, and Dataloop are other commercial
offerings that are purpose-built for distributed systems that are essentially
microservices friendly. Multiple monitoring tools can feed data to Datadog
using plugins.

•	 Cloud vendors come with their own monitoring tools, but in many
cases, these monitoring tools alone may not be sufficient for large-scale
microservice monitoring. For instance, AWS uses CloudWatch and Google
Cloud Platform uses Cloud Monitoring to collect information from various
sources.

Chapter 7

[537]

•	 Some of the data collecting libraries, such as Zabbix, statd, collectd, jmxtrans,
and so on operate at a lower level in collecting runtime statistics, metrics,
gauges, and counters. Typically, this information is fed into data collectors
and processors such as Riemann, Datadog, and Librato, or dashboards such
as Graphite.

•	 Spring Boot Actuator is one of the good vehicles to collect microservices
metrics, gauges, and counters, as we discussed in Chapter 2, Building
Microservices with Spring Boot. Netflix Servo, a metric collector similar to
Actuator, and the QBit and Dropwizard metrics also fall in the same category
of metric collectors. All these metrics collectors need an aggregator and
dashboard to facilitate full-sized monitoring.

•	 Monitoring through logging is popular but a less effective approach
in microservices monitoring. In this approach, as discussed in the
previous section, log messages are shipped from various sources, such as
microservices, containers, networks, and so on to a central location. Then,
we can use the logs files to trace transactions, identify hotspots, and so on.
Loggly, ELK, Splunk, and Trace are candidates in this space.

•	 Sensu is a popular choice for microservice monitoring from the open source
community. Weave Scope is another tool, primarily targeting containerized
deployments. Spigo is one of the purpose-built microservices monitoring
systems closely aligned with the Netflix stack.

•	 Pingdom, New Relic Synthetics, Runscope, Catchpoint, and so on provide
options for synthetic transaction monitoring and user experience monitoring
on live systems.

•	 Circonus is classified more as a DevOps monitoring tool but can also do
microservices monitoring. Nagios is a popular open source monitoring tool
but falls more into the traditional monitoring system.

•	 Prometheus provides a time series database and visualization GUI useful in
building custom monitoring tools.

Monitoring microservice dependencies
When there are a large number of microservices with dependencies, it is important
to have a monitoring tool that can show the dependencies among microservices. It is
not a scalable approach to statically configure and manage these dependencies. There
are many tools that are useful in monitoring microservice dependencies, as follows:

•	 Mentoring tools such as AppDynamics, Dynatrace, and New Relic can draw
dependencies among microservices. End-to-end transaction monitoring can
also trace transaction dependencies. Other monitoring tools, such as Spigo,
are also useful for microservices dependency management.

Logging and Monitoring Microservices

[538]

•	 CMDB tools such as Device42 or purpose-built tools such as Accordance are
useful in managing the dependency of microservices. Veritas Risk Advisor
(VRA) is also useful for infrastructure discovery.

•	 A custom implementation with a Graph database, such as Neo4j, is also
useful. In this case, a microservice has to preconfigure its direct and indirect
dependencies. At the startup of the service, it publishes and cross-checks its
dependencies with a Neo4j database.

Spring Cloud Hystrix for fault-tolerant
microservices
This section will explore Spring Cloud Hystrix as a library for a fault-tolerant and
latency-tolerant microservice implementation. Hystrix is based on the fail fast and
rapid recovery principles. If there is an issue with a service, Hystrix helps isolate it. It
helps to recover quickly by falling back to another preconfigured fallback service.
Hystrix is another battle-tested library from Netflix. Hystrix is based on the circuit
breaker pattern.

Read more about the circuit breaker pattern at https://msdn.
microsoft.com/en-us/library/dn589784.aspx.

In this section, we will build a circuit breaker with Spring Cloud Hystrix. Perform
the following steps to change the Search API Gateway service to integrate it with
Hystrix:

1.	 Update the Search API Gateway service. Add the Hystrix dependency to the
service. If developing from scratch, select the following libraries:

https://msdn.microsoft.com/en-us/library/dn589784.aspx
https://msdn.microsoft.com/en-us/library/dn589784.aspx

Chapter 7

[539]

2.	 In the Spring Boot Application class, add @EnableCircuitBreaker.
This command will tell Spring Cloud Hystrix to enable a circuit breaker
for this application. It also exposes the /hystrix.stream endpoint for
metrics collection.

3.	 Add a component class to the Search API Gateway service with a method;
in this case, this is getHub annotated with @HystrixCommand. This tells
Spring that this method is prone to failure. Spring Cloud libraries wrap these
methods to handle fault tolerance and latency tolerance by enabling circuit
breaker. The Hystrix command typically follows with a fallback method. In
case of failure, Hystrix automatically enables the fallback method mentioned
and diverts traffic to the fallback method. As shown in the following code, in
this case, getHub will fall back to getDefaultHub:
@Component
class SearchAPIGatewayComponent {
 @LoadBalanced
 @Autowired
 RestTemplate restTemplate;

Logging and Monitoring Microservices

[540]

 @HystrixCommand(fallbackMethod = "getDefaultHub")
 public String getHub(){
 String hub = restTemplate.getForObject("http://search-service/
search/hub", String.class);
 return hub;
 }
 public String getDefaultHub(){
 return "Possibily SFO";
 }
}

4.	 The getHub method of SearchAPIGatewayController calls the getHub
method of SearchAPIGatewayComponent, as follows:
@RequestMapping("/hubongw")
String getHub(){
 logger.info("Search Request in API gateway for getting Hub,
forwarding to search-service ");
 return component.getHub();
}

5.	 The last part of this exercise is to build a Hystrix Dashboard. For this, build
another Spring Boot application. Include Hystrix, Hystrix Dashboard, and
Actuator when building this application.

6.	 In the Spring Boot Application class, add the @EnableHystrixDashboard
annotation.

7.	 Start the Search service, Search API Gateway, and Hystrix Dashboard
applications. Point the browser to the Hystrix Dashboard application's URL.
In this example, the Hystrix Dashboard is started on port 9999. So, open the
URL http://localhost:9999/hystrix.

8.	 A screen similar to the following screenshot will be displayed. In the Hystrix
Dashboard, enter the URL of the service to be monitored.
In this case, Search API Gateway is running on port 8095. Hence, the
hystrix.stream URL will be http://localhost:8095/hytrix.stream,
as shown:

Chapter 7

[541]

9.	 The Hystrix Dashboard will be displayed as follows:

Logging and Monitoring Microservices

[542]

Note that at least one transaction has to be executed to see the display.
This can be done by hitting http://localhost:8095/hubongw.

10.	 Create a failure scenario by shutting down the Search service. Note
that the fallback method will be called when hitting the URL http://
localhost:8095/hubongw.

11.	 If there are continuous failures, then the circuit status will be changed to
open. This can be done by hitting the preceding URL a number of times. In
the open state, the original service will no longer be checked. The Hystrix
Dashboard will show the status of the circuit as Open, as shown in the
following screenshot. Once a circuit is opened, periodically, the system will
check for the original service status for recovery. When the original service
is back, the circuit breaker will fall back to the original service and the status
will be set to Closed:

To know the meaning of each of these parameters, visit the Hystrix wiki
at https://github.com/Netflix/Hystrix/wiki/Dashboard.

https://github.com/Netflix/Hystrix/wiki/Dashboard

Chapter 7

[543]

Aggregating Hystrix streams with Turbine
In the previous example, the /hystrix.stream endpoint of our microservice was
given in the Hystrix Dashboard. The Hystrix Dashboard can only monitor one
microservice at a time. If there are many microservices, then the Hystrix Dashboard
pointing to the service has to be changed every time we switch the microservices to
monitor. Looking into one instance at a time is tedious, especially when there are
many instances of a microservice or multiple microservices.

We have to have a mechanism to aggregate data coming from multiple /hystrix.
stream instances and consolidate it into a single dashboard view. Turbine does
exactly the same thing. Turbine is another server that collects Hystrix streams from
multiple instances and consolidates them into one /turbine.stream instance.
Now, the Hystrix Dashboard can point to /turbine.stream to get the consolidated
information:

Turbine currently works only with different hostnames. Each instance
has to be run on separate hosts. If you are testing multiple services
locally on the same host, then update the host file (/etc/hosts) to
simulate multiple hosts. Once done, bootstrap.properties has to
be configured as follows:

eureka.instance.hostname: localdomain2

This example showcases how to use Turbine to monitor circuit breakers across
multiple instances and services. We will use the Search service and Search API
Gateway in this example. Turbine internally uses Eureka to resolve service IDs
that are configured for monitoring.

Logging and Monitoring Microservices

[544]

Perform the following steps to build and execute this example:

1.	 The Turbine server can be created as just another Spring Boot application
using Spring Boot Starter. Select Turbine to include the Turbine libraries.

2.	 Once the application is created, add @EnableTurbine to the main Spring
Boot Application class. In this example, both Turbine and Hystrix Dashboard
are configured to be run on the same Spring Boot application. This is
possible by adding the following annotations to the newly created Turbine
application:
@EnableTurbine
@EnableHystrixDashboard
@SpringBootApplication
public class TurbineServerApplication {

3.	 Add the following configuration to the .yaml or property file to point to the
instances that we are interested in monitoring:
spring:
 application:
 name : turbineserver
turbine:
 clusterNameExpression: new String('default')
 appConfig : search-service,search-apigateway
server:
 port: 9090
eureka:
 client:
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/

4.	 The preceding configuration instructs the Turbine server to look up the
Eureka server to resolve the search-service and search-apigateway
services. The search-service and search-apigateways service IDs are
used to register services with Eureka. Turbine uses these names to resolve the
actual service host and port by checking with the Eureka server. It will then
use this information to read /hystrix.stream from each of these instances.
Turbine will then read all the individual Hystrix streams, aggregate all of
them, and expose them under the Turbine server's /turbine.stream URL.

5.	 The cluster name expression is pointing to the default cluster as there is
no explicit cluster configuration done in this example. If the clusters are
manually configured, then the following configuration has to be used:
turbine:
 aggregator:
 clusterConfig: [comma separated clusternames]

Chapter 7

[545]

6.	 Change the Search service's SearchComponent to add another circuit breaker,
as follows:
 @HystrixCommand(fallbackMethod = "searchFallback")
 public List<Flight> search(SearchQuery query){

7.	 Also, add @EnableCircuitBreaker to the main Application class in the
Search service.

8.	 Add the following configuration to bootstrap.properties of the Search
service. This is required because all the services are running on the same
host:
Eureka.instance.hostname: localdomain1

9.	 Similarly, add the following in bootstrap.properties of the Search API
Gateway service. This is to make sure that both the services use different
hostnames:
eureka.instance.hostname: localdomain2

10.	 In this example, we will run two instances of search-apigateway: one on
localdomain1:8095 and another one on localdomain2:8096. We will also
run one instance of search-service on localdomain1:8090.

11.	 Run the microservices with command-line overrides to manage different host
addresses, as follows:
java -jar -Dserver.port=8096 -Deureka.instance.
hostname=localdomain2 -Dserver.address=localdomain2 target/
chapter7.search-apigateway-1.0.jar

java -jar -Dserver.port=8095 -Deureka.instance.
hostname=localdomain1 -Dserver.address=localdomain1 target/
chapter7.search-apigateway-1.0.jar

java -jar -Dserver.port=8090 -Deureka.instance.
hostname=localdomain1 -Dserver.address=localdomain1 target/
chapter7.search-1.0.jar

12.	 Open Hystrix Dashboard by pointing the browser to http://
localhost:9090/hystrix.

13.	 Instead of giving /hystrix.stream, this time, we will point to /turbine.
stream. In this example, the Turbine stream is running on 9090. Hence, the
URL to be given in the Hystrix Dashboard is http://localhost:9090/
turbine.stream.

14.	 Fire a few transactions by opening a browser window and hitting the
following two URLs: http://localhost:8095/hubongw and http://
localhost:8096/hubongw.
Once this is done, the dashboard page will show the getHub service.

Logging and Monitoring Microservices

[546]

15.	 Run chapter7.website. Execute the search transaction using the website
http://localhost:8001.
After executing the preceding search, the dashboard page will show
search-service as well. This is shown in the following screenshot:

As we can see in the dashboard, search-service is coming from the Search
microservice, and getHub is coming from Search API Gateway. As we have two
instances of Search API Gateway, getHub is coming from two hosts, indicated by
Hosts 2.

Data analysis using data lakes
Similarly to the scenario of fragmented logs and monitoring, fragmented data is
another challenge in the microservice architecture. Fragmented data poses challenges
in data analytics. This data may be used for simple business event monitoring, data
auditing, or even deriving business intelligence out of the data.

A data lake or data hub is an ideal solution to handling such scenarios. An event-
sourced architecture pattern is generally used to share the state and state changes
as events with an external data store. When there is a state change, microservices
publish the state change as events. Interested parties may subscribe to these events
and process them based on their requirements. A central event store may also
subscribe to these events and store them in a big data store for further analysis.

Chapter 7

[547]

One of the commonly followed architectures for such data handling is shown in the
following diagram:

State change events generated from the microservice—in our case, the Search,
Booking, and Check-In events—are pushed to a distributed high-performance
messaging system, such as Kafka. A data ingestion service, such as Flume, can
subscribe to these events and update them to an HDFS cluster. In some cases, these
messages will be processed in real time by Spark Streaming. To handle heterogeneous
sources of events, Flume can also be used between event sources and Kafka.

Spring Cloud Streams, Spring Cloud Streams modules, and Spring Data Flow are
also useful as alternatives for high-velocity data ingestion.

Summary
In this chapter, you learned about the challenges around logging and monitoring
when dealing with Internet-scale microservices.

We explored the various solutions for centralized logging. You also learned about
how to implement a custom centralized logging using Elasticsearch, Logstash, and
Kibana (ELK). In order to understand distributed tracing, we upgraded BrownField
microservices using Spring Cloud Sleuth.

In the second half of this chapter, we went deeper into the capabilities required
for microservices monitoring solutions and different approaches to monitoring.
Subsequently, we examined a number of tools available for microservices
monitoring.

Logging and Monitoring Microservices

[548]

The BrownField microservices are further enhanced with Spring Cloud Hystrix
and Turbine to monitor latencies and failures in inter-service communications. The
examples also demonstrated how to use the circuit breaker pattern to fall back to
another service in case of failures.

Finally, we also touched upon the importance of data lakes and how to integrate a
data lake architecture in a microservice context.

Microservice management is another important challenge we need to tackle when
dealing with large-scale microservice deployments. The next chapter will explore
how containers can help in simplifying microservice management.

[549]

Containerizing Microservices
with Docker

In the context of microservices, containerized deployment is the icing on the cake.
It helps microservices be more autonomous by self-containing the underlying
infrastructure, thereby making the microservices cloud neutral.

This chapter will introduce the concepts and relevance of virtual machine images
and the containerized deployment of microservices. Then, this chapter will further
familiarize readers with building Docker images for the BrownField PSS microservices
developed with Spring Boot and Spring Cloud. Finally, this chapter will also touch
base on how to manage, maintain, and deploy Docker images in a production-like
environment.

By the end of this chapter, you will learn about:

•	 The concept of containerization and its relevance in the context
of microservices

•	 Building and deploying microservices as Docker images and containers
•	 Using AWS as an example of cloud-based Docker deployments

Containerizing Microservices with Docker

[550]

Reviewing the microservice capability
model
In this chapter, we will explore the following microservice capabilities from the
microservice capability model discussed in Chapter 3, Applying Microservices Concepts:

•	 Containers and virtual machines
•	 The private/public cloud
•	 The microservices repository

The model is shown in the following diagram:

Understanding the gaps in BrownField
PSS microservices
In Chapter 5, Scaling Microservices with Spring Cloud, BrownField PSS microservices
were developed using Spring Boot and Spring Cloud. These microservices
are deployed as versioned fat JAR files on bare metals, specifically on a local
development machine.

Chapter 8

[551]

In Chapter 6, Autoscaling Microservices, the autoscaling capability was added with the
help of a custom life cycle manager. In Chapter 7, Logging and Monitoring Microservices,
challenges around logging and monitoring were addressed using centralized logging
and monitoring solutions.

There are still a few gaps in our BrownField PSS implementation. So far, the
implementation has not used any cloud infrastructure. Dedicated machines, as
in traditional monolithic application deployments, are not the best solution for
deploying microservices. Automation such as automatic provisioning, the ability to
scale on demand, self-service, and payment based on usage are essential capabilities
required to manage large-scale microservice deployments efficiently. In general, a
cloud infrastructure provides all these essential capabilities. Therefore, a private or
public cloud with the capabilities mentioned earlier is better suited to deploying
Internet-scale microservices.

Also, running one microservice instance per bare metal is not cost effective.
Therefore, in most cases, enterprises end up deploying multiple microservices
on a single bare metal server. Running multiple microservices on a single bare
metal could lead to a "noisy neighbor" problem. There is no isolation between the
microservice instances running on the same machine. As a result, services deployed
on a single machine may eat up others' space, thus impacting their performance.

An alternate approach is to run the microservices on VMs. However, VMs are
heavyweight in nature. Therefore, running many smaller VMs on a physical
machine is not resource efficient. This generally results in resource wastage.
In the case of sharing a VM to deploy multiple services, we would end up
facing the same issues of sharing the bare metal, as explained earlier.

In the case of Java-based microservices, sharing a VM or bare metal to deploy
multiple microservices also results in sharing JRE among microservices. This is
because the fat JARs created in our BrownField PSS abstract only application code
and its dependencies but not JREs. Any update on JRE installed on the machine
will have an impact on all the microservices deployed on this machine. Similarly,
if there are OS-level parameters, libraries, or tunings that are required for specific
microservices, then it will be hard to manage them on a shared environment.

One microservice principle insists that it should be self-contained and autonomous
by fully encapsulating its end-to-end runtime environment. In order to align with
this principle, all components, such as the OS, JRE, and microservice binaries,
have to be self-contained and isolated. The only option to achieve this is to follow
the approach of deploying one microservice per VM. However, this will result in
underutilized virtual machines, and in many cases, extra cost due to this can nullify
benefits of microservices.

Containerizing Microservices with Docker

[552]

What are containers?
Containers are not revolutionary, ground-breaking concepts. They have been in
action for quite a while. However, the world is witnessing the re-entry of containers,
mainly due to the wide adoption of cloud computing. The shortcomings of traditional
virtual machines in the cloud computing space also accelerated the use of containers.
Container providers such as Docker simplified container technologies to a great extent,
which also enabled a large adoption of container technologies in today's world. The
recent popularity of DevOps and microservices also acted as a catalyst for the rebirth
of container technologies.

So, what are containers? Containers provide private spaces on top of the operating
system. This technique is also called operating system virtualization. In this
approach, the kernel of the operating system provides isolated virtual spaces. Each
of these virtual spaces is called a container or virtual engine (VE). Containers allow
processes to run on an isolated environment on top of the host operating system. A
representation of multiple containers running on the same host is shown as follows:

Containers are easy mechanisms to build, ship, and run compartmentalized
software components. Generally, containers package all the binaries and libraries
that are essential for running an application. Containers reserve their own
filesystem, IP address, network interfaces, internal processes, namespaces, OS
libraries, application binaries, dependencies, and other application configurations.

There are billions of containers used by organizations. Moreover, there are many
large organizations heavily investing in container technologies. Docker is far ahead
of the competition, supported by many large operating system vendors and cloud
providers. Lmctfy, SystemdNspawn, Rocket, Drawbridge, LXD, Kurma, and Calico
are some of the other containerization solutions. Open container specification is also
under development.

Chapter 8

[553]

The difference between VMs and
containers
VMs such as Hyper-V, VMWare, and Zen were popular choices for data center
virtualization a few years ago. Enterprises experienced a cost saving by implementing
virtualization over the traditional bare metal usage. It has also helped many enterprises
utilize their existing infrastructure in a much more optimized manner. As VMs support
automation, many enterprises experienced that they had to make lesser management
effort with virtual machines. Virtual machines also helped organizations get isolated
environments for applications to run in.

Prima facie, both virtualization and containerization exhibit exactly the same
characteristics. However, in a nutshell, containers and virtual machines are not the
same. Therefore, it is unfair to make an apple-to-apple comparison between VMs
and containers. Virtual machines and containers are two different techniques and
address different problems of virtualization. This difference is evident from the
following diagram:

Virtual machines operate at a much lower level compared to containers. VMs provide
hardware virtualization, such as that of CPUs, motherboards, memory, and so on.
A VM is an isolated unit with an embedded operating system, generally called a
Guest OS. VMs replicate the whole operating system and run it within the VM with
no dependency on the host operating system environment. As VMs embed the full
operating system environment, these are heavyweight in nature. This is an advantage
as well as a disadvantage. The advantage is that VMs offer complete isolation to the
processes running on VMs. The disadvantage is that it limits the number of VMs one
can spin up in a bare metal due to the resource requirements of VMs.

Containerizing Microservices with Docker

[554]

The size of a VM has a direct impact on the time to start and stop it. As starting a VM
in turn boots the OS, the start time for VMs is generally high. VMs are more friendly
with infrastructure teams as it requires a low level of infrastructure competency to
manage VMs.

In the container world, containers do not emulate the entire hardware or operating
system. Unlike VMs, containers share certain parts of the host kernel and operating
system. There is no concept of guest OS in the case of containers. Containers provide
an isolated execution environment directly on top of the host operating system. This
is its advantage as well as disadvantage. The advantage is that it is lighter as well
as faster. As containers on the same machine share the host operating system, the
overall resource utilization of containers is fairly small. As a result, many smaller
containers can be run on the same machine, as compared to heavyweight VMs. As
containers on the same host share the host operating system, there are limitations as
well. For example, it is not possible to set iptables firewall rules inside a container.
Processes inside the container are completely independent from the processes on
different containers running on the same host.

Unlike VMs, container images are publically available on community portals. This
makes developers' lives much easier as they don't have to build the images from
scratch; instead, they can now take a base image from certified sources and add
additional layers of software components on top of the downloaded base image.

The lightweight nature of the containers is also opening up a plethora of opportunities,
such as automated build, publishing, downloading, copying, and so on. The ability to
download, build, ship, and run containers with a few commands or to use REST APIs
makes containers more developer friendly. Building a new container does not take
more than a few seconds. Containers are now part and parcel of continuous delivery
pipelines as well.

In summary, containers have many advantages over VMs, but VMs have their own
exclusive strengths. Many organizations use both containers and VMs, such as by
running containers on top of VMs.

Chapter 8

[555]

The benefits of containers
We have already considered the many benefits of containers over VMs. This section
will explain the overall benefits of containers beyond the benefits of VMs:

•	 Self-contained: Containers package the essential application binaries and their
dependencies together to make sure that there is no disparity between different
environments such as development, testing, or production. This promotes
the concept of Twelve-Factor applications and that of immutable containers.
Spring Boot microservices bundle all the required application dependencies.
Containers stretch this boundary further by embedding JRE and other
operating system-level libraries, configurations, and so on, if there are any.

•	 Lightweight: Containers, in general, are smaller in size with a lighter
footprint. The smallest container, Alpine, has a size of less than 5 MB. The
simplest Spring Boot microservice packaged with an Alpine container with
Java 8 would only come to around 170 MB in size. Though the size is still on
the higher side, it is much less than the VM image size, which is generally in
GBs. The smaller footprint of containers not only helps spin new containers
quickly but also makes building, shipping, and storing easier.

•	 Scalable: As container images are smaller in size and there is no OS booting
at startup, containers are generally faster to spin up and shut down. This
makes containers the popular choice for cloud-friendly elastic applications.

•	 Portable: Containers provide portability across machines and cloud
providers. Once the containers are built with all the dependencies, they
can be ported across multiple machines or across multiple cloud providers
without relying on the underlying machines. Containers are portable from
desktops to different cloud environments.

•	 Lower license cost: Many software license terms are based on the physical
core. As containers share the operating system and are not virtualized at the
physical resources level, there is an advantage in terms of the license cost.

•	 DevOps: The lightweight footprint of containers makes it easy to automate
builds and publish and download containers from remote repositories. This
makes it easy to use in Agile and DevOps environments by integrating with
automated delivery pipelines. Containers also support the concept of build
once by creating immutable containers at build time and moving them across
multiple environments. As containers are not deep into the infrastructure,
multidisciplinary DevOps teams can manage containers as part of their
day-to-day life.

•	 Version controlled: Containers support versions by default. This helps build
versioned artifacts, just as with versioned archive files.

Containerizing Microservices with Docker

[556]

•	 Reusable: Container images are reusable artifacts. If an image is built
by assembling a number of libraries for a purpose, it can be reused in
similar situations.

•	 Immutable containers: In this concept, containers are created and disposed
of after usage. They are never updated or patched. Immutable containers are
used in many environments to avoid complexities in patching deployment
units. Patching results in a lack of traceability and an inability to recreate
environments consistently.

Microservices and containers
There is no direct relationship between microservices and containers. Microservices
can run without containers, and containers can run monolithic applications. However,
there is a sweet spot between microservices and containers.

Containers are good for monolithic applications, but the complexities and the size of
the monolith application may kill some of the benefits of the containers. For example,
spinning new containers quickly may not be easy with monolithic applications.
In addition to this, monolithic applications generally have local environment
dependencies, such as the local disk, stovepipe dependencies with other systems,
and so on. Such applications are difficult to manage with container technologies.
This is where microservices go hand in hand with containers.

The following diagram shows three polyglot microservices running on the same
host machine and sharing the same operating system but abstracting the runtime
environment:

Chapter 8

[557]

The real advantage of containers can be seen when managing many polyglot
microservices—for instance, one microservice in Java and another one in Erlang or
some other language. Containers help developers package microservices written in any
language or technology in a platform- and technology-agnostic fashion and uniformly
distribute them across multiple environments. Containers eliminate the need to have
different deployment management tools to handle polyglot microservices. Containers
not only abstract the execution environment but also how to access the services.
Irrespective of the technologies used, containerized microservices expose REST APIs.
Once the container is up and running, it binds to certain ports and exposes its APIs.
As containers are self-contained and provide full stack isolation among services, in
a single VM or bare metal, one can run multiple heterogeneous microservices and
handle them in a uniform way.

Introduction to Docker
The previous sections talked about containers and their benefits. Containers have
been in the business for years, but the popularity of Docker has given containers
a new outlook. As a result, many container definitions and perspectives emerged
from the Docker architecture. Docker is so popular that even containerization is
referred to as dockerization.

Docker is a platform to build, ship, and run lightweight containers based on Linux
kernels. Docker has default support for Linux platforms. It also has support for
Mac and Windows using Boot2Docker, which runs on top of Virtual Box.

Amazon EC2 Container Service (ECS) has out-of-the-box support for Docker on
AWS EC2 instances. Docker can be installed on bare metals and also on traditional
virtual machines such as VMWare or Hyper-V.

Containerizing Microservices with Docker

[558]

The key components of Docker
A Docker installation has two key components: a Docker daemon and a Docker
client. Both the Docker daemon and Docker client are distributed as a single binary.

The following diagram shows the key components of a Docker installation:

The Docker daemon
The Docker daemon is a server-side component that runs on the host machine
responsible for building, running, and distributing Docker containers. The Docker
daemon exposes APIs for the Docker client to interact with the daemon. These APIs
are primarily REST-based endpoints. One can imagine that the Docker daemon as a
controller service running on the host machine. Developers can programmatically
use these APIs to build custom clients as well.

The Docker client
The Docker client is a remote command-line program that interacts with the Docker
daemon through either a socket or REST APIs. The CLI can run on the same host as
the daemon is running on or it can run on a completely different host and connect
to the daemon remotely. Docker users use the CLI to build, ship, and run Docker
containers.

Chapter 8

[559]

Docker concepts
The Docker architecture is built around a few concepts: images, containers, the
registry, and the Dockerfile.

Docker images
One of the key concepts of Docker is the image. A Docker image is the read-only
copy of the operating system libraries, the application, and its libraries. Once an
image is created, it is guaranteed to run on any Docker platform without alterations.

In Spring Boot microservices, a Docker image packages operating systems such as
Ubuntu, Alpine, JRE, and the Spring Boot fat application JAR file. It also includes
instructions to run the application and expose the services:

As shown in the diagram, Docker images are based on a layered architecture in
which the base image is one of the flavors of Linux. Each layer, as shown in the
preceding diagram, gets added to the base image layer with the previous image
as the parent layer. Docker uses the concept of a union filesystem to combine all
these layers into a single image, forming a single filesystem.

In typical cases, developers do not build Docker images from scratch. Images
of an operating system, or other common libraries, such as Java 8 images,
are publicly available from trusted sources. Developers can start building on top
of these base images. The base image in Spring microservices can be JRE 8 rather
than starting from a Linux distribution image such as Ubuntu.

Containerizing Microservices with Docker

[560]

Every time we rebuild the application, only the changed layer gets rebuilt, and the
remaining layers are kept intact. All the intermediate layers are cached, and hence,
if there is no change, Docker uses the previously cached layer and builds it on
top. Multiple containers running on the same machine with the same type of base
images would reuse the base image, thus reducing the size of the deployment. For
instance, in a host, if there are multiple containers running with Ubuntu as the base
image, they all reuse the same base image. This is applicable when publishing or
downloading images as well:

As shown in the diagram, the first layer in the image is a boot filesystem called
bootfs, which is similar to the Linux kernel and the boot loader. The boot filesystem
acts as a virtual filesystem for all images.

On top of the boot filesystem, the operating system filesystem is placed, which
is called rootfs. The root filesystem adds the typical operating system directory
structure to the container. Unlike in the Linux systems, rootfs, in the case of
Docker, is on a read-only mode.

On top of rootfs, other required images are placed as per the requirements. In
our case, these are JRE and the Spring Boot microservice JARs. When a container
is initiated, a writable filesystem is placed on top of all the other filesystems for the
processes to run. Any changes made by the process to the underlying filesystem
are not reflected in the actual container. Instead, these are written to the writable
filesystem. This writable filesystem is volatile. Hence, the data is lost once the
container is stopped. Due to this reason, Docker containers are ephemeral in nature.

Chapter 8

[561]

The base operating system packaged inside Docker is generally a minimal copy of
just the OS filesystem. In reality the process running on top may not use the entire
OS services. In a Spring Boot microservice, in many cases, the container just initiates
a CMD and JVM and then invokes the Spring Boot fat JAR.

Docker containers
Docker containers are the running instances of a Docker image. Containers use the
kernel of the host operating system when running. Hence, they share the host kernel
with other containers running on the same host. The Docker runtime ensures that
the container processes are allocated with their own isolated process space using
kernel features such as cgroups and the kernel namespace of the operating system.
In addition to the resource fencing, containers get their own filesystem and network
configurations as well.

The containers, when instantiated, can have specific resource allocations, such as
the memory and CPU. Containers, when initiated from the same image, can have
different resource allocations. The Docker container, by default, gets an isolated
subnet and gateway to the network. The network has three modes.

The Docker registry
The Docker registry is a central place where Docker images are published and
downloaded from. The URL https://hub.docker.com is the central registry
provided by Docker. The Docker registry has public images that one can download
and use as the base registry. Docker also has private images that are specific to the
accounts created in the Docker registry. The Docker registry screenshot is shown
as follows:

https://hub.docker.com

Containerizing Microservices with Docker

[562]

Docker also offers Docker Trusted Registry, which can be used to set up registries
locally on premises.

Dockerfile
A Dockerfile is a build or scripting file that contains instructions to build a Docker
image. There can be multiple steps documented in the Dockerfile, starting from
getting a base image. A Dockerfile is a text file that is generally named Dockerfile.
The docker build command looks up Dockerfile for instructions to build.
One can compare a Dockerfile to a pom.xml file used in a Maven build.

Deploying microservices in Docker
This section will operationalize our learning by showcasing how to build containers
for our BrownField PSS microservices.

The full source code of this chapter is available under the Chapter
8 project in the code files. Copy chapter7.configserver,
chapter7.eurekaserver, chapter7.search, chapter7.
search-apigateway, and chapter7.website into a new STS
workspace and rename them chapter8.*.

Perform the following steps to build Docker containers for BrownField
PSS microservices:

1.	 Install Docker from the official Docker site at https://www.docker.com.
Follow the Get Started link for the download and installation instructions
based on the operating system of choice. Once installed, use the following
command to verify the installation:
$docker –version

Docker version 1.10.1, build 9e83765

2.	 In this section, we will take a look at how to dockerize the Search
(chapter8.search) microservice, the Search API Gateway (chapter8.
search-apigateway) microservice, and the Website (chapter8.website)
Spring Boot application.

3.	 Before we make any changes, we need to edit bootstrap.properties to
change the config server URL from localhost to the IP address as localhost is
not resolvable from within the Docker containers. In the real world, this will
point to a DNS or load balancer, as follows:
spring.cloud.config.uri=http://192.168.0.105:8888

https://www.docker.com

Chapter 8

[563]

Replace the IP address with the IP address of your machine.

4.	 Similarly, edit search-service.properties on the Git repository and
change localhost to the IP address. This is applicable for the Eureka URL
as well as the RabbitMQ URL. Commit back to Git after updating. You can
do this via the following code:
spring.application.name=search-service
spring.rabbitmq.host=192.168.0.105
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest
orginairports.shutdown:JFK
eureka.client.serviceUrl.defaultZone: http://192.168.0.105:8761/
eureka/
spring.cloud.stream.bindings.inventoryQ=inventoryQ

5.	 Change the RabbitMQ configuration file rabbitmq.config by uncommenting
the following line to provide access to guest. By default, guest is restricted to be
accessed from localhost only:
 {loopback_users, []}

The location of rabbitmq.config will be different for different
operating systems.

6.	 Create a Dockerfile under the root directory of the Search microservice,
as follows:
FROM frolvlad/alpine-oraclejdk8
VOLUME /tmp
ADD target/search-1.0.jar search.jar
EXPOSE 8090
ENTRYPOINT ["java","-jar","/search.jar"]

The following is a quick examination of the contents of the Dockerfile:
°° FROM frolvlad/alpine-oraclejdk8: This tells the Docker build to

use a specific alpine-oraclejdk8 version as the basic image for this
build. The frolvlad indicates the repository to locate the alpine-
oraclejdk8 image. In this case, it is an image built with Alpine Linux
and Oracle JDK 8. This will help layer our application on top of the base
image without setting up Java libraries ourselves. In this case, as this
image is not available on our local image store, the Docker build will go
ahead and download this image from the remote Docker Hub registry.

Containerizing Microservices with Docker

[564]

°° VOLUME /tmp: This enables access from the container to the
directory specified in the host machine. In our case, this points
to the tmp directory in which the Spring Boot application creates
working directories for Tomcat. The tmp directory is a logical
one for the container, which indirectly points to one of the local
directories of the host.

°° ADD target/search-1.0.jar search.jar: This adds the
application binary file to the container with the destination filename
specified. In this case, the Docker build copies target/search-
1.0.jar to the container as search.jar.

°° EXPOSE 8090: This is to tell the container how to do port mapping.
This associates 8090 with external port binding for the internal
Spring Boot service.

°° ENTRYPOINT ["java","-jar", "/search.jar"]: This tells the
container which default application to run when a container is
started. In this case, we are pointing to the Java process and the
Spring Boot fat JAR file to initiate the service.

7.	 The next step is to run docker build from the folder in which the Dockerfile
is stored. This will download the base image and run the entries in the
Dockerfile one after the other, as follows:
docker build –t search:1.0 .

The output of this command will be as follows:

Chapter 8

[565]

8.	 Repeat the same steps for Search API Gateway and Website.
9.	 Once the images are created, they can be verified by typing the following

command. This command will list out the images and their details,
including the size of image files:
docker images

The output will be as follows:

10.	 The next thing to do is run the Docker container. This can be done with the
docker run command. This command will load and run the container.
On starting, the container calls the Spring Boot executable JAR to start the
microservice.
Before starting the containers, ensure that the Config and the Eureka servers
are running:
docker run --net host -p 8090:8090 -t search:1.0

docker run --net host -p 8095:8095 -t search-apigateway:1.0

docker run --net host -p 8001:8001 -t website:1.0

The preceding command starts the Search and Search API Gateway
microservices and Website.
In this example, we are using the host network (--net host) instead of
the bridge network to avoid Eureka registering with the Docker container
name. This can be corrected by overriding EurekaInstanceConfigBean.
The host option is less isolated compared to the bridge option from the
network perspective. The advantage and disadvantage of host versus
bridge depends on the project.

11.	 Once all the services are fully started, verify with the docker ps command,
as shown in the following screenshot:

Containerizing Microservices with Docker

[566]

12.	 The next step is to point the browser to http://192.168.99.100:8001.
This will open the BrownField PSS website.

Note the IP address. This is the IP address of the Docker machine if you are
running with Boot2Docker on Mac or Windows. In Mac or Windows, if the
IP address is not known, then type the following command to find out the
Docker machine's IP address for the default machine:
docker-machine ip default

If Docker is running on Linux, then this is the host IP address.

Apply the same changes to Booking, Fares, Check-in, and their respective
gateway microservices.

Running RabbitMQ on Docker
As our example also uses RabbitMQ, let's explore how to set up RabbitMQ as
a Docker container. The following command pulls the RabbitMQ image from
Docker Hub and starts RabbitMQ:

docker run –net host rabbitmq3

Ensure that the URL in *-service.properties is changed to the Docker host's
IP address. Apply the earlier rule to find out the IP address in the case of Mac
or Windows.

Using the Docker registry
The Docker Hub provides a central location to store all the Docker images. The
images can be stored as public as well as private. In many cases, organizations
deploy their own private registries on premises due to security-related concerns.

Perform the following steps to set up and run a local registry:

1.	 The following command will start a registry, which will bind the registry
on port 5000:
docker run -d -p 5000:5000 --restart=always --name registry
registry:2

2.	 Tag search:1.0 to the registry, as follows:
docker tag search:1.0 localhost:5000/search:1.0

Chapter 8

[567]

3.	 Then, push the image to the registry via the following command:
docker push localhost:5000/search:1.0

4.	 Pull the image back from the registry, as follows:
docker pull localhost:5000/search:1.0

Setting up the Docker Hub
In the previous chapter, we played with a local Docker registry. This section will
show how to set up and use the Docker Hub to publish the Docker containers. This
is a convenient mechanism to globally access Docker images. Later in this chapter,
Docker images will be published to the Docker Hub from the local machine and
downloaded from the EC2 instances.

In order to do this, create a public Docker Hub account and a repository.
For Mac, follow the steps as per the following URL: https://docs.docker.com/
mac/step_five/.

In this example, the Docker Hub account is created using the brownfield username.

The registry, in this case, acts as the microservices repository in which all the
dockerized microservices will be stored and accessed. This is one of the capabilities
explained in the microservices capability model.

Publishing microservices to the Docker Hub
In order to push dockerized services to the Docker Hub, follow these steps. The first
command tags the Docker image, and the second one pushes the Docker image to
the Docker Hub repository:

docker tag search:1.0brownfield/search:1.0

docker push brownfield/search:1.0

To verify whether the container images are published, go to the Docker Hub repository
at https://hub.docker.com/u/brownfield.

Repeat this step for all the other BrownField microservices as well. At the end of this
step, all the services will be published to the Docker Hub.

https://docs.docker.com/mac/step_five/
https://docs.docker.com/mac/step_five/

Containerizing Microservices with Docker

[568]

Microservices on the cloud
One of the capabilities mentioned in the microservices capability model is the use of
the cloud infrastructure for microservices. Earlier in this chapter, we also explored
the necessity of using the cloud for microservices deployments. So far, we have not
deployed anything to the cloud. As we have eight microservices in total—Config-
server, Eureka-server, Turbine, RabbitMQ, Elasticsearch, Kibana, and Logstash—
in our overall BrownField PSS microservices ecosystem, it is hard to run all of them
on the local machine.

In the rest of this book, we will operate using AWS as the cloud platform to deploy
BrownField PSS microservices.

Installing Docker on AWS EC2
In this section, we will install Docker on the EC2 instance.

This example assumes that readers are familiar with AWS and an account is already
created on AWS.

Perform the following steps to set up Docker on EC2:

1.	 Launch a new EC2 instance. In this case, if we have to run all the instances
together, we may need a large instance. The example uses t2.large.
In this example, the following Ubuntu AMI image is used: ubuntu-trusty-
14.04-amd64-server-20160114.5 (ami-fce3c696).

2.	 Connect to the EC2 instance and run the following commands:
sudo apt-get update

sudo apt-get install docker.io

3.	 The preceding command will install Docker on an EC2 instance. Verify the
installation with the following command:
docker version

Running BrownField services on EC2
In this section, we will set up BrownField microservices on the EC2 instances created.
In this case, the build is set up in the local desktop machine, and the binaries will be
deployed to AWS.

Chapter 8

[569]

Perform the following steps to set up services on an EC2 instance:

1.	 Install Git via the following command:
sudo apt-get install git

2.	 Create a Git repository on any folder of your choice.
3.	 Change the Config server's bootstrap.properties to point to the

appropriate Git repository created for this example.
4.	 Change the bootstrap.properties of all the microservices to point to the

config-server using the private IP address of the EC2 instance.
5.	 Copy all *.properties from the local Git repository to the EC2 Git

repository and perform a commit.
6.	 Change the Eureka server URLs and RabbitMQ URLs in the *.properties

file to match the EC2 private IP address. Commit the changes to Git once
they have been completed.

7.	 On the local machine, recompile all the projects and create Docker images
for the search, search-apigateway, and website microservices. Push all
of them to the Docker Hub registry.

8.	 Copy the config-server and the Eureka-server binaries from the local machine
to the EC2 instance.

9.	 Set up Java 8 on the EC2 instance.
10.	 Then, execute the following commands in sequence:

java –jar config-server.jar

java –jar eureka-server.jar

docker run –net host rabbitmq:3

docker run --net host -p 8090:8090 rajeshrv/search:1.0

docker run --net host -p 8095:8095 rajeshrv/search-apigateway:1.0

docker run --net host -p 8001:8001 rajeshrv/website:1.0

11.	 Check whether all the services are working by opening the URL of the website
and executing a search. Note that we will use the public IP address in this case:
http://54.165.128.23:8001.

Containerizing Microservices with Docker

[570]

Updating the life cycle manager
In Chapter 6, Autoscaling Microservices, we considered a life cycle manager to
automatically start and stop instances. We used SSH and executed a Unix script to
start the Spring Boot microservices on the target machine. With Docker, we no longer
need SSH connections as the Docker daemon provides REST-based APIs to start and
stop instances. This greatly simplifies the complexities of the deployment engine
component of the life cycle manager.

In this section, we will not rewrite the life cycle manager. By and large, we will
replace the life cycle manager in the next chapter.

The future of containerization –
unikernels and hardened security
Containerization is still evolving, but the number of organizations adopting
containerization techniques has gone up in recent times. While many organizations
are aggressively adopting Docker and other container technologies, the downside
of these techniques is still in the size of the containers and security concerns.

Currently, Docker images are generally heavy. In an elastic automated environment,
where containers are created and destroyed quite frequently, size is still an issue.
A larger size indicates more code, and more code means that it is more prone to
security vulnerabilities.

The future is definitely in small footprint containers. Docker is working on
unikernels, lightweight kernels that can run Docker even on low-powered IoT
devices. Unikernels are not full-fledged operating systems, but they provide the
basic necessary libraries to support the deployed applications.

The security issues of containers are much discussed and debated. The key security
issues are around the user namespace segregation or user ID isolation. If the container
is on root, then it can by default gain the root privilege of the host. Using container
images from untrusted sources is another security concern. Docker is bridging these
gaps as quickly as possible, but there are many organizations that use a combination
of VMs and Docker to circumvent some of the security concerns.

Chapter 8

[571]

Summary
In this chapter, you learned about the need to have a cloud environment when
dealing with Internet-scale microservices.

We explored the concept of containers and compared them with traditional virtual
machines. You also learned the basics of Docker, and we explained the concepts of
Docker images, containers, and registries. The importance and benefits of containers
were explained in the context of microservices.

This chapter then switched to a hands-on example by dockerizing the BrownField
microservice. We demonstrated how to deploy the Spring Boot microservice
developed earlier on Docker. You learned the concept of registries by exploring a
local registry as well as the Docker Hub to push and pull dockerized microservices.

As the last step, we explored how to deploy a dockerized BrownField microservice in
the AWS cloud environment.

[573]

Managing Dockerized
Microservices with Mesos

and Marathon
In an Internet-scale microservices deployment, it is not easy to manage thousands
of dockerized microservices. It is essential to have an infrastructure abstraction
layer and a strong cluster control platform to successfully manage Internet-scale
microservice deployments.

This chapter will explain the need and use of Mesos and Marathon as an infrastructure
abstraction layer and a cluster control system, respectively, to achieve optimized
resource usage in a cloud-like environment when deploying microservices at scale.
This chapter will also provide a step-by-step approach to setting up Mesos and
Marathon in a cloud environment. Finally, this chapter will demonstrate how to
manage dockerized microservices in the Mesos and Marathon environment.

By the end of this chapter, you will have learned about:

•	 The need to have an abstraction layer and cluster control software
•	 Mesos and Marathon from the context of microservices
•	 Managing dockerized BrownField Airline's PSS microservices with Mesos

and Marathon

Managing Dockerized Microservices with Mesos and Marathon

[574]

Reviewing the microservice capability
model
In this chapter, we will explore the Cluster Control & Provisioning microservices
capability from the microservices capability model discussed in Chapter 3, Applying
Microservices Concepts:

The missing pieces
In Chapter 8, Containerizing Microservices with Docker, we discussed how to
dockerize BrownField Airline's PSS microservices. Docker helped package the
JVM runtime and OS parameters along with the application so that there is no
special consideration required when moving dockerized microservices from one
environment to another. The REST APIs provided by Docker have simplified the life
cycle manager's interaction with the target machine in starting and stopping artifacts.

Chapter 9

[575]

In a large-scale deployment, with hundreds and thousands of Docker containers, we
need to ensure that Docker containers run with their own resource constraints, such
as memory, CPU, and so on. In addition to this, there may be rules set for Docker
deployments, such as replicated copies of the container should not be run on the
same machine. Also, a mechanism needs to be in place to optimally use the server
infrastructure to avoid incurring extra cost.

There are organizations that deal with billions of containers. Managing them manually
is next to impossible. In the context of large-scale Docker deployments, some of the key
questions to be answered are:

•	 How do we manage thousands of containers?
•	 How do we monitor them?
•	 How do we apply rules and constraints when deploying artifacts?
•	 How do we ensure that we utilize containers properly to gain

resource efficiency?
•	 How do we ensure that at least a certain number of minimal instances

are running at any point in time?
•	 How do we ensure dependent services are up and running?
•	 How do we do rolling upgrades and graceful migrations?
•	 How do we roll back faulty deployments?

All these questions point to the need to have a solution to address two key
capabilities, which are as follows:

•	 A cluster abstraction layer that provides a uniform abstraction over many
physical or virtual machines

•	 A cluster control and init system to manage deployments intelligently on
top of the cluster abstraction

The life cycle manager is ideally placed to deal with these situations. One can add
enough intelligence to the life cycle manager to solve these issues. However, before
attempting to modify the life cycle manager, it is important to understand the role
of cluster management solutions a bit more.

Managing Dockerized Microservices with Mesos and Marathon

[576]

Why cluster management is important
As microservices break applications into different micro-applications, many
developers request more server nodes for deployment. In order to manage
microservices properly, developers tend to deploy one microservice per VM,
which further drives down the resource utilization. In many cases, this results
in an overallocation of CPUs and memory.

In many deployments, the high-availability requirements of microservices force
engineers to add more and more service instances for redundancy. In reality,
though it provides the required high availability, this will result in underutilized
server instances.

In general, microservice deployment requires more infrastructure compared to
monolithic application deployments. Due to the increase in cost of the infrastructure,
many organizations fail to see the value of microservices:

In order to address the issue stated before, we need a tool that is capable of
the following:

•	 Automating a number of activities, such as the allocation of containers
to the infrastructure efficiently and keeping it transparent to developers
and administrators

•	 Providing a layer of abstraction for the developers so that they can deploy
their application against a data center without knowing which machine is
to be used to host their applications

•	 Setting rules or constraints against deployment artifacts
•	 Offering higher levels of agility with minimal management overheads for

developers and administrators, perhaps with minimal human interaction
•	 Building, deploying, and managing the application's cost effectively by

driving a maximum utilization of the available resources

Containers solve an important issue in this context. Any tool that we select with
these capabilities can handle containers in a uniform way, irrespective of the
underlying microservice technologies.

Chapter 9

[577]

What does cluster management do?
Typical cluster management tools help virtualize a set of machines and manage
them as a single cluster. Cluster management tools also help move the workload or
containers across machines while being transparent to the consumer. Technology
evangelists and practitioners use different terminologies, such as cluster orchestration,
cluster management, data center virtualization, container schedulers, or container life
cycle management, container orchestration, data center operating system, and so on.

Many of these tools currently support both Docker-based containers as well as
noncontainerized binary artifact deployments, such as a standalone Spring Boot
application. The fundamental function of these cluster management tools is to abstract
the actual server instance from the application developers and administrators.

Cluster management tools help the self-service and provisioning of infrastructure
rather than requesting the infrastructure teams to allocate the required machines
with a predefined specification. In this automated cluster management approach,
machines are no longer provisioned upfront and preallocated to the applications.
Some of the cluster management tools also help virtualize data centers across
many heterogeneous machines or even across data centers, and create an elastic,
private cloud-like infrastructure. There is no standard reference model for cluster
management tools. Therefore, the capabilities vary between vendors.

Some of the key capabilities of cluster management software are summarized
as follows:

•	 Cluster management: It manages a cluster of VMs and physical machines
as a single large machine. These machines could be heterogeneous in terms
of resource capabilities, but they are, by and large, machines with Linux as
the operating system. These virtual clusters can be formed on the cloud,
on-premises, or a combination of both.

•	 Deployments: It handles the automatic deployment of applications and
containers with a large set of machines. It supports multiple versions of the
application containers and also rolling upgrades across a large number of
cluster machines. These tools are also capable of handling the rollback of
faulty promotes.

•	 Scalability: It handles the automatic and manual scalability of application
instances as and when required, with optimized utilization as the primary
goal.

•	 Health: It manages the health of the cluster, nodes, and applications.
It removes faulty machines and application instances from the cluster.

Managing Dockerized Microservices with Mesos and Marathon

[578]

•	 Infrastructure abstraction: It abstracts the developers from the actual
machine on which the applications are deployed. The developers need not
worry about the machine, its capacity, and so on. It is entirely the cluster
management software's decision to decide how to schedule and run the
applications. These tools also abstract machine details, their capacity,
utilization, and location from the developers. For application owners, these
are equivalent to a single large machine with almost unlimited capacity.

•	 Resource optimization: The inherent behavior of these tools is to allocate
container workloads across a set of available machines in an efficient way,
thereby reducing the cost of ownership. Simple to extremely complicated
algorithms can be used effectively to improve utilization.

•	 Resource allocation: It allocates servers based on resource availability and
the constraints set by application developers. Resource allocation is based on
these constraints, affinity rules, port requirements, application dependencies,
health, and so on.

•	 Service availability: It ensures that the services are up and running
somewhere in the cluster. In case of a machine failure, cluster control tools
automatically handle failures by restarting these services on some other
machine in the cluster.

•	 Agility: These tools are capable of quickly allocating workloads to the
available resources or moving the workload across machines if there is
change in resource requirements. Also, constraints can be set to realign
the resources based on business criticality, business priority, and so on.

•	 Isolation: Some of these tools provide resource isolation out of the box.
Hence, even if the application is not containerized, resource isolation can
be still achieved.

A variety of algorithms are used for resource allocation, ranging from simple
algorithms to complex algorithms, with machine learning and artificial intelligence.
The common algorithms used are random, bin packing, and spread. Constraints
set against applications will override the default algorithms based on resource
availability:

Chapter 9

[579]

The preceding diagram shows how these algorithms fill the available machines with
deployments. In this case, it is demonstrated with two machines:

•	 Spread: This algorithm performs the allocation of workload equally across
the available machines. This is showed in diagram A.

•	 Bin packing: This algorithm tries to fill in data machine by machine and
ensures the maximum utilization of machines. Bin packing is especially
good when using cloud services in a pay-as-you-use style. This is shown
in diagram B.

