
ptg18144917

ptg18144917

Microservices

ptg18144917

This page intentionally left blank

ptg18144917

Microservices

Flexible Software Architecture

Eberhard Wolff

Boston • Columbus • Indianapolis • New York • San Francisco
Amsterdam • Cape Town • Dubai • London • Madrid • Milan
Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

ptg18144917

Editor-in-Chief
Mark Taub

Acquisitions Editor
Chris Guzikowski

Development Editor
Chris Zahn

Managing Editor
Sandra Schroeder

Project Editor
Lori Lyons

Production Manager
Dhayanidhi

Copy Editor
Warren Hapke

Indexer
Erika Millen

Proofreader
Sudhakaran

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
codeMantra

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.
com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016952028

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

ISBN-13: 978-0-134-60241-7
ISBN-10: 0-134-60241-2

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
First printing: October 2016

http://www.pearsoned.com/permissions/

ptg18144917

To my family and friends for their support.

And to the computing community for all the fun it
has provided to me.

ptg18144917

This page intentionally left blank

ptg18144917

vii

Contents at a Glance

Preface . xxv

Part I: Motivation and Basics . 1

Chapter 1: Preliminaries . 3

Chapter 2: Microservice Scenarios . 11

Part II: Microservices: What, Why, and Why Not? 25

Chapter 3: What Are Microservices? . 27

Chapter 4: Reasons for Using Microservices . 55

Chapter 5: Challenges . 69

Chapter 6: Microservices and SOA . 81

Part III: Implementing Microservices 95

Chapter 7: Architecture of Microservice-Based Systems 99

Chapter 8: Integration and Communication . 163

Chapter 9: Architecture of Individual Microservices 193

Chapter 10: Testing Microservices and Microservice-Based Systems 213

Chapter 11: Operations and Continuous Delivery of Microservices 237

Chapter 12: Organizational Effects of a Microservices-Based
 Architecture . 269

Part IV: Technologies . 301

Chapter 13: Example of a Microservices-Based Architecture 303

Chapter 14: Technologies for Nanoservices . 343

Chapter 15: Getting Started with Microservices . 369

Index . 375

ptg18144917

This page intentionally left blank

ptg18144917

ix

Contents

Preface . xxv

Acknowledgments . xxxi

About the Author . xxxiii

Part I: Motivation and Basics . 1

Chapter 1: Preliminaries . 3

1.1 Overview of Microservice . 3
Microservice: Preliminary Definition . 3
Deployment Monoliths . 4

1.2 Why Microservices? . 4
Strong Modularization . 5
Easy Replaceability . 5
Sustainable Development . 6
Further Development of Legacy Applications 6
Time-to-Market . 6
Independent Scaling . 7
Free Choice of Technologies . 7
Continuous Delivery . 7

1.3 Challenges . 8
1.4 Conclusion . 9

Chapter 2: Microservice Scenarios . 11

2.1 Modernizing an E-Commerce Legacy Application 11
Scenario . 11
Reasons to Use Microservices . 12
Slow Continuous Delivery Pipeline . 12
Parallel Work Is Complicated . 12
Bottleneck During Testing . 13
Approach . 14
Challenges . 14

ptg18144917

Contentsx

Entire Migration Lengthy . 15
Testing Remains a Challenge . 15
Current Status of Migration . 15
Creating Teams . 16
Advantages . 17
Conclusion . 17
Rapid and Independent Development of New Features 17
Influence on the Organization . 18
Amazon Has Been Doing It for a Long Time 18

2.2 Developing a New Signaling System . 19
Scenario . 19
Reasons to Use Microservices . 20
Distributed System . 20
Technology Stack per Team . 21
Integration of Other Systems . 21
Challenges . 21
High Technological Complexity . 21
Advantages . 22
Verdict . 22

2.3 Conclusion . 23
Essential Points . 23

Part II: Microservices: What, Why, and Why Not? 25

Chapter 3: What Are Microservices? . 27

3.1 Size of a Microservice . 27
Modularization . 28
Distributed Communication . 28
Sustainable Architecture . 29
Refactoring . 29
Team Size . 30
Infrastructure . 30
Replaceability . 31
Transactions and Consistency . 31
Consistency . 32
Compensation Transactions across Microservices 32
Summary . 33

ptg18144917

Contents xi

3.2 Conway’s Law . 35
Reasons for the Law . 36
The Law as Limitation . 36
The Law as Enabler . 38
The Law and Microservices . 39

3.3 Domain-Driven Design and Bounded Context 40
Ubiquitous Language . 41
Building Blocks . 41
Bounded Context . 42
Collaboration between Bounded Contexts 44
Bounded Context and Microservices . 45
Large-Scale Structure . 46

3.4 Why You Should Avoid a Canonical Data Model
(Stefan Tilkov) . 47

3.5 Microservices with a UI? . 50
Technical Alternatives . 50
Self-Contained System . 51

3.6 Conclusion . 52
Essential Points . 53

Chapter 4: Reasons for Using Microservices . 55

4.1 Technical Benefits . 55
Replacing Microservices . 56
Sustainable Software Development . 57
Handling Legacy . 57
Continuous Delivery . 59
Scaling . 61
Robustness . 61
Free Technology Choice . 62
Independence . 63

4.2 Organizational Benefits . 63
Smaller Projects . 65

4.3 Benefits from a Business Perspective . 65
Parallel Work on Stories . 65

4.4 Conclusion . 67
Essential Points . 68

ptg18144917

Contentsxii

Chapter 5: Challenges . 69

5.1 Technical Challenges . 69
Code Dependencies . 71
Unreliable Communication . 73
Technology Pluralism . 73

5.2 Architecture . 74
Architecture = Organization . 74
Architecture and Requirements . 74
Refactoring . 75
Agile Architecture . 75
Summary . 76

5.3 Infrastructure and Operations . 76
Continuous Delivery Pipelines . 77
Monitoring . 77
Version Control . 77

5.4 Conclusion . 78
Essential Points . 78

Chapter 6: Microservices and SOA . 81

6.1 What Is SOA? . 81
Introducing SOA . 84
Services in an SOA . 84
Interfaces and Versioning . 85
External Interfaces . 85
Interfaces Enforce a Coordination of Deployments 85
Coordination and Orchestration . 86
Technologies . 86

6.2 Differences between SOA and Microservices 87
Communication . 87
Orchestration . 87
Flexibility . 87
Microservices: Project Level . 88
Synergies . 91

6.3 Conclusion . 91
Essential Points . 92

ptg18144917

Contents xiii

Part III: Implementing Microservices 95

Chapter 7: Architecture of Microservice-Based Systems 99

7.1 Domain Architecture . 100
Strategic Design and Domain-Driven Design 100
Example Otto Shop . 101
Managing Dependencies . 101
Unintended Domain-Based Dependencies 102
Cyclic Dependencies . 103

7.2 Architecture Management . 104
Tools for Architecture Management . 104
Cycle-Free Software . 104
Microservices and Architecture Management 106
Tools . 107
Is Architecture Management Important? 107
Context Map . 108

7.3 Techniques to Adjust the Architecture . 110
Where Does Bad Architecture Come From? 110
Changes in Microservices . 111
Changes to the Overall Architecture . 111
Shared Libraries . 112
Transfer Code . 113
Reuse or Redundancy? . 114
Shared Service . 115
Spawn a New Microservice . 116
Rewriting . 117
A Growing Number of Microservices 117
Microservice-Based Systems Are Hard to Modify 117

7.4 Growing Microservice-Based Systems . 118
Planning Architecture? . 118
Start Big . 119
Start Small? . 120
Limits of Technology . 121
Replaceability as a Quality Criterion 121
The Gravity of Monoliths . 121

ptg18144917

Contentsxiv

Keep Splitting . 122
Global Architecture? . 122

7.5 Don’t Miss the Exit Point or How to Avoid the Erosion of a
Microservice (Lars Gentsch) . 122

Incorporation of New Functionality 123
What Is Happening to the Microservice Here? 123
Criteria Arguing for a New Microservice Instead of

Extending an Existing One . 124
How to Recognize Whether the Creation of a New

Microservice Should Have Occurred Already 125
Conclusion . 125

7.6 Microservices and Legacy Applications 126
Breaking Up Code? . 126
Supplementing Legacy Applications 127
Enterprise Integration Patterns . 127
Limiting Integration . 129
Advantages . 129
Integration via UI and Data Replication 129
Content Management Systems . 130
Conclusion . 130
No Big Bang . 131
Legacy = Infrastructure . 131
Other Qualities . 132

7.7 Hidden Dependencies (Oliver Wehrens) 132
The Database . 133

7.8 Event-Driven Architecture . 134
7.9 Technical Architecture . 136

Technical Decisions for the Entire System 136
Sidecar . 137

7.10 Configuration and Coordination . 139
Consistency as Problem . 139
Immutable Server . 140
Alternative: Installation Tools . 140

7.11 Service Discovery . 141
Service Discovery = Configuration? 141
Technologies . 142

ptg18144917

Contents xv

7.12 Load Balancing . 144
REST/HTTP . 144
Central Load Balancer . 145
A Load Balancer per Microservice . 145
Technologies . 145
Service Discovery . 146
Client-Based Load Balancing . 147
Load Balancing and Architecture . 148

7.13 Scalability . 148
Scaling, Microservices, and Load Balancing 149
Dynamic Scaling . 149
Microservices: Advantages for Scaling 150
Sharding . 150
Scalability, Throughput, and Response Times 151

7.14 Security . 151
Security and Microservices . 152
OAuth2 . 152
Possible Authorization Grants . 153
JSON Web Token (JWT) . 154
OAuth2, JWT, and Microservices . 155
Technologies . 155
Additional Security Measures . 156
Hashicorp Vault . 157
Additional Security Goals . 158

7.15 Documentation and Metadata . 159
Outdated Documentation . 160
Access to Documentation . 160

7.16 Conclusion . 161
Essential Points . 162

Chapter 8: Integration and Communication . 163

8.1 Web and UI . 164
Multiple Single-Page-Apps . 164
SPA per Microservice . 165
Asset Server for Uniformity . 166
A Single-Page App for All Microservices 167
HTML Applications . 168

ptg18144917

Contentsxvi

ROCA . 168
Easy Routing . 169
Arrange HTML with JavaScript . 170
Front-End Server . 171
Mobile Clients and Rich Clients . 172
Organizational Level . 173
Back-End for Each Front-End . 174

8.2 REST . 175
Cache and Load Balancer . 176
HATEOAS . 177
HAL . 177
XML . 177
HTML . 178
JSON . 178
Protocol Buffer . 178
RESTful HTTP Is Synchronous . 179

8.3 SOAP and RPC . 179
Flexible Transport . 179
Thrift . 180

8.4 Messaging . 180
Messages and Transactions . 181
Messaging Technology . 182

8.5 Data Replication . 184
Replication . 185
Problems: Redundancy and Consistency 185
Implementation . 186
Batch . 186
Event . 186

8.6 Interfaces: Internal and External . 187
External Interfaces . 188
Separating Interfaces . 188
Implementing External Interfaces . 188
Semantic Versioning . 189
Postel’s Law or the Robustness Principle 189

8.7 Conclusion . 190
Client . 190
Logic Layer . 191

ptg18144917

Contents xvii

Data Replication . 191
Interfaces and Versions . 192
Essential Points . 192

Chapter 9: Architecture of Individual Microservices 193

9.1 Domain Architecture . 193
Cohesion . 194
Encapsulation . 194
Domain-Driven Design . 194
Transactions . 194

9.2 CQRS . 195
CQRS . 195
Microservices and CQRS . 196
Advantages . 196
Challenges . 197

9.3 Event Sourcing . 197
9.4 Hexagonal Architecture . 199

Hexagons or Layers? . 200
Hexagonal Architectures and Microservices 201
An Example . 201

9.5 Resilience and Stability . 203
Timeout . 203
Circuit Breaker . 203
Bulkhead . 204
Steady State . 205
Fail Fast . 205
Handshaking . 205
Test Harness . 206
Uncoupling via Middleware . 206
Stability and Microservices . 206
Resilience and Reactive . 207
Hystrix . 207

9.6 Technical Architecture . 208
Process Engines . 208
Statelessness . 209
Reactive . 209
Microservices without Reactive? . 210

ptg18144917

Contentsxviii

9.7 Conclusion . 211
Essential Points . 212

Chapter 10: Testing Microservices and Microservice-Based Systems 213

10.1 Why Tests? . 213
Tests Minimize Expenditure . 214
Tests = Documentation . 214
Test-Driven Development . 215

10.2 How to Test? . 215
Unit Tests . 215
Integration Tests . 216
UI Tests . 216
Manual Tests . 217
Load Tests . 217
Test Pyramid . 217
Continuous Delivery Pipeline . 220

10.3 Mitigate Risks at Deployment . 220
10.4 Testing the Overall System . 222

Shared Integration Tests . 223
Avoiding Integration Tests of the Overall System 224

10.5 Testing Legacy Applications and Microservices 225
Relocating Tests of the Legacy Application 225
Integration Test: Legacy Application and Microservices . . . 226

10.6 Testing Individual Microservices . 227
Reference Environment . 228
Stubs . 228

10.7 Consumer-Driven Contract Tests . 230
Components of the Contract . 230
Contracts . 230
Implementation . 231
Tools . 232

10.8 Testing Technical Standards . 233
10.9 Conclusion . 235

Essential Points . 236

Chapter 11: Operations and Continuous Delivery of Microservices 237

11.1 Challenges Associated with the Operation of Microservices . . . 237
Numerous Artifacts . 238

ptg18144917

Contents xix

Delegate into Teams . 238
Unify Tools . 239
Specify Behavior . 239
Micro and Macro Architecture . 239
Templates . 240

11.2 Logging . 241
Logging for Microservices . 241
Technologies for Logging via the Network 242
ELK for Centralized Logging . 242
Scaling ELK . 243
Graylog . 244
Splunk . 244
Stakeholders for Logs . 245
Correlation IDs . 245
Zipkin: Distributed Tracing . 245

11.3 Monitoring . 246
Basic Information . 247
Additional Metrics . 248
Stakeholders . 248
Correlate with Events . 249
Monitoring = Tests? . 249
Dynamic Environment . 250
Concrete Technologies . 250
Enabling Monitoring in Microservices 252
Metrics . 252
StatsD . 252
collectd . 252
Technology Stack for Monitoring . 252
Effects on the Individual Microservice 253

11.4 Deployment . 254
Deployment Automation . 254
Installation and Configuration . 256
Risks Associated with Microservice Deployments 256
Deployment Strategies . 256

11.5 Combined or Separate Deployment? (Jörg Müller) 258
11.6 Control . 259
11.7 Infrastructure . 260

ptg18144917

Contentsxx

Virtualization or Cloud . 261
Docker . 261
Docker Container versus Virtualization 263
Communication between Docker Containers 263
Docker Registry . 264
Docker and Microservices . 264
Docker and Servers . 264
PaaS . 266

11.8 Conclusion . 266
Essential Points . 268

Chapter 12: Organizational Effects of a Microservices-Based
Architecture . 269

12.1 Organizational Benefits of Microservices 270
Technical Independence . 270
Separate Deployment . 270
Separate Requirement Streams . 271
Three Levels of Independence . 271

12.2 An Alternative Approach to Conway’s Law 273
The Challenges Associated with Conway’s Law 273
Collective Code Ownership . 274
Advantages of Collective Code Ownership 274
Disadvantages of Collective Code Ownership 275
Pull Requests for Coordination . 276

12.3 Micro and Macro Architecture . 277
Decision = Responsibility . 277
Who Creates the Macro Architecture? 278
Extent of the Macro Architecture . 279
Technology: Macro/Micro Architecture 280
Operations . 281
Domain Architecture . 282
Tests . 282

12.4 Technical Leadership . 284
Developer Anarchy . 284

12.5 DevOps . 285
DevOps and Microservices . 285
Do Microservices Necessitate DevOps? 286

ptg18144917

Contents xxi

12.6 When Microservices Meet Classical IT Organizations
(Alexander Heusingfeld) . 287

Pets versus Cattle . 287
Us versus Them . 288
Development versus Test versus Operations:

Change of Perspective . 288
For Operations There Is Never an “Entirely

Green Field” . 289
Conclusion . 290

12.7 Interface to the Customer . 290
Architecture Leads to Departments . 291

12.8 Reusable Code . 292
Client Libraries . 292
Reuse Anyhow? . 292
Reuse as Open Source . 293

12.9 Microservices without Changing the Organization? 295
Microservices without Changing the Organization 295
Evaluation . 296
Departments . 296
Operations . 296
Architecture . 297

12.10 Conclusion . 297
Essential Points . 299

Part IV: Technologies . 301

Chapter 13: Example of a Microservices-Based Architecture 303

13.1 Domain Architecture . 304
Separate Data Storages . 304
Lots of Communication . 305
Bounded Context . 305
Don’t Modularize Microservices by Data! 306

13.2 Basic Technologies . 306
HSQL Database . 307
Spring Data REST . 307
Spring Boot . 307
Spring Cloud . 308
Spring Cloud Netflix . 310

ptg18144917

Contentsxxii

13.3 Build . 311
13.4 Deployment Using Docker . 313
13.5 Vagrant . 314

Networking in the Example Application 317
13.6 Docker Machine . 320
13.7 Docker Compose . 321
13.8 Service Discovery . 324

Eureka Client . 324
Configuration . 325
Eureka Server . 326

13.9 Communication . 327
Zuul: Routing . 327

13.10 Resilience . 329
Circuit Breaker . 329
Hystrix with Annotations . 330
Monitoring with the Hystrix Dashboard 331
Turbine . 331

13.11 Load Balancing . 333
Ribbon with Spring Cloud . 334

13.12 Integrating Other Technologies . 335
13.13 Tests . 336

Stubs . 336
Consumer-Driven Contract Test . 337

13.14 Experiences with JVM-Based Microservices in
the Amazon Cloud (Sascha Möllering) 338

Conclusion . 340
13.15 Conclusion . 341

Essential Points . 341

Chapter 14: Technologies for Nanoservices . 343

14.1 Why Nanoservices? . 344
Minimum Size of Microservices is Limited 344
Compromises . 345
Desktop Applications . 346

14.2 Nanoservices: Definition . 346
14.3 Amazon Lambda . 347

Calling Lambda Functions . 348
Evaluation for Nanoservices . 348
Conclusion . 349

ptg18144917

Contents xxiii

14.4 OSGi . 350
The OSGi Module System . 350
Handling Bundles in Practice . 351
Evaluation for Nanoservices . 353
Conclusion . 353

14.5 Java EE . 354
Nanoservices with Java EE . 355
Microservices with Java EE? . 355
An Example . 356

14.6 Vert.x . 357
Conclusion . 359

14.7 Erlang . 360
Evaluation for Nanoservices . 362

14.8 Seneca . 363
Evaluation for Nanoservices . 365

14.9 Conclusion . 366
Essential Points . 367

Chapter 15: Getting Started with Microservices . 369

15.1 Why Microservices? . 369
15.2 Roads towards Microservices . 370
15.3 Microservice: Hype or Reality? . 371
15.4 Conclusion . 372

Index . 375

ptg18144917

This page intentionally left blank

ptg18144917

xxv

Preface

Although “microservices” is a new term, the concepts that it represents have been
around for long time. In 2006, Werner Vogels (CTO at Amazon) gave a talk at the
JAOO conference presenting the Amazon Cloud and Amazon’s partner model. In
his talk he mentioned the CAP theorem, today the basis for NoSQL. In addition, he
spoke about small teams that develop and run services with their own databases.
Today this structure is called DevOps, and the architecture is known as micro
services.

Later I was asked to develop a strategy for a client that would enable them to inte-
grate modern technologies into their existing application. After a few attempts to
integrate the new technologies directly into the legacy code, we finally built a new
application with a completely different modern technology stack alongside the old
one. The old and the new application were only coupled via HTML links and via a
shared database. Except for the shared database, this is in essence a microservices
approach. That happened in 2008.

In 2009, I worked with another client who had divided his complete infrastructure
into REST services, each being developed by individual teams. This would also be
called microservices today. Many other companies with a web-based business model
had already implemented similar architectures at that time. Lately, I have also real-
ized how continuous delivery influences software architecture. This is another area
where microservices offer a number of advantages.

This is the reason for writing this book—a number of people have been pursuing
a microservices approach for a long time, among them some very experienced archi-
tects. Like every other approach to architecture, microservices cannot solve every
problem. However, this concept represents an interesting alternative to existing
approaches.

Overview of the Book

This book provides a detailed introduction to microservices. Architecture and organ-
ization are the main topics. However, technical implementation strategies are not
neglected. A complete example of a microservice-based system demonstrates a con-
crete technical implementation. The discussion of technologies for nanoservices

ptg18144917

Prefacexxvi

illustrates that modularization does not stop with microservices. The book provides
all the necessary information for readers to start using microservices.

For Whom Is the Book Meant?

The book addresses managers, architects, and developers who want to introduce
microservices as an architectural approach.

Managers

Microservices work best when a business is organized to support a microservices-
based architecture. In the introduction, managers understand the basic ideas behind
microservices. Afterwards they can focus on the organizational impact of using
microservices.

Developers

Developers are provided with a comprehensive introduction to the technical aspects
and can acquire the necessary skills to use microservices. A detailed example of a
technical implementation of microservices, as well as numerous additional technolo-
gies, for example for nanoservices, helps to convey the basic concepts.

Architects

Architects get to know microservices from an architectural perspective and can at the
same time deepen their understanding of the associated technical and organizational
issues.

The book highlights possible areas for experimentation and additional informa-
tion sources. These will help the interested reader to test their new knowledge
 practically and delve deeper into subjects that are of relevance to them.

Structure and Coverage

The book is organized into four parts.

Part I: Motivation and Basics

The first part of the book explains the motivation for using microservices and the
foundation of the microservices architecture. Chapter 1, “Preliminaries,” presents

ptg18144917

xxviiStructure and Coverage

the basic properties as well as the advantages and disadvantages of microservices.
Chapter 2, “Microservice Scenarios,” presents two scenarios for the use of microser-
vices: an e-commerce application and a system for signal processing. This section
provides some initial insights into microservices and points out contexts for
applications.

Part II: Microservices—What, Why, and Why Not?

Part II not only explains microservices in detail but also deals with their advantages
and disadvantages:

• Chapter 3, “What Are Microservices,” investigates the definition of the term
“microservices” from three perspectives: the size of a microservice, Conway’s
Law (which states that organizations can only create specific software architec-
tures), and finally a technical perspective based on domain-driven Design and
Bounded Context.

• The reasons for using microservices are detailed in Chapter 4, “Reasons for
Using Microservices.” Microservices have not only technical but also organi-
zational advantages, and there are good reasons for turning to microservices
from a business perspective.

• The unique challenges posed by microservices are discussed in Chapter 5,
“Challenges.” Among these are technical challenges as well as problems related
to architecture, infrastructure, and operation.

• Chapter 6, “Microservices and SOA,” aims at defining the differences between
microservices and SOA (service-oriented architecture). At first sight both concepts
seem to be closely related. However, a closer look reveals plenty of differences.

Part III: Implementing Microservices

Part III deals with the application of microservices and demonstrates how the
 advantages that were described in Part II can be obtained and how the associated
challenges can be solved.

• Chapter 7, “Architecture of Microservice-Based Systems,” describes the archi-
tecture of microservices-based systems. In addition to domain architecture,
technical challenges are discussed.

• Chapter 8, “Integration and Communication,” presents the different approaches
to the integration of and the communication between microservices. This

ptg18144917

Prefacexxviii

includes not only communication via REST or messaging but also the integra-
tion of UIs and the replication of data.

• Chapter 9, “Architecture of Individual Microservices,” shows possible
 architectures for microservices such as CQRS, Event Sourcing, or hexagonal
architecture. Finally, suitable technologies for typical challenges are addressed.

• Testing is the main focus of Chapter 10, “Testing Microservices and
 Microservice-Based Systems.” Tests have to be as independent as possible to
enable the independent deployment of the different microservices. However,
the tests need to not only check the individual microservices, but also the sys-
tem in its entirety.

• Operation and Continuous Delivery are addressed in Chapter 11, “Operations
and Continuous Delivery of Microservices.” Microservices generate a huge
number of deployable artifacts and thus increase the demands on the infra-
structure. This is a substantial challenge when introducing microservices.

• Chapter 12, “Organizational Effects of a Microservices-Based Architecture,”
illustrates how microservices also influence the organization. After all, micro-
services are an architecture, which is supposed to influence and improve the
organization.

Part IV: Technologies

The last part of the book shows in detail and at the code level how microservices can
be implemented technically:

• Chapter 13, “Example of a Microservices-Based Architecture,” contains an
exhaustive example for a microservices architecture based on Java, Spring
Boot, Docker, and Spring Cloud. This chapter aims at providing an applica-
tion, which can be easily run, that illustrates the concepts behind microser-
vices in practical terms and offers a starting point for the implementation of a
microservices system and experiments.

• Even smaller than microservices are nanoservices, which are presented in
Chapter 14, “Technologies for Nanoservices.” Nanoservices require specific
technologies and a number of compromises. The chapter discusses different
technologies and their related advantages and disadvantages.

• Chapter 15, “Getting Started with Microservices,” demonstrates how micro-
services can be adopted.

ptg18144917

xxixPaths through the Book

Essays

The book contains essays that were written by experts of various aspects of micro-
services. The experts were asked to record their main findings about microservices
on approximately two pages. Sometimes these essays complement book chapters,
sometimes they focus on other topics, and sometimes they contradict passages in the
book. This illustrates that there is, in general, no single correct answer when it comes
to software architectures, but rather a collection of different opinions and possibili-
ties. The essays offer the unique opportunity to get to know different viewpoints in
order to subsequently develop an opinion.

Paths through the Book

The book offers content suitable for each type of audience. Of course, everybody
can and should read the chapters that are primarily meant for people with a different
type of job. However, the chapters focused on topics that are most relevant for a cer-
tain audience are indicated in Table P.1.

Table P.1 Paths through the Book

Chapter Developer Architect Manager

1 - Preliminaries X X X

2 - Microservice Scenarios X X X

3 - What Are Microservices? X X X

4 - Reasons for Using Microservices X X X

5 - Challenges X X X

6 - Microservices and SOA X X

7 - Architecture of Microservice-Based
Systems

X

8 - Integration and Communication X X

9 - Architecture of Individual
Microservices

X X

10 - Testing Microservices and
Microservice-Based Systems

X X

11 - Operations and Continuous
Delivery of Microservices

X X

(Continued)

ptg18144917

Prefacexxx

Chapter Developer Architect Manager

12 - Organizational Effects of a
Microservices-Based Architecture

X

13 - Example of a Microservice-Based
Architecture

X

14 - Technologies for Nanoservices X X

15 - Getting Started with Microservices X X X

Readers who only want to obtain an overview are advised to concentrate on the
summary section at the end of each chapter. People who want to gain practical
knowledge should commence with Chapters 13 and 14, which deal with concrete
technologies and code.

The instructions for experiments, which are given in the sections “Try and Experi-
ment,” help deepen your understanding by providing practical exercises. Whenever a
chapter is of particular interest to you, you are encouraged to complete the related
exercises to get a better grasp of the topics presented in that chapter.

Supplementary Materials

Errata, links to examples, and additional information can be found at http://
 micro services-book.com/. The example code is available at https://github.com/
ewolff/microservice/.

Register your copy of Microservices at informit.com for convenient access to
downloads, updates, and corrections as they become available. To start the registra-
tion process, go to informit.com/register and log in or create an account. Enter the
product ISBN 9780134602417 and click Submit. Once the process is complete, you
will find any available bonus content under “Registered Products.”

Table P.1 Continued

https://www.github.com/ewolff/microservice/
https://www.github.com/ewolff/microservice/
http://www.microservices-book.com/
http://www.microservices-book.com/

ptg18144917

xxxi

Acknowledgments

I would like to thank everybody with whom I have discussed microservices and all
the people who asked questions or worked with me—way too many to list them all.
The interactions and discussions were very fruitful and fun!

I would like to mention especially Jochen Binder, Matthias Bohlen,
Merten Driemeyer, Martin Eigenbrodt, Oliver B. Fischer, Lars Gentsch, Oliver Gierke,
Boris Gloger, Alexander Heusingfeld, Christine Koppelt, Andreas Krüger, Tammo
van Lessen, Sascha Möllering, André Neubauer, Till Schulte-Coerne, Stefan Tilkov,
Kai Tödter, Oliver Wolf, and Stefan Zörner.

As a native speaker, Matt Duckhouse has added some significant improvements to
the text and improved its readability.

My employer, innoQ, has also played an important role throughout the writing
process. Many of the discussions and suggestions of my innoQ colleagues are
reflected in the book.

Finally, I would like to thank my friends and family—especially my wife, whom I
have often neglected while working on the book. In addition, I would like to thank
her for the English translation of the book.

Of course, my thanks also go to all the people who have been working on the
 technologies that are mentioned in the book and thus have laid the foundation for
the development of microservices. Special thanks also due to the experts who shared
their knowledge of and experience with microservices in the essays.

Leanpub has provided me with the technical infrastructure to create the transla-
tion. It has been a pleasure to work with it, and it is quite likely that the translation
would not exist without Leanpub.

Addison-Wesley enabled me to take the English translation to the next level. Chris
Zahn, Chris Guzikowski, Lori Lyons and Dhayanidhi Karunanidhi provided excellent
support for that process.

Last but not least, I would like to thank dpunkt.verlag and René Schönfeldt, who
supported me very professionally during the genesis of the original German version.

ptg18144917

This page intentionally left blank

ptg18144917

xxxiii

About the Author

Eberhard Wolff, a Fellow at innoQ in Germany, has
more than 15 years of experience as an architect and
consultant working at the intersection of business and
technology. He has given talks and keynote addresses at
several international conferences, served on multiple
conference program committees, and written more
than 100 articles and books. His technological focus
is on modern architectures—often involving cloud,
 continuous delivery, DevOps, microservices, or NoSQL.

ptg18144917

This page intentionally left blank

ptg18144917

1

PART I

Motivation and Basics

Part I explains what microservices are, why they are interesting, and where they are
useful. Practical examples demonstrate the impact of microservices in different
 scenarios.

Chapter 1, “Preliminaries,” start to define microservices.
To illustrate the importance of microservices, Chapter 2, “Microservice Scenar-

ios,” contains detailed scenarios illustrating where microservices can be used.

ptg18144917

This page intentionally left blank

ptg18144917

3

This chapter provides an overview of the concept of a microservice. The first section
defines microservices. The second section answers the question “Why microservices?”
Finally, the chapter ends by discussing the challenges associated with microservices.

1.1 Overview of Microservice

The focus of this book is microservices—an approach to the modularization of soft-
ware. Modularization in itself is nothing new. For quite some time, large systems
have been divided into small modules to facilitate the implementation, understand-
ing, and further development of the software.

Microservices are a new approach to modularization. However, the term “micro-
service” is not really well defined, so the chapter starts with a definition of the term
and describes how microservices are different from the usual deployment monoliths.

Microservice: Preliminary Definition

The new aspect is that microservices use modules that run as distinct processes. This
approach is based on the philosophy of UNIX, which can be reduced to three aspects:

• One program should fulfill only one task, but it should perform this task really
well.

• Programs should be able to work together.

• A universal interface should be used. In UNIX this is provided by text streams.

Chapter 1

Preliminaries

ptg18144917

Chapter 1 Preliminaries4

The term microservice is not firmly defined. Chapter 3, “What Are Microser-
vices,” provides a more detailed definition. However, the following criteria can serve
as a first approximation:

• Microservices are a modularization concept. Their purpose is to divide large
software systems into smaller parts. Thus they influence the organization and
development of software systems.

• Microservices can be deployed independently of each other. Changes to one
microservice can be taken into production independently of changes to other
microservices.

• Microservices can be implemented in different technologies. There is no restric-
tion on the programming language or the platform for each microservice.

• Microservices possess their own data storage: a private database or a completely
separate schema in a shared database.

• Microservices can bring their own support services along, for example a search
engine or a specific database. Of course, there is a common platform for all
microservices—for example virtual machines.

• Microservices are self-contained processes or virtual machines, e.g., to bring
the supporting services along.

• Microservices have to communicate via the network. To do so microservices
use protocols that support loose coupling, such as REST or messaging.

Deployment Monoliths

Microservices are the opposite of deployment monoliths. A deployment monolith is
a large software system that can only be deployed in one piece. It has to pass, in its
entirety, through all phases of the continuous delivery pipeline, such as development,
the test stages, and release. Due to the size of deployment monoliths, these processes
take longer than for smaller systems. This reduces flexibility and increases process
costs. Internally, deployment monoliths can have a modular structure; however, all
modules have to be brought into production simultaneously.

1.2 Why Microservices?

Microservices enable software to be divided into modules, making it easier to change
the software.

ptg18144917

51.2 Why Microservices?

Microservices

Strong
modularization Replaceability

Sustainable
development

Legacy
applications Time-to-market Free choice of

technologies
Continuous

delivery

Figure 1.1 Advantages of Microservices

As illustrated in Figure 1.1, microservices offer a number of important advantages.

Strong Modularization

Microservices offer a strong modularization concept. Whenever a system is built
from different software components, such as Ruby GEMs, Java JARs, .NET assem-
blies or Node.js NPMs, undesirable dependencies can easily creep in. For example,
imagine that somebody references a class or function in a place where it is not sup-
posed to be used. This use creates a dependency that the developers of the class or
function are not aware of. Any changes they make to their class or function could
cause unexpected failures in another part of the system. After a short while, so many
dependencies will have accumulated and the problem has worsened so much that the
system can no longer be serviced or further developed.

Microservices, in contrast, communicate only via explicit interfaces, which are
realized using mechanisms such as messages or REST. This makes the technical hur-
dles for the use of microservices higher, and thus unwanted dependencies are less
likely to arise. In principle, it should be possible to achieve a high level of modulari-
zation in deployment monoliths. However, practical experience teaches us that the
architecture of deployment monoliths deteriorates over time.

Easy Replaceability

Microservices can be replaced more easily than modules in a deployment monolith.
Other components utilize a microservice via an explicit interface. If a new service
offers the same interface, it can replace the existing microservice. The new microser-
vice can use a different code base and even different technologies as long as it presents
the same interface. This can often be impossible or difficult to achieve in legacy
systems.

ptg18144917

Chapter 1 Preliminaries6

Small microservices further facilitate replacement. The need to replace code in
the future is often neglected during the development of software systems. Who wants
to consider how a newly built system can be replaced in the future? In addition, the
easy replaceability of microservices reduces the costs of incorrect decisions. When
the decision for a technology or approach is limited to a microservice, this microser-
vice can be completely rewritten if the need arises.

Sustainable Development

Strong modularization and easy replaceability enable sustainable software develop-
ment. Most of the time, working on a new project is straightforward, but over longer
projects productivity decreases. One of the reasons is the erosion of architecture.
Microservices counteract this erosion by enforcing strong modularization. Being
bound to outdated technologies and the difficulties associated with the removal of
old system modules constitute additional problems with deployment monoliths.
Microservices, which are not linked to a specific technology, can be replaced one by
one to overcome these problems.

Further Development of Legacy Applications

Starting with a microservices-based architecture is easy and provides immediate
advantages when working with old systems: Instead of having to add to the old and
hard to understand code base, the system can be enhanced with a microservice. The
microservice can act on specific requests while leaving all others to the legacy system.
It can also modify requests before they are processed by the legacy system. With this
approach, it is not necessary to replace the legacy system completely. In addition, the
microservice is not bound to the technology stack of the legacy system but can be
developed using modern approaches.

Time-to-Market

Microservices enable shorter time-to-market. As mentioned previously, microser-
vices can be brought into production on a one-by-one basis. If teams working on a
large system are responsible for one or more microservices and if features require
changes only to these microservices, each team can develop and bring features into
production without time-consuming coordination with other teams. This enables
many teams to work on numerous features in parallel and bring more features into
production in less time than would have been possible with a deployment monolith.

ptg18144917

71.2 Why Microservices?

Microservices help with scaling agile processes to large teams by dividing the large
team into small teams, each dealing with its own microservices.

Independent Scaling

Each microservice can be scaled independently of other services. This removes the
need to scale the entire system when only a few pieces of functionality are used
intensely. This will often be a significant simplification for the infrastructure and
operations.

Free Choice of Technologies

When microservices are used in development, there are no restrictions with regards
to the usage of technologies. This gives the ability to test a new technology within a
single microservice without affecting other services. The risk associated with the
introduction of new technologies and new versions of already used technologies is
decreased, as these new technologies are introduced and tested in a confined environ-
ment keeping costs low. In addition, it is possible to use specific technologies for spe-
cific functions, for example a specific database. The risk is small, as the microservice
can easily be replaced or removed if problems arise. The new technology is confined
to one or a small number of microservices. This reduces the potential risk and ena-
bles independent technology decisions for different microservices. More importantly,
it makes the decision to try out and evaluate new, highly innovative technologies eas-
ier. This increases the productivity of developers and prevents the technology plat-
form from becoming outdated. In addition, the use of modern technologies will
attract well-qualified developers.

Continuous Delivery

Microservices are advantageous for continuous delivery. They are small and can be
deployed independently of each other. Realizing a continuous delivery pipeline is
simple due to the size of a microservice. The deployment of a single microservice is
associated with less risk than the deployment of a large monolith. It is also easier to
ensure the safe deployment of a microservice, for instance by running different ver-
sions in parallel. For many microservice users, continuous delivery is the main reason
for the introduction of microservices.

All these points are strong arguments for the introduction of microservices.
Which of these reasons is the most important will depend on the context. Scaling

ptg18144917

Chapter 1 Preliminaries8

agile processes and continuous delivery are often crucial from a business perspective.
Chapter 4, “Reasons for Using Microservices,” describes the advantages of micro-
services in detail and also deals with prioritization.

1.3 Challenges

However, there is no light without shadow. Chapter 5, “Challenges,” discusses the
challenges posed by the introduction of microservices and how to deal with them. In
short, the main challenges are the following:

• Relationships are hidden—The architecture of the system consists of the
 relationships between the services. However, it is not evident which microser-
vice calls which other microservice. This can make working on the architecture
challenging.

• Refactoring is difficult—The strong modularization leads to some disadvan-
tages: refactoring, if it requires functionality to move between microservices, is
difficult to perform. And, once introduced, it is hard to change the microservices-
based modularization of a system. However, these problems can be reduced with
smart approaches.

• Domain architecture is important—The modularization into microservices for
different domains is important, as it determines how teams are divided. Prob-
lems at this level also affect the organization. Only a solid domain architecture
can ensure the independent development of microservices. As it is difficult to
change the modularization once established, mistakes can be hard to correct
later on.

• Running microservices is complex—A system composed of microservices
has many components that have to be deployed, controlled, and run. This
increases the complexity of operations and the number of runtime infrastruc-
tures used by the system. Microservices require that operations are automated
to make sure that operating the platform does not become laborious.

• Distributed systems are complex—Developers face increased complexity: a
microservice-based system is a distributed system. Calls between microservices
can fail due to network problems. Calls via the network are slower and have a
smaller bandwidth than calls within a process.

ptg18144917

91.4 Conclusion

1.4 Conclusion

This chapter provided an overview of the concept of a microservice. It started with a
definition of microservices. Then it answered the question “Why microservices?”
Finally, the chapter ended with a discussion of the challenges associated with
microservices.

ptg18144917

This page intentionally left blank

ptg18144917

11

This chapter presents a number of scenarios in which microservices can be useful.
Section 2.1 focuses on the modernization of a legacy web application. This is the
most common use case for microservices. A very different scenario is discussed in
section 2.2. A signaling system is being developed as a distributed system based on
microservices. Section 2.3 draws some conclusions and invites the reader to judge
the usefulness of microservices in the scenarios presented for themselves.

2.1 Modernizing an E-Commerce Legacy
Application

Migrating from a legacy deployment monolith is the most common scenario for
microservices. This section starts with a general description of such a scenario and
then gets into the details of the legacy application and how to modularize it into
microservices.

Scenario

Big Money Online Commerce Inc. runs an e-commerce shop, which is the main
source of the company’s revenue. It’s a web application that offers many different
functions, such as user registration and administration, product search, an overview
of orders, and, of course, the ordering process, the central feature of any e-commerce
application.

Chapter 2

Microservice Scenarios

ptg18144917

Chapter 2 Microservice Scenarios12

The application is a deployment monolith: it can only be deployed in its entirety.
Whenever a feature is changed, the entire application needs to be deployed anew. The
e-commerce shop works together with other systems—for example, with accounting
and logistics.

Reasons to Use Microservices

The deployment monolith started out as a well-structured application. However,
over the years, more and more dependencies between the individual modules have
crept in. This has led to the application becoming very difficult to maintain and
update. In addition, the original architecture is no longer suited to the current
requirements of the business. Product search, for instance, has been greatly modified
as the Big Money Online Commerce Inc. attempts to outperform its competitors in
this area. Also, clients have been given a number of self-service options that have
helped the company to reduce costs. However, these two modules have become very
large, with complex internal structures, and they have numerous dependencies on
other modules that had not originally been intended.

Slow Continuous Delivery Pipeline

Big Money has decided to use continuous delivery and has established a continuous
delivery pipeline. This pipeline is complicated and slow, as the entire deployment
monolith needs to be tested and brought into production in one go. Some of the tests
run for hours. A faster pipeline would be highly desirable.

Parallel Work Is Complicated

There are teams working on different new features. However, the parallel work is
complicated: the software structure just doesn’t really support it. The individual
modules are not separated well enough and have too many interdependencies. As
everything can only be deployed together, the entire deployment monolith has to
be tested. The deployment and testing phases are a bottleneck. Whenever a team
has a problem in the deployment pipeline, all other teams have to wait until the
problem has been fixed and the change has been successfully deployed. Also,
access to the continuous delivery pipeline has to be coordinated. Only one team
can be doing testing and deployment at a time. There has to be coordination
between the teams to determine the order in which teams will bring their changes
into production.

ptg18144917

132.1 Modernizing an E-Commerce Legacy Application

Bottleneck During Testing

In addition to deployment, tests also have to be coordinated. When the deployment
monolith runs an integration test, only the changes made by one team are allowed to
be contained in the test. There were attempts to test several changes at once. This
meant it was very hard to discern the origin of errors and led to error analyses that
were long and complex.

One integration test requires approximately one hour. About six integration tests
are feasible per working day, because errors have to be fixed and the environment
has to be set up again for the next test. If there are ten teams, one team can bring
one change into production every two days, on average. However, often a team also
has to do error analysis, which lengthens integration. For that reason, some teams
use feature branches in order to separate themselves from integration; they perform
their changes on a separate branch in the version control system. Integrating these
changes into the main branch later on often causes problems; changes are erroneously
removed upon merging, or the software suddenly contains errors that are caused by
the separated development process and that only show up after integration. These
errors can only be eliminated in lengthy processes after integration.

Consequently, the teams slow each other down due to the testing (see Figure 2.1).
Although each team develops its own modules, they all work on the same code base
so that they impede each other. As a consequence of the shared continuous delivery
pipeline and the ensuing need for coordination, the teams are unable to work either
independently of each other or in parallel.

Team Product Search

Team Order Process

Team Customer

....

Monolith
Continuous

Delivery
Pipeline

Production

Figure 2.1 Teams Slow Each Other Down due to the Deployment Monolith

ptg18144917

Chapter 2 Microservice Scenarios14

Approach

Because of the many problems being experienced, Big Money Online Commerce
Inc. decided to split off small microservices from the deployment monolith. The
microservices each implement one feature, such as the product search, and are
developed by individual teams. Each team has complete responsibility for an indi-
vidual microservice, starting from requirements engineering up to running the
application in production. The microservices communicate with the monolith and
other microservices via REST. The client GUI is also divided between the individual
microservices based on use cases. Each microservice delivers the HTML pages for
its use cases. Links are allowed between the HTML pages of the microservices.
However, access to the database tables of other microservices or the deployment
monolith is not allowed. Integration of services is exclusively done via REST or via
links between the HTML pages.

The microservices can be deployed independently of each other. This enables
changes in a microservice to be deployed without the need to coordinate with other
microservices or teams. This greatly facilitates parallel work on features while reducing
coordination efforts.

The deployment monolith is subject to far fewer changes due to the addition of
microservices. For many features, changes to the monolith are no longer necessary.
Thus, the deployment monolith is changed and deployed less often. Originally,
the plan was to completely replace the deployment monolith at some point. How-
ever, in the meantime it seems more likely that the deployment monolith will just
be deployed less and less frequently because most changes take place within the
microservices. Thus the deployment monolith does not disturb work anymore. To
replace it entirely is not necessary and also does not appear sensible in economic
terms.

Challenges

Implementing microservices creates additional complexity at the start; all the
microservices need their own infrastructure, and at the same time, the Monolith has
to be supported.

The microservices require a lot more servers and therefore pose very different
challenges. Monitoring and log file processing has to deal with the fact that data
originates from different servers. As a result, information has to be centrally con-
solidated. A substantially larger number of servers must be handled, not only in
production, but also in the different test stages and team environments. This is only
possible with good infrastructure automation. It is necessary to support different

ptg18144917

152.1 Modernizing an E-Commerce Legacy Application

types of infrastructure for the monolith and the microservices, and this leads to
substantially more servers overall.

Entire Migration Lengthy

The added complexity due to the two different software types will persist for a long
time, as it is a very lengthy process to completely migrate away from the monolith. If
the monolith is never entirely replaced, the additional infrastructure costs will
remain as well.

Testing Remains a Challenge

Testing is an additional challenge; previously, the entire deployment monolith was
tested in the deployment pipeline. These tests are complex and take a long time, as
all the functions of the deployment monolith have to be tested. If every change to
every microservice is sent through these tests, it will take a long time for each change
to reach production. Additionally, the changes have to be coordinated, because each
change should be tested in isolation so that errors can be easily linked back to the
change that caused them. In that scenario, a microservices-based architecture does
not seem to have major advantages over a deployment monolith; while microservices
can in principle be deployed independently of each other, the test stages preceding
deployment still have to be coordinated, and each change still has to pass through
them individually.

Current Status of Migration

Figure 2.2 presents the current status; product search works as an independent
microservice and is completely independent of the deployment monolith. Coordina-
tion with other teams is hardly ever necessary. Only in the last stage of the deploy-
ment do the deployment monolith and the microservices have to be tested together.
Each change to the monolith or any microservice has to run through this step. This
causes a bottleneck. The team “Customer” works together with the team “Order
Process” on the deployment monolith. In spite of microservices, these teams still
have to closely coordinate their work. For that reason, the team “Order Process” has
implemented its own microservice, which forms part of the order process. In this
part of the system, changes can be introduced faster than in the deployment mono-
lith, not only due to the younger code base, but also because it is no longer necessary
to coordinate with the other teams.

ptg18144917

Chapter 2 Microservice Scenarios16

Team Product Search

Team Order Process

Team Customer

....

Micro-
service

Continuous
Delivery
Pipeline

Integration-
tests

ProductionMonolith

Micro-
service

Continuous
Delivery
Pipeline

Continuous
Delivery
Pipeline

Figure 2.2 Independent Work through Microservices

Creating Teams

For the teams to be able to work independently on features, it is important to create
teams that match to functionalities such as product search, customer processing, or
order processing. If teams correspond to technical layers such as the UI, middle tier,
or database instead, each feature requires the involvement of all the teams, because a
feature normally comprises changes to the UI, middle tier, and database. Thus, to
minimize coordination efforts between the teams, the best approach is to create
teams that center around features like product search. Microservices support the
independence of the teams by their own technical independence from each other.
Consequently, teams need to coordinate less in respect to basic technologies and
technical designs.

The tests also need to be modularized. Each test should ideally deal with a single
microservice so that it is sufficient to perform the test when changes are made in the
respective microservice. In addition, it might be possible to implement the test as
unit test rather than as an integration test. This progressively shortens the test phase
in which all microservices and the monolith have to be tested together. This reduces
the coordination problems for the final test phase.

Migrating to a microservices-based architecture created a number of performance
problems and also some problems due to network failures. However, these problems
were solved over time.

ptg18144917

172.1 Modernizing an E-Commerce Legacy Application

Advantages

Thanks to the new architecture, changes can be deployed much faster. A team can
bring a change into production within 30 minutes. The deployment monolith, on the
other hand, is deployed only weekly because the tests are not yet fully automated.

Deploying the microservices is not only much faster, but also much less risky: less
coordination is required. Errors are more easily found and fixed because developers
still know what they have been working on well, as it was only 30 minutes ago.

In summary, the goal was attained; the developers can introduce more changes
to the e-commerce shop. This is possible because the teams need to coordinate their
work less and because the deployment of a microservice can take place indepen-
dently of the other services.

The option of using different technologies was only sparingly used by the teams.
The previously used technology stack proved sufficient, and the teams wanted to
avoid the additional complexity caused by the use of different technologies. How-
ever, the long-needed search engine for the product search was introduced. The
team responsible for product search was able to implement this change on its own.
Previously, the introduction of this new technology had been prohibited because the
associated risk had been considered too great. In addition, some teams have new
versions of the libraries of the technology stack in production because they needed
the bug fixes included in the more recent version. This did not require any coordina-
tion with the other teams.

Conclusion

Replacing a monolith via the implementation of microservices is a very common
scenario for the introduction of microservices. It requires a lot of effort to keep
developing a monolith and to add new features to it. The complexity of the mon-
olith and the associated problems caused by it progressively increase over time. It
is often very difficult and risky to completely replace an existing system with a
newly written one.

Rapid and Independent Development of New Features

In the case of companies like Big Money Online Commerce Inc., the rapid develop-
ment of new features and the ability to do parallel work on several features are vital
for the success of the business. Only by providing state-of-the-art features can new

ptg18144917

Chapter 2 Microservice Scenarios18

customers be won and existing customers be kept from switching to other compa-
nies. The promise of being able to develop more features faster makes microservices
compelling in many use cases.