•	 Random: This algorithm randomly chooses machines and deploys containers
on randomly selected machines. This is showed in diagram C.

There is a possibility of using cognitive computing algorithms such as machine
learning and collaborative filtering to improve efficiency. Techniques such as
oversubscription allow a better utilization of resources by allocating underutilized
resources for high-priority tasks—for example, revenue-generating services for
best-effort tasks such as analytics, video, image processing, and so on.

Managing Dockerized Microservices with Mesos and Marathon

[580]

Relationship with microservices
The infrastructure of microservices, if not properly provisioned, can easily result in
oversized infrastructures and, essentially, a higher cost of ownership. As discussed
in the previous sections, a cloud-like environment with a cluster management tool is
essential to realize cost benefits when dealing with large-scale microservices.

The Spring Boot microservices turbocharged with the Spring Cloud project is the
ideal candidate workload to leverage cluster management tools. As Spring Cloud-
based microservices are location unaware, these services can be deployed anywhere
in the cluster. Whenever services come up, they automatically register to the service
registry and advertise their availability. On the other hand, consumers always look
for the registry to discover the available service instances. This way, the application
supports a full fluid structure without preassuming a deployment topology. With
Docker, we were able to abstract the runtime so that the services could run on any
Linux-based environments.

Relationship with virtualization
Cluster management solutions are different from server virtualization solutions
in many aspects. Cluster management solutions run on top of VMs or physical
machines as an application component.

Cluster management solutions
There are many cluster management software tools available. It is unfair to do an
apple-to-apple comparison between them. Even though there are no one-to-one
components, there are many areas of overlap in capabilities between them. In many
situations, organizations use a combination of one or more of these tools to fulfill
their requirements.

Chapter 9

[581]

The following diagram shows the position of cluster management tools from the
microservices context:

In this section, we will explore some of the popular cluster management solutions
available on the market.

Docker Swarm
Docker Swarm is Docker's native cluster management solution. Swarm provides a
native and deeper integration with Docker and exposes APIs that are compatible
with Docker's remote APIs. Docker Swarm logically groups a pool of Docker hosts
and manages them as a single large Docker virtual host. Instead of application
administrators and developers deciding on which host the container is to be deployed
in, this decision making will be delegated to Docker Swarm. Docker Swarm will decide
which host to be used based on the bin packing and spread algorithms.

As Docker Swarm is based on Docker's remote APIs, its learning curve for those
already using Docker is narrower compared to any other container orchestration
tools. However, Docker Swarm is a relatively new product on the market, and it
only supports Docker containers.

Docker Swarm works with the concepts of manager and nodes. A manager is the
single point for administrations to interact and schedule the Docker containers for
execution. Nodes are where Docker containers are deployed and run.

Managing Dockerized Microservices with Mesos and Marathon

[582]

Kubernetes
Kubernetes (k8s) comes from Google's engineering, is written in the Go language,
and is battle-tested for large-scale deployments at Google. Similar to Swarm,
Kubernetes helps manage containerized applications across a cluster of nodes.
Kubernetes helps automate container deployments, scheduling, and the scalability
of containers. Kubernetes supports a number of useful features out of the box, such
as automatic progressive rollouts, versioned deployments, and container resiliency
if containers fail due to some reason.

The Kubernetes architecture has the concepts of master, nodes, and pods. The master
and nodes together form a Kubernetes cluster. The master node is responsible for
allocating and managing workload across a number of nodes. Nodes are nothing but
a VM or a physical machine. Nodes are further subsegmented as pods. A node can
host multiple pods. One or more containers are grouped and executed inside a pod.
Pods are also helpful in managing and deploying co-located services for efficiency.
Kubernetes also supports the concept of labels as key-value pairs to query and find
containers. Labels are user-defined parameters to tag certain types of nodes that
execute a common type of workloads, such as frontend web servers. The services
deployed on a cluster get a single IP/DNS to access the service.

Kubernetes has out-of-the-box support for Docker; however, the Kubernetes learning
curve is steeper compared to Docker Swarm. RedHat offers commercial support for
Kubernetes as part of its OpenShift platform.

Apache Mesos
Mesos is an open source framework originally developed by the University of
California at Berkeley and is used by Twitter at scale. Twitter uses Mesos primarily
to manage the large Hadoop ecosystem.

Mesos is slightly different from the previous solutions. Mesos is more of a resource
manager that relies on other frameworks to manage workload execution. Mesos
sits between the operating system and the application, providing a logical cluster
of machines.

Mesos is a distributed system kernel that logically groups and virtualizes many
computers to a single large machine. Mesos is capable of grouping a number of
heterogeneous resources to a uniform resource cluster on which applications can
be deployed. For these reasons, Mesos is also known as a tool to build a private
cloud in a data center.

Chapter 9

[583]

Mesos has the concepts of the master and slave nodes. Similar to the earlier solutions,
master nodes are responsible for managing the cluster, whereas slaves run the
workload. Mesos internally uses ZooKeeper for cluster coordination and storage.
Mesos supports the concept of frameworks. These frameworks are responsible for
scheduling and running noncontainerized applications and containers. Marathon,
Chronos, and Aurora are popular frameworks for the scheduling and execution of
applications. Netflix Fenzo is another open source Mesos framework. Interestingly,
Kubernetes also can be used as a Mesos framework.

Marathon supports the Docker container as well as noncontainerized applications.
Spring Boot can be directly configured in Marathon. Marathon provides a number
of capabilities out of the box, such as supporting application dependencies, grouping
applications to scale and upgrade services, starting and shutting down healthy and
unhealthy instances, rolling out promotes, rolling back failed promotes, and so on.

Mesosphere offers commercial support for Mesos and Marathon as part of its
DCOS platform.

Nomad
Nomad from HashiCorp is another cluster management software. Nomad is a cluster
management system that abstracts lower-level machine details and their locations.
Nomad has a simpler architecture compared to the other solutions explored earlier.
Nomad is also lightweight. Similar to other cluster management solutions, Nomad
takes care of resource allocation and the execution of applications. Nomad also
accepts user-specific constraints and allocates resources based on this.

Nomad has the concept of servers, in which all jobs are managed. One server acts
as the leader, and others act as followers. Nomad has the concept of tasks, which
is the smallest unit of work. Tasks are grouped into task groups. A task group has
tasks that are to be executed in the same location. One or more task groups or tasks
are managed as jobs.

Nomad supports many workloads, including Docker, out of the box. Nomad also
supports deployments across data centers and is region and data center aware.

Fleet
Fleet is a cluster management system from CoreOS. It runs on a lower level and
works on top of systemd. Fleet can manage application dependencies and make sure
that all the required services are running somewhere in the cluster. If a service fails,
it restarts the service on another host. Affinity and constraint rules are possible to
supply when allocating resources.

Managing Dockerized Microservices with Mesos and Marathon

[584]

Fleet has the concepts of engine and agents. There is only one engine at any point
in the cluster with multiple agents. Tasks are submitted to the engine and agent run
these tasks on a cluster machine.

Fleet also supports Docker out of the box.

Cluster management with Mesos and
Marathon
As we discussed in the previous section, there are many cluster management
solutions or container orchestration tools available. Different organizations
choose different solutions to address problems based on their environment.
Many organizations choose Kubernetes or Mesos with a framework such as
Marathon. In most cases, Docker is used as a default containerization method
to package and deploy workloads.

For the rest of this chapter, we will show how Mesos works with Marathon to
provide the required cluster management capability. Mesos is used by many
organizations, including Twitter, Airbnb, Apple, eBay, Netflix, PayPal, Uber,
Yelp, and many others.

Diving deep into Mesos
Mesos can be treated as a data center kernel. DCOS is the commercial version
of Mesos supported by Mesosphere. In order to run multiple tasks on one node,
Mesos uses resource isolation concepts. Mesos relies on the Linux kernel's cgroups
to achieve resource isolation similar to the container approach. It also supports
containerized isolation using Docker. Mesos supports both batch workload as
well as the OLTP kind of workloads:

Chapter 9

[585]

Mesos is an open source top-level Apache project under the Apache license. Mesos
abstracts lower-level computing resources such as CPU, memory, and storage from
lower-level physical or virtual machines.

Before we examine why we need both Mesos and Marathon, let's understand the
Mesos architecture.

The Mesos architecture
The following diagram shows the simplest architectural representation of Mesos.
The key components of Mesos includes a Mesos master node, a set of slave nodes,
a ZooKeeper service, and a Mesos framework. The Mesos framework is further
subdivided into two components: a scheduler and an executor:

Managing Dockerized Microservices with Mesos and Marathon

[586]

The boxes in the preceding diagram are explained as follows:

•	 Master: The Mesos master is responsible for managing all the Mesos slaves.
The Mesos master gets information on the resource availability from all slave
nodes and take the responsibility of filling the resources appropriately based
on certain resource policies and constraints. The Mesos master preempts
available resources from all slave machines and pools them as a single
large machine. The master offers resources to frameworks running on slave
machines based on this resource pool.
For high availability, the Mesos master is supported by the Mesos master's
standby components. Even if the master is not available, the existing tasks
can still be executed. However, new tasks cannot be scheduled in the absence
of a master node. The master standby nodes are nodes that wait for the
failure of the active master and take over the master's role in the case of
a failure. It uses ZooKeeper for the master leader election. A minimum
quorum requirement must be met for leader election.

•	 Slave: Mesos slaves are responsible for hosting task execution frameworks.
Tasks are executed on the slave nodes. Mesos slaves can be started with
attributes as key-value pairs, such as data center = X. This is used for constraint
evaluations when deploying workloads. Slave machines share resource
availability with the Mesos master.

•	 ZooKeeper: ZooKeeper is a centralized coordination server used in Mesos
to coordinate activities across the Mesos cluster. Mesos uses ZooKeeper for
leader election in case of a Mesos master failure.

•	 Framework: The Mesos framework is responsible for understanding the
application's constraints, accepting resource offers from the master, and
finally running tasks on the slave resources offered by the master. The Mesos
framework consists of two components: the framework scheduler and the
framework executor:

°° The scheduler is responsible for registering to Mesos and handling
resource offers

°° The executor runs the actual program on Mesos slave nodes

The framework is also responsible for enforcing certain policies and
constraints. For example, a constraint can be, let's say, that a minimum
of 500 MB of RAM is available for execution.

Chapter 9

[587]

Frameworks are pluggable components and are replaceable with another
framework. The framework workflow is depicted in the following diagram:

The steps denoted in the preceding workflow diagram are elaborated as follows:

1.	 The framework registers with the Mesos master and waits for resource
offers. The scheduler may have many tasks in its queue to be executed
with different resource constraints (tasks A to D, in this example). A task,
in this case, is a unit of work that is scheduled—for example, a Spring Boot
microservice.

2.	 The Mesos slave offers the available resources to the Mesos master.
For example, the slave advertises the CPU and memory available with
the slave machine.

3.	 The Mesos master then creates a resource offer based on the allocation
policies set and offers it to the scheduler component of the framework.
Allocation policies determine which framework the resources are to be
offered to and how many resources are to be offered. The default policies
can be customized by plugging additional allocation policies.

4.	 The scheduler framework component, based on the constraints, capabilities,
and policies, may accept or reject the resource offering. For example,
a framework rejects the resource offer if the resources are insufficient
as per the constraints and policies set.

Managing Dockerized Microservices with Mesos and Marathon

[588]

5.	 If the scheduler component accepts the resource offer, it submits the details
of one more task to the Mesos master with resource constraints per task.
Let's say, in this example, that it is ready to submit tasks A to D.

6.	 The Mesos master sends this list of tasks to the slave where the resources
are available. The framework executor component installed on the slave
machines picks up and runs these tasks.

Mesos supports a number of frameworks, such as:

•	 Marathon and Aurora for long-running processes, such as web applications
•	 Hadoop, Spark, and Storm for big data processing
•	 Chronos and Jenkins for batch scheduling
•	 Cassandra and Elasticsearch for data management

In this chapter, we will use Marathon to run dockerized microservices.

Marathon
Marathon is one of the Mesos framework implementations that can run both
container as well as noncontainer execution. Marathon is particularly designed for
long-running applications, such as a web server. Marathon ensures that the service
started with Marathon continues to be available even if the Mesos slave it is hosted
on fails. This will be done by starting another instance.

Marathon is written in Scala and is highly scalable. Marathon offers a UI as well as
REST APIs to interact with Marathon, such as the start, stop, scale, and monitoring
applications.

Similar to Mesos, Marathon's high availability is achieved by running multiple
Marathon instances pointing to a ZooKeeper instance. One of the Marathon instances
acts as a leader, and others are in standby mode. In case the leading master fails, a
leader election will take place, and the next active master will be determined.

Some of the basic features of Marathon include:

•	 Setting resource constraints
•	 Scaling up, scaling down, and the instance management of applications
•	 Application version management
•	 Starting and killing applications

Chapter 9

[589]

Some of the advanced features of Marathon include:

•	 Rolling upgrades, rolling restarts, and rollbacks
•	 Blue-green deployments

Implementing Mesos and Marathon for
BrownField microservices
In this section, the dockerized Brownfield microservice developed in Chapter 8,
Containerizing Microservices with Docker, will be deployed into the AWS cloud and
managed with Mesos and Marathon.

For the purposes of demonstration, only three of the services (Search, Search API
Gateway, and Website) are covered in the explanations:

The logical architecture of the target state implementation is shown in the preceding
diagram. The implementation uses multiple Mesos slaves to execute dockerized
microservices with a single Mesos master. The Marathon scheduler component is
used to schedule dockerized microservices. Dockerized microservices are hosted on
the Docker Hub registry. Dockerized microservices are implemented using Spring
Boot and Spring Cloud.

Managing Dockerized Microservices with Mesos and Marathon

[590]

The following diagram shows the physical deployment architecture:

As shown in the preceding diagram, in this example, we will use four EC2 instances:

•	 EC2-M1: This hosts the Mesos master, ZooKeeper, the Marathon scheduler,
and one Mesos slave instance

•	 EC2-M2: This hosts one Mesos slave instance
•	 EC2-M3: This hosts another Mesos slave instance
•	 EC2-M4: This hosts Eureka, Config server, and RabbitMQ

For a real production setup, multiple Mesos masters as well as multiple instances
of Marathon are required for fault tolerance.

Setting up AWS
Launch the four t2.micro EC2 instances that will be used for this deployment.
All four instances have to be on the same security group so that the instances
can see each other using their local IP addresses.

Chapter 9

[591]

The following tables show the machine details and IP addresses for indicative
purposes and to link subsequent instructions:

Instance ID Private DNS/IP Public DNS/IP
i-06100786 ip-172-31-54-69.ec2.

internal

172.31.54.69

ec2-54-85-107-37.compute-1.
amazonaws.com

54.85.107.37

i-2404e5a7 ip-172-31-62-44.ec2.
internal

172.31.62.44

ec2-52-205-251-150.compute-1.
amazonaws.com

52.205.251.150

i-a7df2b3a ip-172-31-49-55.ec2.
internal

172.31.49.55

ec2-54-172-213-51.compute-1.
amazonaws.com

54.172.213.51

i-b0eb1f2d ip-172-31-53-109.ec2.
internal

172.31.53.109

ec2-54-86-31-240.compute-1.
amazonaws.com

54.86.31.240

Replace the IP and DNS addresses based on your AWS EC2 configuration.

Installing ZooKeeper, Mesos, and Marathon
The following software versions will be used for the deployment. The deployment
in this section follows the physical deployment architecture explained in the
earlier section:

•	 Mesos version 0.27.1
•	 Docker version 1.6.2, build 7c8fca2
•	 Marathon version 0.15.3

Managing Dockerized Microservices with Mesos and Marathon

[592]

The detailed instructions to set up ZooKeeper, Mesos, and
Marathon are available at https://open.mesosphere.
com/getting-started/install/.

Perform the following steps for a minimal installation of ZooKeeper, Mesos, and
Marathon to deploy the BrownField microservice:

1.	 As a prerequisite, JRE 8 must be installed on all the machines. Execute the
following command:
sudo apt-get -y install oracle-java8-installer

2.	 Install Docker on all machines earmarked for the Mesos slave via the
following command:
sudo apt-get install docker

3.	 Open a terminal window and execute the following commands.
These commands set up the repository for installation:
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv
E56151BF

DISTRO=$(lsb_release -is | tr '[:upper:]' '[:lower:]')

CODENAME=$(lsb_release -cs)

Add the repository

echo "deb http://repos.mesosphere.com/${DISTRO} ${CODENAME} main"
| \

 sudo tee /etc/apt/sources.list.d/mesosphere.list

sudo apt-get -y update

4.	 Execute the following command to install Mesos and Marathon. This will
also install Zookeeper as a dependency:
sudo apt-get -y install mesos marathon

Repeat the preceding steps on all the three EC2 instances reserved for the Mesos
slave execution. As the next step, ZooKeeper and Mesos have to be configured on
the machine identified for the Mesos master.

Configuring ZooKeeper
Connect to the machine reserved for the Mesos master and Marathon scheduler.
In this case, 172.31.54.69 will be used to set up ZooKeeper, the Mesos master,
and Marathon.

https://open.mesosphere.com/getting-started/install/
https://open.mesosphere.com/getting-started/install/

Chapter 9

[593]

There are two configuration changes required in ZooKeeper, as follows:

1.	 The first step is to set /etc/zookeeper/conf/myid to a unique integer
between 1 and 255, as follows:
Open vi /etc/zookeeper/conf/myid and set 1.

2.	 The next step is to edit /etc/zookeeper/conf/zoo.cfg. Update the file to
reflect the following changes:
specify all zookeeper servers
The first port is used by followers to connect to the leader
The second one is used for leader election
server.1= 172.31.54.69:2888:3888
#server.2=zookeeper2:2888:3888
#server.3=zookeeper3:2888:3888

Replace the IP addresses with the relevant private IP address. In this case,
we will use only one ZooKeeper server, but in a production scenario,
multiple servers are required for high availability.

Configuring Mesos
Make changes to the Mesos configuration to point to ZooKeeper, set up a quorum,
and enable Docker support via the following steps:

1.	 Edit /etc/mesos/zk to set the following value. This is to point Mesos to a
ZooKeeper instance for quorum and leader election:
zk:// 172.31.54.69:2181/mesos

2.	 Edit the /etc/mesos-master/quorum file and set the value as 1. In a
production scenario, we may need a minimum quorum of three:
vi /etc/mesos-master/quorum

3.	 The default Mesos installation does not support Docker on Mesos slaves. In
order to enable Docker, update the following mesos-slave configuration:
echo 'docker,mesos' > /etc/mesos-slave/containerizers

Managing Dockerized Microservices with Mesos and Marathon

[594]

Running Mesos, Marathon, and ZooKeeper
as services
All the required configuration changes are implemented. The easiest way to start
Mesos, Marathon, and Zookeeper is to run them as services, as follows:

•	 The following commands start services. The services need to be started in
the following order:
sudo service zookeeper start

sudo service mesos-master start

sudo service mesos-slave start

sudo service marathon start

•	 At any point, the following commands can be used to stop these services:
sudo service zookeeper stop

sudo service mesos-master stop

sudo service mesos-slave stop

sudo service marathon stop

•	 Once the services are up and running, use a terminal window to verify
whether the services are running:

Chapter 9

[595]

Running the Mesos slave in the command line
In this example, instead of using the Mesos slave service, we will use a command-
line version to invoke the Mesos slave to showcase additional input parameters. Stop
the Mesos slave and use the command line as mentioned here to start the slave again:

$sudo service mesos-slave stop

$sudo /usr/sbin/mesos-slave --master=172.31.54.69:5050 --log_dir=/var/
log/mesos --work_dir=/var/lib/mesos --containerizers=mesos,docker --resou
rces="ports(*):[8000-9000, 31000-32000]"

The command-line parameters used are explained as follows:

•	 --master=172.31.54.69:5050: This parameter is to tell the Mesos
slave to connect to the correct Mesos master. In this case, there is only
one master running at 172.31.54.69:5050. All the slaves connect to
the same Mesos master.

•	 --containerizers=mesos,docker: This parameter is to enable support
for Docker container execution as well as noncontainerized executions on
the Mesos slave instances.

•	 --resources="ports(*):[8000-9000, 31000-32000]: This parameter
indicates that the slave can offer both ranges of ports when binding resources.
31000 to 32000 is the default range. As we are using port numbers starting
with 8000, it is important to tell the Mesos slave to allow exposing ports
starting from 8000 as well.

Perform the following steps to verify the installation of Mesos and Marathon:

1.	 Execute the command mentioned in the previous step to start the Mesos slave
on all the three instances designated for the slave. The same command can be
used across all three instances as all of them connect to the same master.

2.	 If the Mesos slave is successfully started, a message similar to the following
will appear in the console:
I0411 18:11:39.684809 16665 slave.cpp:1030] Forwarding total
oversubscribed resources

The preceding message indicates that the Mesos slave started sending the
current state of resource availability periodically to the Mesos master.

Managing Dockerized Microservices with Mesos and Marathon

[596]

3.	 Open http://54.85.107.37:8080 to inspect the Marathon UI. Replace the
IP address with the public IP address of the EC2 instance:

As there are no applications deployed so far, the Applications section of the
UI is empty.

4.	 Open the Mesos UI, which runs on port 5050, by going to
http://54.85.107.37:5050:

The Slaves section of the console shows that there are three activated Mesos
slaves available for execution. It also indicates that there is no active task.

Chapter 9

[597]

Preparing BrownField PSS services
In the previous section, we successfully set up Mesos and Marathon. In this section,
we will take a look at how to deploy the BrownField PSS application previously
developed using Mesos and Marathon.

The full source code of this chapter is available under the Chapter
9 project in the code files. Copy chapter8.configserver,
chapter8.eurekaserver, chapter8.search, chapter8.
search-apigateway, and chapter8.website into a new STS
workspace and rename them chapter9.*.

1.	 Before we deploy any application, we have to set up the Config server,
Eureka server, and RabbitMQ in one of the servers. Follow the steps
described in the Running BrownField services on EC2 section in Chapter 8,
Containerizing Microservices with Docker. Alternately, we can use the same
instance as used in the previous chapter for this purpose.

2.	 Change all bootstrap.properties files to reflect the Config server
IP address.

3.	 Before we deploy our services, there are a few specific changes required
on the microservices. When running dockerized microservices with the
BRIDGE mode on, we need to tell the Eureka client the hostname to be
used to bind. By default, Eureka uses the instance ID to register. However,
this is not helpful as Eureka clients won't be able to look up these services
using the instance ID. In the previous chapter, the HOST mode was used
instead of the BRIDGE mode.
The hostname setup can be done using the eureka.instance.hostname
property. However, when running on AWS specifically, an alternate
approach is to define a bean in the microservices to pick up AWS-specific
information, as follows:
@Configuration
class EurekaConfig {
@Bean
 public EurekaInstanceConfigBean eurekaInstanceConfigBean() {
 EurekaInstanceConfigBean config = new
EurekaInstanceConfigBean(new InetUtils(new
InetUtilsProperties()));
AmazonInfo info = AmazonInfo.Builder.newBuilder().
autoBuild("eureka");
 config.setDataCenterInfo(info);

Managing Dockerized Microservices with Mesos and Marathon

[598]

 info.getMetadata().put(AmazonInfo.MetaDataKey.
publicHostname.getName(), info.get(AmazonInfo.MetaDataKey.
publicIpv4));
 config.setHostname(info.get(AmazonInfo.MetaDataKey.
localHostname));
config.setNonSecurePortEnabled(true);
config.setNonSecurePort(PORT);
config.getMetadataMap().put("instanceId", info.get(AmazonInfo.
MetaDataKey.localHostname));
return config;
}

The preceding code provides a custom Eureka server configuration using
the Amazon host information using Netflix APIs. The code overrides the
hostname and instance ID with the private DNS. The port is read from
the Config server. This code also assumes one host per service so that the
port number stays constant across multiple deployments. This can also be
overridden by dynamically reading the port binding information at runtime.
The previous code has to be applied in all microservices.

4.	 Rebuild all the microservices using Maven. Build and push the Docker
images to the Docker Hub. The steps for the three services are shown
as follows. Repeat the same steps for all the other services. The working
directory needs to be switched to the respective directories before executing
these commands:
docker build -t search-service:1.0 .

docker tag search-service:1.0 rajeshrv/search-service:1.0

docker push rajeshrv/search-service:1.0

docker build -t search-apigateway:1.0 .

docker tag search-apigateway:1.0 rajeshrv/search-apigateway:1.0

docker push rajeshrv/search-apigateway:1.0

docker build -t website:1.0 .

docker tag website:1.0 rajeshrv/website:1.0

docker push rajeshrv/website:1.0

Chapter 9

[599]

Deploying BrownField PSS services
The Docker images are now published to the Docker Hub registry. Perform the
following steps to deploy and run BrownField PSS services:

1.	 Start the Config server, Eureka server, and RabbitMQ on its dedicated instance.
2.	 Make sure that the Mesos server and Marathon are running on the machine

where the Mesos master is configured.
3.	 Run the Mesos slave on all the machines as described earlier using the

command line.
4.	 At this point, the Mesos Marathon cluster is up and running and is ready to

accept deployments. The deployment can be done by creating one JSON file
per service, as shown here:
{
 "id": "search-service-1.0",
 "cpus": 0.5,
 "mem": 256.0,
 "instances": 1,
 "container": {
 "docker": {
 "type": "DOCKER",
 "image": "rajeshrv/search-service:1.0",
 "network": "BRIDGE",
 "portMappings": [
 { "containerPort": 0, "hostPort": 8090 }
]
 }
 }
}

The preceding JSON code will be stored in the search.json file. Similarly,
create a JSON file for other services as well.
The JSON structure is explained as follows:

°° id: This is the unique ID of the application. This can be a logical name.
°° cpus and mem: This sets the resource constraints for this application. If

the resource offer does not satisfy this resource constraint, Marathon
will reject this resource offer from the Mesos master.

°° instances: This decides how many instances of this application to
start with. In the preceding configuration, by default, it starts one
instance as soon as it gets deployed. Marathon maintains the number
of instances mentioned at any point.

Managing Dockerized Microservices with Mesos and Marathon

[600]

°° container: This parameter tells the Marathon executor to use a
Docker container for execution.

°° image: This tells the Marathon scheduler which Docker image has to
be used for deployment. In this case, this will download the search-
service:1.0 image from the Docker Hub repository rajeshrv.

°° network: This value is used for Docker runtime to advise on the
network mode to be used when starting the new docker container.
This can be BRIDGE or HOST. In this case, the BRIDGE mode will
be used.

°° portMappings: The port mapping provides information on how to
map the internal and external ports. In the preceding configuration,
the host port is set as 8090, which tells the Marathon executor to use
8090 when starting the service. As the container port is set as 0, the
same host port will be assigned to the container. Marathon picks up
random ports if the host port value is 0.

5.	 Additional health checks are also possible with the JSON descriptor, as
shown here:
"healthChecks": [
 {
 "protocol": "HTTP",
 "portIndex": 0,
 "path": "/admin/health",
 "gracePeriodSeconds": 100,
 "intervalSeconds": 30,
 "maxConsecutiveFailures": 5
 }
]

6.	 Once this JSON code is created and saved, deploy it to Marathon using the
Marathon REST APIs as follows:
curl -X POST http://54.85.107.37:8080/v2/apps -d @search.json -H
"Content-type: application/json"

Repeat this step for all the other services as well.
The preceding step will automatically deploy the Docker container to the
Mesos cluster and start one instance of the service.

Chapter 9

[601]

Reviewing the deployment
The steps for this are as follows:

1.	 Open the Marathon UI. As shown in the following screenshot, the UI shows
that all the three applications are deployed and are in the Running state.
It also indicates that 1 of 1 instance is in the Running state:

2.	 Visit the Mesos UI. As shown in the following screenshot, there are three
Active Tasks, all of them in the Running state. It also shows the host in
which these services run:

Managing Dockerized Microservices with Mesos and Marathon

[602]

3.	 In the Marathon UI, click on a running application. The following screenshot
shows the search-apigateway-1.0 application. In the Instances tab, the IP
address and port in which the service is bound is indicated:

The Scale Application button allows administrators to specify how many
instances of the service are required. This can be used to scale up as well as
scale down instances.

4.	 Open the Eureka server console to take a look at how the services are bound.
As shown in the screenshot, AMIs and Availability Zones are reflected
when services are registered. Follow http://52.205.251.150:8761:

Chapter 9

[603]

5.	 Open http://54.172.213.51:8001 in a browser to verify the
Website application.

A place for the life cycle manager
The life cycle manager introduced in Chapter 6, Autoscaling Microservices, has the
capability of autoscaling up or down instances based on demand. It also has the
ability to take decisions on where to deploy and how to deploy applications on
a cluster of machines based on polices and constraints. The life cycle manager's
capabilities are shown in the following figure:

Marathon has the capability to manage clusters and deployments to clusters based
on policies and constraints. The number of instances can be altered using the
Marathon UI.

There are redundant capabilities between our life cycle manager and Marathon.
With Marathon in place, SSH work or machine-level scripting is no longer required.
Moreover, deployment policies and constraints can be delegated to Marathon. The
REST APIs exposed by Marathon can be used to initiate scaling functions.

Marathon autoscale is a proof-of-concept project from Mesosphere for autoscaling.
The Marathon autoscale provides basic autoscale features such as the CPU, memory,
and rate of request.

Managing Dockerized Microservices with Mesos and Marathon

[604]

Rewriting the life cycle manager with Mesos
and Marathon
We still need a custom life cycle manager to collect metrics from the Spring Boot
actuator endpoints. A custom life cycle manager is also handy if the scaling rules
are beyond the CPU, memory, and rate of scaling.

The following diagram shows the updated life cycle manager using the
Marathon framework:

The life cycle manager, in this case, collects actuator metrics from different Spring
Boot applications, combines them with other metrics, and checks for certain
thresholds. Based on the scaling policies, the decision engine informs the scaling
engine to either scale down or scale up. In this case, the scaling engine is nothing
but a Marathon REST client. This approach is cleaner and neater than our earlier
primitive life cycle manager implementation using SSH and Unix scripts.

The technology metamodel
We have covered a lot of ground on microservices with the BrownField PSS
microservices. The following diagram sums it up by bringing together all the
technologies used into a technology metamodel:

Chapter 9

[605]

Summary
In this chapter, you learned the importance of a cluster management and init system
to efficiently manage dockerized microservices at scale.

We explored the different cluster control or cluster orchestration tools before diving
deep into Mesos and Marathon. We also implemented Mesos and Marathon in the
AWS cloud environment to demonstrate how to manage dockerized microservices
developed for BrownField PSS.

At the end of this chapter, we also explored the position of the life cycle manager
in conjunction with Mesos and Marathon. Finally, we concluded this chapter with a
technology metamodel based on the BrownField PSS microservices implementation.

So far, we have discussed all the core and supporting technology capabilities
required for a successful microservices implementation. A successful microservice
implementation also requires processes and practices beyond technology. The next
chapter, the last in the book, will cover the process and practice perspectives of
microservices.

[607]

The Microservices
Development Life Cycle

Similar to the software development life cycle (SDLC), it is important to understand
the aspects of the microservice development life cycle processes for a successful
implementation of the microservices architecture.

This final chapter will focus on the development process and practice of
microservices with the help of BrownField Airline's PSS microservices example.
Furthermore, this chapter will describe best practices in structuring development
teams, development methodologies, automated testing, and continuous delivery
of microservices in line with DevOps practices. Finally, this chapter will conclude
by shedding light on the importance of the reference architecture in a decentralized
governance approach to microservices.

By the end of this chapter, you will learn about the following topics:

•	 Reviewing DevOps in the context of microservices development
•	 Defining the microservices life cycle and related processes
•	 Best practices around the development, testing, and deployment of

Internet-scale microservices

The Microservices Development Life Cycle

[608]

Reviewing the microservice capability
model
This chapter will cover the following microservices capabilities from the microservices
capability model discussed in Chapter 3, Applying Microservices Concepts:

•	 DevOps
•	 DevOps Tools
•	 Reference Architecture & Libraries
•	 Testing Tools (Anti-Fragile, RUM etc)

The new mantra of lean IT – DevOps
We discussed the definition of DevOps in Chapter 2, Building Microservices with Spring
Boot. Here is a quick recap of the DevOps definition.

Gartner defines DevOps as follows:

"DevOps represents a change in IT culture, focusing on rapid IT service delivery
through the adoption of agile, lean practices in the context of a system-oriented
approach. DevOps emphasizes people (and culture), and seeks to improve
collaboration between operations and development teams. DevOps implementations
utilize technology — especially automation tools that can leverage an increasingly
programmable and dynamic infrastructure from a life cycle perspective."

Chapter 10

[609]

DevOps and microservices evolved independently. Chapter 1, Demystifying
Microservices, explored the evolution of microservices. In this section, we will
review the evolution of DevOps and then take a look at how DevOps supports
microservices adoption.

In the era of digital disruption and in order to support modern business, IT
organizations have to master two key areas: speed of delivery and value-driven
delivery. This is obviously apart from being expert in leading technologies.

Many IT organizations failed to master this change, causing frustration to business
users. To overcome this situation, many business departments started their own
shadow IT or stealth IT under their control. Some smart IT organizations then
adopted a lean IT model to respond to these situations.

However, many organizations still struggle with this transformation due to the large
baggage of legacy systems and processes. Gartner coined the concept of a pace-
layered application strategy. Gartner's view is that high speed is required only for
certain types of applications or certain business areas. Gartner termed this a system
of innovation. A system of innovation requires rapid innovations compared to a
system of records. As a system of innovations needs rapid innovation, a lean IT
delivery model is essential for such applications. Practitioners evangelized the lean
IT model as DevOps.

There are two key strategies used by organizations to adopt DevOps.

Some organizations positioned DevOps as a process to fill the gaps in their existing
processes. Such organizations adopted an incremental strategy for their DevOps
journey. The adoption path starts with Agile development, then incrementally
adopts continuous integration, automated testing, and release to production and
then all DevOps practices. The challenge in such organizations is the time to realize
the full benefits as well as the mixed culture of people due to legacy processes.

Many organizations, therefore, take a disruptive approach to adopt DevOps. This
will be achieved by partitioning IT into two layers or even as two different IT units.
The high-speed layer of IT uses DevOps-style practices to dramatically change the
culture of the organization with no connection to the legacy processes and practices.
A selective application cluster will be identified and moved to the new IT based on
the business value:

The Microservices Development Life Cycle

[610]

The intention of DevOps is not just to reduce cost. It also enables the business
to disrupt competitors by quickly moving ideas to production. DevOps attacks
traditional IT issues in multiple ways, as explained here.

Reducing wastage
DevOps processes and practices essentially speed up deliveries which improves
quality. The speed of delivery is achieved by cutting IT wastage. This is achieved by
avoiding work that adds no value to the business nor to desired business outcomes.
IT wastage includes software defects, productivity issues, process overheads,
time lag in decision making, time spent in reporting layers, internal governance,
overestimation, and so on. By reducing these wastages, organizations can radically
improve the speed of delivery. The wastage is reduced by primarily adopting Agile
processes, tools, and techniques.

Automating every possible step
By automating the manually executed tasks, one can dramatically improve the
speed of delivery as well as the quality of deliverables. The scope of automation
goes from planning to customer feedback. Automation reduces the time to move
business ideas to production. This also reduces a number of manual gate checks,
bureaucratic decision making, and so on. Automated monitoring mechanisms and
feedback go back to the development factory, which gets it fixed and quickly moved
to production.

Value-driven delivery
DevOps reduces the gap between IT and business through value-driven delivery.
Value-driven delivery closely aligns IT to business by understanding true business
values and helps the business by quickly delivering these values, which can give
a competitive advantage. This is similar to the shadow IT concept, in which IT is
collocated with the business and delivers business needs quickly, rather than
waiting for heavy project investment-delivery cycles.

Traditionally, IT is partially disconnected from the business and works with IT
KPIs, such as the number of successful project deliveries, whereas in the new model,
IT shares business KPIs. As an example, a new IT KPI could be that IT helped
business to achieve a 10% increase in sales orders or led to 20% increase in customer
acquisition. This will shift IT's organizational position from merely a support
organization to a business partner.

Chapter 10

[611]

Bridging development and operations
Traditionally, IT has different teams for development and operations. In many cases,
they are differentiated with logical barriers. DevOps reduces the gap between the
development and operations teams so that it can potentially reduce wastage and
improve quality. Multidisciplinary teams work together to address problems at
hand rather than throwing mud across the wall.

With DevOps, operations teams will have a fairly good understanding about the
services and applications developed by development teams. Similarly, development
teams will have a good handle on the infrastructure components and configurations
used by the applications. As a result, operations teams can make decisions based
exactly on service behaviors rather than enforcing standard organizational policies
and rules when designing infrastructure components. This would eventually help
the IT organization to improve the quality of the product as well as the time to
resolve incidents and problem management.

In the DevOps world, speed of delivery is achieved through the automation of
high-velocity changes, and quality is achieved through automation and people.
Business values are achieved through efficiency, speed of delivery, quality, and the
ability to innovate. Cost reduction is achieved through automation, productivity,
and reducing wastage.

Meeting the trio – microservices,
DevOps, and cloud
The trio—cloud, microservices, and DevOps—targets a set of common objectives:
speed of delivery, business value, and cost benefit. All three can stay and evolve
independently, but they complement each other to achieve the desired common
goals. Organizations embarking on any of these naturally tend to consider the other
two as they are closely linked together:

The Microservices Development Life Cycle

[612]

Many organizations start their journey with DevOps as an organizational practice
to achieve high-velocity release cycles but eventually move to the microservices
architecture and cloud. It is not mandatory to have microservices and cloud support
DevOps. However, automating the release cycles of large monolithic applications
does not make much sense, and in many cases, it would be impossible to achieve.
In such scenarios, the microservices architecture and cloud will be handy when
implementing DevOps.

If we flip a coin, cloud does not need a microservices architecture to achieve its
benefits. However, to effectively implement microservices, both cloud and DevOps
are essential.

In summary, if the objective of an organization is to achieve a high speed of delivery
and quality in a cost-effective way, the trio together can bring tremendous success.

Cloud as the self-service infrastructure for
Microservices
The main driver for cloud is to improve agility and reduce cost. By reducing the time
to provision the infrastructure, the speed of delivery can be increased. By optimally
utilizing the infrastructure, one can bring down the cost. Therefore, cloud directly
helps achieve both speed of delivery and cost.

As discussed in Chapter 9, Managing Dockerized Microservices with Mesos and Marathon,
without having a cloud infrastructure with cluster management software, it would
be hard to control the infrastructure cost when deploying microservices. Hence, the
cloud with self-service capabilities is essential for microservices to achieve their full
potential benefits. In the microservices context, the cloud not only helps abstract the
physical infrastructure but also provides software APIs for dynamic provisioning
and automatic deployments. This is referred to as infrastructure as code or
software-defined infrastructure.

DevOps as the practice and process for
microservices
Microservice is an architecture style that enables quick delivery. However,
microservices cannot provide the desired benefits by themselves. A microservices-
based project with a delivery cycle of 6 months does not give the targeted speed of
delivery or business agility. Microservices need a set of supporting delivery practices
and processes to effectively achieve their goal.

Chapter 10

[613]

DevOps is the ideal candidate for the underpinning process and practices
for microservice delivery. DevOps processes and practices gel well with the
microservices architecture's philosophies.

Practice points for microservices
development
For a successful microservice delivery, a number of development-to-delivery
practices need to be considered, including the DevOps philosophy. In the previous
chapters, you learned the different architecture capabilities of microservices. In this
section, we will explore the nonarchitectural aspects of microservice developments.

Understanding business motivation and value
Microservices should not be used for the sake of implementing a niche architecture
style. It is extremely important to understand the business value and business KPIs
before selecting microservices as an architectural solution for a given problem. A
good understanding of business motivation and business value will help engineers
focus on achieving these goals in a cost-effective way.

Business motivation and value should justify the selection of microservices. Also,
using microservices, the business value should be realizable from a business point
of view. This will avoid situations where IT invests in microservices but there is no
appetite from the business to leverage any of the benefits that microservices can
bring to the table. In such cases, a microservices-based development would be an
overhead to the enterprise.

Changing the mindset from project to product
development
As discussed in Chapter 1, Demystifying Microservices, microservices are more aligned
to product development. Business capabilities that are delivered using microservices
should be treated as products. This is in line with the DevOps philosophy as well.

The mindset for project development and product development is different. The
product team will always have a sense of ownership and take responsibility for what
they produce. As a result, product teams always try to improve the quality of the
product. The product team is responsible not only for delivering the software but
also for production support and maintenance of the product.

The Microservices Development Life Cycle

[614]

Product teams are generally linked directly to a business department for which
they are developing the product. In general, product teams have both an IT and a
business representative. As a result, product thinking is closely aligned with actual
business goals. At every moment, product teams understand the value they are
adding to the business to achieve business goals. The success of the product directly
lies with the business value being gained out of the product.

Because of the high-velocity release cycles, product teams always get a sense of
satisfaction in their delivery, and they always try to improve on it. This brings
a lot more positive dynamics within the team.

In many cases, typical product teams are funded for the long term and remain intact.
As a result, product teams become more cohesive in nature. As they are small in size,
such teams focus on improving their process from their day-to-day learnings.

One common pitfall in product development is that IT people represent the business
in the product team. These IT representatives may not fully understand the business
vision. Also, they may not be empowered to take decisions on behalf of the business.
Such cases can result in a misalignment with the business and lead to failure
quite rapidly.

It is also important to consider a collocation of teams where business and IT
representatives reside at the same place. Collocation adds more binding between
IT and business teams and reduces communication overheads.

Choosing a development philosophy
Different organizations take different approaches to developing microservices, be it a
migration or a new development. It is important to choose an approach that suits the
organization. There is a wide verity of approaches available, out of which a few are
explained in this section.

Design thinking
Design thinking is an approach primarily used for innovation-centric development.
It is an approach that explores the system from an end user point of view: what the
customers see and how they experience the solution. A story is then built based on
observations, patterns, intuition, and interviews.

Design thinking then quickly devises solutions through solution-focused thinking
by employing a number of theories, logical reasoning, and assumptions around the
problem. The concepts are expanded through brainstorming before arriving at a
converged solution.

Chapter 10

[615]

Once the solution is identified, a quick prototype is built to consider how the
customer responds to it, and then the solution is adjusted accordingly. When the
team gets satisfactory results, the next step is taken to scale the product. Note that
the prototype may or may not be in the form of code.

Design thinking uses human-centric thinking with feelings, empathy, intuition, and
imagination at its core. In this approach, solutions will be up for rethinking even for
known problems to find innovative and better solutions.

The start-up model
More and more organizations are following the start-up philosophy to deliver
solutions. Organizations create internal start-up teams with the mission to deliver
specific solutions. Such teams stay away from day-to-day organizational activities
and focus on delivering their mission.

Many start-ups kick off with a small, focused team—a highly cohesive unit. The unit
is not worried about how they achieve things; rather, the focus is on what they want
to achieve. Once they have a product in place, the team thinks about the right way
to build and scale it.

This approach addresses quick delivery through production-first thinking. The
advantage with this approach is that teams are not disturbed by organizational
governance and political challenges. The team is empowered to think out of the box,
be innovative, and deliver things. Generally, a higher level of ownership is seen in
such teams, which is one of the key catalysts for success. Such teams employ just
enough processes and disciplines to take the solution forward. They also follow
a fail fast approach and course correct sooner than later.

The Agile practice
The most commonly used approach is the Agile methodology for development.
In this approach, software is delivered in an incremental, iterative way using the
principles put forth in the Agile manifesto. This type of development uses an Agile
method such as Scrum or XP. The Agile manifesto defines four key points that Agile
software development teams should focus on:

•	 Individuals and interaction over processes and tools
•	 Working software over comprehensive documentation
•	 Customer collaboration over contract negotiation
•	 Responding to change over following a plan

The Microservices Development Life Cycle

[616]

The 12 principles of Agile software development can be found at
http://www.agilemanifesto.org/principles.html.

Using the concept of Minimum Viable Product
Irrespective of the development philosophy explained earlier, it is essential
to identify a Minimum Viable Product (MVP) when developing microservice
systems for speed and agility.

Eric Ries, while pioneering the lean start-up movement, defined MVP as:

"A Minimum Viable Product is that version of a new product which allows a team
to collect the maximum amount of validated learning about customers with the
least effort."

The objective of the MVP approach is to quickly build a piece of software that
showcases the most important aspects of the software. The MVP approach realizes
the core concept of an idea and perhaps chooses those features that add maximum
value to the business. It helps get early feedback and then course corrects as
necessary before building a heavy product.

The MVP may be a full-fledged service addressing limited user groups or partial
services addressing wider user groups. Feedback from customers is extremely
important in the MVP approach. Therefore, it is important to release the MVP
to the real users.

Overcoming the legacy hotspot
It is important to understand the environmental and political challenges in an
organization before embarking on microservices development.

It is common in microservices to have dependencies on other legacy applications,
directly or indirectly. A common issue with direct legacy integration is the slow
development cycle of the legacy application. An example would be an innovative
railway reservation system relaying on an age-old transaction processing facility
(TPF) for some of the core backend features, such as reservation. This is especially
common when migrating legacy monolithic applications to microservices. In many
cases, legacy systems continue to undergo development in a non-Agile way with
larger release cycles. In such cases, microservices development teams may not be
able to move so quickly because of the coupling with legacy systems. Integration
points might drag the microservices developments heavily. Organizational political
challenges make things even worse.

http://www.agilemanifesto.org/principles.html

Chapter 10

[617]

There is no silver bullet to solve this issue. The cultural and process differences could
be an ongoing issue. Many enterprises ring-fence such legacy systems with focused
attention and investments to support fast-moving microservices. Targeted C-level
interventions on these legacy platforms could reduce the overheads.

Addressing challenges around databases
Automation is key in microservices development. Automating databases is one
of the key challenges in many microservice developments.

In many organizations, DBAs play a critical role in database management, and they
like to treat the databases under their control differently. Confidentiality and access
control on data is also cited as a reason for DBAs to centrally manage all data.

Many automation tools focus on the application logic. As a result, many development
teams completely ignore database automation. Ignoring database automation can
severely impact the overall benefits and can derail microservices development.

In order to avoid such situations, the database has to be treated in the same way
as applications with appropriate source controls and change management. When
selecting a database, it is also important to consider automation as one of the
key aspects.

Database automation is much easier in the case of NoSQL databases but is hard
to manage with traditional RDBMs. Database Lifecycle Management (DLM) as a
concept is popular in the DevOps world, particularly to handle database automation.
Tools such as DBmaestro, Redgate DLM, Datical DB, and Delphix support database
automation.

Establishing self-organizing teams
One of the most important activities in microservices development is to establish the
right teams for development. As recommended in many DevOps processes, a small,
focused team always delivers the best results.

The Microservices Development Life Cycle

[618]

As microservices are aligned with business capabilities and are fairly loosely coupled
products, it is ideal to have a dedicated team per microservice. There could be cases
where the same team owns multiple microservices from the same business area
representing related capabilities. These are generally decided by the coupling and
size of the microservices.

Team size is an important aspect in setting up effective teams for microservices
development. The general notion is that the team size should not exceed 10 people.
The recommended size for optimal delivery is between 4 and 7. The founder of
Amazon.com, Jeff Bezos, coined the theory of two-pizza teams. Jeff's theory says the
team will face communication issues if the size gets bigger. Larger teams work with
consensus, which results in increased wastage. Large teams also lose ownership
and accountability. A yardstick is that the product owner should get enough time
to speak to individuals in the team to make them understand the value of what they
are delivering.

Teams are expected to take full ownership in ideating for, analyzing, developing,
and supporting services. Werner Vogels from Amazon.com calls this you build it
and you run it. As per Werner's theory, developers pay more attention to develop
quality code to avoid unexpected support calls. The members in the team consist
of fullstack developers and operational engineers. Such a team is fully aware of all
the areas. Developers understand operations as well as operations teams understand
applications. This not only reduces the changes of throwing mud across teams but
also improves quality.

Teams should have multidisciplinary skills to satisfy all the capabilities required to
deliver a service. Ideally, the team should not rely on external teams to deliver the
components of the service. Instead, the team should be self-sufficient. However, in
most organizations, the challenge is on specialized skills that are rare. For example,
there may not be many experts on a graph database in the organization. One common
solution to this problem is to use the concept of consultants. Consultants are SMEs
and are engaged to gain expertise on specific problems faced by the team. Some
organizations also use shared or platform teams to deliver some common capabilities.

Team members should have a complete understanding of the products, not only
from the technical standpoint but also from the business case and the business KPIs.
The team should have collective ownership in delivering the product as well as in
achieving business goals together.

Chapter 10

[619]

Agile software development also encourages having self-organizing teams. Self-
organizing teams act as a cohesive unit and find ways to achieve their goals as a
team. The team automatically align themselves and distribute the responsibilities.
The members in the team are self-managed and empowered to make decisions in
their day-to-day work. The team's communication and transparency are extremely
important in such teams. This emphasizes the need for collocation and collaboration,
with a high bandwidth for communication:

In the preceding diagram, both Microservice A and Microservice B represent related
business capabilities. Self-organizing teams treat everyone in the team equally,
without too many hierarchies and management overheads within the team. The
management would be thin in such cases. There won't be many designated vertical
skills in the team, such as team lead, UX manager, development manager, testing
manager, and so on. In a typical microservice development, a shared product
manager, shared architect, and a shared people manager are good enough to manage
the different microservice teams. In some organizations, architects also take up
responsibility for delivery.

Self-organizing teams have some level of autonomy and are empowered to take
decisions in a quick and Agile mode rather than having to wait for long-running
bureaucratic decision-making processes that exist in many enterprises. In many
of these cases, enterprise architecture and security are seen as an afterthought.
However, it is important to have them on board from the beginning. While
empowering the teams with maximum freedom for developers in decision-making
capabilities, it is equally important to have fully automated QA and compliance so
as to ensure that deviations are captured at the earliest.

The Microservices Development Life Cycle

[620]

Communication between teams is important. However, in an ideal world, it should
be limited to interfaces between microservices. Integrations between teams ideally
has to be handled through consumer-driven contracts in the form of test scripts
rather than having large interface documents describing various scenarios. Teams
should use mock service implementations when the services are not available.

Building a self-service cloud
One of the key aspects that one should consider before embarking on microservices
is to build a cloud environment. When there are only a few services, it is easy
to manage them by manually assigning them to a certain predesignated set of
virtual machines.

However, what microservice developers need is more than just an IaaS cloud
platform. Neither the developers nor the operations engineers in the team should
worry about where the application is deployed and how optimally it is deployed.
They also should not worry about how the capacity is managed.

This level of sophistication requires a cloud platform with self-service capabilities,
such as what we discussed in Chapter 9, Managing Dockerized Microservices with
Mesos and Marathon, with the Mesos and Marathon cluster management solutions.
Containerized deployment discussed in Chapter 8, Containerizing Microservices with
Docker, is also important in managing and end to-end-automation. Building this
self-service cloud ecosystem is a prerequisite for microservice development.

Building a microservices ecosystem
As we discussed in the capability model in Chapter 3, Applying Microservices Concepts,
microservices require a number of other capabilities. All these capabilities should be
in place before implementing microservices at scale.

These capabilities include service registration, discovery, API gateways, and an
externalized configuration service. All are provided by the Spring Cloud project.
Capabilities such as centralized logging, monitoring, and so on are also required
as a prerequisite for microservices development.

Chapter 10

[621]

Defining a DevOps-style microservice life
cycle process
DevOps is the best-suited practice for microservices development. Organizations
already practicing DevOps do not need another practice for microservices
development.

In this section, we will explore the life cycle of microservices development. Rather
than reinventing a process for microservices, we will explore DevOps processes
and practices from the microservice perspective.

Before we explore DevOps processes, let's iron out some of the common
terminologies used in the DevOps world:

•	 Continuous integration (CI): This automates the application build and
quality checks continuously in a designated environment, either in a
time-triggered manner or on developer commits. CI also publishes code
metrics to a central dashboard as well as binary artifacts to a central
repository. CI is popular in Agile development practices.