Influence on the Organization

The presented example illustrates the influence of microservices on the organiza-
tion. The teams work on their own microservices. As the microservices can be devel-
oped and deployed independently of each other, the work of the different teams is no
longer linked. In order to keep it that way, a microservice should not be changed by
more than one team at any time. The microservices architecture requires a team
organization corresponding to the different microservices. Each team is responsible
for one or several microservices, each of which implements an isolated piece of func-
tionality. This relationship between organization and architecture is especially
important in the case of microservices-based architectures. Each team takes care of
all issues concerning “its” microservices from requirements engineering up to opera-
tion monitoring. Of course, for operation, the teams can use common infrastructure
services for logging and monitoring.

And finally, if the goal is to achieve a simple and fast deployment in production,
just including microservices in the architecture will not be sufficient. The entire con-
tinuous delivery pipeline has to be checked for potential obstacles, and these have to
be removed. This is illustrated by the tests in the presented example; the testing of all
microservices together should be reduced to the essential minimum. Each change has
to run through an integration test with the other microservices, but this test must run
quickly to avoid a bottleneck in integration tests.

Amazon Has Been Doing It for a Long Time

The example scenario presented here is very similar to what Amazon has been doing
for a very long time, and for the discussed reasons: Amazon wants to be able to
quickly and easily implement new features on its website. In 2006, Amazon not only
presented its Cloud platform, but also discussed how it develops software. Essential
features are:

• The application is divided into different services.

• Each service provides a part of the website. For instance, there is a service for
searching, and another one for recommendations. In the end, the individual
services are presented together in the UI.

ptg18144917

192.2 Developing a New Signaling System

• There is always one team responsible for one service. The team takes care of
developing new features as well as operating the service. The idea is: “You
build it—you run it!”

• The Cloud platform (i.e., virtual machines) acts as the common foundation of
all services. Apart from that, there are no other standards. As a result of this,
each team is very free in their choice of technologies.

By introducing this type of architecture, Amazon implemented the fundamen-
tal characteristics of microservices back in 2006. Moreover, Amazon introduced
DevOps by having teams consisting of operation experts and developers. This
approach means that deployments occur largely in an automated fashion, as the
manual construction of servers is not feasible in Cloud environments. Therefore,
Amazon also implemented at least one aspect of continuous delivery.

In conclusion, some companies have been using microservices for a number of
years already—especially companies with an Internet-based business model. This
approach has already proven its practical advantages in real life. In addition, micros-
ervices work well with other modern software practices such as continuous delivery,
Cloud, and DevOps.

2.2 Developing a New Signaling System

Greenfield applications can also be built using microservices. In some cases, that is
the much more natural approach. This section starts with a general description of a
greenfield scenario and then gets into the details of the example—a new signaling
system.

Scenario

Searching for airplanes and ships that have gone missing is a complex task. Rapid
action can save lives. Therefore, different systems are required. Some provide signals
such as radio or radar signals. These signals have to be recorded and processed.
Radio signals, for example, can be used to obtain a bearing, which subsequently has
to be checked against radar-based pictures. Finally, humans have to further analyze
the information. The data analyses, as well as the raw data, have to be provided to
the different rescue teams. Figure 2.3 provides an overview of the signaling system.
Signal Inc. builds systems for exactly these use cases. The systems are individually
assembled, configured, and adapted to the specific needs of the respective client.

ptg18144917

Chapter 2 Microservice Scenarios20

Radar
Sensor

Radio
Sensor

Radio
Sensor

Radar
Sensor

Communication
System

Processing

Evaluation

Storage

Figure 2.3 Overview of the Signaling System

Reasons to Use Microservices

The system is composed of different components that run on different computers.
The sensors are distributed all over the area to be monitored and are provided with
their own servers. However, these computers are not supposed to handle the more
detailed data processing or store the data. Their hardware is not sufficiently powerful
for that. Data privacy considerations would also render such an approach very
undesirable.

Distributed System

For these reasons, the system has to be a distributed system. The different pieces of
functionality are distributed within the network. The system is potentially unrelia-
ble, as individual components and the communication between components can fail.

It would be possible to implement a large part of the system within a deployment
monolith. However, upon closer consideration, the different parts of the system have
to fulfil very different demands. Data processing requires a substantial CPU and an
approach that enables numerous algorithms to process the data. For such purposes,
there are solutions that read events out of a data or event stream and process them.
Data storage requires a very different focus. Basically, the data has to be maintained
within a data structure that is suitable for different data analyses. Modern NoSQL
databases are well suited for this. Recent data is more important than old data. It
has to be accessible faster, while old data can even be deleted at some point. For final
analysis by experts, the data has to be read from the database and processed.

ptg18144917

212.2 Developing a New Signaling System

Technology Stack per Team

Each of the discussed tasks poses different challenges. Consequently, each requires
not only a well-adapted technology stack, but also a dedicated team consisting of
technical experts on the respective task. Additionally, people are needed to decide
which features Signal Inc. will bring to the market and to define new requirements
for the systems. Systems for processing and sensors are individual products that can
be positioned on the market independently of each other.

Integration of Other Systems

An additional reason for the use of microservices is the opportunity to easily integrate
other systems. Sensors and computing units are also provided by other companies.
The ability to integrate such solutions is a frequent requirement in client projects.
Microservices enable the easy integration of other systems, as the integration of dif-
ferent distributed components is already a core feature of a microservices-based
architecture.

For these reasons, the architects of Signal Inc. decided to implement a distributed
system. Each team must implement its respective domain in several small microser-
vices. This approach should ensure that microservices can be easily exchanged, and
the integration of other systems will be straightforward.

Only the communication infrastructure to be used by all services for their
 communication is predetermined. The communication technology supports many
programming languages and platforms so that there are no limitations as to which
concrete technology is used. To make flawless communication possible, the interfaces
between the microservices have to be clearly defined.

Challenges

A failure of communication between the different microservices presents an impor-
tant challenge. The system has to stay usable even if network failures occur. This
requires the use of technologies that can handle such failures. However, technologies
alone will not solve this problem. It has to be decided as part of the user require-
ments what should happen if a system fails. If, for instance, old data is sufficient,
caches can be helpful. In addition, it may be possible to use a simpler algorithm that
does not require calls to other systems.

High Technological Complexity

The technological complexity of the entire system is very high. Different technologies
are employed to satisfy the demands of the different components. The teams working

ptg18144917

Chapter 2 Microservice Scenarios22

on the individual systems can make largely independent technology decisions. This
enables them to always implement the most suitable solution.

Unfortunately, this also means that developers can no longer easily switch between
teams. For example, when there was a lot of work for the data storage team, develop-
ers from other teams could hardly help out, as they were not even proficient in the
programming languages the data storage team was using and did not know the spe-
cific technologies, such as the used database.

It can be a challenge to run a system made up of so many technologies. For this
reason, there is one standardization in this area: all microservices must be able to be
run in a largely identical manner. They are virtual machines so that their installation
is fairly simple. Furthermore, the monitoring is standardized, which determines data
formats and technologies. This makes the central monitoring of the applications
possible. In addition to the typical operational monitoring, there is also monitoring
of application-specific values, and finally an analysis of log files.

Advantages

In this context, the main advantage offered by microservices is good support for the
distributed nature of the system. The sensors are at different locations, so a centralized
system is not sensible. The architecture has adapted to this fact by further dividing the
system into small microservices that are distributed within the network. This enhances
the exchangeability of the microservices. The microservices approach supports the
technology diversity, which characterizes this system.

In this scenario, time-to-market is not as important as in the e-commerce sce-
nario. It would also be hard to implement, as the systems are installed for different
clients and cannot be easily reinstalled. However, some ideas from the continuous
delivery field are used: for instance, the largely uniform installation and the central
monitoring.

Verdict

Microservices are a suitable architectural pattern for this scenario. The system can
benefit from the fact that typical problems can be solved during implementation by
established approaches from the microservices field: for example, technology com-
plexity and platform operation.

Still, this scenario wouldn’t be immediately associated with the term “microser-
vice.” This leads to the following conclusions:

• Microservices have a wider application than is apparent at first glance. Out-
side of web-based business models, microservices can solve many problems,
even if those issues are very different from the ones found in web companies.

ptg18144917

232.3 Conclusion

• Indeed, many projects from different fields have been using microservice-based
approaches for some time, even if they do not call them by this name or only
implement them partially.

• With the help of microservices, these projects can use technologies that are
currently being created in the microservice field. In addition, they can benefit
from the experiences of others who have worked in this field, for instance in
regards to architecture.

2.3 Conclusion

This chapter presented two very different scenarios from two completely distinct busi-
ness areas: a web system with a strong focus on rapid time-to-market, and a system for
signal processing that is inherently distributed. The architectural principles are very
similar for the two systems, although they originate from different reasons.

In addition, there are a number of common approaches, among those the crea-
tion of teams according to microservices and the demands in regards to infrastructure
automatization, as well as other organizational topics. However, in other areas, there
are also differences. For the signaling system, it is essential to have the option to use
different technologies, as this system has to employ a number of different technologies.
For the web system, this aspect is not as important. Here, the independent develop-
ment, the fast and easy deployment, and finally the better time-to-market are the criti-
cal factors.

Essential Points

• Microservices offer a significant number of advantages.

• In the case of web-based applications, continuous delivery and short time-to-
market can be important motivations for the use of microservices.

• However, there are also very different use cases for which microservices as
distributed systems are extremely well suited.

ptg18144917

This page intentionally left blank

ptg18144917

25

 PART II

Microservices: What, Why,
and Why Not?

Part II discusses the different facets of microservice-based architectures to present
the diverse possibilities offered by microservices. Advantages as well as disadvan-
tages are addressed so that the reader can evaluate what can be gained by using
microservices and which points require special attention and care during the imple-
mentation of microservice-based architectures.

Chapter 3, “What Are Microservices,” explains the term “microservice” in
detail. The term is dissected from different perspectives, which is essential for an
in-depth understanding of the microservice approach. Important issues are the size
of a microservice, Conway’s Law as organizational influence, and domain-driven
design particularly with respect to Bounded Context from a domain perspective.
Furthermore, the chapter addresses the question of whether a microservice should
contain a UI.

Chapter 4, “Reasons for Using Microservices,” focuses on the advantages of
microservices, taking alternatingly technical, organizational, and business perspectives.

Chapter 5, “Challenges,” deals with the associated challenges in the areas of
technology, architecture, infrastructure, and operation.

Chapter 6, “Microservices and SOA,” distinguishes microservices from service-
oriented architecture (SOA). By making this distinction microservices are viewed
from a new perspective, which helps to further clarify the microservices approach.
Besides, microservices have been frequently compared to SOAs.

ptg18144917

This page intentionally left blank

ptg18144917

27

Section 1.1 provided an initial definition of the term microservice. However, there
are a number of different ways to define microservices. The different definitions
are based on different aspects of microservices. They also show for which reasons
the use of microservices is advantageous. At the end of the chapter the reader
should have his or her own definition of the term microservice—depending on the
individual project scenario.

The chapter discusses the term microservice from different perspectives:

• Section 3.1 focuses on the size of microservices.

• Section 3.2 explains the relationship between microservices, architecture, and
organization by using the Conway’s Law.

• Section 3.3 presents a domain architecture of microservices based on domain-
driven design (DDD) and bounded context.

• Section 3.5 explains why microservices should contain a user interface (UI).

3.1 Size of a Microservice

The name “microservices” conveys the fact that the size of the service matters;
 obviously, microservices are supposed to be small.

Chapter 3

What Are Microservices?

ptg18144917

Chapter 3 What Are Microservices?28

One way to define the size of a microservice is to count the lines of code (LOC).1
However, such an approach has a number of problems:

• It depends on the programming language used. Some languages require more
code than others to express the same functionality—and microservices are
explicitly not supposed to predetermine the technology stack. Therefore,
defining microservices based on this metric is not very useful.

• Finally, microservices represent an architecture approach. Architectures,
 however, should follow the conditions in the domain rather than adhering to
technical metrics such as LOC. Also for this reason attempts to determine size
based on code lines should be viewed critically.

In spite of the voiced criticism, LOC can be an indicator for a microservice.
Still, the question as to the ideal size of a microservice remains. How many LOC
may a microservice have? Even if there are no absolute standard values, there are
 nevertheless influencing factors, which may argue for larger or smaller microservices.

Modularization

One factor is modularization. Teams develop software in modules to be better able
to deal with its complexity; instead of having to understand the entire software
 package, developers only need to understand the module(s) they are working on as
well as the interplay between the different modules. This is the only way for a team to
work productively in spite of the enormous complexity of a typical software system.
In daily life there are often problems as modules get larger than originally planned.
This makes them hard to understand and hard to maintain, because changes require
an understanding of the entire module. Thus it is very sensible to keep microservices
as small as possible. On the other hand, microservices, unlike many other approaches
to modularization, have an overhead.

Distributed Communication

Microservices run within independent processes. Therefore, communication
between microservices is distributed communication via the network. For this type
of system, the “First Rule of Distributed Object Design”2 applies. This rule states
that systems should not be distributed if it can be avoided. The reason for this is that

1. http://yobriefca.se/blog/2013/04/28/micro-service-architecture/

2. http://martinfowler.com/bliki/FirstLaw.html

http://www.yobriefca.se/blog/2013/04/28/micro-service-architecture/
http://www.martinfowler.com/bliki/FirstLaw.html

ptg18144917

293.1 Size of a Microservice

a call on another system via the network is orders of magnitude slower than a direct
call within the same process. In addition to the pure latency time, serialization and
deserialization of parameters and results are time consuming. These processes not
only take a long time, but also cost CPU capacity.

Moreover, distributed calls might fail because the network is temporarily
 unavailable or the called server cannot be reached—for instance due to a crash. This
increases complexity when implementing distributed systems, because the caller has
to deal with these errors in a sensible manner.

Experience3 teaches us that microservice-based architectures work in spite of
these problems. When microservices are designed to be especially small, the amount
of distributed communication increases and the overall system gets slower. This is
an argument for larger microservices. When a microservice contains a UI and fully
implements a specific part of the domain, it can operate without calling on other
microservices in most cases, because all components of this part of the domain are
implemented within one microservice. The desire to limit distributed communica-
tion is another reason to build systems according to the domain.

Sustainable Architecture

Microservices also use distribution to design architecture in a sustainable manner
through distribution into individual microservices: it is much more difficult to use a
microservice than a class. The developer has to deal with the distribution technology
and has to use the microservice interface. In addition, he or she might have to make
preparations for tests to include the called microservice or replace it with a stub.
Finally, he has to contact the team responsible for the respective microservice.

To use a class within a deployment monolith is much simpler—even if the class
belongs to a completely different part of the monolith and falls within the responsi-
bility of another team. However, because it is so simple to implement a dependency
between two classes, unintended dependencies tend to accumulate within deploy-
ment monoliths. In the case of microservices dependencies are harder to implement,
which prevents the creation of unintended dependencies.

Refactoring

However, the boundaries between microservices also create challenges, for instance
during refactoring. If it becomes apparent that a piece of functionality does not fit
well within its present microservice, it has to be moved to another microservice. If
the target microservice is written in a different programming language, this transfer

3. http://martinfowler.com/articles/distributed-objects-microservices.html

http://www.martinfowler.com/articles/distributed-objects-microservices.html

ptg18144917

Chapter 3 What Are Microservices?30

inevitably leads to a new implementation. Such problems do not arise when func-
tionalities are moved within a microservice. This consideration may argue for larger
microservices, and this topic is the focus of section 7.3.

Team Size

The independent deployment of microservices and the division of the development
effort into teams result in an upper limit for the size of an individual microservice.
A team should be able to implement features within a microservice and deploy those
features into production independently of other teams. By ensuring this, the archi-
tecture enables the scaling of development without requiring too much coordination
effort between the teams.

A team has to be able to implement features independently of the other teams.
Therefore, at first glance it seems like the microservice should be large enough to
enable the implementation of different features. When microservices are smaller,
a team can be responsible for several microservices, which together enable the
 implementation of a domain. A lower limit for the microservice size does not result
from the independent deployment and the division into teams.

However, an upper limit does result from it: when a microservice has reached a
size that prevents its further development by a single team, it is too large. For that
matter a team should have a size that is especially well suited for agile processes,
which is typically three to nine people. Thus a microservice should never grow so
large that a team of three to nine people cannot develop it further by themselves.
In addition to the sheer size, the number of features to be implemented in an indi-
vidual microservice plays an important role. Whenever a large number of changes is
necessary within a short time, a team can rapidly become overloaded. Section 12.2
highlights alternatives that enable several teams to work on the same microservice.
However, in general a microservice should never grow so large that several teams are
necessary to work on it.

Infrastructure

Another important factor influencing the size of a microservice is the infrastructure.
Each microservice has to be able to be deployed independently. It must have a con-
tinuous delivery pipeline and an infrastructure for running the microservice, which
has to be present not only in production but also during the different test stages. Also
databases and application servers might belong to infrastructure. Moreover, there
has to be a build system for the microservice. The code for the microservice has to be
versioned independently of that for other microservices. Thus a project within
 version control has to exist for the microservice.

ptg18144917

313.1 Size of a Microservice

Depending on the effort that is necessary to provide the required infrastructure for
a microservice, the sensible size for a microservice can vary. When a small microser-
vice size is chosen, the system is distributed into many microservices, thus requiring
more infrastructure. In the case of larger microservices, the system overall contains
fewer microservices and consequently requires less infrastructure.

Build and deployment of microservices should anyhow be automated. Never-
theless, it can be laborious to provide all necessary infrastructure components for a
microservice. Once setting up the infrastructure for new microservices is automated,
the expenditure for providing infrastructures for additional microservices decreases.
This automation enables further reduction of the microservice size. Companies that
have been working with microservices for some time usually simplify the creation
of new microservices by providing the necessary infrastructure in an automated
manner.

Additionally, some technologies enable reduction of the infrastructure overhead to
such an extent that substantially smaller microservices are possible—however, with a
number of limitations in such cases. Such nanoservices are discussed in Chapter 14,
“Technologies for Microservices.”

Replaceability

A microservice should be as easy to replace as possible. Replacing a microservice can
be sensible when its technology becomes outdated or if the microservice code is of
such bad quality that it cannot be developed any further. The replaceability of
microservices is an advantage when compared to monolithic applications, which can
hardly be replaced at all. When a monolith cannot be reasonably maintained any-
more, its development has either to be continued in spite of the associated high costs
or a similarly cost-intensive migration has to take place. The smaller a microservice
is, the easier it is to replace it with a new implementation. Above a certain size a
microservice may be difficult to replace, for it then poses the same challenges as a
monolith. Replaceability thus limits the size of a microservice.

Transactions and Consistency

Transactions possess the so-called ACID characteristics:

• Atomicity indicates that a given transaction is either executed completely or
not at all. In case of an error, all changes are reversed.

• Consistency means that data is consistent before and after the execution of a
transaction—database constraints, for instance, are not violated.

ptg18144917

Chapter 3 What Are Microservices?32

• Isolation indicates that the operations of transactions are separated from
each other.

• Durability indicates permanence: changes to the data are stored and are still
available after a crash or other interruption of service.

Within a microservice, changes to a transaction can take place. Moreover, the
consistency of data in a microservice can be guaranteed very easily. Beyond an indi-
vidual microservice, this gets difficult, and overall coordination is necessary. Upon
the rollback of a transaction all changes made by all microservices would have to be
reversed. This is laborious and hard to implement, for the delivery of the decision
that changes have to be reversed has to be guaranteed. However, communication
within networks is unreliable. Until it is decided whether a change may take place,
further changes to the data are barred. If additional changes have taken place, it
might no longer be possible to reverse a certain change. However, when microser-
vices are kept from introducing data changes for some time, system throughput is
reduced.

However, when communications occur via messaging systems, transactions are
possible (see section 8.4). With this approach, transactions are also possible without
a close link between the microservices.

Consistency

In addition to transactions, data consistency is important. An order, for instance,
also has to be recorded as revenue. Only then will revenue and order data be
 consistent. Data consistency can be achieved only through close coordination. Data
consistency can hardly be guaranteed across microservices. This does not mean that
the revenue for an order will not be recorded at all. However, it will likely not happen
exactly at the same point of time and maybe not even within one minute of order
processing because the communication occurs via the network—and is consequently
slow and unreliable.

Data changes within a transaction and data consistency are only possible when
all data being processed is part of the same microservice. Therefore, data changes
determine the lower size limit for a microservice: when transactions are supposed
to encompass several microservices and data consistency is required across several
microservices, the microservices have been designed too small.

Compensation Transactions across Microservices

At least in the case of transactions there is an alternative: if a data change has to be
rolled back in the end, compensation transactions can be used for that.

ptg18144917

333.1 Size of a Microservice

A classic example for a distributed transaction is a travel booking, which consists
of a hotel, a rental car, and a flight. Either everything has to be booked together or
nothing at all. Within real systems and also within microservices, this functionality is
divided into three microservices because the three tasks are very different. Inquiries
are sent to the different systems whether the desired hotel room, rental car, and flight
are available. If all are available, everything is reserved. If, for instance, the hotel room
suddenly becomes unavailable, the reservations for the flight and the rental car have to
be cancelled. However, in the real world the concerned companies will likely demand
a fee for the booking cancellation. Due to that, the cancellation is not only a techni-
cal event happening in the background like a transaction rollback but also a business
process. This is much easier to represent with a compensation transaction. With this
approach, transactions across several elements in microservice environments can also
be implemented without the presence of a close technical link. A compensation trans-
action is just a normal service call. Technical as well as business reasons can lead to
the use of mechanisms such as compensation transactions for microservices.

Summary

In conclusion, the following factors influence the size of a microservice (see
Figure 3.1):

• The team size sets an upper limit; a microservice should never be so large that
one very large team or several teams are required to work on it. Eventually, the
teams are supposed to work and bring software into production independently
of each other. This can only be achieved when each team works on a separate
deployment unit—that is, a separate microservice. However, one team can
work on several microservices.

• Modularization further limits the size of a microservice: The microservice
should preferably be of a size that enables a developer to understand all its
aspects and further develop it. Even smaller is of course better. This limit
is below the team size: whatever one developer can still understand, a team
should still be able to develop further.

• Replaceability reduces with the size of the microservice. Therefore, replacea-
bility can influence the upper size limit for a microservice. This limit lies below
the one set by modularization: when somebody decides to replace a microser-
vice, this person has first of all to be able to understand the microservice.

• A lower limit is set by infrastructure: if it is too laborious to provide the neces-
sary infrastructure for a microservice, the number of microservices should be
kept rather small; consequently the size of each microservice will be larger.

ptg18144917

Chapter 3 What Are Microservices?34

• Similarly, distributed communication overhead increases with the number of
microservices. For this reason, the size of microservices should not be set too small.

• Consistency of data and transactions can only be ensured within a micro-
service. Therefore, microservices should not be so small that consistency and
transactions must be ensured across several microservices.

These factors not only influence the size of microservices but also reflect a certain
idea of microservices. According to this idea, the main advantages of microservices
are independent deployment and the independent work of the different teams, along
with the replaceability of microservices. The optimal size of a microservice can be
deduced from these desired features.

However, there are also other reasons for microservices. When microservices are,
for instance, introduced because of their independent scaling, a microservice size
has to be chosen that ensures that each microservice is a unit, which has to scale
independently.

How small or large a microservice can be, cannot be deduced solely from these
 criteria. This also depends on the technology being used. Especially the effort
 necessary for providing infrastructure for a microservice and the distributed commu-
nication depends on the utilized technology. Chapter 14 looks at technologies, which
make the development of very small services possible—denoted as nanoservices.
These nanoservices have different advantages and disadvantages to microservices,
which, for instance, are implemented using technologies presented in Chapter 13,
“Example of a Microservice-based Architecture.”

Ideal Size
of a

Microservice

Distributed
Communication

Team Size

Infrastructure

Modularization

Replaceability

Transactions and
Consistency

Figure 3.1 Factors Influencing the Size of a Microservice

ptg18144917

353.2 Conway’s Law

Thus, there is no ideal size. The actual microservice size will depend on the tech-
nology and the use case of an individual microservice.

Try and Experiment

How great is the effort required for the deployment of a microservice in your
language, platform, and infrastructure?

• Is it just a simple process? Or is it a complex infrastructure containing
application servers or other infrastructure elements?

• How can the effort for the deployment be reduced so that smaller microser-
vices become possible?

Based on this information you can define a lower limit for the size of a
microservice. Upper limits depend on team size and modularization, so you
should also think of appropriate limits in those terms.

3.2 Conway’s Law

Conway’s Law4 was coined by the American computer scientist Melvin Edward
 Conway and indicates the following:

Any organization that designs a system (defined broadly) will produce a design whose
structure is a copy of the organization’s communication structure.

It is important to know that this law is meant to apply not only to software
but to any kind of design. The communication structures that Conway mentions,
do not have to be identical to the organization chart. Often there are informal
 communication structures, which also have to be considered in this context. In
addition, the geographical distribution of teams can influence communication.
After all it is much simpler to talk to a colleague who works in the same room or at
least in the same office than with one working in a different city or even in a differ-
ent time zone.

4. http://www.melconway.com/research/committees.html

http://www.melconway.com/research/committees.html

ptg18144917

Chapter 3 What Are Microservices?36

Reasons for the Law

Conway’s Law derives from the fact that each organizational unit designs a specific
part of the architecture. If two architectural parts have an interface, coordination in
regards to this interface is required—and, consequently, a communication relation-
ship between the organizational units that are responsible for the respective parts of
the architecture.

From Conway’s Law it can also be deduced that design modularization is
 sensible. Via such a design, it is possible to ensure that not every team member has
to constantly coordinate with every other team member. Instead the developers
 working on the same module can closely coordinate their efforts, while team mem-
bers working on different modules only have to coordinate when they develop an
interface—and even then only in regards to the specific design of the external fea-
tures of this interface.

However, the communication relationships extend beyond that. It is much easier
to collaborate with a team within the same building than with a team located in
another city, another country, or even within a different time zone. Therefore, archi-
tectural parts having numerous communication relationships are better implemented
by teams that are geographically close to each other, because it is easier for them
to communicate with each other. In the end, the Conway’s Law focuses not on the
organization chart but on the real communication relationships.

By the way, Conway postulated that a large organization has numerous commu-
nication relationships. Thus communication becomes more difficult or even impos-
sible in the end. As a consequence, the architecture can be increasingly affected and
finally break down. In the end, having too many communication relationships is a
real risk for a project.

The Law as Limitation

Normally Conway’s Law is viewed as a limitation, especially from the perspective of
software development. Let us assume that a project is modularized according to
technical aspects (see Figure 3.2). All developers with a UI focus are grouped into one
team, the developers with backend focus are put into a second team, and data bank
experts make up the third team. This distribution has the advantage that all three
teams consist of experts for the respective technology. This makes it easy and trans-
parent to create this type of organization. Moreover, this distribution also appears
logical. Team members can easily support each other, and technical exchange is also
facilitated.

ptg18144917

373.2 Conway’s Law

Database Team

UI Team

Backend Team

Database

UI

Backend

Figure 3.2 Technical Project Distribution

According to Conway’s Law, it follows from such a distribution that the three
teams will implement three technical layers: a UI, a backend, and a database. The
chosen distribution corresponds to the organization, which is in fact sensibly built.
However, this distribution has a decisive disadvantage: a typical feature requires
changes to UI, backend, and database. The UI has to render the new features for
the clients, the backend has to implement the logic, and the database has to create
structures for the storage of the respective data. This results in the following
disadvantages:

• The person wishing to have a feature implemented has to talk to all three
teams.

• The teams have to coordinate their work and create new interfaces.

• The work of the different teams has to be coordinated in a manner that ensures
that their efforts temporally fit together. The backend, for instance, cannot
really work without getting input from the database, and the UI cannot work
without input from the backend.

• When the teams work in sprints, these dependencies cause time delays: The
database team generates in its first sprint the necessary changes, within the
second sprint the backend team implements the logic, and in the third sprint
the UI is dealt with. Therefore, it takes three sprints to implement a single
feature.

ptg18144917

Chapter 3 What Are Microservices?38

In the end this approach creates a large number of dependencies as well as a high
communication and coordination overhead. Thus this type of organization does
not make much sense if the main goal is to implement new features as rapidly as
possible.

Many teams following this approach do not realize its impact on architecture
and do not consider this aspect further. This type of organization focuses instead
on the notion that developers with similar skills should be grouped together within
the organization. This organization becomes an obstacle to a design driven by the
domain like microservices, whose development is not compatible with the division
of teams into technical layers.

The Law as Enabler

However, Conway’s Law can also be used to support approaches like microservices.
If the goal is to develop individual components as independently of each other as
possible, the system can be distributed into domain components. Based on these
domain components, teams can be created. Figure 3.3 illustrates this principle: There
are individual teams for product search, clients, and the order process. These teams
work on their respective components, which can be technically divided into UI, back-
end, and database. By the way, the domain components are not explicitly named in
the figure, for they are identical to the team names. Components and teams are syn-
onymous. This approach corresponds to the idea of so-called cross-functional teams,
as proposed by methods such as Scrum. These teams should encompass different
roles so that they can cover a large range of tasks. Only a team designed along such
principles can be in charge of a component—from engineering requirements via
implementation through to operation.

The division into technical artifacts and the interface between the artifacts can
then be settled within the teams. In the easiest case, developers only have to talk
to developers sitting next to them to do so. Between teams, coordination is more
complex. However, inter-team coordination is not required very often, since features
are ideally implemented by independent teams. Moreover, this approach creates thin
interfaces between the components. This avoids laborious coordination across teams
to define the interface.

Ultimately, the key message to be taken from Conway’s Law is that architecture
and organization are just two sides of the same coin. When this insight is cleverly
put to use, the system will have a clear and useful architecture for the project. Archi-
tecture and organization have the common goal to ensure that teams can work in an
unobstructed manner and with as little coordination overhead as possible.

The clean separation of functionality into components also facilitates mainte-
nance. Since an individual team is responsible for individual functionality and com-
ponent, this distribution will have long-term stability, and consequently the system
will remain maintainable.

ptg18144917

393.2 Conway’s Law

Database

UI

Backend

Database

UI

Backend

Database

UI

Backend

Team Product Search Team Customer Team Order Process

Figure 3.3 Project by Domains

The teams need requirements to work upon. This means that the teams need to
contact people who define the requirements. This affects the organization beyond
the projects, for the requirements come from the departments of the enterprise, and
these also according to Conway’s Law have to correspond to the team structures
within the project and the domain architecture. Conway’s Law can be expanded
beyond software development to the communication structures of the entire organi-
zation, including the users. To put it the other way round: the team structure within
the project and consequently the architecture of a microservice system can follow
from the organization of the departments of the enterprise.

The Law and Microservices

The previous discussion highlighted the relationship between architecture and organi-
zation of a project only in a general manner. It would be perfectly conceivable to align
the architecture along functionalities and devise teams, each of which are in charge for a
separate functionality without using microservices. In this case the project would
develop a deployment monolith within which all functionalities are implemented. How-
ever, microservices support this approach. Section 3.1 already discussed that microser-
vices offer technical independence. In conjunction with the division by domains, the
teams become even more independent of each other and have even less need to coordi-
nate their work. The technical coordination as well as the coordination concerning the
domains can be reduced to the absolute minimum. This makes it far easier to work in
parallel on numerous features and also to bring the features in production.

ptg18144917

Chapter 3 What Are Microservices?40

Microservices as a technical architecture are especially well suited to support the
approach to devise a Conway’s Law–based distribution of functionalities. In fact,
exactly this aspect is an essential characteristic of a microservices-based architecture.

However, orienting the architecture according to the communication structures
entails that a change to the one also requires a change of the other. This makes archi-
tectural changes between microservices more difficult and makes the overall process
less flexible. Whenever a piece of functionality is moved from one microservice to
another, this might have the consequence that another team has to take care of this
functionality from that point on. This type of organizational change renders soft-
ware changes more complex.

As a next step this chapter will address how the distribution by domain can best
be implemented. Domain-driven design (DDD) is helpful for that.

Try and Experiment

Have a look at a project you know:

• What does the team structure look like?

• Is it technically motivated, or is it divided by domain?

• Would the structure have to be changed to implement a microservices-
based approach?

• How would it have to be changed?

• Is there a sensible way to distribute the architecture onto different teams?
Eventually each team should be in charge of independent domain compo-
nents and be able to implement features relating to them.

• Which architectural changes would be necessary?

• How laborious would the changes be?

3.3 Domain-Driven Design and Bounded Context

In his book of the same title, Eric Evans formulated domain-driven design (DDD)5 as
pattern language. It is a collection of connected design patterns and supposed to
support software development especially in complex domains. In the following text,
the names of design patterns from Evan’s book are written in italics.

5. Eric Evans. 2003. Domain-Driven Design: Tackling Complexity in the Heart of Software. Boston:
Addison-Wesley.

ptg18144917

413.3 Domain-Driven Design and Bounded Context

Domain-driven design is important for understanding microservices, for it supports
the structuring of larger systems according to domains. Exactly such a model is neces-
sary for the division of a system into microservices. Each microservice is meant to con-
stitute a domain, which is designed in such a way that only one microservice has to be
changed in order to implement changes or to introduce new features. Only then is the
maximal benefit to be derived from independent development in different teams, as sev-
eral features can be implemented in parallel without the need for extended coordination.

Ubiquitous Language

DDD defines a basis for how a model for a domain can be designed. An essential
foundation of DDD is Ubiquitous Language. This expression denotes that the soft-
ware should use exactly the same terms as the domain experts. This applies on all
levels: in regards to code and variable names as well as for database schemas. This
practice ensures that the software really encompasses and implements the critical
domain elements. Let us assume for instance that there are express orders in an
e-commerce system. One possibility would be to generate a Boolean value with the
name “fast” in the order table. This creates the following problem: domain experts
have to translate the term “express order,” which they use on a daily basis, into
“order with a specific Boolean value.” They might not even know what Boolean
 values are. This renders any discussion of the model more difficult, for terms have to
be constantly explained and related to each other. The better approach is to call the
table within the database scheme “express order.” In that case it is completely trans-
parent how the domain terms are implemented in the system.

Building Blocks

To design a domain model, DDD identifies basic patterns:

• Entity is an object with an individual identity. In an e-commerce application,
the customer or the items could be examples for Entities. Entities are typically
stored in databases. However, this is only the technical implementation of the
concept Entity. An Entity belongs in essence to the domain modeling like the
other DDD concepts.

• Value Objects do not have their own identity. An address can be an example
of a Value Object, for it makes only sense in the context of a specific customer
and therefore does not have an independent identity.

• Aggregates are composite domain objects. They facilitate the handling of invari-
ants and other conditions. An order, for instance, can be an Aggregate of order
lines. This can be used to ensure that an order from a new customer does not
exceed a certain value. This is a condition that has to be fulfilled by calculating val-
ues from the order lines so that the order as Aggregate can control these conditions.

ptg18144917

Chapter 3 What Are Microservices?42

• Services contain business logic. DDD focuses on modeling business logic as
Entities, Value Objects, and Aggregates. However, logic accessing several such
objects cannot be sensibly modeled using these objects. For these cases there
are Services. The order process could be such a Service, for it needs access to
items and customers and requires the Entity order.

• Repositories serve to access all Entities of a type. Typically, there is a persis-
tency technology like a database behind a Repository.

• Factories are mostly useful to generate complex domain objects. This is espe-
cially the case when these contain for instance many associations.

Aggregates are of special importance in the context of microservices: within an
Aggregate consistency can be enforced. Because consistency is necessary, parallel
changes have to be coordinated in an Aggregate. Otherwise two parallel changes
might endanger consistency. For instance, when two order positions are included in
parallel into an order, consistency can be endangered. The order has already a value
of €900 and is maximally allowed to reach €1000. If two order positions of €60 each
are added in parallel, both might calculate a still acceptable total value of €960 based
on the initial value of €900. Therefore, changes have to be serialized so that the final
result of €1020 can be controlled. Accordingly, changes to Aggregates have to be seri-
alized. For this reason, an Aggregate cannot be distributed across two microservices.
In such a scenario consistency cannot be ensured. Consequently, Aggregates cannot
be divided between microservices.

Bounded Context

Building blocks such as Aggregate represent for many people the core of DDD. DDD
describes, along with strategic design, how different domain models interact and
how more complex systems can be built up this way. This aspect of DDD is probably
even more important than the building blocks. In any case it is the concept of DDD,
which influences microservices.

The central element of strategic designs is the Bounded Context. The underly-
ing reasoning is that each domain model is only sensible in certain limits within a
system. In e-commerce, for instance, number, size, and weight of the ordered items
are of interest in regards to delivery, for they influence delivery routes and costs. For
accounting on the other hand prices and tax rates are relevant. A complex system
consists of several Bounded Contexts. In this it resembles the way complex biological
organisms are built out of individual cells, which are likewise separate entities with
their own inner life.

ptg18144917

433.3 Domain-Driven Design and Bounded Context

Bounded Context: An Example

The customer from the e-commerce system shall serve as an example for a
Bounded Context (see Figure 3.4). The different Bounded Contexts are Order,
Delivery, and Billing. The component Order is responsible for the order pro-
cess. The component Delivery implements the delivery process. The compo-
nent Billing generates the bills.

Delivery

Customer
Delivery
address

Preferred
delivery
service

Billing

Customer

Billing
address
Tax rate

Order

Customer

Bonus program #

Figure 3.4 Project by Domains

Each of these Bounded Contexts requires certain customer data:

• Upon ordering the customer is supposed to be rewarded with points in a
bonus program. In this Bounded Context the number of the customer has
to be known to the bonus program.

• For Delivery the delivery address and the preferred delivery service of the
customer are relevant.

• Finally, for generating the bill the billing address and the tax rate of the
customer have to be known.

In this manner each Bounded Context has its own model of the customer.
This renders it possible to independently change microservices. If for instance
more information regarding the customer is necessary for generating bills,
only changes to the Bounded Context billing are necessary.

It might be sensible to store basic information concerning the customer in
a separate Bounded Context. Such fundamental data is probably sensible in
many Bounded Contexts. To this purpose the Bounded Contexts can cooper-
ate (see below).

(continued)

ptg18144917

Chapter 3 What Are Microservices?44

To illustrate the system setup in the different Bounded Contexts a Context Map
can be used (see section 7.2). Each of the Bounded Contexts then can be imple-
mented within one or several microservices.

Collaboration between Bounded Contexts

How are the individual Bounded Contexts connected? There are different
possibilities:

• In case of a Shared Kernel the domain models share some common elements;
however, in other areas they differ.

• Customer/Supplier means that a subsystem offers a domain model for the
caller. The caller in this case is the client who determines the exact setup of the
model.

• This is very different in the case of Conformist: The caller uses the same
model as the subsystem, and the other model is thereby forced upon him. This
approach is relatively easy, for there is no need for translation. One example
is a standard software for a certain domain. The developers of this software
likely know a lot about the domain since they have seen many different use
cases. The caller can use this model to profit from the knowledge from the
modeling.

• The Anticorruption Layer translates a domain model into another one so that
both are completely decoupled. This enables the integration of legacy systems
without having to take over the domain models. Often data modeling is not
very meaningful in legacy systems.

A universal model of the customer, however, is hardly sensible. It would be
very complex since it would have to contain all information regarding the cus-
tomer. Moreover, each change to customer information, which is necessary in
a certain context, would concern the universal model. This would render such
changes very complicated and would probably result in permanent changes
to the model.

ptg18144917

453.3 Domain-Driven Design and Bounded Context

• Separate Ways means that the two systems are not integrated, but stay
 independent of each other.

• In the case of Open Host Service, the Bounded Context offers special services
everybody can use. In this way everybody can assemble their own integration.
This is especially useful when an integration with numerous other systems is
necessary and when the implementation of these integrations is too laborious.

• Published Language achieves similar things. It offers a certain domain mod-
eling as a common language between the Bounded Contexts. Since it is widely
used, this language can hardly be changed anymore afterwards.

Bounded Context and Microservices

Each microservice is meant to model one domain so that new features or changes
have only to be implemented within one microservice. Such a model can be designed
based on Bounded Context.

One team can work on one or several Bounded Contexts, which each serve as
a foundation for one or several microservices. Changes and new features are sup-
posed to concern typically only one Bounded Context—and thus only one team.
This ensures that teams can work largely independently of each other. A Bounded
Context can be divided into multiple microservices if that seems sensible. There
can be technical reasons for that. For example, a certain part of a Bounded Context
might have to be scaled up to a larger extent than the others. This is simpler if this
part is separated into its own microservice. However, designing microservices that
contain multiple Bounded Contexts should be avoided, for this entails that several
new features might have to be implemented in one microservice. This interferes with
the goal to develop features independently.

Nevertheless, it is possible that a special requirement comprises many Bounded
Contexts—in that case additional coordination and communication will be required.

The coordination between teams can be regulated via different collaboration
possibilities. These influence the independence of the teams as well: Separate Ways,
Anticorruption Layer or Open Host Service offer a lot of independence. Conformist
or Customer/Supplier on the other hand tie the domain models very closely together.
For Customer/Supplier the teams have to coordinate their efforts closely: the supplier
needs to understand the requirements of the customer. For Conformist, however, the
teams do not need to coordinate: one team defines the model that the other team just
uses unchanged (see Figure 3.5).

ptg18144917

Chapter 3 What Are Microservices?46

Coordination
Effort

Anticorruption
Layer

Shared Kernel

Conformist

Customer /
Supplier

Separate Ways

Open Host
Service

Published
Language

Shared Bounded
Context

Figure 3.5 Communication Effort of Different Collaborations

As in the case of Conway’s Law from section 3.2, it becomes very apparent that
organization and architecture are very closely linked. When the architecture enables
a distribution of the domains in which the implementation of new features only
requires changes to a defined part of the architecture, these parts can be distributed
to different teams in such a way that these teams can work largely independently
of each other. DDD and especially Bounded Context demonstrate what such a
 distribution can look like and how the parts can work together and how they have to
coordinate.

Large-Scale Structure

With large-scale structure, DDD also addresses the question how the system in its
entirety can be viewed from the different Bounded Contexts with respect to
microservices.

• A System Metaphor can serve to define the fundamental structure of the entire
system. For example, an e-commerce system can orient itself according to
the shopping process: the customer starts out looking for products, then he/
she will compare items, select one item, and order it. This can give rise to three
microservices: search, comparison, and order.

• A Responsibility Layer divides the system into layers with different respon-
sibilities. Layers can call other layers only if those are located below them.
This does not refer to a technical division into database, UI and logic. In an

ptg18144917

473.4 Why You Should Avoid a Canonical Data Model (Stefan Tilkov)

 e-commerce system, domain layers might be (for example) the catalog, the
order process, and billing. The catalog can call on the order process, and
the order process can call on the generation of the bill. However, calls into
the other direction are not permitted.

• Evolving Order suggests it is best not to determine the overall structure too
rigidly. Instead, the order should arise from the individual components in a
stepwise manner.

These approaches can provide an idea how the architecture of a system, which
consists of different microservices, can be organized (see also Chapter 7, “Architec-
ture of Microservice-based Systems”).

Try and Experiment

Look at a project you know:

• Which Bounded Contexts can you identify?

• Generate an overview of the Bounded Contexts in a Context Map. Com-
pare section 7.2.

• How do the Bounded Contexts cooperate? (Anticorruption Layer Customer/
Supplier etc.). Add this information to the Context Map.

• Would other mechanisms have been better at certain places? Why?

• How could the Bounded Contexts be sensibly distributed to teams so that
features are implemented by independent teams?

These questions might be hard to answer because you need to get a new per-
spective on the system and how the domains are modeled in the system.

3.4 Why You Should Avoid a Canonical Data
Model (Stefan Tilkov)

by Stefan Tilkov, innoQ

In recent times, I’ve been involved in a few architecture projects on the enterprise
level again. If you’ve never been in that world, that is, if you’ve been focusing on

ptg18144917

Chapter 3 What Are Microservices?48

individual systems so far, let me give you the gist of what this kind of environment is
like. There are lots of meetings, more meetings, and even more meetings; there’s an
abundance of slide decks, packed with text and diagrams—none of that Presenta-
tion Zen nonsense, please. There are conceptual architecture frameworks, showing
different perspectives; there are guidelines and reference architectures, enterprise-
wide layering approaches, a little bit of SOA and EAI and ESB and portals and
(lately) API talk thrown in for good measure. Vendors and system integrators and (of
course) consultants all see their chance to exert influence on strategic decisions, mak-
ing their products or themselves an integral part of the company’s future strategy. It
can be a very frustrating but (at least sometimes) also very rewarding experience:
those wheels are very big and really hard to turn, but if you manage to turn them, the
effect is significant.

It’s also amazing to see how many of the things that cause problems when
building large systems are repeated on the enterprise level. (We don’t often make
mistakes … but if we do, we make them big!) My favorite one is the idea of estab-
lishing a canonical data model (CDM) for all of your interfaces.

If you haven’t heard of this idea before, a quick summary is: Whatever kind of
technology you’re using (an ESB, a BPM platform, or just some assembly of ser-
vices of some kind), you standardize the data models of the business objects you
exchange. In its extreme (and very common) form, you end up with having just
one kind of Person, Customer, Order, Product, etc., with a set of IDs, attributes,
and associations everyone can agree on. It isn’t hard to understand why that might
seem a very compelling thing to attempt. After all, even a nontechnical manager will
understand that the conversion from one data model to another whenever systems
need to talk to each other is a complete waste of time. It’s obviously a good idea
to standardize. Then, anyone who happens to have a model that differs from the
canonical one will have to implement a conversion to and from it just once, new
systems can just use the CDM directly, and everyone will be able to communicate
without further ado!

In fact, it’s a horrible, horrible idea. Don’t do it.
In his book on domain-driven design, Eric Evans gave a name to a concept that is

obvious to anyone who has actually successfully built a larger system: the Bounded
Context. This is a structuring mechanism that avoids having a single huge model
for all of your application, simply because that (a) becomes unmanageable and
(b) makes no sense to begin with. It recognizes that a Person or a Contract are differ-
ent things in different contexts on a conceptual level. This is not an implementation
problem—it’s reality.

If this is true for a large system—and trust me, it is—it’s infinitely more true for
an enterprise-wide architecture. Of course you can argue that with a CDM, you’re

ptg18144917

493.4 Why You Should Avoid a Canonical Data Model (Stefan Tilkov)

only standardizing the interface layer, but that doesn’t change a thing. You’re still try-
ing to make everyone agree what a concept means, and my point is that you should
recognize that not every single system has the same needs.

But isn’t this all just pure theory? Who cares about this, anyway? The amazing
thing is that organizations are excellent in generating a huge amount of work based
on bad assumptions. The CDM (in the form I’ve described it here) requires coordi-
nation between all the parties that use a particular object in their interfaces (unless
you trust that people will be able to just design the right thing from scratch on their
own, which you should never do). You’ll have meetings with some enterprise archi-
tect and a few representatives for specific systems, trying to agree what a customer
is. You’ll end up with something that has tons of optional attributes because all the
participants insisted theirs need to be there, and with lots of things that are kind of
weird because they reflect some system’s internal restrictions. Despite the fact that
it’ll take you ages to agree on it, you’ll end up with a zombie interface model will be
universally hated by everyone who has to work with it.

So is a CDM a universally bad idea? Yes, unless you approach it differently. In
many cases, I doubt a CDM’s value in the first place and think you are better off with
a different and less intrusive kind of specification. But if you want a CDM, here are a
number of things you can do to address the problems you’ll run into:

• Allow independent parts to be specified independently. If only one system is
responsible for a particular part of your data model, leave it to the people to
specify what it looks like canonically. Don’t make them participate in meet-
ings. If you’re unsure whether the data model they create has a significant over-
lap with another group’s, it probably hasn’t.

• Standardize on formats and possibly fragments of data models. Don’t try to
come up with a consistent model of the world. Instead, create small buildings
blocks. What I’m thinking of are e.g. small XML or JSON fragments, akin to
microformats, that standardize small groups of attributes (I wouldn’t call them
business objects).

• Most importantly, don’t push your model from a central team downwards or
outwards to the individual teams. Instead, it should be the teams who decide
to “pull” them into their own context when they believe they provide value. It’s
not you who’s doing the really important stuff (even though that’s a common
delusion that’s attached to the mighty Enterprise Architect title). Collect the
data models the individual teams provide in a central location, if you must,
and make them easy to browse and search. (Think of providing a big elastic
search index as opposed to a central UML model.)

ptg18144917

Chapter 3 What Are Microservices?50

What you actually need to do as an enterprise architect is to get out of people’s
way. In many cases, a crucial ingredient to achieve this is to create as little centrali-
zation as possible. It shouldn’t be your goal to make everyone do the same thing. It
should be your goal to establish a minimal set of rules that enable people to work
as independently as possible. A CDM of the kind I’ve described above is the exact
opposite.

3.5 Microservices with a UI?

This book recommends that you equip microservices with a UI. The UI should offer
the functionality of the microservice to the user. In this way, all changes in regards to
one area of functionality can be implemented in one microservice—regardless of
whether they concern the UI, the logic, or the database. However, microservice
experts so far have different opinions in regards to the question of whether the inte-
gration of UI into microservices is really required. Ultimately, microservices should
not be too large. And when logic is supposed to be used by multiple frontends, a
microservice consisting of pure logic without a UI might be sensible. In addition, it is
possible to implement the logic and the UI in two different microservices but to have
them implemented by one team. This enables implementation of features without
coordination across teams.

Focusing on microservices with a UI puts the main emphasis on the distribution
of the domain logic instead of a distribution by technical aspects. Many architects
are not familiar with the domain architecture, which is especially important for
 microservices-based architectures. Therefore, a design where the microservices contain
the UI is helpful as a first approach in order to focus the architecture on the domains.

Technical Alternatives

Technically the UI can be implemented as Web UI. When the microservices have a
RESTful-HTTP interface, the Web-UI and the RESTful-HTTP interface are very
similar—both use HTTP as a protocol. The RESTful-HTTP interface delivers JSON
or XML, the Web UI HTML. If the UI is a Single-Page Application, the JavaScript
code is likewise delivered via HTTP and communicates with the logic via RESTful
HTTP. In case of mobile clients, the technical implementation is more complicated.
Section 8.1 explains this in detail. Technically a deployable artifact can deliver via an
HTTP interface, JSON/XML, and HTML. In this way it implements the UI and
allows other microservices to access the logic.

ptg18144917

513.5 Microservices with a UI?

Self-Contained System

Instead of calling this approach “Microservice with UI” you can also call it “Self-
Contained System” (SCS).6 SCS define microservices as having about 100 lines of
code, of which there might be more than one hundred in a complete project.