•	 Continuous delivery (CD): This automates the end-to-end software delivery
practice from idea to production. In a non-DevOps model, this used to be
known as Application Lifecycle Management (ALM). One of the common
interpretations of CD is that it is the next evolution of CI, which adds QA
cycles into the integration pipeline and makes the software ready to release
to production. A manual action is required to move it to production.

•	 Continuous deployment: This is an approach to automating the deployment
of application binaries to one or more environments by managing binary
movement and associated configuration parameters. Continuous deployment
is also considered as the next evolution of CD by integrating automatic
release processes into the CD pipeline.

•	 Application Release Automation (ARA): ARA tools help monitor and
manage end-to-end delivery pipelines. ARA tools use CI and CD tools and
manage the additional steps of release management approvals. ARA tools
are also capable of rolling out releases to different environments and rolling
them back in case of a failed deployment. ARA provides a fully orchestrated
workflow pipeline, implementing delivery life cycles by integrating many
specialized tools for repository management, quality assurance, deployment,
and so on. XL Deploy and Automic are some of the ARA tools.

The Microservices Development Life Cycle

[622]

The following diagram shows the DevOps process for microservices development:

Let's now further explore these life cycle stages of microservices development.

Value-driven planning
Value-driven planning is a term used in Agile development practices. Value-driven
planning is extremely important in microservices development. In value-driven
planning, we will identify which microservices to develop. The most important
aspect is to identify those requirements that have the highest value to business and
those that have the lowest risks. The MVP philosophy is used when developing
microservices from the ground up. In the case of monolithic to microservices
migration, we will use the guidelines provided in Chapter 3, Applying Microservices
Concepts, to identify which services have to be taken first. The selected microservices
are expected to precisely deliver the expected value to the business. Business KPIs
to measure this value have to be identified as part of value-driven planning.

Agile development
Once the microservices are identified, development must be carried out in an Agile
approach following the Agile manifesto principles. The scrum methodology is used
by most of the organizations for microservices development.

Continuous integration
The continuous integration steps should be in place to automatically build the source
code produced by various team members and generate binaries. It is important to
build only once and then move the binary across the subsequent phases. Continuous
integration also executes various QAs as part of the build pipeline, such as code
coverage, security checks, design guidelines, and unit test cases. CI typically delivers
binary artefacts to a binary artefact repository and also deploys the binary artefacts
into one or more environments. Part of the functional testing also happens as part
of CI.

Chapter 10

[623]

Continuous testing
Once continuous integration generates the binaries, they are moved to the testing
phase. A fully automated testing cycle is kicked off in this phase. It is also important
to automate security testing as part of the testing phase. Automated testing
helps improve the quality of deliverables. The testing may happen in multiple
environments based on the type of testing. This could range from the integration
test environment to the production environment to test in production.

Continuous release
Continuous release to production takes care of actual deployment, infrastructure
provisioning, and rollout. The binaries are automatically shipped and deployed to
production by applying certain rules. Many organizations stop automation with the
staging environment and make use of manual approval steps to move to production.

Continuous monitoring and feedback
The continuous monitoring and feedback phase is the most important phase in Agile
microservices development. In an MVP scenario, this phase gives feedback on the
initial acceptance of the MVP and also evaluates the value of the service developed.
In a feature addition scenario, this further gives insight into how this new feature
is accepted by users. Based on the feedback, the services are adjusted and the same
cycle is then repeated.

Automating the continuous delivery pipeline
In the previous section, we discussed the life cycle of microservices development.
The life cycle stages can be altered by organizations based on their organizational
needs but also based on the nature of the application. In this section, we will take
a look at a sample continuous delivery pipeline as well as toolsets to implement a
sample pipeline.

There are many tools available to build end-to-end pipelines, both in the open
source and commercial space. Organizations can select the products of their
choice to connect pipeline tasks.

Refer to the XebiaLabs periodic table for a tool reference to build
continuous delivery pipelines. It is available at https://xebialabs.
com/periodic-table-of-devops-tools/.

https://xebialabs.com/periodic-table-of-devops-tools/
https://xebialabs.com/periodic-table-of-devops-tools/

The Microservices Development Life Cycle

[624]

The pipelines may initially be expensive to set up as they require many toolsets
and environments. Organizations may not realize an immediate cost benefit in
implementing the delivery pipeline. Also, building a pipeline needs high-power
resources. Large build pipelines may involve hundreds of machines. It also takes
hours to move changes through the pipeline from one end to the other. Hence, it is
important to have different pipelines for different microservices. This will also help
decoupling between the releases of different microservices.

Within a pipeline, parallelism should be employed to execute tests on different
environments. It is also important to parallelize the execution of test cases as much
as possible. Hence, designing the pipeline based on the nature of the application is
important. There is no one size fits all scenario.

The key focus in the pipeline is on end-to-end automation, from development
to production, and on failing fast if something goes wrong.

The following pipeline is an indicative one for microservices and explores the
different capabilities that one should consider when developing a microservices
pipeline:

The continuous delivery pipeline stages are explained in the following sections.

Chapter 10

[625]

Development
The development stage has the following activities from a development perspective.
This section also indicates some of the tools that can be used in the development
stage. These tools are in addition to the planning, tracking, and communication tools
such as Agile JIRA, Slack, and others used by Agile development teams. Take a look
at the following:

•	 Source code: The development team requires an IDE or a development
environment to cut source code. In most organizations, developers get the
freedom to choose the IDEs they want. Having said this, the IDEs can be
integrated with a number of tools to detect violations against guidelines.
Generally, Eclipse IDEs have plugins for static code analysis and code
matrices. SonarQube is one example that integrates other plugins such as
Checkstyle for code conventions, PMD to detect bad practices, FindBugs
to detect potential bugs, and Cobertura for code coverage. It is also
recommended to use Eclipse plugins such as ESVD, Find Security Bugs,
SonarQube Security Rules, and so on to detect security vulnerabilities.

•	 Unit test cases: The development team also produces unit test cases
using JUnit, NUnit, TestNG, and so on. Unit test cases are written against
components, repositories, services, and so on. These unit test cases are
integrated with the local Maven builds. The unit test cases targeting the
microservice endpoints (service tests) serve as the regression test pack.
Web UI, if written in AngularJS, can be tested using Karma.

•	 Consumer-driven contracts: Developers also write CDCs to test integration
points with other microservices. Contract test cases are generally written
as JUnit, NUnit, TestNG, and so on and are added to the service tests pack
mentioned in the earlier steps.

•	 Mock testing: Developers also write mocks to simulate the integration
endpoints to execute unit test cases. Mockito, PowerMock, and others are
generally used for mock testing. It is good practice to deploy a mock service
based on the contract as soon as the service contract is identified. This acts as
a simple mechanism for service virtualization for the subsequent phases.

•	 Behavior driven design (BDD): The Agile team also writes BDD scenarios
using a BDD tool, such as Cucumber. Typically, these scenarios are targeted
against the microservices contract or the user interface that is exposed by a
microservice-based web application. Cucumber with JUnit and Cucumber
with Selenium WebDriver, respectively, are used in these scenarios. Different
scenarios are used for functional testing, user journey testing, as well as
acceptance testing.

The Microservices Development Life Cycle

[626]

•	 Source code repository: A source control repository is a part and parcel of
development. Developers check-in their code to a central repository, mostly
with the help of IDE plugins. One microservice per repository is a common
pattern used by many organizations. This disallows other microservice
developers from modifying other microservices or writing code based on
the internal representations of other microservices. Git and Subversion are
the popular choices to be used as source code repositories.

•	 Build tools: A build tool such as Maven or Gradle is used to manage
dependencies and build target artifacts—in this case, Spring Boot services.
There are many cases, such as basic quality checks, security checks and unit
test cases, code coverage, and so on, that are integrated as part of the build
itself. These are similar to the IDE, especially when IDEs are not used by
developers. The tools that we examined as part of the IDEs are also available
as Maven plugins. The development team does not use containers such as
Docker until the CI phase of the project. All the artifacts have to be versioned
properly for every change.

•	 Artifact repository: The artifact repository plays a pivotal role in the
development process. The artifact repository is where all build artifacts
are stored. The artifact repository could be Artifactory, Nexus, or any
similar product.

•	 Database schemas: Liquibase and Flyway are commonly used to manage,
track, and apply database changes. Maven plugins allow interaction with
the Liquibase or Flyway libraries. The schema changes are versioned and
maintained, just like source code.

Continuous integration
Once the code is committed to the repository, the next phase, continuous integration,
automatically starts. This is done by configuring a CI pipeline. This phase builds the
source code with a repository snapshot and generates deployable artifacts. Different
organizations use different events to kickstart the build. A CI start event may be on
every developer commit or may be based on a time window, such as daily, weekly,
and so on.

The CI workflow is the key aspect of this phase. Continuous integration tools such as
Jenkins, Bamboo, and others play the central role of orchestrating the build pipeline.
The tool is configured with a workflow of activities to be invoked. The workflow
automatically executes configured steps such as build, deploy, and QA. On the
developer commit or on a set frequency, the CI kickstarts the workflow.

Chapter 10

[627]

The following activities take place in a continuous integration workflow:

1.	 Build and QA: The workflow listens to Git webhooks for commits. Once it
detects a change, the first activity is to download the source code from the
repository. A build is executed on the downloaded snapshot source code.
As part of the build, a number of QA checks are automatically performed,
similarly to QA executed in the development environment. These include
code quality checks, security checks, and code coverage. Many of the QAs
are done with tools such as SonarQube, with the plugins mentioned earlier. It
also collects code metrics such as code coverage and more and publishes it to
a central database for analysis. Additional security checks are executed using
OWASP ZAP Jenkins' plugins. As part of the build, it also executes JUnit or
similar tools used to write test cases. If the web application supports Karma
for UI testing, Jenkins is also capable of running web tests written in Karma.
If the build or QA fails, it sends out alarms as configured in the system.

2.	 Packaging: Once build and QA are passed, the CI creates a deployable
package. In our microservices case, it generates the Spring Boot standalone
JAR. It is recommended to build Docker images as part of the integration
build. This is the one and only place where we build binary artifacts. Once
the build is complete, it pushes the immutable Docker images to a Docker
registry. This could be on Docker Hub or a private Docker registry. It is
important to properly version control the containers at this stage itself.

3.	 Integration tests: The Docker image is moved to the integration environment
where regression tests (service tests) and the like are executed. This
environment has other dependent microservices capabilities, such as
Spring Cloud, logging, and so on, in place. All dependent microservices
are also present in this environment. If an actual dependent service is not
yet deployed, service virtualization tools such as MockServer are used.
Alternately, a base version of the service is pushed to Git by the respective
development teams. Once successfully deployed, Jenkins triggers service tests
(JUnits against services), a set of end-to-end sanity tests written in Selenium
WebDriver (in the case of web) and security tests with OWASP ZAP.

Automated testing
There are many types of testing to be executed as part of the automated delivery
process before declaring the build ready for production. The testing may happen
by moving the application across multiple environments. Each environment is
designated for a particular kind of testing, such as acceptance testing, performance
testing, and so on. These environments are adequately monitored to gather the
respective metrics.

The Microservices Development Life Cycle

[628]

In a complex microservices environment, testing should not be seen as a last-minute
gate check; rather, testing should be considered as a way to improve software quality
as well as to avoid last-minute failures. Shift left testing is an approach of shifting
tests as early as possible in the release cycle. Automated testing turns software
development to every-day development and every-day testing mode. By automating
test cases, we will avoid manual errors as well as the effort required to complete
testing.

CI or ARA tools are used to move Docker images across multiple test environments.
Once deployed in an environment, test cases are executed based on the purpose
of the environment. By default, a set of sanity tests are executed to verify the test
environment.

In this section, we will cover all the types of tests that are required in the automated
delivery pipeline, irrespective of the environment. We have already considered
some types of tests as part of the development and integration environment. Later
in this section, we will also map test cases against the environments in which they
are executed.

Different candidate tests for automation
In this section, we will explore different types of tests that are candidates for
automation when designing an end-to-end delivery pipeline. The key testing
types are described as follows.

Automated sanity tests
When moving from one environment to another, it is advisable to run a few
sanity tests to make sure that all the basic things are working. This is created as
a test pack using JUnit service tests, Selenium WebDriver, or a similar tool. It is
important to carefully identify and script all the critical service calls. Especially if the
microservices are integrated using synchronous dependencies, it is better to consider
these scenarios to ensure that all dependent services are also up and running.

Regression testing
Regression tests ensure that changes in software don't break the system. In a
microservices context, the regression tests could be at the service level (Rest API or
message endpoints) and written using JUnit or a similar framework, as explained
earlier. Service virtualizations are used when dependent services are not available.
Karma and Jasmine can be used for web UI testing.

Chapter 10

[629]

In cases where microservices are used behind web applications, Selenium WebDriver
or a similar tool is used to prepare regression test packs, and tests are conducted at
the UI level rather than focusing on the service endpoints. Alternatively, BDD tools,
such as Cucumber with JUnit or Cucumber with Selenium WebDriver, can also be
used to prepare regression test packs. CI tools such as Jenkins or ARA are used
to automatically trigger regression test packs. There are other commercial tools,
such as TestComplete, that can also be used to build regression test packs.

Automated functional testing
Functional test cases are generally targeted at the UIs that consume the
microservices. These are business scenarios based on user stories or features.
These functional tests are executed on every build to ensure that the microservice
is performing as expected.

BDD is generally used in developing functional test cases. Typically in BDD,
business analysts write test cases in a domain-specific language but in plain English.
Developers then add scripts to execute these scenarios. Automated web testing tools
such as Selenium WebDriver are useful in such scenarios, together with BDD tools
such as Cucumber, JBehave, SpecFlow, and so on. JUnit test cases are used in the
case of headless microservices. There are pipelines that combine both regression
testing and functional testing as one step with the same set of test cases.

Automated acceptance testing
This is much similar to the preceding functional test cases. In many cases, automated
acceptance tests generally use the screenplay or journey pattern and are applied at
the web application level. The customer perspective is used in building the test cases
rather than features or functions. These tests mimic user flows.

BDD tools such as Cucumber, JBehave, and SpecFlow are generally used in these
scenarios together with JUnit or Selenium WebDriver, as discussed in the previous
scenario. The nature of the test cases is different in functional testing and acceptance
testing. Automation of acceptance test packs is achieved by integrating them
with Jenkins. There are many other specialized automatic acceptance testing tools
available on the market. FitNesse is one such tool.

The Microservices Development Life Cycle

[630]

Performance testing
It is important to automate performance testing as part of the delivery pipeline. This
positions performance testing from a gate check model to an integral part of the
delivery pipeline. By doing so, bottlenecks can be identified at very early stages of
build cycles. In some organizations, performance tests are conducted only for major
releases, but in others, performance tests are part of the pipeline. There are multiple
options for performance testing. Tools such as JMeter, Gatling, Grinder, and so on
can be used for load testing. These tools can be integrated into the Jenkins workflow
for automation. Tools such as BlazeMeter can then be used for test reporting.

Application Performance Management tools such as AppDynamics, New Relic,
Dynatrace, and so on provide quality metrics as part of the delivery pipeline. This
can be done using these tools as part of the performance testing environment. In
some pipelines, these are integrated into the functional testing environment to get
better coverage. Jenkins has plugins in to fetch measurements.

Real user flow simulation or journey testing
This is another form of test typically used in staging and production environments.
These tests continuously run in staging and production environments to ensure
that all the critical transactions perform as expected. This is much more useful
than a typical URL ping monitoring mechanism. Generally, similar to automated
acceptance testing, these test cases simulate user journeys as they happen in the real
world. These are also useful to check whether the dependent microservices are up
and running. These test cases could be a carved-out subset of acceptance test cases
or test packs created using Selenium WebDriver.

Automated security testing
It is extremely important to make sure that the automation does not violate the
security policies of the organization. Security is the most important thing, and
compromising security for speed is not desirable. Hence, it is important to integrate
security testing as part of the delivery pipeline. Some security evaluations are
already integrated in the local build environment as well as in the integration
environment, such as SonarQube, Find Security Bugs, and so on. Some security
aspects are covered as part of the functional test cases. Tools such as BDD-Security,
Mittn, and Gauntlt are other security test automation tools following the BDD
approach. VAPT can be done using tools such as ImmuniWeb. OWASP ZAP and
Burp Suite are other useful tools in security testing.

Chapter 10

[631]

Exploratory testing
Exploratory testing is a manual testing approach taken by testers or business users
to validate the specific scenarios that they think automated tools may not capture.
Testers interact with the system in any manner they want without prejudgment.
They use their intellect to identify the scenarios that they think some special users
may explore. They also do exploratory testing by simulating certain user behavior.

A/B testing, canary testing, and blue-green deployments
When moving applications to production, A/B testing, blue-green deployments,
and canary testing are generally applied. A/B testing is primarily used to review
the effectiveness of a change and how the market reacts to the change. New features
are rolled out to a certain set of users. Canary release is moving a new product or
feature to a certain community before fully rolling out to all customers. Blue-green is
a deployment strategy from an IT point of view to test the new version of a service.
In this model, both blue and green versions are up and running at some point of
time and then gracefully migrate from one to the other.

Other nonfunctional tests
High availability and antifragility testing (failure injection tests) are also important
to execute before production. This helps developers unearth unknown errors that
may occur in a real production scenario. This is generally done by breaking the
components of the system to understand their failover behavior. This is also helpful
to test circuit breakers and fallback services in the system. Tools such as Simian
Army are useful in these scenarios.

Testing in production
Testing in Production (TiP) is as important as all the other environments as we can
only simulate to a certain extend. There are two types of tests generally executed
against production. The first approach is running real user flows or journey tests in a
continuous manner, simulating various user actions. This is automated using one of
the Real User Monitoring (RUM) tools, such as AppDynamics. The second approach
is to wiretap messages from production, execute them in a staging environment, and
then compare the results in production with those in the staging environment.

The Microservices Development Life Cycle

[632]

Antifragility testing
Antifragility testing is generally conducted in a preproduction environment identical
to production or even in the production environment by creating chaos in the
environment to take a look at how the application responds and recovers from these
situations. Over a period of time, the application gains the ability to automatically
recover from most of these failures. Simian Army is one such tool from Netflix.
Simian Army is a suite of products built for the AWS environment. Simian Army is
for disruptive testing using a set of autonomous monkeys that can create chaos in
the preproduction or production environments. Chaos Monkey, Janitor Monkey,
and Conformity Monkey are some of the components of Simian Army.

Target test environments
The different test environments and the types of tests targeted on these environments
for execution are as follows:

•	 Development environment: The development environment is used to test
the coding style checks, bad practices, potential bugs, unit tests, and basic
security scanning.

•	 Integration test environment: Integration environment is used for unit
testing and regression tests that span across multiple microservices.
Some basic security-related tests are also executed in the integration
test environment.

•	 Performance and diagnostics: Performance tests are executed in the
performance test environment. Application performance testing tools
are deployed in these environments to collect performance metrics and
identify bottlenecks.

•	 Functional test environment: The functional test environment is used to
execute a sanity test and functional test packs.

•	 UAT environment: The UAT environment has sanity tests, automated
acceptance test packs, and user journey simulations.

•	 Staging: The preproduction environment is used primarily for sanity tests,
security, antifragility, network tests, and so on. It is also used for user journey
simulations and exploratory testing.

•	 Production: User journey simulations and RUM tests are continuously
executed in the production environment.

Making proper data available across multiple environments to support test cases is
the biggest challenge. Delphix is a useful tool to consider when dealing with test data
across multiple environments in an effective way.

Chapter 10

[633]

Continuous deployment
Continuous deployment is the process of deploying applications to one or more
environments and configuring and provisioning these environments accordingly. As
discussed in Chapter 9, Managing Dockerized Microservices with Mesos and Marathon,
infrastructure provisioning and automation tools facilitate deployment automation.

From the deployment perspective, the released Docker images are moved to
production automatically once all the quality checks are successfully completed.
The production environment, in this case, has to be cloud based with a cluster
management tool such as Mesos or Marathon. A self-service cloud environment
with monitoring capabilities is mandatory.

Cluster management and application deployment tools ensure that application
dependencies are properly deployed. This automatically deploys all the
dependencies that are required in case any are missing. It also ensures that a
minimum number of instances are running at any point in time. In case of failure, it
automatically rolls back the deployments. It also takes care of rolling back upgrades
in a graceful manner.

Ansible, Chef, or Puppet are tools useful in moving configurations and binaries to
production. The Ansible playbook concepts can be used to launch a Mesos cluster
with Marathon and Docker support.

Monitoring and feedback
Once an application is deployed in production, monitoring tools continuously
monitor its services. Monitoring and log management tools collect and analyze
information. Based on the feedback and corrective actions needed, information is
fed to the development teams to take corrective actions, and the changes are pushed
back to production through the pipeline. Tools such as APM, Open Web Analytics,
Google Analytics, Webalizer, and so on are useful tools to monitor web applications.
Real user monitoring should provide end-to-end monitoring. QuBit, Boxever,
Channel Site, MaxTraffic, and so on are also useful in analyzing customer behavior.

Automated configuration management
Configuration management also has to be rethought from a microservices and
DevOps perspective. Use new methods for configuration management rather than
using a traditional statically configured CMDB. The manual maintenance of CMDB
is no longer an option. Statically managed CMDB requires a lot of mundane tasks
to maintain entries. At the same time, due to the dynamic nature of the deployment
topology, it is extremely hard to maintain data in a consistent way.

The Microservices Development Life Cycle

[634]

The new styles of CMDB automatically create CI configurations based on an
operational topology. These should be discovery based to get up-to-date information.
The new CMDB should be capable of managing bare metals, virtual machines,
and containers.

Microservices development governance,
reference architectures, and libraries
It is important to have an overall enterprise reference architecture and a standard
set of tools for microservices development to ensure that development is done in a
consistent manner. This helps individual microservices teams to adhere to certain
best practices. Each team may identify specialized technologies and tools that are
suitable for their development. In a polyglot microservices development, there are
obviously multiple technologies used by different teams. However, they have to
adhere to the arching principles and practices.

For quick wins and to take advantage of timelines, microservices development
teams may deviate from these practices in some cases. This is acceptable as long as
the teams add refactoring tasks in their backlogs. In many organizations, although
the teams make attempts to reuse something from the enterprise, reuse and
standardization generally come as an afterthought.

It is important to make sure that the services are catalogued and visible in the
enterprise. This improves the reuse opportunities of microservices.

Summary
In this chapter, you learned about the relationship between microservices and
DevOps. We also examined a number of practice points when developing
microservices. Most importantly, you learned the microservices development
life cycle.

Later in this chapter, we also examined how to automate the microservices delivery
pipeline from development to production. As part of this, we examined a number of
tools and technologies that are helpful when automating the microservices delivery
pipeline. Finally, we touched base with the importance of reference architectures in
microservices governance.

Putting together the concepts of microservices, challenges, best practices, and various
capabilities covered in this book makes a perfect recipe for developing successful
microservices at scale.

Module 3

Developing Microservices with Node.js,David Gonzalez

Learn to develop efficient and scalable microservices for server-side programming in
Node.js using this hands-on guide

[637]

Microservices Architecture
Microservices are becoming more and more popular. Nowadays, pretty much
every engineer on a green field project should be considering using microservices
in order to improve the quality of the systems they build. They should know the
architectural principles involving such systems. We will expose the difference
between microservices and Service-Oriented Architecture (SOA). We will also
introduce a great platform to write microservices, Node.js, which will allow us to
create high-performing microservices with very little effort.

In this chapter, you will learn about microservices from the architectural point
of view:

•	 What are microservices?
•	 Microservice-oriented architectures
•	 Key benefits
•	 SOA versus Microservices
•	 Why Node.js?

Need for microservices
The world of software development has evolved quickly in the past 40 years. One of
the key points of this evolution has been the size of these systems. From the days of
MS-DOS, we have taken a hundred-fold leap into our present systems. This growth
in size creates a need for better ways of organizing code and software components.
Usually, when a company grows due to business needs, known as organic growth,
the software is organized on a monolithic architecture as it is the easiest and quickest
way of building software. After few years (or even months), adding new features
becomes harder due to the coupled nature of the created software.

Microservices Architecture

[638]

Monolithic software
The natural trend for new high-tech companies such as Amazon or Netflix is building
their new software using microservices, which is the ideal scenario: they get a huge
advantage of microservices-oriented software (through out this book, you will learn
how) in order to scale up their new products without a big effort. The problem is
that not all companies can plan their software upfront. Instead of planning, these
companies build software based on the organic growth experienced: few software
components group business flows by affinity. It is not rare to see companies with two
big software components: the user-facing website and the internal administration
tools. This is usually known as a monolithic software architecture.

Some of these companies face big problems when trying to scale the engineering
teams. It is hard to coordinate teams that build, deploy, and maintain a single
software component. Clashes on releases and reintroduction of bugs are a common
problem that drains a large chunk of energy from the teams. One of the solution
to this problem (it comes with benefits) is to split the monolithic software into
microservices so that the teams are able to specialize in a few smaller modules and
autonomous and isolated software components that can be versioned, updated, and
deployed without interfering with the rest of the systems of the company.

Splitting the monolith into microservices enables the engineering team to create
isolated and autonomous units of work that are highly specialized in a given task
such as sending e-mails, processing card payments, and so on.

Microservices in the real world
Microservices are small software components that are specialized in one task and
work together to achieve a higher-level task. Forget about software for a second and
think about how a company works. When someone applies for a job in a company,
he applies for a given position: software engineer, system administrator, office
manager. The reason for this can be summarized in one word: specialization. If you
are used to work as a software engineer, you will get better with the experience and
add more value to the company. The fact that you don't know how to deal with a
customer, won't affect your performance as that is not your area of expertise and will
hardly add any value to your day-to-day work.

Specialization is often the key to improve the efficiency.
Doing one thing and doing it right is one of the
mantras of software development.

Chapter 1

[639]

A microservice is an autonomous unit of work that can execute one task without
interfering with other parts of the system, similar to what a job position is to a
company. This has a number of benefits that can be used in favor of the engineering
team in order to help scale the systems of a company.

Nowadays, hundreds of systems are built using microservices-oriented architectures,
as follows:

•	 Netflix: This is one of the most popular streaming services, it has built an
entire ecosystem of applications that collaborate in order to provide a reliable
and scalable streaming system used across the globe.

•	 Spotify: This is one of the leading music streaming services in the world,
it has built this application using microservices. Every single widget of the
application (which is a website exposed as a desktop app using Chromium
Embedded Framework) is a different microservice that can be updated
individually.

Microservice-oriented architectures
Microservices-oriented architectures have some particularities that makes them
desirable for any mid/large-sized company that wants to keep their IT systems
resilient and in scale up/down-ready status.

How is it better?
They are not the holy grail of software engineering, but, when handled with care,
they become the perfect approach to solve most of the big problems faced by
tech-dependent companies.

It is important to keep the key principles of the microservices-oriented architecture's
design in mind, such as resilience, composability, elasticity, and so on; otherwise,
you could end up with a monolithic application split across different machines that
produces problems rather than an elegant solution.

Shortcomings
There is also some criticism around microservices-oriented architectures, as
they introduce some problems to deal with, such as latency, traceability, and
configuration management that are not present with monolithic-based software.
Some of the problems are described as follows:

•	 Network latency: Microservices have a distributed nature so that network
latency has to be accounted for

Microservices Architecture

[640]

•	 Operations overhead: More servers indicate more maintenance
•	 Eventual consistency: On highly transactional systems, we need to factor

into implementation the fact that the data could be inconsistent during a
period of time (we will talk about it later in this chapter)

In general, engineers should try to evaluate the pros and cons of this approach
and make a decision on whether to use microservices or not in order to fit the
business needs.

Microservices-oriented architectures have some particularities that need to be taken
into consideration. When a software engineer is writing monolithic software, there
are some problems that are completely overlooked due to the nature of the software
being built.

For example, imagine that our software needs to send e-mails. In a monolithic
software, we would just add the functionality to the core of the application. We
might even choose to create a dedicated module to deal with e-mails (which seems
like a good idea). Now, imagine that we are creating a microservice and, instead of
adding a functionality to a big software artifact, we create a dedicated service that
can be deployed and versioned independently. In this case, we will have an extra
step that we didn't have to take into consideration, the network latency, to reach the
new microservice.

In the preceding example, no matter what approach (monolithic or microservices)
you are taking to build the software, is not a big deal; for example, if an e-mail is lost,
it is not the end of the world. As per definition, the e-mail delivery is not guaranteed,
so our application will still work, although we might receive a few complaints from
our customers.

Key design principles
There are a few key design principles that need to be taken into consideration when
building microservices. There is no golden rule and, as microservices are a recent
concept, sometimes there is even a lack of consensus on what practices to follow.
In general, we can assume the following design principles:

•	 Microservices are business units that model the company processes.
•	 They are smart endpoints that contain the business logic and communicate

using simple channels and protocols.
•	 Microservices-oriented architectures are decentralized by definition. This

helps to build robust and resilient software.

Chapter 1

[641]

Business units, no components
One of the most enjoyable sides of software engineering is creating a new project.
This is where you can apply all your creativity, try new architectural concepts,
frameworks, or methodologies. Unfortunately, it is not a common situation in a
mature company. Usually, what we do is create new components inside the existing
software. One of the best design principles that you can follow when creating new
components is keeping the coupling as low as possible with the rest of the software,
so that it works as an independent unit.

Keeping a low level of coupling allows a software component
to be converted into a microservice with little to no effort.

Consider a real-world example: the application of your company now needs to be
able to process payments.

The logical decision here would be creating a new module that knows how to deal
with the chosen payment provider (credit cards, PayPal, and so on) and allows us to
keep all the payment-related business logic inside of it. Let's define the interface in
the following code:

public interface PaymentService {
 PaymentResponse processPayment(PaymentRequest request) throws
 MyBusinessException;
}

This simple interface can be understood by everyone, but it is the key when moving
towards microservices. We have encapsulated all the business knowledge behind
an interface so that we could theoretically switch the payment provider without
affecting the rest of the application—the implementation details are hidden from the
outer world.

The following is what we know until now:

•	 We know the method name, therefore, we know how to invoke the service
•	 The method could throw an exception of the MyBusinessException type,

forcing the calling code to deal with it
•	 We know that the input parameter is a PaymentRequest instance
•	 The response is a known object

Microservices Architecture

[642]

We have created a highly cohesive and loosely coupled business unit. Let's justify
this affirmation in the following:

•	 Highly cohesive: All the code inside the payments module will do only one
thing, that is, deal with payments and all the aspects of calling a third-party
service (connection handling, response codes, and so on), such as a debit
card processor.

•	 Loosely coupled: What happens if, for some reason, we need to switch
to a new payment processor? Is there any information bleeding out of the
interface? Would we need to change the calling code due to changes in the
contract? The answer is no. The implementation of the payment service
interface will always be a modular unit of work.

The following diagram shows how a system composed of many components gets
one of them (payment service) stripped out into a microservice:

Chapter 1

[643]

Once this module is implemented, we will be able to process the payments and
our monolithic application will have another functionality that could be a good
candidate to extract into a microservice.

Now, we can rollout new versions of the payment service, as long as the interface
does not change, as well as the contract with the rest of the world (our system
or third parties), hasn't changed. That is why it is so important to keep the
implementation independent from interfacing, even though the language does not
provide support for interfaces.

We can also scale up and deploy as many payment services as we require so that
we can satisfy the business needs without unnecessarily scaling the rest of the
application that might not be under pressure.

Downloading the example code
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.
You can download the code files by following these steps:

•	 Log in or register to our website using your e-mail address
and password.

•	 Hover the mouse pointer on the SUPPORT tab at the top.
•	 Click on Code Downloads & Errata.
•	 Enter the name of the book in the Search box.
•	 Select the book for which you're looking to download the code

files.
•	 Choose from the drop-down menu where you purchased this

book from.
•	 Click on Code Download.

You can also download the code files by clicking on the Code Files
button on the book's webpage at the Packt Publishing website. This
page can be accessed by entering the book's name in the Search box.
Please note that you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or
extract the folder using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support

Microservices Architecture

[644]

Smart services, dumb communication pipes
Hyper Text Transfer Protocol (HTTP) is one of the best things to have ever
happened to the Internet. Imagine a protocol that was designed to be state-less, but
was hacked through the use of cookies in order to hold the status of the client. This
was during the age of Web 1.0, when no one was talking about REST APIs or mobile
apps. Let's see an example of an HTTP request:

As you can see, it is a human readable protocol that does not need to be explained in
order to be understood.

Nowadays, it is broadly understood that HTTP is not confined to be used in the Web,
and as it was designed, it is now used as a general purpose protocol to transfer data
from one endpoint to another. HTTP is all you need for the communication between
microservices: a protocol to transfer data and recover from transmission errors
(when possible).

In the past few years, especially within the enterprise world, there has been an effort
to create smart communication mechanisms such as BPEL. BPEL stands for Business
Process Execution Language, and instead of focusing on communication actions, it
focuses on actions around business steps.

This introduces some level of complexity in the communication protocol and makes
the business logic of the application bleed into it from the endpoints, causing some
level of coupling between the endpoints.

Chapter 1

[645]

The business logic should stay within the endpoints and not bleed into the
communication channel so that the system can be easily tested and scaled. The
lesson learned through the years is that the communication layer must be a plain
and simple protocol that ensures the transmission of the data and the endpoints
(microservices).These endpoints should embed into their implementation the fact
that a service could be down for a period of time (this is called resilience, we will talk
about this later in this chapter) or the network could cause communication issues.

HTTP usually is the most used protocol when building microservices-oriented
software but another interesting option that needs to be explored is the use of queues,
such as Rabbit MQ and Kafka, to facilitate the communication between endpoints.

The queueing technology provides a clean approach to manage the communication
in a buffered way, encapsulating the complexities of acknowledging messages on
highly transactional systems.

Decentralization
One of the major cons of monolithic applications is the centralization of everything
on a single (or few) software components and databases. This, more often than not,
leads to huge data stores that needs to be replicated and scaled according to the
needs of the company and centralized governance of the flows.

Microservices aim for decentralization. Instead of having a huge database, why not
split the data according to the business units explained earlier?

Some of the readers could use the transactionality as one of the main reasons for not
doing it. Consider the following scenario:

1.	 A customer buys an item in our microservices-oriented online shop.
2.	 When paying for the item, the system issues the following calls:

1.	 A call to the financial system of the company to create a transaction
with the payment.

2.	 A call to the warehouse system to dispatch the book.
3.	 A call to the mailing system to subscribe the customer to the

newsletter.

Microservices Architecture

[646]

In a monolithic software, all the calls would be wrapped in a transaction, so if, for
some reason, any of the calls fails, the data on the other calls won't be persisted
in the database.

When you learn about designing databases, one of the first and the most important
principles are summarized by the ACID acronym:

•	 Atomicity: Each transaction will be all or nothing. If one part fails, no
changes are persisted on the database.

•	 Consistency: Changes to the data through transactions need to guarantee its
consistency.

•	 Isolation: The result of concurrent execution of transactions results in a
system state that would be obtained if the transactions were executed serially.

•	 Durability: Once the transaction is committed, the data persists.

On a microservices-oriented software, the ACID principle is not guaranteed globally.
Microservices will commit the transaction locally, but there are no mechanisms that
can guarantee a 100% integrity of the global transaction. It would be possible to
dispatch the book without processing the payment, unless we factor in specific rules
to prevent it.

On a microservices-oriented architecture, the transactionality of the data is not
guaranteed, so we need to factor the failure into the implementation. A way to solve
(although, workaround is a more appropriate word) this problem is decentralizing
the governance and data storage.

When building microservices, we need to embed in the design, the fact that one
or more components could fail and degrade the functionality according to the
availability of the software.

Chapter 1

[647]

Let's take a look at the following diagram:

This diagram represents the sequence of execution on a monolithic software. A
sequential list of calls that, no matter what, are going to be executed following the
ACID principle: either all the calls (transactions) succeed or none of them do.

This is only possible as the framework and database engine designers have
developed the concept of transactions to guarantee the transactionality of the data.

When working with microservices, we need to account for what the engineers
call eventual consistency. After a partial fail on a transaction, each microservice
instance should store the information required to recover the transaction so that the
information will be eventually consistent. Following the previous example, if we send
the book without processing the payment, the payment gateway will have a failed
transaction that someone will process later on, making the data consistent again.

The best way to solve this problem is decentralizing the governance. Every endpoint
should be able to take a local decision that affects the global scope of the transaction.
We will talk more about this subject in Chapter 3, From the Monolith to Microservices.

Microservices Architecture

[648]

Technology alignment
When building a new software, there is always a concept that every developer
should keep in mind: standards.

Standards guarantee that your service will be technologically independent so that
it will be easy to build the integrations using a different programming language
or technologies.

One of the advantages of modeling a system with microservices is that we can
choose the right technology for the right job so that we can be quite efficient when
tackling problems. When building monolithic software, it is fairly hard to combine
technologies like we can do with microservices. Usually, in a monolithic software,
we are tied to the technology that we choose in the beginning.

Java Remote Method Invocation (RMI) is one example of the non-standard protocols
that should be avoided if you want your system to be open to new technologies. It is
a great way of connecting software components written in Java, but the developers
will struggle (if not fail) to invoke an RMI method using Node.js. This will tie our
architecture to a given language, which from the microservices point of view, will kill
one of the most interesting advantages: technology heterogeneity.

How small is too small?
Once we have decided to model our system as a set of microservices, there is always
one question that needs an answer: how small is too small?

The answer is always tricky and probably disappointing: it depends.

The right size of the microservices in a given system depends on the structure of
the company as well as the ability to create software components that are easily
manageable by a small team of developers. It also depends on the technical needs.

Imagine a system that receives and processes banking files; as you are probably
aware, all the payments between banks are sent in files with a specific known
format (such as Single Euro Payments Area (SEPA) for Euro payments). One of the
particularities of this type of systems is the large number of different files that the
system needs to know how to process.

The first approach for this problem is tackling it from the microservices point of
view, separating it from any other service creating a unit of work, and creating one
microservice for each type of file. It will enable us to be able to rollout modifications
for the existing file processors without interfering with the rest of the system.
It will also enable us to keep processing files even though one of the services is
experiencing problems.

Chapter 1

[649]

The microservices should be as small as needed, but keep in mind that every
microservice adds an overhead to the operations team that needs to manage a new
service. Try to answer the question how small is too small? in terms of manageability,
scalability, and specialization. The microservice should be small enough to be
managed and scaled up (or down) quickly without affecting the rest of the system,
by a single person; and it should do only one thing.

As a general rule, a microservice should be small
enough to be completely rewritten in a sprint.

Key benefits
In the previous topic, we talked about what a microservices-oriented architecture is.
I also exposed the design principles that I have learned from experience, as well as
showed a few benefits of this type of architecture.

Now, it is time to outline these key benefits and show how they will help us to
improve the quality of our software, as well as be able to quickly accommodate the
new business requirements.

Resilience
Resilience is defined in Wikipedia as the ability of a system to cope with change. I like
to think about resilience as the ability of a system to gracefully recover from an exception
(transitory hardware failure, unexpectedly high network latency, and so on) or a
stress period without affecting the performance of the system once the situation has
been resolved.

Although it sounds simple, when building microservices-oriented software, the
source of problems broadens due to the distributed nature of the system, sometimes
making it hard (or even impossible) to prevent all abnormal situations.

Resilience is the ability to gracefully recover from errors. It also adds another level of
complexity: if one microservice is experiencing problems, can we prevent a general
failure? Ideally, we should build our system in a way that the service response is
degraded instead of resulting in a general failure, although this is not always easy.

Microservices Architecture

[650]

Scalability
Nowadays, one of the common problems in companies is the scalability of the
systems. If you have worked on a monolithic software before, I am sure that you have
experienced capacity problems at some point, alongside the growth of the company.

Usually, these problems are not across all the layers or subsystems of the application.
There is always a subsystem or service that performs significantly slower than the
rest, causing the entire application to fail if it is not able to cope with the demand.

The following diagram describes how a microservice can be scaled up (two mailing
services) without interfering with the rest of the system:

Chapter 1

[651]

An example of these weak points in the world of car insurance is the
service that calculates the quote for a given list of risk factors. Would it
make sense to scale the full application just to satisfy the demand for this
particular part? If the answer that you have in mind is no, you are one
step closer to embracing microservices. Microservices enable you to scale
parts of the system as the demand ramps up for a particular area of it.

If our insurance system was a microservice-oriented software, the only thing needed
to resolve the high demand for quote calculations would've been to spawn more
instances of the microservice (or microservices) responsible for their calculation. Please
bear in mind that scaling up services could add an overhead for operating them.

Technology heterogeneity
The world of software is changing every few months. New languages are coming
to the industry as a de facto standard for a certain type of systems. A few years
ago, Ruby on Rails appeared at the scene and rose as one of the most used web
frameworks for new projects in 2013. Golang (a language created by Google) is
becoming a trend nowadays as it combines huge performance with an elegant
and simple syntax that can be learned by anyone with some experience in another
programming language in a matter of days.

In the past, I have used Python and Java as successful alternatives to write
microservices.

Java especially, since Spring Boot was released, is an attractive technology stack to
write agile (to write and operate) microservices.

Django, is also a powerful framework on Python to write microservices. Being very
similar to Ruby on Rails, it automates database migrations and makes the creation of
CRUD (Create Read Update Delete) services an incredibly easy task.

Node.js took the advantage of a well-known language, JavaScript, to create a new
server-side stack that is changing the way engineers create new software.

So, what is wrong in combining all of them? In all fairness, it is an advantage: we can
choose the right tool for the right job.

Microservices-oriented architectures enable you to do it, as long as the integration
technologies are standard. As you learned before, a microservice is a small and
independent piece of software that can operate by itself.

Microservices Architecture

[652]

The following diagram shows how the microservices hide data storage/gathering,
having only the communication points in common—making them a good example
of low coupling (one service implementation change won't interfere with any other
service):

We have talked about performance earlier. There are always parts of our systems
that are under more pressure than others. With modern multicore CPUs, parallel
(concurrent) programming could solve some of these performance issues, however,
Node.js is not a good language to parallelize tasks. We could choose to rewrite the
microservice under pressure using a more appropriate language, such as Erlang, to
manage concurrency in a more elegant way. It should take no more than two weeks
to do it.

Chapter 1

[653]

There is a downside to using multiple technologies on the same system: the
developers and system administrators need to know all (or a few) of them.
Companies that embraced microservices usually try to stick with one core technology
(in this book, we will be using Node.js) and some auxiliary technologies (although
we will be using Docker to manage the deployments, we could use Capistrano or
Fabricator to manage the releases).

Replaceability
Replaceability is the ability to change one component of a system without interfering
with how the system behaves.

When talking about software, replaceability comes along with low coupling. We
should be writing our microservices in a way that the internal logic will not be
exposed to the calling services so that the clients of a given service do not need
to know about how it is implemented, just the interface. Let's take a look at the
following example. It is written in Java as we only need to see the interface to
identify the pitfalls:

public interface GeoIpService {
 /**
 * Checks if an IP is in the country given by an ISO code.
 **/
 boolean isIn(String ip, String isoCode) throws
 SOAPFaultException;
}

This interface, at first look, is self explanatory. It checks whether a given IP is in a
given country and throws a SOAPFaultException, which is a big problem.

If we build the client that consumes this service, factoring into their logic,
capture, and processing of the SoapFaultException, we are exposing internal
implementation details to the outer world and making it hard to replace the
GeoIpService interface. Also, the fact that we are creating a service related to a part
of our application logic is an indication of the creation of a bounded context: a highly
cohesive service or set of services that work together to achieve one purpose.

Microservices Architecture

[654]

Independence
No matter how hard we try, the human brain is not designed to solve complex
problems. The most efficient mode of functioning for the human brain is
one thing at the time so that we break down complex problems into smaller ones.
Microservices-oriented architectures should follow this approach: all the services
should be independent and interact through the interface up to a point that they can
be developed by different groups of engineers without any interaction, aside from
agreeing the interfaces. This will enable a company adopting microservices to scale
up, or down, the engineering teams, depending on the business needs, making the
business agile in responding to peaks of demand or periods of quietness.

Why is replaceability important?
In a previous section, we talked about the right size of a microservice. As a general
rule of thumb, a team should be able to rewrite and deploy a microservice in a sprint.
The reason behind it is the technical debt.

I would define technical debt as the deviation from the original technical design
to deliver the expected functionality within a planned deadline. Some of these
sacrifices or wrong assumptions often lead to poorly written software that needs to
be completely refactored or rewritten.

In the preceding example, the interface is exposing to the outer world the fact that
we are using SOAP to call a web service, but we will need to change the code on the
client side as a REST client has certainly nothing to do with SOAP exceptions.

Easy to deploy
Microservices should be easy to deploy.

Being software developers, we are well aware that a lot of things could go wrong,
preventing a software from being deployed.

Microservices, as stated before, should be easy to deploy for a number of reasons, as
stated in the following list:

•	 Small amount of business logic (remember the two weeks re-write from scratch
rule of thumb) leading into simpler deployments.

•	 Microservices are autonomous units of work, so upgrading a service is a
contained problem on a complex system. No need to re-deploy the entire
system.

Chapter 1

[655]

•	 Infrastructure and configuration on microservices architectures should be
automated as much as possible. Later in the book, we will learn how to use
Docker to deploy microservices and what are the benefits over the traditional
deployment techniques are.

SOA versus microservices
Service-Oriented Architectures (SOA) has been around for a number of years. SOA
is a great principle to design software. They are self-contained components providing
services to other components. As we agreed before, it is all about maintaining low
coupling on the different modules of the system as if it was a puzzle so that we can
replace the pieces without causing a big impact on the overall system.

In principle, SOA looks very similar to microservices architectures. So what is
the difference?

Microservices are fine-grained SOA components. In other words, a single SOA
component can be decomposed in a number of microservices that can work together
in order to provide the same level of functionality:

Microservices Architecture

[656]

Microservices are fine-grained SOA components.
They are lightweight services with a narrow focus.

Another difference between microservices and SOA is the technologies used for
interconnecting and writing the services.

J2EE is a technology stack that was designed to write SOA architectures as it
enforced enterprise standards. Java Naming and Directory Interface, Enterprise
Java Beans, and Enterprise Service Bus (ESB) were the ecosystems where SOA
applications were built and maintained. Although ESB is a standard, very few
engineers who graduated after 2005 have heard about ESB, even fewer have used it,
and nowadays the modern frameworks such as Ruby on Rails do not even consider
such complex pieces of software.

On the other hand, microservices enforce the use of standards (such as HTTP) that
are broadly known and broadly interoperable. We can choose the right language or
tool to build a component (microservice) following one of the key benefits explained
earlier in this chapter, in the Technology heterogeneity section.

Aside from the technology stack and the size of the services, there is an even bigger
difference between SOA and microservices: the domain model. Earlier in this
chapter, we have talked about decentralization. Decentralization of the governance,
but, moreover, decentralization of the data. In a microservices-based software, every
microservice should store its own data locally, isolating the domain models to a
single service; whereas, on an SOA oriented-software, the data is usually stored in a
few big databases and the services share the domain models.

Why Node.js?
A few years ago, I didn't believe in Node.js. To me, it was a trend more than a
real tool to solve problems… JavaScript in the server? That didn't look right. In all
fairness, I didn't even like JavaScript. Then, the modern frameworks such as jQuery
or Angular.js came to the rescue. They solved one of the problems, which was the
cross-browser compatibility. Where before we needed to factor in at least three
different browsers, after jQuery all this logic was nicely encapsulated in a library
so that we didn't need to worry about compatibility as long as we followed the
jQuery documentation.

Then, JavaScript became more popular. Suddenly, all the internal tools were written
with Single-Page Application (SPA) frameworks with a heavy usage of JavaScript,
therefore, the majority of developers nowadays, one way or another, are proficient
in JavaScript.

Chapter 1

[657]

Then, someone decided to take JavaScript out of the browser, which was a great
idea. Rhino, Node.js, and Nashorn are examples of runtimes that can execute
standalone JavaScript. Some of them can even interact with the Java code, enabling
the developer to import Java classes into a JavaScript program, which gives you the
access to an endless set of frameworks already written in Java.

Let's focus on Node.js. Node.js is the perfect candidate for microservices-oriented
architectures for a number of reasons, as stated in the following list:

•	 Easy to learn (although it can be hard to master)
•	 Easy to scale
•	 Highly testable
•	 Easy to deploy
•	 Dependency management through npm
•	 There are hundreds of libraries to integrate with the majority of standard

protocols

These reasons, along with others that we will develop in the following chapters,
make Node.js the perfect candidate for building solid microservices.

API aggregation
Seneca is the framework that I have chosen for development in the following
chapters. One of the most attractive characteristics of Seneca is API aggregation.

API aggregation is an advanced technique to compose an interface by aggregating
different functionalities (plugins, methods, and so on) to it.

Let's take a look at the following example:

var express = require('express');
var app = express();

app.get('/sayhello', function (req, res) {
 res.send('Hello World!');
});
app.get('/saygoodbye', function(req, res) {
 res.send('Bye bye!');
});

var server = app.listen(3000, function () {
 var host = server.address().address;
 var port = server.address().port;
 console.log('App listening at http://%s:%s', host, port);
});

Microservices Architecture

[658]

The preceding example uses Express, a very popular web framework for Node.js.
This framework is also built around the API aggregation technique. Let's take a look
at the fourth and seventh lines. In these lines, the developer registers two methods
that are to be executed when someone hits the URLs /sayhello and /saygoodbye
with a GET request. In other words, the application is composed of different smaller
and independent implementations that are exposed to the outer world on a single
interface, in this case, an app listening on the 3000 port.

In the following chapters, I will explain why this property is important and how to
take advantage of it when building (and scaling) microservices.

The future of Node.js
JavaScript was first designed to be a language executed in the web browser. For
those who worked or studied, using C/C++ was very familiar and that was the key
for its adoption as a standard for the dynamic manipulation of documents in Web
2.0. Asynchronous JavaScript and XML (AJAX) was the detonator for JavaScript
growth. Different browsers had different implementations of the request objects so
that the developers had a hard time to write a cross-browser code.

The lack of standards led to the creation of many frameworks that encapsulated the
logic behind AJAX, making easy-to-write cross-browser scripts.

JavaScript is a script language. It was not designed to be object oriented, neither was
it designed to be the language of choice for large applications as the code tends to
get chaotic and it is hard to enforce standards across different companies on how
the code should be laid out. Every single company where I worked has different best
practices and some of them are even contradictory.

European Computer Manufacturers Association (ECMA) came to the rescue.
ECMAScript 6, the next standard for ECMA languages (JavaScript, ActionScript,
Rhino, and so on) introduces the concept of classes, inheritance, collections, and a
number of interesting features that will make the development of JavaScript software
easier and more standard than the actual V8 specification.

One of these features that I consider more interesting is the introduction of the class
keyword that allows us to model our JavaScript software with objects.

At the moment, the majority of browsers support a large number of these features, but
when it comes to Node.js, only a few of them are implemented by default and some of
them are implemented by passing special flags to the interpreter (harmony flags).

In this book, I will try to avoid the ECMAScript 6 features, sticking to the V8
specification as it is widely known by the majority of developers and, once someone
knows JavaScript V8, it is fairly easy to ramp up on ECMAScript 6.

Chapter 1

[659]

Summary
In this chapter, we studied the key concepts around microservices, as well as the best
practices to be followed when designing high-quality software components towards
building robust and resilient software architectures that enable us to respond quickly
to the business needs.

You have also learned the key benefits such as the possibility of using the right
language for the right service (technology heterogeneity) on the microservices-oriented
architectures as well as some of the pitfalls that could make our life harder, such as
the overhead on the operational side caused by the distributed nature of the
microservices-oriented architectures.

Finally, we discussed why Node.js is a great tool for building microservices, as well
as how we could benefit from JavaScript to build high-quality software components
through techniques like API aggregation.

In the following chapters, we will be developing the concepts discussed in this
chapter, with code examples and further explanation about the topics I have
learned over the years.

As explained before, we will focus on the V8 version of JavaScript, but I will
provide some hints on how to easily write upgradeable components to embrace
ECMAScript 6.

[661]

Microservices in
Node.js – Seneca and

PM2 Alternatives
In this chapter, you will mainly learn about two frameworks, Seneca and PM2, and
why they are important for building microservices. We will also get to know the
alternatives to these frameworks in order to get a general understanding of what
is going on in the Node.js ecosystem. In this chapter, we are going to focus on the
following topics:

•	 Need for Node.js: In this section, we are going to justify the choice of Node.
js as a framework to build our microservices-oriented software. We will walk
through the software stack required to use this awesome technology.