An SCS consists of many of those microservices and contains a UI. It should com-
municate with other SCSs asynchronously, if at all. Ideally each functionality should
be implemented in just one SCS, and there should be no need for SCSs to communi-
cate with each other. An alternative approach might be to integrate the SCSs at the
UI-level.

In an entire system, there are then only five to 25 of these SCS. An SCS is some-
thing one team can easily deal with. Internally the SCS can be divided into multiple
microservices.

The following definitions result from this reasoning:

• SCS is something a team works on and which represents a unit in the domain
architecture. This can be an order process or a registration. It implements a
sensible functionality, and the team can supplement the SCS with new features.
An alternative name for a SCS is a vertical. The SCS distributes the architec-
ture by domain. This is a vertical design in contrast to a horizontal design. A
horizontal design would divide the system into layers, which are technically
motivated—for instance UI, logic, or persistence.

• A microservice is a part of a SCS. It is a technical unit and can be indepen-
dently deployed. This conforms with the microservice definition put forward
in this book. However, the size given in the SCS world corresponds to what this
book denotes as nanoservices (see Chapter 14).

• This book refers to nanoservices as units that are still individually deploya-
ble but make technical trade-offs in some areas to further reduce the size of
the deployment units. For that reason, nanoservices do not share all technical
characteristics of microservices.

SCS inspired the definition of microservices as put forward in this book. Still
there is no reason not to separate the UI into a different artifact in case the microser-
vice gets otherwise too large. Of course, it is more important that the microservice is
small and thus maintainable than to integrate the UI. But the UI and logic should at
least be implemented by the same team.

6. http://scs-architecture.org

http://www.scs-architecture.org

ptg18144917

Chapter 3 What Are Microservices?52

3.6 Conclusion

Microservices are a modularization approach. For a deeper understanding of micro-
services, the different perspectives discussed in this chapter are very helpful:

• Section 3.1 focuses on the size of microservices. But a closer look reveals that
the size of microservices itself is not that important, even though size is an
influencing factor. However, this perspective provides a first impression of
what a microservice should be. Team size, modularization, and replace-
ability of microservices each determine an upper size limit. The lower limit
is determined by transactions, consistency, infrastructure, and distributed
communication.

• Conway’s Law (section 3.2) shows that the architecture and organization of a
project are closely linked—in fact, they are nearly synonymous. Microservices
can further improve the independence of teams and thus ideally support archi-
tectural designs that aim at the independent development of functionalities.
Each team is responsible for a microservice and therefore for a certain part of
a domain, so that the teams are largely independent concerning the implemen-
tation of new functionalities. Thus, in regards to domain logic there is hardly
any need for coordination across teams. The requirement for technical coor-
dination can likewise be reduced to a minimum because of the possibility for
technical independence.

• In section 3.3 domain-driven design provides a very good impression as to
what the distribution of domains in a project can look like and how the indi-
vidual parts can be coordinated. Each microservice can represent a Bounded
Context. This is a self-contained piece of domain logic with an independent
domain model. Between the Bounded Contexts there are different possibilities
for collaboration.

• Finally, section 3.5 demonstrates that microservices should contain a UI to be
able to implement the changes for functionality within an individual microser-
vice. This does not necessarily have to be a deployment unit; however, the UI
and microservice should be in the responsibility of one team.

Together these different perspectives provide a balanced picture of what consti-
tutes microservices and how they can function.

ptg18144917

533.6 Conclusion

Essential Points

To put it differently: A successful project requires three components:

• an organization (This is supported by Conway’s Law.)

• a technical approach (This can be microservices.)

• a domain design as offered by DDD and Bounded Context

The domain design is especially important for the long-term maintainability of
the system.

Try and Experiment

Look at the three approaches for defining microservices: size, Conway's Law,
and domain-driven design.

• Section 1.2 showed the most important advantages of microservices. Which
of the goals to be achieved by microservices are best supported by the
three definitions? DDD and Conway's Law lead, for instance, to a better
time-to-market.

• Which of the three aspects is, in your opinion, the most important? Why?

ptg18144917

This page intentionally left blank

ptg18144917

55

Microservices offer many benefits, and these are discussed in this chapter. A detailed
understanding of the benefits enables a better evaluation of whether microservices
represent a sensible approach in a given use case. The chapter continues the discus-
sion from section 1.2 and explains the benefits in more detail.

Section 4.1 explains the technical benefits of microservices. However, microservices
also influence the organization. This is described in section 4.2. Finally, section 4.3
addresses the benefits from a business perspective.

4.1 Technical Benefits

Microservices are an effective modularization technique. Calling one microservice
from another requires the developer to consciously create code that communicates
over the network. This does not happen by accident; a developer has to make that
happen within the communication infrastructure. Consequently, dependencies
between microservices do not creep in unintentionally; a developer has to generate
them explicitly. Without microservices, it is easy for a developer to just use another
class and unwittingly create a dependency that was not architecturally intended.

Let us assume, for instance, that in an e-commerce application the product search
should be able to call the order process, but not the other way round. This ensures
that the product search can be changed without influencing the order process, as
the product search does not use the order process. Now a dependency between the
product search and the order process is introduced, for example, because devel-
opers found a piece of functionality there that was useful for them. Consequently,
the product search and order processes now depend on each other and can only be
changed together.

Chapter 4

Reasons for Using
Microservices

ptg18144917

Chapter 4 Reasons for Using Microservices56

Once undesired dependencies have started to creep into the system, additional
dependencies rapidly accrue. The application architecture erodes. This erosion can
normally only be prevented with the use of architecture management tools. Such
tools have a model of the desired architecture and can discover when a developer has
introduced an undesired dependency. The developer can then immediately remove
the dependency before any harm is done and the architecture suffers. Appropriate
tools are presented in section 7.2.

In a microservices-based architecture, the product search and order processes
would be separate microservices. To create a dependency, the developer would have
to explicitly implement it within the communication mechanisms. This presents a
relatively high barrier and consequently does not normally happen unnoticed, even
without architecture management tools. This reduces the chances that the archi-
tecture erodes because of dependencies between microservices. The microservice
boundaries act like firewalls, which prevent architectural erosion. Microservices
offer strong modularization because it is difficult to overstep the boundaries between
modules.

Replacing Microservices

Working with old software systems poses a significant challenge in that further
development of the software may be difficult due to poor code quality. It is often
risky to replace the software. It may be unclear exactly how the software works, and
the system may be very large. The larger the software system, the more effort is
required to replace it. If the software is supporting important business processes, it
may be nearly impossible to change it. The failure of these business processes can
have a significant negative impact, and each software change risks a failure.

Although this is a fundamental problem, most software architectures are never
really aimed at replacing software. However, microservices do support this goal; they
can be replaced individually, since they are separate and small deployment units.
Therefore, the technical prerequisites for a replacement are better. Eventually it is not
necessary to replace a large software system, but only a small microservice. When-
ever necessary, additional microservices can be replaced.

With the new microservices, the developers are not tied to the old technology
stack, but free to use other technologies at will. If the microservice is also independ-
ent in a domain sense, the logic is easier to understand. The developer does not need
to understand the entire system, just the functionality of an individual microservice.
Knowledge regarding the domain is a prerequisite for the successful replacement of
a microservice.

Moreover, microservices keep functioning when another microservice fails.
Even if the replacement of a microservice leads to the temporary failure of one

ptg18144917

4.1 Technical Benefits 57

microservice, the system as a whole can keep operating. This reduces the risk associ-
ated with a replacement.

Sustainable Software Development

Starting a new software project is simple because there is not much code, the code
structure is clean, and developers can make rapid progress. Over time, however, the
architecture can erode and development becomes more difficult as its complexity
increases. At some point, the software turns into a legacy system. As previously dis-
cussed, microservices prevent architectural erosion. When a microservice has turned
into a legacy system, it can be replaced. This means that microservices can make sus-
tainable software development possible and that a high level of productivity can be
reached over the long term. However, in a microservice-based system, it can be the case
that a lot of code has to be newly written. This will, of course, decrease productivity.

Handling Legacy

Replacing microservices is only possible if the system is already implemented in a
microservice-based manner. However, the replacement and amendment of existing
legacy applications can be made easier with microservices, too. The legacy applica-
tions only have to provide an interface that enables the microservice to communicate
with the legacy application. Comprehensive code changes or the integration of new
code components into the legacy system is not necessary. This can mean that code
level integration can be avoided. Otherwise such integration is a big challenge in the
case of legacy systems. Amending the system is particularly easy when a microser-
vice can intercept the processing of all calls and process them itself. Such calls can be
HTTP requests for the creation of web sites or REST calls.

In this situation, the microservice can complement the legacy system. There are
different ways for this to happen:

• The microservice can process certain requests by itself while leaving others to
the legacy system.

• Alternatively, the microservice can change the requests and then transfer them
to the actual application.

This approach is similar to the SOA approach (see Chapter 6, “Microservices and
SOA”), which deals with the comprehensive integration of different applications.
When the applications are split into services, these services be orchestrated anew,
and it is also possible to replace individual services with microservices.

ptg18144917

Chapter 4 Reasons for Using Microservices58

An Example of Microservices and Legacy

The goal of a project was to modernize an existing Java e-commerce appli-
cation. This involved the introduction of new technologies, for example new
frameworks, to improve future software development productivity. After some
time, it transpired that the effort required to integrate the new and old tech-
nologies would be huge. The new code had to be able to call the old one—and
vice versa. This required technology integration in both directions. Transac-
tions and database connections had to be shared, and security mechanisms
had to be integrated. This integration would render the development of the
new software more complicated and endanger the entire project.

Figure 4.1 shows the solution: the new system was developed completely
independent of the old system. The only integration was provided by links
that call certain behaviors in the old software—for instance, the addition of
items to the shopping cart. The new system also had access to the same data-
base as the old system. In hindsight, a shared database is not a good idea, as
the database is an internal representation of the data of the old system. When
this representation is placed at the disposal of another application, the princi-
ple of encapsulationa is violated (see section 9.1). The data structures will be
difficult to change now that both the old system and the new system depend
on them.

Legacy
Application

New
Application

Database

Link

Figure 4.1 Example of Legacy Integration

The approach to develop the system separately solved the integration-
related problems to a large extent. Developers could use new technological
approaches without having to consider the old code and the old approaches.
This enabled much more elegant solutions.

a. https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)

https://www.en.wikipedia.org/wiki/Encapsulation_(computer_programming)

ptg18144917

4.1 Technical Benefits 59

Continuous Delivery

Continuous delivery enables software to be brought into production regularly thanks
to a simple, reproducible process. This is achieved via a continuous delivery pipeline
(see Figure 4.2):

• In the commit phase, the software is compiled, the unit tests are run, and static
code analysis might be performed.

• The automated acceptance tests in the next phase ensure that the software
meets the business requirements and would be accepted by the customer.

• Capacity tests check that the software performs adequately to support the
expected number of users. These tests are automated as well.

• Explorative tests, on the other hand, are performed manually and serve to test
certain areas of the system such as new features or certain aspects like software
security.

• Finally, the software is brought into production. Ideally, this process is also
automated.

Software moves through the individual phases consecutively. For example, a build
can successfully pass the acceptance tests. However, the capacity tests reveal that the
software does not meet the requirements under the expected load. In this case, the soft-
ware is never promoted to the remaining phases such as explorative tests or production.

A fully automated continuous delivery pipeline is ideal. However, software needs
to get into production, and it may be necessary to optimize the current process
step-by-step.

Continuous delivery is particular easy to realize with microservices.1 Microservices
are independent deployment units. Consequently, they can be brought into produc-
tion independently of other services. This has a significant impact on the continuous
delivery pipeline:

• The pipeline is faster as only small microservices have to be tested and brought
into production at one time. This accelerates feedback. Rapid feedback is a

1. http://slideshare.net/ewolff/software-architecture-for-devops-andcontinuousdelivery

Commit Production
Explorative

Tests
Acceptance

Tests
Capacity

Tests

Figure 4.2 Continuous Delivery Pipeline

http://www.slideshare.net/ewolff/software-architecture-for-devops-andcontinuousdelivery

ptg18144917

Chapter 4 Reasons for Using Microservices60

primary goal of continuous delivery. When it takes weeks for developers to
know that their code has caused a problem in production, it will be difficult to
become reacquainted with the code and to analyze the problem.

• The risk of deployment decreases. The deployed units are smaller and can
therefore be more easily rolled back. Also microservice-based systems are
designed to be resilient to failures in individual microservices. A failure in
the deployment of a single microservice shouldn’t impact the system as a
whole.

• Measures to further reduce risk are easier to implement with smaller
deployment units. For instance, in case of blue/green deployment, a new
environment is built up with the new release. This is similar to canary
releasing: in this approach, a single server is provided with the new soft-
ware version. Only when this server runs successfully in production is the
new version rolled out to the other servers. For a deployment monolith, this
approach can be hard or nearly impossible to implement, as it requires a
lot of resources for the large number of environments. With microservices,
the required environments are much smaller, and the procedure is therefore
easier.

• Test environments pose additional challenges. For instance, when a third-party
system is used, the environment also has to contain a test version of this third-
party system. With smaller deployment units, the demands on the environ-
ments are lower. The environments for microservices only have to integrate
with the third-party systems that are necessary for the individual microservice.
It is also possible to test the systems using mocks of the third-party systems.
This helps with testing and is also an interesting method of testing microser-
vices independently of each other.

Continuous delivery is one of the most important arguments for microservices.
Many projects invest in migrating to microservices in order to facilitate the creation
of a continuous delivery pipeline.

However, continuous delivery is also a prerequisite for microservices. Quickly
bringing numerous microservices into production manually becomes unfeasible, and
an automated approach is required. So microservices profit from continuous delivery
and vice versa.2

2. http://slideshare.net/ewolff/continuous-delivery-and-micro-services-a-symbiosis

http://www.slideshare.net/ewolff/continuous-delivery-and-micro-services-a-symbiosis

ptg18144917

4.1 Technical Benefits 61

Scaling

Microservices are offered over network-reachable interfaces, which can be accessed,
for instance, via HTTP or via a message solution. Each microservice can run on one
server or on several. When the service runs on several servers, the load can be
 distributed across the different servers. It is also possible to install and run microser-
vices on computers that perform differently. Each microservice can implement its
own scaling.

In addition, caches can be placed in front of microservices. For REST-based
microservices, it can be sufficient to use a generic HTTP cache. This significantly
reduces the implementation effort for such a cache. The HTTP protocol contains
comprehensive support for caching, which is very helpful in this context.

Furthermore, it might be possible to install microservices at different loca-
tions within the network in order to bring them closer to the caller. In the case of
world-wide distributed cloud environments, it no longer matters in which comput-
ing center the microservices run. When the microservice infrastructure uses several
computing centers and always processes calls in the nearest computing center, the
architecture can significantly reduce the response times. Also, static content can
be delivered by a CDN (content delivery network), whose servers are located even
closer to the users.

However, improved scaling and support for caching cannot work miracles: micro-
services result in a distributed architecture. Calls via the network are a lot slower
than local calls. From a pure performance perspective, it might be better to combine
several microservices or to use technologies that focus on local calls (see Chapter 14,
“Technologies for Nanoservices”).

Robustness

Theoretically, a microservices-based architecture should be less reliable than other
architectural approaches. Microservices are, after all, distributed systems, so there is
an inherent risk of network failures adding to the usual sources of errors. Also,
microservices run on several servers, increasing the likelihood of hardware failures.

To ensure high availability, a microservices-based architecture has to be correctly
designed. The communication between microservices has to form a kind of firewall:
The failure of a microservice should not propagate. This prevents problems from
arising in an individual microservice and leading to a failure of the entire system.

To achieve this, a microservice which is calling another microservice has to some-
how keep working when a failure occurs. One way to do this might be to assume

ptg18144917

Chapter 4 Reasons for Using Microservices62

some default values. Alternatively, the failure might lead to a graceful degradation
such as some sort of reduced service.

How a failure is dealt with technically can be critical: the operating-system–level
timeout for TCP/IP connections is often set to five minutes, for example. If, due to
the failure of a microservice, requests run into this timeout, the thread is blocked for
five minutes. At some point, all threads will be blocked. If that happens, the calling
system might fail, as it cannot do anything else apart from wait for timeouts. This
can be avoided by specifying shorter timeouts for the calls.

These concepts have been around much longer than the concept of microservices.
The book Release It3 describes, in detail, these sorts of challenges and approaches
for solving them. When these approaches are implemented, microservice-based
systems can tolerate the failure of entire microservices and therefore become more
robust than a deployment monolith.

When compared to deployment monoliths, microservices have the additional ben-
efit that they distribute the system into multiple processes. These processes are better
isolated from each other. A deployment monolith only starts one process, and there-
fore a memory leak or a piece of functionality using up a lot of computing resources
can make the whole system fail. Often, these sorts of errors are simple programming
mistakes or slips. The distribution into microservices prevents such situations, as
only a single microservice would be failing in such a scenario.

Free Technology Choice

Microservices offer technological freedom. Since microservices only communicate
via the network, they can be implemented in any language and platform as long as
communication with other microservices is possible. This free technology choice can
be used to test out new technologies without running big risks. As a test, one can use
the new technology in a single microservice. If the technology does not perform
according to expectations, only this one microservice has to be rewritten. In addi-
tion, problems arising from the failure will be limited.

The free technology choice means that developers really can use new technologies
in production. This can have positive effects on both motivation and recruitment
because developers typically enjoy using new technologies.

This choice also enables the most appropriate technology to be used for each
problem. A different programming language or a certain framework can be used
to implement specific parts of the system. It is even possible for an individual

3. Michael T. Nygard. 2007. Release It!: Design and Deploy Production-Ready Software. Raleigh, N.C.:
Pragmatic Programmers.

ptg18144917

4.2 Organizational Benefits 63

microservice to use a specific database or persistence technology, although in this
situation, backup and disaster recovery mechanisms will need to be considered and
implemented.

Free technology is an option—it does not have to be used. Technologies can also
be imposed for all microservices in a project so that each microservice is bound to a
specific technology stack. Compare this with a deployment monolith, which inher-
ently narrows the choices developers have. For example, in Java applications, only
one version of each library can be used. This means that not only the libraries used
but even the versions used have to be set in a deployment monolith. Microservices do
not impose such technical limitations.

Independence

Decisions regarding technology and putting new versions into production only con-
cern individual microservices. This makes microservices very independent of each
other, but there has to be some common technical basis. The installation of micro-
services should be automated, there should be a Continuous Delivery pipeline for
each microservices, and microservices should adhere to the monitoring specifica-
tions. However, within these parameters microservices can implement a practically
unlimited choice of technical approaches. Due to the greater technological freedom,
less coordination between microservices is necessary.

4.2 Organizational Benefits

Microservices are an architectural approach, and you could be forgiven for thinking
that they only benefit software development and structure. However, due to Con-
way’s Law (see section 3.2), architecture also affects team communication, and thus
the organization.

Microservices can achieve a high level of technical independence, as the last
section (4.1) discussed. When a team within an organization is in full charge of a
microservice, the team can make full use of this technical independence. However,
the team also has the full responsibility if a microservice malfunctions or fails in
production.

So, microservices support team independence. The technical basis enables teams
to work on the different microservices with little coordination. This provides the
foundation for the independent work of the teams.

In other projects, technology or architecture have to be decided centrally, since the
individual teams and modules are bound to these decisions due to technical restric-
tions. It might just be impossible to use two different libraries or even two different

ptg18144917

Chapter 4 Reasons for Using Microservices64

versions of one library within one deployment monolith. Therefore, central coor-
dination is mandatory. For microservices, the situation is different, and this makes
self-organization possible. However, a global coordination might still be sensible so
that, for example, a company is able to perform an update including all components
because of a security problem with a library.

Teams have more responsibilities: they decide the architecture of their microser-
vices. They cannot hand over this responsibility to a central function. This means
they also have to take responsibility for the consequences, since they are responsible
for the microservice.

The Scala Decision

In a project employing a microservice-based approach, the central architec-
ture group was tasked with deciding whether one of the teams could use the
Scala programming language. The group would have to decide whether the
team could solve its problems more efficiently by using Scala, or whether
the use of Scala might create additional problems. Eventually, the decision
was delegated to the team, since the team has to take responsibility for its
microservice. They have to deal with the consequences if Scala does not
fulfill the demands of production or does not support efficient software
development. They have the investment of getting familiar with Scala first
and have to estimate whether this effort will pay off in the end. Likewise,
they have a problem if suddenly all the Scala developers leave the project or
switch to another team. To have the responsibility for this decision lie with
the central architecture group is, strictly speaking, not even possible, since
the group is not directly affected by the consequences. Therefore, the team
just has to decide by itself. The team has to include all team members in the
decision, including the product owner, who will suffer if the decision results
in low productivity.

This approach represents a significant change to traditional forms of organiza-
tion where the central architecture group enforces the technology stack to be used
by everybody. In this type of organization, the individual teams are not responsible
for decisions or nonfunctional requirements like availability, performance, or scal-
ability. In a classical architecture, the nonfunctional properties can only be han-
dled centrally, since they can only be guaranteed by the common foundations of
the entire system. When microservices do not force a common foundation anymore,

ptg18144917

4.3 Benefits from a Business Perspective 65

these decisions can be distributed to the teams, enabling greater self-reliance and
independence.

Smaller Projects

Microservices enable large projects to be divided into a number of smaller projects.
As the individual microservices are largely independent of each other, the need for
central coordination is reduced. This reduces the need for a large, centralized project
management function with its associated communication overhead. When microser-
vices enable the division of a large organization into several smaller ones, the need
for communication reduces. This makes it possible for teams to focus more of their
efforts on the implementation of requirements.

Large projects fail more frequently than smaller projects, so it is better when a
large project can be divided into multiple smaller projects. The smaller scope of the
individual projects enables more precise estimations. Better estimations improve
planning and decrease risk. Even if the estimation is wrong, the impact is lower.
Added to the greater flexibility that microservices offer, this can speed up and facili-
tate the process of decision making, particularly because the associated risk is so
much lower.

4.3 Benefits from a Business Perspective

The previously discussed organizational benefits also lead to business advantages;
the projects are less risky, and coordination between teams needs to be less intense so
the teams can work more efficiently.

Parallel Work on Stories

The distribution into microservices enables work on different stories to occur in par-
allel (see Figure 4.3). Each team works on a story that only affects their own micro-
service. Consequently, the teams can work independently, and the system as a whole
can be simultaneously expanded in different places. This eventually scales the agile
process. However, scaling does not take place at the level of the development pro-
cesses, but is facilitated by the architecture and the independence of the teams.
Changes and deployments of individual microservices are possible without complex
coordination. Therefore, teams can work independently. When a team is slower or
encounters obstacles, this does not negatively influence the other teams. Therefore,
the risk associated with the project is further reduced.

ptg18144917

Chapter 4 Reasons for Using Microservices66

An unambiguous domain-based design and the assignment of one developer team
per microservice can scale the development or project organization with the number
of teams.

It is possible that certain changes will impact several microservices and therefore
several teams. For example, only certain customers are allowed to order certain types
of product—for instance, because of age restrictions. In case of the architecture
depicted in Figure 4.3, changes to all microservices would be necessary to implement
this feature. The Customer microservice would have to store the data about whether
a customer is of legal age. Product search should hide or label the products prohib-
ited for underage customers. Finally, the order process has to prevent the ordering of
prohibited products by underage customers. These changes have to be coordinated.
Coordination is especially important when one microservice calls another. In that
situation, the microservice being called has to be changed first so that the caller can
use the new features.

This problem can certainly be solved, although one could argue that the outlined
architecture is not optimal. If the architecture is geared to the business processes,
the changes could be limited to just the order process. Eventually, only the ordering
is to be prohibited, not searching. The information about whether a certain client
is allowed to order or not should also be within the responsibility of the order pro-
cess. Which architecture, and consequently which team distribution, is the right one
depends on the requirements, microservices, and teams in question.

Story

Team Product Search Team Order ProcessTeam Customer

Microservice
Product
Search

Microservice
Order Process

Microservice
Customer

Story
Story

Story

Story
Story

Story
Story

Story
Story

Story
Story

Figure 4.3 Example of Legacy Integration

ptg18144917

4.4 Conclusion 67

If the architecture has been selected appropriately, microservices can support
 agility well. This is certainly a good reason, from a business perspective, to use a
microservice-based architecture.

4.4 Conclusion

In summary, microservices lead to the following technical benefits (section 4.1):

• Strong modularization ensures that dependencies between microservices can-
not easily creep in.

• Microservices can be easily replaced.

• The strong modularization and the replaceability of microservices leads to a
sustained speed of development: the architecture remains stable, and micro-
services that cannot be maintained any longer can be replaced. Thus, the
quality of the system remains high in the long run, so that the system stays
maintainable.

• Legacy systems can be supplemented with microservices without the need to
carry around all the ballast that has accumulated in the legacy system. There-
fore, microservices are good to use when dealing with legacy systems.

• Since microservices are small deployment units, a continuous delivery pipe-
line is much easier to set up.

• Microservices can be scaled independently.

• If microservices are implemented in line with established approaches, the sys-
tem will end up more robust.

• Each microservice can be implemented in a different programming language
and with a different technology.

• Therefore, microservices are largely independent of each other on a technical
level.

The technical independence affects the organization (section 4.2) in that the teams
can work independently and on their own authority. There is less need for central
coordination. This means that large projects can be replaced by a collection of small
projects, which positively affects both risk and coordination.

From a business perspective, just the effects on risk are already positive (section 4.3).
However, it is even more attractive that the microservice-based architecture enables the

ptg18144917

Chapter 4 Reasons for Using Microservices68

scaling of agile processes without requiring an excessive amount of coordination and
communication.

Essential Points

• There are a number of technical benefits that range from scalability and
robustness to sustainable development.

• Technical independence results in benefits at an organizational level. Teams
become independent.

• The technical and organizational benefits result in benefits at the business
level: lower risk and faster implementation of more features.

Try and Experiment

Look at a project you know:

• Why are microservices useful in this scenario? Evaluate each benefit by
assigning points (1 = no real benefit; 10 = significant benefit). The possible
benefits are listed in the conclusion of this chapter.

• What would the project look like with or without the use of microservices?

• Develop a discussion of the benefits of microservices from the perspective
of an architect, a developer, a project leader, and the customer for the pro-
ject. The technical benefits will be more of interest to the developers and
architects, while the organizational and business benefits matter more for
project leaders and customers. Which benefits do you emphasize most for
the different groups?

• Visualize the current domain design in your project or product.

• Which teams are responsible for which parts of the project? Where do
you see overlap?

• How should teams be allocated to product features and services to
ensure that they can operate largely independently?

ptg18144917

69

The separation of a system into microservices makes the system as a whole more
complex. This leads to challenges at the technical level (see section 5.1)—for instance,
high latency times in the network or the failure of individual services. There are also
a number of things to consider at the software architecture level—for instance, it can
be difficult to move functionality between different microservices (section 5.2).
Finally, there are many more components to be independently delivered—making
operations and infrastructure more complex (section 5.3). These challenges have to
be dealt with when introducing microservices. The measures described in the follow-
ing chapters explain how to handle these challenges.

5.1 Technical Challenges

Microservices are distributed systems with calls between microservices going via the
network. This can negatively impact both the response time and latency of microser-
vices. The previously mentioned first rule for distributed objects1 states that objects,
where possible, should not be distributed (see section 3.1).

The reason for that is illustrated in Figure 5.1. A call has to go via the network
to reach the server, is processed there, and has to then return to the caller. The
latency just for network communication can be around 0.5 ms in a computing

1. http://martinfowler.com/bliki/FirstLaw.html

Chapter 5

Challenges

http://www.martinfowler.com/bliki/FirstLaw.html

ptg18144917

Chapter 5 Challenges70

center (see here).2 Within this period of time a processor running at 3 Ghz can
 process about 1.5 million instructions. When computation is redistributed to
another node, it should be checked to find out whether local processing of the
request might be faster. Latency can further increase because of parameter mar-
shaling and unmarshaling for the call and for the result of the call. Network
optimizations or connecting nodes to the same network switch can improve the
situation.

The first rule for distributed objects and the warning to be aware of regarding the
latency within the network dates back to the time when CORBA (Common Object
Request Broker Architecture) and EJB (Enterprise JavaBeans) were used in the
early two-thousands. These technologies were often used for distributed three-tier
architectures (see Figure 5.2). For every client request the web tier only supplies the
HTML for rendering the page. The logic resides on another server, which is called
via the network. Data is stored in the database, and this is typically done on another
server. When only data is to be shown, there is little happening in the middle tier.
The data is not processed, just forwarded. For performance and latency reasons, it
would be much better to keep the logic on the same server as the web tier. Although
splitting the tiers between servers enables the independent scaling of the middle tier,
the system does not get faster by doing this for situations where the middle tier has
little to do.

2. https://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf

Time

Request

Response

Figure 5.1 Latency for a Call via the Network

https://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf

ptg18144917

715.1 Technical Challenges

Web Server
(UI)

Middle Tier
(EJB, CORBA)

Database

Figure 5.2 Three-Tier Architecture

For microservices the situation is different, as the UI is contained in the microser-
vice. Calls between microservices only take place when microservices need the func-
tionality offered by other microservices. If that is often the case, this might indicate
that there are architectural problems, as microservices should be largely independent
of each other.

In reality, microservice-based architectures function in spite3 of the challenges
related to distribution. However, in order to improve performance and reduce latency,
microservices should not communicate with each other too much.

Code Dependencies

A significant benefit of a microservice-based architecture is the ability to indepen-
dently deploy the individual services. However, this benefit can be undone by code
dependencies. If a library is used by several microservices and a new version of this
library is supposed to be rolled out, a coordinated deployment of several microser-
vices might be required—a situation that should be avoided. This scenario can easily
occur because of binary dependencies where different versions are not compatible
any more. The deployment has to be timed such that all microservices are rolled out
in a certain time interval and in a defined order. The code dependency also has to be
changed in all microservices, a process that has to be prioritized and coordinated
across all the teams involved. A binary-level dependency is a very tight technical cou-
pling, which leads to a very tight organizational coupling.

3. http://martinfowler.com/articles/distributed-objects-microservices.html

http://www.martinfowler.com/articles/distributed-objects-microservices.html

ptg18144917

Chapter 5 Challenges72

Therefore, microservices should adhere to a “shared nothing” approach where
microservices do not possess shared code. Microservices should instead accept code
redundancy and resist the urge to reuse code in order to avoid a close organizational
link.

Code dependencies can be acceptable in certain situations. For instance, when a
microservice offers a client library that supports callers using the microservice, this
does not necessarily have negative consequences. The library will depend on the
interface of the microservice. If the interface is changed in a backward-compatible
manner, a caller having an old version of the client library can still use the micro-
service. The deployment remains uncoupled. However, the client library can be
the starting point to a code dependency. For instance, if the client library contains
domain objects, this can be a problem. In fact, if the client library contains the same
code for the domain objects that is also used internally, then changes to the internal
model will affect the clients. This might mean they have to be deployed again. If the
domain object contains logic, this logic can only be modified when all clients are
likewise deployed anew. This also violates the principle of independently deployable
microservices.

Consequences of Code Dependencies

Here is an example of the effects of code dependencies: User authentication is
a centralized function, which all services use. A project has developed the ser-
vice implementing authentication. Nowadays there are open-source projects,
which implement such things (section 7.14), so a home-grown implementa-
tion is rarely sensible any more. In that project each microservice could use
a library that makes it easier to use the authentication service. This means
that all microservices have a code dependency on the authentication service.
Changes to the authentication service might require that the library be rolled
out again. This in turn means that all microservices have to be modified and
rolled out again as well. In addition, the deployments of the microservices
and the authentication service have to be coordinated. This can easily cost
a two-digit number of work days. It becomes very difficult to modify the
authentication service due to the code dependency. If the authentication ser-
vice could be deployed quickly and if there were no code dependencies, which
couple the deployment of the microservices and the authentication service,
the problem would be solved.

ptg18144917

735.1 Technical Challenges

Unreliable Communication

Communication between microservices occurs over the network and is therefore
unreliable. Additionally, individual microservices can fail. To ensure that a microser-
vice failure does not lead to a failure of the entire system, the remaining microser-
vices must compensate for the failure and enable the system to continue. However, to
achieve this goal, the quality of the services may have to be degraded, for example, by
using default or cached values or limiting the usable functionality (section 9.5).

This problem cannot be completely solved on a technical level. For instance, the
availability of a microservice can be improved by using hardware with high avail-
ability. However, this increases costs and is not a complete solution; in some respects,
it can even increase risk. If the microservice fails despite highly available hardware
and the failure propagates across the entire system, a complete failure occurs. There-
fore, the microservices should still compensate for the failure of the highly available
microservice.

In addition, the threshold between a technical and a domain problem is crossed.
Take an automated teller machine (ATM) as an example: When the ATM can-
not retrieve a customer’s account balance, there are two ways to handle the situa-
tion. The ATM could refuse the withdrawal. Although this is a safe option, it will
annoy the customer and reduce revenue. Alternatively, the ATM could hand out the
money—maybe up to a certain upper limit. Which option should be implemented is
a business decision. Somebody has to decide whether it is preferable to play it safe,
even if it means foregoing some revenue and annoying customers, or to run a certain
risk and possibly pay out too much money.

Technology Pluralism

The technology freedom of microservices can result in a project using many different
technologies. The microservices do not need to have shared technology; however, the
lack of common technology can lead to increasingly complexity in the system as a
whole. Each team masters the technologies that are used in their own microservice.
However, the large number of technologies and approaches used can cause the sys-
tem to reach a level of complexity such that no individual developer or team can
understand all of it any more. Often such a general understanding is not necessary
since each team only needs to understand its own microservice. However, when it
becomes necessary to look at the entire system—for example, from a certain limited
perspective such as operations—this complexity might pose a problem. In this situa-
tion, unification can be a sensible countermeasure. This does not mean that the

ptg18144917

Chapter 5 Challenges74

technology stack has to be completely uniform but that certain parts should be
 uniform or that the individual microservices should behave in a uniform manner. For
instance, a uniform logging framework might be defined. The alternative is to define
just a uniform format for logging. Then different logging frameworks could be used
that implement the uniform format differently. Also a common technical basis like
the JVM (Java Virtual Machine) can be decided upon for operational reasons with-
out setting the programming languages.

5.2 Architecture

The architecture of a microservice-based system divides the domain-based pieces of
functionality among the microservices. To understand the architecture at this level,
dependencies and communication relationships between the microservices have to
be known. Analyzing communication relationships is difficult. For large deploy-
ment monoliths there are tools that read source code or even executables and can
generate diagrams visualizing modules and relationships. This makes it possible to
verify the implemented architecture, adjust it towards the planned architecture, and
follow the evolution of the architecture over time. Such overviews are central for
architectural work; however, they are difficult to generate when using microservices
as the respective tools are lacking—but there are solutions. Section 7.2 discusses
these in detail.

Architecture = Organization

A key concept that microservices are based on is that organization and architecture
are the same. Microservices exploit this situation to implement the architecture. The
organization is structured in a way that makes the architecture implementation easy.
However, the downside of this is that an architecture refactoring can require changes
to the organization. This makes architectural changes more difficult. This is not only
a problem of microservices; Conway’s Law (section 3.2) applies to all projects. How-
ever, other projects are often not aware of the law and its implications. Therefore,
they do not use the law productively and cannot estimate the organizational prob-
lems caused by architectural changes.

Architecture and Requirements

The architecture also influences the independent development of individual micro-
services and the independent streams of stories. When the domain-based distribu-
tion of microservices is not optimal, requirements might influence more than one

ptg18144917

755.2 Architecture

microservice and therefore more than one team. This increases the coordination
required between the different teams and microservices. This negatively influences
productivity and undoes one of the primary reasons for the introduction of
microservices.

With microservices the architecture influences not only software quality, but also
the organization and the ability of teams to work independently and therefore pro-
ductivity. Designing an optimal architecture is even more important since mistakes
have far-reaching consequences.

Many projects do not pay sufficient attention to domain architecture, often much
less than they pay to technical architecture. Most architects are not as experienced
with domain architecture as with technical architecture. This situation can cause
significant problems in the implementation of microservice-based approaches. The
splitting of functionality into different microservices and therefore into the areas
of responsibility for the different teams has to be performed according to domain
criteria.

Refactoring

Refactoring a single microservice is straightforward since microservices are small.
They can also be easily replaced and reimplemented.

Between microservices the situation is different. Transferring functionality from
one microservice to another is difficult. The functionality has to be moved into a
different deployment unit. This is always more difficult than moving functionality
within the same unit. Technologies can be different between different microservices.
Microservices can use different libraries and even different programming languages.
In such cases, the functionality must be newly implemented in the technology of the
other microservice and subsequently transferred into this microservice. However,
this is far more complex than moving code within a microservice.

Agile Architecture

Microservices enable new product features to be rapidly delivered to end users and
for development teams to reach a sustainable development speed. This is a particular
benefit when there are numerous and hard-to-predict requirements. This is exactly
the environment where microservices are at home. Changes to a microservice are
also very simple. However, adjusting the architecture of the system, for instance, by
moving around functionality, is not so simple.

Often the first attempt at the architecture of a system in not optimal. During
implementation the team learns a lot about the domain. In a second attempt, it
will be much more capable of designing an appropriate architecture. Most projects

ptg18144917

Chapter 5 Challenges76

suffering from bad architecture had a good architecture at the outset based on the
state of knowledge at that time. However, as the project progressed, it became clear
that requirements were misunderstood, and new requirements arose to the point
where the initial architecture stopped fitting. Problems arise when this does not
lead to changes. If the project just continues with a more and more inappropriate
architecture, at some point the architecture will not fit at all. This can be avoided by
adjusting the architecture step by step, adapting to the changed requirements based
on the current state of knowledge. The ability to change and adjust architecture in
line with new requirements is central to this. However, the ability to change the archi-
tecture at the level of the entire system is a weakness of microservices while changes
within microservices are very simple.

Summary

When using microservices, architecture is even more important than in other systems
as it also influences the organization and the ability to independently work on
requirements. At the same time, microservices offer many benefits in situations
where requirements are unclear and architecture therefore has to be changeable.
Unfortunately, the interplay between microservices is hard to modify since the distri-
bution into microservices is quite rigid because of the distributed communication
between them. Besides, as microservices can be implemented with different technol-
ogies, it gets difficult to move functionality around. On the other hand, changes to
individual microservices or their replacement are very simple.

5.3 Infrastructure and Operations

Microservices are supposed to be brought into production independently of each
other and should be able to use their own technology stacks. For these reasons each
microservice usually resides on its own server. This is the only way to ensure com-
plete technological independence. It is not possible to handle the number of sys-
tems required for this approach using hardware servers. Even with virtualization
the management of such an environment remains difficult. The number of virtual
machines required can be higher than might otherwise be used by the entire IT
function of a business. When there are hundreds of microservices, there are also
hundreds of virtual machines required, and for some of them, load balancing to
distributed work across multiple instances. This requires automation and appro-
priate infrastructure that is capable of generating a large number of virtual
machines.

ptg18144917

775.3 Infrastructure and Operations

Continuous Delivery Pipelines

Beyond what is required in production each microservice requires additional infra-
structure; it needs its own continuous delivery pipeline so that it can be brought into
production independently of other microservices. This means that appropriate test
environments and automation scripts are necessary. The large number of pipelines
brings about additional challenges: The pipelines have to be built up and maintained.
To reduce expense, they also need to be largely standardized.

Monitoring

Each microservice also needs to be monitored. This is the only way to diagnose prob-
lems with the service at runtime. With a deployment monolith it is relatively straight-
forward to monitor the system. When problems arise, the administrator can log into
the system and use specific tools to analyze errors. Microservice-based systems con-
tain so many systems that this approach is no longer feasible. Consequently, there
has to be a monitoring system that brings monitoring information from all the ser-
vices together. This information should include not only the typical information
from the operating system and the I/O to the hard disc and to the network, but also a
view into the application should be possible based on application metrics. This is the
only way for developers to find out where the application has to be optimized and
where problems exist currently.

Version Control

Finally, every microservice has to be stored under version control independent of
other microservices. Only software that is separately versioned can be brought into
production individually. When two software modules are versioned together, they
should always be brought into production together. If they are not, then a change
might have affected both modules—meaning that both services should be newly
delivered. Moreover, if an old version of one of the services is in production, it is not
clear whether an update is necessary or whether the new version does not contain
changes; after all, the new version might only have contained changes in the other
microservice.

For deployment monoliths a lower number of servers, environments, and pro-
jects in version control would be necessary. This reduces complexity. Operation
and infrastructure requirements are much higher in a microservices environ-
ment. Dealing with this complexity is the biggest challenge when introducing
microservices.

ptg18144917

Chapter 5 Challenges78

5.4 Conclusion

This chapter discussed the different challenges associated with microservice-based
architectures. At a technical level (section 5.1) the challenges mostly revolve around
the fact that microservices are distributed systems, which makes ensuring good sys-
tem performance and reliability more difficult. Technical complexity also increases
because of the variety of technologies used. Furthermore, code dependencies can
render the independent deployment of microservices impossible.

The architecture of a microservice-based system (section 5.2) is extremely
important because of its impact on the organization and the ability to have paral-
lel implementation of multiple stories. At the same time, changes to the interplay
of microservices is difficult. Functionality cannot easily be transferred from one
microservice to another. Classes within a project can often be moved with support
from development tools, but in the case of microservices manual work is necessary.
The interface to the code changes—from local calls to communication between
microservices—and this increases the effort required. Finally, microservices can be
written in different programming languages—in such situations moving code means
that it has to be rewritten.

Changes to system architecture are often necessary because of unclear require-
ments. Even with clear requirements, the team continuously improves its knowledge
about the system and its domain. In circumstances where the use of microservices is
particularly beneficial because of rapid and independent deployments, architecture
should be made especially easy to change. Within microservices changes are indeed
easy to implement; however, between microservices they are very laborious.

Finally, infrastructure complexity increases because of the larger number of ser-
vices (section 5.3) since more servers, more projects in version control, and more
continuous delivery pipelines are required. This is a primary challenge encountered
with microservice-based architectures.

Part III of the book will show solutions to these challenges.

Essential Points

• Microservices are distributed systems. This makes them technically complex.

• A good architecture is very important because of its impact on the organiza-
tion. While the architecture is easy to modify within microservices, the inter-
play between microservices is hard to change.

• Due to the number of microservices, more infrastructure is required—for
example, in terms of server environments, continuous delivery pipelines, and
projects in version control.

ptg18144917

795.4 Conclusion

Try and Experiment

• Choose one of the scenarios from Chapter 2, “Microservices Scenarios,” or
a project you know:

• What are the likely challenges? Evaluate these challenges. The conclusion
of this chapter highlights the different challenges in a compressed manner.

• Which of the challenges poses the biggest risk? Why?

• Are there ways to use microservices in a manner which maximizes the
benefits and minimizes the downsides? For example, can heterogeneous
technology stacks be avoided?

ptg18144917

This page intentionally left blank

ptg18144917

81

At first glance microservices and SOA (service-oriented architecture) seem to have a
lot in common, for both approaches focus on the modularization of large systems
into services. Are SOA and microservices actually the same or are there differences?
Answering this question helps us to get an in-depth understanding of microservices,
and some of the concepts from the SOA field are interesting for microservice-based
architectures. An SOA approach can be advantageous when migrating to microser-
vices. It separates the functionality of the old applications into services that can then
be replaced or supplemented by microservices.

Section 6.1 defines the term “SOA” as well as the term “service” within the con-
text of SOA. Section 6.2 extends this topic by highlighting the differences between
SOA and microservices.

6.1 What Is SOA?

SOA and microservices have one thing in common: neither has a clear definition.
This section looks only at one possible definition. Some definitions would suggest
that SOA and microservices are identical. In the end, both approaches are based on
services and the distribution of applications into services.

The term “service” is central to SOA.
An SOA service should have the following characteristics:

• It should implement an individual piece of the domain.

• It should be possible to use it independently.

Chapter 6

Microservices and SOA

ptg18144917

Chapter 6 Microservices and SOA82

• It should be available over the network.

• Each service has an interface. Knowledge about the interface is sufficient to use
the service.

• The service can be used by different programming languages and platforms.

• To make it easy to use, the service is registered in a directory. To locate and use
the service, clients search this directory at run time.

• The service should be coarse grained in order to reduce dependencies. Small
services can only implement useful functionality when used in conjunction
with other services. Therefore, SOA focuses on larger services.

SOA services do not need to be newly implemented; they may already be present
in company applications. Introducing SOA requires these services to be made availa-
ble outside of those applications. Splitting applications into services means they can
be used in different ways. This is supposed to improve the flexibility of the overall
IT and is the goal of SOA. By splitting applications into individual services it is pos-
sible to reuse services during the implementation of business processes. This simply
requires the orchestration of the individual services.

Figure 6.1 shows a possible SOA landscape. Like the previous examples this
one comes from the field of e-commerce. There are different systems in the SOA
landscape:

• The CRM (customer relationship management) is an application that
stores essential information about customers. This information includes
not only contact details but also the history of all transactions with the

S
er

vi
ce

S
er

vi
ce

S
er

vi
ce

S
er

vi
ce

S
er

vi
ce

S
er

vi
ce

Order System

Integration & Orchestration

Portal

S
er

vi
ce

S
er

vi
ce

CRM

Business Processes

Team Portal

Team Integration

Team OrderTeam CRM

Figure 6.1 Overview of an SOA Landscape

ptg18144917

836.1 What Is SOA?

customer—telephone calls as well as emails and orders. The CRM exposes ser-
vices that, for instance, support the creation of a new customer, provide infor-
mation about a customer, or generate reports for all customers.

• The order system is responsible for order processing. It can receive new orders,
provide information about the status of an order, and cancel an order. This
system provides access to the different pieces of functionality via individual
services. These services may have been added as additional interfaces to the
system after the first version was put into production.

• In the diagram the CRM and order system are the only systems. In reality there
would certainly be additional systems that would, for example, provide the
product catalog. However, to illustrate an SOA landscape these two systems
will suffice.

• For the systems to be able to call each other there is an integration platform.
This platform enables communication between the services. It can compose
the services through orchestration. The orchestration can be controlled by a
technology that models business processes and calls the individual services to
execute the different processes.

• Therefore, orchestration is responsible for coordinating the different services.
The infrastructure is intelligent and can react appropriately to different mes-
sages. It contains the model of the business processes and is therefore an
important part of the business logic.

• The SOA system can be used via a portal. The portal is responsible for provid-
ing users with an interface for using the services. There can be different portals:
one for the customers, one for the support, and one for internal employees, for
instance. Also, the system can be called via rich client applications or mobile
apps. From an architectural perspective this makes no difference: All such sys-
tems access the different services and make them usable for a user. They are
effectively a universal UI—able to use all services in the SOA.

Each of these systems could be operated and developed by individual teams. In
this example there could be one team for the CRM and another for the order system.
Additional teams could be allocated for each portal, and finally one team could take
care of integration and orchestration.

Figure 6.2 shows how communication is structured in an SOA architecture. Users
typically work with the SOA via the portal. From here business processes can be ini-
tiated that are then implemented in the orchestration layer. These processes use the
services. When migrating from a monolith to an SOA, users might still use a mono-
lith through its own user interface. However, SOA usually aims to have a portal as
the central user interface and an orchestration layer for implementing processes.

ptg18144917

Chapter 6 Microservices and SOA84

ServiceService Service

Portal

Integration & Orchestration

Figure 6.2 Communication in an SOA Architecture

Introducing SOA

Introducing SOA into a business is a strategic initiative involving different teams.
The end game is to distribute the company’s entire IT into separate services. Once
separated, the services are easier to compose in new and different ways to create new
functionality and processes. However, this is only possible when all systems in the
entire organization have been modified. Only when enough services are available can
business processes actually be implemented by simple orchestration. This is when
SOA's advantages are really evident. Therefore, the integration and orchestration
technology has to be used across the entire IT to enable service communication and
integration. This involves high investment costs as the entire IT landscape has to be
changed. This is one of the main points of criticism1 of SOA.

The services can also be offered to other companies and users via the Internet
or over private networks. This makes SOA well suited to support business concepts
that are based on the outsourcing of services or the inclusion of external services.
In an e-commerce application an external provider could, for instance, offer simple
 services like address validation or complex services like a credit check.

Services in an SOA

When introducing SOA based on old systems, the SOA services are simply interfaces
of large deployment monoliths. One monolith offers several services. The services
are built upon the existing applications. Often it is not even necessary to adjust the
internals of a system in order to offer the services. Such a service typically does not
have a UI; instead, it just offers an interface for other applications. A UI exists for all
systems. It is not part of a service, but independent—for instance, in the portal.

1. http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html

http://www.apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html

ptg18144917

856.1 What Is SOA?

In addition, it is possible to implement smaller deployment units in an SOA. The
definition of an SOA service does not limit the size of the deployment units, which is
quite different from microservices where the size of the deployment units is a defin-
ing feature.

Interfaces and Versioning

Service versioning in SOA is a particular challenge. Service changes have to be
 coordinated with the users of the respective service. Because of this coordination
requirement, changes to the interface of the services can be laborious. Service users
are unlikely to adjust their own software if they do not benefit from the new inter-
face. Therefore, old interface versions frequently have to be supported as well. This
means that numerous interface versions probably have to be supported if a service is
used by many clients. This increases software complexity and makes changes more
difficult. The correct functioning of the old interfaces has to be ensured with each
new software release. If data is added, challenges arise because the old interfaces do
not support this new data. This is not a problem during reading. However, when
writing, it can be difficult to create new data sets without the additional data.

External Interfaces

If there are external users outside the company using the service, interface changes
get even more difficult. In a worst case the provider of the service may not even know
who is using it if it is available to anonymous users on the Internet. In that situation
it is very difficult to coordinate changes. Consequently, switching off an old service
version can be unfeasible. This leads to a growing number of interface versions, and
service changes get more and more difficult. This problem can occur with microser-
vices as well (see section 8.6).