•	 Seneca – a microservices framework: In this section, you will learn the basics
of Seneca and why it is the right choice if we want to keep our software
manageable. We will explain how to integrate Seneca with Express (the most
popular web server in Node.js) in order to follow the industry standards.

•	 PM2: PM2 is the best choice to run Node.js applications. No matter what
your problem in deploying your ecosystem of apps is, PM2 will always have
a solution for it.

Need for Node.js
In the previous chapter, I mentioned that I wasn't a big fan of Node.js in the past. The
reason for this was that I wasn't prepared to cope with the level of standardization
that JavaScript was undergoing.

Microservices in Node.js – Seneca and PM2 Alternatives

[662]

JavaScript in the browser was painful. Cross-browser compatibility was always a
problem and the lack of standardization didn't help to ease the pain.

Then Node.js came and it was easy to create highly scalable applications due to its
non-blocking nature (we will talk about it later in this chapter) and it was also very
easy to learn as it was based on JavaScript, a well-known language.

Nowadays, Node.js is the preferred choice for a large number of companies across
the world, as well as the number one choice for aspects that require a non-blocking
nature in the server, such as web sockets.

In this book, we will primarily (but not only) use Seneca and PM2 as the frameworks
for building and running microservices, but it does not mean that the alternatives are
not good.

There are few alternatives in the market such as restify or Express for building
applications and forever or nodemon to run them. However, I find Seneca and
PM2 to be the most appropriate combination for building microservices for the
following reasons:

•	 PM2 is extremely powerful regarding application deployments
•	 Seneca is not only a framework to build microservices, but it is also a

paradigm that reshapes what we know about object-oriented software

We will be using Express in a few examples in the chapters of this book and we will
also discuss how to integrate Seneca in Express as a middleware.

However, before that, let's discuss some concepts around Node.js that will help us to
understand those frameworks.

Installing Node.js, npm, Seneca, and PM2
Node.js is fairly easy to install. Depending on your system, there is an installer
available that makes the installation of Node.js and npm (Node Package Manager) a
fairly simple task. Simply double-click on it and follow the instructions. At the time
of writing this book, there are installers available for Windows and OSX.

However, the advanced users, especially DevOps engineers, will need to install
Node.js and npm from the sources or binaries.

Chapter 2

[663]

Both Node.js and npm programs come bundled together in a single
package that we can download for various platforms from the Node.js
website (either sources or binaries):
https://nodejs.org/en/download/

For the Chef users, a popular configuration management software to build servers,
there are few options available, but the most popular is the following recipe (for
those unfamiliar with Chef, a recipe is basically a script to install or configure
software in a server through Chef):

https://github.com/redguide/nodejs

At the time of writing this book, there are binaries available for Linux.

Learning npm
npm is a software that comes with Node.js and enables you to pull dependencies
from the Internet without worrying about their management. It can also be used to
maintain and update dependencies, as well as create projects from scratch.

As you probably know, every node app comes with a package.json file. This
file describes the configuration of the project (dependencies, versions, common
commands, and so on). Let's see the following example:

{
 "name": "test-project",
 "version": "1.0.0",
 "description": "test project",
 "main": "index.js",
 "scripts": {
 "test": "grunt validate --verbose"
 },
 "author": "David Gonzalez",
 "license": "ISC"
}

The file itself is self-explanatory. There is an interesting section in the file—scripts.

In this section, we can specify the command that is used to run for different
actions. In this case, if we run npm test from the terminal, npm will execute grunt
validate --verbose.

Node applications are usually as easy to run as executing the following command:

node index.js

https://nodejs.org/en/download/
https://github.com/redguide/nodejs

Microservices in Node.js – Seneca and PM2 Alternatives

[664]

In the root of your project, consider that the bootstrapping file is index.js. If this is
not the case, the best thing you can do is add a subsection in the scripts section in
package.json, as follows:

"scripts": {
 "test": "grunt validate --verbose"
 "start": "node index.js"
},

As you can see, now we have two commands executing the same program:

node index.js

npm start

The benefits of using npm start are quite obvious—uniformity. No matter how
complex your application is, npm start will always run it (if you have configured
the scripts section correctly).

Let's install Seneca and PM2 on a clean project.

First, execute npm init in a new folder from the terminal after installing Node.js.
You should get a prompt similar to the following image:

npm will ask you for a few parameters to configure your project, and once you are
done, it writes a package.json file with content similar to the preceding code.

Now we need to install the dependencies; npm will do that for us. Just run the
following command:

npm install --save seneca

Chapter 2

[665]

Now, if you inspect package.json again, you can see that there is a new section
called dependencies that contains an entry for Seneca:

"dependencies": {
 "seneca": "^0.7.1"
}

This means that from now on, our app can require the Seneca module and the
require() function will be able to find it. There are a few variations of the save flag,
as follows:

•	 save: This saves the dependency in the dependencies section. It is available
through all the development life cycle.

•	 save-dev: This saves the dependency in the devDependencies section. It is
only available in development and does not get deployed into production.

•	 save-optional: This adds a dependency (such as save), but lets npm
continue if the dependency can't be found. It is up to the app to handle
the lack of this dependency.

Let's continue with PM2. Although it can be used as a library, PM2 is mainly a
command tool, like ls or grep in any Unix system. npm does a great job installing
command-line tools:

npm install –g pm2

The –g flags instruct npm to globally install PM2, so it is available in the system, not
in the app. This means that when the previous command finishes, pm2 is available
as a command in the console. If you run pm2 help in a terminal, you can see the
help of PM2.

Our first program – Hello World
One of the most interesting concepts around Node.js is simplicity. You can learn
Node.js in few days and master it in a few weeks, as long as you are familiar with
JavaScript. Code in Node.js tends to be shorter and clearer than in other languages:

var http = require('http');

var server = http.createServer(function (request, response) {
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.end("Hello World\n");
});

server.listen(8000);

Microservices in Node.js – Seneca and PM2 Alternatives

[666]

The preceding code creates a server that listens on the 8000 port for requests. If you
don't believe it, open a browser and type http://127.0.0.1:8000 in the navigation
bar, as shown in the following screenshot:

Let's explain the code:

•	 The first line loads the http module. Through the require() instruction, we
ask the node to load the http module and assign the export of this module to
the http variable. Exporting language elements is the way that Node.js has to
expose functions and variables to the outer world from inside a module.

•	 The second construction in the script creates the HTTP server. The http
module creates and exposes a method called createServer() that receives
a function (remember JavaScript treats functions as first-level objects so that
they can be passed as other functions arguments) as a parameter that, in
the Node.js world, is called callback. A callback is an action to be executed
as a response to an event. In this case, the event is that the script receives
an HTTP request. Node.js has a heavy usage of callbacks due to its thread
model. Your application will always be executed on a single thread so that
not blocking the application thread while waiting for operations to complete
and prevents our application from looking stalled or hanged. Otherwise,
your program won't be responsive. We'll come back to this in Chapter 4,
Writing Your First Microservice in Node.js.

•	 In the next line, server.listen(8000) starts the server. From now on, every
time our server receives a request, the callback on the http.createServer()
function will be executed.

Chapter 2

[667]

This is it. Simplicity is the key to Node.js programs. The code allows you to go to the
point without writing tons of classes, methods, and config objects that complicate what,
in the first instance, can be done much more simply: write a script that serves requests.

Node.js threading model
Programs written in Node.js are single-threaded. The impact of this is quite
significant; in the previous example, if we have ten thousand concurrent requests,
they will be queued and satisfied by the Node.js event loop (it will be further
explained in Chapter 4, Writing Your First Microservice in Node.js and Chapter 6,
Testing and Documenting Node.js Microservices) one by one.

At first glance, this sounds wrong. I mean, the modern CPUs can handle multiple
parallel requests due to their multicore nature. So, what is the benefit of executing
them in one thread?

The answer to this question is that Node.js was designed to handle asynchronous
processing. This means that in the event of a slow operation such as reading a file,
instead of blocking the thread, Node.js allows the thread to continue satisfying other
events, and then the control process of the node will execute the method associated
with the event, processing the response.

Sticking to the previous example, the createServer() method accepts a callback
that will be executed in the event of an HTTP request, but meanwhile, the thread is
free to keep executing other actions.

The catch in this model is what Node.js developers call the callback hell. The code
gets complicated as every single action that is a response to a blocking action has
to be processed on a callback, like in the previous example; the function used as a
parameter to the createServer() method is a good example.

Modular organization best practices
The source code organization for big projects is always controversial. Different
developers have different approaches to how to order the source code in order to
keep the chaos away.

Some languages such as Java or C# organize the code in packages so that we can find
source code files that are related inside a package. As an example, if we are writing
a task manager software, inside the com.taskmanager.dao package we can expect
to find classes that implement the data access object (DAO) pattern in order to
access the database. In the same way, in the com.taskmanager.dao.domain.model
package, we can find all the classes that represent model objects (usually tables) in
our application.

Microservices in Node.js – Seneca and PM2 Alternatives

[668]

This is a convention in Java and C#. If you are a C# developer, and you start working
on an existing project, it only takes you a few days to get used to how the code is
structured as the language enforces the organization of the source.

Javascript
JavaScript was first designed to be run inside the browser. The code was supposed to
be embedded in HTML documents so that the Document Object Model (DOM) could
be manipulated to create dynamic effects. Take a look at the following example:

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>Title of the document</title>
</head>
<body>
 Hello Mundo
 <script type="text/javascript">
 document.getElementById("world").innerText = 'World';
 </script>
</body>
</html>

As you can see, if you load this HTML on a browser, the text inside the span tag with
the id as world is replaced when the page loads.

In JavaScript, there is no concept of dependency management. JavaScript can be
segregated from the HTML into its own file, but there is no way (for now) to include
a JavaScript file into another JavaScript file.

This leads to a big problem. When the project contains dozens of JavaScript files, the
assets management become more of an art than an engineering effort.

The order in which you import the JavaScript files becomes important as the browser
executes the JavaScript files as it finds them. Let's reorder the code in the previous
example to demonstrate it, as follows:

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>Title of the document</title>
 <script type="text/javascript">
 document.getElementById("world").innerText = 'World';
 </script>

Chapter 2

[669]

</head>
<body>
 Hello Mundo

</body>
</html>

Now, save this HTML in an index.html file and try to load it in any browser,
as shown in the following image:

In this case, I have used Chrome and the console shows an Uncaught TypeError:
Cannot set property 'innerText' of null error in line 7.

Why is that happening?

As we explained earlier, the browser executes the code as it is found, and it turns out
that when the browser executes the JavaScript, the world element does not exist yet.

Fortunately, Node.js has solved the dependency-loading problem using a very
elegant and standard approach.

SOLID design principles
When talking about microservices, we always talk about modularity, and modularity
always boils down to the following (SOLID) design principles:

•	 Single responsibility principle
•	 Open for extension, closed for modification
•	 Liskov substitution
•	 Interface segregation
•	 Dependency inversion (inversion of control and dependency injection)

Microservices in Node.js – Seneca and PM2 Alternatives

[670]

You want your code to be organized in modules. A module is an aggregation of
code that does something simple, such as manipulating strings, and it does it well.
The more functions (or classes, utilities, and so on) your module contains, the less
cohesive it is, and we are trying to avoid that.

In Node.js, every JavaScript file is a module by default. We can also use folders as
modules, but let's focus on files:

function contains(a, b) {
 return a.indexOf(b) > -1;
}

function stringToOrdinal(str) {
 var result = ""
 for (var i = 0, len = str.length; i < len; i++) {
 result += charToNumber(str[i]);
 }
 return result;
}

function charToNumber(char) {
 return char.charCodeAt(0) - 96;
}

module.exports = {
 contains: contains,
 stringToOrdinal: stringToOrdinal
}

The preceding code represents a valid module in Node.js. In this case, the module
contains three functions, where two of them are exposed to the outside of the module.

In Node.js, this is done through the module.exports variable. Whatever you assign
to this variable is going to be visible by the calling code so that we can simulate
private content on a module, such as the charToNumber() function in this case.

So, if we want to use this module, we just need to require() it, as follows:

var stringManipulation = require("./string-manipulation");
console.log(stringManipulation.stringToOrdinal("aabb"));

This should output 1122.

Chapter 2

[671]

Let's go back to the SOLID principles and see how our module looks:

•	 Single responsibility principle: Our module only deals with strings
•	 Open for extension, closed for modification: We can add more functions,

but the ones that we have are correct and they can be used to build new
functions in the module

•	 Liskov substitution: We will skip this one, as the structure of the module is
irrelevant to fulfil this principle

•	 Interface segregation: JavaScript is not a language that counts with an
interface element such as Java or C#, but in this module, we exposed the
interface, and the module.exports variable will act as a contract for the
calling code and the change in our implementation won't affect how the
module is being called

•	 Dependency inversion: Here is where we fail, not fully, but enough to
reconsider our approach

In this case, we require the module, and the only way to interact with it is through
the global scope. If, inside the module, we want to interact with data from outside,
the only possible option is to create a global variable (or function) prior to requiring
the module, and then assume that it is always going to be in there.

Global variables are a big problem in Node.js. As you are probably aware,
in JavaScript, if you omit the var keyword when declaring a variable, it is
automatically global.

This, coupled with the fact that intentional global variables create a data coupling
between modules (coupling is what we want to avoid at any cost), is the reason
to find a better approach to how to define the modules for our microservices
(or in general).

Let's restructure the code as follows:

function init(options) {

 function charToNumber(char) {
 return char.charCodeAt(0) - 96;
 }

 function StringManipulation() {
 }

 var stringManipulation = new StringManipulation();

 stringManipulation.contains = function(a, b) {

Microservices in Node.js – Seneca and PM2 Alternatives

[672]

 return a.indexOf(b) > -1;
 };

 stringManipulation.stringToOrdinal = function(str) {
 var result = ""
 for (var i = 0, len = str.length; i < len; i++) {
 result += charToNumber(str[i]);
 }
 return result;
 }
 return stringManipulation;
}

module.exports = init;

This looks a bit more complicated, but once you get used to it, the benefits are
enormous:

•	 We can pass configuration parameters to the module (such as debugging
information)

•	 Avoids the pollution of global scope as if everything is wrapped inside a
function, and we enforce the use strict configuration (this avoids declarations
without var with a compilation error)

•	 Parameterizing a module makes it easy to mock behaviors and data
for testing

In this book, we are going to be writing a good amount of code to model systems
from the microservices prospective. We will try to keep this pattern as much as we
can so that we can see the benefits.

One of the library that we are going to be using to build microservices, Seneca, follows
this pattern, as well as a large number of libraries that can be found on Internet.

Seneca – a microservices framework
Seneca is a framework for building microservices written by Richard Rodger, the
founder and CTO of nearForm, a consultancy that helps other companies design and
implement software using Node.js. Seneca is about simplicity, it connects services
through a sophisticated pattern-matching interface that abstracts the transport from
the code so that it is fairly easy to write highly scalable software.

Chapter 2

[673]

Let's stop talking and see some examples:

var seneca = require('seneca')()

seneca.add({role: 'math', cmd: 'sum'}, function (msg, respond) {
 var sum = msg.left + msg.right
 respond(null, {answer: sum})
})

seneca.add({role: 'math', cmd: 'product'}, function (msg, respond) {
 var product = msg.left * msg.right
 respond(null, { answer: product })
})

seneca.act({role: 'math', cmd: 'sum', left: 1, right: 2},
 console.log)
 seneca.act({role: 'math', cmd: 'product', left: 3, right: 4},
 console.log)

As you can see, the code is self-explanatory:

•	 Seneca comes as a module, so the first thing that needs to be done is to
require() it. Seneca package is wrapped in a function, so invoking the
function initializes the library.

•	 Next two instructions are related to a concept explained in Chapter 1,
Microservices Architecture: API composition. The seneca.add() method
instructs Seneca to add a function that will be invoked with a set of patterns.
For the first one, we specify an action that will take place when Seneca
receives the {role: math, cmd: sum} command. For the second one, the
pattern is {role: math, cmd: product}.

•	 The last line sends a command to Seneca that will be executed by the service
that matches the pattern passed as the first parameter. In this case, it will
match the first service as role and cmd match. The second call to act will
match the second service.

Write the code in a file called index.js in the project that we created earlier
in this chapter (remember that we installed Seneca and PM2), and run the
following command:

node index.js

Microservices in Node.js – Seneca and PM2 Alternatives

[674]

The output will be something similar to the following image:

We will talk about this output later in order to explain exactly what it means, but if
you are used to enterprise applications, you can almost guess what is going on.

The last two lines are the responses from the two services: the first one executes 1+2
and the second one executes 3*4.

The null output that shows up as the first word in the last two lines corresponds to a
pattern that is widely used in JavaScript: the error first callback.

Let's explain it with a code example:

var seneca = require('seneca')()

seneca.add({role: 'math', cmd: 'sum'}, function (msg, respond) {
 var sum = msg.left + msg.right
 respond(null, {answer: sum})
})

seneca.add({role: 'math', cmd: 'product'}, function (msg, respond) {
 var product = msg.left * msg.right
 respond(null, { answer: product })
})

seneca.act({role: 'math', cmd: 'sum', left: 1, right: 2},
 function(err, data) {
 if (err) {
 return console.error(err);
 }
 console.log(data);
});
seneca.act({role: 'math', cmd: 'product', left: 3, right: 4},
 console.log);

The previous code rewrites the first invocation to Seneca with a more appropriate
approach. Instead of dumping everything into the console, process the response from
Seneca, which is a callback where the first parameter is the error, if one happened
(null otherwise), and the second parameter is the data coming back from the
microservice. This is why, in the first example, null was the first output into
the console.

Chapter 2

[675]

In the world of Node.js, it is very common to use callbacks. Callbacks are a way of
indicating to the program that something has happened, without being blocked until
the result is ready to be processed. Seneca is not an exception to this. It relies heavily
on callbacks to process the response to service calls, which makes more sense when
you think about microservices being deployed in different machines (in the previous
example, everything runs in the same machine), especially because the network
latency can be something to factor into the design of your software.

Inversion of control done right
Inversion of control is a must in modern software. It comes together with the
dependency injection.

Inversion of control can be defined as a technique to delegate the creation or call of
components and methods so that your module does not need to know how to build the
dependencies, which usually, are obtained through the dependency injection.

Seneca does not really make use of the dependency injection, but it is the perfect
example of inversion of control.

Let's take a look at the following code:

var seneca = require('seneca')();
seneca.add({component: 'greeter'}, function(msg, respond) {
 respond(null, {message: 'Hello ' + msg.name});
});
seneca.act({component: 'greeter', name: 'David'}, function(error,
 response) {
 if(error) return console.log(error);
 console.log(response.message);
});

This is the most basic Seneca example. From enterprise software's point of view, we
can differentiate two components here: a producer (Seneca.add()) and a consumer
(Seneca.act()). As mentioned earlier, Seneca does not have a dependency injection
system as is, but Seneca is gracefully built around the inversion of control principle.

In the Seneca.act() function, we don't explicitly call the component that holds the
business logic; instead of that, we ask Seneca to resolve the component for us through
the use of an interface, in this case, a JSON message. This is inversion of control.

Seneca is quite flexible around it: no keywords (except for integrations) and no
mandatory fields. It just has a combination of keywords and values that are used by
a pattern matching engine called Patrun.

Microservices in Node.js – Seneca and PM2 Alternatives

[676]

Pattern matching in Seneca
Pattern matching is one of the most flexible software patterns that you can use
for microservices.

As opposed to network addresses or messages, patterns are fairly easy to extend.
Let's explain it with the help of the following example:

var seneca = require('seneca')();
seneca.add({cmd: 'wordcount'}, function(msg, respond) {
 var length = msg.phrase.split(' ').length;
 respond(null, {words: length});
});

seneca.act({cmd: 'wordcount', phrase: 'Hello world this is
 Seneca'}, function(err, response) {
 console.log(response);
});

It is a service that counts the number of words in a sentence. As we have seen before,
in the first line, we add the handler for the wordcount command, and in the second
one, we send a request to Seneca to count the number of words in a phrase.

If you execute it, you should get something similar to the following image:

By now, you should be able to understand how it works and even make some
modifications to it.

Let's extend the pattern. Now, we want to skip the short words, as follows:

var seneca = require('seneca')();

seneca.add({cmd: 'wordcount'}, function(msg, respond) {
 var length = msg.phrase.split(' ').length;
 respond(null, {words: length});
});

seneca.add({cmd: 'wordcount', skipShort: true}, function(msg,
 respond) {
 var words = msg.phrase.split(' ');
 var validWords = 0;
 for (var i = 0; i < words.length; i++) {

Chapter 2

[677]

 if (words[i].length > 3) {
 validWords++;
 }
 }
 respond(null, {words: validWords});
});

seneca.act({cmd: 'wordcount', phrase: 'Hello world this is
 Seneca'}, function(err, response) {
 console.log(response);
});

seneca.act({cmd: 'wordcount', skipShort: true, phrase: 'Hello
 world this is Seneca'}, function(err, response) {
 console.log(response);
});

As you can see, we have added another handler for the wordcount command with
an extra skipShort parameter.

This handler now skips all the words with three or fewer characters. If you execute
the preceding code, the output is similar to the following image:

The first line, {words: 5}, corresponds to the first act call. The second line, {words:
4}, corresponds to the second call.

Patrun – a pattern-matching library
Patrun is also written by Richard Rodger. It is used by Seneca in order to execute the
pattern matching and decide which service should respond to the call.

Patrun uses a closest match approach to resolve the calls. Let's see the following
example:

In the preceding image, we can see three patterns. These are equivalent to seneca.
add() from the example in the previous section.

Microservices in Node.js – Seneca and PM2 Alternatives

[678]

In this case, we are registering three different combinations of x and y variables.
Now, let's see how Patrun does the matching:

•	 {x: 1} ->A: This matches 100% with A
•	 {x: 2} ->: No match
•	 {x:1, y:1} -> B: 100% match with B; it also matches with A, but B is a

better match—two out of two vs one out of one
•	 {x:1, y:2} -> C: 100% match with C; again, it also matches with A, but C

is more concrete
•	 {y: 1} ->: No match

As you can see, Patrun (and Seneca) will always get the longest match. In this way,
we can easily extend the functionality of the more abstract patterns by concreting
the matching.

Reusing patterns
In the preceding example, in order to skip the words with fewer than three
characters, we don't reuse the word count function.

In this case, it is quite hard to reuse the function as is; although the problem sounds
very similar, the solution barely overlaps.

However, let's go back to the example where we add two numbers:

var seneca = require('seneca')()

seneca.add({role: 'math', cmd: 'sum'}, function (msg, respond) {
 var sum = msg.left + msg.right
 respond(null, {answer: sum})
});

seneca.add({role: 'math', cmd: 'sum', integer: true}, function
 (msg, respond) {
 this.act({role: 'math', cmd: 'sum', left: Math.floor(msg.left),
 right: Math.floor(msg.right)},respond);
});

seneca.act({role: 'math', cmd: 'sum', left: 1.5, right: 2.5},
 console.log)

seneca.act({role: 'math', cmd: 'sum', left: 1.5, right: 2.5,
 integer: true}, console.log)

As you can see, the code has changed a bit. Now, the pattern that accepts an integer
relies on the base pattern to calculate the sum of the numbers.

Chapter 2

[679]

Patrun always tries to match the closest and most concrete pattern that it can find
with the following two dimensions:

•	 The longest chain of matches
•	 The order of the patterns

It will always try to find the best fit, and if there is an ambiguity, it will match the
first pattern found.

In this way, we can rely on already-existing patterns to build new services.

Writing plugins
Plugins are an important part of applications based on Seneca. As we discussed
in Chapter 1, Microservices Architecture, the API aggregation is the perfect way of
building applications.

Node.js' most popular frameworks are built around this concept: small pieces of
software that are combined to create a bigger system.

Seneca is also built around this; Seneca.add() principle adds a new piece to the
puzzle so that the final API is a mixture of different small software pieces.

Seneca goes one step further and implements an interesting plugin system so that the
common functionality can be modularized and abstracted into reusable components.

The following example is the minimal Seneca plugin:

function minimal_plugin(options) {
 console.log(options)
}

require('seneca')()
 .use(minimal_plugin, {foo:'bar'})

Write the code into a minimal-plugin.js file and execute it:

node minimal-plugin.js

The output of this execution should be something similar to the following image:

Microservices in Node.js – Seneca and PM2 Alternatives

[680]

In Seneca, a plugin is loaded at the startup, but we don't see it as the default log level
is INFO. This means that Seneca won't show any DEBUG level info. In order to see
what Seneca is doing, we need to get more information, as follows:

node minimal-plugin.js –seneca.log.all

This produces a huge output. This is pretty much everything that is happening
inside Seneca, which can be very useful to debug complicated situations, but in
this case, what we want to do is show a list of plugins:

node minimal-plugin.js --seneca.log.all | grep plugin | grep DEFINE

It will produce something similar to the following image:

Let's analyze the preceding output:

•	 basic: This plugin is included with the main Seneca module and provides a
small set of basic utility action patterns.

•	 transport: This is the transport plugin. Up until now, we have only
executed different services (quite small and concise) on the same machine,
but what if we want to distribute them? This plugin will help us with that,
and we will see how to do so in the following sections.

•	 web: In Chapter 1, Microservices Architecture, we mentioned that the
microservices should advocate to keep the pipes that connect them under
a standard that is widely used. Seneca uses TCP by default, but creating a
RESTful API can be tricky. This plugin helps to do it, and we will see how to
do this in the following section.

•	 mem-store: Seneca comes with a data abstraction layer so that we can handle
the data storage in different places: Mongo, SQL databases, and so on. Out of
the box, Seneca provides an in-memory storage so that it just works.

•	 minimal_plugin: This is our plugin. So, now we know that Seneca is able to
load it.

The plugin we wrote does nothing. Now, it is time to write something useful:

function math(options) {

 this.add({role:'math', cmd: 'sum'}, function(msg, respond) {
 respond(null, { answer: msg.left + msg.right })

Chapter 2

[681]

 })

 this.add({role:'math', cmd: 'product'}, function(msg, respond)
 {
 respond(null, { answer: msg.left * msg.right })
 })

}

require('seneca')()
 .use(math)
 .act('role:math,cmd:sum,left:1,right:2', console.log)

First of all, notice that in the last instruction, act() follows a different format.
Instead of passing a dictionary, we pass a string with the same key values as the
first argument, as we did with a dictionary. There is nothing wrong with it, but
my preferred approach is to use the JSON objects (dictionaries), as it is a way of
structuring the data without having syntax problems.

In the previous example, we can see how the code got structured as a plugin. If we
execute it, we can see that the output is similar to the following one:

One of the things you need to be careful about in Seneca is how to initialize your
plugins. The function that wraps the plugin (in the preceding example, the math()
function) is executed synchronously by design and it is called the definition function.
If you remember from the previous chapter, Node.js apps are single-threaded.

To initialize a plugin, you add a special init() action pattern. This action pattern
is called in sequence for each plugin. The init() function must call its respond
callback without errors. If the plugin initialization fails, then Seneca exits the Node.js
process. You want your microservices to fail fast (and scream loudly) when there's a
problem. All plugins must complete initialization before any actions are executed.

Microservices in Node.js – Seneca and PM2 Alternatives

[682]

Let's see an example of how to initialize a plugin in the following way:

function init(msg, respond) {
 console.log("plugin initialized!");
 console.log("expensive operation taking place now... DONE!");
 respond();
}

function math(options) {

 this.add({role:'math', cmd: 'sum'}, function(msg, respond) {
 respond(null, { answer: msg.left + msg.right })
 })

 this.add({role:'math', cmd: 'product'}, function(msg, respond)
 {
 respond(null, { answer: msg.left * msg.right })
 })

 this.add({init: "math"}, init);
}
require('seneca')()
 .use(math)
 .act('role:math,cmd:sum,left:1,right:2', console.log)

Then, after executing this file, the output should look very similar to the following
image:

As you can read from the output, the function that initializes the plugin was called.

The general rule in Node.js apps is to never block the thread.
If you find yourself blocking the thread, you might need to
rethink how to avoid it.

Chapter 2

[683]

Web server integration
In Chapter 1, Microservices Architecture, we put a special emphasis on using standard
technologies to communicate with your microservices.

Seneca, by default, uses a TCP transport layer that, although it uses TCP, is not easy
to interact with, as the criteria to decide the method that gets executed is based on a
payload sent from the client.

Let's dive into the most common use case: your service is called by JavaScript on
a browser. Although it can be done, it would be much easier if Seneca exposed a
REST API instead of the JSON dialog, which is perfect for communication between
microservices (unless you have ultra-low latency requirements).

Seneca is not a web framework. It can be defined as a general purpose microservices
framework, so it would not make too much sense to build it around a concrete case
like the one exposed before.

Instead of that, Seneca was built in a way that makes the integration with other
frameworks fairly easy.

Express is the first option when building web applications on Node.js. The amount
of examples and documentation that can be found on Internet about Express makes
the task of learning it fairly easy.

Seneca as Express middleware
Express was also built under the principle of API composition. Every piece of
software in Express is called middleware, and they are chained in the code in order
to process every request.

In this case, we are going to use seneca-web as a middleware for Express so that
once we specify the configuration, all the URLs will follow a naming convention.

Let's consider the following example:

var seneca = require('seneca')()

seneca.add('role:api,cmd:bazinga',function(args,done){
 done(null,{bar:"Bazinga!"});
});
seneca.act('role:web',{use:{
 prefix: '/my-api',
 pin: {role:'api',cmd:'*'},

 map:{
 bazinga: {GET: true}

Microservices in Node.js – Seneca and PM2 Alternatives

[684]

 }
}})
var express = require('express')
var app = express()
app.use(seneca.export('web'))
app.listen(3000)

This code is not as easy to understand as the previous examples, but I'll do my best
to explain it:

•	 The second line adds a pattern to Seneca. We are pretty familiar with it as all
the examples on this book do that.

•	 The third instruction, seneca.act(), is where the magic happens. We are
mounting the patterns with the role:api pattern and any cmd pattern (cmd:*)
to react to URLs under /my-api. In this example, the first seneca.add() will
reply to the URL /my-api/bazinga, as /my-api/ is specified by the prefix
variable and bazinga by the cmd part of the seneca.add() command.

•	 app.use(seneca.export('web')) instructs Express to use seneca-web as
middleware to execute actions based on the configuration rules.

•	 app.listen(3000) binds the port 3000 to Express.

If you remember from an earlier section in this chapter, seneca.act() takes a
function as a second parameter. In this case, we are exposing configuration to be
used by Express on how to map the incoming requests to Seneca actions.

Let's test it:

Chapter 2

[685]

The preceding code is pretty dense, so let's explain it down to the code from
the browser:

•	 Express receives a request that is handled by seneca-web.
•	 The seneca-web plugin was configured to use /my-api/ as a prefix, which

is being bound with the keyword pin (refer to seneca.act() from the
preceding code) to Seneca actions (seneca.add()) that contain the role:api
pattern, plus any cmd pattern (cmd:*). In this case, /my-api/bazinga
corresponds to the first (and only) seneca.add() command with the {role:
'api', cmd: 'bazinga'} pattern.

It takes a while to fully understand the integration between Seneca and Express, but
once it is clear, the flexibility offered by the API composability pattern is limitless.

Express itself is big enough to be out of the scope of this book, but it is worth taking a
look as it is a very popular framework.

Data storage
Seneca comes with a data-abstraction layer that allows you to interact with the data
of your application in a generic way.

By default, Seneca comes with an in-memory plugin (as explained in the previous
section), therefore, it works out of the box.

We are going to be using it for the majority of this book, as the different storage
systems are completely out of scope and Seneca abstracts us from them.

Seneca provides a simple data abstraction layer (Object-relational mapping (ORM))
based on the following operations:

•	 load: This loads an entity by identifier
•	 save: This creates or updates (if you provide an identifier) an entity
•	 list: This lists entities matching a simple query
•	 remove: This deletes an entity by an identifier

Microservices in Node.js – Seneca and PM2 Alternatives

[686]

Let's build a plugin that manages employees in the database:

module.exports = function(options) {
 this.add({role: 'employee', cmd: 'add'}, function(msg, respond){
 this.make('employee').data$(msg.data).save$(respond);
 });

 this.find({role: 'employee', cmd: 'get'}, function(msg, respond)
 {
 this.make('employee').load$(msg.id, respond);
 });
}

Remember that the database is, by default, in memory, so we don't need to worry
about the table structure for now.

The first command adds an employee to the database. The second command recovers
an employee from the database by id.

Note that all the ORM primitives in Seneca end up with the dollar symbol ($).

As you can see now, we have been abstracted from the data storage details. If the
application changes in the future and we decide to use MongoDB as a data storage
instead of an in-memory storage, the only thing we need to take care of is the plugin
that deals with MongoDB.

Let's use our employee management plugin, as shown in the following code:

js
var seneca =
require('seneca')().use(require('seneca-entity)).use('employees-
storage')
var employee = {
name: "David",
surname: "Gonzalez",
position: "Software Developer"
}

function add_employee() {
seneca.act({role: 'employee', cmd: 'add', data: employee},
function(err,
msg) {
console.log(msg);
});
}
add_employee();

In the preceding example, we add an employee to the in-memory database by
invoking the pattern exposed in the plugin.

Chapter 2

[687]

Along the book, we will see different examples about how to use the data abstraction
layer, but the main focus will be on how to build microservices and not how to deal
with the different data storages.

PM2 – a task runner for Node.js
PM2 is a production-process manager that helps to scale the Node.js up or down,
as well as load balance the instances of the server. It also ensures that the processes
are running constantly, tackling down one of the side effects of the thread model of
Node.js: an uncaught exception kills the thread, which in turn kills your application.

Single-threaded applications and exceptions
As you learned before, Node.js applications are run in a single thread. This doesn't
mean that Node.js is not concurrent, it only means that your application runs on a
single thread, but everything else runs parallel.

This has an implication: if an exception bubbles out without being handled, your
application dies.

The solution for this is making an intensive use of promises libraries such as
bluebird; it adds handlers for success and failures so that if there is an error,
the exception does not bubble out, killing your app.

However, there are some situations that we can't control, we call them unrecoverable
errors or bugs. Eventually, your application will die due to a badly handled error.
In languages such as Java, an exception is not a huge deal: the thread dies, but the
application continues working.

In Node.js, it is a big problem. This problem was solved in the first instance using
task runners such as forever.

Both of them are task runners that, when your application exits for some reason,
rerun it again so it ensures the uptime.

Consider the following example:

Microservices in Node.js – Seneca and PM2 Alternatives

[688]

The helloWorld.js application is now handled by forever, which will rerun it if the
application dies. Let's kill it, as shown in the following image:

As you can see, forever has spawned a different process with the 4903 PID. Now, we
issue a kill command (kill -9 4093) and that is the output from forever, as follows:

Although we have killed it, our application was respawned by forever without any
downtime (at least, noticeable downtime).

As you can see, forever is pretty basic: it reruns the application as many times as it
gets killed.

There is another package called nodemon, which is one of the most useful tools for
developing Node.js applications. It reloads the application if it detects changes in the
files that it monitors (by default, *.*):

Now, if we modify the helloWorld.js file, we can see how nodemon reloads the
application. This is very interesting in order to avoid the edit/reload cycle and speed
up the development.

Chapter 2

[689]

Using PM2 – the industry-standard task
runner
Although, forever looks very interesting, PM2 is a more advanced task runner
than forever. With PM2, you can completely manage your application life cycle
without any downtime, as well as scale your application up or down with a
simple command.

PM2 also acts as a load balancer.

Let's consider the following example:

var http = require('http');

var server = http.createServer(function (request, response) {
 console.log('called!');
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.end("Hello World\n");
});
server.listen(8000);
console.log("Server running at http://127.0.0.1:8000/");

This is a fairly simple application. Let's run it using PM2:

pm2 start helloWorld.js

This produces an output similar to the following image:

PM2 has registered an app named helloWorld. This app is running in the fork
mode (that means, PM2 is not acting as a load balancer, it has just forked the app)
and the PID of the operating system is 6858.

Microservices in Node.js – Seneca and PM2 Alternatives

[690]

Now, as the following screen suggests, we will run pm2 show 0, which shows the
information relevant to the app with id 0, as shown in the following image:

With two commands, we have managed to run a simple application in a very
sophisticated way.

From now on, PM2 will ensure that your app is always running so that if your
application dies, PM2 will restart it again.

We can also monitor the number of apps PM2 is running:

pm2 monit

Chapter 2

[691]

This shows the following output:

This is the PM2 monitor. In this case, it is a complete overkill as our system is only
composed of one application, which runs in the fork mode.

We can also see the logs executing pm2 logs as shown in the following image:

As you can see, PM2 feels solid. With few commands, we have covered 90% of the
monitoring necessities of our application. However, this is not everything.

Microservices in Node.js – Seneca and PM2 Alternatives

[692]

PM2 also comes with an easy way to reload your applications without downtime:

pm2 reload all

This command ensures that your apps are restarted with zero downtime. PM2 will
queue the incoming requests for you and reprocess them once your app is responsive
again. There is a more fine-grained option where you can specify reloading only
certain apps by specifying the app name:

pm2 reload helloWorld

For those who have been fighting for years with Apache, NGINX, PHP-FPM, and so
on, this will sound very familiar.

Another interesting feature in PM2 is running your application in the cluster mode.
In this mode, PM2 spawns a controller process and as many workers (your app) as
you specify so that you can take the benefit of multicore CPUs with a single-thread
technology such as Node.js.

Before doing this, we need to stop our running application:

pm2 stop all

This will result in the following output:

PM2 remembers the apps that were running, so before rerunning the app in the
cluster mode, we need to inform PM2 to forget about your app, as follows:

pm2 delete all

Chapter 2

[693]

We are ready to run our app in the cluster mode:

pm2 start helloWorld.js -i 3

PM2 is acting as a round-robin between the main process and the three workers so
that they can cope with three requests at the same time. We can also scale down or
up our number of workers:

pm2 scale helloWorld 2

This will result in two processes being run for the same app instead of three:

As you can see, with very little effort, we have managed to configure our app in
order to be production ready.

Now, we can save the status of PM2 so that if we restart the server, and PM2 is
running as a daemon, the apps will automatically start.

PM2 has a code API so that we can write a Node.js program to manage all the steps
that we have been manually doing. It also has a way of configuring your services
with a JSON file. We will discuss this in more depth in Chapter 6, Testing and
Documenting Node.js Microservices, when we study how to use PM2 and Docker to
deploy Node.js applications.

Microservices in Node.js – Seneca and PM2 Alternatives

[694]

Summary
In this chapter, you learned the basics of Seneca and PM2 so that we will be able
to build and run a microservices-oriented system in Chapter 4, Writing Your First
Microservice in Node.js, of this book.

We have also demonstrated that a few of the concepts exposed in the previous
chapter are actually helpful in solving real-world problems as well as making
our life very easy.

In the next chapter, we will talk about how to split a monolithic application, a task
for which we will need to know a few of the concepts developed during this chapter.

[695]

From the Monolith to
Microservices

In my professional life, I have worked in quite a few different companies, mainly in
financial services, and all of the companies that I have worked for follow the same
pattern as shown in the following:

1.	 A company is set up by a couple of people with good domain knowledge:
insurance, payments, credit cards, and so on.

2.	 The company grows, demanding new business requirements that need to be
satisfied quickly (regulation, big customers demanding silly things, and so
on), which are built in a hurry with little to no planning.

3.	 The company experiences another phase of growing, where the business
transactions are clearly defined and poorly modelled by a hard-to-maintain
monolithic software.

4.	 The company increases the headcount that drives into growing pains and
loss of efficiency due to restrictions imposed on how the software was built
in the first instance.

This chapter is not only about how to avoid the previous flow (uncontrolled organic
growth), but it is also about how to model a new system using microservices.
This chapter is the soul of this book, as I will try to synthetize my experience in
a few pages, setting up the principles to be followed in Chapter 4, Writing Your
First Microservice in Node.js, where we will be building a full system based on
microservices using the lessons learned in the previous chapters.

From the Monolith to Microservices

[696]

First, there was the monolith
A huge percentage (my estimate is around 90%) of the modern enterprise software is
built following a monolithic approach.

Large software components that run in a single container and have a well-defined
development life cycle, which goes completely against the agile principles, deliver
early and deliver often (https://en.wikipedia.org/wiki/Release_early,_
release_often), as follows:

•	 Deliver early: The sooner you fail, the easier it is to recover. If you are
working for two years on a software component and then it is released, there
is a huge risk of deviation from the original requirements, which are usually
wrong and change every few days.

•	 Deliver often: Delivering often, the stakeholders are aware of the progress
and can see the changes reflected quickly in the software. Errors can be fixed
in a few days and improvements are identified easily.

Companies build big software components instead of smaller ones that work
together as it is the natural thing to do, as shown in the following:

1.	 The developer has a new requirement.
2.	 He builds a new method on an existing class on the service layer.
3.	 The method is exposed on the API via HTTP, SOAP, or any other protocol.

Now, multiply it by the number of developers in your company, and you will obtain
something called organic growth. Organic growth is a type of uncontrolled and
unplanned growth on software systems under business pressure without an adequate
long-term planning, and it is bad.

How to tackle organic growth?
The first thing required to tackle organic growth is to make sure that the business
and IT are aligned in the company. Usually, in big companies, IT is not seen as a
core part of the business.

Organizations outsource their IT systems, keeping the price in mind, but not the
quality so that the partners building these software components are focused on one
thing: deliver on time and according to the specifications even if they are incorrect.

This produces a less-than-ideal ecosystem to respond to the business needs with
a working solution for an existing problem. IT is lead by people who barely
understand how the systems are built, and usually overlook the complexity of
software development.

https://en.wikipedia.org/wiki/Release_early,_release_often
https://en.wikipedia.org/wiki/Release_early,_release_often

Chapter 3

[697]

Fortunately, this is a changing tendency as IT systems become the driver of 99% of the
businesses around the world, but we need to get smarter about how we build them.

The first measure to tackle organic growth is aligning IT and business stakeholders to
work together: educating the nontechnical stakeholders is the key to success.

If we go back to the few big releases schema. Can we do it better?

Of course we can. Divide the work into manageable software artifacts that model a
single, well-defined business activity and give it an entity.

It does not need to be a microservice at this stage, but keeping the logic inside of a
separated, well-defined, easily testable, and decoupled module will give us a huge
advantage for future changes in the application.

Let's consider the following example:

In this insurance system, you can see that someone was in a hurry. SMS and e-mail
sender, although both are communication channels, they have a very different nature
and you probably want them to act in different ways.

From the Monolith to Microservices

[698]

The calling services are grouped into the following two high-level entities:

•	 New Business: The new customers that receive an e-mail when they sign up
•	 Renewals: The existing customers that receive an SMS when the insurance

policy is ready to be renewed

At some point, the system needed to send SMSs and e-mails and someone created
the communication service entity that handles all the third-party communications.

It looks like a good idea in the beginning. SMS or e-mail, at the end of the day, is
only a channel, the communication mechanism will be 90% same and we can reuse
plenty of functionality.

What happens if we suddenly want to integrate a third-party service that handles all
the physical post?

What happens if we want to add a newsletter that goes out to the customers once a
week with information that we consider interesting for our customers?

The service will grow out of control and it will become more difficult to test, release,
and ensure that the changes in the SMS code won't affect sending the e-mail in
any form.

This is organic growth and, in this case, it is related to a law called Conway's Law,
which states the following:

Any organization that designs a system (defined more broadly here than just
information systems) will inevitably produce a design whose structure is a
copy of the organization's communication structure.

In this case, we are falling into a trap. We are trying to model the communication on
a single software component that is probably too big and complex to react quickly to
new business needs.

Chapter 3

[699]

Let's take a look at the following diagram:

Now, we have encapsulated every communication channel on its own service
(which, later on, will be deployed as a microservice) and we will do the same for
future communication channels.

This is the first step to beat organic growth: create fine-grained services with
well-defined boundaries and a single responsibility—do something small, but do it well.

How abstract is too abstract?
Our brain can't handle complicated mechanisms. The abstraction capacity is one of
the most recent human intelligence acquisitions.

In the example from the previous section, I've given something for good, which will
upset half of the programmers in the world: eradicating the abstraction of our system.

From the Monolith to Microservices

[700]

The abstraction capacity is something that we learn along the years and, unlike
intelligence, it can be trained. Not everyone can reach the same level of abstraction,
and if we mix the specific and complex domain knowledge required by some
industries with a high-level of abstraction, we have the perfect recipe for a disaster.

When building software, one of the golden rules that I always tried to follow
(and try is the correct word, as I always find huge opposition to it) is to avoid
premature abstraction.

How many times did you find yourself in a corner with a simple set of requirements:
build a program to solve X. However, your team goes off and anticipates all the
possible variations of X, without even knowing if they are plausible. Then, once the
software is in production, one of the stakeholders comes with a variation of X that
you could have never imagined (as the requirements were not even correct) and
now, getting this variation to work will cost you a few days and a massive refactor.

The way to avoid this problem is simple: avoid abstraction without at least three use cases.

Do not factor in the possibility of sending the data through different types of
channels as it might not happen and you are compromising the current feature with
unnecessary abstractions. Once you have at least one other communication channel,
it is time to start thinking about how these two software components can be designed
better, and when the third use case shows up, refactor.

Remember that when building microservices, they should be small enough to be
rewritten on a single sprint (around two weeks), so the benefits of having a working
prototype in such a short period of time is worth the risk of having to rewrite it once
the requirements are more concrete: something to show to the stakeholders is the
quickest way to nail down the requirements.

Seneca is great in this regard as, through pattern matching, we can extend the API of
a given microservice without affecting the existing calling code: our service is open
for extension, but closed for modification (the SOLID principles) as we are adding
functionality without affecting the existing one. We will see more complete examples
of this behavior in Chapter 4, Writing Your First Microservice in Node.js.

Then the microservices appeared
Microservices are here to stay. Nowadays, the companies give more importance
to the quality of the software. As stated in the previous section, deliver early and
deliver often are the key to succeed in software development.

Chapter 3

[701]

Microservices are helping us to satisfy business needs as quickly as possible through
modularity and specialization. Small pieces of software that can easily be versioned
and upgraded within a few days and they are easy to test as they have a clear and
small purpose (specialization) and are written in such a way that they are isolated
from the rest of the system (modularization).

Unfortunately, it is not common to find the situation as described previously.
Usually, big software systems are not built in a way that modularization or
specialization are easy to identify. The general rule is to build a big software
component that does everything and the modularization is poor, so we need
to start from the very basics.

Let's start by writing some code, as shown in the following:

module.exports = function(options) {

 var init = {}

 /**
 * Sends one SMS
 */
 init.sendSMS = function(destination, content) {
 // Code to send SMS
 }

 /**
 * Reads the pending list of SMS.
 */
 init.readPendingSMS = function() {
 // code to receive SMS
 return listOfSms;
 }

 /**
 * Sends an email.
 */
 init.sendEmail = function(subject, content) {
 // code to send emails
 }

 /**
 * Gets a list of pending emails.
 */
 init.readPendingEmails = function() {

From the Monolith to Microservices

[702]

 // code to read the pending emails
 return listOfEmails;
 }

 /**
 * This code marks an email as read so it does not get
 * fetch again by the readPendingEmails function.
 */
 init.markEmailAsRead = function(messageId) {
 // code to mark a message as read.
 }

 /**
 * This function queues a document to be printed and
 * sent by post.
 */
 init.queuePost = function(document) {
 // code to queue post
 }

 return init;
}

As you can see, this module can be easily called communications service and it
will be fairly easy to guess what it is doing. It manages the e-mail, SMS, and post
communications.

This is probably too much. This service is deemed to grow out of control, as people
will keep adding methods related to communications. This is the key problem of
monolithic software: the bounded context spans across different areas, affecting the
quality of our software from both functional and maintenance point of view.

If you are a software developer, a red flag will be raised straightaway: the cohesion
of this module is quite poor.

Although it could have worked for a while, we are now changing our mindset. We
are building small, scalable, and autonomous components that can be isolated. The
cohesion in this case is bad as the module is doing too many different things: e-mail,
SMS, and post.

What happens if we add another communication channel such as Twitter and
Facebook notifications?

Chapter 3

[703]

The service grows out of control. Instead of having small functional software
components, you end up with a gigantic module that will be difficult to refactor, test,
and modify. Let's take a look at the following SOLID design principles, explained in
Chapter 2, Microservices in Node.js – Seneca and PM2 Alternatives:

•	 Single-responsibility principle: The module does too many things.
•	 Open for extension, closed for modification: The module will need to be

modified to add new functionalities and probably change the common code.
•	 Liskov Substitution: We will skip this one again.
•	 Interface segregation: We don't have any interface specified in the module,

just the implementation of an arbitrary set of functions.
•	 Dependency injection: There is no dependency injection. The module needs

to be built by the calling code.

Things get more complicated if we don't have tests.

Therefore, let's split it into various small modules using Seneca.

First, the e-mail module (email.js) will be as follows:

module.exports = function (options) {

 /**
 * Sends an email.
 */
 this.add({channel: 'email', action: 'send'}, function(msg,
 respond) {
 // Code to send an email.
 respond(null, {...});
 });

 /**
 * Gets a list of pending emails.
 */
 this.add({channel: 'email', action: 'pending'}, function(msg,
 respond) {
 // Code to read pending email.
 respond(null, {...});
 });

 /**
 * Marks a message as read.
 */

From the Monolith to Microservices

[704]

 this.add({channel: 'email', action: 'read'}, function(msg,
 respond) {
 // Code to mark a message as read.
 respond(null, {...});
 });
}

The SMS module (sms.js) will be as follows:

module.exports = function (options) {

 /**
 * Sends an email.
 */
 this.add({channel: 'sms', action: 'send'}, function(msg,
 respond) {
 // Code to send a sms.
 respond(null, {...});
 });

 /**
 * Receives the pending SMS.
 */
 this.add({channel: 'sms', action: 'pending'}, function(msg,
 respond) {
 // Code to read pending sms.
 respond(null, {...});
 });
}

Finally, the post module (post.js) will be as follows:

module.exports = function (options) {

 /**
 * Queues a post message for printing and sending.
 */
 this.add({channel: 'post', action: 'queue'}, function(msg,
 respond) {
 // Code to queue a post message.
 respond(null, {...});
 });
}

Chapter 3

[705]

The following diagram shows the new structure of modules:

From the Monolith to Microservices

[706]

Now, we have three modules. Each one of these modules does one specific thing
without interfering with each other; we have created high-cohesion modules.

Let's run the preceding code, as follows:

var seneca = require("seneca")()
 .use("email")
 .use("sms")
 .use("post");

seneca.listen({port: 1932, host: "10.0.0.7"});

As simple as that, we have created a server with the IP 10.0.0.7 bound that listens
on the 1932 port for incoming requests. As you can see, we haven't referenced any
file, we just referenced the module by name; Seneca will do the rest.

Let's run it and verify that Seneca has loaded the plugins:

node index.js --seneca.log.all | grep DEFINE

This command will output something similar to the following lines:

If you remember from Chapter 2, Microservices in Node.js – Seneca and PM2
Alternatives, Seneca loads a few plugins by default: basic, transport, web, and
mem-store, which allow Seneca to work out of the box without being hassled
with the configuration. Obviously, as we will see in Chapter 4, Writing Your First
Microservice in Node.js, that the configuration is necessary as, for example, mem-store
will only store data in the memory without persisting it between executions.

Aside from the standard plugins, we can see that Seneca has loaded three extra
plugins: email, sms, and post, which are the plugins that we have created.

Chapter 3

[707]

As you can see, the services written in Seneca are quite easy to understand once you
know how the framework works. In this case, I have written the code in the form of
a plugin so that it can be used by different instances of Seneca on different machines,
as Seneca has a transparent transport mechanism that allows us to quickly redeploy
and scale parts of our monolithic app as microservices, as follows:

•	 The new version can be easily tested, as changes on the e-mail functionality
will only affect sending the e-mail.

•	 It is easy to scale. As we will see in the next chapter, replicating a service is as
easy as configuring a new server and pointing our Seneca client to it.