The interface users also face challenges: If they need an interface modification,
they have to coordinate this with the team offering the service. Then the changes
have to be prioritized in relation to all the other changes and wishes of other teams.
As discussed previously, an interface change is no easy task. This can lead to it tak-
ing a long time before changes are, in fact, implemented. This further hampers the
development of the system.

Interfaces Enforce a Coordination of Deployments

After a change to the interface the deployment of the services has to be coordinated.
First the service has to be deployed to offer the new version of the interface. Only
then can the service that uses the new interface be deployed. Since applications are
mostly deployment monoliths in the case of SOA, several services can sometimes

ptg18144917

Chapter 6 Microservices and SOA86

only be deployed together. This makes the coordination of services more difficult. In
addition, the deployment risk increases as the release of a monolith takes a long time
and is hard to undo—just because the changes are so extensive.

Coordination and Orchestration

Coordinating an SOA system via orchestration in the integration layer poses a
 number of challenges. In a way, a monolith is generated: All business processes are
reflected in this orchestration. This monolith is often even worse than the usual mon-
oliths as it is using all the systems within the enterprise IT. In extreme cases it can end
up that the services only perform data administration while all the logic is found in
the orchestration. In such situations the entire SOA can deteriorate to being nothing
other than a monolith that has its entire logic in the orchestration.

However, even in other settings, changes to SOA are not easy. Domains are divided
into services in the different systems and into business processes in orchestration.
When a change to functionality also concerns services or the user interface, things
get difficult. Changing the business processes is relatively simple, but changing the
service is only possible by writing code and by deploying a new version of the appli-
cation providing the service. The necessary code changes and the deployment can be
very laborious. Thus, the flexibility of SOA, which was meant to arise from a simple
orchestration of services, is lost. Modifications of the user interface cause changes to
the portal or to the other user interface systems and also require a new deployment.

Technologies

SOA is an architectural approach and is independent of concrete technology. How-
ever, an SOA has to enforce common technology for communication between the
services, like microservices do. In addition, a concrete technology needs to be
enforced for the orchestration of services. Often, introducing an SOA leads to the
introduction of complex technologies to enable the integration and orchestration of
services. There are special products that support all aspects of SOA. However, they
are typically complex, and their features are rarely ever used to full capacity.

This technology can rapidly turn into a bottleneck. Many problems with these
technologies are attributed to SOA although SOA could be implemented with other
technologies as well. One of the problems is the complexity of the web services pro-
tocols. SOA on its own is quite simple; however, in conjunction with the extensions
from the WS-* environment, a complex protocol stack arises. WS-* is necessary
for transactions, security, and other extensions. Complex protocols exacerbate the
 interoperability—however, interoperability is a prerequisite for an SOA.

ptg18144917

876.2 Differences between SOA and Microservices

An action on the user interface has to be processed by the orchestration and the
different services. These are distributed calls within the network with associated
overhead and latency. Worse still, this communication runs via the central integra-
tion and orchestration technology, which therefore has to cope with numerous calls.

6.2 Differences between SOA and Microservices

SOA and microservices are related: both aim at splitting applications into services. It
is not easy to distinguish between SOA and microservices by just considering what is
happening on the network. Both architectural approaches have services exchanging
information over the network.

Communication

Like microservices, SOA can be based on asynchronous communication or synchro-
nous communication. SOAs can be uncoupled by merely sending events such as “new
order.” In these situations, every SOA service can react to the event with different
logic. One service can write a bill and another can initiate delivery. The services are
strongly uncoupled since they only react to events without knowing the trigger for
the events. New services can easily be integrated into the system by also reacting to
such events.

Orchestration

However, at the integration level the differences between SOA and microservices
appear. In SOA the integration solution is also responsible for orchestrating the
 services. A business process is built up from services. In a microservice-based archi-
tecture the integration solution does not possess any intelligence. The microservices
are responsible for communicating with other services. SOA attempts to use orches-
tration to gain additional flexibility for the implementation of business processes.
This will only work out when services and user interface are stable and do not have
to be modified frequently.

Flexibility

For achieving the necessary flexibility microservices, on the other hand, exploit the
fact that each microservice can be easily changed and brought into production.
When the flexible business processes of SOA are not sufficient, SOA forces the change

ptg18144917

Chapter 6 Microservices and SOA88

of services into deployment monolith or user interfaces in an additional deployment
monolith.

Microservices place emphasis on isolation: Ideally a user interaction is
 completely processed within one microservice without the need to call another
microservice. Therefore, changes required for new features are limited to individual
microservices. SOA distributes the logic to the portal, the orchestration, and the
individual services.

Microservices: Project Level

However, the most important difference between SOA and microservices is the level
at which the architecture aims. SOA considers the entire enterprise. It defines how a
multitude of systems interact within the enterprise IT. Microservices, on the
other hand, represent an architecture for an individual system. They are an alterna-
tive to other modularization technologies. It would be possible to implement a
 microservice-based system with another modularization technology and then to
bring the system into production as a deployment monolith without distributed ser-
vices. An entire SOA spans the entire enterprise IT. It has to look at different systems.
An alternative to a distributed approach is not possible. Therefore, the decision to
use a microservice-based architecture can be limited to an individual project while
the introduction and implementation of SOA relates to the entire enterprise.

The SOA scenario depicted in Figure 6.1 results in a fundamentally different
architecture (see Figure 6.3) if implemented2 using microservices:3

Integration

Forecast

Reports

EMail-
Marketing

Web
TrackingTeam Tracking

Team Marketing

Team Reports

Team Forecast

Figure 6.3 CRM as a Collection of Microservices

2. http://slideshare.net/ewolff/micro-services-neither-micro-nor-service

3. https://blogs.oracle.com/soacommunity/entry/podcast_show_notes_microservices_roundtable

http://www.slideshare.net/ewolff/micro-services-neither-micro-nor-service
https://www.blogs.oracle.com/soacommunity/entry/podcast_show_notes_microservices_roundtable

ptg18144917

896.2 Differences between SOA and Microservices

• Since microservices refer to a single system, the architecture does not need to
involve the entire IT with its different systems but can be limited to an individ-
ual system. In Figure 6.3 this system is the CRM. Thus, implementing micro-
ser vices is relatively easy and not very costly as it is sufficient to implement one
individual project rather than change the entire IT landscape of the enterprise.

• Accordingly, a microservice-based architecture does not require an integration
technology to be introduced and used throughout the company. The use of
a specific integration and communication technology is limited to the micro-
service system—it is even possible to use several approaches. For instance,
high-performance access to large data sets can be implemented by replicating
the data in the database. For access to other systems, again, other technolo-
gies can be used. In the case of SOA all services in the entire company need
to be accessible via a uniform technology. This requires a uniform technology
stack. Microservices focus on simpler technologies, which do not have to fulfill
requirements as complex as those in SOA suites.

• In addition, communication between microservices is different: Microservices
employ simple communication systems without any intelligence. Microser-
vices call each other or send messages. The integration technology does not
perform any orchestration. A microservice can call several other microservices
and implement an orchestration on its own. In that situation, the logic for the
orchestration resides in the microservice and not in an integration layer. In the
case of microservices the integration solution contains no logic, because it
would originate from different domains. This conflicts with the distribution
according to domains, which microservice-based architectures aim at.

• The use of integration is also entirely different. Microservices avoid communi-
cation with other microservices by having the UI integrated into the microser-
vice due to their domain-based distribution. SOA focuses on communication.
SOA obtains its flexibility by orchestration—this is accompanied by communi-
cation between services. In the case of microservices the communication does
not necessarily have to be implemented via messaging or REST: An integration
at the UI level or via data replication is also possible.

• CRM as a complete system is not really present anymore in a microservice-
based architecture. Instead there is a collection of microservices, each covering
specific functionality like reports or forecasting transaction volume.

• While in SOA all functionality of the CRM system is collected in a single
deployment unit, each service is an independent deployment unit and can be
brought into production independently of the other services in the case of
microservice-based approaches. Depending on the concrete technical infra-
structure the services can be even smaller than the ones depicted in Figure 6.3.

ptg18144917

Chapter 6 Microservices and SOA90

• Finally, the handling of UI is different: For microservices the UI is part of the
microservice, while SOA typically offers only services, which then can be used
by a portal.

• The division into UI and service in SOA has far-reaching consequences: To
implement a new piece of functionality including the UI in SOA, at mini-
mum the service has to be changed and the UI adjusted. This means that at
least two teams have to be coordinated. When other services in other applica-
tions are used, even more teams are involved, resulting in even greater coor-
dination efforts. In addition, there are also orchestration changes, which are
implemented by a separate team. Microservices, on the other hand, try to
ensure that an individual team can bring new functionality into production
with as little need for coordination with other teams as possible. Due to the
 microservice-based architecture, interfaces between layers, which are normally
between teams, are now within a team. This facilitates the implementation
of changes. The changes can be processed in one team. If another team were
involved, the changes have to be prioritized in relation to other requirements.

• Each microservice can be developed and operated by one individual team. This
team is responsible for a specific domain and can implement new requirements
or changes to the domain completely independently of other teams.

• Also, the approach is different between SOA and microservices: SOA introduces
only one new layer above the existing services in order to combine applications
in new ways. It aims at a flexible integration of existing applications. Micro-
services serve to change the structure of the applications themselves—in pur-
suit of the goal of making changes to applications easier.

The communication relationships of microservices are depicted in Figure 6.4. The
user interacts with the UI, which is implemented by the different microservices. In
addition, the microservices communicate with each other. There is no central UI or
orchestration.

Service Service

Service

Figure 6.4 Communication in the Case of Microservices

ptg18144917

916.3 Conclusion

Synergies

There are definitely areas where microservices and SOA have synergies. In the end
both approaches pursue the goal of separating applications into services. Such a step
can be helpful when migrating an application to microservices: When the applica-
tion is split into SOA services, individual services can be replaced or supplemented
by microservices. Certain calls can be processed by a microservice while other calls
are still processed by the application. This enables the migration of applications and
the implementation of microservices in a step-by-step manner.

Figure 6.5 shows an example: The uppermost service of CRM is supplemented
by a microservice. This microservice now takes all calls and can, if necessary, call the
CRM. The second CRM service is completely replaced by a microservice. Using this
approach, new functionality can be added to the CRM. At the same time, it is not
necessary to reimplement the entire CRM; instead, microservices can complement it
at selected places. Section 7.6 presents additional approaches to how legacy applica-
tions can be replaced by microservices.

6.3 Conclusion

Table 6.1 summarizes the differences between SOA and microservices.
At an organizational level the approaches are very different: SOAs place

emphasis on the structure of the entire enterprise IT whereas microservices can
be utilized in an individual project. SOAs focus on an organization where some
teams develop backend services, while a different team implements the UI. In a
microservice-based approach one team should implement everything in order to
facilitate communication and speed up the implementation of features. That is
not a goal of SOA. In SOA a new feature can involve changes to numerous services
and therefore requires communication between a large number of teams. Micro-
services try to avoid this.

Service

Service

Service

Service

Service

CRM

Micro-
service

Micro-
service

Figure 6.5 SOA for Migrating to Microservices

ptg18144917

Chapter 6 Microservices and SOA92

Table 6.1 Differences between SOA and Microservices

SOA Microservices

Scope Enterprise-wide
architecture

Architecture for one project

Flexibility Flexibility by
orchestration

Flexibility by fast deployment and
rapid, independent development of
Microservices

Organization Services are
implemented by
different organizational
units

Services are implemented by
different organizational by teams
in the same project

Deployment Monolithic deployment
of several services

Each microservice can be deployed
individually

UI Portal as universal UI
for all services

Service contains UI

At a technical level there are similarities: Both concepts are based on services. The
service granularity can be similar. Because of these technical similarities, it can be
difficult to distinguish between SOA and microservices. However, from conceptual,
architectural, and organizational viewpoints both approaches have very different
features.

Essential Points

• SOA and microservices split applications into services that are available on the
network. Similar technologies can be employed to this end.

• SOA aims at flexibility at the enterprise IT level through the orchestration of
services. This is a complex undertaking and only works when the services don't
need to be modified.

• Microservices focus on individual projects and aim at facilitating deployment
and parallel work on different services.

ptg18144917

936.3 Conclusion

Try and Experiment

• A new product feature is to be incorporated into the SOA landscape shown
in Figure 6.1. The CRM does not have support for email campaigns. There-
fore, a system for email campaigns has to be implemented. It is suggested
that two services are created—one for the creation and execution of cam-
paigns and a second service for evaluating the results of a campaign.

An architect has to answer the following questions:

• Is the SOA infrastructure needed to integrate the two new services? The
service for campaign evaluation needs to handle a large amount of data.

• Would it be better to use data replication, UI-level integration, or service
calls for accessing large amounts of data?

• Which of these integration options is typically offered by SOA?

• Should the service integrate into the existing portal or have its own user
interface? What are the arguments in favor of each option?

• Should the new functionality be implemented by the CRM team?

ptg18144917

This page intentionally left blank

ptg18144917

95

Part III demonstrates how microservices can be implemented. After studying the
chapters in this part the reader should be able to not only design microservice-based
architectures but also implement them and evaluate effects the microservices
approach may have on his or her organization.

Chapter 7, “Architecture of Microservice-Based Systems,” describes the archi-
tecture of microservice-based systems. It focuses on the interplay between individual
microservices.

The domain architecture deals with domain-driven design as the basis of
 microservice-based architectures and shows metrics that allow you to measure the
quality of the architecture. Architecture management is a challenge: It can be difficult
to keep the overview of the numerous microservices. However, often it is sufficient to
understand how a certain use case is implemented and which microservices interact
in a specific scenario.

Practically all IT systems are subject to more or less profound change. There-
fore, the architecture of a microservice system has to evolve, and the system has
to undergo continuous development. To achieve this, several challenges have to be
addressed, which do not arise in this form in the case of deployment monoliths—for
instance, the overall distribution into microservices is difficult to change. However,
changes to individual microservices are simple.

In addition, microservice systems need to integrate legacy systems. This is quite
simple as microservices can treat legacy systems as a black box. A replacement of
a deployment monolith by microservices can progressively transfer more function-
alities into microservices without having to adjust the inner structure of the legacy
system or having to understand the code in detail.

PART III

Implementing Microservices

ptg18144917

96 Part III Implementing Microservices

The technical architecture comprises typical challenges for the implementation
of microservices. In most cases there is a central configuration and coordination
for all microservices. Furthermore, a load balancer distributes the load between the
individual instances of the microservices. The security architecture has to leave each
microservice the freedom to implement its own authorizations in the system but
also ensure that a user needs to log in only once. Finally, microservices should return
information concerning themselves as documentation and as metadata.

Chapter 8, “Integration and Communication,” shows the different possibili-
ties for the integration and communication between microservices. There are three
 possible levels for integration:

• Microservices can integrate at the web level. In that case each microservice
delivers a part of the web UI.

• At the logic level microservices can communicate via REST or messaging.

• Data replication is also possible.

Via these technologies the microservices have internal interfaces for other
microservices. The complete system can have one interface to the outside. Changes
to the different interfaces create different challenges. Accordingly, this chapter also
deals with versioning of interfaces and the effects thereof.

Chapter 9, “Architecture of Individual Microservices,” describes possibilities
for the architecture of an individual microservice. There are different approaches for
an individual microservice:

• CQRS divides read and write access into two separate services. This allows for
smaller services and an independent scaling of both parts.

• Event Sourcing administrates the state of a microservice via a stream of events
from which the current state can be deduced.

• In a hexagonal architecture the microservice possesses a core, which can be
accessed via different adaptors and which communicates also via such adaptors
with other microservices or the infrastructure.

Each Microservice can follow an independent architecture.
In the end all microservices have to handle technical challenges like resilience and

stability—these issues have to be solved by their technical architecture.
Testing is the focus of Chapter 10, “Testing Microservices and Microservice-

Based Systems.” Also tests have to take the special challenges associated with
microservices into consideration.

ptg18144917

97 Part III Implementing Microservices

The chapter starts off by explaining why tests are necessary at all and how a
 system can be tested in principle.

Microservices are small deployment units. This decreases the risk associated with
deployments. Accordingly, besides tests, optimization of deployment can also help
to decrease the risk.

Testing the entire system represents a special problem in case of microservices
since only one microservice at a time can pass through this phase. If the tests last
one hour, only eight deployments will be feasible per working day. In the case of 50
microservices that is by far too few. Therefore, it is necessary to limit these tests as
much as possible.

Often microservices replace legacy systems. The microservices and the legacy
system both have to be tested—along with their interplay. Tests for the individual
microservices differ in some respects greatly from tests for other software systems.

Consumer-driven contract tests are an essential component of microser-
vice tests—They test the expectations of a microservice in regard to an interface.
Thereby the correct interplay of microservices can be ensured without having to test
the microservices together in an integration test. Instead a microservice defines its
requirements for the interface in a test that the used microservice can execute.

Microservices have to adhere to certain standards in regard to monitoring or log-
ging. The adherence to these standards can also be checked by tests.

Operation and continuous delivery are the focus of Chapter 11, “Operation and
Continuous Delivery of Microservices.” The infrastructure is especially an essen-
tial challenge when introducing microservices. Logging and monitoring have to be
uniformly implemented across all microservices; otherwise, the associated expendi-
ture gets too large. In addition, there should be a uniform deployment. Finally, start-
ing and stopping of microservices should be possible in a uniform manner—in other
words, via a simple control. For these areas the chapter introduces concrete technolo-
gies and approaches. Additionally, the chapter presents infrastructures that especially
facilitate the operation of a microservices environment.

Finally, Chapter 12, “Organizational Effects of a Microservice-Based Archi-
tecture,” discusses how microservices influence the organization. Microservices ena-
ble a simpler distribution of tasks to independent teams and thus for parallel work
on different features. To that end the tasks have to be distributed to the teams, which
subsequently introduce the appropriate changes into their microservices. However,
new features can also comprise several microservices. In that case one team has to
put requirements to another team—this requires a lot of coordination and delays the
implementation of new features. Therefore, it can be better that teams also change
microservices of other teams.

Microservices divide the architecture into micro and macro architecture: In
regards to micro architecture the teams can make their own decisions while the

ptg18144917

98 Part III Implementing Microservices

macro architecture has to be defined for and coordinated across all microservices. In
areas like operation, architecture, and testing individual aspects can be assigned to
micro or macro architecture.

DevOps as organizational form fits well with microservices since close coop-
eration between operation and development is very useful, especially for the
 infrastructure-intensive microservices.

The independent teams each need their own independent requirements, which in
the end have to be derived from the domain. Consequently, microservices also have
effects in these areas.

Code recycling is likewise an organizational problem: How do the teams coordi-
nate the different requirements for shared components? A model that is inspired by
open-source projects can help.

However, there is of course the question whether microservices are possible at all
without organizational changes—after all, the independent teams constitute one of
the essential reasons for introducing microservices.

ptg18144917

99

This chapter discusses how microservices should behave when viewed from the
 outside and how an entire microservice system can be developed. Chapter 8,
 “Integration and Communication,” covers possible communication technologies
that are an important technology component. Chapter 9, “Architecture of Individual
Microservices,” focuses on the architecture of individual microservices.

Section 7.1 describes what the domain architecture of a microservice system
should look like. Section 7.2 presents appropriate tools to visualize and manage the
architecture. Section 7.3 shows how the architecture can be adapted in a stepwise
manner. Only a constant evolution of the software architecture will ensure that
the system remains maintainable in the long run and can be developed further.
 Section 7.4 discusses the goals and approaches that are important to enable further
development.

Next, a number of approaches for the architecture of a microservice-based system
are explained. Section 7.6 discusses the special challenges that arise when a legacy
application is to be enhanced or replaced by microservices. Section 7.8 introduces
event-driven architecture. This approach makes possible architectures that are very
loosely coupled.

Finally, Section 7.9 deals with the technical aspects relevant to the architecture
of a microservice-based system. Some of these aspects are presented in depth in the
 following sections: mechanisms for coordination and configuration (section 7.10),
Service Discovery (section 7.11), Load Balancing (section 7.12), scalability (section
7.13), security (section 7.14), and finally documentation and metadata (section 7.15).

Chapter 7

Architecture of
Microservice-Based Systems

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 100

7.1 Domain Architecture

The domain architecture of a microservice-based system determines which microser-
vices within the system should implement which domain. It defines how the entire
domain is split into different areas, each of which are implemented by one
 microservice and thus one team. Designing such an architecture is one of the pri-
mary challenges when introducing microservices. It is, after all, an important moti-
vation for the use of microservices that changes to the domain can be implemented,
ideally, by just one team changing just one microservice—minimizing coordination
and communication across teams. Done correctly this ensures that microservices can
support the scaling of software development since even large teams need little com-
munication and therefore can work productively.

To achieve this, it is important that the design of the domain architecture for
the microservices makes it possible for changes to be limited to single microser-
vices and thus individual teams. When the distribution into microservices does
not support this, changes will require additional coordination and communica-
tion, and the advantages that a microservice-based approach can bring will not
be achieved.

Strategic Design and Domain-Driven Design

Section 3.3 discussed the distribution of microservices based on strategic design, a
concept taken from domain-driven design. A key element is that the microservices
are distributed into contexts—that is, areas that represent separate functionality.

Often architects develop a microservice architecture based on entities from a
domain model. A certain microservice implements the logic for a certain type of
entity. Using this approach might give, for instance, one microservice for custom-
ers, one for items, and one for deliveries. However, this approach conflicts with
the idea of Bounded Context, which stipulates that uniform modeling of data
is impossible. Furthermore, this approach isolates changes very badly. When a
process is to be modified and entities have to be adapted, the change is distrib-
uted across different microservices. As a result, changing the order process will
impact the entity modeling for customers, items, and deliveries. When that is the
case, the three microservices for the different entities have to be changed in addi-
tion to the microservice for the order process. To avoid this, it can be sensible to
keep certain parts of the data for customers, items, and deliveries in the microser-
vice for the order process. With this approach when changes to the order process
require the data model to be modified, then this change can be limited to a single
microservice.

ptg18144917

1017.1 Domain Architecture

However, this does not prevent a system from having services dedicated to the
administration of certain entities. It may be necessary to manage the most fun-
damental data of a certain business entity in a service. For example, a service can
certainly administrate the client data but leave specific client data, such as a bonus
program number, to other microservices—for example to the microservice for the
order process, which likely has to know this number.

Example Otto Shop

An example—the architecture of the Otto shop1—illustrates this concept. Otto
GmbH is one of the biggest e-commerce companies. In the architecture there are,
on the one hand, services like user, order, and product, which are oriented toward
data, and on the other hand, areas like tracking, search and navigation, and per-
sonalization, which are not geared to data but to functionality. This is exactly the
type of domain design that should be aimed for in a microservice-based system.

A domain architecture requires a precise understanding of the domain. It
comprises not only the division of the system into microservices but also the
dependencies. A dependency arises when a dependent microservice uses another
one—for instance, by calling the microservice, by using elements from the UI
of the microservice, or by replicating its data. Such a dependency means that
changes to a microservice can also influence the microservice that is depend-
ent on it. If, for example, the microservice modifies its interface, the dependent
microservice has to be adapted to these changes. Also new requirements affect-
ing the dependent microservice might mean that the other microservice has to
modify its interface. If the dependent microservice needs more data to imple-
ment the requirements, the other microservice has to offer this data and adjust
its interface accordingly.

For microservices such dependencies cause problems beyond just software archi-
tecture: If the microservices involved in a change are implemented by different teams,
then the change will require collaboration between those teams; this overhead can be
time consuming and laborious.

Managing Dependencies

Managing dependencies between microservices is central to the architecture of a
system. Having too many dependencies will prevent microservices from being
changed in isolation—which goes against the objective of developing microservices

1. https://dev.otto.de/2016/03/20/why-microservices/

https://www.dev.otto.de/2016/03/20/why-microservices/

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 102

independently of each other. Here are two fundamental rules to apply for good
architecture:

• There should be a loose coupling between components such as microservices.
This means that each microservice should have few dependencies on other
microservices. This makes it easier to modify them since changes will only
affect individual microservices.

• Within a component such as a microservice, the constituent parts should work
closely together. This is referred to as having high cohesion. This ensures that
all constituent parts within a microservice really belong together.

When these two prerequisites are not met, it will be difficult to change an indi-
vidual microservice in an isolated manner, and changes will have to be coordinated
across multiple teams and microservices, which is just what microservice-based
architectures are supposed to avoid. However, this is often a symptom: the funda-
mental problem is how the domain-based split of the functionality between the
microservices was done. Obviously pieces of functionality that should have been
placed together in one microservice have been distributed across different microser-
vices. An order process, for instance, also needs to generate a bill. These two pieces
of functionality are so different that they have to be distributed into at least two
microservices. However, when each modification of the order process also affects the
microservice that creates the bills, the domain-based modeling is not optimal and
should be adjusted. The pieces of functionality have to be distributed differently to
the microservices, as we will see.

Unintended Domain-Based Dependencies

It is not only the number of dependencies that can pose a problem. Certain
 domain-based dependencies can simply be nonsensical. For instance, it would be
surprising in an e-commerce system if the team responsible for product search
 suddenly has an interface with the microservice for billing, because that should not
be the case from a domain-based point of view. However, when it comes to domain
modeling, there are always surprises for the unaware. When a dependency is not
meaningful from a domain-based point of view, something regarding the functional-
ity of the microservices has to be wrong. Maybe the microservice implements fea-
tures that belong in other microservices from a domain-based perspective. Perhaps in
the context of product search a scoring of the customer is required, which is imple-
mented as part of billing. In that case one should consider whether this functionality
is really implemented in the right microservice. To keep the system maintainable over
the long term, such dependencies have to be questioned and, if necessary, removed

ptg18144917

1037.1 Domain Architecture

from the system. For instance, the scoring could be moved into a new, independent
microservice or transferred into another existing microservice.

Cyclic Dependencies

Cyclic dependencies can present additional problems for a comprehensive architec-
ture. Let us assume that the microservice for the order process calls the microservice
for billing (see Figure 7.1). The microservice for billing fetches data from the order
process microservice. When the microservice for the order process is changed, modi-
fications to the microservice for billing might be necessary since this microservice
fetches data from the microservice for the order process. Conversely, changes to the
billing microservice require changes to the order microservice as this microservice
calls the billing microservice. Cyclic dependencies are problematic: the components
can no longer be changed in isolation, contrary to the underlying aim for a split into
separate components. For microservices great emphasis is placed on independence,
which is violated in this case. In addition to the coordination of changes that is
needed, it may also be that the deployment has to be coordinated. When a new ver-
sion of the one microservice is rolled out, a new version of the other microservice
might have to be rolled out as well if they have a cyclic dependency.

The remainder of the chapter shows approaches to building microservice-based
architectures in such a way that they have a sound structure from a domain-based
perspective. Metrics like cohesion and loose coupling can verify that the architec-
ture is really appropriate. In the context of approaches like event-driven architecture
 (section 7.8) microservices have hardly any direct technical dependencies since they
only send messages. Who is sending the messages and who is processing them is diffi-
cult to determine from the code, meaning that the metrics may look very good. How-
ever, from a domain-based perspective the system can still be far too complicated,
since the domain-based dependencies are not examined by the metrics. Domain-
based dependencies arise when two microservices exchange messages. However, this
is difficult to ascertain by code analysis, meaning that the metrics will always look
quite good. Thus metrics can only suggest problems. By just optimizing the metrics,
the symptoms are optimized, but the underlying problems remain unsolved. Even
worse, even systems with good metrics can have architectural weaknesses. Therefore,
the metric loses its value in determining the quality of a software system.

Order Process Billing

Call

Fetch Data

Figure 7.1 Cyclic Dependency

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 104

A special problem in the case of microservices is that dependencies between
microservices can also influence their independent deployment. If a microservice
requires a new version of another microservice because it uses, for instance, a new
version of an interface, the deployment will also be dependent: The microservice
has to be deployed before the dependent microservice can be deployed. In extreme
cases this can result in a large number of microservices that have to be deployed in
a coordinated manner—this is just what was supposed to be avoided. Microservices
should be deployed independently of each other. Therefore, dependencies between
microservices can present an even greater problem than would be the case for mod-
ules within a deployment monolith.

7.2 Architecture Management

For a domain architecture it is critical which microservices exist and what the commu-
nication relationships between the microservices look like. This is true in other systems
as well where the relationships between the components are very important. When
domain-based components are mapped on modules, classes, Java packages, JAR files,
or DLLs, specific tools can determine the relationships between the components and
control the adherence to certain rules. This is achieved by static code analysis.

Tools for Architecture Management

If an architecture is not properly managed, then unintended dependencies will
quickly creep in. The architecture will get more and more complex and hard to
understand. Only with the help of architecture management tools can developers
and architects keep track of the system. Within a development environment develop-
ers view only individual classes. The dependencies between classes can only be found
in the source code and are not readily discernible.

Figure 7.2 depicts the analysis of a Java project by the architecture manage-
ment tool Structure 101. The image shows classes and Java packages, which con-
tain classes. A levelized structure map (LSM) presents an overview of them. Classes
and packages that are higher up the LSM use classes and packages that are depicted
lower down the LSM. To simplify the diagram, these relationships are not indicated.

Cycle-Free Software

Architectures should be free of cycles. Cyclic dependencies mean that two artifacts
are using each other reciprocally. In the screenshot such cycles are presented by
dashed lines. They always run from bottom to top. The reciprocal relationship in the
cycle would be running from top to bottom and is not depicted.

ptg18144917

1057.2 Architecture Management

In addition to cycles, packages that are located in the wrong position are also
relevant. There is, for instance, a package util whose name suggests it is sup-
posed to contain helper classes. However, it is not located at the very bottom of
the diagram. Thus, it has to have dependencies to packages or classes that are
further down—which should not be the case. Helper classes should be independent
from other system components and should therefore appear at the very bottom
of an LSM.

Architecture management tools like Structure 101 don’t just analyze architectures;
they can also enable architects to define prohibited relationships between packages
and classes. Developers who violate these rules will receive an error message and can
modify the code.

With the help of tools like Structure 101 the architecture of a system can be easily
visualized. The compiled code only has to be loaded into the tool for analysis.

Figure 7.2 Screenshot of the Architecture Management Tool Structure 101

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 106

Microservices and Architecture Management

For microservices the problem is much larger: relationships between microser-
vices are not as easy to determine as the relationships between code components.
After all, the microservices could even be implemented in different technologies.
They communicate only via the network. Their relationships prevent manage-
ment at a code level, because they appear only indirectly in the code. However, if
the relationships between microservices are not known, architecture management
becomes impossible.

There are different ways to visualize and manage the architecture:

• Each microservice can have associated documentation (see section 7.15) that
lists all used microservices. This documentation has to adhere to a predeter-
mined format, which enables visualization.

• The communication infrastructure can deliver the necessary data. If Service
Discovery (section 7.11) is used, it will be aware of all microservices and will
know which microservices have access to which other microservices. This
information can then be used for the visualization of the relationships between
the microservices.

• If access between microservices is safeguarded by a firewall, the rules of the
firewall will at least detail which microservice can communicate with which
other microservice. This can also be used as a basis for the visualization of
relationships.

• Traffic within the network also reveals which microservices communicate with
which other microservices. Tools like Packetbeat (see section 11.3) can be very
helpful here. They visualize the relationships between microservices based on
the recorded network traffic.

• The distribution into microservices should correspond to the distribu-
tion into teams. If two teams cannot work independently of each other
 anymore, this is likely due to a problem in the architecture: The microser-
vices of the two teams depend so strongly on each other that they can now
only be modified together. The teams involved probably know already
which microservices are problematic due to the increased communication
requirement. To verify the problem, an architecture management tool or a
visualization can be used. However, manually collected information might
be sufficient.

ptg18144917

1077.2 Architecture Management

Tools

Different tools are useful to evaluate data about dependencies:

• There are versions of Structure 1012 that can use custom data structures as
input. One still has to write an appropriate importer. Structure 101 will then
recognize cyclic dependencies and can depict the dependencies graphically.

• Gephi3 can generate complex graphs, which are helpful for visualizing the
dependencies between microservices. Again, a custom importer has to be writ-
ten for importing the dependencies between the microservices from an appro-
priate source into Gephi.

• jQAssistant4 is based on the graph database neo4j. It can be extended by a cus-
tom importer. Then the data model can be checked according to rules.

For all these tools custom development is necessary. It is not possible to analyze
a microservice-based architecture immediately; there is always some extra effort
required. Since communication between microservices cannot be standardized, it is
likely that custom development will always be required.

Is Architecture Management Important?

The architecture management of microservices is important, as it is the only way to
prevent chaos in the relationships between the microservices. Microservices are a
special challenge in this respect: With modern tools, a deployment monolith can be
quite easily and rapidly analyzed. For microservice-based architectures, there are no
tools that can analyze the entire structure in a simple manner. The teams first have to
create the necessary prerequisites for an analysis. Changing the relationships between
microservices is difficult, as the next section will show. Therefore, it is even more
important to continually review the architecture of the microservices in order to cor-
rect problems that arise as early as possible. It is a benefit of microservice-based
architectures that the architecture is also reflected in the organization. Problems with
communication will therefore point towards architectural problems. Even without
formal architecture management, architectural problems often become obvious.

2. http://structure101.com

3. http://gephi.github.io/

4. http://jqassistant.org/

http://www.structure101.com
http://www.gephi.github.io/4
http://www.jqassistant.org/

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 108

On the other hand, experiences with complex microservice-based systems teach
us that in such systems, nobody understands the entire architecture. However, this
is also not necessary since most changes are limited to individual microservices. If
a certain use case involving multiple microservices is to be changed, it is sufficient
to understand this interaction and the involved microservices. A global understand-
ing is not absolutely necessary. This is a consequence of the independence of the
 individual microservices.

Context Map

Context Maps are a way to get an overview of the architecture of a microservice-
based system.5 They illustrate which domain models are used by which
 microservices and therefore visualize the different Bounded Contexts (see section
3.3). The Bounded Contexts not only influence the internal data presentation in
the microservices but also impact the calls between microservices where data is
exchanged. They have to be in line with some type of model. However, the data
models underlying communication can be distinct from the internal representa-
tions. For example, if a microservice is supposed to identify recommendations for
customers of an e-commerce shop, complex models can be employed internally for
this that contain a lot of information about customers, products, and orders and
correlate them in complex ways. On the outside, however, these models can be
much simpler.

Figure 7.3 shows an example of a Context Map:

• The registration registers the basic data of each customer. The order process
also uses this data format to communicate with registration.

• In the order process the customer’s basic data is supplemented by data such as
billing and delivery addresses to obtain the customer order data. This corre-
sponds to a Shared Kernel (see section 3.3). The order process shares the kernel
of the customer data with the registration process.

• The delivery and the billing microservices use customer order data for commu-
nication, and the delivery microservice uses it for the internal representation of
the customer. This model is a kind of standard model for the communication
of customer data.

5. Eric Evans. 2003. Domain-Driven Design: Tackling Complexity in the Heart of Software. Boston:
Addison-Wesley.

ptg18144917

1097.2 Architecture Management

• Billing uses an old mainframe data model. Therefore, customer order data for
outside communication is decoupled from the internal representation by an
anti-corruption layer. The data model represents a very bad abstraction, which
should not be allowed to affect other microservices.

In this model it is clear that the internal data representation in registration propa-
gates to the order process. There, it serves as the basis for the customer order data.
This model is used in delivery as an internal data model as well as in the communica-
tion with billing and delivery. This leads to the model being hard to change since it
is used by so many services. If this model was to be changed, all these services would
have to be modified.

However, there are also advantages associated with this. If all these services had to
implement the same change to the data model, only a single change would be neces-
sary to update all microservices at once. Nevertheless, this goes against the principle
that changes should always only affect a single microservice. If the change remains
limited to the model, the shared model is advantageous since all microservices auto-
matically use the current modeling. However, when the change requires changes in
the microservices, now multiple microservices have to be modified—and brought into
production together. This conflicts with an independent deployment of microservices.

Registration

Basic
customer

data

Order process

Delivery

Billing

Basic
customer

data

Mainframe
data model

Anticorruption
Layer

Customer
order data

Customer
order data

Customer
order data

Customer
order data

Figure 7.3 An Example of a Context Map

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 110

7.3 Techniques to Adjust the Architecture

Microservices are useful in situations where the software is subject to numerous
changes. Due to the distribution into microservices the system separates into deploy-
ment units, which can be developed independently of each other. This means that each
microservice can implement its own stream of stories or requirements. Consequently,
multiple changes can be worked on in parallel without much need for coordination.

Experience teaches us that the architecture of a system is subject to change. A cer-
tain distribution into domain-based components might seem sensible at first. However,
once architects get to know the domain better, they might come to the conclusion that
another distribution would be better. New requirements are hard to implement with
the old architecture since it was devised based on different premises. This is especially
common for agile processes, which demand less planning and more flexibility.

Where Does Bad Architecture Come From?

A system with a bad architecture does not normally arise because the wrong archi-
tecture has been chosen at the outset. Based on the information available at the start
of the project, the architecture is often good and consistent. The problem is fre-
quently that the architecture is not modified when there are new insights that
 suggest changes to the architecture. The symptom of this was mentioned in the last

Try and Experiment

• Download a tool for the analysis of architectures. Candidates are Structure
101,6 Gephi,7 or jQAssistant.8 Use the tool to get an overview of an existing
code base. What options are there to insert your own dependency graphs
into the tool? This would enable you to analyze the dependencies within a
microservice-based architecture with this tool.

• spigo9 is a simulation for the communication between microservices.
It can be used to get an overview of more complex microservice-based
architectures.

6. http://structure101.com

7. http://gephi.github.io/

8. http://jqassistant.org

9. https://github.com/adrianco/spigo

http://www.structure101.com
http://www.gephi.github.io/
http://www.jqassistant.org
https://www.github.com/adrianco/spigo

ptg18144917

1117.3 Techniques to Adjust the Architecture

section: New requirements cannot be rapidly and easily implemented anymore. To
that end the architecture would have to be changed. When this pressure to introduce
changes is ignored for too long, the architecture will, at some point, not fit at all.
The continuous adjustment and modification of the architecture is essential in
keeping the architecture in a really sustainable state.

This section describes some techniques that enable the interplay between
 microservices to be changed in order to adapt the overall system architecture.

Changes in Microservices

Within a microservice adjustments are easy. The microservices are small and
 manageable. It is no big deal to adjust structures. If the architecture of an individual
microservice is completely insufficient, it can be rewritten since it is not very large.
Within a microservice it is also easy to move components or to restructure the code in
other ways. The term “refactoring”10 describes techniques that serve to improve the
structure of code. Many of these techniques can be automated using development
tools. This enables an easy adjustment of the code of an individual microservice.

Changes to the Overall Architecture

However, when the division of functionality between the microservices is no longer
in line with the requirements, changing just one microservice will not be sufficient.
To achieve the necessary adjustment of the complete architecture, functionality has
to be moved between microservices. There can be different reasons for this:

• The microservice is too large and has to be divided. Indications for this can be
that the microservice is no longer intelligible anymore or so large that a single
team is not sufficient to develop it further. Another indication can be that the
microservice contains more than one Bounded Context.

• A piece of functionality really belongs in another microservice. An indication
for that can be that certain parts of a microservice communicate a lot with
another microservice. In this situation the microservices no longer have a loose
coupling. Such intense communication can imply that the component belongs
in another microservice. Likewise, a low cohesion in a microservice can sug-
gest that the microservice should be divided. In that case there are areas in a
microservice that depend little on each other. Consequently, they do not really
have to be in one microservice.

 10. Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code, Boston: Addison-Wesley.

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 112

• A piece of functionality should be used by multiple microservices. For instance,
this can become necessary when a microservice has to use logic from another
microservice because of some new piece of functionality.

There are three main challenges: microservices have to be split, code has to be
moved from one microservice into another, and multiple microservices are supposed
to use the same code.

Shared Libraries

If two microservices are supposed to use code together, the code can be transferred
into a shared library (see Figure 7.4). The code is removed from the microservice and
packaged in a way that enables it to be used by the other microservices. A prerequi-
site for this is that the microservices are written in technologies that enable the use of
a shared library. This is the case when they are written in the same language or at
least use the same platform, such as JVM (Java Virtual Machine) or .NET Common
Language Runtime (CLR).

A shared library means that the microservices become dependent on each other.
Work on the library has to be coordinated. Features for both microservices have to
be implemented in the library. Via the backdoor each microservice is affected by
changes meant for the other microservice. This can result in errors, meaning that the
teams have to coordinate the development of the library. Under certain conditions
changes to a library can mean that a microservice has to be newly deployed—for
instance because a security gap has been closed in the library.

It is also possible that through the shared library the microservices might
obtain additional code dependencies to third-party libraries. In a Java JVM,
third-party libraries can only be present in one version. If the shared library
requires a certain version of a third-party library, the microservice also has to use
this specific version and cannot use a different one. Additionally, libraries often
have a certain programming model. In that way libraries can provide code, which

Microservice Microservice

LibraryTransfer
code

Figure 7.4 Shared Library

ptg18144917

1137.3 Techniques to Adjust the Architecture

can be called, or a framework into which custom code can be integrated, which is
then called by the framework. The library might pursue an asynchronous model
or a synchronous model. Such approaches can fit more or less well to a respective
microservice.

Microservices do not focus on the reuse of code since this leads to new dependen-
cies between the microservices. An important aim of microservices is independence—
so code reuse often causes more problems than it solves. This is a rejection of the
ideal of code recycling. Developers in the nineties still pinned their hopes on code
reuse in order to increase productivity. Moving code into a library also has advan-
tages. Errors and security gaps have to be corrected only once. The microservices use
always the current library version and thus automatically get fixes for errors.

Another problem associated with code reuse is that it requires a detailed under-
standing of the code—especially in the case of frameworks into which the custom
code has to embed itself. This kind of reuse is known as white-box reuse: The inter-
nal code structures have to be known, not only the interface. This type of reuse
requires a detailed understanding of the code that is to be reused, which sets a high
hurdle for the reuse.

An example would be a library that makes it easier to generate metrics for sys-
tem monitoring. It will be used in the billing microservice. Other teams also want
to use the code. Therefore, the code is extracted into a library. Since it is technical
code, it does not need to modified if domain-based changes are made. Therefore,
the library does not influence the independent deployment and the independent
development of domain-based features. The library was supposed to be turned into
an internal open-source project (see section 12.8).

However, to transfer domain code into a shared library is problematic, as it might
introduce deployment dependencies into microservices. When, for instance, the
modeling of a customer is implemented in a library, then each change to the data
structure has to be passed on to all microservices, and they all have to be newly
deployed. Besides, a uniform modeling of a data structure like customer is difficult
due to Bounded Context.

Transfer Code

Another way to change the architecture is to transfer code from one microservice to
another (see Figure 7.5). This is sensible when doing so ensures a loose coupling and
a high cohesion of the entire system. When two microservices communicate a lot,
they are not loosely coupled. When the part of the microservice that communicates a
lot with the other microservice is transferred, this problem can be solved.

This approach is similar to the removal into a shared library. However, the code
is not a common dependency, which solves the problem of coupling between the

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 114

microservices. However, it is possible that the microservices have to have a common
interface in order to be able to use the functionality after the code transfer. This is
a black-box dependency: Only the interface has to be known, not the internal code
structures.

In addition, it is possible to transfer the code into another microservice while
keeping it in the original microservice. This causes redundancy. Errors will then have
to be corrected in both versions, and the two versions can develop in different direc-
tions. However, this will ensure that the microservices are independent, especially
with regard to deployment.

The technological limitations are the same as for a shared library—the two
microservices have to use similar technologies; otherwise, the code cannot be trans-
ferred. However, in a pinch the code can also be rewritten in a new programming
language or with a different programming model. Microservices are not very large.
The code that has to be rewritten is only a part of a microservice. Consequently, the
required effort is manageable.

However, there is the problem that the size of that microservice into which the
code is transferred increases. Thus, the danger increases that the microservice turns
into a monolith over time.

One example: The microservice for the order process frequently calls the billing
microservice in order to calculate the price for the delivery. Both services are written in
the same programming language. The code is transferred from one microservice into
the other. From a domain perspective it turns out that the calculation of delivery costs
belongs in the order-process microservice. The code transfer is only possible when
both services use the same platform and programming language. This also means that
the communication between microservices has been replaced by local communication.

Reuse or Redundancy?

Instead of attributing shared code to one or the other microservices, the code can
also be maintained in both microservices. At first this sounds dangerous—after all,
the code will then be redundant in two places, and bug fixes will have to be per-
formed in both places. Most of the time developers try to avoid such situations. An
established best practice is “Don’t Repeat Yourself” (DRY). Each decision and conse-
quently all code should only be stored at exactly one place in the system. In a

Microservice Microservice

Transferred
code

Figure 7.5 Transferring Code

ptg18144917

1157.3 Techniques to Adjust the Architecture

microservice-based architectures redundancy has a key advantage: the two microser-
vices stay independent of each other and can be independently deployed and inde-
pendently developed further. In this way the central characteristic of microservices is
preserved.

It is questionable whether a system can be built without any redundancies at all.
Especially in the beginning of object-orientation, many projects invested significant
effort to transfer shared code into shared frameworks and libraries. This was meant
to reduce the expenditure associated with the creation of the individual projects. In
reality the code to be reused was often difficult to understand and thus hard to use.
A redundant implementation in the different projects might have been a better alter-
native. It can be easier to implement code several times than to design it in a reusable
manner and then to actually reuse it.

There are, of course, cases of successful reuse of code: hardly any project can get
along nowadays without open-source libraries. At this level code reuse is taking place
all the time. This approach can be a good template for the reuse of code between
microservices. However, this has effects on the organization. Section 12.8 discusses
organization and also code reuse using an open-source model.

Shared Service

Instead of transferring the code into a library, it can also be moved into a new micro-
service (see Figure 7.6). Here the typical benefits of a microservice-based architecture
can be achieved; the technology of the new microservice does not matter, as long as it
uses the universally defined communication technologies and can be operated like
the other microservices. Its internal structure can be arbitrary, even to the point of
programming language.

The use of a microservice is simpler than the use of a library. Only the interface
of the microservice has to be known—the internal structure does not matter. Mov-
ing code into a new service reduces the average size of a microservice and there-
fore improves the intelligibility and replaceability of the microservices. However, the

Microservice Microservice

MicroserviceTransfer
code

Figure 7.6 Shared Microservice

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 116

transfer replaces local calls with calls via the network, and changes for new features
might no longer be limited to one microservice.

In software development big modules are often a problem. Therefore, transferring
code into new microservices can be a good option for keeping modules small. The
new microservice can be developed further by the team that was already responsible
for the original microservice. This will facilitate the close coordination of new and
old microservices since the required communication happens within only one team.

The split into two microservices also has the consequence that a call to the
 microservice-based system is not processed by just one single microservice but
by several microservices. These microservices call each other. Some of those
 microservices will not have a UI but are pure backend services.

To illustrate this, let us turn again to the order process, which frequently calls
the billing microservice for calculating the delivery costs. The calculation of delivery
costs can be separated into a microservice by itself. This is even possible when the
billing service and the order process microservice use different platforms and tech-
nologies. However, a new interface will have to be established that enables the new
delivery cost microservice to communicate with the remainder of the billing service.

Spawn a New Microservice

In addition, it is possible to use part of the code of a certain microservice to generate
a new microservice (see Figure 7.7). The advantages and disadvantages are identical
to the scenario in which code is transferred into a shared microservice. However, the
motivation is different in this case: The size of the microservices is meant to be
reduced to increase their maintainability or maybe to transfer the responsibility for a
certain functionality to another team. Here, the new microservice is not supposed to
be shared by multiple other microservices.

For instance, the service for registration might have become too complex.
 Therefore, it is split into multiple services, each handling certain user groups. A sepa-
ration along technical lines would also be possible—for instance according to CQRS
(see section 9.2), event sourcing (section 9.3) or hexagonal architecture (section 9.4).

Microservice

MicroserviceTransferred
code

Figure 7.7 Spawning a New Microservice

ptg18144917

1177.3 Techniques to Adjust the Architecture

Rewriting

Finally, an additional way to handle microservices whose structure does not fit any-
more is to rewrite them. This is more easily done with microservices-based architec-
tures than with other architectural approaches due to the small size of microservices
and their use via defined interfaces. This means that the entire system does not have
be rewritten—just a part. It is also possible to implement the new microservice in a
different programming language, which may be better suited for this purpose.
Rewriting microservices can also be beneficial since new insights about the domain
can leave their mark on the new implementation.

A Growing Number of Microservices

Experience with microservice-based systems teaches us that during the time a project
is running, new microservices will be generated continuously. This involves greater
effort around infrastructure and the operation of the system. The number of deployed
services will increase all the time. For more traditional projects, such a development is
unusual and may therefore appear problematic. However, as this section demon-
strates, the generation of new microservices is the best alternative for the shared use
of logic and for the ongoing development of a system. In any case the growing num-
ber of microservices ensures that the average size of individual microservices stays
constant. Consequently, the positive characteristics of microservices are preserved.

Generating new microservices should be made as easy as possible as this enables
the properties of the microservice system to be preserved. Potential for optimization
is mainly present when it comes to establishing continuous delivery pipelines and
build infrastructure and the required server for the new microservice. Once these
things are automated, new microservices can be generated comparably easily.

Microservice-Based Systems Are Hard to Modify

This section has shown that it is difficult to adjust the overall architecture of a
microservice-based system. New microservices have to be generated. This entails
changes to the infrastructure and the need for additional continuous delivery
 pipelines. Shared code in libraries is rarely a sensible option.

In a deployment monolith such changes would be easy to introduce: Often the
integrated development environments automate the transfer of code or other struc-
tural changes. Due to automation the changes are easier and less prone to errors.
There are no effects whatsoever on the infrastructure or continuous delivery pipe-
lines in the case of deployment monoliths.

Thus, changes are difficult at the level of the entire system—because it is hard to
transfer functionality between different microservices. Ultimately, this is exactly the

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 118

effect that was termed “strong modularization” and listed as an advantage in section
1.2: To cross the boundaries between microservices is difficult so that the architec-
ture at the level between the microservices will remain intact in the long run. How-
ever, this means that the architecture is hard to adjust at this level.

Try and Experiment

• A developer has written a helper class, which facilitates the interaction with
a logging framework that is also used by other teams. It is not very large and
complex.

• Should it be used by other teams?

• Should the helper class be turned into a library or an independent
microservice, or should the code simply be copied?

7.4 Growing Microservice-Based Systems

The benefits of microservices are seen most clearly in very dynamic environments.
Due to the independent deployment of individual microservices, teams can work
in parallel on different features without the need for significant coordination.
This is especially advantageous when it is unclear which features are really
 meaningful and experiments on the market are necessary to identify promising
approaches.

Planning Architecture?

In this sort of environment, it is difficult to plan a good split of the domain logic into
microservices right from the start. The architecture has to adjust to the evidence.

• The separation of a system into its domain aspects is even more important for
microservices than in the context of a traditional architectural approach. This
is because the domain-based distribution also influences the distribution into
teams and therefore the independent working of the teams—the primary ben-
efit of microservices (section 7.1).

• Section 7.2 demonstrated that tools for architecture management cannot
 readily be used in microservice-based architectures.

ptg18144917

1197.4 Growing Microservice-Based Systems

• As section 7.3 discussed, it is difficult to modify the architecture of
microservices—especially in comparison to deployment monoliths.

• Microservices are especially beneficial in dynamic environments—where it is
even more difficult to determine a meaningful architecture right from the start.

The architecture has to be changeable; however, this is difficult due to the tech-
nical limitations. This section shows how the architecture of a microservice-based
system can nevertheless be modified and developed further in a step-by-step manner.

Start Big

One way to handle this inherent problem is to start out with several big systems that
are subsequently split step by step into microservices (see Figure 7.8). Section 3.1
defined an upper limit for the size of a microservice as the amount of code that an
individual team can still handle. At the start of a project it is hard to violate this
upper limit. The same is true for the other upper limits: modularization and
replaceability.

When the entire project consists of only one or a few microservices, pieces of
functionality are still easy to move, because the transfer will mostly occur within one
service rather than between services. Step by step, more people can be moved into
the project so that additional teams can be assembled. In parallel, the system can be
divided into progressively more microservices to enable the teams to work indepen-
dently of each other. Such a ramp-up is also a good approach from an organizational
perspective since the teams can be assembled in a stepwise manner.

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Figure 7.8 Start Big: A Few Microservices Develop into Progressively More Microservices

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 120

Of course, it would also be possible to start off with a deployment monolith.
However, starting with a monolith has a key disadvantage: There is the danger that
dependencies and problems creep into the architecture, which make a later separa-
tion into microservices difficult. Also there will be only one continuous delivery
pipeline. When the monolith gets distributed into microservices, the teams will have
to generate new continuous delivery pipelines. This can be very onerous, especially
when the continuous delivery pipeline for the deployment monolith had been gen-
erated manually. In that situation all the additional continuous delivery pipelines
would most likely have to be manually generated in a laborious manner.

When projects start out with multiple microservices, this problem is avoided.
There is no monolith that later would have to be divided, and there has to be
an approach for the generation of new continuous delivery pipelines. Thus the
teams can work independently from the start on their own microservices. Over
the course of the project the initial microservices are split into additional smaller
microservices.

“Start big” assumes that the number of microservices will increase over the
course of the project. It is therefore sensible to start with a few big microservices
and spawn new microservices in a stepwise manner. The most recent insights can
always be integrated into the distribution of microservices. It is just not possible to
define the perfect architecture right from the start. Instead, the teams should adapt
the architecture step by step to new circumstances and insights and have the courage
to implement the necessary changes.

This approach results in a uniform technology stack—this will facilitate opera-
tion and deployment. For developers it is also easier to work on other microservices.

Start Small?

It is also possible to start with a system split into a large number of microservices
and use this structure as the basis for further development. However, the distribu-
tion of the services is very difficult. Building Microservices 11 provides an example
where a team was tasked with developing a tool to support continuous delivery of
a microservice-based system. The team was very familiar with the domain, had
already created products in this area, and thus chose an architecture that distrib-
uted the system early on into numerous microservices. However, as the new prod-
uct was supposed to be offered in the cloud, the architecture was, for subtle
reasons, not suitable in some respects. To implement changes got difficult because
modifications to features had to be introduced in multiple microservices. To solve

 11. Sam Newman. 2015. Building Microservices: Designing Fine-Grained Systems. Sebastopol, CA:
O’Reilly Media.

ptg18144917

1217.4 Growing Microservice-Based Systems

this problem and make it easier to change the software, the microservices were
united again into a monolith. One year later the team decided on the final architec-
ture and split the monolith back into microservices. This example demonstrates
that a splitting into microservices too early can be problematic—even if a team
knows the domain very well.

Limits of Technology

However, this is in the end a limitation of the technology. If it were easier to move
functionality between microservices (see section 7.4), the split into microservices
could be corrected. In that case it would be much less risky to start off with a split
into small microservices. When all microservices use the same technology, it is easier
to transfer functionality between them. Chapter 14, “Technologies for Nanoservices,”
discusses technologies for nanoservices, which are based on a number of compro-
mises but in exchange enable smaller services and an easier transfer of functionality.

Replaceability as a Quality Criterion

An advantage of the microservice approach is the replaceability of the microservices.
This is only possible when the microservices do not grow beyond a certain size and
internal complexity. One objective during the continued development of microser-
vices is to maintain the replaceability of microservices. Then a microservice can be
replaced by a different implementation—for instance, if its further development is
no longer feasible due to bad structure. In addition, replaceability is a meaningful
aim to preserve the intelligibility and maintainability of the microservice. If the
microservice is not replaceable anymore, it is probably also not intelligible anymore
and therefore hard to develop any further.

The Gravity of Monoliths

One problem is that large microservices attract modifications and new features.
They already cover several features; therefore, it seems a good idea to also implement
new features in this service. This is true in the case of microservices that are too large
but even more so for deployment monoliths. A microservices-based architecture can
be aimed at replacing a monolith. However, in that case the monolith contains so
much functionality that care is needed not to introduce too many changes into the
monolith. For this purpose, microservices can be created, even if they contain hardly
any functionality at the beginning. To introduce changes and extensions to the mon-
olith is exactly the course of action that has rendered the maintenance of the deploy-
ment monolith impossible and led to its replacement by microservices.

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 122

Keep Splitting

As mentioned, most architectures do not have the problem that they were originally
planned in a way that did not fit the task. In most cases the problem is more that the
architecture did not keep up with the changes in the environment. A microservice-
based architecture also has to be continuously adjusted; otherwise, at some point it
will no longer be able to support the requirements. These adjustments include the
management of the domain-based split as well as of the size of the individual
microservices. This is the only way to ensure that the benefits of the microservice-
based architecture are maintained over time. Since the amount of code in a system
usually increases, the number of microservices should also grow in order to keep the
average size constant. Thus an increase in the number of microservices is not a prob-
lem but rather a good sign.

Global Architecture?

However, the size of microservices is not the only problem. The dependencies of the
microservices can also cause problems (see section 7.1). Such problems can be
solved most of the time by adjusting a number of microservices—that is, those that
have problematic dependencies. This requires contributions only from the teams
that work on these microservices. These teams are also the ones to spot the prob-
lems, because they will be affected by the bad architecture and the greater need for
coordination. By modifying the architecture, they are able to solve these issues. In
that case there is no need for a global management of dependencies. Metrics like a
high number of dependencies or cyclic dependencies are only an indication of a
problem. Whether such metrics actually show a problem can only be solved by eval-
uating them together with the involved teams. If the problematic components are,
for instance, not going to be developed any further in the future, it does not matter
if the metrics indicate a problem. Even if there is global architecture management, it
can only work effectively in close cooperation with the different teams.

7.5 Don’t Miss the Exit Point or How to Avoid the
Erosion of a Microservice (Lars Gentsch)

by Lars Gentsch, E-Post Development GmbH

Practically, it is not too difficult to develop a microservice. But how can you ensure
that the microservice remains a microservice and does not secretly become a mono-
lith? An example shall illustrate at which point a service starts to develop in the

ptg18144917

1237.5 How to Avoid the Erosion of a Microservice (Lars Gentsch)

wrong direction and which measures are necessary to ensure that the microservice
remains a microservice.

Let’s envision a small web application for customer registration. This scenario
can be found in nearly every web application. A customer wants to buy a product in
an Internet shop (Amazon, Otto, etc.) or to register for a video-on-demand portal
(Amazon Prime, Netflix, etc.). As a first step the customer is led through a small
registration workflow. He/she is asked for his/her username, a password, the email
address, and the street address. This is a small self-contained functionality, which is
very well suited for a microservice.

Technologically this service has probably a very simple structure. It consists of
two or three HTML pages or an AngularJS-Single Page App, a bit of CSS, some
Spring Boot and a MySQL database. Maven is used to build the application.

When data are entered, they are concomitantly validated, transferred into the
domain model, and put into the database for persistence. How can the microservice
grow step by step into a monolith?

Incorporation of New Functionality

Via the shop or the video-on-demand, portal items and content are supposed to be
delivered, which are only allowed to be accessed by people who are of age. For this
purpose, the age of the customer has to be verified. One possibility to do this is to
store the birth date of the client together with other data and to incorporate an
external service for the age verification.

Thus, the data model of our service has to be extended by the birth date. More
interesting is the incorporation of the external service. To achieve this, a client for an
external API has to be written, which should also be able to handle error situations
like the nonavailability of the provider.

It is highly probable that the initiation of the age verification is an asynchronous
process so that our service might be forced to implement a callback interface. So the
microservice must store data about the state of the process. When was the age veri-
fication process initiated? Is it necessary to remind the customer via email? Was the
verification process successfully completed?

What Is Happening to the Microservice Here?

The following things are going on:

1. The customer data is extended by the birthdate. That is not problematic.

2. In addition to customer data, there is now process data. Attention: here process
data is mixed with domain data.

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 124

3. In addition to the original CRUD functionality of the service, some kind of
workflow is now required. Synchronous processing is mixed with asynchronous
processing.

4. An external system is incorporated. The testing effort for the registration
microservice increases. An additional system and its behavior have to be
simulated during test.

5. The asynchronous communication with the external system has other
demands with regard to scaling. While the registration microservice requires
an estimated ten instances due to load and failover, the incorporation of the
age verification can be operated in a fail-safe and stable manner with just two
instances. Thus, different run time requirements are mixed here.

As the example demonstrates, an apparently small requirement like the
 incorporation of age verification can have tremendous consequences for the size of
the microservice.

Criteria Arguing for a New Microservice Instead
of Extending an Existing One

The criteria for deciding on when to start a new microservice include the following:

1. Introduction of different data models and data (domain versus process data)

2. Mixing of synchronous and asynchronous data processing

3. Incorporation of additional services

4. Different load scenarios for different aspects within one service

The example of the registration service could be further extended: the verification
of the customer’s street address could also be performed by an external provider.
This is common in order to ensure the existence of the denoted address. Another
scenario is the manual clearance of a customer in case of double registration. The
incorporation of a solvency check or customer scoring upon registration likewise are
frequent scenarios.

All these domain-based aspects belong in principle to the customer registration
and tempt developers and architects to integrate the corresponding requirements

ptg18144917

125

into the existing microservice. As a result the microservice grows into more than just
one microservice.

How to Recognize Whether the Creation of a New
Microservice Should Have Occurred Already

If your situation exhibits the following characteristics, then you probably already
needed another microservice:

• The service can only be sensibly developed further as a Maven multimodule
project or a Gradle multimodule project.

• Tests have to be divided into test groups and have to be parallelized for execu-
tion since the runtime of the tests surpasses five minutes (a violation of the
“fast feedback” principle).

• The configuration of the service is grouped by domain within the configuration
file, or the file is divided into single configuration files to improve the overview.

• A complete build of the service takes long enough to have a coffee break. Fast
feedback cycles are not possible anymore (a violation of the “fast feedback”
principle).

Conclusion

As the example of the registration microservice illustrates, it is a significant challenge to
let a microservice remain a microservice and not give in to the temptation of integrating
new functionality into an existing microservice due to time pressure. This holds true
even when the functionality clearly belongs, as in the example, to the same domain.

What defensive steps can be taken to prevent the erosion of a microservice? In
principle, it has to be as simple as possible to create new services, including their
own data storage. Frameworks like Spring Boot, Grails, and Play make a relevant
contribution to this. The allocation of project templates like Maven archetypes and
the use of container deployments with Docker are additional measures to simplify
the generation and configuration of new microservices as well as their passage into
the production environment as much as possible. By reducing the “expenditure”
required to set up of a new service, the barriers to introducing a new microservice
clearly decrease as does the temptation to implement new functionality into exist-
ing services.

7.5 How to Avoid the Erosion of a Microservice (Lars Gentsch)

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 126

7.6 Microservices and Legacy Applications

The transformation of a legacy application into a microservice-based architecture is
a scenario that is frequently met with in practice. Completely new developments are
rather rare, and microservices, first of all, promise advantages for long-term mainte-
nance. This is especially interesting for applications that are already on the brink of
not being maintainable anymore. Besides, the distribution into microservices makes
possible easier handling of continuous delivery: Instead of deploying and testing a
monolith in an automated fashion, small microservices can be deployed and tested.
The expenditure for this is by far lower. A continuous delivery pipeline for a micro-
service is not very complex; however, for a deployment monolith the expenditure can
be very large. This advantage is sufficient for many companies to justify the effort of
migrating to microservices.

In comparison to building up completely new systems, there are some important
differences when migrating from a deployment monolith to microservices:

• For a legacy system the functionality is clear from the domain perspective.
This can be a good basis for generating a clean domain architecture for the
microservices. Such a clean domain-based division is especially important for
microservices.

• However, there is already a large amount of code in existence. The code is often
of bad quality. There are few tests for the code, and deployment times are often
much too long. Microservices should remove these problems. Accordingly, the
challenges in this area are often significant.

• Likewise, it is well possible that the module boundaries in the legacy
 application do not answer to the Bounded Context idea (see section 3.3). In
that case migrating to a microservice-based architecture is a challenge because
the domain-based design of the application has to be changed.

Breaking Up Code?

In a simple approach the code of the legacy application can be split into several
microservices. This can be problematic when the legacy application does not have a
good domain architecture, which is often the case. The code can be easily split into
microservices when the microservices are geared to the existing modules of the
 legacy application. However, when those have a bad domain-based split, this bad
division will be passed on to the microservice-based architecture. Additionally,
the consequences of a bad domain-based design are even more profound in a micros-
ervice-based architecture: The design also influences the communication between

ptg18144917

1277.6 Microservices and Legacy Applications

teams. Besides, the initial design is hard to change later on in a microservice-based
architecture.

Supplementing Legacy Applications

However, it is also possible to get by without a division of the legacy application. An
essential advantage of microservices is that the modules are distributed systems. Because
of that, the module boundaries are at the same time the boundaries of processes that
communicate via the network. This has advantages for the distribution of a legacy
application: It is not at all necessary to know the internal structures of the legacy appli-
cation or, based on that, to perform a split into microservices. Instead microservices can
supplement or modify the legacy application at the interface. For this it is very helpful
when the system to be replaced is already built in an SOA (section 6.2). If there are indi-
vidual services, they can be supplemented by microservices.

Enterprise Integration Patterns

Enterprise Integration Patterns 12, 13 offer an inspiration for possible integrations of
legacy applications and microservices:

• Message Router describes that certain messages go to another service. For
example, a microservice can select some messages that are processed then
by the microservice instead of by the legacy application. In this way, the
 microservice-based architecture does not have to newly implement the entire
logic at once but can at first select some parts.

• A special router is the Content Based Router. It determines based on the
 content of a message where the message is supposed to be sent. This enables
the sending of specific messages to a specific microservice—even if the message
differs only in one field.

• The Message Filter avoids uninteresting messages that a microservice receives.
For that it just filters out all messages the microservice is not supposed to get.

• A Message Translator translates a message into another format. Therefore, the
microservices architecture can use other data formats and does not necessarily
have to employ the formats used by the legacy application.

 12. http://www.eaipatterns.com/toc.html

 13. Gregor Hohpe, Bobby Woolf. 2003. Enterprise Integration Patterns: Designing, Building, and
 Deploying Messaging Solutions. Boston: Addison-Wesley.

http://www.eaipatterns.com/toc.html

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 128

• The Content Enricher can supplement data in the messages. If a microser-
vice requires supplementary information in addition to the data of the legacy
application, the Content Enricher can add this information without the legacy
application or the microservice noticing anything.

• The Content Filter achieves the opposite: Certain data are removed from the
messages so that the microservice obtains only the information relevant for it.

Figure 7.9 shows a simple example. A Message Router takes calls and sends them
to a microservice or the legacy system. This enables implementation of certain func-
tionalities in microservices. These functionalities are also still present in the legacy
system but are not used there anymore. In this way the microservices are largely inde-
pendent of the structures within the legacy system. For instance, microservices can
start off with processing orders for certain customers or certain items. Because their
scope is limited, they do not have to implement all special cases.

The patterns can serve as inspiration for how a legacy application can be supple-
mented by microservices. There are numerous additional patterns—the list provides
only a glimpse of the entire catalog. As in other cases the patterns can be imple-
mented in different ways: actually, they focus on messaging systems. However, it is
possible to implement them with synchronous communication mechanisms, though
less elegant. For instance, a REST service can take a POST message, supplement it
with additional data, and finally send it to another microservice. That would then be
a Content Enricher.

To implement such patterns, the sender has to be uncoupled from the recipi-
ent. This enables the integration of additional steps into the processing of requests
 without the sender noticing anything. In case of a messaging approach, this is easily
possible, as the sender knows only one queue in which he/she places the messages.
The sender does not know who fetches the messages. However, in the case of syn-
chronous communication via REST or SOAP, the message is sent directly to the

Microservice

Microservice

Legacy System

Message
Router

Figure 7.9 Supplementing Legacy Applications by a Message Router

ptg18144917

1297.6 Microservices and Legacy Applications

recipient. Only by Service Discovery (see section 7.11) the sender gets uncoupled
from the recipient. Then one service can be replaced by another service without
need to change the senders. This enables an easier implementation of the patterns.
When the legacy application is supplemented by a Content Enricher, this Content
Enricher, instead of the legacy application, is registered in the Service Discovery,
but no sender has to be modified. To introduce Service Discovery can therefore be
a first step towards a microservices architecture since it enables supplementation or
replacement of individual services of the legacy application without having to mod-
ify the users of the legacy application.

Limiting Integration

Especially for legacy applications, it is important that the microservices are not too
dependent on the legacy application. Often the bad structure of the old application
is the specific reason why the application is supposed to be replaced in the first place.
Therefore, certain dependencies should not be allowed at all. When microservices
directly access the database of the legacy application, the microservices are depend-
ent on the internal data representation of the legacy application. Besides neither the
legacy application nor the microservices can still change the schema, because such
changes have to be implemented in microservices and legacy application. The shared
use of a database in legacy application and microservices has to be avoided on all
accounts. However, to replicate the data of the legacy application into a separate
database schema is, of course, still an option.

Advantages

It is an essential advantage of such an approach that the microservices are largely
independent of the architecture of the legacy application. And the replacement of a
legacy application is mostly initiated because its architecture is not sustainable any
more. This also enables supplementation of systems by microservices that are actu-
ally not at all meant to be extended. Though, for instance, standard solutions in the
area of CRM, e-commerce, or ERP are internally extensible, their extension by
external interfaces can be a welcome alternative since such a supplement is often
easier. Moreover, such systems often attract functionalities that do not really belong
there. A distribution into a different deployment unit via a microservice ensures a
permanent and clear delimitation.

Integration via UI and Data Replication

However, this approach only tackles the problem on the level of logic integration.
Chapter 8 describes another level of integration, namely data replication. This
allows a microservice to access comprehensive datasets of a legacy application also

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 130

with good performance. It is important that the replication does not happen based
on the data model of the legacy application. In that case the data model of the legacy
application would practically not be changeable anymore since it is also used by the
microservice. An integration based on the use of the same database would be even
worse. Also at the level of UI integrations are possible. Links in web applications are
especially attractive since they cause only few changes in the legacy application.

Content Management Systems

In this manner content management systems (CMS), for instance, which often con-
tain many functionalities, can be supplemented by microservices. CMS contain the
data of a website and administrate the content so that editors can modify it. The
microservices take over the handling of certain URLs. Similar to a Message Router,
an HTTP request can be sent to a microservice instead of to the CMS. Or the micro-
service changes elements of the CMS as in the case of a Content Enricher or modifies
the request as in the case of a Message Translator. Last, the microservices could store
data in the CMS and thereby use it as a kind of database. Besides JavaScript repre-
senting the UI of a microservice can be delivered into the CMS. In that case the CMS
turns into a tool for the delivery of code in a browser.

Some examples could be:

• A microservice can import content from certain sources. Each source can have
its own microservice.

• The functionality that enables a visitor of the web page—for example, to
 follow an author—can be implemented in a separate microservice. The micro-
service can either have its own URL and be integrated via links, or it modifies
the pages that the CMS delivers.

• While an author is still known in the CMS, there is other logic that is completely
separate from the CMS. This could be vouchers or e-commerce functionalities.
Also in this case a microservice can appropriately supplement the system.

Especially in the case of CMS systems, which create static HTML, microservices-
based approaches can be useful for dynamic content. The CMS moves into the back-
ground and is only necessary for certain content. There is a monolithic deployment
of the CMS content, while the microservices can be deployed much more rapidly and
in an independent manner. In this context the CMS is like a legacy application.

Conclusion

The integrations all have the advantage that the microservices are not bound to the
architecture or the technology decisions of the legacy application. This provides

ptg18144917

1317.6 Microservices and Legacy Applications

the microservices with a decisive advantage compared to a modifications of the leg-
acy application. However, the migration away from the legacy application using this
approach poses a challenge at the level of architecture; in effect, microservice-based
systems have to have a well-structured domain-based design to enable the implemen-
tation of features within one microservice and by an individual team. In case of a
migration, which follows the outlined approach, this cannot always be put into effect
since the migration is influenced by the interfaces of the legacy application. There-
fore, the design cannot always be as clear-cut as desirable. Besides, domain-based
features will still be also implemented in the legacy application until a large part of
the migration has been completed. During this time the legacy application cannot be
finally removed. When the microservices confine themselves to transforming the
messages, the migration can take a very long time.

No Big Bang

The outlined approaches suggest that the existing legacy application is supple-
mented in a stepwise manner by microservices or that individual parts of the legacy
application are replaced by microservices. This type of approach has the advantage
that the risk is minimized. Replacing the entire legacy application in one single step
entails high risk due to the size of the legacy application. In the end, all functionali-
ties have to be represented in the microservices. In this process numerous mistakes
can creep in. In addition, the deployment of microservices is complex as they all have
to be brought into production in a concerted manner in order to replace the legacy
application in one step. A stepwise replacement nearly imposes itself in the case of
microservices since they can be deployed independently and supplement the legacy
application. Therefore, the legacy application can be replaced by microservices in a
stepwise manner.

Legacy = Infrastructure

Part of a legacy application can also simply be continued to be used as infrastructure for
the microservices. For example, the database of the legacy application can also be used
for the microservices. It is important that the schemas of the microservices are separate
from each other and also from the legacy application. After all, the microservices should
not be closely coupled.

The use of the database of the legacy application does not have to be mandatory
for the microservices. Microservices can definitely also use other solutions. However,
the existing database is established with regard to operation or backup. Using this
database can also present an advantage for the microservices. The same is true for
other infrastructure components. A CMS, for instance, can likewise serve as common
infrastructure, to which functionalities are added from the different microservices
and into which the microservices can also deliver content.

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 132

Other Qualities

The migration approaches introduced so far focus on enabling the domain-based
division into microservices in order to facilitate the long-term maintenance and
 continued development of the system. However, microservices have many additional
advantages. When migrating it is important to understand which advantage motivates
the migration to microservices because, depending on this motivation, an entirely dif-
ferent strategy might be adopted. Microservices also offer, for instance, increased
robustness and resilience since the communication with other services is taken care of
accordingly (see section 9.5). If the legacy application currently has a deficit in this
area or a distributed architecture already exists that has to be optimized with respect
to these points, appropriate technology and architecture approaches can be defined
without necessarily requiring that the application be divided into microservices.

Try and Experiment

• Do research on the remaining Enterprise Integration Patterns:

• Can they be meaningfully employed when dealing with microservices? In
which context?

• Can they really only be implemented with messaging systems?

7.7 Hidden Dependencies (Oliver Wehrens)

by Oliver Wehrens, E-Post Development GmbH

In the beginning there is the monolith. Often it is sensible and happens naturally that
software is created as a monolith. The code is clearly arranged, and the business
domain is just coming into being. In that case it is better when everything has a com-
mon base. There is a UI, business logic, and a database. Refactoring is simple,
deployment is easy, and everybody can still understand the entire code.

Over time the amount of code grows, and it gets hard to see through. Not every-
body knows all parts of the code anymore. The compiling takes longer, and the unit
and integration tests invite developers to take a coffee break. In case of a relatively
stable business domain and a very large code basis, many projects will consider at
this point the option to distribute the functionality into multiple microservices.

ptg18144917

1337.7 Hidden Dependencies (Oliver Wehrens)

Depending on the status of the business and the understanding of the business/
product owners, the necessary tasks will be completed. Source code is distributed,
continuous delivery pipelines are created, and server provisioned. During this step no
new features are developed. The not-negligible effort is justified just by the hope that
in the future, features will be faster and more independently created by other teams.
While developers are going to be very assured of this, other stakeholders often have
to be convinced first.

In principle everything has been done to reach a better architecture. There are
 different teams that have independent source code. They can bring their software at
any time into production and independent of other teams.

Almost.

The Database

Every developer has a more or less pronounced affinity to the database. In my experi-
ence many developers view the database as necessary evil that is somewhat cumber-
some to refactor. Often tools are being used that generate the database structure for
the developers (e.g., Liquibase or Flyway in the JVM area). Tools and libraries
(Object-relation mapping) renders it very easy to make objects persistent. A few
annotations later and the domain is saved in the database.

All these tools remove the database from the typical developers, who “only” want
to write their code. This has sometimes the consequence that there is not much atten-
tion given to the database during the development process. For instance, indices that
were not created will slow down searches on the database. This will not show up in a
typical test, which does not work with large data amounts, and thus go like that into
production.

Let’s take the fictional case of an online shoe shop. The company requires a
 service that enables users to log in. A user service is created containing the typical
fields like ID, first name, family name, address, and password. To now offer fitting
shoes to the users, only a selection of shoes in their actual size is supposed to be
displayed. The size is registered in the welcome mask. What could be more sensible
than to store this data in the already existing user service? Everybody is sure this
is the right decision: these are user-associated data, and this is the right location.

Now the shoe shop expands and starts to sell additional types of clothing. Dress
size, collar size, and all other related data are now also stored in the user service.

Several teams are employed in the company. The code gets progressively more
complex. It is this point in time where the monolith is split into domain-based
 services. The refactoring in the source code works well, and a soon the monolith is
split apart into many microservices.

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 134

Unfortunately, it turns out that it is still not easy to introduce changes. The
team in charge of shoes wants to accept different currencies because of interna-
tional expansion and has to modify the structure of the billing data to include the
address format. During the upgrade the database is blocked. Meanwhile no dress
size or favorite color can be changed. Moreover, the address data are used in different
 standard forms of other services and thus cannot be changed without coordination
and effort. Therefore, the feature cannot be implemented promptly.

Even though the code is well separated, the teams are indirectly coupled via the
database. To rename columns in the user service database is nearly impossible because
nobody knows anymore in detail who is using which columns. Consequently, the teams
do workarounds. Either fields with the name ‘Userattribute1’ are created, which then
are mapped onto the right description in the code, or separations are introduced into
the data like ‘#Color: Blue#Size:10.’ Nobody except the involved team knows what is
meant by ‘Userattribute1,’ and it is difficult to generate an index on ‘#Color: #Size.’
Database structure and code are progressively harder to read and maintain.

It has to be essential for every software developer to think about how to make the
data persistent, not only about the database structures but also about where which
data is stored. Is the table respective database the place where these data should be
located? From a business domain perspective, does this data have connections to
other data? In order to remain flexible in the long term, it is worthwhile to carefully
consider these questions every time. Typically, databases and tables are not created
very often. However, they are a component that is very hard to modify later. Besides,
databases and tables are often the origin of a hidden interdependence between ser-
vices. In general, it has to be that data can only be used by exactly one service via
direct database access. All other services that want to use the data may only access it
via the public interfaces of the service.

7.8 Event-Driven Architecture

Microservices can call each other in order to implement shared logic. For example, at
the end of the order process the microservice for billing as well as the microservice
for the order execution can be called to create the bill and make sure that the ordered
items are indeed delivered (see Figure 7.10).

This requires that the order process knows the service for the billing and for the
delivery. If a completed orders necessitates additional steps, the order service also has
to call the services responsible for these steps.

Event-driven architecture (EDA) enables a different modeling: When the order
processing has been successfully finished, the order process will send an event. It is
an event emitter. This event signals all interested microservices (event consumers)
that there is a new successful order. Thus, one microservice can now print a bill, and
another microservice can initiate a delivery (see Figure 7.11).

ptg18144917

1357.8 Event-Driven Architecture

This procedure has a number of advantages:

• When other microservices are also interested in orders, they can easily register.
Modifying the order process is not necessary anymore.

• Likewise, it is imaginable that other microservices also trigger identical
events—again without changes to the order process.

• The processing of events is temporally unlinked. It can be linked later on.

At the architectural level, event-driven architectures have the advantage that they
enable a very loose coupling and thus facilitate changes. The microservices need to
know very little about each other. However, the coupling requires that logic is inte-
grated and therefore implemented in different microservices. Thereby a split into
microservice with UI and microservices with logic can arise. That is not desirable.
Changes to the business logic entail often changes to logic and UI. These are then
separate microservices. The change cannot readily take place in only one microser-
vice anymore and thus gets more complex.

Technically, such architectures can be implemented without a lot of effort via
messaging (see section 8.4). Microservices within such an architecture can very easily
implement CQRS (section 9.2) or event sourcing (section 9.3).

Order Process

Billing
Microservice

Delivery
Microservice

Figure 7.10 Calls between Microservices

Order Process

Billing
Microservice

Delivery
Microservice

Order
Event

Order
Event

Figure 7.11 Event-Driven Architecture

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 136

7.9 Technical Architecture

To define a technology stack with which the system can be built is one of the main
parts of an architecture. For individual microservices this is likewise a very impor-
tant task. However, the focus of this chapter is the microservice-based system in its
entirety. Of course, a certain technology can bindingly be defined for all microser-
vices. This has advantages: In that case the teams can exchange knowledge about the
technology. Refactorings are simpler because members of one team can easily help
out on other teams.

However, defining standard technologies is not mandatory: if they are not defined,
there will be a plethora of different technologies and frameworks. However, since
typically only one team is in contact with each technology, such an approach can
be acceptable. Generally, microservice-based architectures aim for the largest possi-
ble independence. With respect to the technology stack, this independence translates
into the ability to use different technology stacks and to independently make tech-
nology decisions. However, this freedom can also be restricted.

Technical Decisions for the Entire System

Nevertheless, at the level of the entire system there are some technical decisions to
make. However, other aspects are more important for the technical architecture of
the microservice-based system than the technology stack for the implementation:

• As discussed in the last section, there might be technologies that can be used
by all microservices—for instance, databases for data storage. Using these
 technologies does not necessarily have to be mandatory. However, especially
in the case of persistence technologies, like databases, backups, and disaster
recovery concepts have to exist so that at least these technical solutions have
to be obligatory. The same is true for other basic systems such as CMS, for
instance, which likewise have to be used by all microservices.

• The microservices have to adhere to certain standards with respect to
 monitoring, logging and deployment. Thereby, it can be ensured that the
 plethora of microservices can still be operated in a uniform manner. Without
such standards this is hardly possible anymore in the case of a larger number
of microservices.

• Additional aspects relate to configuration (section 7.10), Service Discovery
 (section 7.11) and security (section 7.14).

ptg18144917

1377.9 Technical Architecture

• Resilience (section 9.5) and Load Balancing (section 7.12) are concepts that
have to be implemented in a microservice. Still, the overall architecture can
demand that each microservice takes precautions in this area.

• An additional aspect is the communication of the microservices with each other
(see Chapter 8). For the system in its entirety a communication infrastructure
has to be defined which the microservices adhere to also.

The overall architecture does not necessarily restrict the choice of technologies.
For logging, monitoring, and deployment an interface could be defined so there can
be a standard according to which all microservices log messages in the same manner
and hand them over to a common log infrastructure. However, the microservices do
not necessarily have to use the same technologies for this. Similarly, how data can
be handed to the monitoring system and which data are relevant for the monitoring
can be defined. A microservice has to hand over the data to the monitoring, but a
technology does not necessarily have to be prescribed. For deployment a completely
automated continuous delivery pipeline can be demanded that deploys software or
deposits it into a repository in a certain manner. Which specific technology is used is,
again, a question for the developers of the respective microservice to decide. Practi-
cally, there are advantages when all microservices employ the same technology. This
reduces complexity, and there will also be more experience in how to deal with the
employed technology. However, in case of specific requirements, it is still possible to
use a different technical solution when, for this special case, the advantages of such
a solution predominate. This is an essential advantage of the technology freedom of
microservice-based architectures.

Sidecar

Even if certain technologies for implementing the demands on microservices are
 rigidly defined, it will still be possible to integrate other technologies. Therefore,
the concept of a sidecar can be very useful. This is a process that integrates into
the microservices-based architecture via standard technologies and offers an
interface that enables another process to use these features. This process can be imple-
mented in an entirely different technology so that the technology freedom is preserved.
 Figure 7.12 illustrates this concept: The sidecar uses standard technologies and ren-
ders them accessible for another microservice in an optional technology. The sidecar
is an independent process and therefore can be called for instance via REST so that
microservices in arbitrary technologies can use the sidecar. Section 13.12 shows a con-
crete example for a sidecar.

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 138

Also, with this approach such microservices can be integrated into the architec-
ture whose technological approach otherwise would exclude the use of the general
technical basis for configuration, Service Discovery and security, as the client compo-
nent is not available for the entire technology.

In some regards the definition of the technology stack also affects other fields.
The definition of technologies across all microservices also affects the organization
or can be the product of a certain organization (see Chapter 12, “Organizational
Effects of a Microservices-Based Architecture”).

Try and Experiment

• A microservices-based architecture is supposed to be defined.

• Which technical aspects could it comprise?

• Which aspects would you prescribe to the teams? Why?

• Which aspects should the teams decide on their own? Why?

In the end, the question is how much freedom you allow the teams to
have. There are numerous possibilities, ranging from complete freedom
up to the prescription of practically all aspects. However, some areas can
only be centrally defined—the communication protocols, for example.
 Section 12.3 discusses in more detail who should make which decisions in a
 microservice-based project.

Microservice

Sidecar

Standard
logging

Standard
monitoring

Standard
configuration

Standard
Service

Discovery

Standard
security

Microservices
Infrastructure

Figure 7.12 A Sidecar Renders All Standard Technologies Accessible via a Simple Interface

ptg18144917

1397.10 Configuration and Coordination

7.10 Configuration and Coordination

Configuring microservice-based systems is laborious. They comprise a plethora of
microservices, which all have to be provided with the appropriate configuration
parameters.

Some tools can store the configuration values and make them available to all
microservices. Ultimately, these are solutions in key/value stores, which save a certain
value under a certain key:

• Zookeeper14 is a simple hierarchical system that can be replicated onto multi-
ple servers in a cluster. Updates arrive in an orderly fashion at the clients. This
can also be used in a distributed environment, for instance for synchronization.
Zookeeper has a consistent data model: all nodes have always the same data.
The project is implemented in Java and is available under the Apache license.

• etcd15 originates from the Docker/CoreOS environment. It offers an HTTP
interface with JSON as data format. etcd is implemented in Go and also is
available under the Apache license. Similar to Zookeeper, etcd also has a con-
sistent data model and can be used for distributed coordination. For instance,
etcd enables implementation of locking in a distributed system.

• Spring Cloud Config16 likewise has a REST-API. The configuration data can
be provided by a Git backend. Therefore Spring Cloud Config directly sup-
ports data versioning. The data can also be encrypted to protect passwords.
The system is well integrated into the Java framework Spring and can be used
without additional effort in Spring systems for Spring itself provides already
configuration mechanisms. Spring Cloud Config is written in Java and is avail-
able under the Apache license. Spring Cloud Config does not offer support for
synchronizing different distributed components.

Consistency as Problem

Some of the configuration solutions offer consistent data. This means that all nodes
return the same data in case of a call. This is in a sense an advantage. However,
according to the CAP theorem a node can only return an inconsistent response in
case of a network failure—or none at all. In the end, without a network connection
the node cannot know whether other nodes have already received other values. If the
system allows only consistent responses, there can be no response at all in this situa-
tion. For certain scenarios this is highly sensible.

 14. https://zookeeper.apache.org/

15. https://github.com/coreos/etcd

16. http://cloud.spring.io/spring-cloud-config/

https://www.zookeeper.apache.org/
https://www.github.com/coreos/etcd
http://www.cloud.spring.io/spring-cloud-config/

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 140

For instance, only one client should execute a certain code at a given time—for
example, to initiate a payment exactly once. The necessary locking can be done by
the configuration system: within the configuration system there is a variable that,
upon entering this code, has to be set. Only in that case may the code be executed.
In the end, it is better when the configuration system does not return a response two
clients will not execute the code in parallel by chance.

However, for configurations such strict requirements regarding consistency are
often not necessary. Maybe it is better when a system gets an old value rather than
when it does not get any value at all. However, in the case of CAP different compro-
mises are possible. For instance, etcd returns an incorrect response rather than no
response at all under certain conditions.

Immutable Server

Another problem associated with the centralized storage of configuration data is
that the microservices do not only depend on the state of their own file system and
the contained files but also on the state of the configuration server. Therefore, a
microservice now cannot be exactly replicated anymore—for this the state of the
configuration server is relevant also. This makes the reproduction of errors and the
search for errors in general more difficult.

In addition, the configuration server is in opposition to the concept of an immu-
table server. In this approach every software change leads to a new installation of the
software. Ultimately, the old server is terminated upon an update, and a new server
with an entirely new installation of the software is started. However, in case of an
external configuration server, a part of the configuration will not be present on the
server, and therefore the server is after all changeable in the end by adjusting the con-
figuration. However, this is exactly what is not supposed to happen. To prevent it, a
configuration can be made in the server itself instead of the configuration server. In
that case configuration changes can only be implemented by rolling out a new server.

Alternative: Installation Tools

The installation tools (discussed in section 11.4) represent a completely different
approach for the configuration of individual microservices. These tools support not
only the installation of software, but also the configuration. The configuration files,
for instance, can be generated, which can subsequently be read by microservices. The
microservice itself does not notice the central configuration since it reads only a con-
figuration file. Still, these approaches support all scenarios, which typically occur in a

ptg18144917

1417.11 Service Discovery

microservices-based architecture. Thus, this approach allows a central configuration
and is not in opposition to the immutable server as the configuration is completely
transferred to the server.

7.11 Service Discovery

Service Discovery ensures that microservices can find each other. This is, in a sense, a
very simple task: For instance, a configuration file detailing the IP address and the port
of the microservice can be delivered on all computers. Typical configuration manage-
ment systems enable the rollout of such files. However, this approach is not sufficient:

• Microservices can come and go. This does not only happen due to server fail-
ures but also because of new deployments or the scaling of the environment by
the start of new servers. Service Discovery has to be dynamic. A fixed configu-
ration is not sufficient.

• Due to Service Discovery, the calling microservices are not so closely coupled
anymore to the called microservice. This has positive effects for scaling: A cli-
ent is not bound to a concrete server, instance, anymore but can contact differ-
ent instances—depending on the current load of the different servers.

• When all microservices have a common approach for Service Discovery, a central
registry of all microservices arises. This can be helpful for an architecture over-
view (see section 7.2). Or monitoring information can be retrieved by all systems.

In systems that employ messaging, Service Discovery can be dispensable. Messag-
ing systems already decouple sender and recipient. Both know only the shared chan-
nel by which they communicate. However, they do not know the identity of their
communication partner. The flexibility that Service Discovery offers is then provided
by the decoupling via the channels.

Service Discovery = Configuration?

In principle it is conceivable to implement Service Discovery by configuration solutions
(see section 7.10). In the end, only the information that service is reachable at which
location is supposed to be transferred. However, configuration mechanisms are, in
effect, the wrong tools for this. For Service Discovery, high availability is more impor-
tant than for a configuration server. In the worst case a failure of Service Discovery can

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 142

have the consequence that communication between microservices becomes impossible.
Consequently, the trade-off between consistency and availability is different compared
to configuration systems. Therefore, configuration systems should be used for Service
Discovery only when they offer an appropriate availability. This can have consequences
for the necessary architecture of the Service Discovery system.

Technologies

There are many different technologies for Service Discovery:

• One example is DNS17 (Domain Name System). This protocol ensures that
a host name like www.ewolff.com can be resolved to an IP address. DNS is
an essential component of the Internet and has clearly proven its scalability
and availability. DNS is hierarchically organized: There is a DNS server that
 administrates the .com domain. This DNS server knows which DNS server
administrates the subdomain ewolff.com, and the DNS server of this subdomain
finally knows the IP address of www.ewolff.com. In this way a namespace can be
hierarchically organized, and different organizations can administrate different
parts of the namespace. If a server named server.ewolff.com is supposed to be
created, this can be easily done by a change in the DNS server of the domain
ewolff.com. This independence fits well to the concept of microservices, which
especially focus on independence with regard to their architecture. To ensure
reliability there are always several servers, which administrate a domain. In order
to reach scalability DNS supports caching so that calls do not have to implement
the entire resolution of a name via multiple DNS servers, but can be served by a
cache. This does not only promote performance, but also reliability.

• For Service Discovery it is not sufficient to resolve the name of a server into
an IP address. In addition, there has to be a network port for each service.
Therefore, the DNS has SRV records. These contain the information on which
computer and port the service is reachable. In addition, a priority and a weight
can be set for a certain server. These values can be used to select one of the
servers and thereby to prefer powerful servers. Via this approach, DNS offers
reliability and Load Balancing onto multiple servers. Advantages of DNS are
apart from scalability also the availability of many different implementations
and the broad support in different programming languages.

• A frequently used implementation for a DNS server is BIND (Berkeley Internet
Name Domain Server).18 BIND runs on different operating systems (Linux,

 17. http://www.zytrax.com/books/dns/

 18. https://www.isc.org/downloads/bind/

http://www.zytrax.com/books/dns/
https://www.isc.org/downloads/bind/
http://www.ewolff.com
http://www.ewolff.com
http://www.ewolff.com
http://www.ewolff.com
http://www.server.ewolff.com

ptg18144917

1437.11 Service Discovery

BSD, Windows, Mac OS X), is written in the programming language C and is
under an open-source license.

• Eureka19 is part of the Netflix stack. It is written in Java and is available under
the Apache license. The example application in this book uses Eureka for
 Service Discovery (see section 13.8). For every service Eureka stores under the
service name a host and a port, under which the service is available. Eureka
can replicate the information about the services onto multiple Eureka servers
in order to increase the availability. Eureka is a REST service. A Java library for
the clients belongs to Eureka. Via the sidecar concept (section 7.9) this library
can also be used by systems, which are not written in Java. The sidecar takes
over the communication with the Eureka server, which then offers Service
 Discovery to the microservice. On the clients the information from the server
can be held in a cache so that calls are possible without communication with
the server. The server regularly contacts the registered services to determine
which services failed. Eureka can be used as basis for Load Balancing since
several instances can be registered for one service. The load can then be
 distributed onto these instances. Eureka was originally designed for the
Amazon Cloud.

• Consul20 is a key/value store and therefore fits also into the area of configu-
ration servers (section 7.10). Apart from consistency it can also optimize
availability.21 Clients can register with the server and react to certain events. In
addition to a DNS interface it also has a HTTP/JSON interface. It can check
whether services are still available by executing health checks. Consul is written
in Go and is available under the Mozilla open-source license. Besides, Consul
can create configuration files from templates. Therefore, a system expecting
services in a configuration file can likewise be configured by Consul.

Every microservice-based architecture should use a Service Discovery system. It
forms the basis for the administration of a large number of microservices and for
additional features like Load Balancing. If there is only a small number of microser-
vices, it is still imaginable to get along without Service Discovery. However, for a
large system Service Discovery is indispensable. Since the number of microservices
increases over time, Service Discovery should be integrated into the architecture right
from the start. Besides, practically each system uses at least the name resolution of
hosts, which is already a simple Service Discovery.

19. https://github.com/Netflix/eureka

20. http://www.consul.io

21. https://aphyr.com/posts/316-call-me-maybe-etcd-and-consul

https://www.github.com/Netflix/eureka
http://www.consul.io
https://www.aphyr.com/posts/316-call-me-maybe-etcd-and-consul

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 144

7.12 Load Balancing

It is one of the advantages of microservices that each individual service can be
 independently scaled. To distribute the load between the instances, multiple
instances, which share the load, can simply be registered in a messaging solution (see
section 8.4). The actual distribution of the individual messages is then performed by
the messaging solution. Messages can either be distributed to one of the receivers
(point-to-point) or to all receivers (publish/subscribe).

REST/HTTP

In case of REST and HTTP a load balancer has to be used. The load balancer has
the function to behave to the outside like a single instance, but to distribute requests
to multiple instances. Besides, a load balancer can be useful during deployment:
Instances of the new version of the microservice can initially start without getting a
lot of load. Afterwards the load balancer can be reconfigured in a way that the new
microservices are put into operation. In doing so the load can also be increased in a
stepwise manner. This decreases the risk of a system failure.

Figure 7.13 illustrates the principle of a proxy-based load balancer: the client
sends its requests to a load balancer running on another server. This load balancer
is responsible for sending each request to one of the known instances. There the
request is processed.

This approach is common for websites and relatively easy to implement. The load
balancer retrieves information from the service instances to determine the load of
the different instances. In addition, the load balancer can remove a server from the
Load Balancing when the node does not react to requests anymore.

On the other hand, this approach has the disadvantage that the entire traffic
for one kind of service has to be directed via a load balancer. Therefore, the load

Client
Load

Balancer

Service
instance

Service
instance

Service
instance

Figure 7.13 Proxy-Based Load Balancer

ptg18144917

1457.12 Load Balancing

balancer can turn into a bottleneck. Besides, a failure of the load balancer results in
the failure of a microservice.

Central Load Balancer

A central load balancer for all microservices is not only not recommended for these
reasons but also because of the configuration. The configuration of the load balancer
gets very complex when only one load balancer is responsible for many microservices.
Besides, the configuration has to be coordinated between all microservices. Especially
when a new version of a microservice is being deployed, a modification of the load
balancer can be sensible in order to put the new microservice only after a
comprehensive test under load. The need for coordination between microservices
should especially be avoided with regard to deployment to ensure the independent
deployment of microservices. In case of such a reconfiguration, one has to make sure
that the load balancer supports a dynamic reconfiguration and, for instance, does not
lose information regarding sessions if the microservice uses sessions. Also for this
reason it is not recommended that stateful microservices should be implemented.

A Load Balancer per Microservice

There should be one load balancer per microservice, which distributes the load
between the instances of the microservice. This enables the individual microservices
to independently distribute load, and different configurations per microservice are
possible. Likewise, it is simple to appropriately reconfigure the load balancer upon
the deployment of a new version. However, in case of a failure of the load balancers,
the microservice will not be available anymore.

Technologies

For Load Balancing there are different approaches:

• The Apache httpd web server supports Load Balancing with the extension
mod_proxy_balancer.22

• The web server nginx23 can likewise be configured in a way that it supports
Load Balancing. To use a web server as load balancer has the advantage that it
can also deliver static websites, CSS, and images. Besides, the number of tech-
nologies will be reduced.

22. http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

23. http://nginx.org/en/docs/http/load_balancing.html

http://www.httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://www.nginx.org/en/docs/http/load_balancing.html

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 146

• HAProxy24 is a solution for Load Balancing and high availability. It does not
support HTTP, but all TCP-based protocols.

• Cloud providers frequently also offer Load Balancing. Amazon, for instance,
offers Elastic Load Balancing.25 This can be combined with auto scaling so
that higher loads automatically trigger the start of new instances, and thereby
the application automatically scales with load.

Service Discovery

Another possibility for Load Balancing is Service Discovery (see Figure 7.14; see
 section 7.11). When the Service Discovery returns different nodes for a service, the
load can be distributed across several nodes. However, this approach allows redi-
recting to another node only in the case that a new Service Discovery is performed.
This makes it difficult to achieve a fine granular Load Balancing. For a new node
it will therefore take some time until it gets a sufficient share of load. Finally, the
failure of a node is hard to correct because a new Service Discovery would be nec-
essary for that. It is useful that in case of DNS it can be stated for a set of data
how long the data is valid (time-to-live). Afterwards the Service Discovery has to
be run again. This enables a simple Load Balancing via DNS solutions and also
with Consul. However, unfortunately this time-to-live is often not completely
 correctly implemented.

Load Balancing with Service Discovery is simple because Service Discovery has
to be present in a microservice-based system anyhow. Therefore, the Load Balancing

24. http://www.haproxy.org/

25. http://aws.amazon.com/de/elasticloadbalancing/

Client

Service
Discovery Service

instance

Service
instance

Service
instance

Returns
instances

Uses service
instance

Figure 7.14 Load Balancing with Service Discovery

http://www.haproxy.org/
http://www.aws.amazon.com/de/elasticloadbalancing/

ptg18144917

1477.12 Load Balancing

does not introduce additional software components. Besides, avoiding a central load
balancer has the positive effect that there is no bottle neck and no central component
whose failure would have tremendous consequences.

Client-Based Load Balancing

The client itself can also use a load balancer (see Figure 7.15). The load balancer can
be implemented as a part of the code of the microservice or it can come as a proxy-
based load balancer such as nginx or Apache httpd, which runs on the same com-
puter as the microservice. In that case there is no bottleneck because each client has
its own load balancer, and the failure of an individual load balancer has hardly any
consequences. However, configuration changes have to be passed on to all load bal-
ancers, which can cause quite a lot of network traffic and load.