•	 It is also easy to maintain, as the software is easier to understand and modify.

Disadvantages
With microservices, we solve the biggest problems in modern enterprise, but that
does not mean that they are problem free. Microservices often lead to different types
of problems that are not easy to foresee.

The first and most concerning one is the operational overhead that could chew up
the benefits obtained from using microservices. When you are designing a system,
you should always have one question in mind: how to automate this? Automation is
the key to tackling this problem.

The second disadvantage with microservices is nonuniformity on the applications.
A team might consider something a good practice that could be banned in another
team (especially around exception handling), which adds an extra layer of isolation
between teams that probably does not do well for the communication of your
engineers within the team.

Lastly, but not less important, microservices introduce a bigger communication
complexity that could lead to security problems. Instead of having to control a
single application and its communication with the outer world, we are now facing a
number of servers that communicate with each other.

Splitting the monolith
Consider that the marketing department of your company has decided to run an
aggressive e-mail campaign that is going to require peaks of capacity that could
harm the normal day-to-day process of sending e-mail. Under stress, the e-mails
will be delayed and that could cause us problems.

Luckily, we have built our system as explained in the previous section. Small Seneca
modules in the form of a high-cohesion and low-coupled plugins.

From the Monolith to Microservices

[708]

Then, the solution to achieve it is simple: deploy the e-mail service (email.js) on
more than one machine:

var seneca = require("seneca")().use("email");
seneca.listen({port: 1932, host: "new-email-service-ip"});

Also, create a Seneca client pointing to it, as follows:

var seneca = require("seneca")()
 .use("email")
 .use("sms")
 .use("post");
seneca.listen({port: 1932, host: "10.0.0.7"});

// interact with the existing email service using "seneca"

var senecaEmail = require("seneca").client({host: "new-email-
 service-ip", port: 1932});

// interact with the new email service using "senecaEmail"

From now on, the senecaEmail variable will contact the remote service when calling
act and we would have achieved our goal: scale up our first microservice.

Problems splitting the monolith – it is all
about the data
Data storage could be problematic. If your application has grown out of control for a
number of years, the database would have done the same, and by now, the organic
growth will make it hard to deal with significant changes in the database.

Microservices should look after their own data. Keeping the data local to the service
is one of the keys to ensure that the system remains flexible as it evolves, but it
might not be always possible. As an example, financial services suffer especially
from one of the main weak points of microservices-oriented architectures: the lack of
transactionality. When a software component deals with money, it needs to ensure
that the data remains consistent and not eventually consistent after every single
operation. If a customer deposits money in a financial company, the software that
holds the account balance needs to be consistent with the money held in the bank,
otherwise, the reconciliation of the accounts will fail. Not only that, if your company
is a regulated entity, it could cause serious problems for the continuity of the business.

Chapter 3

[709]

The general rule of thumb, when working with microservices and financial
systems, is to keep a not-so-microservice that deals with all the money and creates
microservices for the auxiliary modules of the system such as e-mailing, SMS, user
registration, and so on, as shown in the following image:

As you can see in the preceding picture, the fact that payments will be a big
microservice instead of smaller services, it only has implications in the operational
side, there is nothing preventing us from modularizing the application as seen
before. The fact that withdrawing money from an ATM has to be an atomic operation
(either succeed or fail without intermediate status) should not dictate how we
organize the code in our application, allowing us to modularize the services, but
spanning the transaction scope across all of them.

Organizational alignment
In a company where the software is built based on microservices, every single
stakeholder needs to be involved in decision making.

Microservices are a huge paradigm shift. Usually, large organizations tend to build
software in a very old fashioned manner. Big releases every few months that require
days to complete the quality assurance (QA) phase and few hours to deploy.

From the Monolith to Microservices

[710]

When a company chooses to implement a microservices-oriented architecture, the
methodology changes completely: small teams work on small features that are
built, tested, and deployed on their own. The teams do one thing (one microservice,
or more realistic, a few of them) and they do it well (they master the domain and
technical knowledge required to build the software).

These are what usually called cross-functional teams. A unit of work of few people
that have the required knowledge to build high-quality software components.

It is also important to flag that the team has to master the domain knowledge needed
to understand the business requirements.

Here is where the majority of the companies where I have worked in my professional
life fail (in my opinion). Developers are considered brick stackers that magically
understand the business flows without being exposed to them before. If one
developer delivers X amount of work in one week, ten developers will deliver 10X.
This is wrong.

People in cross-functional teams that build the microservices have to master (not
only know) the domain-specific knowledge in order to be efficient and factor the
Conway's Law and its implications into the system for changing how the business
processes work.

When talking about organizational alignment in microservices, autonomy is the
key. The teams need to be autonomous in order to be agile while building the
microservices, which implies keeping the technical authority within the team,
as follows:

•	 Languages used
•	 Code standards
•	 Patterns used to solve problems
•	 Tools chosen to build, test, debug, and deploy the software

This is an important part, as this is where we need to define how the company builds
software and where the engineering problems may be introduced.

As an example, we can look into the coding standards, as shown in the following list:

•	 Do we want to keep the same coding standards across the teams?
•	 Do we want each team to have their own coding standards?

Chapter 3

[711]

In general, I am always in favor of the 80% rule: 80% of perfection is more than enough
for 100% of the use cases. It means that loosening up the coding standards (it can be
applied to other areas) and allowing some level of imperfection/personalization,
helps to reduce the friction between teams and also allows the engineers to quickly
catch up with the very few important rules to follow such as logging strategies or
exception handling.

If your coding standards are too complicated, there will be friction when a team tries
to push a code into a microservice out of their usual scope (remember, teams own the
services, but every team can contribute to them).

Summary
In this chapter, we discussed the principles of building monolithic applications
oriented to be split as microservices, depending on the business needs. As you have
learned, the Atomicity, Consistency, Isolation, Durability (ACID) design principles
are concepts that we need to have in mind in order to build high quality software.

You have also learned that we cannot assume that we are going to be able to design
a system from scratch, so we need to be smart about how we build the new parts
of the system and how we refactor the existing ones so that we achieve the level of
flexibility required to satisfy the business needs and be resilient.

We also have given a small introduction about monolithic designed databases and
how they are the biggest pain points when splitting a monolithic software into
microservices, as it is usually required to shut down the system for a few hours in
order to split the data into local databases. This subject could well be an entire book
as new trends with NoSQL databases are changing the game of data storage.

Finally, we discussed how to align the teams of engineers in our company in order to
be efficient while keeping the flexibility and resilience needed to be able to be agile,
as well as how the Conway's Law impacts the conversion of monolithic systems into
microservices-oriented architectures.

In the next chapter, we will apply all the principles discussed in the first three
chapters, as well as a big dose of common sense to build a full working system
based on microservices.

[713]

Writing Your First
Microservice in Node.js

We have been learning about how to build robust microservices-oriented software,
and now it is time to put all the concepts to practice. In this chapter, we are going to
build a microservices-oriented e-commerce using Seneca and some other frameworks
that are going to allow us to write a software that will benefit from the particularities
of the microservices.

Micromerce – the big picture
It covers the following:

•	 Writing microservices
•	 Sizing microservices
•	 Creating APIs
•	 Integrating Seneca with Express
•	 Storing data using Seneca

In this chapter, we are going to write a full (nearly) simplistic e-commerce solution
based on microservices. Full means full from the conceptual point of view, but for
obvious reasons, it won't be full (as production ready) as it could take us a few books
to handle all the possible flows.

We won't go deep in to the UI, as it is not related to the subject of this book. What
we will do instead is a microservice that will aggregate all the other microservices,
creating a frontend API to be consumed by a Single-Page Application (SPA), built
with any of the modern JavaScript frameworks.

Writing Your First Microservice in Node.js

[714]

In this chapter, we are going to develop the following four microservices:

•	 Product Manager: This microservice will be responsible for adding, editing,
and removing products from our database, as well as serving products to the
customers. This microservice will be partially public for a potential admin
site to add/remove products.

•	 Order Manager: This microservice will be responsible for managing the
order and billing.

•	 Emailer: This microservice will be responsible for delivering e-mails to
the customers.

•	 UI: This microservice will expose the feature from the other microservices to
a potential SPA, but we will only build the JSON interface.

Building the four preceding microservices, we will develop the concepts discussed
in the previous chapters so that, by the end of this chapter, we will be able to identify
the most common pitfalls going forward. Keep in mind that the objective of this book
is not converting you into a microservices or Node.js expert, but to give you the tools
required to learn by yourself, as well as make you aware of the best design principles
and the most common pitfalls.

Let's take a look at the deployment diagram:

Chapter 4

[715]

This diagram shows how our company (the yellow square) hides some of our
microservices from the real world and exposes some others to different networks,
as follows:

•	 UI will be exposed to the Internet. Everybody will be able to hit this endpoint.
•	 Product Management will manage the products in our e-commerce. It will

have the following two interfaces:
°° A Seneca endpoint from where the UI will extract data
°° A JSON API from where the office of our company will be able to

create, update, and delete products

•	 Emailer will be our communication channel with our customers. We will
use this microservice to explain the good points of Seneca, and we will also
give an example of the eventual consistency and system degradation when a
microservice fails.

•	 Order Manager: This microservice will let us handle the orders for our
customers. With this microservice, we will discuss how to handle the fact
that the data is local to each microservice, instead of being global to the
system. You can't just go to the database to recover the product name or
price, it needs to be recovered from other microservice.

As you can see, there is no user or staff management, but with these
four microservices, we will be able to develop the core concepts of
microservices architectures. Seneca comes with a very powerful data
and transport plugin system that makes it easy to use Seneca with
different data storages and transport systems.

For all our microservices, we are going to use MongoDB as the storage. Seneca comes
with an out-of-the-box in-memory database plugin that allows you to start coding
straightaway, but the storage is transient: it does not persist the data between calls.

Product Manager – the two-faced core
Product Manager is the core of our system. I know what you are thinking:
microservices should be small (micro) and distributed (no central point), but you
need to set the conceptual centre somewhere, otherwise you will end up with a
fragmented system and traceability problems (we will talk about it later).

Writing Your First Microservice in Node.js

[716]

Building a dual API with Seneca is fairly easy, as it comes with a quite
straightforward integration with Express. Express is going to be used to expose some
capabilities of the UI such as editing products, adding products, deleting products,
and so on. It is a very convenient framework, easy to learn, and it integrates well
with Seneca. It is also a de-facto standard on Node.js for web apps, so it makes it easy
to find information about the possible problems.

It is going to also have a private part exposed through Seneca TCP (the default
plugin in Seneca) so that our internal network of microservices (specifically, the UI)
will be able to access the list of products in our catalogue.

Product Manager is going to be small and cohesioned (it will only manage products),
as well as scalable, but it will hold all the knowledge required to deal with products
in our e-commerce.

First thing we need to do is to define our Product Manager microservice, as follows:

•	 This is going to have a function to retrieve all the products in the database.
This is probably a bad idea in a production system (as it probably would
require pagination), but it works for our example.

•	 This should have one function that fetches all the products for a given
category. It is similar to the previous one, it would need pagination in a
production-ready system.

•	 This should have a function to retrieve products by identifier (id).
•	 This should have one function that allows us to add products to the

database (in this case MongoDB). This function will use the Seneca data
abstraction to decouple our microservice from the storage: we will be able
to (in theory) switch Mongo to a different database without too much hassle
(in theory again).

•	 This should have one function to remove products. Again, using Seneca
data abstraction.

•	 This should have one function to edit products.

Our product will be a data structure having four fields: name, category, description,
and price. As you can see, it is a bit simplistic, but it will help us to understand the
complicated world of microservices.

Our Product Management microservice is going to use MongoDB (https://www.
mongodb.org/). Mongo is a document-oriented schema-less database that allows an
enormous flexibility to store data such as products (that, at the end of the day, are
documents). It is also a good choice for Node.js as it stores JSON objects, which is a
standard, created for JavaScript (JSON stands for JavaScript Object Notation), so
that looks like the perfect pairing.

https://www.mongodb.org/
https://www.mongodb.org/

Chapter 4

[717]

There is a lot of useful information on the MongoDB website if you want to learn
more about it.

Let's start coding our functions.

Fetching products
To fetch products, we go to the database and dump the full list of products straight
to the interface. In this case, we won't create any pagination mechanism, but in
general, paginating data is a good practice to avoid database (or applications, but
mainly database) performance problems.

Let's see the following code:

/**
 * Fetch the list of all the products.
 */
seneca.add({area: "product", action: "fetch"}, function(args,
 done) {
 var products = this.make("products");
 products.list$({}, done);
});

We already have a pattern in Seneca that returns all the data in our database.

The products.list$() function will receive the following two parameters:

•	 The query criteria
•	 A function that receives an error and result object (remember the error-first

callback approach)

Seneca uses the $ symbol to identify the key functions such as list$, save$, and
so on. Regarding the naming of the properties of your objects, as long as you use
alphanumeric identifiers, your naming will be collision free.

We are passing the done function from the seneca.add() method to the list$
method. This works as Seneca follows the callback with error-first approach. In
other words, we are creating a shortcut for the following code:

seneca.add({area: "product", action: "fetch"}, function(args,
 done) {
 var products = this.make("products");
 products.list$({}, function(err, result) {
 done(err, result);
 });
});

Writing Your First Microservice in Node.js

[718]

Fetching by category
Fetching by category is very similar to fetching the full list of products. The only
difference is that now the Seneca action will take a parameter to filter the products
by category.

Let's see the code:

/**
 * Fetch the list of products by category.
 */
seneca.add({area: "product", action: "fetch", criteria:
 "byCategory"}, function(args, done) {
 var products = this.make("products");
 products.list$({category: args.category}, done);
});

One of the first questions that most advanced developers will now have in their
mind is that isn't this a perfect scenario for an injection attack? Well, Seneca is smart
enough to prevent it, so we don't need to worry about it any more than avoid
concatenating strings with user input.

As you can see, the only significant difference is the parameter passed called
category, which gets delegated into Seneca data abstraction layer that will generate
the appropriate query, depending on the storage we use. This is extremely powerful
when talking about microservices. If you remember, in the previous chapters, we
always talked about coupling as if it was the root of all evils, and now we can assure
it is, and Seneca handles it in a very elegant way. In this case, the framework provides
a contract that the different storage plugins have to satisfy in order to work. In the
preceding example, list$ is part of this contract. If you use the Seneca storage wisely,
switching your microservice over to a new database engine (have you ever been
tempted to move a part of your data over MongoDB?) is a matter of configuration.

Fetching by ID
Fetching a product by ID is one of the most necessary methods, and it is also a tricky
one. Not tricky from the coding point of view, as shown in the following:

/**
 * Fetch a product by id.
 */
seneca.add({area: "product", action: "fetch", criteria: "byId"},
 function(args, done) {
 var product = this.make("products");
 product.load$(args.id, done);
});

Chapter 4

[719]

The tricky part is how id is generated. The generation of id is one of the contact
points with the database. Mongo creates a hash to represent a synthetic ID; whereas,
MySQL usually creates an integer that auto-increments to uniquely identify each
record. Given that, if we want to switch MongoDB to MySQL in one of our apps,
the first problem that we need to solve is how to map a hash that looks something
similar to the following into an ordinal number:

e777d434a849760a1303b7f9f989e33a

In 99% of the cases, this is fine, but we need to be careful, especially when storing
IDs as, if you recall from the previous chapters, the data should be local to each
microservice, which could imply that changing the data type of the ID of one entity,
requires changing the referenced ID in all the other databases.

Adding a product
Adding a product is trivial. We just need to create the data and save it in the database:

/**
 * Adds a product.
 */
seneca.add({area: "product", action: "add"}, function(args, done) {
 var products = this.make("products");
 products.category = args.category;
 products.name = args.name;
 products.description = args.description;
 products.category = args.category;
 products.price = args.price
 products.save$(function(err, product) {
 done(err, products.data$(false));
 });
});

In this method, we are using a helper from Seneca, products.data$(false). This
helper will allow us to retrieve the data of the entity without all the metadata about
namespace (zone), entity name, and base name that we are not interested in when
the data is returned to the calling method.

Writing Your First Microservice in Node.js

[720]

Removing a product
The removal of a product is usually done by id: We target the specific data that we
want to remove by the primary key and then remove it, as follows:

/**
 * Removes a product by id.
 */
seneca.add({area: "product", action: "remove"}, function(args,
 done) {
 var product = this.make("products");
 product.remove$(args.id, function(err) {
 done(err, null);
 });
});

In this case, we don't return anything aside from an error if something goes wrong,
so the endpoint that calls this action can assume that a non-errored response is
a success.

Editing a product
We need to provide an action to edit products. The code for doing that is as follows:

/**
 * Edits a product fetching it by id first.
 */
seneca.edit({area: "product", action: "edit"}, function(args,
 done) {
 seneca.act({area: "product", action: "fetch", criteria: "byId",
 id: args.id}, function(err, result) {
 result.data$(
 {
 name: args.name,
 category: args.category,
 description: args.description,
 price: args.price
 }
);
 result.save$(function(err, product){
 done(product.data$(false));
 });
 });
});

Chapter 4

[721]

Here is an interesting scenario. Before editing a product, we need to fetch it by ID,
and we have already done that. So, what we are doing here is relying on the already
existing action to retrieve a product by ID, copying the data across, and saving it.

This is a nice way for code reuse introduced by Seneca, where you can delegate a call
from one action to another and work in the wrapper action with the result.

Wiring everything up
As we agreed earlier, the product manager is going to have two faces: one that will
be exposed to other microservices using the Seneca transport over TCP and a second
one exposed through Express (a Node.js library to create web apps) in the REST way.

Let's wire everything together:

var plugin = function(options) {
 var seneca = this;

 /**
 * Fetch the list of all the products.
 */
 seneca.add({area: "product", action: "fetch"}, function(args,
 done) {
 var products = this.make("products");
 products.list$({}, done);
 });

 /**
 * Fetch the list of products by category.
 */
 seneca.add({area: "product", action: "fetch", criteria:
 "byCategory"}, function(args, done) {
 var products = this.make("products");
 products.list$({category: args.category}, done);
 });

 /**
 * Fetch a product by id.
 */
 seneca.add({area: "product", action: "fetch", criteria: "byId"},
 function(args, done) {
 var product = this.make("products");

Writing Your First Microservice in Node.js

[722]

 product.load$(args.id, done);
 });

 /**
 * Adds a product.
 */
 seneca.add({area: "product", action: "add"}, function(args,
 done) {
 var products = this.make("products");
 products.category = args.category;
 products.name = args.name;
 products.description = args.description;
 products.category = args.category;
 products.price = args.price
 products.save$(function(err, product) {
 done(err, products.data$(false));
 });
 });

 /**
 * Removes a product by id.
 */
 seneca.add({area: "product", action: "remove"}, function(args,
 done) {
 var product = this.make("products");
 product.remove$(args.id, function(err) {
 done(err, null);
 });
 });

 /**
 * Edits a product fetching it by id first.
 */
 seneca.add({area: "product", action: "edit"}, function(args,
 done) {
 seneca.act({area: "product", action: "fetch", criteria:
 "byId", id: args.id}, function(err, result) {
 result.data$(
 {
 name: args.name,
 category: args.category,
 description: args.description,
 price: args.price
 }
);

Chapter 4

[723]

 result.save$(function(err, product){
 done(err, product.data$(false));
 });
 });
 });
}
module.exports = plugin;

var seneca = require("seneca")();
seneca.use(plugin);
seneca.use("mongo-store", {
 name: "seneca",
 host: "127.0.0.1",
 port: "27017"
});

seneca.ready(function(err){

 seneca.act('role:web',{use:{
 prefix: '/products',
 pin: {area:'product',action:'*'},
 map:{
 fetch: {GET:true},
 edit: {GET:false,POST:true},
 delete: {GET: false, DELETE: true}
 }
 }});
 var express = require('express');
 var app = express();
 app.use(require("body-parser").json());

 // This is how you integrate Seneca with Express
 app.use(seneca.export('web'));

 app.listen(3000);

});

Now let's explain the code:

We have created a Seneca plugin. This plugin can be reused across different
microservices. This plugin contains all the definitions of methods needed by
our microservice that we have previously described.

Writing Your First Microservice in Node.js

[724]

The preceding code describes the following two sections:

•	 The first few lines connect to Mongo. In this case, we are specifying that
Mongo is a local database. We are doing that through the use of a plugin
called mongo-store—https://github.com/rjrodger/seneca-mongo-
store, written by Richard Rodger, the author of Seneca.

•	 The second part is new to us. It might sound familiar if you have used
JQuery before, but basically what the seneca.ready() callback is doing is
taking care of the fact that Seneca might not have connected to Mongo before
the calls start flowing into its API. The seneca.ready() callback is where the
code for integrating Express with Seneca lives.

The following is the package.json configuration of our app:

{
 "name": "Product Manager",
 "version": "1.0.0",
 "description": "Product Management sub-system",
 "main": "index.js",
 "keywords": [
 "microservices",
 "products"
],
 "author": "David Gonzalez",
 "license": "ISC",
 "dependencies": {
 "body-parser": "^1.14.1",
 "debug": "^2.2.0",
 "express": "^4.13.3",
 "seneca": "^0.8.0",
 "seneca-mongo-store": "^0.2.0",
 "type-is": "^1.6.10"
 }
}

Here we control all the libraries needed for our microservice to run, as well as
the configuration.

https://github.com/rjrodger/seneca-mongo-store
https://github.com/rjrodger/seneca-mongo-store

Chapter 4

[725]

Integrating with Express – how to create a
REST API
Integrating with Express is quite straightforward. Let's take a look at the code:

 seneca.act('role:web',{use:{
 prefix: '/products',
 pin: {area:'product',action:'*'},
 map:{
 fetch: {GET:true},
 edit: {PUT:true},
 delete: {GET: false, DELETE: true}
 }
 }});
 var express = require('express');
 var app = express();
 app.use(require("body-parser").json());

 // This is how you integrate Seneca with Express
 app.use(seneca.export('web'));

 app.listen(3000);

This code snippet, as we've seen in the preceding section, provides the following
three REST endpoints:

/products/fetch

/products/edit

/products/delete

Let's explain how.

First, what we do is tell Seneca to execute the role:web action, indicating the
configuration. This configuration specifies to use a /products prefix for all the URLs,
and it pins the action with a matching {area: "product", action: "*"} pattern.
This is also new for us, but it is a nice way to specify to Seneca that whatever action
it executes in the URL, it will have implicit area: "product" of the handler. This
means that /products/fetch endpoint will correspond to the {area: 'products',
action: 'fetch'} pattern. This could be a bit difficult, but once you get used to it,
it is actually really powerful. It does not force use to fully couple our actions with
our URLs by conventions.

Writing Your First Microservice in Node.js

[726]

In the configuration, the attribute map specifies the HTTP actions that can be
executed over an endpoint: fetch will allow GET, edit will allow PUT, and delete
will only allow DELETE. This way, we can control the semantics of the application.

Everything else is probably familiar to you. Create an Express app and specify using
the following two plugins:

•	 The JSON body parser
•	 The Seneca web plugin

This is all. Now, if we add a new action to our Seneca list of actions in order to
expose it through the API, the only thing that needs to be done is to modify the
map attribute to allow HTTP methods.

Although we have built a very simplistic microservice, it captures a big portion of the
common patterns that you find when creating a CRUD (Create Read Update Delete)
application. We have also created a small REST API out of a Seneca application with
little to no effort. All we need to do now is configure the infrastructure (MongoDB)
and we are ready to deploy our microservice.

The e-mailer – a common problem
E-mailing is something that every company needs to do. We need to communicate
with our customers in order to send notifications, bills, or registration e-mails.

In the companies where I've worked before, e-mailing always presented a problem
such as e-mails not being delivered, or being delivered twice, with the wrong content
to the wrong customer, and so on. It looks terrifying that something as simple as
sending an e-mail could be this complicated to manage.

In general, e-mail communication is the first candidate to write a microservice. Think
about it:

•	 E-mail does one thing
•	 E-mail does it well
•	 E-mail keeps its own data

It is also a good example of how the Conway's law kicks into our systems without
being noticed. We design our systems modeling the existing communication in our
company as we are constrained by it.

Chapter 4

[727]

How to send e-mails
Back to the basics. How do we send e-mails? I am not talking about which network
protocol we use for sending the e-mail or what are the minimum acceptable headers?

I am talking about what we need to send an e-mail from the business point of view:

•	 A title
•	 The content
•	 A destination address

That is everything. We could have gone far, talking about acknowledgements,
secure e-mail, BCCs, and so on. However, we are following the lean methodology:
start with the minimum viable product and build up from it until you achieve the
desired result.

I can't remember a project where the e-mail sending wasn't a controversial part. The
product chosen to deliver e-mails ends up tightly coupled to the system and it is
really hard to replace it seamlessly. However, microservices are here to rescue us.

Defining the interface
As I mentioned before, although it sounds easy, sending corporate e-mails could
end up being a mess. Therefore, the first thing we need to clear is our minimum
requirements:

•	 How do we render the e-mail?
°° Does rendering the email belongs to the bound context of the

email manipulation?
°° Do we create another microservice to render e-mails?
°° Do we use a third party to manage the e-mails?

•	 Do we store the already sent e-mails for auditing purposes?

For this microservice, we are going to use Mandrill. Mandrill is a company that
allows us to send corporate e-mails, track the already sent e-mails, and create e-mail
templates that can be edited online.

Our microservice is going to look as shown in the following code:

var plugin = function(options) {
 var seneca = this;
 /**

Writing Your First Microservice in Node.js

[728]

 * Sends an email using a template email.
 */
 seneca.add({area: "email", action: "send", template: "*"},
 function(args, done) {
// TODO: More code to come.
 });

 /**
 * Sends an email including the content.
 */
 seneca.add({area: "email", action: "send"}, function(args, done) {
// TODO: More code to come.
 });
};

We have two patterns: one that makes use of templates and the other that sends the
content contained in the request.

As you can see, everything that we have defined here is information related to
e-mailing. There is no bleeding from the Mandrill terminology into what the other
microservices see in our e-mail sending. The only compromise that we are making is
the templating. We are delegating the template rendering to the e-mail sender, but it
is not a big deal, as even if we walk away from Mandrill, we will need to render the
content somehow.

We will come back to the code later.

Setting up Mandrill
Mandrill is fairly easy to use and shouldn't be a problem to set up. However, we are
going to use the test mode so that we can assure that the e-mails are not going to be
delivered and we can access the API for all our needs.

The first thing we need to do is create an account on Mandrill. Just register with
your e-mail at https://mandrillapp.com, and you should be able to access to it,
as shown in the following screenshot:

https://mandrillapp.com

Chapter 4

[729]

Now we have created an account that we need to enter into the test mode. In order to
do it, just click on your e-mail at the top-right corner and select the Turn on the test
mode option from the menu. The Mandrill menu on the left will turn orange now.

Next, we need to create an API key. This key is the login information to be used
by the Mandrill API. Just click on Settings and SMTP & API Info and add a new
key (don't forget the checkbox to mark the key as test key). It should look like the
following screenshot now:

Writing Your First Microservice in Node.js

[730]

The key is everything you need for now. Let's test the API:

var mandrill = require("mandrill-api/mandrill");
var mandrillClient = new mandrill.Mandrill("<YOUR-KEY-HERE>");

mandrillClient.users.info({}, function(result){
 console.log(result);
}, function(e){
 console.log(e);
});

With these few lines, we have managed to test that Mandrill is up and running and
we have a valid key. The output of this program should be something very similar to
the following JSON:

Hands on – integrating Mandrill in your
microservice
Everything is ready now. We have a working key and our interface. The only thing
left is to create the code. We are going to use a small part of the Mandrill API, but
if you want to make use of other features, you can find a better description here:
https://mandrillapp.com/api/docs/

Let's take a look at the following code:

/**
 * Sends an email including the content.
 */

https://mandrillapp.com/api/docs/

Chapter 4

[731]

 seneca.add({area: "email", action: "send"}, function(args, done)
 {
 console.log(args);
 var message = {
 "html": args.content,
 "subject": args.subject,
 "to": [{
 "email": args.to,
 "name": args.toName,
 "type": "to"
 }],
 "from_email": "info@micromerce.com",
 "from_name": "Micromerce"
 }
 mandrillClient.messages.send({"message": message},
 function(result) {
 done(null, {status: result.status});
 }, function(e) {
 done({code: e.name}, null);
 });
 });

This first method sends messages without using a template. We just get the HTML
content (and a few other parameters) from our application and deliver it through
Mandrill.

As you can see, we only have two contact points with the outer world: the
parameters passed in and the return of our actions. Both of them have a clear
contract that has nothing to do with Mandrill, but what about the data?

At the error, we are returning e.name, assuming that it is a code. At some point,
someone will end up branching the flow depending on this error code. Here, we
have something called data coupling; our software components don't depend on the
contract, but they do depend on the content sent across.

Now, the question is: how do we fix it? We can't. At least not in an easy way. We
need to assume that our microservice is not perfect, it has a flaw. If we switch
provider for e-mailing, we are going to need to revisit the calling code to check
potential couplings.

Writing Your First Microservice in Node.js

[732]

In the world of software, in every single project that I've worked on before, there
was always a big push trying to make the code as generic as possible, trying to guess
the future, which usually could be as bad as assuming that your microservice won't
be perfect. There is something that always attracted my attention: we put a large
amount of effort in to perfection, but we pretty much ignore the fact that we are
going to fail and we do can nothing about it. Software fails often and we need to be
prepared for that.

Later, we will see a pattern to factor human nature into the microservices: the circuit
breaker.

Don't be surprised if Mandrill rejects the e-mails due to the unsigned reason. This is
due to the fact that they couldn't validate the domain from where we are sending
the e-mail (in this case, a dummy domain that does not exist). If we want Mandrill to
actually process the e-mails (even though we are in test mode), we just need to verify
our domain by adding some configuration to it.

More information can be found in the Mandrill documentation here:
https://mandrillapp.com/api/docs/

The second method to send e-mails is send an e-mail from a template. In this case,
Mandrill provides a flexible API:

•	 It provides per-recipient variables in case we send the e-mail to a list
of customers

•	 It has global variables
•	 It allows content replacement (we can replace a full section)

For convenience, we are going to just use global variables as we are limited on space
in this book.

Let's take a look at the following code:

 /**
 * Sends an email using a template email.
 */
 seneca.add({area: "email", action: "send", template: "*"},
 function(args, done) {
 console.log("sending");
 var message = {
 "subject": args.subject,
 "to": [{
 "email": args.to,

https://mandrillapp.com/api/docs/

Chapter 4

[733]

 "name": args.toName,
 "type": "to"
 }],
 "from_email": "info@micromerce.com",
 "from_name": "Micromerce",
 "global_merge_vars": args.vars,
 }
 mandrillClient.messages.sendTemplate(
 {"template_name": args.template, "template_content": {},
 "message": message},
 function(result) {
 done(null, {status: result.status});
 }, function(e) {
 done({code: e.name}, null);
 });
 });

Now we can create our templates in Mandrill (and let someone else to manage
them) and we are able to use them to send e-mails. Again, we are specializing. Our
system specializes in sending e-mails and you leave the creation of the e-mails to
someone else (maybe someone from the marketing team who knows how to talk to
customers).

Let's analyze this microservice:

•	 Data is stored locally: Not really (it is stored in Mandrill), but from the
design point of view, it is

•	 Our microservice is well cohesioned: It sends only e-mails; it does one thing,
and does it well

•	 The size of the microservice is correct: It can be understood in a few minutes,
it does not have unnecessary abstractions and can be rewritten fairly easily

When we talked about the SOLID design principles earlier, we always skipped L,
which stands for Liskov Substitution. Basically, this means that the software has
to be semantically correct. For example, if we write an object-oriented program that
handles one abstract class, the program has to be able to handle all the subclasses.

Coming back to Node.js, if our service is able to handle sending a plain e-mail, it
should be easy to extend and add capabilities without modifying the existing ones.

Think about it from the day-to-day production operations point of view; if a new
feature is added to your system, the last thing you want to do is retest the existing
functionalities or even worse, deliver the feature to production, introducing a bug
that no one was aware of.

Writing Your First Microservice in Node.js

[734]

Let's create a use case. We want to send the same e-mail to two recipients. Although
Mandrill API allows the calling code to do it, we haven't factored in a potential CC.

Therefore, we are going to add a new action in Seneca that allows us to do it,
as follows:

 /**
 * Sends an email including the content.
 */
 seneca.add({area: "email", action: "send", cc: "*"},
 function(args, done) {
 var message = {
 "html": args.content,
 "subject": args.subject,
 "to": [{
 "email": args.to,
 "name": args.toName,
 "type": "to"
 },{
 "email": args.cc,
 "name": args.ccName,
 "type": "cc"
 }],
 "from_email": "info@micromerce.com",
 "from_name": "Micromerce"
 }
 mandrillClient.messages.send({"message": message},
 function(result) {
 done(null, {status: result.status});
 }, function(e) {
 done({code: e.name}, null);
 });
 });

We have instructed Seneca to take the calls that include cc in the list of parameters
and send them using a Mandrill CC in the send API. If we want to use it, the
following signature of the calling code will change:

seneca.act({area: "email", action: "send", subject: "The Subject", to:
"test@test.com", toName: "Test Testingtong"}, function(err, result){
// More code here
});

Chapter 4

[735]

The signature will change to the following code:

seneca.act({area: "email", action: "send", subject: "The Subject",
to: "test@test.com", toName: "Test Testingtong", cc: "test2@test.com",
ccName: "Test 2"}, function(err, result){
// More code here
});

If you remember correctly, the pattern matching tries to match the most concrete
input so that if an action matches with more parameters than another one, the call
will be directed to it.

Here is where Seneca shines: We can call it polymorphism of actions, as we
can define different versions of the same action with different parameters that
end up doing slightly different things and enabling us to reutilize the code if we
are 100% sure that this is the right thing to do (remember, microservices enforce
the share-nothing approach: repeating the code might not be as bad as coupling
two actions).

Here is the package.json for the e-mailer microservice:

{
 "name": "emailing",
 "version": "1.0.0",
 "description": "Emailing sub-system",
 "main": "index.js",
 "keywords": [
 "microservices",
 "emailing"
],
 "author": "David Gonzalez",
 "license": "ISC",
 "dependencies": {
 "mandrill-api": "^1.0.45",
 "seneca": "^0.8.0"
 }
}

The fallback strategy
When you design a system, usually we think about replaceability of the existing
components; for example, when using a persistence technology in Java, we tend to
lean towards standards (JPA) so that we can replace the underlying implementation
without too much effort.

Writing Your First Microservice in Node.js

[736]

Microservices take the same approach, but they isolate the problem instead of
working towards an easy replaceability. If you read the preceding code, inside the
Seneca actions, we have done nothing to hide the fact that we are using Mandrill to
send the e-mails.

As I mentioned before, e-mailing is something that, although seems simple, always
ends up giving problems.

Imagine that we want to replace Mandrill for a plain SMTP server such as Gmail. We
don't need to do anything special, we just change the implementation and roll out
the new version of our microservice.

The process is as simple as applying the following code:

var nodemailer = require('nodemailer');
var seneca = require("seneca")();
var transporter = nodemailer.createTransport({
 service: 'Gmail',
 auth: {
 user: 'info@micromerce.com',
 pass: 'verysecurepassword'
 }
});

/**
 * Sends an email including the content.
 */
seneca.add({area: "email", action: "send"}, function(args, done) {
 var mailOptions = {
 from: 'Micromerce Info <info@micromerce.com>',
 to: args.to,
 subject: args.subject,
 html: args.body
 };
 transporter.sendMail(mailOptions, function(error, info){
 if(error){
 done({code: e}, null);
 }
 done(null, {status: "sent"});
 });
});

Chapter 4

[737]

For the outer world, our simplest version of the e-mail sender is now using SMTP
through Gmail to deliver our e-mails.

As we will see later in the book, delivering a new version of the same interface
in a microservice network is fairly easy; as long as we respect the interface, the
implementation should be irrelevant.

We could even roll out one server with this new version and send some traffic to it
in order to validate our implementation without affecting all the customers (in other
words, contain the failure).

We have seen how to write an e-mail sender in this section. We have worked
through a few examples on how our microservice can be adapted quickly for new
requirements as soon as the business requires new capabilities or we decide that our
vendor is not good enough to cope with our technical requirements.

The order manager
The order manager is a microservice that processes the orders that the customer
places through the UI. As you probably remember, we are not going to create a
sophisticated single-page application with a modern visual framework, as it is out of
the scope of this book, but we are going to provide the JSON interface in order to be
able to build the front end later.

Order manager introduces an interesting problem: this microservice needs access
to the information about products, such as name, price, availability, and so on.
However, it is stored in the product manager microservice, so how do we do that?

Well, the answer for this question might look simple, but requires a bit of thinking.

Defining the microservice – how to gather
non-local data
Our microservice will need to do the following three things:

•	 Recover orders
•	 Create orders
•	 Delete existing orders

Writing Your First Microservice in Node.js

[738]

When recovering an order, the option is going to be simple. Recover the order by
the primary key. We could extend it to recover orders by different criteria, such as
price, date, and so on, but we are going to keep it simple as we want to focus on
microservices.

When deleting existing orders, the option is also clear: use the ID to delete orders.
Again, we could choose a more advanced deletion criteria, but we want to keep
it simple.

The problem arises when we are trying to create orders. Creating an order in our
small microservice architecture means sending an e-mail to the customer, specifying
that we are processing their order, along with the details of the order, as follows:

•	 Number of products
•	 Price per product
•	 Total price
•	 Order ID (in case the customer needs to troubleshoot problems with

the order)

How do we recover the product details?

If you see our diagram shown in the Micromerce – the big picture section of this
chapter, order manager will only be called from the UI, which will be responsible
to recover the product name, its price, and so on. We could adopt the following two
strategies here:

•	 Order manager calls product manager and gets the details
•	 UI calls product manager and delegates the data to the order manager

Both options are totally valid, but in this case, we are going for the second: UI will
gather the information needed to generate an order and it will only call the order
manager when all the data required is available.

Now to answer the question: why?

Chapter 4

[739]

A simple reason: failure tolerance. Let's take a look at the following sequence
diagram of the two options:

Writing Your First Microservice in Node.js

[740]

The diagram for the second option is shown as follows:

In the first view, there is a big difference: the depth of the call; whereas in the first
example, we have two levels of depth (UI calls the order manager, which calls the
product manager). In the second example, we have only one level of depth. There are
a few immediate effects in our architecture, as follows:

•	 When something goes wrong, if we only have one level of depth, we don't
need to check in too many places.

•	 We are more resilient. If something goes wrong, it is the UI of the
microservice that notices it, returning the appropriate HTTP code, in this
case, without having to translate the errors that occurred a few levels above
the client-facing microservice.

•	 It is easier to deploy and test. Not much easier, but we don't need to juggle
around, we can see straight away if the product manager is reached from the
UI, instead of having to go through the order manager.

Chapter 4

[741]

The fact that we are using this architecture instead of the two-level depth does
not mean that it isn't appropriate for another situation: the network topology is
something that you need to plan ahead if you are creating a microservices-oriented
architecture, as it is one of the hardest aspects to change.

In some cases, if we want to be extremely flexible, we can use a messaging queue
with publisher/subscriber technology where our microservices can subscribe to
different types of messages and emit others to be consumed by a different service,
but it could complicate the infrastructure that we need to put in place to avoid single
point of failures.

The order manager – the code
Let's take a look at the code for the order manager:

var plugin = function(options) {
 var seneca = this;

 seneca.add({area: "orders", action: "fetch"}, function(args,
 done) {
 var orders = this.make("orders");
 orders.list$({id: args.id}, done);
 });

 seneca.add({area: "orders", action: "delete"}, function(args,
 done) {
 var orders = this.make("orders");
 orders.remove$({id: args.id}, function(err) {
 done(err, null);
 });
 });
}
module.exports = plugin;

As you can see, there is nothing complicated about the code. The only interesting
point is the missing code from the create action.

Calling remote services
Until now, we have assumed that all our microservices run in the same machine, but
that is far from ideal. In the real world, microservices are distributed and we need to
use some sort of transport protocol to carry the message from one service to another.

Seneca, as well as nearForm, the company behind Seneca, has sorted this problem for
us and the open source community around it.

Writing Your First Microservice in Node.js

[742]

As a modular system, Seneca has embedded the concept of plugin. By default,
Seneca comes with a bundled plugin to use TCP as the protocol, but it is not hard to
create a new transport plugin.

While writing this book, I created one by myself: https://github.
com/dgonzalez/seneca-nservicebus-transport/

With this plugin, we could route the Seneca messages through NServiceBus
(a .NET-based Enterprise Bus), changing the configuration of our client and server.

Let's see how to configure Seneca to point to a different machine:

var senecaEmailer = require("seneca")().client({host: "192.168.0.2",
port: 8080});

By default, Seneca will use the default plugin for transport, which as we've seen in
Chapter 2, Microservices in Node.js – Seneca and PM2 Alternatives, is tcp, and we have
specified it to point to the 192.168.0.2 host on the 8080 port.

As simple as that, from now on, when we execute an act command on senecaEmailer,
the transport will send the message across to the e-mailer and receives the response.

Let's see the rest of the code:

 seneca.add({area: "orders", action: "create"}, function(args,
 done) {
 var products = args.products;
 var total = 0.0;
 products.forEach(function(product){
 total += product.price;
 });
 var orders = this.make("orders");
 orders.total = total;
 orders.customer_email = args.email;
 orders.customer_name = args.name;
 orders.save$(function(err, order) {
 var pattern = {
 area: "email",
 action: "send",
 template: "new_order",
 to: args.email,
 toName: args.name,
 vars: {

https://github.com/dgonzalez/seneca-nservicebus-transport/
https://github.com/dgonzalez/seneca-nservicebus-transport/

Chapter 4

[743]

 // ... vars for rendering the template including the
 products ...
 }
 }
 senecaEmailer.act(pattern, done);
 });
 });

As you can see, we are receiving a list of products with all the data needed and
passing them to the e-mailer to render the e-mail.

If we change the host where the e-mailer lives, the only change that we need to do
here is the configuration of the senecaEmailer variable.

Even if we change the nature of the channel (we could potentially even write a
plugin to send the data over Twitter, for example), the plugin should look after
the particularities of it and be transparent for the application.

Resilience over perfection
In the example from the preceding section, we built a microservice that calls another
microservice in order to resolve the call that it receives. However, the following
points need to be kept in mind:

•	 What happens if the e-mailer is down?
•	 What happens if the configuration is wrong and the e-mailer is not working

on the correct port?

We could be throwing what ifs for few pages.

Humans are imperfect and so are the things that they build, and software is not an
exception. Humans are also bad at recognizing the potential problems in logical
flows, and software tends to be a complex system.

In other languages, playing with exceptions is almost something normal, but in
JavaScript, exceptions are a big deal:

•	 If an exception bubbles out in a web app in Java, it kills the current stack of
calls and Tomcat (or the container that you use) returns an error to the client

•	 If an exception bubbles out in a Node.js app, the application is killed as we
only have one thread executing the app

As you can see, pretty much every single callback in Node.js has a first parameter
that is an error.

Writing Your First Microservice in Node.js

[744]

When talking about microservices, this error is especially important. You want
to be resilient. The fact that an e-mail has failed sending does not mean that the
order cannot be processed, but the e-mail could be manually sent later by someone
reprocessing the data. This is what we call eventual consistency; we factor into our
system the fact that at some point our system is going to crash.

In this case, if there is a problem sending the e-mail, but we could store the order in
the database, the calling code, in this case the UI, should have enough information to
decide whether the customer gets a fatal message or just a warning:

Your order is ready to be processed, however it might take us two days to send you the e-mail
with the order details. Thanks for your patience.

Usually, the fact that our application will keep working even if we cannot complete
a request, it is usually more business than technical decision. This is an important
detail, as when building microservices, Conway's law is pushing us, the technical
people, to model the existing business process and partial success maps perfectly to
the human nature. If you can't complete a task, create a reminder in Evernote (or a
similar tool) and come back to it once the blocker is resolved.

This reads much better than the following:

Something happened about something, but we can't tell you more (which is what my mind
reads sometimes when I get a general failure in some websites).

We call this way of handling errors system degradation: it might not be 100%
functional, but it will still work even though its few features are not available,
instead of a general failure.

If you think for a second, how many times a web service call has rolled back a full
transaction in your big corporate system only because it couldn't reach a third-party
service that might not even be important?

In this section, we built a microservice that uses another microservice to resolve a
request from a customer: order manager uses e-mailer to complete the request. We
have also talked about resilience and how important it is in our architecture in order
to provide the best service.

The UI – API aggregation
Until now, we have built independent microservices. They had a specific purpose
and dealt with one specific part of our system: e-mail sending, product management,
and order processing, but now we are building a microservice whose only purpose is
to facilitate the communication between microservices.

Chapter 4

[745]

Now we are going to build a microservice that interacts with others and is the
front-facing façade to the customer.

When I was planning the contents of this chapter, a service like this one wasn't in it.
However, after thinking about it, this chapter wouldn't have been the same without
showing a few concepts around API aggregation that are fairly easy to show in a
frontend microservice.

Need for frontend microservice
Think about scalability. When dealing with HTTP traffic, there is a pyramid of traffic.
There are more hits in the frontend than in the backend. Usually, in order to reach
the backend, the frontend needs to process the following few requests from the
frontend:

•	 Read a form
•	 Validate it
•	 Manage the PRG pattern (https://en.wikipedia.org/wiki/Post/

Redirect/Get)

As you can see, there is a lot of logic that needs to be processed by the frontend, so
that it is not hard to see capacity problems if the software is busy. If we are using a
microservice, and we are using it in the right way, scaling up or down should be an
automatic process that can be triggered with a couple of clicks (or commands).

The code
Until now, we have pretty much always tested the code in a single server.
This is fine for testing, but when we are building microservices, we want them
to be distributed. Therefore, in order to achieve it, we need to indicate to Seneca
how to reach the services:

var senecaEmailer = require("seneca")().client({
 host: "192.168.0.2",
 port: 8080
});
var senecaProductManager = require("seneca")().client({
 host: "192.168.0.3",
 port: 8080
});
var senecaOrderProcessor = require("seneca")().client({
 host: "192.168.0.4",
 port: 8080
});

https://en.wikipedia.org/wiki/Post/Redirect/Get
https://en.wikipedia.org/wiki/Post/Redirect/Get

Writing Your First Microservice in Node.js

[746]

What we have done is create three Seneca instances. They are like communication
pipes between servers.

Let's explain the code:

Seneca, by default, uses the transport plugin TCP. It means that Seneca
will be listening to the /act URL on the server. As an example, when
we create senecaEmailer, the URL where Seneca will be pointing to is
http://192.168.0.2:8080/act.

We can actually verify it with curl. If we execute the following command line,
replacing <valid Seneca pattern> by a valid Seneca command, we should get a
response from the server in the JSON format, which would be the second parameter
in the done function for the action:

curl -d '<valid Seneca pattern>' -v http://192.168.0.2:8080/act

Seneca's default transport plugin is TCP. If we don't
specify any other, Seneca will use it to reach other servers
and listen to calls.

Let's see an easy example:

var seneca = require("seneca")();
seneca.add({cmd: "test"}, function(args, done) {
 done(null, {response: "Hello World!"});
});

seneca.listen({port: 3000});

If we run this program, we can see the following output from the terminal:

It means that Seneca is listening to the port 3000. Let's test it:

curl -d '{"cmd": "test"}' -v http://127.0.0.1:3000/act

Chapter 4

[747]

This should print something very similar to the following code in the terminal:

The preceding code is the TCP/IP dialog between our terminal and Seneca server
with the result of the response in the last line.

So, what we achieved earlier on having three different instances of Seneca is
configuring our network of microservices; Seneca will transport the messages
across the network for us.

Writing Your First Microservice in Node.js

[748]

The following flow diagram describes how a single API can hide multiple Seneca
servers in the backend with different microservices (different Seneca instances,
basically):

Now, let's take a look at the skeleton of the microservice:

var express = require("express");
var bodyParser = require('body-parser');
var senecaEmailer = require("seneca")().client({
 host: "192.168.0.2",
 port: 8080
});
var senecaProductManager = require("seneca")().client({
 host: "192.168.0.3",
 port: 8080
});
var senecaOrderProcessor = require("seneca")().client({
 host: "192.168.0.4",
 port: 8080
});

function api(options) {
 var seneca = this;

 /**
 * Gets the full list of products

Chapter 4

[749]

 */
 seneca.add({area: "ui", action: "products"}, function(args,
 done) {
 // More code to come
 });
 /**
 * Get a product by id
 */
 seneca.add({area: "ui", action: "productbyid"}, function(args,
 done) {
 // More code to come
 });

 /**
 * Creates an order
 */
 seneca.add({area: "ui", action: "createorder"}, function(args,
 done) {
 // More code to come
 });

 this.add("init:api", function(msg, respond){
 seneca.act('role:web',{ use: {
 prefix: '/api',
 pin: 'area:ui,action:*',
 map: {
 products: {GET:true}
 productbyid: {GET:true, suffix:'/:id'}
 createorder: {POST:true}
 }
 }}, respond)
 });
}
module.exports = api;
var seneca = require("seneca")();
seneca.use(api);

var app = require("express")();
app.use(require("body-parser").json());
app.use(seneca.export("web"));
app.listen(3000);

Writing Your First Microservice in Node.js

[750]

We have actually left the functionality that calls other microservices for later
discussion. Now we are going to focus on how the code is articulated:

•	 We are creating a new plugin. The plugin is called api (the name of the
function for wrapping the plugin is api).

•	 The plugin has to perform the following three actions:
°° List all the products
°° Get a product by ID
°° Create an order

•	 These three actions will call to two different microservices: Product Manager
and Order Manager. We will come back to this topic later.

Seneca can be seamlessly integrated with Express in order to
provide web capabilities to Seneca microservices.

Until here, everything is well known, but what about the initialization function
of the plugin?

At first look, it looks like dark magic:

 this.add("init:api", function(msg, respond){
 seneca.act('role:web',{ use: {
 prefix: '/api',
 pin: 'area:ui,action:*',
 map: {
 products: {GET:true}
 productbyid: {GET:true, suffix:'/:id'}
 createorder: {POST:true}
 }
 }}, respond)
 });

Let's explain it:

1.	 Seneca will call the init: <plugin-name> action in order to initialize
the plugin.

2.	 Through the prefix argument, we are listening to URLs under the
/api path.

Chapter 4

[751]

3.	 We are instructing Seneca to map the URLs to action by pinning a base
common argument. In this case, all our seneca.add(..) contains an argument
called area with the ui value. We are also asking Seneca to route calls that
contain the action argument (no matter the value, that is why we use the *) so
that it would ignore calls that don't specify the action argument.

The following argument (map) specifies the methods allowed in the matching.

How is the argument matching done?

The area argument is implicit as we have pinned it with the ui value.

The action argument needs to be present.

The URL must start with /api as we specified a prefix.

So, with this information, /api/products will correspond to the {area: "ui",
action: "products"} action. In the same way, /api/createorder will correspond
to the {area: "ui", action:"createorder"} action.

The Productbyid argument is a bit special.

The Seneca pin keyword is used to assume that the calling code
has a pair of argument-value so that it makes the code easier to
understand, but be careful, implicit values can have bad effects to
the readability.

Now, although it is not simple, this looks much easier.

Let's go back to the Seneca actions that are going to provide the functionality:

 /**
 * Gets the full list of products.
 */
 seneca.add({area: "ui", action: "products"}, function(args,
 done) {
 senecaProductManager.act({area: "product", action: "fetch"},
 function(err, result) {
 done(err, result);
 });
 });

 /**
 * Get a product by id.
 */

Writing Your First Microservice in Node.js

[752]

 seneca.add({area: "ui", action: "productbyid"}, function(args,
 done) {
 senecaProductManager.act({area: "product", action: "fetch",
 criteria: "byId", id: args.id}, function(err, result) {
 done(err, result);
 });
 });

 /**
 * Creates an order to buy a single prodct.
 */
 seneca.add({area: "ui", action: "createorder"}, function(args,
 done) {
 senecaProductManager.act({area: "product", action: "fetch",
 criteria: "byId", id: args.id}, function(err, product) {
 if(err) done(err, null);
 senecaOrderProcessor.act(area: "orders", action: "create",
 products: [product], email: args.email, name: args.name,
 function(err, order) {
 done(err, order);
 });
 });
 });

Warning! In the services written in this chapter, there is no data
validation performed in order to make the concepts around the
design of microservices clear. You should always validate the
incoming data from untrusted systems (such as customers input).