Ribbon26 is an implementation of client-based Load Balancing. It is a library that
is written in Java and can use Eureka to find service instances. Alternately, a list of
servers can be handed over to Ribbon. Ribbon implements different algorithms for
Load Balancing. Especially when using it in combination with Eureka, the individual
load balancer does not need to be configured anymore. Because of the sidecar con-
cept Ribbon can also be used by microservices that are not implemented in Java. The
example system uses Ribbon (see section 13.11).

Consul offers the possibility to define a template for configuration files of load
balancers. This enables feeding the load balancer configuration with data from Ser-
vice Discovery. Client-based Load Balancing can be implemented by defining a tem-
plate for each client, into which Consul writes all service instances. This process can

26. https://github.com/Netflix/ribbon

Client

Load
Balancer

Service
instance

Service
instance

Service
instance

Figure 7.15 Client-Based Load Balancing

https://github.com/Netflix/ribbon

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 148

be regularly repeated. In this manner a central system configuration is again possible,
and client-based Load Balancing is relatively simple to implement.

Load Balancing and Architecture

It is hardly sensible to use more than one kind of Load Balancing within a single
microservice-based system. Therefore, this decision should be made once for the
entire system. Load Balancing and Service Discovery have a number of contact
points. Service Discovery knows all service instances; Load Balancing distributes the
loads between the instances. Both technologies have to work together. Thus, the
technology decisions in this area will influence each other.

7.13 Scalability

To be able to cope with high loads, microservices have to scale. Scalability means
that a system can process more load when it gets more resources.

There are two different kinds of scalability as represented in Figure 7.16:

• Horizontal scalability—This means that more resources are used, which each
process part of the load, that is, the number of resources increases.

• Vertical scalability—This means that more powerful resources are employed
to handle a higher load. Here, an individual resource will process more load,
while the number of resources stays constant.

Horizontal scalability is often the better choice since the limit for the possible
number of resources and therefore the limit for the scalability is very high. Besides,

Microservice Microservice Microservice Microservice

Horizontal Scaling

Vertical
Scaling

Figure 7.16 Horizontal and Vertical Scaling

ptg18144917

1497.13 Scalability

it is cheaper to buy more resources than more powerful ones. One fast computer is
often more expensive than many slow ones.

Scaling, Microservices, and Load Balancing

Microservices employ mostly horizontal scaling, where the load is distributed across
several microservice instances via Load Balancing. The microservices themselves
have to be stateless for this. More precisely, they should not have any state, which is
specific for an individual user, because then the load can only be distributed to nodes,
which have the respective state. The state for a user can be stored in a database or
alternatively be put into an external storage (for example, In-Memory-Store), which
can be accessed by all microservices.

Dynamic Scaling

Scalability means only that the load can be distributed to multiple nodes. How the
system really reacts to the load is not defined. In the end it is more important that the
system really adapts to an increasing load. For that it is necessary that, depending on
the load, a microservice starts new instances onto which the load can be distributed.
This enables the microservice to also cope with high loads. This process has to be
automated, as manual processes would be too laborious.

There are different places in the continuous deployment pipeline (Chapter 11,
“Operations and Continuous Delivery of Microservices”) where it is necessary to
start a microservice to test the services. For that a suitable deployment system such
as Chef or Puppet can be used. Alternatively, a new virtual machine or a new Docker
container with the microservice is simply started. This mechanism can also be used
for dynamic scaling. It only has to additionally register the new instances with the
Load Balancing. However, the instance should be able to handle the production load
right from the start. Therefore, the caches should, for instance, already be filled
with data.

Dynamic scaling is especially simple with Service Discovery: The microservice has
to register with the Service Discovery. The Service Discovery can configure the load
balancer in a way that it distributes load to the new instance.

The dynamic scaling has to be performed based on a metric. When the response
time of a microservice is too long or the number of requests is very high, new
instances have to be started. The dynamic scaling can be part of a monitoring (see
section 11.3) since the monitoring should enable the reaction to extraordinary metric
values. Most monitoring infrastructures offer the possibility to react to metric values
by calling a script. The script can start additional instances of the microservice. This
is fairly easy to do with most cloud and virtualization environments. Environments

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 150

like the Amazon Cloud offer suitable solutions for automatic scaling, which work in
a similar manner. However, a home-grown solution is not very complicated since the
scripts run anyhow, only every few minutes, so that failures are tolerable, at least for
a limited time. Since the scripts are part of the monitoring, they will have a similar
availability like the monitoring and should therefore be sufficiently available.

Especially in the case of cloud infrastructures, it is important to shut the instances
down again in case of low load because every running instance costs money in a
cloud. Also in this case scripts can be used to provide automated responses when
values reach predefined levels.

Microservices: Advantages for Scaling

With regard to scaling, microservices have, first of all, the advantage that they can be
scaled independently of each other. In case of a deployment monolith, starting each
instance requires starting the entire monolith. The fine granular scaling does not
appear to be an especially striking advantage at first glance. However, to run an
entire e-commerce shop, in many instances just to speed up the search, causes high
expenditures: A lot of hardware is needed, a complex infrastructure has to be built
up, and system parts are held available, not all of which are used. These system parts
render the deployment and monitoring more complex. The possibilities for dynamic
scaling depend critically on the size of the services and on the speed with which new
instances can be started. In this area microservices possess clear advantages.

In most cases microservices have already an automated deployment, which is also
very easy to implement. In addition, there is already monitoring. Without automated
deployment and monitoring, a microservice-based system can hardly be operated. If
there is in addition Load Balancing, then it is only a script that is still missing for auto-
mated scaling. Therefore, microservices represent an excellent basis for dynamic scaling.

Sharding

Sharding means that the administrated data amount is divided and that each instance
gets the responsibility for part of the data. For example, an instance can be responsi-
ble for the customers A–E or for all customers whose customer number ends with the
number 9. Sharding is a variation of horizontal scaling: more servers are used. How-
ever, not all servers are equal, but every server is responsible for a different subset of
the dataset. In case of microservices this type of scaling is easy to implement since
the domain is anyhow distributed across multiple microservices. Every microservice
can then shard its data and scale horizontally via this sharding. A deployment mono-
lith is hardly scalable in this manner because it handles all the data. When the

ptg18144917

1517.14 Security

deployment monolith administrates customers and items, it can hardly be sharded
for both types of data. In order to really implement sharding, the load balancer has
to distribute the load appropriately to the shards, of course.

Scalability, Throughput, and Response Times

Scalability means that more load can be processed by more resources. The throughput
increases—that is, the number of processed requests per unit of time increase. However,
the response time stays constant in the best case—depending on circumstances it might
rise, but not to such an extent that the system causes errors or gets too slow for the user.

When faster response times are required, horizontal scaling does not help. How-
ever, there are some approaches to optimize the response time of microservices:

• The microservices can be deployed on faster computers. This is vertical scal-
ing. Then the microservices can process the individual requests more rapidly.
Because of the automated deployment, vertical scaling is relatively simple to
implement. The service has only to be deployed on faster hardware.

• Calls via the network have a long latency. Therefore, a possible optimization
can be to avoid such calls. Instead caches can be used, or the data can be repli-
cated. Caches can often very easily be integrated into the existing communica-
tion. For REST, for instance, a simple HTTP cache is sufficient.

• If the domain architecture of microservices is well designed, a request should
only be processed in one microservice so that no communication via the net-
work is necessary. In case of a good domain architecture the logic for process-
ing a request is implemented in one microservice so that changes to the logic
only require changes to one microservice. In that case microservices do not
have longer response times than deployment monoliths. With regard to an
optimization of response times microservices have the disadvantage that their
communication via the network causes rather longer response times. However,
there are means to counteract this effect.

7.14 Security

In a microservice-based architecture, each microservice has to know which user
triggered the current call and wants to use the system. Therefore, a uniform security
architecture has to exist: After all, microservices can work together for a request,
and for each part of the processing of the request, another microservice might be

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 152

responsible. Thus, the security structure has to be defined at the level of the entire
system. This is the only way to ensure that the access of a user is uniformly treated
in the entire system with regard to security.

Security comprises two essential aspects: authentication and authorization. Authen-
tication is the process that validates the identity of the user. Authorization denotes the
decision whether a certain user is allowed to execute a certain action. Both processes
are independent of each other: The validation of the user identity in the context of
authentication is not directly related to authorization.

Security and Microservices

In a microservice-based architecture the individual microservices should not perform
authentication. It does not make much sense for each microservice to validate user
name and password. For authentication a central server has to be used. For authori-
zation an interplay is necessary: often there are user groups or roles that have to be
centrally administered. However, whether a certain user group or role is allowed to
use certain features of a microservice should be decided by the concerned microser-
vice. Therefore changes to the authorization of a certain microservice can be limited
to the implementation of this microservice.

OAuth2

One possible solution for this challenge is OAuth2. This protocol is also widely used
in the Internet. Google, Microsoft, Twitter, XING, and Yahoo all offer support for
this protocol.

Figure 7.17 shows the workflow of the OAuth2 protocol as defined by the
standard:27

1. The client inquires of the resource owner whether it might execute a certain
action. For example, the application can request access to the profile or certain
data in a social network that the resource owner stored there. The resource
owner is usually the user of the system.

2. If the resource owner grants the client access, the client receives a respective
response from the resource owner.

3. The client uses the response of the resource owner to put a request to the
authorization server. In the example the authorization server would be located
in the social network.

27. http://tools.ietf.org/html/rfc6749

http://tools.ietf.org/html/rfc6749

ptg18144917

1537.14 Security

4. The authorization server returns an access token.

5. With this access token the client can now call a Resource Server and there
obtain the necessary information. For the call the token can for instance be put
into an HTTP header.

6. The resource server answers the requests.

Possible Authorization Grants

The interaction with the authorization server can work in different ways:

• In case of the password grant the client shows an HTML form to the user in
step 1. The resource owner can enter user name and password. In step 3 this
information is used by the client to obtain the access token from the authoriza-
tion server via an HTTP POST. This approach has the disadvantage that the

Client

1 - Authorization
Request

2 - Grant
Authorization

Resource
Owner

Authorization Server

3 - Authorization

4 - Access Token

Resource Server

5 - Access
Token

6 - Successful
Access

Figure 7.17 The OAuth2 Protocol

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 154

client processes user name and password. The client can be insecurely imple-
mented, and then these data are endangered.

• In case of the authorization grant the client directs the user in step 1 to a web page
that the authorization server displays. There the user can choose whether he/she
permits the access. If that is the case, in step 2 the client will obtain an authoriza-
tion code via an HTTP-URL. In this way the authorization server can be sure
that the correct client obtains the code since the server chooses the URL. In step 3
the client can then generate the access token with this authorization code via an
HTTP POST. The approach is mainly implemented by the authorization server
and thus very easy to use by a client. In this scenario the client would be a web
application on the server: It will obtain the code from the authorization server
and is the only one able to turn it via the HTTP POST into an access token.

• In case of an implicit grant, the procedure resembles the authorization grant.
After the redirect to the authorization server in step 1 the client directly gets an
access token via an HTTP redirect. This enables the browser or a mobile appli-
cation to immediately read out the access token. Steps 3 and 4 are omitted.
However, here the access token is not as well protected against attacks since
the authorization server does not directly send it to the client. This approach is
sensible when JavaScript code on the client or a mobile application is supposed
to use the access token.

• In case of client credentials, the client uses a credential in step 1 that the client
knows to obtain the access token from the authorization server. Therefore, the
client can access the data without additional information from the resource
owner. For example, a statistics software could read out and analyze customer
data in this manner.

Via the access token the client can access resources. The access token has to be
protected: When unauthorized people obtain access to the access token, they can
thereby trigger all actions that the resource owner can also trigger. Within the token
itself some information can be encoded. For instance, in addition to the real name of
the resource owner the token can also contain information that assigns certain rights
to the user or the membership to certain user groups.

JSON Web Token (JWT)

JSON Web Token (JWT) is a standard for the information that is contained in an access
token. JSON serves as data structure. For the validation of the access token a digital
signature with JWS (JSON Web Signature) can be used. Likewise, the access token can
be encrypted with JSON Web Encryption (JWE). The access token can contain

ptg18144917

1557.14 Security

information about the issuer of the access token, the resource owner, the validity inter-
val, or the addressee of the access token. Individual data can also be contained in the
access token. The access token is optimized for use as HTTP header by an encoding of
the JSON with BASE64. These headers are normally subject to size restrictions.

OAuth2, JWT, and Microservices

In a microservice-based architecture the user can initially authenticate via one of the
OAuth2 approaches. Afterwards the user can use the web page of a microservice or
call a microservice via REST. With each further call every microservice can hand over
the access token to other microservices. Based on the access token the microservices
can decide whether a certain access is granted or not. For that the validity of the token
can first be checked. In case of JWT the token only has to be decrypted, and the
 signature of the authorization server has to be checked. Subsequently, whether the
user may use the microservice as he/she intends can be decided based on the informa-
tion of the token. Information from the token can be used for that. For instance, it is
possible to store the affiliation with certain user groups directly in the token.

It is important that it is not defined in the access token which access to which
microservice is allowed. The access token is issued by the authorization server. If the
information about the access was available in the authorization server, every modifi-
cation of the access rights would have to occur in the authorization server—and not
in the microservices. This limits the changeability of the microservices since modi-
fications to the access rights would require changes of the authorization server as
central component. The authorization server should only administer the assignment
to user groups, and the microservices should then allow or prohibit access based on
such information from the token.

Technologies

In principle, other technical approaches than OAuth2 could also be used as long as
they employ a central server for authorization and use a token for regulating the
access to individual microservices. One example is Kerberos,28 which has a relatively
long history. However, it is not well tuned to REST like OAuth2. Other alternatives
are SAML and SAML 2.0.29 They define a protocol that uses XML and HTTP to
perform authorization and authentication.

Finally, signed cookies can be created by a home-grown security service. Via a
cryptographic signature, it can be determined whether the cookie has really been

28. http://tools.ietf.org/html/rfc4556

29. https://www.oasis-open.org/committees/security/

http://www.tools.ietf.org/html/rfc4556
https://www.oasis-open.org/committees/security/

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 156

issued by the system. The cookie can then contain the rights or groups of the user.
Microservices can examine the cookie and restrict the access if necessary. There is
the risk that the cookie is stolen. However, for that to occur the browser has to be
compromised, or the cookie has to be transferred via a unencrypted connection.
This is often acceptable as risk.

With a token approach it is possible that microservices do not have to han-
dle the authorization of the caller but still can restrict the access to certain user
groups or roles.

There are good reasons for the use of OAuth2:

• There are numerous libraries for practically all established programming
languages that implement OAuth2 or an OAuth2 server.30 The decision for
OAuth2 hardly restricts the technology choice for microservices.

• Between the microservices only the access token still has to be transferred.
This can occur in a standardized manner via an HTTP header when REST is
used. In case of different communication protocols similar mechanisms can be
exploited. Also in this area OAuth2 hardly limits the technology choice.

• Via JWT information can be placed into the token that the authorization
server communicates to the microservices in order for them to allow or pro-
hibit access. Therefore, also in this area the interplay between the individual
microservice and the shared infrastructure is simple to implement—with
standards that are widely supported.

Spring Cloud Security31 offers a good basis for implementing OAuth2 systems,
especially for Java-based microservices.

Additional Security Measures

OAuth2 solves, first of all, the problem of authentication and authorization—
primarily for human users. There are additional measures for securing a microservice-
based system:

• The communication between the microservices can be protected by SSL/TLS
against wiretapping. All communication is then encrypted. Infrastructures like
REST or messaging systems mostly support such protocols.

30. http://oauth.net/2/

31. http://cloud.spring.io/spring-cloud-security/

http://www.oauth.net/2/
http://www.cloud.spring.io/spring-cloud-security/

ptg18144917

1577.14 Security

• Apart from authentication with OAuth2 certificates can be used to authenti-
cate clients. A certificate authority creates the certificates. They can be used to
verify digital signatures. This makes it possible to authenticate a client based
on its digital signature. Since SSL/TLS supports certificates, at least at this level
the use of certificates and authentication via certificates is possible.

• API keys represent a similar concept. They are given to external clients to ena-
ble them to use the system. Via the API key the external clients authenticate
themselves and can obtain the appropriate rights. In case of OAuth2 this can
be implemented with Client Credential.

• Firewalls can be used to protect the communication between microservices.
Normally firewalls secure a system against unauthorized access from out-
side. A firewall for the communication between the microservices prevents
that all microservices are endangered if an individual microservice has been
successfully taken over. In this way the intrusion can be restricted to one
microservice.

• Finally, there should be an intrusion detection to detect unauthorized access to
the system. This topic is closely related to monitoring. The monitoring system
can also be used to trigger an appropriate alarm in case of an intrusion.

• Datensparsamkeit32 is also an interesting concept. It is derived from the data
security field and states that only data that is absolutely necessary to be saved.
Form a security perspective this results in the advantage that collecting lots of
data is avoided. This makes the system less attractive for attacks, and in addi-
tion the consequences of a security breach will not be as bad.

Hashicorp Vault

Hashicorp Vault33 is a tool that solves many problems in the area of microservice
security. It offers the following features:

• Secrets like passwords, API keys, keys for encryption, or certificates can be
saved. This can be useful for enabling users to administrate their secrets. In
addition, microservices can be equipped with certificates in such a manner as
to protect their communication with each other or with external servers.

32. http://martinfowler.com/bliki/Datensparsamkeit.html

33. https://www.vaultproject.io/

http://www.martinfowler.com/bliki/Datensparsamkeit.html
https://www.vaultproject.io/

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 158

• Secrets are given via a lease to services. Besides, they can be equipped with an
access control. This helps to limit the problem in case of a compromised ser-
vice. Secrets can, for instance, also be declared invalid.

• Data can be immediately encrypted or decrypted with the keys without the
microservices themselves having to save these keys.

• Access is made traceable by an audit. This enables tracing of who got which
secret and at what time.

• In the background Vault can use HSMs, SQL databases, or Amazon IAM to
store secrets. In addition, it can for instance also generate new access keys for
the Amazon Cloud by itself.

In this manner Vault takes care of handling keys and thereby relieves microser-
vices of this task. It is a big challenge to really handle keys securely. It is difficult to
implement something like that in a really secure manner.

Additional Security Goals

With regard to a software architecture security comes in very different shapes.
Approaches like OAuth2 only help to achieve confidentiality. They prevent data
access to unauthorized users. However, even this confidentiality is not entirely safe-
guarded by OAuth2 on its own: The communication in the network likewise has to
be protected against wiretapping—for instance via HTTPS or other kinds of
encryption.

Additional security aspects include the following:

• Integrity—Integrity means that there are no unnoticed changes to the data.
Every microservice has to solve this problem. For instance, data can be signed
to ensure that they have not been manipulated in some way. The concrete
implementation has to be performed by each microservice.

• Confidentiality—The concept of confidentiality means ensuring that modi-
fications made by someone cannot be denied. This can be achieved by signing
the changes introduced by different users by keys that are specific for the indi-
vidual user. Then it is clear that exactly one specific user has modified the data.
The overall security architecture has to provide the keys; the signing is then the
task of each individual service.

• Data security—Data security is ensured as long as no data are lost. This issue
can be handled by backup solutions and highly available storage solutions.
This problem has to be addressed by the microservices since it is within their

ptg18144917

1597.15 Documentation and Metadata

responsibility as part of their data storage. However, the shared infrastructure
can offer certain databases that are equipped with appropriate backup and dis-
aster recovery mechanisms.

• Availability—Availability means that a system is available. Also here the
microservices have to contribute individually. However, since one has to deal
with the possibility of failures of individual microservices, especially in the
case of microservice-based architectures, microservice-based systems are
often well prepared in this area. Resilience (section 9.5) is, for instance, useful
for this.

These aspects are often not considered when devising security measures; how-
ever, the failure of a service has often even more dramatic consequences than the
unauthorized access to data. One danger is denial-of-service attacks, which result in
such an overloading of servers that they cannot perform any sensible work anymore.
The technical hurdles for this are often shockingly low, and the defense against such
attacks is frequently very difficult.

7.15 Documentation and Metadata

To keep the overview in a microservice-based architecture certain information about
each microservice has to be available. Therefore, the microservice-based architecture
has to define how microservices can provide such information. Only when all
 microservices provide this information in a uniform way, the information can be
 easily collected. Possible information of interest is, for instance:

• Fundamental information like the name of the service and the responsible
 contact person.

• Information about the source code: where the code can be found in the
version control and which libraries have been used. The used libraries can
be interesting in order to compare open-source licenses of the libraries with
the company policies or to identify in case of a security gap in a library the
affected microservices. For such purposes the information has to be available
even if the decision about the use of a certain library rather concerns only
one microservice. The decision itself can be made largely independently by
the responsible team.

• Another interesting information is with which other microservices the micro-
service works. This information is central for the architecture management
(see section 7.2).

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 160

• In addition, information about configuration parameters or about feature
 toggles might be interesting. Feature toggles can switch features on or off. This
is useful for activating new features only in production when their implemen-
tation is really finished, or for avoiding the failure of a service by deactivating
certain features.

It is not sensible to document all components of the microservices or to unify
the entire documentation. A unification only makes sense for information that is
 relevant outside of the team implementing the microservice. Whenever it is necessary
to manage the interplay of microservices or to check licenses, the relevant informa-
tion has to be available outside of the responsible team. These questions have to be
solved across microservices. Each team can create additional documentation about
their own microservices. However, this documentation is only relevant for this one
team and therefore does not have to be standardized.

Outdated Documentation

A common problem concerning the documentation of any software is that the docu-
mentation gets easily outdated and then documents a state that is not up to date
anymore. Therefore, the documentation should be versioned together with the code.
Besides, the documentation should be created from information that is present in
the system anyhow. For instance, the list of all used libraries can be taken from the
build system since exactly this information is needed during the compilation of the
system. Which other microservices are used can be obtained from Service Discovery.
This information can, for instance, be used to create firewall rules when a firewall is
supposed to be used to protect the communication between the microservices. In
summary, the documentation does not have to be maintained separately, but docu-
mentation should be generated from information present in the system anyhow.

Access to Documentation

The documentation can be part of the artifacts that are created during the build. In
addition, there can be a run-time interface that enables reading out of metadata.
Such an interface can correspond to the otherwise common interfaces for monitor-
ing and, for instance, provide JSON documents via HTTP. In this way, the metadata
are only an additional information microservices provide at run-time.

A service template can show how the documentation is created. The service
 template can then form the basis for the implementation of new microservices. When
the service template already contains this aspect, it facilitates the implementation of

ptg18144917

1617.16 Conclusion

a standard-conform documentation. In addition, at least the formal characteristics
of the documentation can be checked by a test.

7.16 Conclusion

The domain architecture of a microservice-based system is essential because it influ-
ences not only the structure of the system, but also the organization (section 7.1).
Unfortunately, tools for dependency management are rare, especially for microser-
vices, so that teams have to develop home-made solutions. However, often an under-
standing of the implementation of the individual business processes will be sufficient,
and an overview of the entire architecture is not really necessary (section 7.2).

For an architecture to be successful it has to be permanently adjusted to the chang-
ing requirements. For deployment monoliths there are numerous refactoring tech-
niques to achieve this. Such possibilities also exist for microservices; however without
the support of tools and with much higher hurdles (section 7.3). Still, microservice-
based systems can be sensibly developed further—for instance, by starting initially
with a few large microservices and creating more and more microservices over time
(section 7.4). An early distribution into many microservices entails the risk to end up
with a wrong distribution.

A special case is the migration of a legacy application to a microservice-based
architecture (section 7.6). In this case, the code base of the legacy application can
be divided into microservices; however this can lead to a bad architecture due to the
often bad structure of the legacy application. Alternatively, the legacy application
can be supplemented by microservices, which replace functionalities of the legacy
application in a stepwise manner.

Event-driven architecture (section 7.8) can serve to uncouple the logic in the
microservices. This enables easy extensibility of the system.

Defining the technological basis is one of the tasks of an architecture (section 7.9).
In case of microservice-based systems this does not relate to the definition of a shared
technology stack for implementation but to the definition of shared communication
protocols, interfaces, monitoring, and logging. Additional technical functions of the
entire system are coordination and configuration (section 7.10). In this area tools can
be selected that all microservices have to employ. Alternatively, one can do without
a central configuration and instead leave each microservice to bring along its own
configuration.

Likewise, for Service Discovery (section 7.11) a certain technology can be cho-
sen. A solution for Service Discovery is in any case sensible for a microservice-based
system—except messaging is used for communication. Based on Service Discovery,

ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 162

Load Balancing can be introduced (section 7.12) to distribute the load across the
instances of the microservices. Service Discovery knows all instances; the Load Bal-
ancing distributes the load to these instances. Load Balancing can be implemented
via a central load balancer, via Service Discovery or via one load balancer per client.
This provides the basis for scalability (section 7.13). This enables a microservice to
process more load by scaling up.

Microservices have a significantly higher technical complexity than deployment
monoliths. Operating systems, networks, load balancer, Service Discovery, and com-
munication protocols all become part of the architecture. Developers and architects
of deployment monoliths are largely spared from these aspects. Thus architects have
to deal with entirely different technologies and have to carry out architecture at an
entirely different level.

In the area of security, a central component has to take over at least authentica-
tion and parts of authorization. The microservices should then settle the details of
access (section 7.14). In order to obtain certain information from a system, which is
composed of many microservices, the microservices have to possess a standardized
documentation (section 7.15). This documentation can, for instance, provide infor-
mation about the used libraries—to compare them with open-source license regula-
tions or to remove security issues when a library has a security gap.

The architecture of a microservice-based system is different from classical appli-
cations. Many decisions are only made in the microservices, while topics like moni-
toring, logging or continuous delivery are standardized for the entire system.

Essential Points

• Refactoring between microservices is laborious. Therefore, it is hard to change
the architecture at this level. Accordingly, the continued development of the
architecture is a central point.

• An essential part of the architecture is the definition of overarching technolo-
gies for configuration and coordination, Service Discovery, Load Balancing,
security, documentation, and metadata.

ptg18144917

163

Microservices have to be integrated, and they need to communicate. This can be
achieved at different levels (see Figure 8.1). Each approach has certain advantages
and disadvantages, and at each level different technical implementations of integra-
tion are possible.

• Microservices contain a graphical user interface. This means that microser-
vices can be integrated at the UI level. This type of integration is introduced in
section 8.1.

• Microservices can also be integrated at the logic level. They can use REST
 (section 8.2), SOAP, remote-procedure call (RPC); (section 8.3), or messaging
(section 8.4) to achieve this.

• Finally, integration can be performed at the database level using data replication
(section 8.5).

General rules for the design of interfaces are provided in section 8.6.

Chapter 8

Integration and
Communication

ptg18144917

Chapter 8 Integration and Communication164

8.1 Web and UI

Microservices should bring their own UI along with them. By having the UI included
with the relevant microservice, changes to that microservice that affect the UI can be
done in one place. It is then necessary to integrate the UIs of the microservices
together to form the system as a whole. This can be achieved using different
approaches, which are reviewed in the innoQ Blog.1, 2

Multiple Single-Page-Apps

Single-page-apps (SPA)3 implement the entire UI with just one HTML page. The
logic is implemented in JavaScript, which dynamically changes parts of the page.
The logic can also manipulate the URL displayed in the browser so that bookmarks
and other typical browser features can be used. However, SPAs do not conform to the
way the web was originally designed; they demote HTML from being the central web
technology and have most of their logic implemented in JavaScript. Traditional web
architectures implement logic almost exclusively on the server.

SPAs are particularly useful when complex interactions or offline capability are
required. Google’s Gmail is an example that helped to shape the meaning of the term
SPA. Traditionally, mail clients have been native applications; however, Gmail as a
SPA is able to offer nearly the same user experience.

There are different technologies for the implementation of single-page-apps:

• AngularJS4 is very popular. Among other features, AngularJS has bidirectional
UI data-binding: if the JavaScript code assigns a new value to an attribute of

1. https://www.innoq.com/blog/st/2014/11/web-based-frontend-integration/

2. https://www.innoq.com/en/blog/transclusion/

3. http://en.wikipedia.org/wiki/Single-page_application

4. https://angularjs.org/

Microservice Microservice

UI

Logic

Database

Figure 8.1 Different Levels of Integration

https://www.innoq.com/blog/st/2014/11/web-based-frontend-integration/
https://www.innoq.com/en/blog/transclusion/
http://www.en.wikipedia.org/wiki/Single-page_application
https://www.angularjs.org/

ptg18144917

1658.1 Web and UI

a bound model, the view components displaying the value are automatically
changed. The binding also works from UI to the code: AngularJS can bind a
user input to a JavaScript variable. Furthermore, AngularJS can render HTML
templates in the browser. This enables JavaScript code to generate complex
DOM structures. The entire front-end logic can be implemented in JavaScript
code running on the browser. AngularJS was created by Google, which released
the framework under the very liberal MIT license.

• Ember.js5 follows the “convention over configuration” principle and represents
essentially the same feature set as AngularJS. Through the supplementary
module Ember Data, it offers a model-driven approach for accessing REST
resources. Ember.js is made available under the MIT license and is maintained
by developers from the open-source community.

• Ext JS6 offers an MVC approach and also components which developers can
compose to build a UI similar to the way they would for rich client applications.
Ext JS is available as open source under GPL v3.0. However, for commercial
development a license has to be bought from the creators Sencha.

SPA per Microservice

When using microservices with single-page apps each microservice can bring along
its own SPA (see Figure 8.2). The SPA can, for instance, call the microservice via
JSON/REST. This is particularly easy to implement with JavaScript. Links can then
be used to join the different SPAs together.

This enables the SPAs to be completely separate and independent. New versions
of a SPA and of the associated microservice can be rolled out with ease. However,

5. http://emberjs.com/

6. http://www.sencha.com/products/extjs/

Microservice Microservice

Logic Logic

LinkSingle-Page
App

Single-Page
App

REST REST

Figure 8.2 Microservices with Single-Page Apps

http://www.emberjs.com/
http://www.sencha.com/products/extjs/

ptg18144917

Chapter 8 Integration and Communication166

a tighter integration of SPAs is difficult. When the user switches from one SPA to
another, the browser loads a new web page and starts a different JavaScript applica-
tion. Even modern browsers need time to do this, and therefore this approach is only
sensible when switching between SPAs is rare.

Asset Server for Uniformity

SPAs can be heterogeneous, and each can bring along its own individually designed
UI. This can be a problem as it can lead to a UI that is not uniform across the system
as a whole. This issue can be resolved by using an asset server. This type of server is
used to provide JavaScript files and CSS files for the applications. When the SPAs of
the microservices are only allowed to access these kinds of resources via the asset
server, a uniform user interface can be achieved. To accomplish this, a proxy server
can distribute requests to the asset server and the microservices. From the web brows-
er’s perspective, it looks as if all resources, as well as the microservices, have a shared
URL. This approach avoids security rules that prohibit the use of content that
 originates from different URLs. Caching can then reduce the time for loading the
applications. When only JavaScript libraries, which are stored on the asset server, can
be used, the choice of technologies for the microservices is reduced. Uniformity and
free technology choice are competing aims.

The shared assets will create code dependencies between the asset server and
all microservices. A new version of an asset requires the modification of all micro-
services that use this asset—they have to modified in order to use the new version.
Such code dependencies endanger independent deployment and should therefore be
avoided. Code dependencies in the back end are often a problem (see section 7.3). In
fact, such dependencies should also be reduced in the front-end. This can mean that
an asset server causes more problems than it solves.

UI guidelines, which describe the design of the application in more detail and help
to establish a uniform approach at different levels, can be helpful. This enables the
implementation of a uniform UI without a shared asset server and the related code
dependencies.

In addition, SPAs need to have a uniform authentication and authorization
scheme so that the users do not have to log in multiple times. An OAuth2 or a shared
signed cookie can be a solution to this (see also section 7.14).

JavaScript can only access data that is available under the domain from which
the JavaScript code originates. This “same-origin policy” prevents JavaScript
code from reading data from other domains. When a proxy makes all microser-
vices accessible to the outside world under the same domain, this is no longer a
limitation. Otherwise the policy has to be deactivated when the UI of a microser-
vice needs to access data from another microservice. This problem can be solved

ptg18144917

1678.1 Web and UI

with CORS (cross-origin resource sharing) where the server delivering the data
allows JavaScript from other domains. Another option is to offer all SPA and
REST services to the outside via a single domain so that cross-domain access is not
required. This also allows access to shared JavaScript code on an asset server to be
implemented.

A Single-Page App for All Microservices

The division into multiple SPAs results in a strict separation of the front-ends of the
microservices. For instance, if an SPA is responsible for registering orders and
another one for a fundamentally different use case like reports, the load time needed
to change between SPAs is still acceptable. Potentially, the different SPAs might be
used by different sets of users who never need to switch between them at all.

However, there are situations when a tighter integration of the microservices
user interfaces is necessary. For example, when viewing an order, details about the
items may need to be displayed. Displaying the order is the responsibility of one
microservice, displaying the items is performed by another. To tackle this prob-
lem, the SPA can be distributed into modules (see Figure 8.3). Each module belongs
to another microservice and therefore to another team. The modules should be
deployed separately. They can be stored on the server in individual JavaScript files
and use separate Continuous Delivery pipelines, for instance. There needs to be
suitable conventions for the interfaces. For example, only the sending of events
might be allowed. Events uncouple the modules because the modules only commu-
nicate changes in state, but not how other modules have to react to them.

AngularJS has a module concept that enables the implementation of individ-
ual parts of the SPA in separate units. A microservice could provide an AngularJS

Single-Page App

Microservice

Module

Logic

Microservice

Module

Logic

Figure 8.3 Close Integration of Microservices Sharing One Single-Page App

ptg18144917

Chapter 8 Integration and Communication168

module for displaying the user interface of the microservice. The model can then
integrate, if necessary, AngularJS modules from other microservices.

However, such an approach has disadvantages:

• Deploying the SPA is often only possible as a complete application. When a
module is modified, the entire SPA has to be rebuilt and deployed. This has
to be coordinated between the microservices that provide the modules for the
application. In addition, the deployment of the microservices on the server has
to be coordinated with the deployment of the modules since the modules call
the microservices. This requirement to coordinate the deployment of modules
of an application should be avoided.

• The modules can call each other. Depending on the way calls are implemented,
changes to a module can mean that other modules also have to be changed, for
instance, because an interface has been modified. When the modules belong
to separate microservices, this again requires a coordination across microser-
vices, which should be avoided.

For SPA modules a much closer coordination is necessary than for links between
applications. On the other hand, SPA modules offer the benefit that UI elements from
different microservices can be simultaneously displayed to the user. However, this
approach closely couples the microservices at the UI level. The SPA modules corre-
spond to the module concepts that exist in other programming languages and cause
a simultaneous deployment. This leads to the microservices, which really should be
independent of each other, being combined at the UI level in one shared deployment
artifact. Therefore, this approach undoes one of the most important benefits of a
microservice-based architecture—independent deployment.

HTML Applications

Another way to implement the UI is with HTML-based user interfaces. Every micros-
ervice has one or more web pages that are generated on the server. These web pages
can also use JavaScript. Here, unlike SPAs, only a new HTML web page and not nec-
essarily an application, is loaded by the server when changing between web pages.

ROCA

ROCA (resource-oriented client architecture)7 proposes a way to arrange the handling
of JavaScript and dynamic elements in HTML user interfaces. ROCA views itself as

7. http://roca-style.org/

http://www.roca-style.org/

ptg18144917

1698.1 Web and UI

an alternative to SPAs. In ROCA the role of JavaScript is limited to optimizing the
usability of the web pages. JavaScript can facilitate their use or can add effects to the
HTML web pages. However, the application has to remain usable without JavaScript.
It is not the purpose of ROCA that users really use web pages without JavaScript. The
applications are only supposed to use the architecture of the web, which is based on
HTML and HTTP. Also ROCA makes sure that all logic is actually implemented on
the server instead of JavaScript on the client. That way other clients can use the very
same logic.

When a web application is divided into microservices, ROCA reduces the depend-
encies and simplifies the division. Between microservices the coupling of the UI can
be achieved by links. For HTML applications links are the usual tool for navigating
between web pages and represent a natural integration. There are no foreign bodies
as in the case of SPAs.

To help with the uniformity of the HTML user interfaces, the microservices can
use a shared asset server the same was as SPAs can (see Figure 8.4). It contains all the
CSS and JavaScript libraries. If the teams create design guidelines for the HTML web
pages and look after the assets on the asset server, the user interfaces of the differ-
ent microservices will be largely identical. However, as discussed previously, this will
lead to code dependencies between the UIs of the microservices.

Easy Routing

To the outside world the microservices should appear like a single web application—
ideally with one URL. This also helps with the shared use of assets since the

Microservice Microservice

Logic Logic

Link
HTML HTML

Asset Server
(CSS,

JavaScript)

Router

Figure 8.4 HTML User Interface with an Asset Server

ptg18144917

Chapter 8 Integration and Communication170

same-origin-policy is not violated. However, user requests from the outside have to be
directed to the right microservice. This is the function of the router. It can receive
HTTP requests and forward them to one of the microservices. This can be done based
on the URL. How individual URLs are mapped to microservices can be decided by
rules that can be complex. The example application uses Zuul for this task (see
 section 13.9). Reverse proxies are an alternative. These can be web servers, like Apache
httpd or nginx, that can direct requests to other servers. In the process the requests
can be modified, URLs can, for instance, be rewritten. However, these mechanisms
are not as flexible as Zuul, which is very easy to extend with home-grown code.

When the logic in the router is very complex, this can cause problems. If this
logic has to be changed because a new version of a microservice is brought into pro-
duction, an isolated deployment is no longer straightforward. This endangers the
 philosophy of independent development and deployment of the microservices.

Arrange HTML with JavaScript

In some cases, a closer integration is necessary. It might be that information originating
from different microservices needs to be displayed on a single HTML web page. For
example, a web page might display order data from one microservice and data con-
cerning the ordered items from another microservice. In this situation one router is no
longer sufficient. A router can only enable a single microservice to generate a complete
HTML web page.

A simple solution that employs the architecture presented in Figure 8.4 is based
on links. AJAX (Asynchronous JavaScript and XML) enables content from a link
to be loaded from another microservice. JavaScript code calls the microservice.
Once the HTML is received from the microservice the link is replaced with it. In
the example a link to an item could be transformed into an HTML description of
this item. This enables the logic for the presentation of a product to be implemented
in one microservice, while the design of the entire web page is implemented in
another microservice. The entire web page would be the responsibility of the order
microservice, while the presentation of the products would be the responsibility of
the product microservice. This enables the continued independent development of
both microservices and for content to be displayed from both components. If the
 presentation of the items has to be changed or new products necessitate a revised
presentation, these modifications can be implemented in the product microservice.
The entire logic of the order microservice remains unchanged.

Another example for this approach is Facebook’s BigPipe.8 It optimizes not
only the load time, but also enables the composition of web pages from pagelets.

8. https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-
performance/389414033919

https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919

ptg18144917

1718.1 Web and UI

A custom implementation can use JavaScript to replace certain elements of the web
page by other HTML. This can be links or div-elements like the ones commonly
used for structuring web pages that can be replaced by HTML code.

However, this approach causes relatively long load times. It is mainly beneficial
when the web UI already uses a lot of JavaScript and when there are not many transi-
tions between web pages.

Front-End Server

Figure 8.5 shows an alternative way to achieve tight integration. A front-end server
composes the HTML web page from HTML snippets, each of which are generated
by a microservice. Assets like CSS and JavaScript libraries are also stored in the front-
end server. Edge Side Includes (ESI) is a mechanism to implement this concept. ESI
offers a relatively simple language for combining HTML from different sources.
With ESI, caches can supplement static content—for instance, the skeleton of a web
page—with dynamic content. This means that caches can help with the delivery of
web pages, even ones that contain dynamic content. Proxies and caches like Varnish9
or Squid10 implement ESI. Another alternative is Server Side Includes (SSI). They are
very similar to ESIs; however, they are not implemented in caches, but in web servers.
With SSIs web servers can integrate HTML snippets from other servers into HTML
web pages. The microservices can deliver components for the web page that are then

9. https://www.varnish-cache.org/

 10. http://www.squid-cache.org/

Microservice Microservice

Logic Logic

HTML Snippet HTML Snippet

Front-End Server
Asset Server (CSS, JavaScript)

Figure 8.5 Integration Using a Front-End Server

https://www.varnish-cache.org/
http://www.squid-cache.org/

ptg18144917

Chapter 8 Integration and Communication172

assembled on the server. Apache httpd supports SSIs with mod_include.11 nginx uses
the ngx_http_ssi_module12 for the support of SSIs.

Portals also consolidate information from different sources on one web page.
Most products use Java portlets that adhere to the Java standard JSR 168 (Portlet 1.0)
or JSR 286 (Portlet 2.0). Portlets can be brought into production independently of
each other and therefore solve one of the major challenges surrounding microservice-
based architectures. In practice these technologies frequently result in complex solu-
tions. Portlets behave very differently to normal Java web applications technically
making the use of many technologies from the Java environment either difficult or
impossible. Portlets enable the user to compose a web page from previously defined
portlets. In this way the user can assemble, for instance, their most important infor-
mation sources on one web page. However, this is not really necessary for creating a
UI for microservices. The additional features result in additional complexity. There-
fore, portal servers that are based on portlets are not a very good solution for the web
user interfaces of microservices. In addition, they restrict the available web technolo-
gies to the Java field.

Mobile Clients and Rich Clients

Web user interfaces do not need any software to be installed on the client. The web
browser is the universal client for all web applications. On the server side the deploy-
ment of the web user interface can easily be coordinated with the deployment of the
microservice. The microservice implements a part of the UI and can deliver the code
of the web user interface via HTTP. This makes possible a relatively easy coordi-
nated deployment of client and server.

For mobile apps, rich clients, and desktop applications the situation is different:
software has to be installed on the client. This client application is a deployment
monolith that has to offer an interface for all microservices. If the client application
delivers functionality from different microservices to the user, it would technically
have to be modularized, and the individual modules, like the associated micro-
services, would have to be brought into production independently of each other.
 However, this is not possible since the client application is a deployment monolith.
A SPA can also easily turn into a deployment monolith. Sometimes an SPA is used to
separate the development of client and server. In a microservices context such a use
of SPAs is undesirable.

When a new feature is implemented in a microservice, that also requires modi-
fications of the client application. This change cannot be rolled out solely via a

 11. http://httpd.apache.org/docs/2.2/mod/mod_include.html

 12. http://nginx.org/en/docs/http/ngx_http_ssi_module.html

http://www.httpd.apache.org/docs/2.2/mod/mod_include.html
http://www.nginx.org/en/docs/http/ngx_http_ssi_module.html

ptg18144917

1738.1 Web and UI

new version of the microservice. A new version of the client application also has
to be delivered. However, it is unrealistic to deliver the client application over and
over again for each small change of a feature. If the client application is being made
 available in the app store of a mobile platform, an extensive review of each version is
necessary. If multiple changes are supposed to be delivered together, the change has
to be coordinated. Additionally, the new version of the client application has to be
coordinated with the microservices so that the new versions of the microservices are
ready in time. This results in deployment dependencies between the microservices,
which should ideally be avoided.

Organizational Level

At an organizational level there is often a designated team for developing the
 client application. In this manner the division into an individual module is also
implemented at the organizational level. Especially when different platforms are
supported, it is unrealistic to have one developer in each microservice team for
each platform. The developers are going to form one team for each platform. This
team has to communicate with all the microservice teams that offer microservices
for mobile applications. This can necessitate a lot of communication, which
microservices-based architecture sets out to avoid. Therefore, the deployment
monolith poses a challenge for client applications at the organizational level
(see Figure 8.6).

One possible solution is to develop new features initially for the web. Each micro-
service can directly bring functionality onto the web. With each release of the client
application these new features can then be included. However, this means that each
microservice needs to support a certain set of features for the web application and,
where required, another set for the client application. In exchange this approach
can keep the web application and the mobile application uniform. It supports an
approach where the domain-based teams provide features of the microservices to
mobile users as well as to web users. Mobile applications and web applications are
simply two channels to offer the same functionality.

Microservice

Mobile App
Rich Client Application

Microservice

Figure 8.6 Mobile Apps and Rich Client are Deployment Monoliths that Integrate Multiple
Microservices

ptg18144917

Chapter 8 Integration and Communication174

Back-End for Each Front-End

However, the requirements can also be entirely different. For instance, the mobile
application can be a largely independent application which is supposed to be devel-
oped further as independently of the microservices and the web user interface as
possible. Often the use cases of the mobile application are so different from the use
cases of the web application that a separate development is required due to the
 differences in features.

In this situation, the approach depicted in Figure 8.7 can be sensible: the team
responsible for the mobile app or the rich client application has a number of
 developers who implement a special back-end. This enables functionality for the
mobile app to be developed independently to the back-end, because at least a part
of the requirements for the microservices can be implemented by developers from
the same team. This should avoid logic for the mobile app being implemented in the
microservice, when it really belongs in a back-end microservice. The back-end for a
mobile application may differ from other APIs. Mobile clients have little bandwidth
and a high latency. Therefore, APIs for mobile devices are optimized to operate with
as few calls as possible and to only transfer really essential data. This is also true for
rich clients—however not to the same extent. The adaption of an API to the specific
requirements of a mobile application can be implemented in a microservice, which is
built by the front-end team.

A mobile app should be highly responsive to user interaction. This can be difficult
to achieve when the user interaction means a microservice call, with its associated
latency, is required. If there are multiple calls, the latency will increase further.
Therefore, the API for a mobile app should be optimized to deliver the required data
with as few calls as possible. These optimizations can also be implemented by a
back-end for the mobile app.

Microservice

Back-End

Microservice

Mobile App
Rich Client Application

Team Microservice

Mobile Team

Team Microservice

Figure 8.7 Mobile Apps or Rich Clients with Their Own Back-End

ptg18144917

1758.2 REST

The optimizations can be implemented by the team that is responsible for the
mobile app. Doing this enables the microservices to offer universally valid interfaces
while the teams responsible for the mobile apps can assemble their own special APIs
by themselves. This leads to the mobile app teams not being so dependent on the
teams that are responsible for the implementation of the microservices.

Modularizing web applications is simpler than modularizing mobile apps, espe-
cially when the web applications are based on HTML and not on SPAs. For mobile
apps or rich client apps it is much more difficult since they form an individual
 deployment unit and cannot be easily divided.

The architecture shown in Figure 8.7 has a number of advantages and disadvan-
tages. It makes it possible to reuse microservices for different clients and at the same
time acts as an entry point into the layered architecture. However, the UI layer is
now separated from the microservices and is implemented by another team. This
leads to a situation where requirements have to be implemented by multiple teams.
 Microservices were meant to avoid exactly this situation. This architecture also risks
logic being implemented in the services for the client application, when it really
belongs in the microservices.

Try and Experiment

• This section presented alternative ways to implement web applications: an
SPA per microservice, an SPA with modules per microservice, an HTML
application per microservice, and a front-end server with HTML snippets.
Which of these approaches would you choose? Why?

• How would you deal with mobile apps? One option would be a mobile
app team with back-end developers—or would you rather choose a team
 without back-end developers?

8.2 REST

Microservices have to be able to call each other in order to implement logic together.
This can be supported by different technologies.

REST (representational state transfer) is one way to enable communication
between microservices. REST is the term for the fundamental approaches of the
World Wide Web (WWW):

ptg18144917

Chapter 8 Integration and Communication176

• There are a large number of resources which can be identified via URIs. URI
stands for uniform resource identifier. It unambiguously and globally identifies
resources. URLs are practically the same as URIs.

• The resources can be manipulated via a fixed set of methods. For instance, in
the case of HTTP these are GET for requesting a resource, PUT for storing
a resource and DELETE for deleting a resource. The methods’ semantics are
rigidly defined.

• There can be different representations for resources—for instance as a PDF
or HTML. HTTP supports the so-called content negotiation via the Accept
header. This means that the client can determine which data representation it
can process. The content negotiation enables resources to be made available in
a way that is readable to humans and to provide them at the same time under
the same URL in a machine-readable manner. The client can communicate
via an Accept header whether it only accepts human-readable HTML or only
JSON.

• Relationships between resources can be represented by links. Links can point
to other microservices enabling the logic of different microservices to be
integrated.

• The servers in a REST system are supposed to be stateless. Therefore, HTTP
implements a stateless protocol.

The limited vocabulary represents the exact opposite of what object-oriented
 systems employ. Object-orientation focuses on a specific vocabulary with specific
methods for each class. The REST vocabulary can also execute complex logic. When
data validations are necessary, this can be checked at the POST or PUT of new data.
If complex processes need to be represented, a POST can start the process, and sub-
sequently the state can be updated. The current state of the process can be fetched
by the client under a known URL via GET. Likewise, POST or PUT can be used to
initiate the next state.

Cache and Load Balancer

A RESTful HTTP interface can be very easily supplemented with a cache. Because
RESTful HTTP uses the same HTTP protocol as the web, a simple web cache is
sufficient. Similarly, a standard HTTP load balancer can also be used for RESTful
HTTP. The power of these concepts is impressively illustrated by the size of the
WWW. This size is only possible due to the properties of HTTP. HTTP, for instance,
possesses simple and useful mechanisms for security—not only encryption via
HTTPS but also authentication with HTTP Headers.

ptg18144917

1778.2 REST

HATEOAS

HATEOAS (Hypermedia as the Engine of Application State) is another important
component of REST. It enables the relationships between resources to be modeled
with links. Therefore, a client only has to know an entry point, and from there it can
go on navigating at will and locate all data in a step-by-step manner. In the WWW it
is, for instance, possible to start from Google and from there to reach practically the
entire web via links.

REST describes the architecture of the WWW and therefore the world’s largest
integrated computer system. However, REST could also be implemented with other
protocols. It is an architecture that can be implemented with different technologies.
The implementation of REST with HTTP is called RESTful HTTP. When RESTful
HTTP services exchange data using JSON or XML instead as HTML, they can
exchange data and not just access web pages.