We are actually using everything that we've discussed in the previous chapters, but
we are taking a step forward in the Seneca semantics.

We have created an API with a very limited set of functionalities, but through them,
we are aggregating the functionality of different microservices into one.

A detail to take into account is the amount of nested calls in the create order action
(the last one). In this case, we are creating orders out of only a product to simplify
the code, but if we are nesting too many calls for non-blocking actions waiting for
the response in a callback, we will end up having a pyramid of code that makes your
program difficult to read.

The solution for it would be to refactor how the data is fetched and/or reorganize
the anonymous functions, avoiding inlining.

Chapter 4

[753]

Another solution is the usage of promises libraries such as Q or Bluebird (http://
bluebirdjs.com/) that allow us to chain the flow of the methods through promises:

myFunction().then(function() {
// Code here
}).then(function(){
// More code here
}).catch(function(error){
// Handle the error.
});

In this way, instead of building a sea of callbacks, we are nicely chaining the calls to
the methods and adding error handlers to avoid the exceptions from bubbling up.

As you can see, we are using the UI as a central point of communication for all the
microservices, except for the mailer, and we have a really good reason for it.

Service degradation – when the failure is not
a disaster
Microservices are great, and we have demonstrated that by writing a small system in
a few hundred lines of code that is fairly easy to understand.

They are also great as they allow us to react in the event of a failure:

•	 What happens if the e-mailer microservice stops working?
•	 What happens if the order processor stops working?
•	 Can we recover from the situation?
•	 What does the customer see?

These questions, on a monolithic system, are nonsense. The e-mailer probably would
be a part of the application. The failure on sending an e-mail implies a general error,
unless it is specifically handled. Same with the order processor.

However, what about our microservices-oriented architecture?

The fact that the e-mailer has failed to deliver a few e-mails does not prevent the
orders from being processed, even though the customers aren't getting the e-mails.
This is what we call performance or service degradation; the system might be slower,
but some functionalities will still work.

http://bluebirdjs.com/
http://bluebirdjs.com/

Writing Your First Microservice in Node.js

[754]

Service degradation is the ability of a system to lose a
feature without suffering a general failure.

What about the order manager? Well...we can still make the products-related calls
work, but we won't be able to process any order…which might still be a good thing.

The fact that the order manager is responsible for sending the e-mail instead of
the UI microservice is not coincidental; we only want to send the e-mail with the
acknowledgement of a sale on the success event, and we don't want to send the
success e-mail in any other case.

Circuit breakers
In the previous section, we talked about system degradation in the event of a failure,
but everybody who has worked in IT for a number of years knows that a system
does not fail suddenly in most cases of failures.

The most common event is a timeout; the server is busy for a period of time, which
makes the request to fail, giving our customers a terrible user experience.

How can we solve this particular problem?

We can solve this problem with a circuit breaker, as shown in the following image:

Chapter 4

[755]

A circuit breaker is a mechanism to prevent requests from reaching an unstable
server that could cause our application to misbehave.

As you can see in the preceding schema, the circuit breaker has the following
three statuses:

•	 Closed: The circuit is closed; the requests reach their destination.
•	 Open: The circuit is open; the requests don't get past the circuit breaker

and the client gets an error. The system will retry the communication after
a time period.

•	 HalfOpen: The circuit tests the service again, and if there is no error reaching
it, the requests can flow again and the circuit breaker is Closed.

With this simple mechanism, we can prevent the errors to cascade through our
system, avoiding catastrophic failures.

Ideally, the circuit breaker should be asynchronous. This means that even if there
are no requests, every few seconds/milliseconds, the system should be trying to
re-establish the connection to the faulty service in order to continue the normal
operation.

Failure is a common denominator in the human
nature: better be prepared for it.

Circuit breakers are also an ideal place to alert the support engineers. Depending on
the nature of our system, the fact that a given service cannot be reached could mean
a serious issue. Can you imagine a bank that is unable to reach the SMS service to
send two-factor authentication codes? No matter how hard we try, it will always
happen at some point. So, be prepared for it.

There is a very inspiring article from Martin Fowler (one of the big names
in microservices) about circuit breakers at http://martinfowler.
com/bliki/CircuitBreaker.html.

http://martinfowler.com/bliki/CircuitBreaker.html
http://martinfowler.com/bliki/CircuitBreaker.html

Writing Your First Microservice in Node.js

[756]

Seneca – a simple puzzle that makes our lives
easier
Seneca is great. It enables the developers to take a simple and small idea and
translate it into a piece of code with a connection point that does not make any
assumption, just facts. An action has a clear input and provides you the interface
to give an answer for it through a callback.

How many times have you found your team struggling with the class structure of an
application just to reuse code in a nice way?

Seneca focuses on simplicity. The fact that we are not modeling objects, but just parts
of systems using small portions of code that are extremely cohesive and idempotent
to objects makes our life much easier.

Another way how Seneca makes our life easy is through the plugability.

If you review the code that we have been writing in this book, the first thing that will
be spotted is how convenient the plugins are.

They provide the right level of encapsulation for a bunch of actions (Does it look
similar to a class?) that are somehow related to each other.

I always try not to over-engineer solutions. It is really easy to fall into premature
abstraction, preparing the code for a future that we don't know whether it it is going
to happen in the majority of the cases.

We don't realize how long we spend maintaining features that have been overdesigned
and need to be tested every time someone changes the code around them.

Seneca avoids (or at least discourages) this type of designs. Think about Seneca
actions as a small piece of paper (like a post-it), where you need to write what
happened last week. You need to be smart about what to fit in there, and possibly,
split it into another post-it if the content gets to dense.

Another point where Seneca is good is in configurability. As we have seen before,
Seneca comes with a number of integrations for data storage and transport.

Chapter 4

[757]

An important side of Seneca is the transport protocol. As we know by now, the
default transport is carried over TCP, but can we use a message queue to do it? The
structure is shown as follows:

Yes, we can. It is already done and maintained.

The following URL is a plugin for Seneca that allows it to send messages
over RabbitMQ instead of HTTP:
https://github.com/senecajs/seneca-rabbitmq-transport

If you look into the code of the plugin (it looks really complex, but it is not), you can
spot where the magic happens in few seconds:

 seneca.add({role: 'transport', hook: 'listen', type: 'rabbitmq'},
hook_listen_rabbitmq)
 seneca.add({role: 'transport', hook: 'client', type: 'rabbitmq'},
hook_client_rabbitmq)

Seneca is using Seneca actions to delegate the transport of the message. Although it
looks a bit recursive, it is brilliant!

Once you understand how Seneca and the transport protocol chosen work, you are
immediately qualified to write a transport plugin for Seneca.

When I started learning about Seneca in order to write this
book, I also wrote a transport plugin to use NServiceBus
(http://particular.net/).

NServiceBus is an interesting idea, it allows you to connect a number of storages and
AMPQ-compliant systems and use them as clients. For example, we could be writing
messages in a SQL Server table and consuming them from a queue once they get
routed through NServiceBus, having immediate auditing capabilities on the history
of the messages.

With such flexibility, we could potentially write a plugin that uses pretty much
anything as a transport protocol.

https://github.com/senecajs/seneca-rabbitmq-transport
http://particular.net/

Writing Your First Microservice in Node.js

[758]

Seneca and promises
All our code from the previous chapters is relying on callbacks. Callbacks are good
as far as your code does not nest them on more than three levels.

However, there is an even better way of managing the asynchronous nature of
JavaScript: promises.

Take a look at the following code:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>promise demo</title>
<script src="https://code.jquery.com/jquery-1.10.2.js"></script>
</head>
<body>

<button>Go</button>
<p>Ready...</p>
<div></div>
<div></div>
<div></div>
<div></div>

<script>
var effect = function() {
 return $("div").fadeIn(800).delay(1200).fadeOut();
};

$("button").on("click", function() {
 $("p").append(" Started... ");

 $.when(effect()).done(function() {
 $("p").append(" Finished! ");
 });
});
</script>

</body>
</html>

The preceding code is an example of the JQuery fragment using promises.

Chapter 4

[759]

A promise, by its definition is:

A declaration or assurance that one will do something or that a particular thing will happen.

That is exactly it. If you see the preceding code, $.when, returns a promise. We don't
know how long the effect function will take, but we can guarantee that once it is
ready, the function inside of done will be executed. It looks very similar to callbacks,
but take a look at the following code:

callhttp(url1, data1).then(function(result1) {
 // result1 is available here
 return callhttp(url2, data2);
}).then(function(result2) {
 // only result2 is available here
 return callhttp(url3, data3);
}).then(function(result3) {
 // all three are done now, final result is in result3
});

Don't try to execute it, it is just a hypothetical example, but what we are doing in
there is chain promises; and that makes the code vertical instead of ending up in a
pyramid-shaped program, which is a lot harder to read, as shown in the following
diagram:

Writing Your First Microservice in Node.js

[760]

Seneca, by default, is not a promise-oriented framework, but (there is always a but)
using Bluebird, one of the most famous promises libraries in JavaScript, we can
promisify Seneca, as follows:

var Promise = require('bluebird');
var seneca = require('seneca')();

// Promisify the .act() method; to learn more about this technique
 see:
// http://bluebirdjs.com/docs/features.html#promisification-on-
 steroids
var act = Promise.promisify(seneca.act, seneca);

// Return no error and a success message to illustrate a resolved
 promise
seneca.add({cmd: 'resolve'}, function (args, done) {
 done(null, {message: "Yay, I've been resolved!"});
});

// Return an error to force a rejected promise
seneca.add({cmd: 'reject'}, function (args, done) {
 done(new Error("D'oh! I've been rejected."));
});

// Use the new promisified act() with no callback
act({cmd: 'resolve'})
 .then(function (result) {
 // result will be {message: "Yay, I've been resolved!"} since
 // its guaranteed to resolve
 })
 .catch(function (err) {
 // Catch any error as usual if it was rejected
 });

act({cmd: 'reject'})
 .then(function (result) {
 // Never reaches here since we throw an error on purpose
 })
 .catch(function (err) {
 // err will be set with message "D'oh! I've been rejected."
 });

There are two important details in the preceding code:

var act = Promise.promisify(seneca.act, seneca);

Chapter 4

[761]

This creates a promisified version of the act function and its use, as follows:

act({cmd: 'reject'})
 .then(function (result) {
 // Never reaches here since we throw an error on purpose
 })
 .catch(function (err) {
 // err will be set with message "D'oh! I've been rejected."
 });

An important detail in this last fragment; instead of receiving a callback with the
following two parameters:

•	 An error
•	 The results

We are chaining the following two methods:

•	 Then: This is executed when the promise is resolved
•	 Catch: This is executed if there is an error while resolving the promise

This type of constructions allows us to write the following code:

act({cmd: 'timeout'})
 .then(function (result) {
 // Never reaches here since the gate executer times out
 })
 .catch(function (err) {
 // err will be set with a timeout error thrown by the gate executer
 });

This code is handling something that we have never talked about before: the gate
executor timeouts. It happens when Seneca cannot reach the destination in some
situations, and it can be easily handled with a promise as shown earlier. The then part
would never be executed as the function will only be called when there is an error.

There are a few well-consolidated options in the market now for promises in
JavaScript. Nowadays, my preferred choice would be Bluebird (https://github.
com/petkaantonov/bluebird) because of its simplicity. Q is another option used
by AngularJS (one of the most popular SPA frameworks), but for day-to-day use, it
looks more complicated than Bluebird.

https://github.com/petkaantonov/bluebird
https://github.com/petkaantonov/bluebird

Writing Your First Microservice in Node.js

[762]

Debugging
Debugging a Node.js application is very similar to debugging any other application.
IDEs like WebStorm or IntelliJ provide a traditional debugger where you can install
breakpoints and stop the execution whenever the application hits the given line.

This is perfect if you buy a license for one of the IDEs, but there is a free alternative
that will have a very similiar result for the users of Google Chrome, node-inspector.

Node-inspector is an npm package that pretty much enables the Chrome debugger to
debug Node.js applications.

Let's see how it works:

1.	 First of all, we need to install node-inspector:
npm install –g node-inspector

This should add a command to our system called node-inspector. If we
execute it, we get the following output:

That means our debug server has started.

2.	 Now we need to run a node application with a special flag to indicate that it
needs to be debugged.
Let's take a simple Seneca act as an example:
var seneca = require('seneca')()
seneca.add({role: 'math', cmd: 'sum'}, function (msg,
 respond) {
 var sum = msg.left + msg.right
 respond(null, {answer: sum})
})

seneca.add({role: 'math', cmd: 'product'}, function (msg,
 respond) {
 var product = msg.left * msg.right
 respond(null, { answer: product })
})

seneca.act({role: 'math', cmd: 'sum', left: 1, right: 2},
 console.log)

Chapter 4

[763]

seneca.act({role: 'math', cmd: 'product', left: 3, right: 4},
 console.log)

3.	 Now, in order to run it on the debug mode, execute the following command:
node index.js --debug-brk

The way to access the debugger is through the URL http://127.0.0.1:808
0/?port=5858:

I am sure this image is very familiar to every developer in the world: it is the Chrome
debugger showing our code. As you can see in the first line, the one highlighted
in blue, the application stopped in the first instruction so that we can place the
breakpoints by clicking the line numbers, as shown in the following image:

Writing Your First Microservice in Node.js

[764]

As you can see in the preceding image, we have installed a breakpoint in line 9.
Now we can use the control panel to navigate through the code and values of
our variables:

The controls on the top speak for themselves if you ever debugged an application:

•	 The first button is called play and it allows the application to run to the
next breakpoint

•	 Step over executes the next line in the current file
•	 Step into goes into the next line, getting deeper in the call stack so that we

can see the call hierarchy
•	 Step out is the reverse of step into
•	 Disable breakpoints will prevent the program from stopping at the

breakpoints
•	 Pause on exceptions, as its name indicates, will cause the program to stop on

exceptions (it is very useful when trying to catch errors)

Chapter 4

[765]

If we click on play, we can see how the script will stop in line 9 in the following image:

As a good debugger, it will let us inspect the value of our variables by hovering the
cursor over the variable name.

Summary
This chapter has been pretty intense. We have gone through a lot of content that
helped us in building a small microservices ecosystem that, when orchestrated
together, would fairly work well. We have been a bit simplistic some times, but the
idea of the book is to indicate the power of the microservices-oriented software. At this
stage, I would recommend the reader to start performing some testing around Seneca.

The documentation on the website is quite helpful, and there are a lot of examples
to follow.

There are a few plugins for storage and transport, as well as other type of plugins
(such as user authentication), that would allow you to experiment with different
features of Seneca.

We will be talking more about some of them in the following chapters.

[767]

Security and Traceability
Security is one of the biggest concerns in systems nowadays. The amount of
information leaked from big companies is worrying, especially because 90% of
the information leaks could be mended with very small actions by the software
developers. Something similar happens with the logging of events and the
traceability of errors. No one really pays too much attention until someone requests
the logs that you don't have in order to audit a failure. In this chapter, we will
discuss how to manage security and logging so that our system is safe and traceable,
with the help of the following topics:

•	 Infrastructure logical security: We will discuss how to secure our software
infrastructure in order to provide the industry standard security layer in our
communications.

•	 Application security: We will introduce the common techniques to secure
our applications. Practices such as output encoding or input validation are
the industry standard and they could save us from a catastrophe.

•	 Traceability: Being able to follow the requests around our system is a must
in microservices architectures. We will leverage this task to Seneca and learn
how to get the information from this fantastic framework.

•	 Auditing: Even though we put our best efforts in building a software,
accidents happen. The ability to rebuild the sequence of calls and see exactly
what happened is important. We will discuss how to enable our system in
order to be able to recover the required information.

Infrastructure logical security
Infrastructure security is usually ignored by software engineers as it is completely
different from their area of expertise. However, nowadays, and especially if your
career is leaning towards DevOps, it is a subject that should not be ignored.

 Security and Traceability
 Security and Traceability

Security and Traceability

[768]

In this book, we are not going to go very deep into the infrastructure security more
than few rules of thumb to keep your microservices safe.

It is strongly recommended for the readers to read and learn about cryptography and
all the implications around the usage of SSH, which is one of the main resources for
keeping communications secure nowadays.

SSH – encrypting the communications
In any organization, there is a strict list of people who can access certain services. In
general, this authentication for these services is done via username and password,
but it can also be done using a key to verify the identity of the user.

No matter what authentication method is used, the communication should always be
done over a secure channel such as SSH.

SSH stands for Secure Shell and it is a software used to access shells in remote
machines, but it can also be a very helpful tool to create proxies and tunnels to
access remote servers.

Let's explain how it works using the following command:

/home/david:(develop)  ssh david@192.168.0.1

The authenticity of host '192.168.0.1 (192.168.0.1)' can't be
established.

RSA key fingerprint is SHA256:S22/A2/
eqxSqkS4VfR1BrcDxNX1rmfM1JkZaGhrjMbk.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.0.1' (RSA) to the list of known
hosts.

vagrant@192.168.0.1's password:

Last login: Mon Jan 25 02:30:21 2016 from 10.0.2.2

Welcome to your virtual machine.

In this case, I am using Vagrant to facilitate the building of virtual machines. Vagrant
is a very popular tool to automate development environments and their website
(https://www.vagrantup.com/) consists of useful information.

https://www.vagrantup.com/

Chapter 5

[769]

In the first line, we execute the ssh david@192.168.0.1 command. This command
tries to open a terminal as the user david in the 192.168.0.1 host.

As it is the first time that this command is executed against the machine in the IP
192.168.0.1, our computer will not trust the remote server.

This is done by maintaining a file called known_hosts, under the /home/david/.
ssh/known_hosts folder in this case (it will depend on the user).

This file is a list of hosts with the corresponding key. As you can see, the following
two lines explain that the host cannot be trusted and present the fingerprint of the key
held by the remote server in order to verify it:

The authenticity of host '192.168.0.1 (192.168.0.1)' can't be
established.

RSA key fingerprint is SHA256:S22/A2/
eqxSqkS4VfR1BrcDxNX1rmfM1JkZaGhrjMbk.

At this point, the user is supposed to verify the identity of the server by checking the
key. Once this is done, we can instruct SSH to connect to the server, which will result
in the following log being printed:

Warning: Permanently added '192.168.0.1' (RSA) to the list of known
hosts.

Now, if we check our known_hosts file, we can see that the key has been added to
the list, as follows:

This key stored in the known_hosts file is the public key of the remote server.

Security and Traceability

[770]

SSH uses a cryptography algorithm called RSA. This algorithm is built around the
concept of asymmetric cryptography, which is shown in the following image:

The asymmetric cryptography relies on a set of keys: one public and one private. As
the name states, the public key can be shared with everyone; whereas, the private
key has to be kept secret.

The messages encrypted with the private key can only be decrypted with the public
key and the other way around so that it is almost impossible (unless someone gets
the other half of the key) to intercept and decrypt a message.

At this point, our computer knows the public key of the server and we are in a
position to start an encrypted session with the server. Once we get the terminal, all the
commands and results of these commands will be encrypted and sent over the wire.

Chapter 5

[771]

This key can also be used to connect to a remote server without password. The only
thing we need to do is generate an SSH key in our machine and install it in the server
in a file called authorized_keys under the .ssh folder, where the known_hosts
file is.

When working with microservices, you can be remotely logged in to quite a few
different machines so that this approach becomes more attractive. However, we need
to be very careful about how we handle the private keys because if a user leaks that
private key, our infrastructure could be compromised.

Application security
Application security is becoming more and more important. As the cloud is
becoming the de-facto standard for infrastructure in large companies, we can't
rely on the fact that the data is confined in a single data centre.

Usually, when someone starts a new business, the main focus is to build the
product from the functional point of view. Security is not the main focus and
usually gets overlooked.

This is a very dangerous practice and we are going to amend that by letting the
reader know the main security threats that could compromise our application.

The main four big security points to develop applications in a secure manner are
as follows:

•	 Injection
•	 Cross-site scripting
•	 Cross-site request forgery token protection
•	 Open redirects

At the end of this section, we will be able to identify the main vulnerabilities, but we
won't be armored against a malicious attacker. In general, a software engineer should
be up to date with the security as much as they are up to date with new technologies.
No matter how good the product you build is, if it is not secure, someone will find
out and take the advantage of it.

Common threats – how to be up to date
As we stated before, security is an ongoing subject in application development.
No matter what type of software you are building, there will always be security
implications around it.

Security and Traceability

[772]

The best way I've found during my professional career to be up to date with security
around web development without being a full-time dedicated security engineer is
to follow the OWASP project. OWASP stands for Open Web Application Security
Project and they produce quite an interesting document (among others) on a yearly
basis called OWASP Top 10.

OWASP Top 10 was first published in 2003 and its goal is to raise
awareness in the development community about the most common
threats in application development.

In the previous section, we identified the four main security issues that a software
developer can face and all of them are mentioned in the following sections.

Injection
Injection is, by far, the most dangerous attack that we could be exposed to.
Specifically, a SQL injection is the most common form of injection that affects
applications and it consists of an attacker forcing a SQL code in one of our application
queries, leading to a different query that could compromise the data of our company.

There are other types of injections, but we are going to focus on SQL injection, as
pretty much every application in the modern world uses a relational database.

SQL injection consists of the injection or manipulation of SQL queries in our
application through the input from non-validated sources, such as a web form
or any other data source with arbitrary input of text.

Let's consider the following example:

SELECT * FROM users WHERE username = 'username' AND password = 'password'

Never store passwords in plain in the database. Always hash
and salt them to avoid rainbow-table attacks. This is just an
example.

This query will give us the user that corresponds to a given name and password. In
order to build the query from the client's input, we can consider doing something
similar to the following code as a good idea:

var express = require('express');
var app = express();
var mysql = require('mysql');

var connection = mysql.createConnection({

Chapter 5

[773]

 host : 'localhost',
 user : 'me',
 password : 'secret',
 database : 'test_db'
});

app.get('/login', function(req, res) {
 var username = req.param("username");
 var password = req.param("password");

 connection.connect();
 var query = "SELECT * FROM users WHERE username = '" + username
 + "' AND password = '" + password + "'";
 connection.query(query, function(err, rows, fields) {
 if (err) throw err;
 res.send(rows);
 });
 connection.end();
});

app.listen(3000, function() {
 console.log("Application running in port 3000.");
});

At first sight, it looks like an easy program that accesses the database called test_db
and issues a query to check whether there is a user that matches the username and
password and renders it back to the client so that if we open the browser and try to
browse to the http://localhost:3000/login?username=david&password=mypassw
ord URL, the browser will render a JSON object with the result of the following query:

SELECT * FROM users WHERE username = 'david' AND password = 'mypassword'

Nothing strange yet, but what happens if the customer tries to hack us?

Take a look at the following input:

http://localhost:3000/login?username=' OR 1=1 --&password=mypassword

As you can see, the query generated by it is the following code:

SELECT * FROM users WHERE username = '' OR 1=1 -- AND password =
'mypassword'

In SQL, the -- character sequence is used to comment the rest of the line so that the
effective query would be as follows:

SELECT * FROM users WHERE username='' OR 1=1

Security and Traceability

[774]

This query returns the full list of users, and if our software is using the result of this
query to resolve whether the user should be logged in or not, we are in some serious
problems. We have just granted access to our system to someone who does not even
know a valid username.

This is one of the many examples on how SQL injection can affect us.

In this case, it is pretty obvious that we are concatenating untrusted data (coming
from the user) into our query, but believe me, when the software gets more
complicated, it is not always easy to identify.

A way to avoid SQL injection is through the usage of prepared statements.

Input validation
Applications interact with users mainly through forms. These forms usually contain
free text input fields that could lead to an attack.

The easiest way to prevent corrupted data from getting into our server is through
input validation, which as the name suggests, consists of validating the input from
the user to avoid the situation described earlier.

There are two types of input validation, as follows:

•	 White listing
•	 Black listing

Black listing is a dangerous technique. In majority of cases, trying to define what is
incorrect in the input takes a lot more effort than simply defining what we expect.

The recommended approach is (and will always be) to white list the data coming
from the user, validating it through the use of a regular expression: we know how a
phone number looks like, we also know how a username should look like, and so on.

Input validation is not always easy. If you have ever come across the validation of an
e-mail, you will know what I am talking about: the regular expression to validate an
e-mail is anything but simple.

The fact that there is not an easy way to validate some data should not restrict us from
doing it as the omission of input validation could lead to a serious security flaw.

Input validation is not the silver bullet for SQL injections, but it also helps with other
security threats such as cross-site scripting.

In the query from the previous section, we do something quite dangerous:
concatenate user input into our query.

Chapter 5

[775]

One of the solutions could be to use some sort of escaping library that will sanitize
the input from the user, as follows:

app.get('/login', function(req, res) {
 var username = req.param("username");
 var password = req.param("password");

 connection.connect();
 var query = "SELECT * FROM users WHERE username = '" +
 connection.escape(username) + "' AND password = '" +
 connection.escape(password) + "'";
 connection.query(query, function(err, rows, fields) {
 if (err) throw err;
 res.send(rows);
 });
 connection.end();
});

In this case, the mysql library used provides a suite of methods to escape strings.
Let's see how it works:

var mysql = require('mysql');
var connection = mysql.createConnection({
 host: 'localhost',
 username: 'root',
 password: 'root'
});

console.log(connection.escape("' OR 1=1 --"))

The small script from earlier escapes the string provided as username in the previous
example, the result is \' OR 1=1 --.

As you can see, the escape() method has replaced the dangerous characters,
sanitizing the input from the user.

Cross-site scripting
Cross-site scripting, also known as XSS, is a security vulnerability that mainly
affects web applications. It is one of the most common security issues and the
implications can be huge for the customer as potentially, someone could steal
the user identity with this attack.

The attack is an injection code put into a third-party website that could steal data
from the client's browser. There are a few ways of doing it, but by far, the most
common is by unescaped input from the client.

Security and Traceability

[776]

In few websites on the Internet, users can add comments containing arbitrary input.
This arbitrary input can contain script tags that load a JavaScript from a remote
server that can steal the session cookie (or other types of valuable information),
letting the attacker replicate the user session on a remote machine.

There are two main types of XSS attacks: persistent and non-persistent.

The persistent type of XSS consists of storing the XSS attack by crafting a particular
string of text that resolves into the attack once it is displayed to the user in the
website. This code could be injected via an arbitrary input text that is stored in the
database (such as a comment in a forum).

The non-persistent type of XSS is when the attack is inserted into a non-persistent
part of the application due to bad data handling.

Let's take a look at the following screenshot:

Chapter 5

[777]

As you can see, we have searched for a book (this book) in http://www.amazon.
co.uk/. It does not produce any output (as the book is not published yet), but it
specifies that Your search "microservices nodejs" did not match any products,
which is somehow using the input from the web browser as output. Even more,
when I clicked on search, Amazon redirected me to the following URL:

http://www.amazon.co.uk/s/ref=nb_sb_noss?url=search-
alias%3Daps&field-keywords=microservices+nodejs

We know Amazon is secure, but if it was sensible to XSS attacks, we could have
modified the value of the field-keywords parameter to craft a request that injected
a script tag in the content, leading to the attacker being able to steal the session
cookie that could result in some serious problems for the website.

Output encoding
A way to protect against this attack is output encoding. We have done it before,
when we used connection.escape() in the Input validation section of this chapter.
In fairness, we should be validating all the data entered from the user and encoding
all the outputs that come from third parties. This includes the input entered by the
user, as well as sources of information coming from outside of the system.

When narrowing the problem to web development, we have to be aware of the three
different areas where output encoding is needed:

•	 CSS
•	 JavaScript
•	 HTML

The most problematic two are JavaScript and HTML, where an attacker could easily
steal information without too much effort.

Generally, no matter which framework we use for building our app, it always has
functions to encode the output.

Cross-site request forgery
Cross-site request forgery (CSRF) is the reverse of cross-site request scripting. In
cross-site request scripting, the problem is in the client trusting the data coming from
the server. With cross-site request forgery, the problem is that the server trusts the
data coming from the client.

After stealing the session cookie, the attacker can not only steal information from the
user, but can also modify the information of the account associated with the cookie.

http://www.amazon.co.uk/
http://www.amazon.co.uk/
http://www.amazon.co.uk/s/ref=nb_sb_noss?url=search-alias%3Daps&field-keywords=microservices+nodejs
http://www.amazon.co.uk/s/ref=nb_sb_noss?url=search-alias%3Daps&field-keywords=microservices+nodejs

Security and Traceability

[778]

This is done by posting the data to the server via HTTP requests.

HTTP classifies its requests in methods. A method is basically used to specify what is
the operation to be carried by the request. The most interesting four methods are the
following ones:

•	 GET: This gets the data from the server. It should not modify any persistent
data.

•	 POST: This creates a resource in the server.
•	 PUT: This updates a resource in the server.
•	 DELETE: This deletes a resource from the server.

There are more methods (such as PATCH or CONNECT), but let's focus on these four.
As you can see, three of these four methods modify data from the server, and a user
with a valid session could potentially steal data, create payments, order goods, and
so on.

A way to avoid the cross-site request forgery attack is by protecting the POST, PUT
and DELETE endpoints with a cross-site request token.

Take a look at the following HTML form:

<form action="/register" method="post">
 <input name="email" type="text" />
 <input name="password" type="password" />
</form>

This form describes a perfectly valid situation: a user registering on our website; very
simple, but still valid and flawed.

We are specifying a URL and the list of expected parameters so that an attacker can
register hundreds or thousands of accounts within a span of minutes, with a small
script that issues a POST request with the two parameters (email and password) in
the body.

Now, look at the following form:

<form action="/register" method="post">
 <input name="email" type="text" />
 <input name="password" type="password" />
 <input name="csrftoken" type="hidden"
 value="as7d6fasd678f5a5sf5asf" />
</form>

You can see the difference: there is an extra hidden parameter called csrftoken.

Chapter 5

[779]

This parameter is a random string that is generated every time a form is rendered so
that we can add this extra parameter to every form.

Once the form is submitted, the csrftoken parameter is validated to only let go
through the requests with a valid token and generate a new token to be rendered on
the page again.

Open redirects
Sometimes, our application might need to redirect the user to a certain URL. For
example, when hitting a private URL without a valid authentication, the user will
usually be redirected to the login page:

http://www.mysite.com/my-private-page

This could result into a redirect to the following:

http://www.mysite.com/login?redirect=/my-private-page

This sounds legit. The user is sent to the login page, and once he provides a valid set
of credentials, it is redirected to /my-private-page.

What happens if someone tries to steal the account of our user?

Look at the following request:

http://www.mysite.com/login?redirect=http://myslte.com

This is a crafted request that will redirect the user to myslte.com instead of mysite.
com (note the l instead of i).

Someone could make myslte.com look like the login page of mysite.com and steal
your user's password and username by distributing the preceding URL in the social
media as the users will be redirected to a malicious page.

The solution for the preceding problem is quite simple: don't redirect the user to
untrusted third-party websites.

Again, the best way of doing such task is white listing the target hosts for redirects.
Basically, we don't let our software redirect our customers to unknown websites.

Security and Traceability

[780]

Effective code reviews
One of the most effective ways to reduce security flaws in our applications is through
a systematic and informed code review process. The problem with code reviews is
that they always end up being a dump area for opinions and personal preferences
that usually not only won't improve the quality of the code, but will also lead to last
minute changes that could expose vulnerabilities in our application.

A dedicated stage in the product development life cycle for a security code review
helps to drastically reduce the amount of bugs delivered to production.

The problem that the software engineers have is that their mind is trained to build
things that work well, but they don't have the mindset to find defects, especially
around the things that they build. This is why you should not be testing your own
code (any further than the test carried on when developing), and even less, security
testing your application.

However, we usually work in teams and that enables us to review someone else's
code, but we have to do it in an effective manner.

Code reviews require as much brain power as needed to write software, especially
if you are reviewing a complex code. You should never spend more than two hours
reviewing the same functionality, otherwise important flaws will be missed and
attention to detail will decrease to a worrying level.

This is not a big problem in microservices-based architectures as the functionality
should be small enough to be read in a reasonable period of time, especially if you
talked to the author about what he was trying to build.

You should always follow a two phase review, as follows:

•	 Review the code quickly to get the big picture: how it works, what
technology it uses that you are not familiar with, does it do what it is
supposed to do, and so on

•	 Review the code following a checklist of items to look for

This list of items has to be decided upfront and depends on the nature of the
software that your company is building.

Chapter 5

[781]

Usually, the list of items to check around the code security concerns during a code
review is quite big, but we can narrow it down to the following components:

•	 Is all the input validated/encoded when applicable?
•	 Is all the output encoded, including logs?
•	 Do we protect endpoints with cross-site request forgery tokens?
•	 Are all the user credentials encrypted or hashed in the database?

If we check this list, we will be able to identify the biggest issues around security in
our apps.

Traceability
Traceability is extremely important in the modern information systems. It is a
delicate matter in microservices that is gracefully solved in Seneca, making the
requests easy to follow around our system so that we can audit the failure.

Logging
Seneca is pretty good with the logging. There are so many options that can be
configured in Seneca in order to get the required information about how everything
is working (if it is working).

Let's see how logging works with a small application:

var seneca = require("seneca")();

seneca.add({cmd: "greeter"}, function(args, callback){
 callback(null, {message: "Hello " + args.name});
});

seneca.act({cmd: "greeter", name: "David"}, function(err, result) {
 console.log(result);
});

This is the simplest Seneca application that can be written. Let's run it as follows:

seneca node index.js

2016-02-01T09:55:40.962Z 3rhomq69cbe0/1454579740947/84217/- INFO hello Se
neca/1.0.0/3rhomq69cbe0/1454579740947/84217/-

{ message: 'Hello David' }

Security and Traceability

[782]

This is the result of running the app with the default logging configuration. Aside
from the console.log() method that we have used in the code, there is some
internal information about Seneca being logged. Sometimes, you might want to
only log what your application is producing so that you can debug the application
without all the noise. In this case, just run the following command:

seneca node index.js --seneca.log.quiet

{ message: 'Hello David' }

However, sometimes, there are weird behaviors in the system (or even a bug in the
frameworks used) and you want to get all the information about what is happening.
Seneca supports that as well, as shown in the following command:

seneca node index.js --seneca.log.print

The preceding command will print an endless amount of information that might not
be helpful.

In order to reduce the amount of logging produced by Seneca, there is a fine-grain
control in what gets logged into the output. Let's take a look at the following lines:

2016-02-01T10:00:07.191Z dyy9ixcavqu4/1454580006885/85010/- DEBUG
register install transport {exports:[transport/utils]} seneca-8t1dup

2016-02-01T10:00:07.305Z dyy9ixcavqu4/1454580006885/85010/- DEBUG
register init seneca-y9os9j

2016-02-01T10:00:07.305Z dyy9ixcavqu4/1454580006885/85010/- DEBUG plugin
seneca-y9os9j DEFINE {}

2016-02-01T10:00:07.330Z dyy9ixcavqu4/1454580006885/85010/-
DEBUG act root$ IN o5onzziv9i7a/b7dtf6v1u9sq cmd:greeter
{cmd:greeter,name:David} ENTRY (mnb89) - - -

They are random lines from a log output on the preceding code example, but it will
give us useful information: these entries are debug-level log lines for different actions
(such as plugin, register, and act) on the Seneca framework. In order to filter them,
Seneca provides a control over what levels or actions do we want to see. Consider
the following for example:

node index.js --seneca.log=level:INFO

This will only output the logs related to the INFO level:

seneca node index.js --seneca.log=level:INFO

2016-02-04T10:39:04.685Z q6wnh8qmm1l3/1454582344670/91823/- INFO hello
Seneca/1.0.0/q6wnh8qmm1l3/1454582344670/91823/-

{ message: 'Hello David' }

Chapter 5

[783]

You can also filter by action type, which is quite interesting. When you are working
with microservices, knowing the chain of events that happened in a flow is one
of the first things that you need to look into in order to audit a failure. With this
control over the logging that Seneca gives us, it is as easy as executing the following
command:

node index.js --seneca.log=type:act

This will produce the following output:

As you can see, all the preceding lines correspond to the act type, and even more,
if we follow the output of the command from top to bottom, we exactly know the
sequence of events to which Seneca reacted and their order.

Tracing requests
Tracing requests is also a very important activity, and sometimes, it is even a legal
requirement, especially if you work in the world of finance. Again, Seneca is fantastic
at tracing requests. For every call, Seneca generates a unique identifier. This identifier
can be traced across all the paths to where the call is going to, as follows:

var seneca = require("seneca")();

seneca.add({cmd: "greeter"}, function(args, callback){
 console.log(this.fixedargs['tx$']);
 callback(null, {message: "Hello " + args.name});
});
seneca.act({cmd: "greeter", name: "David"}, function(err, result) {
 console.log(this.fixedargs['tx$']);
});

Here, we are logging a dictionary that contains the transaction ID in Seneca to the
terminal. So, if we execute it, we will get the following output:

2016-02-04T10:58:07.570Z zl0u7hj3hbeg/1454583487555/95159/- INFO hello
Seneca/1.0.0/zl0u7hj3hbeg/1454583487555/95159/-

3jlroj2n91da

3jlroj2n91da

Security and Traceability

[784]

You can see how all the requests in Seneca are traced: the framework assigns an ID
and it gets propagated across endpoints. In this case, all our endpoints are in the
local machine, but if we distribute them in different machines, the ID will still be
the same.

With this unique ID, we will be able to reconstruct the journey of the customer data
in our system, and ordering the requests with the associated timestamp, we can get
an accurate picture of what the user was doing, how much time did every action
take, what are the possible problems associated with delays, and so on. Usually, the
logging combined with circuit breakers output information allows the engineers to
solve issues within a very reduced time frame.

Auditing
Up till now, we have been using console.log() to output the data into the logs.
This is a bad practice. It breaks the format of the logs and throws the content to the
standard output.

Again, Seneca comes to the rescue:

var seneca = require("seneca")();

seneca.add({cmd: "greeter"}, function(args, callback){
 this.log.warn(this.fixedargs['tx$']);
 callback(null, {message: "Hello " + args.name});
});

seneca.act({cmd: "greeter", name: "David"}, function(err, result) {
 this.log.warn(this.fixedargs['tx$']);
});

Let's see what Seneca produces as output:

seneca node index.js

2016-02-04T11:17:28.772Z wo10oa299tub/1454584648758/98550/- INFO hello
Seneca/1.0.0/wo10oa299tub/1454584648758/98550/-

2016-02-04T11:17:29.156Z wo10oa299tub/1454584648758/98550/- WARN - - ACT
02jlpyiux70s/9ca086d19x7n cmd:greeter 9ca086d19x7n

2016-02-04T11:17:29.157Z wo10oa299tub/1454584648758/98550/- WARN - - ACT
02jlpyiux70s/9ca086d19x7n cmd:greeter 9ca086d19x7n

As you can see, we are now outputting the transaction ID using the logger. We have
produced a WARN message instead of a simple console dump. From now on, we can
use Seneca log filters to hide the output of our actions in order to focus on what we
are trying to find.

Chapter 5

[785]

Seneca provides the following five levels of logging:

•	 DEBUG: This is used to debug applications when you are developing them
and also trace problems in production systems.

•	 INFO: This log level is used to produce important messages about events
such as a transaction has started or completed.

•	 WARN: This is the warning level. We use it when something bad happens
in the system, but it is not critical, the user usually does not get affected;
however, it is an indication that something is going in the wrong way.

•	 ERROR: This is used to log errors. Generally, the user gets affected by it and
it also interrupts the flow.

•	 FATAL: This is the most catastrophic level. It is only used when a
non-recoverable error has occurred and the system won't be able to
function normally.

A way to produce logs in different levels is to use the associated functions. As we
have seen earlier, we called this.log.warn() to log a warning. If we call the this.
log.fatal() method, we will be logging a fatal error, and same with the other levels.

Try to adjust the logs in your application as a part of the
development process or you will regret the lack of information
when something bad occurs in production.

In general, INFO, DEBUG, and WARN will be the most used log levels.

HTTP codes
HTTP codes are often ignored, but they are a really important mechanism to
standardize responses from remote servers.

When a program (or user) issues a request to a server, there are a few things that
could happen, as follows:

•	 It could be successful
•	 It could fail validation
•	 It could produce a server error

As you can see, the possibilities are endless. The problem that we now have is that
HTTP was created for the communication between machines. How do we handle the
fact that machines will be reading these codes?

Security and Traceability

[786]

HTTP solved this problem in a very elegant way: every single request has to be
resolved with an HTTP code and these codes have ranges that indicate the nature
of the code.

1xx – informational
The codes in the 100-199 range are purely informational. The most interesting code in
this range is the 102 code. This code is used to specify that an operation is happening
in the background and might take some time to complete.

2xx – success codes
Success codes are used to indicate a certain level of success in the HTTP request. It is
the most common (and desired) codes.

The most common codes in this range are as follows:

•	 200: Success: This code indicates a full success. Nothing went wrong
even remotely.

•	 201: Created: This code is used mainly for REST APIs when the client
requests to create a new entity in the server.

•	 203: Non-authoritative information: This code is intended to be used
when, while routing the request through a transforming proxy, the origin
responds with a 200.

•	 204: No Content: This is a successful code, but there is no content coming
back from the server. Sometimes, APIs returns 200, even if there is no content.

•	 206: Partial Content: This code is used for paginated responses. A header
is sent, specifying a range (and an offset) that the client will accept. If the
response is bigger than the range, the server will reply with 206, indicating
that there is more data to follow.

3xx – redirection
The codes in the 300 to 399 range indicate that the client must take some additional
actions to complete the request.

The most common codes in this range are described as follows:

•	 301: Moved permanently: This status code is indicating that the resource
that the client was trying to get has been moved permanently to another
location.

Chapter 5

[787]

•	 302: Found: This code indicates that the user is required to perform a
temporary redirect for some reason, but the browsers started implementing
this code as 303 See Other. This lead to the introduction of the 303 and 307
Temporary redirect codes to disambiguate the overlap of behavior.

•	 308 Permanent Redirect: This code, as the name indicates, is used to
specify a permanent redirect for a resource. It could be confused with 301,
but there is a small difference, the 308 code does not allow the HTTP method
to change.

4xx – client errors
The codes in the 400 to 499 range represent errors generated by the client. They
indicate that there is a problem with the request. This range is particularly important
as it is the way that HTTP servers have to indicate the clients that something is
wrong with their request.

The common codes in this range are as follows:

•	 400 Bad Request: This code indicates that the request from the user is
syntactically incorrect. There could be parameters missing or some of the
values didn't pass validation.

•	 401 Unauthorized: This code represents a lack of authentication of the
client. Usually, a valid login will fix this problem.

•	 403 Forbidden: This is similar to 401, but in this case, it is indicating that the
user does not have enough privileges.

•	 404 Not Found: This means that the resource is not found in the server. This
is the error that you get when you navigate to a page that does not exist.

5xx – server errors
This range indicates that there has been a processing error in the server. When a
5xx code is issued, it means that there was some sort of problem in the server and it
cannot be fixed from the client.

Some of the codes in this range are as follows:

•	 500 Internal Server Error: This means that an error has occurred in the
software in the server. There is no more information disclosed.

•	 501 Not Implemented: This error occurs when a client hits an endpoint that
has not been implemented yet.

•	 503 Service unavailable: This code is issued when the server is not
available for some reason, either an excess of the load or the server is down.

Security and Traceability

[788]

Why HTTP codes matter in microservices
The popular saying don't reinvent the wheel is one of my favorite principles when
building software. HTTP codes are a standard, so everybody understands the
consequences of the different codes.

When building microservices, you always need to keep in mind that your system
will be interacting with proxies, caches, and other services that already speak HTTP
so that they can react according to the response from the servers.

The best example of this is the circuit-breaker pattern. No matter how you
implement it and what software you use, a circuit breaker has to understand that an
HTTP request with 500 code is an error, so it can open the circuit accordingly.

In general, it is good practice to keep the codes of your application as accurate as
possible as it will benefit your system in the long run.

Summary
In this chapter, you have learned how to build secure software (and not only
microservices), although it is a subject big enough to write a full book on it. The
problem with security is that companies usually see investing in security as burning
money, but that is far from reality. I am a big fan of the 80-20 rule: 20% of time will
give you 80% of features and the 20% of missing features will require 80% of the time.

In security, we really should be aiming for 100% coverage; however, the 80% shown
in this chapter will cover majority of the cases. Anyway, as I mentioned before, a
software engineer should be up to date with security as a flaw in the security of an
application is the easiest way to kill a company.

We have also been talking about traceability and logging, one of the most ignored
subjects in the modern software engineering that are becoming more and more
important, especially if your software is built using a microservices approach.

[789]

Testing and Documenting
Node.js Microservices

Until now, all that we have done is develop microservices and discuss the
frameworks around the process of building software components. Now it is time
to test all of them. Testing is the activity of validating the software that has been
built. Validating is a very broad term. In this chapter, we are going to learn how to
test microservices, not only from the functional point of view, but we will also learn
how to test the performance of our applications, as well as other aspects such as
integration with different modules. We will also build a proxy using Node.js to help
us to inspect the inputs and outputs of our services so that we can validate that what
we have designed is actually happening and, once again, reassure the versatility of a
language, such as JavaScript, to quickly prototype features.

It is also nowadays a trend to release features with an A/B test, where we only
enable the features for certain type of users, and then we collect metrics to see
how the changes to our system are performing. In this chapter, we will build a
microservice that is going to give us the capability of rolling out features in a
controlled way.

On the other hand, we are going to document our application, which unfortunately,
is a forgotten activity in traditional software development: I haven't found a
single company where the documentation captures 100% the information needed
by new developers.

Testing and Documenting Node.js Microservices

[790]

We will cover the following topics in this chapter:

•	 Functional testing: In this section, we will learn how to test microservices
and what a good testing strategy is. We will also get to study a tool called
Postman to manually test our APIs, as well as build a proxy with Node.js to
spy our connections.

•	 Documenting microservices: We will learn how to use Swagger to document
our microservices using the open API standard. We will also generate the
code from the YAML definition using an open source tool.

Functional testing
Testing is usually a time-consuming activity that does not get all the required
attention while building a software.

Think about how a company evolves:

1.	 Someone comes up with an idea.
2.	 A few engineers/product people build the system.
3.	 The company goes to market.

There is no time to test more than the minimal required manual testing. Especially,
when someone reads on the Internet that testing done right could take up to 40% of
your development time, and once again, the common sense fails.

Automation is good and unit, integration, and end-to-end tests are a form of
automation. By letting a computer test our software, we are drastically cutting
down the human effort required to validate our software.

Think about how the software is developed. Even though our company likes to
claim that we are agile, the truth is that every single software project has some level
of iterative development, and testing is a part of every cycle, but generally, it is
overlooked in favour of delivering new features.

Chapter 6

[791]

By automating the majority (or a big chunk) of the testing, we are saving money, as
shown in the following diagram:

Costs and Iterations

Testing is actually a cost saver if is done right, and the key is doing it right, which
is not always easy. How much testing is too much testing? Should we cover every
single corner of our application? Do we really need deep performance testing?

These questions usually lead to a different stream of opinions, and the interesting thing
is that there is not a single source of truth. It depends on the nature of your system.

In this chapter, we are going to learn a set of extensive testing techniques, which
does not mean that we should be including all of them in our test plan, but at least
we will be aware of the testing methodologies.

In the past seven years, Ruby on Rails has created a massive trend towards a new
paradigm, called Test-driven development (TDD), up to a point that, nowadays,
majority of the new development platforms are built with TDD in mind.

Personally, I am not a fierce adopter of TDD, but I like to take the good parts.
Planning the test before the development helps to create modules with the right level
of cohesion and define a clear and easy-to-test interface. In this chapter, we won't
cover the TDD in depth, but we will mention it a few times and explain how to apply
the exposed techniques to a TDD test plan.

Testing and Documenting Node.js Microservices

[792]

The pyramid of automated testing
How to lay down your testing plan is a tricky question. No matter what you do, you
will always end up with the sensation that this is completely wrong.

Before diving into the deep, let's define the different type of tests that we are
going to be dealing with from the functional point of view, and what should they
be designed for.

Unit tests
A unit test is a test that covers individual parts of the application without taking into
account the integration with different modules. It is also called white box testing as
the aim is to cover and verify as many branches as possible.

Generally, the way to measure the quality of our tests is the test coverage and it is
measured in percentage. If our code spans over ten branches and our tests cover
seven branches, our code coverage is 70%. This is a good indication of how reliable
our test coverage is. However, it could be misleading as the tests could be flawed,
or even though all the branches are tested, a different input would cause a different
output that wasn't captured by a test.

In unit tests, as we don't interact with other modules, we will be making a heavy
use of mocks and stubs in order to simulate responses from third-party systems
and control the flow to hit the desired branch.

Integration tests
Integration tests, as the name suggests, are the tests designed to verify the integration
of our module in the application environment. They are not designed to test the
branches of our code, but business units, where we will be saving the data into
databases, calling third-party web services or other microservices of our architecture.

These tests are the perfect tool for checking whether our service is behaving as
expected, and sometimes, could be hard to maintain (more often than not).

During my years of experience, I haven't found a company where the integration
testing is done right and there are a number of reasons for this, as stated in the
following list:

•	 Some companies think that integration testing is expensive (and it is true) as
it requires extra resources (such as databases and extra machines)

Chapter 6

[793]

•	 Some other companies try to cover all the business cases just with unit
testing, which depending on the business cases, could work, but it is far
from ideal as unit tests make assumptions (mocks) that could give us a false
confidence in our test suite

•	 Sometimes, integration tests are used to verify the code branches as if they
were unit tests, which is time consuming as you need to work out the
environment to make the integration test to hit the required branch

No matter how smart you want to be, integration testing is something that you want
to do right, as it is the first real barrier in our software to prevent integration bugs
from being released into production.

End-to-end tests
Here, we will demonstrate that our application actually works. In an integration
test, we are invoking the services at code level. This means that we need to build the
context of the service and then issue the call.

The difference with end-to-end testing is that, in end-to-end testing, we actually
fully deploy our application and issue the required calls to execute the target
code. However, many times, the engineers can decide to bundle both type of tests
(integration and end-to-end tests) together, as the modern frameworks allow us to
quickly run E2E tests as if they were integration tests.

As the integration tests, the target of the end-to-end tests is not to test all the paths of
the application but test the use cases.

In end-to-end tests, we can find a few different modalities (paradigms) of testing,
as follows:

•	 We can test our API issuing JSON requests (or other type of requests)
•	 We can test our UI using Selenium to emulate clicks on the DOM
•	 We can use a new paradigm called behavior-driven development (BDD)

testing, where the use cases are mapped into actions in our application (clicks
on the UI, requests in the API, and so on) and execute the use cases for which
the application was built

End-to-end tests are usually very fragile and they get broken fairly easy. Depending
on our application, we might get relaxed about these tests as the cost-value ratio is
pretty low, but still, I would recommend having some of them covering at least the
most basic and essential flows.

Testing and Documenting Node.js Microservices

[794]

How much testing is too much?
Questions such as the following are not easy to answer, especially in fast paced
businesses, like startups:

•	 Do we have too many integration tests?
•	 Should we aim for 100% unit test coverage?
•	 Why bother with Selenium tests if they break every second day for no reason?

There is always a compromise. Test coverage versus time consumed, and also, there
is no simple and single answer to these questions.

The only useful guideline that I've found along the years is what the testing world
calls the pyramid of testing, which is shown in the following figure. If you think for
a moment, in the projects where you worked before, how many tests did you have
in total? What percentage of these were integration tests and unit tests? What about
end-to-end tests?:

The pyramid of testing

Chapter 6

[795]

The preceding pyramid shows the answers for these questions. In a healthy test plan,
we should have a lot of unit tests: some integration tests and very few E2E tests.

The reason for this is very simple, majority of the problems can be caught within
unit testing. Hitting the different branches of our code will verify the functionality
of pretty much every functional case in our application, so it makes sense to have
plenty of them in our test plan. Based on my experience, in a balanced test plan,
around 70% of our tests should be unit tests. However, in a microservices-oriented
architecture, especially with a dynamic language such as Node.js, this figure can
easily go down and still be effective with our testing. The reasoning behind it is that
Node.js allows you to write integration tests very quickly so that we can replace
some unit tests by integration tests.