Microservices can also benefit from HATEOAS. HATEOAS does not have cen-
tral coordination, just links. This fits very well with the concept that microservices
should have as little central coordination as possible. REST clients need know only
entry points based on which they can discover the entire system. Therefore, in a
REST-based architecture, services can be moved in a way that is transparent for
the client. The client simply gets new links. Central coordination is not necessary
for this—the REST service just has to return different links. In the ideal case the
 client only has to understand the fundamentals of HATEOAS and can then navigate
via links to any data in the microservice system. The microservice-based systems,
on the other hand, can modify their links and therefore change the distribution of
functionality between microservices. Even extensive architecture changes can be
kept transparent.

HAL

HATEOAS is a concept, and HAL13 (Hypertext Application Language) is a way to
implement it. It is a standard for describing how the links to other documents should
be contained in a JSON document. HATEOAS is particularly easy to implement in
JSON/RESTful HTTP services. The links are separate from the actual document,
enabling links to details or to independent data sets.

XML

XML has a long history as a data format. It is easy to use with RESTful HTTP.
There are different types of systems for XML that can determine whether an XML

 13. http://stateless.co/hal_specification.html

http://www.stateless.co/hal_specification.html

ptg18144917

Chapter 8 Integration and Communication178

document is valid. This is very useful for the definition of an interface. Among the
languages for the definition of valid data is XML Schema (XSD)14 or RelaxNG.15
Some frameworks make possible the generation of code in order to administer XML
data that corresponds to such a schema. Via XLink16 XML documents can contain
links to other documents. This enables the implementation of HATEOAS.

HTML

XML was designed to transfer data and documents. To display the information is the
task of different software. HTML has a similar approach to XML: HTML defines
only the structures, with display occurring via CSS. For communication between
processes HTML documents can be sufficient because in modern web applications,
HTML documents contain only data—just like XML. In a microservices world this
approach has the advantage that the communication to the user and between the
microservices employs the same format. This reduces effort and makes it even easier
to implement microservices that contain a UI and a communication mechanism for
other microservices.

JSON

JSON (JavaScript Object Notation) is a representation of data that is well suited to
JavaScript. Like JavaScript, the data is dynamically typed. There are suitable JSON
libraries for all programming languages. In addition, there are type systems, such as
JSON Schema,17 that supplement JSON with validation concepts. With this addition
JSON is no longer inferior to data formats like XML.

Protocol Buffer

Binary protocols such as Protocol Buffer18 can be used instead of text-based data
representations. This technology has been designed by Google to represent data
more efficiently and to achieve higher performance. There are implementations for
many different programming languages so Protocol Buffer can be used universally,
similar to JSON and XML.

 14. http://www.w3.org/XML/Schema

 15. http://relaxng.org/

 16. http://www.w3.org/TR/xlink11/

 17. http://json-schema.org/

 18. https://developers.google.com/protocol-buffers/

http://www.w3.org/XML/Schema
http://www.relaxng.org/
http://www.w3.org/TR/xlink11/
http://www.json-schema.org/
https://www.developers.google.com/protocol-buffers/

ptg18144917

1798.3 SOAP and RPC

RESTful HTTP Is Synchronous

RESTful HTTP is synchronous: typically, a service sends out a request and waits for a
response, which is then analyzed in order to continue with the program sequence. This
can cause problems if there are long latency times within the network. It can lengthen
the processing of a request since responses from other services have to be waited for.
After waiting for a certain period of time the request has to be aborted because it is
likely that the request is not going to be answered at all. Possible reasons for a failure
are that the server is not available at the moment or that the network has a problem.
Correctly handled timeouts increase the stability of the system (section 9.5).

The timeout should be used to ensure that the calling service does not fail simply
because it does not get a response from the system it is calling. This ensures that a
failure does not propagate through the system as a whole.

8.3 SOAP and RPC

It is possible to build a microservices-based architecture using SOAP. Like REST,
SOAP uses HTTP, but it only uses POST messages to transfer data to a server.
 Ultimately, a SOAP call runs a method on a certain object on the server and is there-
fore an RPC mechanism (remote-procedure call).

SOAP lacks concepts such as HATEOAS that enable relationships between
microservices to be handled flexibly. The interfaces have to be completely defined by
the server and known on the client.

Flexible Transport

SOAP can convey messages using different transport mechanisms. For instance, it’s
possible to receive a message via HTTP and to then send it on via JMS or as an email
via SMTP/POP. SOAP-based technologies also support forwarding of requests. For
example, the security standard WS-Security can encrypt or sign parts of a message.
After this has been done, the parts can be sent on to different services without having
to be decrypted. The sender can send a message in which some parts are encrypted.
This message can be processed via different stations. Each station can process a part
of the message or send it to other recipients. Finally, the encrypted parts will arrive at
their final recipients—and only there do they have to be decrypted and processed.

SOAP has many extensions for special use contexts. For instance, the different
extensions from the WS-*-environment cater for transactions and the coordination
of web services. This enables a complex protocol stack to arise. The interoperability
between the different services and solutions can suffer due to this complexity. Also,
some technologies are not well suited for microservices. For example, a coordination

ptg18144917

Chapter 8 Integration and Communication180

of different microservices is problematic as this will result in a coordination layer,
and modifications of a business process will probably impact the coordination of
the microservices and also the microservices themselves. When the coordination
layer consists of all microservices, a monolith is created that needs to be changed
upon each modification. This contradicts the microservices concept of independent
deployment. WS-* is better suited to concepts such as SOA.

Thrift

Another communication option is Apache Thrift.19 It uses very efficient binary
encodings such as Protocol Buffer. Thrift can also forward requests from a process
via the network to other processes. The interface is described in an interface
 definition specific to Thrift. Based on this definition different client and server
 technologies can communicate with each other.

8.4 Messaging

Another way for microservices to communicate is using messages and messaging
 systems. As the name suggests, these systems are based on the sending of messages.
A message may result in a response that is sent as a message again. Messages can go
to one or multiple recipients.

The use of messaging solutions is particularly advantageous in distributed
systems:

• Message transfer is resilient to network failures. The messaging system buffers
them and delivers them when the network is available again.

• Guarantees can be strengthened further: the messaging system can guarantee
not only the correct transfer of the messages but also their processing. If there
was a problem during the processing of the message, the message can be trans-
ferred again. The system can attempt to handle the message a number of times
until either the message is correctly processed or discarded because it cannot
be processed successfully.

• In a messaging architecture responses are transferred and processed asynchro-
nously. This approach is well suited to the high latency times that can occur in
the network. Waiting a period of time for a response is normal with messaging

 19. https://thrift.apache.org/

https://www.thrift.apache.org/

ptg18144917

1818.4 Messaging

systems and therefore the programming model works on the assumption of high
latency.

• A call to another service does not block further processing. Even if the response
has not been received yet, the service can continue working and potentially call
other services.

• The sender does not know the recipient of the message. The sender sends the
message to a queue or a topic. There the recipient registers. This means that
the sender and recipient are decoupled. There can even be multiple recipients
without the sender being aware of this. Also, the messages can be modified on
their way—for instance, data can be supplemented or removed. Messages can
also be forwarded to entirely different recipients.

Messaging works well with certain architectures of microservice-based systems
such as Event Sourcing (see section 9.3) or event-driven architecture (section 7.8).

Messages and Transactions

Messaging is an approach that can be implemented in transactional systems that use
microservices. It can be difficult to guarantee transactions when microservices call
each other in a microservice-based system. When multiple microservices have to
 participate in a transaction, they can only be allowed to write changes when all
microservices in the transaction have processed the logic without errors. This means
that changes have to be held back for a long time. That is bad for performance since
no new transactions can change the data in the meantime. Also, in a network it is
always possible that a participant fails. When this happens the transaction could
remain open for a long time or might not be closed at all. This will potentially block
changes to the data for a long period of time. Such problems arise, for instance, when
the calling system crashes.

In a messaging system, transactions can be treated differently. The sending and
receiving of messages is part of a transaction—just as, for instance, the writing
to and reading from the database (see Figure 8.8). When an error occurs during
the processing of the message, all outgoing messages are canceled, and the data-
base changes are rolled back. In the case of success all these actions take place. The
recipients of the messages can be similarly safeguarded transactionally. To achieve
this the processing of the outgoing messages is subject to the same transactional
guarantees.

The important point is that the sending and receiving of messages and the
associated transactions on the database can be combined in one transaction. The

ptg18144917

Chapter 8 Integration and Communication182

coordination is then taken care of by the infrastructure—no extra code needs to be
written. For the coordination of messaging and databases the two-phase commit
(2PC) protocol can be employed. This protocol is the normal method for coordi-
nating transactional systems like databases and messaging systems with each other.
Alternatives are products like Oracle AQ or ActiveMQ, which store messages in a
database. By storing messages in a database, the coordination between database and
messaging can be achieved simply by writing the messages as well as the data modifi-
cations in the same database transaction. Ultimately, messaging and database are the
same systems in this setup.

Messaging enables the implementation of transactions without the need for a
global coordination. Each microservice is transactional. The transactional sending
of messages is ensured by the messaging technology. However, when a message can-
not be processed, for instance because it contains invalid values, there is no way to
roll back the messages that have already been processed. Therefore, the correct pro-
cessing of transactions is not guaranteed in all circumstances.

Messaging Technology

In order to implement messaging a technology has to selected:

• AMQP (Advanced Message Queuing Protocol)20 is a standard. It defines a pro-
tocol with which messaging solutions can communicate on the wire with each
other and with clients. An implementation of this standard is RabbitMQ,21

which is written in Erlang and is made available under the Mozilla license.
Another implementation is Apache Qpid.

 20. https://www.amqp.org/

 21. https://www.rabbitmq.com/

Message Receiver
Message

Message
Message

Transaction

Database

Figure 8.8 Transactions and Messaging

https://www.amqp.org/
https://www.rabbitmq.com/

ptg18144917

1838.4 Messaging

• Apache Kafka22 focuses on high throughput, replication, and fault-tolerance.
Therefore, it is well suited for distributed systems like microservices, especially
the fault-tolerance, which is very helpful in this context.

• 0MQ23 (also called ZeroMQ or ZMQ) operates without a server and is there-
fore very lightweight. It has some primitives that can be assembled into com-
plex systems. 0MQ is released under the LGPL license and written in C++.

• JMS (Java Messaging Service)24 defines an API that a Java application can use
to receive messages and send them. In contrast to AMQP the specification
does not define how the technology transfers messages on the wire. Since it is
a standard, Java-EE server implements this API. Well-known implementations
are ActiveMQ25 and HornetQ.26

• Azure Service Bus27 is Microsoft’s hosted messaging system. SDKs are pro-
vided for Java, Node.js, and also .NET.

• It is also possible to use ATOM28 Feeds29 for messaging. This technology is
normally used to transfer blog content enabling clients a relatively easily way
to request new entries on a blog. In the same way a client can use ATOM to
request new messages. ATOM is based on HTTP and therefore fits well in a
REST environment. However, ATOM only has functionality for delivering new
information. It does not support more complex techniques like transactions.

For many messaging solutions a messaging server and therefore additional infra-
structure is required. This infrastructure has to be operated in a way that prevents
failures because these would cause communication in the entire microservice-based
system to fail. However, messaging solutions are normally designed to achieve high
availability via clustering or other techniques.

For many developers messaging is a somewhat unfamiliar concept since it requires
asynchronous communication, making it appear rather complex. In most cases the
calling of a method in a different process is easier to understand. With approaches
like Reactive (see section 9.6) asynchronous development is introduced into the
microservices themselves. Also the AJAX model from JavaScript development

 22. http://kafka.apache.org/

 23. http://zeromq.org/

 24. https://jcp.org/en/jsr/detail?id=343

 25. http://activemq.apache.org/

 26. http://hornetq.jboss.org/

 27. https://azure.microsoft.com/services/service-bus

 28. http://tools.ietf.org/html/rfc4287

 29. http://tools.ietf.org/html/rfc5023

http://www.kafka.apache.org/
http://www.zeromq.org/
https://www.jcp.org/en/jsr/detail?id=343
http://www.activemq.apache.org/
http://www.hornetq.jboss.org/
https://www.azure.microsoft.com/services/service-bus
http://www.tools.ietf.org/html/rfc4287
http://www.tools.ietf.org/html/rfc5023

ptg18144917

Chapter 8 Integration and Communication184

 resembles the asynchronous treatment of messages. More and more developers are
therefore becoming familiar with the asynchronous model.

Try and Experiment

• REST, SOAP/RPC, and messaging each have advantages and disadvantages.
List the advantages and disadvantages and make up your mind which of the
alternatives to use.

• In a microservice-based system there can be different types of communi-
cation; however, there should be one predominant communication type.
Which would you choose? Which others would be allowed in addition? In
which situations?

8.5 Data Replication

At the database level microservices could share a database and all access the same
data. This type of integration is something that has been used in practice for a long
time: it is not unusual that a database is used by several applications. Often databases
last longer than applications, leading to a focus on the database rather than the
applications that sit on top of it. Although integration via a shared database is
 widespread, it has major disadvantages:

• The data representation cannot be modified easily since several applications
access the data. A change could cause one of the applications to break. This
means that changes have to be coordinated across all applications.

• This makes it impossible to rapidly modify applications in situations where
database changes are involved. However, the ability to rapidly change an
 application is exactly the benefit that microservices should bring.

• Finally, it is very difficult to tidy up the schema—for example, to remove
 columns that are no longer needed—because it is unclear whether any system
is still using these columns. In the long run the database will get more and
more complex and harder to maintain.

Ultimately, the shared use of a database is a violation of an important architec-
tural rule. Components should be able to change their internal data representation

ptg18144917

1858.5 Data Replication

without other components being affected. The database schema is an example of an
internal data representation. When multiple components share the database, it is no
longer possible to change the data representation. Therefore, microservices should
have strictly separate data storage and not share a database schema.

A database instance can be used by multiple microservices when the data sets of
the individual microservices are completely separate. For instance, each microservice
can use its own schema within a shared database. However, in that situation there
shouldn’t be any relationships between the schemas.

Replication

Replicating data is an alternative method for integrating microservices. But care
should be taken that the data replication does not introduce a dependency on the
database schemas by the back door. When the data is just replicated and the same
schema is used, the same problem occurs as with a shared use of the database.
A schema change will affect other microservices, and the microservices become
 coupled again. This has to be avoided.

The data should be transferred into another schema to ensure the independence
of the schemas and therefore the microservices. In most cases, Bounded Context
means that different representations or subsets of data are relevant for different
microservices. Therefore, when replicating data between microservices it will
often be necessary to transform the data or to replicate just subsets of the data
anyway.

A typical example for the use of replication in traditional IT is data warehouses.
They replicate data but store it differently. This is because the data access require-
ment for a data warehouse is different: the aim is to analyze lots of data. The data
is optimized for read access and often also combined, as not every single data set is
relevant for statistics.

Problems: Redundancy and Consistency

Replication causes a redundant storage of the data. This means that the data is not
immediately consistent: it takes time until changes are replicated to all locations.

However, immediate consistency is often not essential. For analysis tasks such as
those carried out by a data warehouse, an analysis that does not include orders from
the last few minutes can be sufficient. There are also cases in which consistency is
not that important. When an order takes a little bit of time until it is visible in the
delivery microservice, this can be acceptable because nobody will request the data in
the meanwhile.

ptg18144917

Chapter 8 Integration and Communication186

High consistency requirements make replication difficult. When system requirements
are determined, it is often not clear how consistent the data really has to be. This limits
the options when it comes to data replication.

When designing a replication mechanism there should ideally be a leading sys-
tem that contains the current data. All other replicas should obtain the data from
this system. This makes it clear which data is really up-to-date. Data modifications
should not be stored in different systems as this easily causes conflicts and makes for
a very complex implementation. Such conflicts are not a problem when there is just
one source for changes.

Implementation

Some databases offer replication as a feature. However, this is often not helpful with
the replication of data between microservices because the schemas of the microser-
vices should be different. The replication has to be self-implemented. For this
 purpose, a custom interface can be created. This interface should enable high perfor-
mance access even to large data sets. To achieve the necessary performance, one can
also directly write into the target schema. The interface does not necessarily have to
use a protocol like REST, but can employ faster alternative protocols. To achieves
this, it may be necessary to use another communication mechanism than the one
normally used by the microservices.

Batch

The replication can be activated in a batch. In this situation the entire data set—or at
least changes from the last run—can be transferred. For the first replication run the
volume of data can be large, meaning that the replication takes a long time. However,
it can still be sensible to transfer all the data each time. This makes possible the
 correction of mistakes that occurred during the last replication run.

A simple implementation can assign a version to each data set. Based on the
 version, data sets that have changed can specifically be selected and replicated. This
approach means that the process can be easily restarted if it is interrupted for some
reason, as the process itself does not hold a state. Instead the state is stored with the
data itself.

Event

An alternative method is to start the replication on certain events. For instance, when
a data set is newly generated, the data can be immediately copied into the replicas.
This approach is particularly easy to implement with messaging (section 8.4).

ptg18144917

1878.6 Interfaces: Internal and External

Data replication is an especially good choice where high-performance access
is required to large amounts of data. Many microservice-based systems get along
 without replicating data. Even those systems that use data replication can also
employ other integration mechanisms.

Try and Experiment

Would you use data replication in a microservice-based system? In which
areas? How would you implement it?

8.6 Interfaces: Internal and External

Microservice-based systems have different types of interfaces:

• Each microservice can have one or more interfaces to other microservices.
A change to the interface can require coordination with other microservice
teams.

• The interfaces between microservices that are developed by the same team are
a special case. Team members can closely work together so that these inter-
faces are easier to change.

• The microservice-based system can offer interfaces to the outside world, mak-
ing the system accessible beyond just the organization. In extreme cases this
can potentially be every Internet user if the system offers a public interface on
the Internet.

These interfaces vary in how easy they are to change. It is very easy to ask a col-
league in the same team for a change. This colleague is potentially in the same room,
so it is very easy to communicate with him.

A change to an interface of a microservice belonging to another team is more
difficult. The change has to compete against other changes and new features that
team may be implementing. When the change has to be coordinated with other
teams, additional effort arises.

Interface changes between microservices can be safeguarded by appropriate tests
(consumer-driven contract tests, section 10.7). These tests examine whether the
interface still meets the expectations of the interface users.

ptg18144917

Chapter 8 Integration and Communication188

External Interfaces

When considering interfaces to the outside, coordination with users is more compli-
cated. There may be very many users, and for public interfaces the users might even
be unknown. This makes techniques like consumer-driven contract tests hard to
implement. However, for interfaces to the outside, rules can be defined that deter-
mine, for instance, how long a certain version of the interface will be supported.
A stronger focus on backwards compatibility can make sense for public interfaces.

For interfaces to the outside it can be necessary to support several versions of the
interface in order to not force all users to perform changes. Between microservices it
should be an aim to accept multiple versions only for uncoupling deployments. When a
microservice changes an interface, it should still support the old interface. In that case
the microservices that depend on the old interface do not have to be instantly deployed
anew. However, the next deployment should use the new interface. Afterwards the old
interface can be removed. This reduces the number of interfaces that have to be sup-
ported and therefore the complexity of the system.

Separating Interfaces

Since interfaces vary in how easy they are to change, they should be implemented
separately. When the interface of a microservice is to be used externally, it can subse-
quently only be changed when this change is coordinated with the external users.
However, a new interface for internal use can be split off. In this situation the
 interface that is exposed to the outside is the starting point for a separate internal
interface that can be more easily changed.

Also several versions of the same interface can be implemented together internally.
New parameters on a new version of the interface can be set to default values when the
old interface is called so that internally both interfaces use the same implementation.

Implementing External Interfaces

Microservice-based systems can offer interfaces to the outside in different ways. On
top of a web interface for users there can also be an API, which can be accessed from
outside. For the web interface section 8.1 described how the microservices can be
integrated in a way that enables all microservices to implement part of the UI.

When the system offers a REST interface to the outside world, the calls from out-
side can be forwarded to a microservice with the help of a router. In the example
application the router Zuul is used for this (section 13.9). Zuul is highly flexible and
can forward requests to different microservices based on very detailed rules. How-
ever, HATEOAS gives the freedom to move resources and makes routing dispensable.

ptg18144917

1898.6 Interfaces: Internal and External

The microservices are accessible from the outside via URLs, but they can be moved
at any time. In the end the URLs are dynamically determined by HATEOAS.

It would also be possible to offer an adaptor for the external interface that modi-
fies the external calls before they reach the microservices. However, in that case a
change to the logic cannot always be limited to a single microservice because it could
also affect the adaptor.

Semantic Versioning

To denote changes to an interface a version number can be used. Semantic Versioning30
defines possible version number semantics. The version number is split into MAJOR,
MINOR, and PATCH. The components have the following meaning:

• A change in MAJOR indicates that the new version breaks backwards compat-
ibility. The clients have to adjust to the new version.

• The MINOR version is changed when the interface offers new features. How-
ever, the changes should be backwards compatible. A change of the clients is
only necessary if they want to use the new features.

• PATCH is increased in the case of bug fixes. Such changes should be com-
pletely backwards compatible and should not require any modifications to the
clients.

When using REST one should keep in mind that it is not wise to encode the
 version in the URL. The URL should represent a resource—independent of which
version of the API version is called. The version can be defined, for instance, in an
Accept header of the request.

Postel’s Law or the Robustness Principle

Another important principle for the definition of interfaces is Postel’s Law,31 which
is also known as the Robustness Principle. It states that components should be strict
with regard to what they are passing on and liberal with regard to what they are
accepting from others. Put differently, each component should adhere as closely as
possible to the defined interface when using other components but should, whenever
possible, compensate for errors that arise during the use of its own interface.

 30. http://semver.org/

 31. http://tools.ietf.org/html/rfc793#section-2.10

http://www.semver.org/
http://www.tools.ietf.org/html/rfc793#section-2.10

ptg18144917

Chapter 8 Integration and Communication190

When each component behaves according to the Robustness Principle interop-
erability will improve: in fact, if each component adheres exactly to the defined
 interfaces, interoperability should already be guaranteed. If a deviation does happen,
then the component being used will try to compensate for it and thereby attempt to
“save” the interoperability. This concept is also known as Tolerant Reader.32

In practice a called service should accept the calls as long as this is at all possible.
One way to achieve this is to only read out those parameters from a call that are
really necessary. On no account should a call be rejected just because it does not
formally conform to the interface specification. However, the incoming calls should
be validated. Such an approach makes it easier to ensure smooth communication in
distributed systems like microservices.

8.7 Conclusion

The integration of microservices can occur at different levels.

Client

One possible level for the integration is the web interface (section 8.1):

• Each microservice can bring along its own single-page-app (SPA). The SPAs
can be developed independently. The transition between the microservices,
however, starts a completely new SPA.

• There can be one SPA for the entire system. Each microservice supplies one
module for the SPA. This makes the transitions between the microservices
very simple in the SPA. However, the microservices get very tightly integrated,
meaning that coordination of deployments can become necessary.

• Each microservice can bring along an HTML application, and integration can
occur via links. This approach is easy to implement and enables a modulariza-
tion of the web application.

• JavaScript can load HTML. The HTML can be supplied by different micro-
services so that each microservice can contribute a representation of its data.
Using this technique an order can, for example, load the presentation of a
product from another microservice.

 32. http://martinfowler.com/bliki/TolerantReader.html

http://www.martinfowler.com/bliki/TolerantReader.html

ptg18144917

1918.7 Conclusion

• A skeleton can assemble individual HTML snippets. This would enable, say, an
e-commerce landing page to display the last order from one microservice and
recommendations from another microservice. ESI (Edge Side Includes) or SSI
(Server Side Includes) can be useful for this.

In the case of a rich client or a mobile app the integration is difficult because the
client application is a deployment monolith. Therefore, changes to different micro-
services can only be deployed together. The teams can modify the microservices and
then deliver a certain amount of matching UI changes together for a new release
of the client application. There can also be a team for each client application that
adopts new functionality of the microservices into the client application. From an
organizational perspective there can even be developers in the team of the client
application that develop a custom service that can, for instance, implement an inter-
face that enables the client application to use it in a high-performance way.

Logic Layer

REST can be used for communication at the logic layer (section 8.2). REST uses the
mechanisms of the WWW to enable communication between services. HATEOAS
means that the relationships between systems are represented as links. The client
only needs to know an entry URL. All the other URLs can be changed because they
are not directly contacted by the clients but are found by them via links starting at
the entry URL. HAL defines how links can be expressed and supports the implemen-
tation of REST. Other possible data formats for REST are XML, JSON, HTML,
and Protocol Buffer.

Classical protocols like SOAP or RPC (section 8.3) can also be used for the com-
munication between microservices. SOAP offers ways for messages to be forwarded
to other microservices. Thrift has an efficient binary protocol and can also forward
calls between processes.

Messaging (section 8.4) has the benefit that it can handle network problems and
high latency times very well. In addition, transactions are also very well supported
by messaging.

Data Replication

At the database level a shared schema is not recommended (section 8.5). This would
couple microservices too tightly since they would have a shared internal data repre-
sentation. The data has to be replicated into another schema. The schema should

ptg18144917

Chapter 8 Integration and Communication192

meet the requirements of the respective microservice. As microservices are Bounded
Contexts, it is very unlikely that the microservices will use the same data model.

Interfaces and Versions

Finally, interfaces are an important foundation for communication and integration
(section 8.6). Not all interfaces are equally easy to change. Public interfaces can be
practically impossible to change because too many systems depend on them. Internal
interfaces can be changed more easily. In the simplest case public interfaces just route
certain functionality to suitable microservices. Semantic Versioning is useful for giv-
ing a meaning to version numbers. To ensure a high level of compatibility the Robust-
ness Principle is helpful.

This section has hopefully shown that microservices are not just services that use
RESTful HTTP. This is just one way for microservices to communicate.

Essential Points

• At the UI level the integration of HTML user interfaces is particularly
straightforward. SPAs, desktop applications, and mobile apps are deployment
 monoliths where changes to the user interface for a microservice have to be
closely coordinated with other changes.

• Though REST and RPC approaches offer a simple programming model at the
logic level, messaging makes a looser coupling possible and can cope better
with the challenges of distributed communication via the network.

• Data replication enables high-performance access to large amounts of data.
However, microservices should never use the same schema for their data since
this means the internal data representation can no longer be changed.

ptg18144917

193

When microservices are implemented, close attention must be paid to a number of key
points. First, this chapter addresses the domain architecture of microservices
(section 9.1). Next up is CQRS (Command Query Responsibility Segregation)
(section 9.2), which can be interesting when implementing a microservice-based
 system. This approach separates data writes from data reads. Event Sourcing
(section 9.3) places events at the center of the modeling. The structure of a microser-
vice can correspond to a hexagonal architecture (section 9.4), which subdivides func-
tionality into a logic kernel and adapters. Section 9.5 focuses on resilience and
stability—essential requirements for microservices. Finally, technical approaches for
the implementation of microservices, such as Reactive, are discussed in section 9.6.

9.1 Domain Architecture

The domain architecture of a microservice defines how the microservice implements
its domain-based functionality. A microservice-based architecture should not aim to
predetermine this decision for all microservices. The internal structure of each
microservice should be decided independently. This enables the teams to act largely
autonomously of each other. It is sensible to adhere to established rules in order to
keep the microservice easy to understand, simple to maintain, and also replaceable.
However, there is no strict need for regulations at this level.

This section details how to identify potential problems with the domain architecture
of a microservice. Once a potential issue has been discovered, the team responsible for
the microservice will need to determine whether it constitutes a real problem and how
it can be solved.

Chapter 9

Architecture of Individual
Microservices

ptg18144917

Chapter 9 Architecture of Individual Microservices194

Cohesion

The domain architecture of the overall system influences the domain architecture of
the individual microservices. As presented in section 7.1, microservices should be
loosely coupled to each other and have high cohesion internally. This means that a
microservice should have only one responsibility with regard to the domain. If
microservices are not highly cohesive, then most likely the microservice has more
than one responsibility. If the cohesion within the microservice is not high enough,
the microservice can be split into several microservices. The split ensures that the
microservices remain small and thus are easier to understand, maintain, and replace.

Encapsulation

Encapsulation means that part of the architecture hides internal information from the
outside—particularly internal data structures. Access should instead occur only
through an interface. This makes sure that the software remains easy to modify, because
internal structures can be changed without influencing other parts of the system. For
this reason, microservices should never allow other microservices access to their internal
data structures. If they do, then these data structures can no longer be modified. In
order to use another microservice, only the interface for that microservice needs to be
understood. This improves the structure and intelligibility of the system.

Domain-Driven Design

Domain-driven design (DDD) is one way to internally structure microservices. Each
microservice can have a DDD domain model. The patterns required from domain-
driven design were introduced in section 3.3. When domain-driven design and strategic
design define the structure of the overall system (section 7.1), the microservices should
also use these approaches. During the development of the overall system strategic
design is concerned with the domain models that exist and how these are distributed
across the microservices.

Transactions

Transactions bundle multiple actions that should only be executed together or not at
all. It is difficult for a transaction to span more than one microservice. Only messaging
is able to support transactions across microservices (see section 8.4). The domain-
based design within a microservice ensures that each operation at the interface only
corresponds to one transaction. By doing this it is possible to avoid having multiple
microservices participating in one transaction. This would be very hard to implement
technically.

ptg18144917

9.2 CQRS 195

9.2 CQRS

Systems usually save a state. Operations can change data or read it. These two types of
operations can be separated: Operations that change data and therefore have side effects
(commands) can be distinguished from operations that just read data (queries). It is also
possible to stipulate that an operation should not simultaneously change the state and
return data. This distinction makes the system easier to understand: When an operation
returns a value, it is a query and does not change any values. This leads to additional
benefits. For example, queries can be provided by a cache. If read operations can also
change data, then the addition of a cache becomes more difficult since operations with
side effects still have to be executed. The separation between queries and commands is
called CQS (Command Query Separation). This principle is not limited to microser-
vices, but can be applied more generally. For example, classes in an object-oriented
 system can divide operations in the same manner.

CQRS

CQRS (Command Query Responsibility Segregation)1 is more extreme than CQS
and completely separates the processing of queries and commands.

Figure 9.1 shows the structure of a CQRS system. Each command is stored in the
command store. In addition, there can be command handlers. The command han-
dler in the example uses the commands for storing the current state of the data in a
database. A query handler uses this database to process queries. The database can
be adjusted to the needs of the query handler. For example, a database for the analy-
sis of order processes can look completely different from a database that customers
use for displaying their own order processes. Entirely different technologies can be
employed for the query database. For instance, it is possible to use an in-memory

1. https://speakerdeck.com/owolf/cqrs-for-great-good-2

Command
Queue

Command
Store

Command
Handler

Database

Query
Handler

Figure 9.1 Overview of CQRS

https://www.speakerdeck.com/owolf/cqrs-for-great-good-2

ptg18144917

Chapter 9 Architecture of Individual Microservices196

cache, which loses data if there is a server failure. Information persistency is ensured
by the command store. In an emergency the contents of the cache can be recon-
structed by the command store.

Microservices and CQRS

CQRS can be implemented with microservices:

• The communication infrastructure can implement the command queue when a
messaging solution is used. With approaches such as REST a microservice has
to forward the commands to all interested command handlers and implement
the command queue that way.

• Each command handler can be a separate microservice and can handle the
commands with its own logic. This enables logic to be very easily distributed to
multiple microservices.

• A query handler can also be a separate microservice. The changes to the data
which the query handler uses can be introduced by a command handler in
the same microservice. However, the command handler can also be a sepa-
rate microservice. In that situation the query handler has to offer a suitable
interface for accessing the database so that the command handler can change
the data.

Advantages

CQRS has a number of benefits particularly when it comes to the interplay between
microservices:

• Reading and writing of data can be separated into individual microservices.
This makes possible even smaller microservices. When the writing and reading
is so complex that a single microservice for both would get too large and too
hard to understand, a split might make sense.

• Also a different model can be used for writing and reading. Microservices can
each represent a Bounded Context and therefore use different data models. For
instance, in an e-commerce shop a lot of data may be written for an online pur-
chase while statistical evaluations read only a small part of that data for each
purchase. From a technical perspective the data can be optimized for reading
operations via denormalization or via other means for certain queries.

• Writing and reading can be scaled differently by starting a different number
of query handler microservices and command handler microservices. This
supports the fine-grained scalability of microservices.

ptg18144917

9.3 Event Sourcing 197

• The command queue helps to handle any load peaks that occur during
 writing. The queue buffers the changes that are then processed later on.
 However, this does mean that a change to the data will not immediately be
taken into consideration by the queries.

• It is easy to run different versions of the command handlers in parallel. This
facilitates the deployment of new versions of the microservices.

CQRS can serve to make microservices even smaller, even when operations and
data are very closely connected. Each microservice can independently decide for or
against CQRS.

There are different ways to implement an interface that offers operations for
changing and reading data. CQRS is only one option. Both aspects can also be
implemented without CQRS in just one microservice. The freedom to be able to use
different approaches is one of the main benefits of microservice-based architectures.

Challenges

CQRS also brings some challenges:

• Transactions that contain both read and write operations are hard to imple-
ment. The read and write operations may be implemented in different micro-
services. This may mean it is very difficult to combine the operations into one
transaction since transactions across microservices are usually impossible.

• It is hard to ensure data consistency across different systems. The processing of
events is asynchronous, meaning that different nodes can finish processing at
different points in time.

• The cost for development and infrastructure is higher. More system compo-
nents and more complex communication technologies are required.

It is not wise to implement CQRS in every microservice. However, the approach
can be valuable for microservice-based architectures in many circumstances.

9.3 Event Sourcing

Event Sourcing2 has a similar approach to CQRS. However, the events from Event
Sourcing differ from the commands from CQRS. Commands are specific: They
define exactly what is to be changed in an object. Events contain information about

2. http://slideshare.net/mploed/event-sourcing-introduction-challenges

http://www.slideshare.net/mploed/event-sourcing-introduction-challenges

ptg18144917

Chapter 9 Architecture of Individual Microservices198

something that has happened. Both approaches can be combined: A command can
change data. This will result in events that other components of the system can react to.

Instead of the maintaining state itself Event Sourcing stores the events that have
led to the current state. While the state itself is not saved, it can be reconstructed
from the events.

Figure 9.2 gives an overview of Event Sourcing:

• The event queue sends all events to the different recipients. It can, for instance,
be implemented with messaging middleware.

• The event store saves all events. This makes it possible to reconstruct the chain
of events and the events themselves.

• An event handler reacts to the events. It can contain business logic that reacts
to events.

• In such a system it is only the events that are easy to trace. The current state of
the system is not easy to follow up on. Therefore, it can be sensible to main-
tain a snapshot that contains the current state. At each event or after a certain
period of time the data in the snapshot will be changed to bring it up-to-date
with the new events. The snapshot is optional. It is also possible to reconstruct
the state from the events in an ad hoc manner.

Events may not be changed afterwards. Erroneous events have to be corrected by
new events.

Event Queue

Event

Event
Store

Event

Event

Event
Handler

Event
Handler

Snapshot

Figure 9.2 Overview of Event Sourcing

ptg18144917

9.4 Hexagonal Architecture 199

Event Sourcing is based on domain-driven design (see section 3.3). To adhere to the
concept of Ubiquitous Language, the events should have names that also make sense
in the business context. In some cases, an event-based model makes particular sense
from a domain perspective. For instance, bookings to an account can be considered
as events. Requirements like auditing are very easy to implement with Event Sourcing.
Because the booking is modeled as an event, it is very easy to trace who has performed
which booking. In addition, it is relatively easy to reconstruct a historical state of the
system and old versions of the data. So Event Sourcing can be a good choice from a
domain perspective. Generally, approaches like Event Sourcing make sense in complex
domains which also benefit from domain-driven design.

Event Sourcing has similar advantages and disadvantages to CQRS, and both
approaches can easily be combined. Event Sourcing makes particular sense when the
overall system works with an event-driven architecture (section 7.8). In this type of
system, the microservices already send events relating to changes of state, and it is
logical to also use this approach in the microservices.

Try and Experiment

Choose a project you know.

• In which places would Event Sourcing make sense? Why? Would Event
Sourcing be usable in an isolated manner in some places, or would the
entire system have to be changed to events?

• Where could CQRS be helpful? Why?

• Do the interfaces adhere to the CQR rule? If they do, then the read and
write operations would have to be separate in all interfaces.

9.4 Hexagonal Architecture

A hexagonal architecture3 focuses on the logic of the application (see Figure 9.3).
The logic contains only business functionality. It has different interfaces, each of
which are represented by an edge of the hexagon. In the example shown, these are
the interfaces for the interaction with users and the interface for administrators.

3. http://alistair.cockburn.us/Hexagonal+architecture

http://www.alistair.cockburn.us/Hexagonal+architecture

ptg18144917

Chapter 9 Architecture of Individual Microservices200

Users can utilize these interfaces via a web interface implemented by HTTP adapters.
For tests there are special adapters enabling the tests to simulate users. Finally, there
is an adapter that makes the logic accessible via REST. This enables other microser-
vices to call the logic.

Interfaces don’t just take requests from other systems; they are also used to initi-
ate contact with other systems. In the example the database is accessed via the DB
adapter—an alternative adapter is provided for test data. Another application can be
contacted via the REST adapter. Instead of these adapters a test adapter can be used
to simulate the external application.

Another name for hexagonal architecture is “ports and adapters.” Each facet of
the application like user, admin, data, or event is a port. The adapters implement the
ports based on technologies like REST or web user interfaces. Through the ports on
the right side of the hexagon the application fetches data, while the ports on the left
side offer the system’s functionality to users and other systems.

The hexagonal architecture divides a system into a logic kernel and adapter. Only
the adapters can communicate with the outside.

Hexagons or Layers?

A hexagonal architecture is an alternative to a layered architecture. In a layered architec-
ture there is a layer in which the UI is implemented and a layer in which the persistence is
implemented. In a hexagonal architecture there are adapters that are connected to the
logic via ports. A hexagonal architecture enables more ports than just persistence and
UI. The term “adapter” illustrates that the logic and the ports are supposed to be sepa-
rate from the concrete protocols and implementations of the adapter.

Application

User
Functionalities

Data

Web UI

Micro
service

Adapter

Test
Test

Adapter

REST
Adapter

REST

Database
DB

Adapter

Test
data

AdminWeb UI
Adapter

Test
Adapter

Test

Events REST
Adapter

Test
Adapter Test

User

Admin

Figure 9.3 Overview of Hexagonal Architecture

ptg18144917

9.4 Hexagonal Architecture 201

Hexagonal Architectures and Microservices

It is very natural for hexagonal architectures to offer logic not only to other micro-
services via a REST interface but also to users via a web UI. This concept is also the
basis of microservices. They are supposed to not only provide logic for other
microservices but should also support direct interaction by users through a UI.

Since individual test implementations can be implemented for all ports, the isolated
testing of a microservice is easier with a hexagonal architecture. For this purpose, test
adapters just have to be used instead of the actual implementation. The independent
testing of individual microservices is an important prerequisite for the independent
implementation and the independent deployment of microservices.

The logic required for resilience and stability (see section 9.5) or Load Balancing
(section 7.12) can also be implemented in the adapter.

It is also possible to distribute the adapters and the actual logic into individual
microservices. This will result in more distributed communication with its associ-
ated overhead. However, this does mean that the implementation of the adapter and
kernel can be distributed to different teams. For instance, a team developing a mobile
client can implement a specific adapter that is adapted to the bandwidth restrictions
of mobile applications (see also section 8.1).

An Example

As an example of a hexagonal architecture, consider the order microservice shown in
Figure 9.4. The user can make use of the microservice by placing orders through the web
UI. There is also a REST interface, which gives other microservices or external clients
use of the user functionality. The web UI, the REST interface, and the test adapter
are three adapters for the user functionality of the microservice. The implementation
with three adapters emphasizes that REST and web UI are just two ways to use the same
functionality. It also leads to microservices that are implemented to integrate UI and
REST. Technically the adapters can still be implemented in separate microservices.

Another interface is the order events. They announce to the Delivery microservice
whenever new orders arrive so that the orders can be delivered. Through this inter-
face the Delivery microservice also communicates when an order has been delivered or
when delays have occurred. In addition, this interface can be served by an adapter for
tests. This means that the interface to the delivery microservice does not just write data
but can also introduce changes to the orders. This means the interface works in both
directions: It calls other microservices but can also be used by other microservices to
change data.

The hexagonal architecture has a domain-based distribution into an interface
for user functionality and an interface for order events. That way, the architecture
underlines the domain-based design.

ptg18144917

Chapter 9 Architecture of Individual Microservices202

The state of the orders is saved in a database. There is also an interface where test
data can be used for tests instead of the database. This interface corresponds to the
persistence layer of a traditional architecture.

Finally, there is an interface that uses data replication to transmit order information
to reporting. There statistics can be generated from the orders. Reporting appears to
be a persistence interface but is really more: The data is not just stored, but changed to
enable quick generation of statistics.

As the example shows, a hexagonal architecture creates a good domain-based
distribution into different domain-based interfaces. Each domain-based interface
and each adapter can be implemented as a separate microservice. This makes pos-
sible the division of the application into numerous microservices, if necessary.

Try and Experiment

Choose a project you know.

• Which individual hexagons would there be?

• Which ports and adapters would the hexagons have?

• Which advantages would a hexagonal architecture offer?

• What would the implementation look like?

Order
Microservice

User
Functionalities

Data

Web UI
Adapter

Test
Test

Adapter

REST
Adapter

REST

Database
DB

Adapter

Test
Data

Order
Event

REST
Adapter

Delivery

Test
Adapter

Test

User

Reporting
Data

Replication

Figure 9.4 The Order Microservice as an Example for Hexagonal Architecture

ptg18144917

9.5 Resilience and Stability 203

9.5 Resilience and Stability

In a well-designed microservices-based system, the failure of a single microservice
should have a minimal impact on the availability of other microservices in the system.
As microservice-based systems are, by their very nature, distributed, the danger of a
failure is fundamentally higher than with other architectural styles: Networks and
servers are unreliable. As microservices are distributed onto multiple servers, the num-
ber of servers is higher per system, and this also increases the chances of a failure.
When the failure of one microservice results in the failure of additional microservices,
a cascade effect can result in the entire system breaking down. This should be avoided.

For this reason, microservices have to be shielded from the failure of other
microservices. This property is called resilience. The necessary measures to achieve
resilience have to be part of the microservice. Stability is a broader term that
denotes high software availability. Release It!4 lists several patterns on this topic.

Timeout

Timeouts help to detect when a target system is unavailable during a communication
with that system. If no response has been returned after the timeout period, the system
being called is considered to be unavailable. Unfortunately, many APIs do not have
methods to define timeouts, and some default timeouts are very high. For example, at
the operating system level, default TCP timeouts can be as high as five minutes. During
this time the microservice cannot respond to callers since the service is waiting for the
other microservice. This may lead to requests to the calling microservice appearing to
have failed. It is also possible that the request can block a thread during this time. At
some point all threads are blocked, and the microservice can no longer receive any fur-
ther requests. This type of cascade effect needs to be avoided. When the API intends a
timeout to be used for accessing another system or a database, this timeout should be
set. An alternative option is to let all requests to external systems or databases take
place in an extra thread and to terminate this thread after a timeout.

Circuit Breaker

A circuit breaker is a safety device used in electrical circuits. In the event of a short
circuit the circuit breaker interrupts the flow of electricity to avoid a dangerous situ-
ation occurring, such as overheating or fire. This idea can be applied to software as
well: When another system is no longer available or returns errors, a Circuit Breaker

4. Michael T. Nygard. 2007. Release It!: Design and Deploy Production-Ready Software. Raleigh, NC:
Pragmatic Programmers.

ptg18144917

Chapter 9 Architecture of Individual Microservices204

design feature prevents calls going to that system. After all, there is no point in
making calls to a broken system.

Normally the Circuit Breaker is closed and calls are forwarded to the target system.
When an error occurs, depending on the error frequency, the Circuit Breaker will be
opened. Calls will no longer be sent on to the target system but will instead return an
error. The Circuit Breaker can also be combined with a timeout. When the timeout
parameters are exceeded, the Circuit Breaker is opened.

This takes load off the target system and means that the calling system does not
need to wait for a timeout to occur, as the error is returned immediately. After some
set period, the Circuit Breaker will close again. Incoming calls will once again be for-
warded to the target system. If the error persists, the Circuit Breaker will open again.

The state of the Circuit Breakers in a system can highlight where problems are
currently occurring to operations staff. An open Circuit Breaker indicates that a
microservice is no longer able to communicate with another microservice. Therefore,
the state of the Circuit Breaker should be part of the monitoring done by operations.

When the Circuit Breaker is open, an error does not necessarily have to be gener-
ated. It is also possible to simply degrade the functionality. Let us assume that an
automated teller machine (ATM) cannot verify whether an account contains enough
money for the desired withdrawal because the system that is responsible is not reach-
able. Nevertheless, cash withdrawals can be permitted up to a certain limit so that
customers do not get annoyed by the failure, and the bank can continue to make the
associated withdrawal fees. Whether a cash withdrawal is allowed and up to what
limit is a business decision. The possible damage has to be balanced against the
potential for profit. There can also be other rules applied in case of the failure of a
system. Calls can be answered from a cache, for instance. More important than the
technical options is the domain-based requirement for deciding on the appropriate
handling of a system failure.

Bulkhead

A bulkhead is a special door on a ship which can be closed in a watertight manner. It
divides the ship into several areas. When water gets in, only a part of the ship should
be affected, and therefore the ship stays afloat.

Similar approaches are applicable to software: the entire system can be divided
into individual areas. A breakdown or a problem in one area should not affect
the other areas. For example, there can be several different instances of a micros-
ervice for different clients. If a client overloads the microservices, the other clients
will not be negatively affected. The same is true for resources like database connec-
tions or threads. When different parts of a microservice use different pools for these
resources, one part cannot block the other parts, even if it uses up all its resources.

ptg18144917

9.5 Resilience and Stability 205

In microservices-based architectures the microservices themselves form separate
areas. This is particularly true when each microservice brings its own virtual machine
along. Even if the microservice causes the entire virtual machine to crash or over-
loads it, the other microservices will not be affected. They run on different virtual
machines and are therefore separate.

Steady State

The term steady state is used to describe systems that are built in a way that makes
possible their continuous operation. For instance, this would mean that a system
should not store increasing amounts of data. Otherwise the system will have used up
its entire capacity at some point and break down. Log files, for example, have to be
deleted at some point. Usually they are only interesting during a certain time interval
anyway. Another example is caching: when a cache keeps growing, it will at some
point fill all available storage space. Therefore, values in the cache have to be flushed
at some point to keep the cache size from continuously increasing.

Fail Fast

Timeouts are necessary only because another system may need a long time to
respond. The idea behind Fail Fast is to address the problem from the other side:
Each system should recognize errors as quickly as possible and indicate them imme-
diately. When a call requires a certain service and that service is unavailable at the
moment, the call can be directly answered with an error message. The same is true
when other resources are not available at the time. Also, a call should be validated
right at the start. When it contains errors, there is nothing to be gained by processing
it and an error message can be returned immediately. The benefits of Fail Fast are
identical to those offered by timeouts: A rapid failure uses up less resources and
therefore results in a more stable system.

Handshaking

Handshaking in a protocol serves to initiate communication. This feature of proto-
cols gives servers the opportunity to reject additional calls when the server is
 overloaded. This can help to avoid additional overload, a breakdown, or responses
that are too slow. Unfortunately, protocols like HTTP do not support this. There-
fore, the application has to mimic the functionality with, for instance, health checks.
An application can signal that it is, in principle, reachable but has so much load at
the moment that it is unable to handle further calls. Protocols that build on socket
connections can implement these type of approaches by themselves.

ptg18144917

Chapter 9 Architecture of Individual Microservices206

Test Harness

A Test Harness can be used to find out how an application behaves in certain error
situations. Those problems might be at the level of TCP/IP or, say, responses of other
systems that contain an HTTP header but no HTTP body. Theoretically, something
like that should never occur since the operating system or network stack should deal
with it. Nevertheless, such errors can occur in practice and have dramatic conse-
quences if applications are not prepared to handle them. A Test Harness can be an
extension of the tests that are discussed in section 10.8.

Uncoupling via Middleware

Calls in a single program only ever function on the same host at the same time in
the same process. Synchronous distributed communication (REST) enables com-
munication between different hosts and different processes at the same time.
Asynchronous communication via messaging systems (section 8.4) also enables an
uncoupling over time. A system should not wait for the response of an asynchro-
nous process. The system should continue working on other tasks instead of just
waiting for a response. Errors that cause one system after another to break down
like dominoes are much less likely when using asynchronous communication. The
systems are forced to deal with long response times since asynchronous communi-
cation often means long response times.

Stability and Microservices

Stability patterns like Bulkheads restrict failures to a unit. Microservices are the
obvious choice for a unit. They run on separate virtual machines and are therefore
already isolated with regard to most issues. This means that the bulkhead pattern
arises very naturally in a microservices-based architecture. Figure 9.5 shows an over-
view: A microservice using Bulkheads, Circuit Breakers, and Timeouts can safeguard
the use of other microservices. The used microservice can additionally implement
fail fast. The safeguarding can be implemented via patterns in those parts of a
microservice that are responsible for communicating with other microservices. This
enables this aspect to be implemented in one area of the code and not distributed
across the entire code.

Microservice Microservice

Bulkhead
Circuit Breaker

Timeout
Fail Fast

Figure 9.5 Stability in the Case of Microservices

ptg18144917

9.5 Resilience and Stability 207

On a technical level the patterns can be implemented in different ways. For micro-
services there are the following options:

• Timeouts are easy to implement. When another system is accessed, an indi-
vidual thread is started that is terminated after a timeout.

• At first glance Circuit Breakers are not very complex and can be developed
in your own code. However, any implementation must work under high load
and has to offer an interface for operations to enable monitoring. This is not
trivial. Therefore, a home-grown implementation is often not sensible.

• Bulkheads are an inherent feature of microservices since a problem is, in many
cases, already limited to just one microservice. For instance, a memory leak
will only cause one microservice to fail.

• Steady State, Fail Fast, Handshaking and Test Harness have to be implemented
by each microservice.

• Uncoupling via middleware is an option for shared communication of
microservices.