Testing is a very well-documented, complex process. Trying to
outsmart the existing methodologies could result in a hard-to-maintain
and difficult-to-trust test suite.

Integration tests are responsible for catching integration problems, as shown in
the following:

•	 Can our code call the SMS gateway?
•	 Would the connection to the database be OK?
•	 Are the HTTP headers being sent from our service?

Again, around 20% of our tests, based on my experience, should be integration tests;
focus on the positive flows and some of the negative that depend on third-party
modules.

When it comes down to E2E tests, they should be very limited and only test the main
flows of the applications without going into too much detail. These details should be
already captured by the unit and integration tests that are easy to fix in an event of
failure. However, there is a catch here: when testing microservices in Node.js, 90%
of the time, integration and E2E tests can be the same thing. Due to the dynamic
nature of Node.js, we can test the rest API from the integration point of view (the full
server running), but in reality, we will also be testing how our code behaves when
integrated with other modules. We will see an example later in this chapter.

Testing and Documenting Node.js Microservices

[796]

Testing microservices in Node.js
Node.js is an impressive language. The amount of libraries around any single aspect
of the development is amazing. No matter how bizarre the task that you want to
achieve in Node.js is, there will be always an npm module.

Regarding the testing, Node.js has a very powerful set of libraries, but two of them
are especially popular: Mocha and Chai.

They are pretty much the industry standard for app testing and are very well
maintained and upgraded.

Another interesting library is called Sinon.JS, and it is used for mocking, spying and
stubbing methods. We will come back to these concepts in the following sections,
but this library is basically used to simulate integrations with third parties without
interacting with them.

Chai
This library is a BDD/TDD assertions library that can be used in conjunction with
any other library to create high quality tests.

An assertion is a code statement that will either be fulfilled or throw an error,
stopping the test and marking it as a failure:

5 should be equal to A

The preceding statement will be correct when the variable A contains the value 5. This
is a very powerful tool to write easy-to-understand tests, and especially with Chai, we
have access to assertions making use of the following three different interfaces:

•	 should

•	 expect

•	 assert

At the end of the day, every single condition can be checked using a single interface,
but the fact that the library provides us with such a rich interface facilitates the
verbosity of the tests in order to write clean, easy, and maintainable tests.

Let's install the library:

npm install chai

Chapter 6

[797]

This will produce the following output:

This means that Chai depends on assertion-error, type-detect, and deep-eql.
As you can see, this is a good indication that we will be able to check, with simple
instructions, complex statements such as deep equality in objects or type matching.

Testing libraries such as Chai are not a direct dependency of our application, but a
development dependency. We need them to develop applications, but they should
not be shipped to production. This is a good reason to restructure our package.json
and add Chai in the devDependencies dependency tag, as follows:

{
 "name": "chai-test",
 "version": "1.0.0",
 "description": "A test script",
 "main": "chai.js",
 "dependencies": {
 },
 "devDependencies": {
 "chai": "*"
 },
 "author": "David Gonzalez",
 "license": "ISC"
}

This will prevent our software to ship into production libraries such as Chai, which
has nothing to do with the operation of our application.

Once we have installed Chai, we can start playing around with the interfaces.

BDD-style interfaces
Chai comes with two flavors of BDD interfaces. It is a matter of preference which one
to use, but my personal recommendation is to use the one that makes you feel more
comfortable in any situation.

Let's start with the should Interface. This one is a BDD-style interface, using
something similar to the natural language, we can create assertions that will
decide whether our test succeeds or fails:

myVar.should.be.a('string')

Testing and Documenting Node.js Microservices

[798]

In order to be able to build sentences like the one before, we need to import the
should module in our program:

var chai = require('chai');

chai.should();

var foo = "Hello world";
console.log(foo);

foo.should.equal('Hello world');

Although it looks like a bit of dark magic, it is really convenient when testing our
code as we use something similar to the natural language to ensure that our code
is meeting some criteria: foo should be equal to 'Hello world' has a direct translation
to our test.

The second BDD-style interface provided by Chai is expect. Although it is very
similar to should, it changes a bit of syntax in order to set expectations that the
results have to meet.

Let's see the following example:

var expect = require('chai').expect;

var foo = "Hello world";

expect(foo).to.equal("Hello world");

As you can see, the style is very similar: a fluent interface that allows us to check
whether the conditions for the test to succeed are met, but what happens if the
conditions are not met?

Let's execute a simple Node.js program that fails in one of the conditions:

var expect = require('chai').expect;
var animals = ['cat', 'dog', 'parrot'];
expect(animals).to.have.length(4);

Chapter 6

[799]

Now, let's execute the previous script, assuming that you have already installed Chai:

code/node_modules/chai/lib/chai/assertion.js:107

 throw new AssertionError(msg, {

 ^

AssertionError: expected ['cat', 'dog', 'parrot'] to have a length of 4
but got 3

 at Object.<anonymous> (/Users/dgonzalez/Dropbox/Microservices with
Node/Writing Bundle/Chapter 6/code/chai.js:24:25)

 at Module._compile (module.js:460:26)

 at Object.Module._extensions..js (module.js:478:10)

 at Module.load (module.js:355:32)

 at Function.Module._load (module.js:310:12)

 at Function.Module.runMain (module.js:501:10)

 at startup (node.js:129:16)

 at node.js:814:3

An exception is thrown and the test fails. If all the conditions were validated, no
exception would have been raised and the test would have succeeded.

As you can see, there are a number of natural language words that we can use for
our tests using both expect and should interfaces. The full list can be found in the
Chai documentation (http://chaijs.com/api/bdd/#-include-value-), but let's
explain some of the most interesting ones in the following list:

•	 not: This word is used to negate the assertions following in the chain. For
example, expect("some string").to.not.equal("Other String")
will pass.

•	 deep: This word is one of the most interesting of all the collection. It is
used to deep-compare objects, which is the quickest way to carry on a full
equal comparison. For example, expect(foo).to.deep.equal({name:
"David"}) will succeed if foo is a JavaScript object with one property called
name with the "David" string value.

•	 any/all: This is used to check whether the dictionary or object contains
any of the keys in the given list so that expect(foo).to.have.any.
keys("name", "surname") will succeed if foo contains any of the given
keys, and expect(foo).to.have.all.keys("name", "surname") will only
succeed if it has all of the keys.

http://chaijs.com/api/bdd/#-include-value-

Testing and Documenting Node.js Microservices

[800]

•	 ok: This is an interesting one. As you probably know, JavaScript has a few
pitfalls, and one of them is the true/false evaluation of expressions. With ok,
we can abstract all the mess and do something similar to the following list
of expressions:

°° expect('everything').to.be.ok: 'everything' is a string and it
will be evaluated to ok

°° expect(undefined).to.not.be.ok: Undefined is not ok in the
JavaScript world, so this assertion will succeed

•	 above: This is a very useful word to check whether an array or collection
contains a number of elements above a certain threshold, as follows:
expect([1,2,3]).to.have.length.above(2)

As you can see, the Chai API for fluent assertions is quite rich and enables us to write
very descriptive tests that are easy to maintain.

Now, you may be asking yourself, why have two flavors of the same interface that
pretty much work the same? Well, they functionally do the same, however, take a
look at the detail:

•	 expect provides a starting point in your chainable language
•	 should extends the Object.prototype signature to add the chainable

language to every single object in JavaScript

From Node.js' point of view, both of them are fine, although the fact that should is
instrumenting the prototype of Object could be a reason to be a bit paranoid about
using it as it is intrusive.

Assertions interface
The assertions interface matches the most common old-fashioned tests assertion
library. In this flavor, we need to be specific about what we want to test, and there
is no such thing as fluent chaining of expressions:

var assert = require('chai').assert;
var myStringVar = 'Here is my string';
// No message:
assert.typeOf(myStringVar, 'string');
// With message:
assert.typeOf(myStringVar, 'string', 'myStringVar is not string
 type.');
// Asserting on length:
assert.lengthOf(myStringVar, 17);

Chapter 6

[801]

There is really nothing more to go in depth if you have already used any of the
existing test libraries in any language.

Mocha
Mocha is, in my opinion, one of the most convenient testing frameworks that I
have ever used in my professional life. It follows the principles of behavior-driven
development testing (BDDT), where the test describes a use case of the application
and uses the assertions from another library to verify the outcome of the executed
code.

Although it sounds a bit complicated, it is really convenient to ensure that our code is
covered from the functional and technical point of view, as we will be mirroring the
requirements used to build the application into automated tests that verifies them.

Let's start with a simple example. Mocha is a bit different from any other library, as
it defines its own domain-specific language (DSL) that needs to be executed with
Mocha instead of Node.js. It is an extension of the language.

First we need to install Mocha in the system:

npm install mocha -g

This will produce an output similar to the following image:

From now on, we have a new command in our system: mocha.

Testing and Documenting Node.js Microservices

[802]

The next step is to write a test using Mocha:

function rollDice() {
 return Math.floor(Math.random() * 6) + 1;
}

require('chai').should();
var expect = require('chai').expect;

describe('When a customer rolls a dice', function(){

 it('should return an integer number', function() {
 expect(rollDice()).to.be.an('number');
 });

 it('should get a number below 7', function(){
 rollDice().should.be.below(7);
 });

 it('should get a number bigger than 0', function(){
 rollDice().should.be.above(0);
 });

 it('should not be null', function() {
 expect(rollDice()).to.not.be.null;
 });

 it('should not be undefined', function() {
 expect(rollDice()).to.not.be.undefined;
 });
});

The preceding example is simple. A function that rolls a dice and returns an
integer number from 1 to 6. Now we need to think a bit about the use cases
and the requirements:

•	 The number has to be an integer
•	 This integer has to be below 7
•	 It has to be above 0, dice don't have negative numbers
•	 The function cannot return null
•	 The function cannot return undefined

Chapter 6

[803]

This covers pretty much every corner case about rolling a dice in Node.js. What we
are doing is describing situations that we certainly want to test, in order to safely
make changes to the software without breaking the existing functionality.

These five use cases are an exact map to the tests written earlier:

•	 We describe the situation: When a customer rolls a dice
•	 Conditions get verified: It should return an integer number

Let's run the previous test and check the results:

mocha tests.js

This should return something similar to the following screenshot:

As you can see, Mocha returns a comprehensive report on what is going on in the
tests. In this case, all of them pass, so we don't need to be worried about problems.

Let's force some of the tests to fail:

function rollDice() {
 return -1 * Math.floor(Math.random() * 6) + 1;
}

require('chai').should();
var expect = require('chai').expect;

describe('When a customer rolls a dice', function(){

 it('should return an integer number', function() {
 expect(rollDice()).to.be.an('number');
 });

 it('should get a number below 7', function(){

Testing and Documenting Node.js Microservices

[804]

 rollDice().should.be.below(7);
 });

 it('should get a number bigger than 0', function(){
 rollDice().should.be.above(0);
 });

 it('should not be null', function() {
 expect(rollDice()).to.not.be.null;
 });

 it('should not be undefined', function() {
 expect(rollDice()).to.not.be.undefined;
 });
});

Accidentally, someone has bumped a code fragment into the rollDice() function,
which makes the function return a number that does not meet some of the
requirements. Let's run Mocha again, as shown in the following image:

Now, we can see the report returning one error: the method is returning -4, where it
should always return a number bigger than 0.

Also, one of the benefits of this type of testing in Node.js using Mocha and Chai is
the time. Tests run very fast so that it is easy to receive feedback if we have broken
something. The preceding suite ran in 10ms.

Chapter 6

[805]

Sinon.JS – a mocking framework
The previous two chapters have been focused on asserting conditions on return
values of functions, but what happens when our function does not return any value?
The only correct measurement is to check whether the method was called or not.
Also, what if one of our modules is calling a third-party web service, but we don't
want our tests to call the remote server?

For answering these questions, we have two conceptual tools called mocks and spies,
and Node.js has the perfect library to implement them: Sinon.JS.

First install it, as follows:

npm install sinon

The preceding command should produce the following output:

Now let's explain how it works through an example:

function calculateHypotenuse(x, y, callback) {
 callback(null, Math.sqrt(x*x + y*x));
}

calculateHypotenuse(3, 3, function(err, result){
 console.log(result);
});

This simple script calculates the hypotenuse of a triangle, given the length of the
other two sides of the triangle. One of the tests that we want to carry on is the fact
that the callback is executed with the right list of arguments supplied. What we need
to accomplish such task is what Sinon.JS calls a spy:

var sinon = require('sinon');

require('chai').should();

function calculateHypotenuse(x, y, callback) {
 callback(null, Math.sqrt(x*x + y*x));
}

describe("When the user calculates the hypotenuse", function(){

Testing and Documenting Node.js Microservices

[806]

 it("should execute the callback passed as argument", function() {
 var callback = sinon.spy();
 calculateHypotenuse(3, 3, callback);
 callback.called.should.be.true;
 });
});

Once again, we are using Mocha to run the script and Chai to verify the results in the
test through the should interface, as shown in the following image:

The important line in the preceding script is:

var callback = sinon.spy();

Here, we are creating the spy and injecting it into the function as a callback. This
function created by Sinon.JS is actually not only a function, but a full object with a
few interesting points of information. Sinon.JS does that, taking advantage of the
dynamic nature of JavaScript. You can actually see what is in this object by dumping
it into the console with console.log().

Another very powerful tool in Sinon.JS are the stubs. Stubs are very similar to mocks
(identical at practical effects in JavaScript) and allow us to fake functions to simulate
the required return:

var sinon = require('sinon');
var expect = require('chai').expect;

function rollDice() {
 return -1 * Math.floor(Math.random() * 6) + 1;
}
describe("When rollDice gets called", function() {
 it("Math#random should be called with no arguments", function() {
 sinon.stub(Math, "random");
 rollDice();
 console.log(Math.random.calledWith());
 });
})

Chapter 6

[807]

In this case, we have stubbed the Math#random method, which causes the method to
be some sort of overloaded empty function (it does not issue the get call) that records
stats on what or how it was called.

There is one catch in the preceding code: we never restored the random() method
back and this is quite dangerous. It has a massive side effect, as other tests will see
the Math#random method as a stub, not as the original one, and it can lead to us
coding our tests according to invalid information.

In order to prevent this, we need to make use of the before() and after() methods
from Mocha:

var sinon = require('sinon');
var expect = require('chai').expect;

var sinon = require('sinon');
var expect = require('chai').expect;

function rollDice() {
 return -1 * Math.floor(Math.random() * 6) + 1;
}
describe("When rollDice gets called", function() {

 it("Math#random should be called with no arguments", function() {
 sinon.stub(Math, "random");
 rollDice();
 console.log(Math.random.calledWith());
 });
after(function(){
 Math.random.restore();
 });
});

If you pay attention to the highlighted code, we are telling Sinon.JS to restore
the original method that was stubbed inside one of the it blocks, so that if
another describe block makes use of http.get, we won't see the stub, but
the original method.

The before() and after() methods are very helpful to set up and
wind down the context for the tests. However, you need to be careful with
the scope where they are executed as it could lead to test interactions.

Testing and Documenting Node.js Microservices

[808]

Mocha has a few flavors of before and after:

•	 before(callback): This is executed before the current scope (at the
beginning of the describe block in the preceding code)

•	 after(callback): This is executed after the current scope (at the end of the
describe block in the preceding code)

•	 beforeEach(callback): This is executed at the beginning of every element
in the current scope (before each it in the preceding example)

•	 afterEach(callback): This is executed at the end of every element in the
current scope (after every it in the preceding example)

Another interesting feature in Sinon.JS is the time manipulation. Some of the
tests need to execute periodic tasks or respond after a certain time of an event's
occurrence. With Sinon.JS, we can dictate time as one of the parameters of our tests:

var sinon = require('sinon');
var expect = require('chai').expect

function areWeThereYet(callback) {

 setTimeout(function() {
 callback.apply(this);
 }, 10);

}

var clock;

before(function(){
 clock = sinon.useFakeTimers();
});

it("callback gets called after 10ms", function () {
 var callback = sinon.spy();
 var throttled = areWeThereYet(callback);

 areWeThereYet(callback);

 clock.tick(9);
 expect(callback.notCalled).to.be.true;

 clock.tick(1);

Chapter 6

[809]

 expect(callback.notCalled).to.be.false;
});

after(function(){
 clock.restore();
});

As you can see, we can now control the time in our tests.

Testing a real microservice
Now, it is time to test a real microservice in order to get a general picture of the full
test suite.

Our microservice is going to use Express, and it will filter an input text to remove
what the search engines call stop words: words with less than three characters and words
that are banned.

Let's see the code:

var _ = require('lodash');
var express = require('express');

var bannedWords = ["kitten", "puppy", "parrot"];

function removeStopWords (text, callback) {
 var words = text.split(' ');
 var validWords = [];
 _(words).forEach(function(word, index) {
 var addWord = true;

 if (word.length < 3) {
 addWord = false;
 }

 if(addWord && bannedWords.indexOf(word) > -1) {
 addWord = false;
 }

 if (addWord) {
 validWords.push(word);
 }

 // Last iteration:
 if (index == (words.length - 1)) {

Testing and Documenting Node.js Microservices

[810]

 callback(null, validWords.join(" "));
 }
 });
}
var app = express();

app.get('/filter', function(req, res) {
 removeStopWords(req.query.text, function(err, response){
 res.send(response);
 });
});

app.listen(3000, function() {
 console.log("app started in port 3000");
});

As you can see, the service is pretty small, so it is the perfect example for explaining
how to write unit, integration, and E2E tests. In this case, as we stated before, E2E
and integration tests are going to be the exact same as testing the service through the
REST API will be equivalent to testing the system from the end-to-end point of view,
but also how our component is integrated within the system. Given that, if we were
to add a UI, we would have to split integration tests from E2E in order to ensure
the quality.

TDD – Test-driven development
Our service is done and working. However, now we want to unit test it, but we find
some problems:

•	 The function that we want to unit test is not visible outside the main .js file
•	 The server code is tightly coupled to the functional code and has bad cohesion

Here TDD comes to the rescue; we should always ask ourselves "how am I going to
test this function when writing software?" It does not mean that we should modify
our software with the specific purpose of testing, but if you are having problems
while testing a part of your program, more than likely, you should look into
cohesion and coupling, as it is a good indication of problems. Let's take a look
at the following file:

var _ = require('lodash');
var express = require('express');

module.exports = function(options) {

Chapter 6

[811]

 bannedWords = [];
 if (typeof options !== 'undefined') {
 console.log(options);
 bannedWords = options.bannedWords || [];
 }

 return function bannedWords(text, callback) {
 var words = text.split(' ');
 var validWords = [];
 _(words).forEach(function(word, index) {
 var addWord = true;

 if (word.length < 3) {
 addWord = false;
 }

 if(addWord && bannedWords.indexOf(word) > -1) {
 addWord = false;
 }

 if (addWord) {
 validWords.push(word);
 }

 // Last iteration:
 if (index == (words.length - 1)) {
 callback(null, validWords.join(" "));
 }
 });
 }
}

This file is a module that, in my opinion, is highly reusable and has good cohesion:

•	 We can import it everywhere (even in a browser)
•	 The banned words can be injected when creating the module (very useful

for testing)
•	 It is not tangled with the application code

Testing and Documenting Node.js Microservices

[812]

Laying down the code this way, our application module will look similar to the
following:

var _ = require('lodash');
var express = require('express');

var removeStopWords = require('./remove-stop-words')({bannedWords:
 ["kitten", "puppy", "parrot"]});

var app = express();

app.get('filter', function(req, res) {
 res.send(removeStopWords(req.query.text));
});

app.listen(3000, function() {
 console.log("app started in port 3000");
});

As you can see, we have clearly separated the business unit (the function that
captures the business logic) from the operational unit (the setup of the server).

As I mentioned before, I am not a big fan of writing the tests prior to the code, but
they should be written (in my opinion) alongside the code, but always having in
mind the question mentioned before.

There seem to be a push in companies to adopt a TDD methodology, but it could
lead to a significant inefficiency, especially if the business requirements are unclear
(as they are 90% of the time) and we face changes along the development process.

Unit testing
Now that our code is in a better shape, we are going to unit test our function. We will
use Mocha and Chai to accomplish such task:

var removeStopWords = require('./remove-stop-words')({bannedWords:
 ["kitten", "parrot"]});

var chai = require('chai');
var assert = chai.assert;
chai.should();
var expect = chai.expect;

describe('When executing "removeStopWords"', function() {

 it('should remove words with less than 3 chars of length',
 function() {

Chapter 6

[813]

 removeStopWords('my small list of words', function(err,
 response) {
 expect(response).to.equal("small list words");
 });
 });

 it('should remove extra white spaces', function() {
 removeStopWords('my small list of words', function(err,
 response) {
 expect(response).to.equal("small list words");
 });
 });

 it('should remove banned words', function() {
 removeStopWords('My kitten is sleeping', function(err,
 response) {
 expect(response).to.equal("sleeping");
 });
 });

 it('should not fail with null as input', function() {
 removeStopWords(null, function(err, response) {
 expect(response).to.equal("small list words");
 });
 });

 it('should fail if the input is not a string', function() {
 try {
 removeStopWords(5, function(err, response) {});
 assert.fail();
 }
 catch(err) {
 }
 });
});

As you can see, we have covered pretty much every single case and branch inside
our application, but how is our code coverage looking?

Testing and Documenting Node.js Microservices

[814]

Until now, we have mentioned it, but never actually measured it. We are going to
use one tool, called Istanbul, to measure the test coverage:

npm install -g istanbul

This should install Istanbul. Now we need to run the coverage report:

istanbul cover _mocha my-tests.js

This will produce an output similar to the one shown in the following image:

This will also generate a coverage report in HTML, pointing out which lines, functions,
branches, and statements are not being covered, as shown in the following screenshot:

Chapter 6

[815]

As you can see, we are looking pretty well. Our code (not the tests) is actually well
covered, especially if we look into the detailed report for our code file, as shown in
the following image:

We can see that only one branch (the or operator in line 7) is not covered and the if
operator in line 6 never diverted to the else operator.

Testing and Documenting Node.js Microservices

[816]

We also got information about the number of times a line is executed: it is showing
in the vertical bar beside the line number. This information is also very useful to spot
the hot areas of our application where an optimization will benefit the most.

Regarding the right level of coverage, in this example, it is fairly easy to go up to
90%+, but unfortunately, it is not that easy in production systems:

•	 Code is a lot more complex
•	 Time is always a constraint
•	 Testing might not be seen as productive time

However, you should exercise caution when working with a dynamic language. In
Java or C#, calling a function that does not exist results in a compilation time error;
whereas in JavaScript, it will result in a runtime error. The only real barrier is the
testing (manual or automated), so it is a good practice to ensure that at least every
line is executed once. In general code coverage, over 75% should be good enough for
the majority of cases.

End-to-end testing
In order to test our application end to end, we are going to need a server running
it. Usually, end-to-end tests are executed against a controlled environment, such
as a QA box or a pre-production machine, to verify that our about-to-be-deployed
software is behaving as expected.

In this case, our application is an API, so we are going to create the end-to-end tests,
which at the same time, are going to be used as integration tests.

However, in a full application, we might want to have a clear separation between
the integration and end-to-end tests and use something like Selenium to test our
application from the UI point of view.

Selenium is a framework that allows our code to send instructions to the browser,
as follows:

•	 Click the button with the button1 ID
•	 Hover over the div element with the CSS class highlighted

In this way, we can ensure that our app flows work as expected, end to end, and our
next release is not going to break the key flows of our app.

Chapter 6

[817]

Let's focus on the end-to-end tests for our microservice. We have been using Chai
and Mocha with their corresponding assertion interfaces to unit test our software,
and Sinon.JS to mock services functions and other elements to avoid the calls being
propagated to third-party web services or get a controlled response from one method.

Now, in our end-to-end test plan, we actually want to issue the calls to our service
and get the response to validate the results.

The first thing we need to do is run our microservice somewhere. We are going
to use our local machine just for convenience, but we can execute these tests in a
continuous development environment against a QA machine.

So, let's start the server:

node stop-words.js

I call my script stop-words.js for convenience. Once the server is running, we
are ready to start testing. In some situations, we might want our test to start and stop
the server so that everything is self-contained. Let's see a small example about how
to do it:

var express = require('express');

var myServer = express();

var chai = require('chai');

myServer.get('/endpoint', function(req, res){
 res.send('endpoint reached');
});

var serverHandler;

before(function(){
 serverHandler = myServer.listen(3000);
});

describe("When executing 'GET' into /endpoint", function(){
 it("should return 'endpoint reached'", function(){
 // Your test logic here. http://localhost:3000 is your server.
 });
});

after(function(){
 serverHandler.close();
});

Testing and Documenting Node.js Microservices

[818]

As you can see, Express provides a handler to operate the server programmatically, so
it is as simple as making use of the before() and after() functions to do the trick.

In our example, we are going to assume that the server is running. In order to
issue the requests, we are going to use a library called request to issue the calls
to the server.

The way to install it, as usual, is to execute npm install request. Once it is
finished, we can make use of this amazing library:

var chai = require('chai');
var chaiHttp = require('chai-http');
var expect = chai.expect;
chai.use(chaiHttp);

describe("when we issue a 'GET' to /filter with text='aaaa bbbb
 cccc'", function(){
 it("should return HTTP 200", function(done) {
 chai.request('http://localhost:3000')
 .get('/filter')
 .query({text: 'aa bb ccccc'}).end(function(req, res){
 expect(res.status).to.equal(200);
 done();
 });
 });
});

describe("when we issue a 'GET' to /filter with text='aa bb
 ccccc'", function(){
 it("should return 'ccccc'", function(done) {
 chai.request('http://localhost:3000')
 .get('/filter')
 .query({text: 'aa bb ccccc'}).end(function(req, res){
 expect(res.text).to.equal('ccccc');
 done();
 });
 });
});

describe("when we issue a 'GET' to /filter with text='aa bb cc'",
 function(){
 it("should return ''", function(done) {
 chai.request('http://localhost:3000')
 .get('/filter')
 .query({text: 'aa bb cc'}).end(function(req, res){

Chapter 6

[819]

 expect(res.text).to.equal('');
 done();
 });
 });
});

With the simple test from earlier, we managed to test our server in a way that
ensures that every single mobile part of the application has been executed.

There is a particularity here that we didn't have before:

 it("should return 'ccccc'", function(done) {
 chai.request('http://localhost:3000')
 .get('/filter')
 .query({text: 'aa bb ccccc'}).end(function(req, res){
 expect(res.text).to.equal('ccccc');
 done();
 });
 });

If you take a look at the highlighted code, you can see a new callback called done.
This callback has one mission: prevent the test from finishing until it is called, so
that the HTTP request has time to be executed and return the appropriated value.
Remember, Node.js is asynchronous, there is no such thing as a thread being blocked
until one operation finishes.

Other than that, we are using a new DSL introduced by chai-http to build
get requests.

This language allows us to build a large range of combinations, consider the
following, for example:

chai.request('http://mydomain.com')
 .post('/myform')
 .field('_method', 'put')
 .field('username', 'dgonzalez')
 .field('password', '123456').end(...)

In the preceding request, we are submitting a form that looks like a login, so that in
the end() function, we can assert the return from the server.

There are an endless number of combinations to test our APIs with chai-http.

Testing and Documenting Node.js Microservices

[820]

Manual testing – the necessary evil
No matter how much effort we put in to our automated testing, there will always be
a number of manual tests executed.

Sometimes, we need to do it just when we are developing our API, as we want to
see the messages going from our client to the server, but some other times, we just
want to hit our endpoints with a pre-forged request to cause the software to execute
as we expect.

In the first case, we are going to take the advantage of Node.js and its dynamic
nature to build a proxy that will sniff all the requests and log them to a terminal
so that we can debug what is going on. This technique can be used to leverage
the communication between two microservices and see what is going on without
interrupting the flow.

In the second case, we are going to use software called Postman to issue requests
against our server in a controlled way.

Building a proxy to debug our microservices
My first contact with Node.js was exactly due to this problem: two servers sending
messages to each other, causing misbehavior without an apparent cause.

It is a very common problem that has many already-working solutions (man-in-the-
middle proxies basically), but we are going to demonstrate how powerful Node.js is:

var http = require('http');
var httpProxy = require('http-proxy');
var proxy = httpProxy.createProxyServer({});

http.createServer(function(req, res) {
 console.log(req.rawHeaders);
 proxy.web(req, res, { target: 'http://localhost:3000' });
}).listen(4000);

If you remember from the previous section, our stop-words.js program was
running on the port 3000. What we have done with this code is create a proxy using
http-proxy, that tunnels all the requests made on the port 4000 into the port 3000
after logging the headers into the console.

If we run the program after installing all the dependencies with the npm install
command in the root of the project, we can see how effectively the proxy is logging
the requests and tunneling them into the target host:

curl http://localhost:4000/filter?text=aaa

Chapter 6

[821]

This will produce the following output:

This example is very simplistic, but this small proxy could virtually be deployed
anywhere in between our microservices and give us very valuable information about
what is going on in the network.

Postman
Out of all the software that we can find on the Internet for testing APIs, Postman is
my favorite. It started as a extension for Google Chrome, but nowadays, has taken
the form of a standalone app built on the Chrome runtime.

It can be found in the Chrome web store, and it is free (so you don't need to pay for
it), although it has a version for teams with more advanced features that is paid.

The interface is very concise and simple, as shown in the following screenshot:

Testing and Documenting Node.js Microservices

[822]

On the left-hand side, we can see the History of requests, as well as the Collections
of requests, which will be very handy for when we are working on a long-term
project and we have some complicated requests to be built.

We are going to use again our stop-words.js microservice to show how powerful
Postman can be.

Therefore, the first thing is to make sure that our microservice is running. Once it is,
let's issue a request from Postman, as shown in the following screenshot:

As simple as that, we have issued the request for our service (using the GET verb)
and it has replied with the text filtered: very simple and effective.

Chapter 6

[823]

Now imagine that we want to execute that call over Node.js. Postman comes with a
very interesting feature, which is generating the code for the requests that we issue
from the interface. If you click on the icon under the save button on the right-hand
side of the window, the appearing screen will do the magic:

Let's take a look at the generated code:

var http = require("http");

var options = {
 "method": "GET",
 "hostname": "localhost",
 "port": "3000",
 "path": "/filter?text=aaa%20bb%20cc",
 "headers": {
 "cache-control": "no-cache",
 "postman-token": "912cacd8-bcc0-213f-f6ff-f0bcd98579c0"
 }
};

var req = http.request(options, function (res) {

Testing and Documenting Node.js Microservices

[824]

 var chunks = [];

 res.on("data", function (chunk) {
 chunks.push(chunk);
 });

 res.on("end", function () {
 var body = Buffer.concat(chunks);
 console.log(body.toString());
 });
});

req.end();

It is quite an easy code to understand, especially if you are familiar with the
HTTP library.

With Postman, we can also send cookies, headers, and forms to the servers in
order to mimic the authentication that an application will fulfill by sending the
authentication token or cookie across.

Let's redirect our request to the proxy that we created in the preceding section, as
shown in the following screenshot:

Chapter 6

[825]

If you have the proxy and the stop-words.js microservice running, you should see
something similar to the following output in the proxy:

The header that we sent over with Postman, my-awesome-header, will show up in
the list of raw headers.

Documenting microservices
In this section, we are going to learn how to use Swagger to document APIs.
Swagger is an API manager that follows the Open API standard, so that it is a
common language for all the API creators. We will discuss how to write definitions
and why it is so important to agree on how to describe resources.

Documenting APIs with Swagger
Documentation is always a problem. No matter how hard you try, it will always
eventually go out of date. Luckily, in the past few years, there has been a push into
producing a high quality documentation for REST APIs.

API managers have played a key role in it, and Swagger is particularly an interesting
platform to look at. More than a module for documentation, Swagger manages your
API in a such way that gives you a holistic view of your work.

Let's start installing it:

npm install -g swagger

Testing and Documenting Node.js Microservices

[826]

This will install Swagger system-wide, so it will be another command in our system.
Now, we need to create a project using it:

swagger project create my-project

This command will allow you to choose different web frameworks. We are going to
choose Express, as it is the one that we have already been using. The output of the
preceding command is shown in the following screenshot:

This screenshot is showing how to start a project with Swagger

Chapter 6

[827]

Now we can find a new folder, called my-project, that looks like the following image:

The structure is self-explanatory and it is the common layout of a Node.js application:

•	 api: Here, our API code will lay down
•	 config: All the configuration sits in here
•	 node_modules: This is a folder with all the dependencies required to run

our application
•	 test: This is where Swagger has generated some dummy tests and where we

could add our own tests

Swagger comes with an impressive feature: an embedded editor that allows you
to model the endpoints of your API. In order to run it, from within the generated
folder, execute the following command:

Swagger project edit

Testing and Documenting Node.js Microservices

[828]

It will open Swagger Editor in the default browser, with a window similar to the
following image:

Swagger makes use of Yet Another Markup Language (YAML). It is a language that
is very similar to JSON, but with a different syntax.

In this document, we can customize a number of things, such as paths (routes in our
application). Let's take a look at the path generated by Swagger:

/hello:
 # binds a127 app logic to a route
 x-swagger-router-controller: hello_world
 get:
 description: Returns 'Hello' to the caller
 # used as the method name of the controller
 operationId: hello
 parameters:
 - name: name

Chapter 6

[829]

 in: query
 description: The name of the person to whom to say hello
 required: false
 type: string
 responses:
 "200":
 description: Success
 schema:
 # a pointer to a definition
 $ref: "#/definitions/HelloWorldResponse"
 # responses may fall through to errors
 default:
 description: Error
 schema:
 $ref: "#/definitions/ErrorResponse"

The definition is self-documented. Basically, we will configure the parameters used
by our endpoint, but in a declarative way. This endpoint is mapping the incoming
actions into the hello_world controller, and specifically into the hello method,
which is defined by the id operation. Let's see what Swagger has generated for us in
this controller:

'use strict';

var util = require('util');

module.exports = {
 hello: hello
};

function hello(req, res) {
 var name = req.swagger.params.name.value || 'stranger';
 var hello = util.format('Hello, %s!', name);
 res.json(hello);
}

This code can be found in the api/controllers folder of the project. As you can
see, it is a pretty standard Express controller packed as a module (well-cohesioned).
The only strange line is the first one in the hello function, where we pick up the
parameters from Swagger. We will come back to this later, once we run the project.

Testing and Documenting Node.js Microservices

[830]

The second part of the endpoint is the responses. As we can see, we are referencing
two definitions: HelloWorldResponse for http code 200 and ErrorResponse for
the rest of the codes. These objects are defined in the following code:

definitions:
 HelloWorldResponse:
 required:
 - message
 properties:
 message:
 type: string
 ErrorResponse:
 required:
 - message
 properties:
 message:
 type: string

This is something really interesting, although we are using a dynamic language, the
contract is being defined by Swagger so that we have a language-agnostic definition
that can be consumed by a number of different technologies, respecting the principle of
technology heterogeneity that we were talking about earlier in Chapter 1, Microservices
Architecture, and Chapter 2, Microservices in Node.js – Seneca and PM2 Alternatives.

After explaining how the definition works, it is time to start the server:

swagger project start

This should produce an output that is very similar to the following code:

Starting: C:\my-project\app.js...

 project started here: http://localhost:10010/

 project will restart on changes.

 to restart at any time, enter `rs`

try this:

curl http://127.0.0.1:10010/hello?name=Scott

Chapter 6

[831]

Now, if we follow the instructions of the output and execute the curl command, we
get the following output:

curl http://127.0.0.1:10010/hello?name=David

"Hello David!"

Swagger is binding the name query parameter to the Swagger parameter specified
in the YAML definition. This may sound bad, as we are coupling our software
to Swagger, but it gives you an immense benefit: Swagger allows you to test the
endpoint through the editor. Let's see how it works.

On the right-hand side of the editor, you can see a button with the Try this operation
label, as shown in the following screenshot:

Testing and Documenting Node.js Microservices

[832]

Once you click it, it will present you a form that allows you to test the endpoint, as
shown in the following screenshot:

There is a warning message on this form about cross-origin requests. We don't need
to worry about it when developing in our local machine; however, we could have
problems when testing other hosts using the Swagger Editor.

For more information, visit the following URL:
https://en.wikipedia.org/wiki/Cross-origin_
resource_sharing

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Chapter 6

[833]

Enter a value for the name parameter, and after that, click on Send Request, as
shown in the following image:

This is a response example using Swagger Editor to test the endpoint

Be aware that, for this test to work, our app server has to be up and running.

Generating a project from the Swagger
definition
Until now, we have been playing with Swagger and the generated project, but we are
now going to generate the project from the swagger.yaml file. We will use the already
generated project as a starting point, but we will add a new endpoint:

swagger: "2.0"
info:
 version: "0.0.1"
 title: Stop Words Filtering App
host: localhost:8000
basePath: /
schemes:
 - http
 - https

Testing and Documenting Node.js Microservices

[834]

consumes:
 - application/json
produces:
 - application/json
paths:
 /stop-words:
 x-swagger-router-controller: stop_words
 get:
 description: Removes the stop words from an arbitrary input
 text.
 operationId: stopwords
 parameters:
 - name: text
 in: query
 description: The text to be sanitized
 required: false
 type: string
 responses:
 "200":
 description: Success
 schema:
 $ref: "#/definitions/StopWordsResponse"
 /swagger:
 x-swagger-pipe: swagger_raw
definitions:
 StopWordsResponse:
 required:
 - message
 properties:
 message:
 type: string

This endpoint might sound very familiar to you, as we unit tested it earlier in this
chapter. As you probably know by now, the Swagger Editor is quite cool: it provides
feedback as you type on, about what is going on in the YAML file, as well as saves
the changes.

The next step is to download the Swagger code generator from https://github.
com/swagger-api/swagger-codegen. It is a Java project, so we are going to need
the Java SDK and Maven to build it, as follows:

mvn package

https://github.com/swagger-api/swagger-codegen
https://github.com/swagger-api/swagger-codegen

Chapter 6

[835]

Codegen is a tool that allow us to read the API definition from the Swagger YAML
and build the basic structure for a project in a language of our choice, in this case,
Node.js.

The preceding command in the root of the project should build all the submodules.
Now, it is as easy as executing the following command in the root of the swagger-
codegen folder:

java -jar modules/swagger-codegen-cli/target/swagger-codegen-cli.jar
generate -i my-project.yaml -l nodejs -o my-project

The Swagger code generator supports a number of languages. Here, the trick is that
when using it for microservices, we can define the interface and then use the most
appropriate technology to build our service.

If you go to the my-project folder, you should find the full structure of the project in
there, ready to start coding.

Summary
In this chapter, you learned how to test and document microservices. It is usually
the forgotten activity in software development, due to the pressures to deliver new
functionalities, but in my opinion, it is a risky decision. We have to find the balance
between too much and very little testing. In general, we will always try to find the
right proportion for unit, integration and end-to-end tests.

You also learned about manual testing and the tools to efficiently test our software
manually (there is always a component of manual testing).

Another interesting point is the documentation and API management. In this case,
we got to know Swagger, which is probably the most popular API manager that led
to the creation of the Open API standard.

If you want to go deeper in to the API world (there is a lot to learn in order to build
a practical and efficient API), you should probably browse http://apigee.com.
Apigee are a company expert on building APIs and providing tools for developers
and enterprises that could help you to build a better API.

http://apigee.com

[837]

Monitoring Microservices
Monitoring servers is always a controversial subject. It usually falls under system
administration, and software engineers don't even go near it, but we are losing one
of the huge benefits of monitoring: the ability to react quickly to failures. By monitoring
our system very closely, we can be aware of problems almost immediately so that
the actions to correct the problem may even save us from impacting the customers.
Along with monitoring, there is the concept of performance. By knowing how our
system behaves during load periods, we will be able to anticipate the necessity of
scaling the system. In this chapter, we will discuss how to monitor servers, and
specifically microservices, in order to maintain the stability of our system.

In this chapter, we will cover the following topics:

•	 Monitoring services
•	 Monitoring using PM2 and Keymetrics
•	 Monitoring metrics
•	 Simian Army – the active monitoring from Spotify
•	 Throughput and performance degradation

Monitoring services
When monitoring a microservice, we are interested in a few different types
of metrics. The first big group of metrics is the hardware resources, which are
described as follows:

•	 Memory metrics: This indicates how much memory is left in our system or
consumed by our application

•	 CPU utilization: As the name suggests, this indicates how much CPU are we
using at a given time

•	 Disk utilization: This indicates the I/O pressure in the physical hard drives

Monitoring Microservices

[838]

The second big group is the application metrics, as follows:

•	 Number of errors per time unit
•	 Number of calls per time unit
•	 Response time

Even though both groups are connected and a problem in the hardware will impact
the application performance (and the other way around), knowing all of them is
a must.

Hardware metrics are easy to query if our server is a Linux machine. On Linux,
all the magic of hardware resources happens in the /proc folder. This folder is
maintained by the kernel of the system and contains files about how the system
behaves regarding a number of aspects in the system.

Software metrics are harder to collect and we are going to use Keymetrics from the
creators of PM2 to monitor our Node.js applications.

Monitoring using PM2 and Keymetrics
PM2, as we've seen before, is a very powerful instrument to run Node applications,
but it is also very good at monitoring standalone applications in production servers.
However, depending on your business case, it is not always easy to get access to
the production.

The creators of PM2 have solved this problem by creating Keymetrics. Keymetrics
is a Software as a service (SaaS) component that allows PM2 to send monitoring
data across the network to its website, as shown in the following image (as found
at https://keymetrics.io/):

https://keymetrics.io/

Chapter 7

[839]

Even though Keymetrics is not free, it provides a free tier to demonstrate how it
works. We are going to use it in this chapter.

The very first thing that we need to do is register a user. Once we get access to our
account, we should see something similar to the following screen:

This screen is asking us to create a bucket. Keymetrics uses the bucket concept to
define a context. For example, if our organization has different areas (payments,
customer service, and so on) with different servers on each area, we could monitor
all the servers in one bucket. There are no restrictions on how many servers you can
have in one bucket. It is even possible to have all the organization in the same bucket
so that everything is easy to access.

Monitoring Microservices

[840]

Let's create a bucket called Monitoring Test, as shown in the following image:

Easy, once we tap on Create Bucket, Keymetrics will show us a screen with the
information needed to start monitoring our app, as shown in the following image:

Chapter 7

[841]

As you can see, the screen displays information about the private key used by
Keymetrics. Usually, it is a very bad idea to share this key with anyone.

As shown on the screen, the next step is to configure PM2 to push data into
Keymetrics. There is also useful information about the networking needed
to make Keymetrics work:

•	 PM2 will be pushing data to the port 80 on Keymetrics
•	 Keymetrics will be pushing data back to us on the port 43554

Usually, in large organizations, there are restrictions about the networking, but if
you are testing this from home, everything should work straightaway.

In order to make PM2 able to send metrics to Keymetrics, we need to install one PM2
module called pm2-server-monit. This is a fairly easy task:

pm2 install pm2-server-monit

This will result in an output similar to the following:

Let's run the advised command:

pm2 link fan7p32fnysuuw8 znlz25frrcwakg6 my-server

Monitoring Microservices

[842]

In this case, I have replaced [server name] with my-server. There are no
restrictions on the server name; however, when rolling out Keymetrics into a real
system, it is recommended to choose a descriptive name in order to easily identify
the server in the dashboard.

The preceding command will produce an output similar to the following image:

This is an indication that everything went well and our application is ready to be
monitored from Keymetrics that can be checked on https://app.keymetrics.io/,
as follows:

Now, our server is showing up in the interface. As we previously stated, this bucket
could monitor different servers. A simple virtual machine is created, and as you can
see at the bottom of the screen, Keymetrics provides us with the command to be
executed in order to add another server. In this case, as we are using the free access
to Keymetrics, so we can only monitor one server.

Let's see what Keymetrics can offer us. At first sight, we can see interesting metrics
such as CPU usage, memory available, disk available, and so on.

https://app.keymetrics.io/

Chapter 7

[843]

All these are hardware metrics that indicate how our system is behaving. Under
pressure, they are the perfect indicator to point out the need for more hardware
resources.

Usually, the hardware resources are the main indicator of failure in an application.
Now, we are going to see how to use Keymetrics to diagnose the problem.

Diagnosing problems
A memory leak is usually a difficult problem to solve due to the nature of the flaw.
Take a look at the following code.

Let's run the program using a simple seneca.act() action:

var seneca = require('seneca')();

var names = [];

seneca.add({cmd: 'memory-leak'}, function(args, done){
 names.push(args.name);
 greetings = "Hello " + args.name;
 done(null ,{result: greetings});
});

seneca.act({cmd: 'memory-leak', name: 'David'}, function(err,
 response) {
 console.log(response);
});

This program has a very obvious memory leak, and by obvious, I mean that it
is written to be obvious. The names array will keep growing indefinitely. In the
preceding example, it is not a big deal due to the fact that our application is a
script that will start and finish without keeping the state in memory.

Remember that JavaScript allocates variables in the
global scope if the var keyword is not used.

The problem comes when someone else reutilizes our code in a different part of
the application.

Monitoring Microservices

[844]

Let's assume that our system grows to a point that we need a microservice to greet
new customers (or deliver the initial payload of personal information such as name,
preferences, configuration, and so on). The following code could be a good example
on how to build it:

var seneca = require('seneca')();

var names = [];

seneca.add({cmd: 'memory-leak'}, function(args, done){
 names.push(args.name);
 greetings = "Hello " + args.name;
 done(null ,{result: greetings});
});

seneca.listen(null, {port: 8080});

In this example, Seneca will be listening over HTTP for requests from Seneca clients
or other types of systems such as curl. When we run the application:

node index.js

2016-02-14T13:30:26.748Z szwj2mazorea/1455456626740/40489/- INFO hello
Seneca/1.1.0/szwj2mazorea/1455456626740/40489/-

2016-02-14T13:30:27.003Z szwj2mazorea/1455456626740/40489/- INFO listen
{port:8080}

Then from another terminal, we use curl to act as a client of our microservice,
everything will work smoothly and our memory leak will go unnoticed:

curl -d '{"cmd": "memory-leak", "name":"David"}' http://127.0.0.1:8080/
act

{"result":"Hello David"}%

However, we are going to use Keymetrics to find the problem. The first thing we
need to do is run our program using PM2. In order to do it so, we run the following
command:

pm2 start index.js

Chapter 7

[845]

This command will produce the following output:

Let's explain the output in the following:

•	 The first line gives us information about the integration with Keymetrics.
Data such as public key, server name, and the URL to access Keymetrics.

•	 In the first table, we can see the name of the application running, as well as
few statistics on memory, uptime, CPU, and so on.

•	 In the second table, we can see the information relevant to the pm2-server-
monit PM2 module.

Now, let's go to Keymetrics and see what has happened:

The application is now registered in Keymetrics as it can be seen in the control panel

Monitoring Microservices

[846]

As you can see, now our application is showing up in Keymetrics.

Straightaway, we can see the very useful things about our app. One of these is the
memory used. This is the metric that will indicate a memory leak, as it will keep
growing.

Now, we are going to force the memory leak to cause a problem in our application.
In this case, the only thing that we need to do is start our server (the small
application that we wrote before) and issue a significant number of requests:

for i in {0..100000}
do
 curl -d '{"cmd": "memory-leak", "name":"David"}'
 http://127.0.0.1:8080/act
done

As simple as the small bash script, this is all it takes to open Pandora's Box in
our application:

The application is now showing a high load (36% of CPU and an increased use of memory up to 167 MB)

Chapter 7

[847]

The preceding image shows the impact of running the loop of requests in our system.
Let's explain it in the following:

•	 The CPU in our application has gone to 11% with an average loop delay of
1.82 milliseconds. Regarding our system, the overall CPU utilization has
gone up to 36.11% due to the fact that both the application and bash script
use a significant amount of resources.

•	 The memory consumption has soared from 81.9 MB to 167.6 MB. As you
can see, the line on the graph of memory allocation is not going straight up,
and that is due to garbage collections. A garbage collection is an activity
within the Node.js framework where unreferenced objects are freed from the
memory, allowing our system to reuse the hardware resources.

•	 Regarding the errors, our application has been stable with 0 errors (we'll
come back to this section later).

Now, once our bash script is finished (I stopped it manually, as it can take a
significant amount of resources and time to finish), we can again see what happened
to our system in the following screenshot:

Monitoring Microservices

[848]

We can see that the CPU has gone back to normal, but what about the memory?
The memory consumed by our application hasn't been freed due to the fact that our
program has a memory leak, and as long as our variable is referencing the memory
consumed (remember the names array is accumulating more and more names), it
won't be freed.

In this case, we have a very simple example that clearly shows where the memory
leak is, but in complex applications, it is not always obvious. This error, in particular,
could never show up as a problem due to the fact that we probably deploy new
versions of our app often enough to not realize it.

Monitoring application exceptions
Application errors are events that occur when our application can't handle an
unexpected situation. Things such as dividing a number by zero or trying to access
an undefined property of our application usually leads to these type of problems.

When working on a multithreaded framework (language) such as Tomcat, the fact
that one of our threads dies due to an exception usually only affects to one customer
(the one holding the thread). However, in Node.js, a bubbled exception could be a
significant problem as our application dies.

PM2 and Seneca do a very good job at keeping it alive as PM2 will restart our app
if something makes it stop, and Seneca won't let the application die if an exception
occurs in one of the actions.

Keymetrics has developed a module called pmx that we can use to programmatically
get alerts on errors:

var seneca = require('seneca')();

var pmx = require('pmx');

var names = [];

seneca.add({cmd: 'exception'}, function(args, done){
 pmx.notify(new Error("Unexpected Exception!"));

 done(null ,{result: 100/args.number});
});

seneca.listen({port: 8085});

Chapter 7

[849]

It is easy and self-descriptive: an action that sends an exception to Keymetrics if the
number sent as a parameter is zero. If we run it, we will get the following output:

Now we need to hit the server in order to cause the error. As we did earlier, we will
do this using curl:

curl -d '{"cmd": "exception", "number": "0"}' http://localhost:8085/act

{"result":null}%

Now, when we go to Keymetrics, we can see that there is an error logged, as shown
in the following image:

Another interesting point of Keymetrics is the configuration of alerts. As PM2 sends
data about pretty much every metric in our system, we have the ability to configure
Keymetrics on the thresholds that we consider healthy for our application.

Monitoring Microservices

[850]

This is very handy as we could get the notifications integrated in our corporate chat
(something similar to Slack) and be alerted real time when something is not going
correctly in our application.

Custom metrics
Keymetrics also allows us to use probes. A probe is a custom metric that is sent
programmatically by the application to Keymetrics.

There are different types of values that the native library from Keymetrics allows us
to push directly. We are going to see the most useful ones.

Simple metric
A simple metric is, as its name indicates, a very basic metric where the developer can
set the value to the data sent to Keymetrics:

var seneca = require('seneca')();
var pmx = require("pmx").init({
 http: true,
 errors: true,
 custom_probes: true,
 network: true,
 ports: true
});
var names = [];
var probe = pmx.probe();

var meter = probe.metric({
 name : 'Last call'
});

seneca.add({cmd: 'last-call'}, function(args, done){
 console.log(meter);
 meter.set(new Date().toISOString());
 done(null, {result: "done!"});
});

seneca.listen({port: 8085});

Chapter 7

[851]

In this case, the metric will send the time when the action was called for the last time
to the Keymetrics:

The configuration for this metric is non-existent:

var probe = pmx.probe();

var meter = probe.metric({
 name : 'Last call'
});

There is no complexity in this metric.

Counter
This metric is very useful to count how many times an event occurred:

var seneca = require('seneca')();
var pmx = require("pmx").init({
 http: true,
 errors: true,
 custom_probes: true,
 network: true,
 ports: true
});
var names = [];
var probe = pmx.probe();

var counter = probe.counter({
 name : 'Number of calls'
});

seneca.add({cmd: 'counter'}, function(args, done){
 counter.inc();
 done(null, {result: "done!"});
});

seneca.listen({port: 8085});

Monitoring Microservices

[852]

In the preceding code, we can see how the counter is incremented for every single
call to the action counter.

This metric will also allow us to decrement the value calling the dec() method on
the counter:

counter.dec();

Average calculated values
This metric allows us to record when an event occurs, and it will automatically
calculate the number of events per time unit. It is quite useful to calculate averages
and is a good tool to measure the load in the system. Let's see a simple example,
as follows:

var seneca = require('seneca')();
var pmx = require("pmx").init({
 http: true,
 errors: true,
 custom_probes: true,
 network: true,
 ports: true
});
var names = [];
var probe = pmx.probe();

var meter = probe.meter({
 name : 'Calls per minute',
 samples : 60,
 timeframe : 3600
});

seneca.add({cmd: 'calls-minute'}, function(args, done){
 meter.mark();
 done(null, {result: "done!"});
});

seneca.listen({port: 8085});

The preceding code creates a probe and sends a new metric called Calls per
minute to Keymetrics.

Chapter 7

[853]

Now, if we run the application and the following command a few times, the metric is
shown in the following Keymetrics interface:

curl -d '{"cmd": "calls-minute"}' http://localhost:8085/act

As you can see, there is a new metric called Calls per minute in the UI. The key to
configure this metric is in the following initialization:

var meter = probe.meter({
 name : 'Calls per minute',
 samples : 60,
 timeframe : 3600
});

As you can see, the name of the metric is in the configuration dictionary as well as in
two parameters: samples and timeframe.

The samples parameter correspond to the interval where we want to rate the metric;
in this case, it is the number of calls per minute so that rate is 60 seconds.

The timeframe parameter, on the other hand, is for how long we want Keymetrics to
hold the data for, or to express in simpler words, it is the timeframe over which the
metric will be analyzed.

Monitoring Microservices

[854]

Simian Army – the active monitoring from
Spotify
Spotify is one of the companies of reference when building microservices-oriented
applications. They are extremely creative and talented when it boils down to coming
up with new ideas.

One of my favourite ideas among them is what they call the Simian Army. I like to
call it active monitoring.

In this book, I have talked a lot times about how humans fail at performing different
tasks. No matter how much effort you put in to creating your software, there are
going to be bugs that will compromise the stability of the system.

This is a big problem, but it becomes a huge deal when, with the modern cloud
providers, your infrastructure is automated with a script.

Think about it, what happens if in a pool of thousand servers, three of them have
the time zone out of sync with the rest of the servers? Well, depending on the nature
of your system, it could be fine or it could be a big deal. Can you imagine your bank
giving you a statement with disordered transactions?

Spotify has solved (or mitigated) the preceding problem by creating a number of
software agents (a program that moves within the different machines of our system),
naming them after different species of monkeys with different purposes to ensure the
robustness of their infrastructure. Let's explain it a bit further.

As you are probably aware, if you have worked before with Amazon Web Services,
the machines and computational elements are divided in to regions (EU, Australia,
USA, and so on) and inside every region, there are availability zones, as shown in the
following diagram:

Chapter 7

[855]

This enables us, the engineers, to create software and infrastructure without hitting
what we call a single point of failure.

A single point of failure is a condition in a system where the
failure of a single element will cause the system to misbehave.

Monitoring Microservices

[856]

This configuration raised a number of questions to the engineers in Spotify,
as follows:

•	 What happens if we blindly trust our design without testing whether we
actually have any point of failures or not?

•	 What happens if a full availability zone or region goes down?
•	 How is our application going to behave if there is an abnormal latency for

some reason?

To answer all these questions, Netflix has created various agents. An agent is a
software that runs on a system (in this case, our microservices system) and carries on
different operations such as checking the hardware, measuring the network latency,
and so on. The idea of agent is not new, but until now, its application was nearly a
futuristic subject. Let's take a look at the following agents created by Netflix:

•	 Chaos Monkey: This agent disconnects healthy machines from the network
in a given availability zone. This ensures that there are no single points of
failures within an availability zone. So that if our application is balanced across
four nodes, when the Chaos Monkey kicks in, it will disconnect one of these
four machines.

•	 Chaos Gorilla: This is similar to Chaos Monkey, Chaos Gorilla will
disconnect a full availability zone in order to verify that Netflix services
rebalance to the other available zones. In other words, Chaos Gorilla is the
big brother of Chaos Monkey; instead of operating at the server level, it
operates at the partition level.

•	 Latency Monkey: This agent is responsible for introducing artificial latencies
in the connections. Latency is usually something that is hardly considered
when developing a system, but it is a very delicate subject when building a
microservices architecture: latency in one node could compromise the quality
of the full system. When a service is running out of resources, usually the
first indication is the latency in the responses; therefore, Latency Monkey is a
good way to find out how our system will behave under pressure.

•	 Doctor Monkey: A health check is an endpoint in our application that
returns an HTTP 200 if everything is correct and 500 error code if there
is a problem within the application. Doctor Monkey is an agent that will
randomly execute the health check of nodes in our application and report the
faulty ones in order to replace them.

•	 10-18 Monkey: Organizations such as Netflix are global, so they need to be
language-aware (certainly, you don't want to get a website in German when
your mother tongue is Spanish). The 10-18 Monkey reports on instances that
are misconfigured.

Chapter 7

[857]

There are a few other agents, but I just want to explain active monitoring to you.
Of course, this type of monitoring is out of reach of small organizations, but it
is good to know about their existence so that we can get inspired to set up our
monitoring procedures.

The code is available under Apache License in the following repository:
https://github.com/Netflix/SimianArmy.

In general, this active monitoring follows the philosophy of fail early, of which, I am
a big adept. No matter how big the flaw in your system is or how critical it is, you
want to find it sooner than later, and ideally, without impacting any customer.

Throughput and performance degradation
Throughput is to our application what the monthly production is to a factory. It
is a unit of measurement that gives us an indication about how our application is
performing and answers the how many question of a system.

Very close to throughput, there is another unit that we can measure: latency.

Latency is the performance unit that answers the question of how long.

Let's consider the following example:

Our application is a microservices-based architecture that is responsible for
calculating credit ratings of applicants to withdraw a mortgage. As we have a large
volume of customers (a nice problem to have), we have decided to process the
applications in batches. Let's draw a small algorithm around it:

var seneca = require('seneca')();
var senecaPendingApplications = require('seneca').client({type:
 'tcp',
 port: 8002,
 host: "192.168.1.2"});
 var senecaCreditRatingCalculator =
 require('seneca').client({type: 'tcp',
 port: 8002,
 host: "192.168.1.3"});

seneca.add({cmd: 'mortgages', action: 'calculate'}, function(args,
callback) {
 senecaPendingApplications.act({
 cmd: 'applications',
 section: 'mortgages',

https://github.com/Netflix/SimianArmy

Monitoring Microservices

[858]

 custmers: args.customers}, function(err, responseApplications) {
 senecaCreditRatingCalculator.act({cmd: 'rating',
 customers: args.customers}, function(err, response) {

 processApplications(response.ratings,
 responseApplications.applications,
 args.customers
);
 });
 });
});

This is a small and simple Seneca application (this is only theoretical, don't try to run
it as there is a lot of code missing!) that acts as a client for two other microservices,
as follows:

•	 The first one gets the list of pending applications for mortgages
•	 The second one gets the list of credit rating for the customers that we have

requested

This could be a real situation for processing mortgage applications. In all fairness,
I worked on a very similar system in the past, and even though it was a lot more
complex, the workflow was very similar.

Let's talk about throughput and latency. Imagine that we have a fairly big batch of
mortgages to process and the system is misbehaving: the network is not being as fast
as it should and is experiencing some dropouts.

Some of these applications will be lost and will need to be retried. In ideal conditions,
our system is producing a throughput of 500 applications per hour and takes an
average of 7.2 seconds on latency to process every single application. However,
today, as we stated before, the system is not at its best; we are processing only 270
applications per hour and takes on average 13.3 seconds to process a single mortgage
application.

As you can see, with latency and throughput, we can measure how our business
transactions are behaving with respect to the previous experiences; we are operating
at 54% of our normal capacity.

This could be a serious issue. In all fairness, a drop off like this should ring all the
alarms in our systems as something really serious is going on in our infrastructure;
however, if we have been smart enough while building our system, the performance
will be degraded, but our system won't stop working. This can be easily achieved by
the usage of circuit breakers and queueing technologies such as RabbitMQ.

Chapter 7

[859]

Queueing is one of the best examples to show how to apply human behavior to an
IT system. Seriously, the fact that we can easily decouple our software components
having a simple message as a joint point, which our services either produce or
consume, gives us a big advantage when writing complex software.

Other advantage of queuing over HTTP is that an HTTP message is lost if there is a
network drop out.

We need to build our application around the fact that it is either full success or
error. With queueing technologies such as RabbitMQ, our messaging delivery is
asynchronous so that we don't need to worry about intermittent failures: as soon as we
can deliver the message to the appropriate queue, it will get persisted until the client is able to
consume it (or the message timeout occurs).

This enables us to account for intermittent errors in the infrastructure and build even
more robust applications based on the communication around queues.

Again, Seneca makes our life very easy: the plugin system on which the Seneca
framework is built makes writing a transport plugin a fairly simple task.

RabbitMQ transport plugin can be found in the following GitHub
repository:
https://github.com/senecajs/seneca-rabbitmq-transport

There are quite few transport plugins and we can also create our own
ones (or modify the existing ones!) to satisfy our needs.

If you take a quick look at the RabbitMQ plugin (just as an example), the only
thing that we need to do to write a transport plugin is overriding the following
two Seneca actions:

•	 seneca.add({role: 'transport', hook: 'listen', type:
'rabbitmq'}, ...)

•	 seneca.add({role: 'transport', hook: 'client', type:
'rabbitmq'}, ...)

Using queueing technologies, our system will be more resilient against intermittent
failures and we would be able to degrade the performance instead of heading into a
catastrophic failure due to missing messages.

https://github.com/senecajs/seneca-rabbitmq-transport

Monitoring Microservices

[860]

Summary
In this chapter, we deep dived into PM2 monitoring through Keymetrics. We learned
how to put tight monitoring in place so that we are quickly informed about the
failures in our application.

In the software development life cycle, the QA phase is, in my opinion, one of the
most important one: no matter how good your code looks, if it does not work, it is
useless. However, if I have to choose another phase where engineers should put
more emphasis, it would be the deployment, and more specifically, the monitoring
that is carried out after every deployment. If you receive error reports immediately,
chances are that the reaction can be quick enough to avoid bigger problems such as
corrupted data or customers complaining.

We also saw an example of active monitoring carried out by Netflix on their systems,
which even though might be out of the reach of your company, it can spark good
ideas and practices in order to monitor your software.

Keymetrics is just an example that fits the bill for Node.js as it is extremely well
integrated with PM2, but there are also other good monitoring systems such as
AppDynamics, or if you want to go for an in-house software, you could use Nagios.
The key is being clear about what you need to monitor in the application, and then,
find the best provider.

Another two good options for monitoring Node.js apps are StrongLoop and
New Relic. They are both on the same line with Keymetrics, but they work better
for large-scale systems, especially StrongLoop, which is oriented to applications
written in Node.js and oriented to microservices.

[861]

Deploying Microservices
In this chapter, we are going to deploy microservices. We will use different
technologies in order to provide the reader with the knowledge required to choose
the right tool for every job. First, we will use PM2 and its deployment capabilities
to run applications in remote servers. Then, we will play around Docker, which is
one of the most advanced deployment platforms, and the entire ecosystem around
containers. In this chapter, we will show how to automate all the deployments as
highly as possible.

Concepts in software deployment
Deployments are usually the ugly friend of the Software Development Life Cycle
(SDLC) party. There is a missing contact point between development and systems
administration that DevOps is going to solve in the next few years. The cost of fixing
bugs at different stages of SDLC is shown in the following figure:

This diagram shows the cost of fixing a bug, depending on the stage of the SDLC

Deploying Microservices

[862]

Fail early is one of my favorite concepts in the lean methodology. In the change
management world, the cost of fixing a bug in the different stages of the software
life cycle is called the cost of change curve.

Roughly, fixing a bug in production is estimated to cost 150 times the resources as
compared to the costs to fix it when taking requirements.

No matter what the figure is, which depends a lot on the methodology and
technology that we use, the lesson learned is that we can save a lot of time by
catching bugs early.

From the continuous integration up to continuous delivery, the process should be
automated as much as possible, where as much as possible means 100%. Remember,
humans are imperfect and more prone to errors while carrying out manual repetitive
tasks.

Continuous integration
Continuous integration (CI) is the practice of integrating the work from different
branches on daily basis (or more than once a day) and validating that the changes
do not break existing features by running integration and unit tests.

CI should be automated using the same infrastructure configuration as we will
be using later in pre-production and production, so if there is any flaw, it can be
caught early.

Continuous delivery
Continuous delivery (CD) is a software engineering approach that aims to build
small, testable, and easily deployable pieces of functionality that can be delivered
seamlessly at any time.

This is what we are aiming for with the microservices. Again, we should be pushing
to automate the delivery process as, if we are doing it manually, we are only looking
for problems.

When talking from the microservices' perspective, automation on deployments is
the key. We need to tackle the overhead of having a few dozen of services instead of
a few machines, or we can find ourselves maintaining a cloud of services instead of
adding value to our company.

Docker is our best ally here. With Docker, we are reducing the hassle of deploying
a new software to pretty much moving a file (a container) around in different
environments, as we will see later in this chapter.

Chapter 8

[863]

Deployments with PM2
PM2 is an extremely powerful tool. No matter what stage of development we are in,
PM2 always has something to offer.

In this phase of software development, the deployment is where PM2 really shines.
Through a JSON configuration file, PM2 will manage a cluster of applications so that
we can easily deploy, redeploy, and manage applications on remote servers.

PM2 – ecosystems
PM2 calls a group of applications ecosystem. Every ecosystem is described by a
JSON file, and the easiest way to generate it is executing the following command:

pm2 ecosystem

This should output something similar to the following code:

[PM2] Spawning PM2 daemon

[PM2] PM2 Successfully daemonized

File /path/to/your/app/ecosystem.json generated

The content of the ecosystem.json file varies, depending on the version of PM2, but
what this file contains is the skeleton of a PM2 cluster:

{
 apps : [

 {
 name : "My Application",
 script : "app.js"
 },

 {
 name : "Test Web Server",
 script : "proxy-server.js"
 }
],

*/
 deploy : {
 production : {
 user : "admin",
 host : "10.0.0.1",

Deploying Microservices

[864]

 ref : "remotes/origin/master",
 repo : "git@github.com:the-repository.git",
 path : "/apps/repository",
 "post-deploy" : "pm2 startOrRestart ecosystem.json --env
 production"
 },
 dev : {
 user : "devadmin",
 host : "10.0.0.1",
 ref : "remotes/origin/master",
 repo : "git@github.com:the-repository.git",
 path : "/home/david/development/test-app/",
 "post-deploy" : "pm2 startOrRestart ecosystem.json --env
 dev",
 }
 }
}

This file contains two applications configured for two environments. We are going to
modify this skeleton to adapt it to our needs, modeling our entire ecosystem written
in Chapter 4, Writing Your First Microservice in Node.js.

However, for now, let's explain a bit for the configuration:

•	 We have an array of applications (apps) defining two apps: API and WEB
•	 As you can see, we have a few configuration parameters for each app:

°° name: This is the name of the application
°° script: This is the startup script of the app
°° env: These are the environment variables to be injected into the

system by PM2
°° env_<environment>: This is same as env, but it is tailored per

environment

•	 There are two environments defined in the default ecosystem under the
deploy key, as follows:

°° production

°° dev

As you can see, between these two environments, there are no significant changes
except for the fact that we are configuring one environment variable in development
and the folder where we deploy our application.

Chapter 8

[865]

Deploying microservices with PM2
In Chapter 4, Writing Your First Microservice in Node.js, we wrote a simple e-commerce
in order to show the different concepts and common catches in microservices.

Now, we are going to learn how to deploy them using PM2.

Configuring the server
First thing we need to do in order to deploy software with PM2 is to configure the
remote machine and local machine to be able to talk using SSH, with a public/private
key schema.

The way of doing it is easy, as follows:

•	 Generate one RSA key
•	 Install it into the remote server

Let's do it:

ssh-keygen -t rsa

That should produce something similar to the following output:

Generating public/private rsa key pair.

Enter file in which to save the key (/Users/youruser/.ssh/id_rsa): /
Users/youruser/.ssh/pm2_rsa

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in pm2_rsa.

Your public key has been saved in pm2_rsa.pub.

The key fingerprint is:

eb:bc:24:fe:23:b2:6e:2d:58:e4:5f:ab:7b:b7:ee:38 dgonzalez@yourmachine.
local

The key's randomart image is:

+--[RSA 2048]----+

| |

| |

| |

| . |

| o S |

| o .. |

Deploying Microservices

[866]

| o o..o. |

| . +.+=E.. |

| oo++**B+. |

+-----------------+

Now, if we go to the folder indicated in the preceding output, we can find the
following two files:

•	 pm2_rsa: The first one, pm2_rsa, is your private key. As you can read from
the name, no one should have access to this key as they may steal your
identity in the servers that trust this key.

•	 pm2_rsa.pub: The pm2_rsa.pub is your public key. This key can be handed
over to anyone so that using asymmetric cryptography techniques, they can
verify your identity (or who you say you are).

What we are going to do now is copy the public key to the remote server so that
when our local machine PM2 tries to talk to the server, it knows who we are and let's
get into the shell without password:

cat pm2_rsa.pub | ssh youruser@yourremoteserver 'cat >> .ssh/authorized_
keys'

The last step is to register your private key as a known identity in your local machine:

ssh-add pm2_rsa

That's about it.

From now on, whenever you SSH into the remote server using as a user youruser,
you won't need to enter the password in order to get into the shell.

Once this configuration is done, there is very little to do in order to deploy any
application into this server:

pm2 deploy ecosystem.json production setup

pm2 deploy ecosystem.json production

The first command will configure everything needed to accommodate the app. The
second command will actually deploy the application itself as we configured earlier.

Chapter 8

[867]

Docker – a container for software
delivery
Virtualization has been one of the biggest trends in the past few years. Virtualization
enables the engineer to share the hardware across different software instances.
Docker is not really a virtualization software, but it is conceptually the same.

With a pure virtualization solution, a new OS runs on top of a hypervisor sitting on
top of an existing operating system (host OS). Running the full OS means that we can
be consuming a few gigabytes of hard drive in order to replicate the full stack from
the kernel to the filesystem, which usually consumes a good chunk of resources. The
structure of a virtualization solution is shown in the following image:

Layers diagram for a virtual machine environment

Deploying Microservices

[868]

With Docker, we only replicate the filesystem and binaries so that there is no need
to run the full stack of the OS where we don't need it. Docker images are usually a
few hundreds of megabytes, instead of gigabytes, and they are quite lightweight,
therefore, we can run some containers on the same machine. The previous structure
using Docker is shown as follows:

Layers diagram for Docker

With Docker, we also eliminate one of the biggest problems of software deployment,
that is, the configuration management.

We are switching a complicated per-environment configuration management, where
we need to worry about how the application is deployed/configured into a container
that is basically like a software package that can be installed in any Docker-ready
machine.

The only Docker-ready OS nowadays is Linux, as Docker needs to make use of the
advanced kernel features, forcing Windows and Mac users to run a virtual machine
with Linux in order to provide support to run Docker containers.

Chapter 8

[869]

Setting up the container
Docker comes with a very powerful and familiar way (for developers) of configuring
the containers.

You can create containers based on an existing image (there are thousands of images
on the Internet) and then modify the image to fulfil your needs by adding new
software packages or altering the filesystem.

Once we are satisfied with it, we can use the new version of the image to create our
containers using a version control system similar to Git.

However, we need to understand how Docker works first.

Installing Docker
As it was mentioned before, Docker needs a virtual machine to provide support on
Mac and Windows, therefore, the installation on these systems may vary. The best
way to install Docker on your system is to go to the official website and follow
the steps:

https://docs.docker.com/engine/installation/

At the moment, it is a very active project, so you can expect changes every few weeks.

Choosing the image
By default, Docker comes with no images. We can verify this by running docker
images on the terminal, which will produce an output very similar to the following
screenshot:

It is an empty list. There are no images stored in the local machine. The first thing
we need to do is search for an image. In this case, we are going to use CentOS as
our base for creating the images. CentOS is very close to Red Hat Enterprise Linux,
which seems to be one of the most extended distributions of Linux in the industry.
They provide great support and there is plenty of information available on the
Internet to troubleshoot problems.

https://docs.docker.com/engine/installation/

Deploying Microservices

[870]

Let's search for a CentOS image as follows:

As you can see, there is a long list of images based on CentOS, but only the first one
is official.

This list of images is coming from something called the Registry in the Docker
world. A Docker Registry is a simple repository of images available to the general
public. You can also run your own Registry in order to prevent your images from
going to the general one.

More information can be found at the following link:
https://docs.docker.com/registry/

There is one column in the table in the preceding screenshot that should have
caught your attention almost immediately, the column called STARS. This column
represents the rating given by the users for a given image. We can narrow the search
based on the number of stars that the users have given to an image by using the
-s flag.

If you run the following command, you will see a list of images rated with 1000 or
more stars:

docker search -s 1000 centos

https://docs.docker.com/registry/

Chapter 8

[871]

Be careful with the images you choose, there is nothing
preventing a user to create an image with malicious software.

In order to fetch the CentOS image to the local machine, we need to run the
following command:

docker pull centos

The output produced will be very similar to the following image:

Once the command finishes, if we run Docker images again, we can see that centos is
now appearing in the following list:

As we specified earlier, Docker does not use the full image, but it uses a reduced
version of it, only virtualizing the last few layers of the OS. You can clearly see it, as
the size of the image is not even 200 MB, which for a full version of CentOS, can go
up to a few GB.

Running the container
Now that we have a copy of the image in our local machine, it is time to run it:

docker run -i -t centos /bin/bash

Deploying Microservices

[872]

This will produce the following output:

As you can see, the prompt of the terminal has changed to something like root@
debd09c7aa3b, which means that we are inside the container.

From now on, every single command that we run will be executed inside a contained
version of CentOS Linux.

There is another interesting command in Docker:

docker ps

If we run this command in a new terminal (without exiting from the running
container), we will get the following output:

This output is self explanatory; it is an easy way to see what is going on in our
Docker containers.

Installing the required software
Let's install Node.js in the container:

curl --silent --location https://rpm.nodesource.com/setup_4.x | bash -

This command will pull and execute the setup script for Node.js.

Chapter 8

[873]

This will produce an output very similar to the following image:

Follow the instructions, as this will install node:

yum install -y nodejs

It is highly recommended to install the development tools, as the installation process
of a few modules requires a compilation step. Let's do it:

yum install -y gcc-c++ make

Once the command finishes, we are ready to run the node applications inside
our container.

Saving the changes
In the Docker world, an image is the configuration for a given container. We can use
the image as a template to run as many containers as we want, however first, we
need to save the changes made in the previous section.

If you are a software developer, you probably are familiar with control version
systems such as CVS, Subversion, or Git. Docker was built with their philosophy in
mind—a container can be treated like a versionable software component and then
changes can be committed.

Deploying Microservices

[874]

In order to do it, run the following command:

docker ps -a

This command will show a list of containers that have run in the past, as shown in
the following image:

In my case, there are few containers, but the interesting one in this case is the second;
this is where Node.js is installed.

Now, we need to commit the status of the container in order to create a new image
with our changes. We do it by running the following command:

docker commit -a dgonzalez 62e7336a4627 centos-microservices:1.0

Let's explain the command:

•	 The -a flag indicates the author. In this case, dgonzalez.
•	 The following parameter is container id. As we indicated earlier, the

second container has the corresponding ID 62e7336a4627.
•	 The third parameter is a combination of the name given to the new image

and the tag of the image. The tagging system can be very powerful when
we are dealing with quite a few images, as it can get really complicated to
identify small variations between them.

It might take a few seconds, but after finishing, the output of the command must be
very similar to the following image:

This is the indication that we have a new image in our list with our software
installed. Run docker images again and the output will confirm it, as shown
in the following image:

Chapter 8

[875]

In order to run a container based on the new image, we can run the following
command:

docker run -i -t centos-microservices:1.0 /bin/bash

This will give us access to the shell in the container, and we can confirm that Node.
js is installed by running node -v, which should output the version of Node, in this
case, 4.2.4.

Deploying Node.js applications
Now, it is time to deploy Node.js applications inside the container. In order to
do it, we are going to need to expose the code from our local machine to the
Docker container.

The correct way of doing it is by mounting a local folder in the Docker machine,
but first, we need to create the small application to be run inside the container,
as follows:

var express = require('express');
var myApplication = express();

app.get('/hello', function (req, res) {
 res.send('Hello Earth!');
});

var port = 80;

app.listen(port, function () {
 console.log('Listeningistening on port '+ port);
});

It is a simple application, using Express that basically renders Hello Earth! into a
browser. If we run it from a terminal and we access http://localhost:80/hello,
we can see the results.

Now, we are going to run it inside the container. In order to do it, we are going to
mount a local folder as a volume in the Docker container and run it.

Docker comes from the experience of sysadmins and developers that have lately
melted into a role called DevOps, which is somewhere in between them. Before
Docker, every single company had its own way of deploying apps and managing
configurations, so there was no consensus on how to do things the right way.

Deploying Microservices

[876]

Now with Docker, the companies have a way to provide uniformity to deployments.
No matter what your business is, everything is reduced to build the container,
deploy the application, and run the container in the appropriate machine.

Let's assume that the application is in the /apps/test/ folder. Now, in order to
expose it to the container, we run the following command:

docker run -i -t -v /app/test:/test_app -p 8000:3000 centos-
microservices:1.0 /bin/bash

As you can see, Docker can get very verbose with parameters, but let's explain them,
as follows:

•	 The -i and -t flags are familiar to us. They capture the input and send the
output to a terminal.

•	 The -v flag is new. It specifies a volume from the local machine and where to
mount it in the container. In this case, we are mounting /apps/test from the
local machine into /test_app. Please note the colon symbol to separate the
local and the remote path.

•	 The -p flag specifies the port on the local machine that will expose the
remote port in the container. In this case, we expose the port 3000 in the
container through the port 8000 in the Docker machine, so accessing docker-
machine:8000 from the host machine will end up accessing the port 3000 in
the container.

•	 The centos-microservices:1.0 is the name and tag of the image that we
have created in the preceding section.

•	 The /bin/bash is the command that we want to execute inside the container.
The /bin/bash is going to give us access to the prompt of the system.

If everything worked well, we should have gotten access to the system prompt inside
the container, as shown in the following image:

As you can see in the image, there is a folder called /test_app that contains our
previous application, called small-script.js.

Now, it is time to access to the app, but first, let's explain how Docker works.

Chapter 8

[877]

Docker is written in Go, which is a modern language created by Google, grouping all
the benefits from a compiled language such as C++ with all the high-level features
from a modern language such as Java.

It is fairly easy to learn and not hard to master. The philosophy of Go is to bring all
the benefits of an interpreted language, such as reducing the compilation times (the
complete language can be compiled in under a minute) to a compiled language.

Docker uses very specific features from the Linux kernel that forces Windows and
Mac users to use a virtual machine to run Docker containers. This machine used to be
called boot2docker, but the new version is called Docker Machine, which contains
more advanced features such as deploying containers in remote virtual machines.
For this example, we will only use the local capabilities.

Given that, if you run the app from within the container located in the /test_app/
folder, and you are in Linux, accessing http://localhost:8000/, it would be
enough to get into the application.

When you are using Mac or Windows, Docker is running either in the Docker
Machine or boot2docker so that the IP is given by this virtual machine, which is
shown when the Docker terminal starts, as shown in the following image:

As you can see, the IP is 192.168.99.100, so in order to access our application, we
need to visit the http://192.168.99.100:9000/ URL.

Automating Docker container creation
If you remember, in the previous chapters, one of the most important concepts was
automation. Automation is the key when working with microservices. Instead of
operating one server, you probably will need to operate few dozens, reaching a point
where you are almost fully booked on day-to-day tasks.

Deploying Microservices

[878]

Docker designers had that in mind when allowing the users to create containers from
a script written in a file called Dockerfile.

If you have ever worked on coding C or C++, even in college, you are probably
familiar with Makefiles. A Makefile file is a script where the developer specifies
the steps to automatically build a software component. Here is an example:

all: my-awesome-app

my-awesome-app: main.o external-module.o app-core.o
 g++ main.o external-module.o app-core.o -o my-awesome-app

main.o: main.cc
 g++ -c main.cc

external-module.o: external-module.cc
 g++ -c external-module.cc

app-core.o: app-core.cc
 g++ -c hello.cc

clean:
 rm *.o my-awesome-app

The preceding Makefile contains a list of tasks and dependencies to be executed. For
example, if we execute make clean on the same folder where the Makefile file is
contained, it will remove the executable and all the files ending with o.

Dockerfile, unlike Makefile, is not a list of tasks and dependencies (even though
the concept is the same), it is a list of instructions to build a container from scratch to
a ready status.

Let's see an example:

FROM centos

MAINTAINER David Gonzalez

RUN curl --silent --location https://rpm.nodesource.com/setup_4.x | bash
-

RUN yum -y install nodejs

These small few preceding lines are enough to build a container having Node.js
installed.

Chapter 8

[879]

Let's explain it in the following:

•	 First, we choose the base image. In this case, it is centos as we used before.
For doing this, we use the FROM command and then the name of the image.

•	 MAINTAINER specifies the name of the person who created the container. In
this case, it is David Gonzalez.

•	 RUN, as its name indicates, runs a command. In this case, we use it twice: once
to add the repository to yum, and then to install Node.js.

Dockerfiles can contain a number of different commands. The documentation for
them is pretty clear, but let's take a look at the most common (aside from the ones
seen before):

•	 CMD: This is similar to run, but it actually gets executed after building the
command. CMD is the command to be used to start an application once the
container is instantiated.

•	 WORKDIR: This is to be used in conjunction with CMD, it is the command used
to specify the work directory for the next CMD command.

•	 ADD: This command is used to copy files from the local filesystem to the
container instance filesystem. In the previous example, we can use ADD
to copy the application from the host machine into the container, run npm
install with the CMD command, and then run the app once again with
the CMD command. It can also be used to copy the content from a URL to a
destination folder inside the container.

•	 ENV: This is used to set environment variables. For example, you could
specify a folder to store files uploaded by passing an environment variable to
the container, as follows:
ENV UPLOAD_PATH=/tmp/

•	 EXPOSE: This is used to expose ports to the rest of the containers in your cluster.

As you can see, the domain-specific language (DSL) of Dockerfiles is quite
rich and you can pretty much build every system required. There are hundreds
of examples on the Internet to build pretty much everything: MySQL, MongoDB,
Apache servers, and so on.

It is strongly recommended to create containers through Dockerfiles, as it can
be used as a script to replicate and make changes to the containers in the future,
as well as being able to automatically deploy our software without much manual
intervention.

Deploying Microservices

[880]

Node.js event loop – easy to learn and
hard to master
We all know that Node.js is a platform that runs applications in a single-threaded
way; so, why don't we use multiple threads to run applications so that we can get
the benefit of multicore processors?

Node.js is built upon a library called libuv. This library abstracts the system calls,
providing an asynchronous interface to the program that uses it.

I come from a very heavy Java background, and there, everything is synchronous
(unless you are coding with some sort of non-blocking libraries), and if you issue a
request to the database, the thread is blocked and resumed once the database replies
with the data.

This usually works fine, but it presents an interesting problem: a blocked thread is
consuming resources that could be used to serve other requests. The event loop of
Node.js is shown in the following figure:

This is the Node.js event loop diagram

JavaScript is, by default, an event-driven language. It executes the program that
configures a list of event handlers that will react to given events, and after that,
it just waits for the action to take place.

Let's take a look at a very familiar example:

<div id="target">
 Click here
</div>
<div id="other">
 Trigger the handler
</div>

Chapter 8

[881]

Then the JavaScript code is as follows:

$("#target").click(function() {
 alert("Handler for .click() called.");
});

As you can see, this is a very simple example. HTML that shows a button and
snippet of JavaScript code that, using JQuery, shows an alert box when the
button is clicked.

This is the key: when the button is clicked.

Clicking a button is an event, and the event is processed through the event loop of
JavaScript using a handler specified in the JavaScript.

At the end of the day, we only have one thread executing the events, and we never
talk about parallelism in JavaScript, the correct word is concurrency. So, being more
concise, we can say that Node.js programs are highly concurrent.

Your application will always be executed in only one thread, and we need to keep
that in mind while coding.

If you have been working in Java or .NET or any other language/frameworks
designed and implemented with thread-blocking techniques, you might have
observed that Tomcat, when running an application, spawns a number of threads
listening to the requests.

In the Java world, each of these threads are called workers, and they are responsible
to handle the request from a given user from the beginning to the end. There is one
type of data structure in Java that takes the benefit of it. It is called ThreadLocal and
it stores the data in the local thread so that it can be recovered later on. This type of
storage is possible because the thread that starts the request is also responsible to
finish it, and if the thread is executing any blocking operation (such as reading a file
or accessing a database), it will wait until it is completed.

This is usually not a big deal, but when your software relies heavily on I/O, the
problems can become serious.

Another big point in favor of the non-blocking model of Node.js is the lack of
context switch.

Deploying Microservices

[882]

When the CPU switches one thread with another, what happens is that all the data in
the registers, and other areas of the memory, is stacked and allows the CPU to switch
the context with a new process that has its own data to be placed in there, as shown
in the following image:

This is a diagram showing context switching in threads from the theoretical point of view.

This operation takes time, and this time is not used by the application. It simply
gets lost. In Node.js, your application runs in only one thread, so there is no such
context switching while running (it is still present in the background, but hidden
to your program). In the following image, we can see what happens in the real world
when a CPU switches a thread:

This is a diagram showing context switching in threads from the
practical (shows the dead times) point of view.

Clustering Node.js applications
By now, you know how Node.js applications work, and certainly, some of the
readers may have a question that if the app runs on a single thread, then what
happens with the modern multicore processors?

Before answering this question, let's take a look at the following scenario.

When I was in high school, there was a big technology leap in CPUs: the segmentation.

Chapter 8

[883]

It was the first attempt to introduce parallelism at the instruction level. As you
probably are aware, the CPU interprets assembler instructions and each of these
instructions are composed of a number of phases, as shown in the following diagram:

Before the Intel 4x86, the CPUs were executing one instruction at the time, so taking
the instruction model from the preceding diagram, any CPU could only execute one
instruction every six CPU cycles.

Then, the segmentation came into play. With a set of intermediate registers, the CPU
engineers managed to parallelize the individual phases of instructions so that in the
best-case scenario, the CPUs are able to execute one instruction per cycle (or nearly),
as shown in the following diagram:

The image describes the execution of instructions in a CPU with a segmented pipeline

Deploying Microservices

[884]

This technical improvement led to faster CPUs and opened the door to native
hardware multithreading, which led to the modern n-core processors that can
execute a large number of parallel tasks, but when we are running Node.js
applications, we only use one core.

If we don't cluster our app, we are going to have a serious performance degradation
when compared to other platforms that take the benefit of the multiple cores of a CPU.

However, this time we are lucky, PM2 already allows you to cluster Node.js apps to
maximize the usage of your CPUs.

Also, one of the important aspects of PM2 is that it allows you to scale applications
without any downtime.

Let's run a simple app in the cluster mode:

var http = require("http");
http.createServer(function (request, response) {
 response.writeHead(200, {
 'Content-Type': 'text/plain'
 });
 response.write('Here we are!')
 response.end();
}).listen(3000);

This time we have used the native HTTP library for Node.js in order to handle the
incoming HTTP requests.

Now we can run the application from the terminal and see how it works:

node app.js

Chapter 8

[885]

Although it does not output anything, we can curl to the http://localhost:3000/
URL in order to see how the server responds, as shown in the following screenshot:

As you can see, Node.js has managed all the HTTP negotiation and it has also
managed to reply with the Here we are! phrase as it was specified in the code.

This service is quite trivial, but it is the principle on which more complex web
services work, so we need to cluster the web service to avoid bottlenecks.

Node.js has one library called cluster that allows us to programmatically cluster
our application, as follows:

var cluster = require('cluster');
var http = require('http');
var cpus = require('os').cpus().length;

// Here we verify if the we are the master of the cluster: This is
 the root process
// and needs to fork al the childs that will be executing the web
 server.
if (cluster.isMaster) {
 for (var i = 0; i < cpus; i++) {
 cluster.fork();

Deploying Microservices

[886]

 }

 cluster.on('exit', function (worker, code, signal) {
 console.log("Worker " + worker.proces.pid + " has finished.");
 });
} else {
 // Here we are on the child process. They will be executing the
 web server.
 http.createServer(function (request, response) {
 response.writeHead(200);
 response.end('Here we are!d\n');
 }).listen(80);
}

Personally, I find it much easier to use specific software such as PM2 to accomplish
effective clustering, as the code can get really complicated while trying to handle the
clustered instances of our app.

Given this, we can run the application through PM2 as follows:

pm2 start app.js -i 1

The -i flag in PM2, as you can see in the output of the command, is used to specify
the number of cores that we want to use for our application.

If we run pstree, we can see the process tree in our system and check whether PM2
is running only one process for our app, as shown in the following image:

Chapter 8

[887]

In this case, we are running the app in only one process, so it will be allocated in one
core of the CPU.

In this case, we are not taking advantage of the multicore capabilities of the CPU that
is running the app, but we still get the benefit of restarting the app automatically if
one exception bubbles up from our algorithm.

Now, we are going to run our application using all the cores available in our CPU so
that we maximize the usage of it, but first, we need to stop the cluster:

pm2 stop all

PM2, after stopping all the services

pm2 delete all

Now, we are in a position to rerun the application using all the cores of our CPU:

pm2 start app.js -i 0

PM2 showing four services running in a cluster mode

Deploying Microservices

[888]

PM2 has managed to guess the number of CPUs in our computer, in my case, this is
an iMac with four cores, as shown in the following screenshot:

As you can see in pstree, PM2 started four threads at the OS level, as shown in the
following image:

Chapter 8

[889]

When clustering an application, there is an unwritten rule about the number of
cores that an application should be using and this number is the number of cores
minus one.

The reason behind this number is the fact that the OS needs some CPU power so that
if we use all the CPUs in our application, once the OS starts carrying on with some
other tasks, it will force context switching as all the cores will be busy and this will
slow down the application.

Load balancing our application
Sometimes, clustering our app is not enough and we need to scale our application
horizontally.

There are a number of ways to horizontally scale an app. Nowadays, with cloud
providers such as Amazon, every single provider has implemented their own
solution with a number of features.

One of my preferred ways of implementing the load balancing is using NGINX.

NGINX is a web server with a strong focus on the concurrency and low memory
usage. It is also the perfect fit for Node.js applications as it is highly discouraged to
serve static resources from within a Node.js application. The main reason is to avoid
the application from being under stress due to a task that could be done better with
another software, such as NGINX (which is another example of specialization).

Deploying Microservices

[890]

However, let's focus on load balancing. The following figure shows how NGINX
works as a load balancer:

As you can see in the preceding diagram, we have two PM2 clusters load balanced
by an instance of NGINX.

The first thing we need to do is know how NGINX manages the configuration.

On Linux, NGINX can be installed via yum, apt-get, or any other package manager.
It can also be built from the source, but the recommended method, unless you have
very specific requirements, is to use a package manager.

Chapter 8

[891]

By default, the main configuration file is /etc/nginx/nginx.conf, as follows:

user nginx;
worker_processes 1;

error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;

events {
 worker_connections 1024;
}

http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 log_format main '$remote_addr - $remote_user [$time_local]
 "$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for" '
 '$request_time';

 access_log /var/log/nginx/access.log main;
 server_tokens off;
 sendfile on;
 #tcp_nopush on;
 keepalive_timeout 65s;
 send_timeout 15s;
 client_header_timeout 15s;
 client_body_timeout 15s;
 client_max_body_size 5m;
 ignore_invalid_headers on;
 fastcgi_buffers 16 4k;
 #gzip on;
 include /etc/nginx/sites-enabled/*.conf;
}

This file is pretty straightforward, it specifies the number of workers (remember,
processes to serve requests), the location of error logs, number connections that a
worker can have active at the time, and finally, the HTTP configuration.

The last line is the most interesting one: we are informing NGINX to use
/etc/nginx/sites-enabled/*.conf as potential configuration files.

Deploying Microservices

[892]

With this configuration, every file ending in .conf under the specified folder is going
to be part of the NGINX configuration.

As you can see, there is a default file already existing there. Modify it to look
as follows:

http {
 upstream app {
 server 10.0.0.1:3000;
 server 10.0.0.2:3000;
 }
 server {
 listen 80;
 location / {
 proxy_pass http://app;
 }
 }
}

This is all the configuration we need to build a load balancer. Let's explain it
in the following:

•	 The upstream app directive is creating a group of services called app. Inside
this directive, we specify two servers as we've seen in the previous image.

•	 The server directive specifies to NGINX that it should be listening to all the
requests from port 80 and passing them to the group of upstream called app.

Now, how does NGINX decide to send the request to which computer?

In this case, we could specify the strategy used to spread the load.

By default, NGINX, when there is not a balancing method specifically configured,
uses Round Robin.

One thing to bear in mind is that if we use round robin, our application should be
stateless as we won't be always hitting the same machine, so if we save the status in
the server, it might not be there in the following call.

Round Robin is the most elementary way of distributing load from a queue of
work into a number of workers; it rotates them so that every node gets the same
amount of requests.

Chapter 8

[893]

There are other mechanisms to spread the load, as follows:

 upstream app {
 least_conn;
 server 10.0.0.1:3000;
 server 10.0.0.2:3000;
 }

Least connected, as its name indicates, sends the request to the least connected node,
equally distributing the load between all the nodes:

 upstream app {
 ip_hash;
 server 10.0.0.1:3000;
 server 10.0.0.2:3000;
 }

IP hashing is an interesting way of distributing the load. If you have ever worked
with any web application, the concept of sessions is something present in almost
any application. In order to remember who the user is, the browser sends a cookie
to the server, which has stored who the user is in memory and what data he/she
needs/can be accessed by that given user. The problem with the other type of load
balancing is that we are not guaranteed to always hit the same server.

For example, if we are using Least connected as a policy for balancing, we could
hit the server one in the first load, but then hit a different server on subsequent
redirections that will result in the user not being displayed with the right information
as the second server won't know who the user is.

With IP hashing, the load balancer will calculate a hash for a given IP. This hash will
somehow result in a number from 1 to N, where N is the number of servers, and
then, the user will always be redirected to the same machine as long as they keep the
same IP.

We can also apply a weight to the load balancing, as follows:

 upstream app {
 server 10.0.0.1:3000 weight=5;
 server 10.0.0.2:3000;
 }

This will distribute the load in such way that, for every six requests, five will be
directed to the first machine and one will be directed to the second machine.

Deploying Microservices

[894]

Once we have chosen our preferred load balancing method, we can restart NGINX
for the changes to take effect, but first, we want to validate them as shown in the
following image:

As you can see, the configuration test can be really helpful in order to avoid
configuration disasters.

Once NGINX has passed configtest, it is guaranteed that NGINX will be able to
restart/start/reload without any syntax problem, as follows:

sudo /etc/init.d/nginx reload

Reload will gracefully wait until the old threads are done, and then, reload the
configuration and route the new requests with the new configuration.

If you are interested in learning about NGINX, I found the following official
documentation of NGINX quite helpful:

http://nginx.org/en/docs/

Health check on NGINX
Health checking is one of the important activities on a load balancer. What happens
if one of the nodes suffers a critical hardware failure and is unable to serve more
requests?

In this case, NGINX comes with two types of health checks: passive and active.

Passive health check
Here, NGINX is configured as a reverse proxy (as we did in the preceding section).
It reacts to a certain type of response from the upstream servers.

If there is an error coming back, NGINX will mark the node as faulty, removing it
from the load balancing for a certain period of time before reintroducing it. With
this strategy, the number of failures will be drastically reduced as NGINX will be
constantly removing the node from the load balancer.

http://nginx.org/en/docs/

Chapter 8

[895]

There are a few configurable parameters, such as max_fails or fail_timeout,
where we can configure the amount of failures required to mark a node as invalid
or the time out for requests.

Active health check
Active health checks, unlike passive health checks, actively issue connections
to the upstream servers to check whether they are responding correctly to the
experiencing problems.

The most simplistic configuration for active health checks in NGINX is the
following one:

http {
 upstream app {
 zone app test;
 server 10.0.0.1:3000;
 server 10.0.0.2:3000;
 }
 server {
 listen 80;
 location / {
 proxy_pass http://app;
 health_check;
 }
 }
}

There are two new lines in this config file, as follows:

•	 health_check: This enables the active health check. The default configuration
is to issue a connection every five seconds to the host and port specified in the
upstream section.

•	 zone app test: This is required by the NGINX configuration when enabling
the health check.

There is a wide range of options to configure more specific health checks, and all of
them are available in NGINX configuration that can be combined to satisfy the needs
of different users.

Deploying Microservices

[896]

Summary
In this chapter, you learned a wide range of technologies that we can use to deploy
microservices. By now you know how to build, deploy, and configure software
components in such a way that we are able to homogenize a very diverse range of
technologies. The objective of this book is to provide you the concepts required to
start working with microservices and enable the reader to know how to look for the
needed information.

Personally, I have struggled to find a book that provides a summary of all the
aspects of the life cycle of microservices and I really hope that this book covers
this empty space.

Chapter No.

[897]

Bibliography

This learning path has been prepared for you to build enterprise-ready
implementations of microservices and explore the domain-driven design
with its adoption in microservices. It comprises of the following Packt products:

•	 Mastering Microservices with Java, Sourabh Sharma

•	 Spring Microservices, Rajesh RV

•	 Developing Microservices with Node.js,David Gonzalez

	Cover
	Copyright
	Credits
	Preface
	Table of Contents
	Module 1: Mastering Microservices with Java
	Chapter 1: A Solution Approach
	Evolution of µServices
	Monolithic architecture overview
	Limitation of monolithic architecture versus its solution with µServices
	Summary

	Chapter 2: Setting Up the Development Environment
	Spring Boot configuration
	Sample REST program
	Setting up the application build
	REST API testing using the Postman Chrome extension
	NetBeans IDE installation and setup
	References
	Summary

	Chapter 3: Chapter 3: Domain-Driven Design
	Domain-driven design fundamentals
	Building blocks
	Strategic design and principles
	Sample domain service
	Summary

	Chapter 4: Implementing a Microservice
	OTRS overview
	Developing and implementing µServices
	Testing
	References
	Summary

	Chapter 5: Deployment and Testing
	An overview of microservice architecture using Netflix OSS
	Load balancing
	Circuit breaker and monitoring
	Microservice deployment using containers
	References
	Summary

	Chapter 6: Securing Microservices
	Enabling Secure Socket Layer
	Authentication and authorization
	OAuth implementation using Spring Security
	References
	Summary

	Chapter 7: Consuming Services Using a Microservice Web App
	AngularJS framework overview
	Development of OTRS features
	Setting up the web app
	Summary

	Chapter 8: Best Practices and
Common Principles
	Overview and mindset
	Best practices and principals
	Microservices frameworks and tools
	References
	Summary

	Chapter 9: Troubleshooting Guide
	Logging and ELK stack
	Use of correlation ID for service calls
	Dependencies and versions
	References
	Summary

	Module 2: Spring Microservices
	Chapter 1: Demystifying Microservices
	The evolution of microservices
	What are microservices?
	Microservices – the honeycomb analogy
	Principles of microservices
	Characteristics of microservices
	Microservices examples
	Microservices benefits
	Relationship with other architecture styles
	Microservice use cases
	Summary

	Chapter 2: Building Microservices with Spring Boot
	Setting up a development environment
	Developing a RESTful service – the legacy approach
	Moving from traditional web applications to microservices
	Using Spring Boot to build RESTful microservices
	Getting started with Spring Boot
	Developing the Spring Boot microservice using the CLI
	Developing the Spring Boot Java microservice using STS
	Developing the Spring Boot microservice using Spring Initializr – the HATEOAS example
	What's next?
	The Spring Boot configuration
	Changing the default embedded web server
	Implementing Spring Boot security
	Enabling cross-origin access for microservices
	Implementing Spring Boot messaging
	Developing a comprehensive microservice example
	Spring Boot actuators
	Configuring application information
	Adding a custom health module
	Documenting microservices
	Summary

	Chapter 3: Applying Microservices Concepts
	Patterns and common design decisions
	Microservices challenges
	The microservices capability model
	Summary

	Chapter 4: Microservices Evolution – A Case Study
	Reviewing the microservices capability model
	Understanding the PSS application
	Death of the monolith
	Microservices to the rescue
	The business case
	Plan the evolution
	Migrate modules only if required
	Target architecture
	Target implementation view
	Summary

	Chapter 5: Scaling Microservices with Spring Cloud
	Reviewing microservices capabilities
	Reviewing BrownField's PSS implementation
	What is Spring Cloud?
	Setting up the environment for BrownField PSS
	Spring Cloud Config
	Feign as a declarative REST client
	Ribbon for load balancing
	Eureka for registration and discovery
	Zuul proxy as the API gateway
	Streams for reactive microservices
	Summarizing the BrownField PSS architecture
	Summary

	Chapter 6: Autoscaling Microservices
	Reviewing the microservice capability model
	Scaling microservices with Spring Cloud
	Understanding the concept of autoscaling
	Autoscaling approaches
	Autoscaling BrownField PSS microservices
	Summary

	Chapter 7: Logging and Monitoring Microservices
	Reviewing the microservice capability model
	Understanding log management challenges
	A centralized logging solution
	The selection of logging solutions
	Monitoring microservices
	Data analysis using data lakes
	Summary

	Chapter 8: Containerizing Microservices with Docker
	Reviewing the microservice capability model
	Understanding the gaps in BrownField PSS microservices
	What are containers?
	The difference between VMs and containers
	The benefits of containers
	Microservices and containers
	Introduction to Docker
	Deploying microservices in Docker
	Running RabbitMQ on Docker
	Using the Docker registry
	Microservices on the cloud
	Running BrownField services on EC2
	Updating the life cycle manager
	The future of containerization – unikernels and hardened security
	Summary

	Chapter 9: Managing Dockerized Microservices with Mesos and Marathon
	Reviewing the microservice capability model
	The missing pieces
	Why cluster management is important
	What does cluster management do?
	Relationship with microservices
	Relationship with virtualization
	Cluster management solutions
	Cluster management with Mesos and Marathon
	Implementing Mesos and Marathon for BrownField microservices
	A place for the life cycle manager
	The technology metamodel
	Summary

	Chapter 10: The Microservices Development Life Cycle
	Reviewing the microservice capability model
	The new mantra of lean IT – DevOps
	Meeting the trio – microservices, DevOps, and cloud
	Practice points for microservices development
	Microservices development governance, reference architectures, and libraries
	Summary

	Module 3: Developing Microservices with Node.js,David Gonzalez
	Chapter 1: Microservices Architecture
	Need for microservices
	Key design principles
	Key benefits
	SOA versus microservices
	Why Node.js?
	Summary

	Chapter 2: Microservices in
Node.js – Seneca and
PM2 Alternatives
	Need for Node.js
	Seneca – a microservices framework
	PM2 – a task runner for Node.js
	Summary

	Chapter 3: From the Monolith to Microservices
	First, there was the monolith
	Then the microservices appeared
	Organizational alignment
	Summary

	Chapter 4: Writing Your First Microservice in Node.js
	Micromerce – the big picture
	Product Manager – the two-faced core
	The e-mailer – a common problem
	The order manager
	The UI – API aggregation
	Debugging
	Summary

	Chapter 5: Security and Traceability
	Infrastructure logical security
	Application security
	Traceability
	Summary

	Chapter 6: Testing and Documenting Node.js Microservices
	Functional testing
	Documenting microservices
	Summary

	Chapter 7: Monitoring Microservices
	Monitoring services
	Simian Army – the active monitoring from Spotify
	Summary

	Deploying Microservices
	Concepts in software deployment
	Deployments with PM2
	Docker – a container for software delivery
	Node.js event loop – easy to learn and hard to master
	Clustering Node.js applications
	Load balancing our application
	Summary

	Bibliography