Resilience and Reactive

The Reactive Manifesto5 lists resilience as an essential property of a Reactive
 application. Resilience can be implemented in an application by processing calls
asynchronously. Each part of an application which processes messages (actor) has to
be monitored. When an actor does not react anymore, it can be restarted. This ena-
bles errors to be handled and makes applications more resilient.

Hystrix

Hystrix6 implements Timeout and Circuit Breaker. To achieve this, developers have
to encapsulate calls in commands. Alternatively, Java annotations can be used. The
calls take place in individual thread pools, and several thread pools can be created. If
there is one thread pool per called microservice, the calls to the microservices can be
separated from each other in such a manner that a problem with one microservice
does not affect the use of the other microservices. This is in line with the Bulkhead
concept. Hystrix is a Java library that is made available under the Apache license and
originates from the Netflix stack. The example application uses Hystrix together
with Spring Cloud (see section 13.10). In combination with a sidecar, Hystrix can
also be used for applications that are not written in Java (see section 7.9). Hystrix

5. http://www.reactivemanifesto.org/

6. https://github.com/Netflix/Hystrix/

http://www.reactivemanifesto.org/
https://www.github.com/Netflix/Hystrix/

ptg18144917

Chapter 9 Architecture of Individual Microservices208

supplies information about the state of the thread pools and the Circuit Breaker for
monitoring and operational purposes. This information can be displayed in a special
monitoring tool—the Hystrix dashboard. Internally, Hystrix uses the Reactive
Extensions for Java (RxJava). Hystrix is the most widely used library in the area of
resilience.

Try and Experiment

• This chapter introduced eight patterns for stability. Prioritize these pat-
terns. Which properties are indispensable? Which are important? Which are
unimportant?

• How can it be verified that the microservices actually implement the
patterns?

9.6 Technical Architecture

The technical architecture of each microservice can be individually designed.
 Frameworks or programming languages do not have to be uniform for all microser-
vices. Therefore, each microservice may well use different platforms. However,
 certain technical infrastructures fit microservices better than others.

Process Engines

Process engines, which typically serve to orchestrate services in an SOA (section 6.1),
can be used within a microservice to model a business process. The important point is
that one microservice should implement only one domain—that is, one Bounded
Context. A microservice should not end working purely to integrate or orchestrate
other microservices without its own logic. When this happens, changes will affect not
just the responsible microservice but also the microservice responsible for integration/
orchestration. However, it is a central objective of microservice-based architectures
that changes should be limited to one microservice whenever possible. If multiple
business processes have to be implemented, different microservices should be used
for these. Each of these microservices should implement one business process together
with the dependent services. Of course, it will not always be possible to avoid other

ptg18144917

9.6 Technical Architecture 209

microservices having to be integrated to implement a business process. However, a
microservice that just represents an integration is not sensible.

Statelessness

Stateless microservices are very beneficial. To put it more clearly, microservices
should not save any state in their logic layer. States held in a database or on the
client side are acceptable. When using a stateless approach, the failure of an individ-
ual instance does not have a big impact. The instance can just be replaced by a new
instance. In addition, the load can be distributed between multiple instances without
having to take into consideration which instance processed the previous calls of the
user. Finally, the deployment of a new version is easier since the old version can just
be stopped and replaced without having to migrate its state.

Reactive

Implementing microservices with Reactive7 technologies can be particularly
 useful. These approaches are comparable to Erlang (see section 14.7): Applications
consist of actors. In Erlang they are called processes. Work in each actor is
sequential; however, different actors can work in parallel on different messages.
This enables the parallel processing of tasks. Actors can send messages to other
actors that end up in the mailboxes of these actors. I/O operations are not
blocking in Reactive applications: A request for data is sent out. When the data is
there, the actor is called and can process the data. In the meantime, the actors can
work on other requests.

Essential properties according to the Reactive Manifesto:

• Responsive: The system should react to requests as fast as possible. This
has among others advantages for fail fast and therefore for stability
(see section 9.5). Once the mailbox is filled to a certain predetermined degree,
the actor can, for instance, reject or accept additional messages. This results in
the sender being slowed down and the system does not get overloaded. Other
requests can still be processed. The aim of being responsive is also helped if
blocking I/O operations are not used.

• Resilience and its relationship with Reactive applications has already been
 discussed in section 9.5.

7. http://www.reactivemanifesto.org/

http://www.reactivemanifesto.org/

ptg18144917

Chapter 9 Architecture of Individual Microservices210

• Elastic means that new systems can be started at run times that share the
load. To achieve this, the system has to be scalable, and it has to be possible to
change the system at run time in such a way that the load can be distributed to
the different nodes.

• Message Driven means that the individual components communicate with
each other via messages. As described in section 8.4, this communication fits
well with microservices. Reactive applications also use very similar approaches
within the application itself.

Reactive systems are particularly easy to implement using microservices and the
concepts from Reactive fit neatly with microservices’ concepts. However, similarly
good results can also be achieved by the use of more traditional technologies.

Some examples of technologies from the Reactive arena are:

• The programming language Scala8 with the Reactive framework Akka9 and the
web framework Play10 is based on it. These frameworks can also be used with
Java.

• There are Reactive extensions11 for practically all popular programming
 languages. Among them are RxJava12 for Java or RxJS13 for JavaScript.

• Similar approaches are also supported by Vert.x14 (see also section 14.6). Even
though this framework is based on the JVM, it supports many different pro-
gramming languages like Java, Groovy, Scala, JavaScript, Clojure, Ruby, and
Python.

Microservices without Reactive?

Reactive is only one way to implement a system with microservices. The traditional
programming model with blocking I/O, without actors, and with synchronous calls
is also suitable for this type of system. As previously discussed, resilience can be
implemented via libraries. Elasticity can be achieved by starting new instances of the
microservices, for instance, as virtual machines or Docker containers. Additionally,

8. http://www.scala-lang.org/

9. http://akka.io/

10. https://www.playframework.com/

11. http://reactivex.io/

12. https://github.com/ReactiveX/RxJava

13. https://github.com/Reactive-Extensions/RxJS

14. http://vertx.io/

http://www.scala-lang.org/
http://www.akka.io/
https://www.playframework.com/
http://www.reactivex.io/
https://www.github.com/ReactiveX/RxJava
https://www.github.com/Reactive-Extensions/RxJS
http://www.vertx.io/

ptg18144917

9.7 Conclusion 211

traditional applications can also communicate with each other via messages.
 Reactive applications have benefits for responsiveness. However, in that case it has to
be guaranteed that operations really do not block. For I/O operations Reactive solu-
tions can usually ensure that. However, a complex calculation can block the system.
This may mean that no messages can be processed anymore, and the entire system is
blocked. A microservice does not have to be implemented with Reactive technolo-
gies, but they are certainly an interesting alternative.

Try and Experiment

Get more information about Reactive and microservices.

• How exactly are the benefits achieved and implemented?

• Is there a Reactive extension for your preferred programming language?
Which features does it offer? How does this help with implementing
microservices?

9.7 Conclusion

The team implementing a particular microservice is also responsible for its domain-
based architecture. There should be only a small number of guidelines restricting
team decisions so that the independence of the teams is maintained.

Low cohesion can be an indication of a problem with the domain-based design
of a microservice. Domain-driven design (DDD) is an interesting way to structure
a microservice. Transactions can also provide clues for an optimized domain-based
division: An operation of a microservice should be a transaction (section 9.1).

CQS (command–query separation) divides operations of a microservice or a class
into read operations (queries) and write operations (commands). CQRS (command–
query responsibility segregation) (section 9.2) separates data changes via commands
from query handlers, which process requests. This means that microservices or classes
are created that can only implement reading or writing services. Event Sourcing
(section 9.3) stores events and does not focus on the current state but on the history
of all events. These approaches are useful for building up microservices because
they enable the creation of smaller microservices that implement only read or write
operations. This enables independent scaling and optimizations for both types of
operations.

ptg18144917

Chapter 9 Architecture of Individual Microservices212

Hexagonal architecture (section 9.4) focuses on a kernel that can be called via
adapters, for instance, by a UI or an API, as the center point of each microservice.
Likewise, adapters can enable the use of other microservices or of databases. For
microservices this results in an architecture that supports a UI and a REST interface
in a microservice.

Section 9.5 presented patterns for Resilience and Stability. The most important
of those are Circuit Breaker, Timeout and Bulkhead. A popular implementation is
Hystrix.

Section 9.6 introduced certain technical choices for microservices: For instance,
the use of process engines is a possibility for a microservice. Statelessness is ben-
eficial. And finally, reactive approaches are a good basis for the implementation of
microservices.

In summary, this chapter explained some essential considerations for the imple-
mentation of individual microservices.

Essential Points

• Microservices within a microservice-based system can have different domain-
based architectures.

• Microservices can be implemented internally with Event Sourcing, CQRS, or
hexagonal architectures.

• Technical properties like stability can only be implemented individually by
each microservice.

ptg18144917

213

The division of a system into microservices has an impact on testing. Section 10.1
explains the motivation behind software tests. Section 10.2 discusses fundamental
approaches to testing broadly, not just with regard to microservices. Section 10.3
explains why there are particular challenges when testing microservices that are not
present in other architectural patterns. For example, in a microservice-based system
the entire system consisting of all microservices has to be tested (section 10.4). This
can be difficult when there are a large number of microservices. Section 10.5 describes
the special case of a legacy application that is being replaced by microservices. In
that situation the integration of microservices and the legacy application has to be
tested—testing just the microservices is not sufficient. Another way to safeguard the
interfaces between microservices are consumer-driven contract tests (section 10.7).
They reduce the effort required to test the system as a whole—although, of course,
the individual microservices still have to be tested as well. In this context the question
arises of how individual microservices can be run in isolation without other micro-
services (section 10.6). Microservices provide technology freedom; nevertheless,
there have to be certain standards, and tests can help to enforce the technical stand-
ards (section 10.8) that have been defined in the architecture.

10.1 Why Tests?

Even though testing is an essential part of every software development project,
 questions about the goals of testing are rarely asked. Ultimately, tests are about risk
 management. They are supposed to minimize the risk that errors will appear in
 production systems and be noticed by users or do other damage.

Chapter 10

Testing Microservices and
Microservice-Based Systems

ptg18144917

Chapter 10 Testing Microservices and Microservice-Based Systems214

With this in mind, there are a number of things to consider:

• Each test has to be evaluated based on the risk it minimizes. In the end, a test
is only meaningful when it helps to avoid concrete error scenarios that could
otherwise occur in production.

• Tests are not the only way to deal with risk. The impact of errors that occur in
production can also be minimized in other ways. An important consideration
is how long it takes for a certain error to be corrected in production. Usually,
the longer an error persists, the more severe the consequences. How long it
takes to put a corrected version of the services into production depends on the
Deployment approach. This is one place where testing and Deployment strate-
gies impact on each other.

• Another important consideration is the time taken before an error in produc-
tion is noticed. This depends on the quality of monitoring and logging.

There are many measures that can address errors in production. Just focusing on
tests is not enough to ensure that high-quality software is delivered to customers.

Tests Minimize Expenditure

Tests can do more than just minimize risk. They can also help to minimize or avoid
expenditure. An error in production can incur significant expense. The error may
also affect customer service, something that can result in extra costs. Identifying and
correcting errors in production is almost always more difficult and time-consuming
than during tests. Access to the production systems is normally restricted, and devel-
opers will have moved on to work on other features and will have to reacquaint
 themselves with the code that is causing errors.

In addition, using the correct approach for tests can help to avoid or reduce
 expenditures. Automating tests may appear time-consuming at first glance. However,
when tests are so well defined that results are reproducible, the steps needed to
achieve complete formalization, and automation are small. When the costs for the
execution of the tests are negligible it becomes possible to test more frequently,
which leads to improved quality.

Tests = Documentation

A test defines what a section of code is supposed to do and therefore represents a
form of documentation. Unit tests define how the production code is supposed to be
used and also how it is intended to behave in exceptional and borderline cases.

ptg18144917

10.2 How to Test? 215

Acceptance tests reflect the requirements of the customers. The advantage of tests
over documentation is that they are executed. This ensures that the tests actually
reflect the current behavior of the system and not an outdated state or a state that
will only be reached in the future.

Test-Driven Development

Test-driven development is an approach to development that makes use of the fact that
tests represent requirements: In this approach developers initially write tests and then
write the implementation. This ensures that the entire codebase is safeguarded by tests.
It also means that tests are not influenced by knowledge of the code because the code
does not exist when the test is written. When tests are implemented after code has been
written, developers might not test for certain potential problems because of their
knowledge about the implementation. This is unlikely when using test-driven
development. Tests turn into a very important base for the development process. They
push the development: before each change there has to be a test that does not work.
Code can only be adjusted when the test was successful. This is true not only at the level
of individual classes, which are safeguarded by previously written unit tests, but also at
the level of requirements that are ensured by previously written acceptance tests.

10.2 How to Test?

There are different types of tests that handle different types of risks. The next sections
will look into each type of test and which risk it addresses.

Unit Tests

Unit tests examine the individual units that compose a system—just as their name
suggests. They minimize the risk that an individual unit contain errors. Unit tests are
intended to check small units, such as individual methods or functions. In order to
achieve this, any dependencies that exist in the unit have to replaced so that only the
unit under test is being exercised and not all its dependencies. There are two ways to
replace the dependencies:

• Mocks simulate a certain call with a certain result. After the call the test
can verify whether the expected calls have actually taken place. A test can,
for instance, define a mock that will return a defined customer for a certain
customer number. After the test it can evaluate whether the correct customer
has actually been fetched by the code. In another test scenario the mock can

ptg18144917

Chapter 10 Testing Microservices and Microservice-Based Systems216

simulate an error if asked for a customer. This enables unit tests to simulate
error situations that might otherwise be hard to reproduce.

• Stubs, on the other hand, simulate an entire microservice, but with limited
functionality. For example, the stub may return a constant value. This means
that a test can be performed without the actual dependent microservice. For
example, a stub can be implemented that returns test customers for certain
customer numbers—each with certain properties.

The responsibility for creating unit tests lies with developers. To support them
there are unit testing frameworks that exist for all popular programming languages.
The tests use knowledge about the internal structure of the units. For example, they
replace dependencies by mocks or stubs. Also, this knowledge can be employed to run
through all code paths for code branches within the tests. The tests are white box tests
because they exploit knowledge about the structure of the units. Logically, one should
really call it a transparent box; however, white box is the commonly used term.

One advantage of unit tests is their speed: even for a complex project the unit tests
can be completed within a few minutes. This enables, literally, each code change to
be safeguarded by unit tests.

Integration Tests

Integration tests check the interplay of the components. This is to minimize the risk
that the integration of the components contains errors. They do not use stubs or
mocks. The components can be tested as applications via the UI or via special test
frameworks. At a minimum, integration tests should evaluate whether the individual
parts are able to communicate with each other. They should go further, however,
and, for example, test the logic based on business processes.

In situations where they test business processes the integration tests are similar to
acceptance tests that check the requirements of the customers. This area is covered by
tools for BDD (behavior-driven design) and ATDD (acceptance test-driven design).
These tools make possible a test-driven approach where tests are written first and
then the implementation—even for integration and acceptance tests.

Integration tests do not use information about the system under test. They are
called black box tests, for they do not exploit knowledge about the internal structure
of the system.

UI Tests

UI tests check the application via the user interface. In principle, they only have to
test whether the user interface works correctly. There are numerous frameworks and
tools for testing the user interface. Among those are tools for web UIs and also for

ptg18144917

10.2 How to Test? 217

desktop and mobile applications. The tests are black box tests. Since they test the
user interface, the tests tend to be fragile: changes to the user interface can cause
problems even if the logic remains unchanged. Also this type of testing often requires
a complete system setup and can be slow to run.

Manual Tests

Finally, there are manual tests. They can either minimize the risk of errors in new
features or check certain aspects like security, performance, or features that have pre-
viously caused quality problems. They should be explorative: They look at problems
in certain areas of the applications. Tests that are aimed at detecting whether a cer-
tain error shows up again (regression tests) should never be done manually since
automated tests find such errors more easily and in a more cost-efficient and repro-
ducible manner. Manual testing should be limited to explorative tests.

Load Tests

Load tests analyze the behavior of the application under load. Performance tests check
the speed of a system, and capacity tests examine how many users or requests the
 system is able to handle. All of these tests evaluate the efficiency of the application.
For this purpose, they use similar tools that measure response times and generate load.
Such tests can also monitor the use of resources or check whether errors occur under a
certain load. Tests that investigate whether a system is able to cope with high load over
an extended period of time are called endurance tests.

Test Pyramid

The distribution of tests is illustrated by the test pyramid (Figure 10.1): The broad
base of the pyramid represents the large number of unit tests. They can be rapidly
performed, and most errors can be detected at this level. There are fewer integration
tests since they are more difficult to create and take longer to run. There are also
fewer potential problems related to the integration of the different parts of the
 system. The logic itself is also safeguarded by the unit tests. UI tests only have to
verify the correctness of the graphical user interface. They are even more difficult
to create since automating UI is complicated, and a complete environment is
 necessary. Manual tests are only required now and then.

Test-driven development usually results in a test pyramid: For each require-
ment there is an integration test written, and for each change to a class a unit test is
 written. This leads to many integration tests and even more unit tests being created
as part of the process.

The test pyramid achieves high quality with low expenditure. The tests are auto-
mated as much as possible. Each risk is addressed with a test that is as simple as

ptg18144917

Chapter 10 Testing Microservices and Microservice-Based Systems218

possible: is tested by simple and rapid unit tests. More difficult tests are restricted to
areas that cannot be tested with less effort.

Many projects are far from the ideal of the test pyramid. Unfortunately, in reality
tests are often better represented by the ice-cream cone shown in Figure 10.2. This
leads to the following challenges:

• There are comprehensive manual tests since such tests are very easy to imple-
ment, and many testers do not have sufficient experience with test automation.
If the testers are not able to write maintainable test code, it is very difficult to
automate tests.

• Tests via the user interface are the easiest type of automation because they
are very similar to the manual tests. When there are automated tests, it is nor-
mally largely UI tests. Unfortunately, automated UI tests are fragile: Changes to
the graphical user interface often lead to problems. Since the tests are testing the
entire system, they are slow. If the tests are parallelized, there are often failures
resulting from excessive load on the system rather than actual failures of the
test.

• There are few integration tests. Such tests require a comprehensive knowledge
about the system and about automation techniques, which testers often lack.

• There can actually be more unit tests than presented in the diagram. However,
their quality is often poor since developers often lack experience in writing
unit tests.

Unit Tests

Integration Tests

UI
Tests

Manual
Tests

Figure 10.1 Test Pyramid: The Ideal

ptg18144917

10.2 How to Test? 219

Other common problems include unnecessarily complex tests that are often
used for certain error sources and UI tests or manual tests being used to test logic.
For this purpose, however, unit tests would normally be sufficient and much faster.
When testing, developers should try to avoid these problems and the ice-cream
cone. Instead the goal should be to implement a test pyramid.

The test approach should be adjusted according to the risks of the respective soft-
ware and should provide tests for the right properties. For example, a project where
performance is key should have automated load or capacity tests. Functional tests
might not be so important in this scenario.

Try and Experiment

• In which places does the approach in your current project correspond to the
ice-cream cone rather than the test pyramid?

• Where are manual tests used? Are the most important tests automated?

• What is the relationship of UI to integration and unit tests?

• How is the quality of the different tests?

• Is test-driven development used? For individual classes or also for
requirements?

Unit
Tests

Integration
Tests

UI Tests

Manual Tests

Figure 10.2 Test Ice-Cream Cone: Far Too Common

ptg18144917

Chapter 10 Testing Microservices and Microservice-Based Systems220

Continuous Delivery Pipeline

The continuous delivery pipeline (Figure 4.2, section 4.1) illustrates the different test
phases. The unit tests from the test pyramid are executed in the commit phase. UI
tests can be part of the acceptance tests or could also be run in the commit phase.
The capacity tests use the complete system and can therefore be regarded as integra-
tion tests from the test pyramid. The explorative tests are the manual tests from the
test pyramid.

Automating tests is even more important for microservices than in other software
architectures. The main objective of microservice-based architectures is independent
and frequent software Deployment. This can only be achieved when the quality of
microservices is safeguarded by tests. Without these, Deployment into production
will be too risky.

10.3 Mitigate Risks at Deployment

An important benefit of microservices is that they can be deployed quickly because
of the small size of the deployable units. Resilience helps to ensure that the failure of
an individual microservice doesn’t result in other microservices or the entire system
failing. This results in lower risks should an error occur in production despite the
microservice passing the tests.

However, there are additional reasons why microservices minimize the risk of a
Deployment:

• It is much faster to correct an error, for only one microservice has to be rede-
ployed. This is far faster and easier than the Deployment of a Deployment
monolith.

• Approaches like Blue/Green Deployment or Canary Releasing (section 11.4)
further reduce the risk associated with Deployments. Using these techniques,
a microservice that contains a bug can be removed from production with little
cost or time lost. These approaches are easier to implement with microservices
since it requires less effort to provide the required environments for a microser-
vice than for an entire Deployment monolith.

• A service can participate in production without doing actual work. Although
it will get the same requests as the version in production, changes to data that
the new service would trigger are not actually performed but are compared
to the changes made by the service in production. This can, for example, be
achieved by modifications to the database driver or the database itself. The

ptg18144917

10.3 Mitigate Risks at Deployment 221

service could also use a copy of the database. The main point is that in this
phase the microservice will not change the data in production. In addition,
messages that the microservice sends to the outside can be compared with the
messages of the microservices in production instead of sending them on to the
recipients. With this approach the microservice runs in production against all
the special cases of the real life data—something that even the best test cannot
cover completely. Such a procedure can also provide more reliable information
regarding performance, although data is not actually written, so performance
is not entirely comparable. These approaches are very difficult to implement
with a Deployment monolith because of the difficulty of running the entire
Deployment monolith in another instance in production. This would require
a lot of resources and a very complex configuration because the Deployment
monolith could introduce changes to data in numerous locations. Even with
microservices this approach is still complex, and comprehensive support is
necessary in software and Deployment. Extra code has to be written for calling
the old and the new version and to compare the changes and outgoing messages
of both versions. However, this approach is at least feasible.

• Finally, the service can be closely examined via monitoring in order to rap-
idly recognize and solve problems. This shortens the time before a problem
is noticed and addressed. This monitoring can act as a form of acceptance
criteria of load tests. Code that fails in a load test should also create an alarm
during monitoring in production. Therefore, close coordination between
monitoring and tests is sensible.

In the end the idea behind these approaches is to reduce the risk associated with
bringing a microservice into production instead of addressing the risk with tests.
When the new version of a microservice cannot change any data, its Deployment is
practically free of risk. This is difficult to achieve with Deployment monoliths since
the Deployment process is much more laborious and time consuming and requires
more resources. This means that the Deployment cannot be performed quickly and
therefore cannot be easily rolled back when errors occur.

The approach is also interesting because some risks are difficult to eliminate with
tests. For example, load and performance tests can be an indicator of the behavior
of the application in production. However, these tests cannot be completely reliable
since the volume of data will be different in production, user behavior is different,
and hardware is often differently sized. It is not feasible to cover all these aspects
in one test environment. In addition, there can be errors that only occur with data
sets from production—these are hard to simulate with tests. Monitoring and rapid
Deployment can be a realistic alternative to tests in a microservices environment. It

ptg18144917

Chapter 10 Testing Microservices and Microservice-Based Systems222

is important to think about which risk can be reduced with which type of measure—
tests or optimizations of the Deployment pipeline.

10.4 Testing the Overall System

In addition to the tests for each of the individual microservices, the system as a whole
also has to be tested. This means that there are multiple test pyramids: one for each
individual microservice and one for the system in its entirety (see Figure 10.3). For
the complete system there will also be integration tests of the microservices, UI tests
of the entire application and manual tests. Unit tests at this level are the tests of the
microservices since they are the units of the overall system. These tests consist of a
complete test pyramid of the individual microservices.

The tests for the overall system are responsible for identifying problems that occur
in the interplay of the different microservices. Microservices are distributed systems.
Calls can require the interplay of multiple microservices to return a result to the user.
This is a challenge for testing: distributed systems have many more sources of errors,
and tests of the overall system have to address these risks. However, when testing
microservices another approach is chosen: with resilience the individual micro-
services should still work even if there are problems with other microservices. So a

Unit Tests

Integration Tests

UI
Tests

Manual
Tests

Unit Tests

Integration Tests

UI
Tests

Manual
Tests

Unit Tests

Integration Tests

UI
Tests

Manual
Tests

Integration Tests

UI
Tests

Manual
Tests

Complete
System

Individual
Microservices

Figure 10.3 Test Pyramid for Microservices

ptg18144917

10.4 Testing the Overall System 223

failure of parts of the system is expected and should not have severe consequences.
Functional tests can be performed with stubs or mocks of the other microservices. In
this way microservices can be tested without the need to build up a complex distrib-
uted system and examine it for all possible error scenarios.

Shared Integration Tests

Before being deployed into production, each microservice should have its integration
with other microservices tested. This requires changes to the continuous delivery
pipeline as it was described in section 5.1: At the end of the Deployment pipeline
each microservice should be tested together with the other microservices. Each
microservice should run through this step on its own. When new versions of multiple
microservices are tested together at this step and a failure occurs it will not be clear
which microservice has caused the failure. There may be situations where new ver-
sions of multiple microservices can be tested together and the source of failures will
always be clear. However, in practice such optimizations are rarely worth the effort.

This reasoning leads to the process illustrated in Figure 10.4: The continuous
delivery pipelines of the microservices end in a common integration test into which
each microservice has to enter separately. When a microservice is in the integration
test phase, the other microservices have to wait until the integration test is completed.
To ensure that only one microservice at a time runs through the integration tests
the tests can be performed in a separate environment. Only one new version of a
microservice may be delivered into this environment at a given point in time, and
the environment enforces the serialized processing of the integration tests of the
microservices.

Commit

Integration
Tests for all

Microservices

Explorative
Tests

Acceptance
Test

Capacity
Tests

Commit ProductionExplorative
Tests

Acceptance
Test

Capacity
Tests

Commit Explorative
Tests

Acceptance
Test

Capacity
Tests

Continuous Delivery-
Pipelines of the
Microservices

Figure 10.4 Integration Tests at the End of the Continuous Delivery Pipelines

ptg18144917

Chapter 10 Testing Microservices and Microservice-Based Systems224

Such a synchronization point slows down the Deployment and therefore the entire
process. If the integration test lasts for an hour, for example, it will only be possible
to put eight microservices through the integration test and into production per eight-
hour work day. If there are eight teams in the project, each team will only be able to
deploy a microservice once a day. This is not sufficient to achieve rapid error correc-
tion in production. Besides, this weakens an essential advantage of microservices: It
should be possible to deploy each microservice independently. Even though this is in
principle still possible, the Deployment takes too long. Also, the microservices now
have dependencies to each other because of the integration tests—not at the code
level but in the Deployment pipelines. In addition, things are not balanced when the
continuous delivery without the last integration test requires, for example, only one
hour, but it is still not possible to get more than one release into production per day.

Avoiding Integration Tests of the Overall System

This problem can be solved with the test pyramid. It moves the focus from integra-
tion tests of the overall system to integration tests of the individual microservices
and unit tests. When there are fewer integration tests of the overall system, they will
not take as much time to run. In addition, less synchronization is necessary, and the
Deployment into production is faster. The integration tests are only meant to test the
interplay between microservices. It is sufficient when each microservice can reach all
dependent microservices. All other risks can then be taken care of before this last
test. With consumer-driven contract tests (section 10.7) it is even possible to exclude
errors in the communication between the microservices without having to test the
microservices together. All these measures help to reduce the number of integration
tests and therefore their total duration. In the end there is no reduction in overall
testing—the testing is just moved to other phases: to the tests of the individual
microservices and to the unit tests.

The tests for the overall system should be developed by all teams working
together. They form part of the macro architecture because they concern the sys-
tem as a whole and cannot therefore be the responsibility of an individual team
(see section 12.3).

The complete system can also be tested manually. However, it is not feasible for
each new version of a microservice to only go into production after a manual test
with the other microservices. The delays will just be too long. Manual tests of the
system can, for example, address features that are not yet activated in production.
Alternatively, certain aspects like security can be tested in this manner if problems
have occurred in these areas previously.

ptg18144917

10.5 Testing Legacy Applications and Microservices 225

10.5 Testing Legacy Applications and
Microservices

Microservices are often used to replace legacy applications. The legacy applications
are usually Deployment monoliths. Therefore, the continuous delivery pipeline of
the legacy application tests many functionalities that have to be split into microser-
vices. Because of the many functionalities the test steps of the continuous delivery
pipeline for Deployment monoliths take a very long time. Accordingly, the Deploy-
ment in production is very complex and takes a long time. Under such conditions it is
unrealistic that each small code change to the legacy application goes into produc-
tion. Often there are Deployments at the end of a sprint of 14 days or even only one
release per quarter. Nightly tests inspect the current state of the system. Tests can be
transferred from the continuous delivery pipeline into the nightly tests. In that case
the continuous delivery pipeline will be faster, but certain errors are only recognized
during the nighttime testing. Then the question arises of which of the changes of the
past day is responsible for the error.

Relocating Tests of the Legacy Application

When migrating from a legacy application to microservices, tests are especially
important. If just the tests of the legacy application are used, they will test a number
of functionalities that meanwhile have been moved to microservices. In that case
these tests have to be run at each release of a microservice—which takes much too
long. The tests have to be relocated. They can turn into integration tests for the
microservices (see Figure 10.5). However, the integration tests of the microservices
should run rapidly. In this phase it is not necessary to use tests for functionalities,
which reside in a single microservice. Then the tests of the legacy application have to
turn into integration tests of the individual microservices or even into unit tests. In
that case they are much faster. Additionally, they run as tests for a single microservice
so that they do not slow down the shared tests of the microservices.

Not only the legacy application has to be migrated, but also the tests. Other-
wise fast Deployments will not be possible in spite of the migration of the legacy
application.

The tests for the functionalities that have been transferred to microservices can
be removed from the tests of the legacy application. Step by step this will speed
up the Deployment of the legacy application. Consequently, changes to the legacy
 application will also get increasingly easier.

ptg18144917

Chapter 10 Testing Microservices and Microservice-Based Systems226

Integration Test: Legacy Application and Microservices

The legacy application also has to be tested together with the microservices. The
microservices have to be tested together with the version of the legacy production
that is in production. This ensures that the microservices will also work in produc-
tion together with the legacy application. For this purpose, the version of the legacy
application running in production can be integrated into the integration tests of the
microservices. It is the responsibility of each microservice to pass the tests without
any errors with this version (see Figure 10.6).

When the Deployment cycles of the legacy application last days or weeks, a new
version of the legacy application will be in development in parallel. The microservices
also have to be tested with this version. This ensures that there will not suddenly
be errors occurring upon the release of the new legacy application. The version of the
legacy application that is currently in development runs an integration test with the
current microservices as part of its own Deployment pipeline (Figure 10.7). For
this the versions of the microservices that are in production have to be used.

Integration Tests
for All

Microservices

Integration Tests
for Individual
Microservices

Unit Tests
Test Legacy
Application

Figure 10.5 Relocating Tests of Legacy Applications

Integration
Test of All

Microservices
Production

Microservice
Continuous Delivery

Pipeline

Legacy
Application
(Production

Version)

Microservice
Continuous Delivery

Pipeline

Microservice
Continuous Delivery

Pipeline

Figure 10.6 Legacy Application in the Continuous Delivery Pipelines

ptg18144917

10.6 Testing Individual Microservices 227

Commit
Integration
Test with

Microservices

Explorative
Tests

Acceptance
Test

Capacity
Tests Production

Figure 10.7 Microservices in the Continuous Delivery Pipeline of the Legacy Application

The versions of the microservices change much more frequently than the version
of the legacy application. A new version of a microservice can break the continu-
ous delivery pipeline of the legacy application. The team of the legacy application
cannot solve these problems since it does not know the code of the microservices.
This version of the microservice is possibly already in production though. In
that case a new version of the microservice has to be delivered to eliminate the
error—although the continuous delivery pipeline of the microservice ran through
successfully.

An alternative would be to also send the microservices through an integration test
with the version of the legacy application that is currently in development. However,
this prolongs the overarching integration test of the microservices and therefore ren-
ders the development of the microservices more complex.

The problem can be addressed by consumer-driven contract tests (section 10.7).
The expectations of the legacy application to the microservices and of the micro-
services to the legacy application can be defined by consumer-driven contract tests so
that the integration tests can be reduced to a minimum.

In addition, the legacy application can be tested together with a stub of the
microservices. These tests are not integration tests since they only test the leg-
acy application. This enables reduction of the number of overarching integration
tests. This concept is illustrated in section 10.6 using tests of microservices as
example. However, this means that the tests of the legacy application have to be
adjusted.

10.6 Testing Individual Microservices

Tests of the individual microservices are the duty of the team that is responsible for
the respective microservice. The team has to implement the different tests such as
unit tests, load tests, and acceptance tests as part of their own continuous delivery
pipeline—as would also be the case for systems that are not microservices.

However, for some functionalities microservices require access to other micro-
services. This poses a challenge for the tests: It is not sensible to provide a complete
environment with all microservices for each test of each microservice. On the one
hand, this would use up too many resources. On the other hand, it is difficult to
supply all these environments with the up-to-date software. Technically, lightweight
virtualization approaches like Docker can at least reduce the expenditure in terms of

ptg18144917

Chapter 10 Testing Microservices and Microservice-Based Systems228

resources. However, for 50 or 100 microservices this approach will not be sufficient
anymore.

Reference Environment

A reference environment in which the microservices are available in their current
 version is one possible solution. The tests of the different microservices can use the
microservices from this environment. However, errors can occur when multiple teams
test different microservices in parallel with the microservices from the reference
 environment. The tests can influence each other and thereby create errors. Besides the
reference environment has to be available. When a part of the reference environment
breaks down due to a test, in extreme cases tests might be impossible for all teams. The
microservices have to be hold available in the reference environment in their current
version. This generates additional expenditure. Therefore, a reference environment is
not a good solution for the isolated testing of microservices.

Stubs

Another possibility is the simulation of the used microservice. For the simulation of
parts of a system for testing there are two different options as section 10.2 presented,
namely stubs and mocks. Stubs are the better choice for the replacement of microser-
vices. They can support different test scenarios. The implementation of a single stub
can support the development of all dependent microservices.

If stubs are used, the teams have to deliver stubs for their microservices. This
ensures that the microservices and the stubs really behave largely identically. When
consumer-driven contract tests also validate the stubs (see section 10.7), the correct
simulation of the microservices by the stubs is ensured.

The stubs should be implemented with a uniform technology. All teams that use
a microservice also have to use stubs for testing. Handling the stubs is facilitated by
a uniform technology. Otherwise a team that employs several microservices has to
master a plethora of technologies for the tests.

Stubs could be implemented with the same technology as the associated
microservices. However, the stubs should use fewer resources than the microser-
vices. Therefore, it is better when the stubs utilize a simpler technology stack. The
example in section 13.13 uses for the stubs the same technology as the associated
microservices. However, the stubs deliver only constant values and run in the same
process as the microservices that employ the stub. Thereby the stubs use up less
resources.

There are technologies that specialize on implementing stubs. Tools for client-
driven contract tests can often also generate stubs (see section 10.7).

ptg18144917

10.6 Testing Individual Microservices 229

• mountebank1 is written in JavaScript with Node.js. It can provide stubs for
TCP, HTTP, HTTPS, and SMTP. New stubs can be generated at run time. The
definition of the stubs is stored in a JSON file. It defines under which condi-
tions which responses are supposed to be returned by the stub. An extension
with JavaScript is likewise possible. mountebank can also serve as proxy. In
that case it forwards requests to a service—alternatively, only the first request
is forwarded and the response is recorded. All subsequent requests will be
answered by mountebank with the recorded response. In addition to stubs,
mountebank also supports mocks.

• WireMock2 is written in Java and is available under the Apache 2 license. This
framework makes it very easy to return certain data for certain requests. The
behavior is determined by Java code. WireMock supports HTTP and HTTPS.
The stub can run in a separate process, in a servlet container or directly in a
JUnit test.

• Moco3 is likewise written in Java and is available under the MIT license. The
behavior of the stubs can be expressed with Java code or with a JSON file.
It supports HTTP, HTTPS, and simple socket protocols. The stubs can be
started in a Java program or in an independent server.

• stubby4j4 is written in Java and is available under the MIT license. It utilizes a
YAML file for defining the behavior of the stub. HTTPS is supported as pro-
tocol in addition to HTTP. The definition of the data takes place in YAML or
JSON. It is also possible to start an interaction with a server or to program the
behavior of stubs with Java. Parts of the data in the request can be copied into
the response.

Try and Experiment

Use the example presented in Chapter 13, “Example of a Microservice-Based
Architecture,” and supplement stubs with a stub framework of your choice. The
example application uses the configuration file application-test.properties. In
this configuration it is defined which stub is used for the tests.

1. http://www.mbtest.org/

2. http://wiremock.org/

3. https://github.com/dreamhead/moco

4. https://github.com/azagniotov/stubby4j

http://www.mbtest.org/
http://www.wiremock.org/
https://www.github.com/dreamhead/moco
https://www.github.com/azagniotov/stubby4j

ptg18144917

Chapter 10 Testing Microservices and Microservice-Based Systems230

10.7 Consumer-Driven Contract Tests

Each interface of a component is ultimately a contract: the caller expects that certain
side effects are triggered or that values are returned when it uses the interface. The
contract is usually not formally defined. When a microservice violates the expectations,
this manifests itself as error that is either noticed in production or in integration tests.
When the contract can be made explicit and tested independently, the integration tests
can be freed from the obligation to test the contract without incurring a larger risk for
errors during production. Besides, then it would get easier to modify the microservices
because it would be easier to anticipate which changes cause problems with using
other microservices.

Often changes to system components are not performed because it is unclear
which other components use that specific component and how they us it. There is a
risk of errors during the interplay with other microservices, and there are fears that
the error will be noticed too late. When it is clear how a microservice is used, changes
are much easier to perform and to safeguard.

Components of the Contract

These aspects belong to the contract5 of a microservice:

• The data formats define in which format information is expected by the other
microservices and how they are passed over to a microservice.

• The interface determines which operations are available.

• Procedures or protocols define which operations can be performed in which
sequence with which results.

• Finally, there is meta information associated with the calls that can comprise
for example a user authentication.

• In addition, there can be certain nonfunctional aspects like the latency time or
a certain throughput.

Contracts

There are different contracts between the consumers and the provider of a service:

• The Provider Contract comprises everything the service provider provides. There
is one such contract per service provider. It completely defines the entire service.
It can, for instance, change with the version of the service (see section 8.6).

5. http://martinfowler.com/articles/consumerDrivenContracts.html

http://www.martinfowler.com/articles/consumerDrivenContracts.html

ptg18144917

10.7 Consumer-Driven Contract Tests 231

• The Consumer Contract comprises all functionalities that a service user really
utilizes. There are several such contracts per service—at least one with each
user. The contract comprises only the parts of the service that the user really
employs. It can change through modifications to the service consumer.

• The Consumer-Driven Contract (CDC) comprises all user contracts. There-
fore, it contains all functionalities that any service consumer utilizes. There is
only one such contract per service. Since it depends on the user contracts, it
can change when the service consumers add new calls to the service provider or
when there are new requirements for the calls.

Figure 10.8 summarizes the differences.
The Consumer-Driven Contract makes clear which components of the provider

contracts are really used. This also clarifies where the microservice can still change
its interface and which components of the microservice are not used.

Implementation

Ideally, a Consumer-Driven Contract turns into a consumer-driven contract test that
the service provider can perform. It has to be possible for the service consumer to
change these tests. They can be stored together in the version control with the
microservice of the service provider. In that case the service consumers have to get
access to the version control of the service provider. Otherwise the tests can also be
stored in the version control of the service consumers. In that case the service pro-
vider has to fetch the tests out of the version control and execute them with each
version of the software. However, in that case it is not possible to perform version
control on the tests together with the tested software since tests and tested software
are in two separate projects within the version control system.

The entirety of all tests represents the Consumer-Driven Contract. The tests of
each team correspond to the Consumer Contract of each team. The consumer-driven

Consumer

ProviderConsumer

Consumer
Contract

Consumer

Consumer
Contract

Consumer
Contract

Provider
Contract

Consumer-Driven
Contract

Figure 10.8 Differences between Consumer and Provider Contracts

ptg18144917

Chapter 10 Testing Microservices and Microservice-Based Systems232

contract tests can be performed as part of the tests of the microservice. If they are
successful, all service consumers should be able to successfully work together with
the microservice. The test precludes that errors will only be noticed during the inte-
gration test. Besides, modifications to the microservices get easier because require-
ments for the interfaces are known and can be tested without special expenditure.
Therefore, the risk associated with changes that affect the interface is much smaller
since problems will be noticed prior to integration tests and production.

Tools

To write consumer-driven contract tests a technology has to be defined. The technol-
ogy should be uniform for all projects because a microservice can use several other
microservices. In that case a team has to write tests for different other microservices.
This is easier when there is a uniform technology. Otherwise the teams have to know
numerous different technologies. The technology for the tests can differ from the
technology used for implementation.

• An arbitrary test framework is an option for implementing the consumer-
driven contract tests. For load tests additional tools can be defined. In addition
to the functional requirements there can also be requirements with regard to
the load behavior. However, it has to be clearly defined how the microservice
is provided for the test. For example, it can be available at a certain port on the
test machine. In this way the test can take place via the interface that is also
used for access by other microservices.

• In the example application (section 13.13), simple JUnit tests are used for test-
ing the microservice and for verifying whether the required functionalities are
supported. When incompatible changes to data formats are performed or the
interface is modified in an incompatible manner, the tests fail.

• There are tools especially designed for the implementation of consumer-driven
contract tests. An example is Pacto.6 It is written in Ruby and is available under
the MIT license. Pacto supports REST/HTTP and supplements such interfaces
with a contract. Pacto can be integrated into a test structure. In that case Pacto
compares the header with expected values and the JSON data structures in
the body with JSON schemas. This information represents the contract. The
contract can also be generated out of a recorded interaction between a client
and a server. Based on the contract Pacto can validate the calls and responses
of a system. In addition, Pacto can create with this information simple stubs.

6. http://thoughtworks.github.io/pacto/

http://www.thoughtworks.github.io/pacto/

ptg18144917

10.8 Testing Technical Standards 233

Moreover, Pacto can be used in conjunction with RSpec to write tests in Ruby.
Also test systems that are written in other languages than Ruby can be tested in
this way. Without RSpec, Pacto offers the possibility to run a server. Therefore
it is possible to use Pacto outside of a Ruby system also.

• Pact7 is likewise written in Ruby and under MIT license. The service consumer
can employ Pact to write a stub for the service and to record the interaction
with the stub. This results in a Pact file that represents the contract. It can also
be used for testing whether the actual service correctly implements the con-
tract. Pact is especially useful for Ruby, however pact-jvm8 supports a similar
approach for different JVM languages like Scala, Java, Groovy or Clojure.

Try and Experiment

• Use the example presented in Chapter 13 and supplement consumer-driven
contracts with a framework of your choice. The example application has
the configuration application-test.properties. In this configuration which
stub is used for the tests is defined. Verify also the contracts in the produc-
tion environment.

10.8 Testing Technical Standards

Microservices have to fulfill certain technical requirements. For example, microser-
vices should register themselves in Service Discovery and keep functioning even if
other microservices break down. Tests can verify these properties. This entails a
number of advantages:

• The guidelines are unambiguously defined by the test. Therefore, there is no
discussion how precisely the guidelines are meant.

• They can be tested in an automated fashion. Therefore it is clear at any time
whether a microservice fulfills the rules or not.

7. https://github.com/realestate-com-au/pact

8. https://github.com/DiUS/pact-jvm

https://www.github.com/realestate-com-au/pact
https://www.github.com/DiUS/pact-jvm

ptg18144917

Chapter 10 Testing Microservices and Microservice-Based Systems234

• New teams can test new components concerning whether they comply with
the rules or not.

• When microservices do not employ the usual technology stack, it can still be
ensured that they behave correctly from a technical point of view.

Among the possible tests are:

• The microservices have to register in the Service Discovery (section 7.11).
The test can verify whether the component registers at service registry upon
starting.

• Besides, the shared mechanisms for configuration and coordination have to be
used (section 7.10). The test can control whether certain values from the cen-
tral configuration are read out. For this purpose, an individual test interface
can be implemented.

• A shared security infrastructure can be checked by testing the use of the
microservice via a certain token (section 7.14).

• With regard to documentation and metadata (section 7.15) whether a test can
access the documentation via the defined path can be tested.

• With regard to monitoring (section 11.3) and logging (section 11.2) whether
the microservice provides data to the monitoring interfaces upon starting and
delivers values resp. log entries can be examined.

• With regard to Deployment (section 11.4) it is sufficient to deploy and start the
microservice on a server. When the defined standard is used for this, this aspect
is likewise correctly implemented.

• As test for control (section 11.6) the microservice can simply be restarted.

• To test for resilience (section 9.5) in the simplest scenario whether the micro-
service at least boots also in absence of the dependent microservices and
 displays errors in monitoring can be checked. The correct functioning of the
microservice upon availability of the other microservices is ensured by the
functional tests. However, a scenario where the microservice cannot reach any
other service is not addressed in normal tests.

In the easiest case the technical test can just start and deploy the microservice.
Therefore Deployment and control are already tested. Dependent microservices do
not have to be present for that. Starting the microservice should also be possible
without dependent microservices due to resilience. Subsequently, logging and moni-
toring can be examined that should also work and contain errors in this situation.

ptg18144917

10.9 Conclusion 235

Finally, the integration in the shared technical services like Service Discovery,
configuration and coordination, or security can be checked.

Such a test is not hard to write and can render many discussions about the pre-
cise interpretation of the guidelines superfluous. Therefore, this test is very useful.
Besides, it tests scenarios that are usually not covered by automated tests—for
instance, the breakdown of dependent systems.

This test does not necessarily provide complete security that the microservice
complies with all rules. However, it can at least examine whether the fundamental
mechanisms function.

Technical standards can easily be tested with scripts. The scripts should install
the microservice in the defined manner on a virtual machine and start it. Afterwards
the behavior, for instance with regard to logging and monitoring, can be tested.
Since technical standards are specific for each project, a uniform approach is hardly
 possible. Under certain conditions a tool like Serverspec9 can be useful. It serves to
examine the state of a server. Therefore, it can easily determine whether a certain
port is used or whether a certain service is active.

10.9 Conclusion

Reasons for testing include, on the one hand, the risk that problems are only noticed
in production and, on the other hand, that tests serve as an exact specification of the
system (section 10.1).

Section 10.2 illustrated how using the concept of the test pyramid tests should be
structured: The focus should be on fast, easily automatable unit tests. They address
the risk that there are errors in the logic. Integration tests and UI tests then only
ensure the integration of the microservices with each other and the correct integra-
tion of the microservices into the UI.

As section 10.3 showed, microservices can additionally deal with the risk of errors
in production in a different manner: microservice Deployments are faster, they
influence only a small part of the system, and microservices can even run blindly
in production. Therefore the risk of Deployment decreases. Thus it can be sensi-
ble instead of comprehensive tests to rather optimize the Deployment in production
to such an extent that it is, for all practical purposes, free of risk. In addition, the
 section discussed that there are two types of test pyramids for microservice-based
systems: one per microservice and one for the overall system.

Testing the overall system entails the problem that each change to a microservice
necessitates a run through this test. Therefore, this test can turn into a bottleneck

9. http://serverspec.org/

http://www.serverspec.org/

ptg18144917

Chapter 10 Testing Microservices and Microservice-Based Systems236

and should be very fast. Thus, when testing microservices, one objective is to reduce
the number of integration tests across all microservices (section 10.4).

When replacing legacy applications not only their functionality has to be trans-
ferred into microservices, but also the tests for the functionalities have to be moved
into the tests of the microservices (section 10.5). Besides, each modification to a
microservice has to be tested in the integration with the version of the legacy applica-
tion used in production. The legacy application normally has a much slower release
cycle than the microservices. Therefore, the version of the legacy application that is
at the time in development has to be tested together with the microservices.

For testing individual microservices the other microservices have to be replaced
by stubs. This enables you to uncouple the tests of the individual microservices from
each other. Section 10.6 introduced a number of concrete technologies for creating
stubs.

In section 10.7 client-driven contract tests were presented. With this approach
the contracts between the microservices get explicit. This enables a microservice to
check whether it fulfills the requirements of the other microservices—without the
need for an integration test. Also for this area a number of tool are available.

Finally, section 10.8 demonstrated that technical requirements to the microser-
vices can likewise be tested in an automated manner. This enables unambiguous
establishment of whether a microservice fulfills all technical standards.

Essential Points

• Established best practices like the test pyramid are also sensible for
microservices.

• Common tests across all microservices can turn into a bottleneck and there-
fore should be reduced, for example, by performing more consumer-driven
contract tests.

• With suitable tools stubs can be created from microservices.

ptg18144917

237

Deployment and operation are additional components of the continuous delivery
pipeline (see section 10.1). When the software has been tested in the context of the
pipeline, the microservices go into production. There, monitoring and logging col-
lect information that can be used for the further development of the microservices.

The operation of a microservice-based system is more laborious than the opera-
tion of a deployment monolith. There are many more deployable artifacts that
all have to be surveilled. Section 11.1 discusses the typical challenges associated
with the operation of microservice-based systems in detail. Logging is the topic of
section 11.2. Section 11.3 focuses on the monitoring of the microservices. Deploy-
ment is treated in section 11.4. Section 11.6 shows necessary measures for directing
a microservice from the outside, and finally, section 11.7 describes suitable infra-
structures for the operation of microservices.

The challenges associated with operation should not be underestimated. It is in
this area where the most complex problems associated with the use of microservices
frequently arise.

11.1 Challenges Associated with the Operation
of Microservices

There are a number of challenges associated with the operation of microservices.
The main challenges are covered in this section.

Chapter 11

Operations and Continuous
Delivery of Microservices

ptg18144917

Chapter 11 Operations and Continuous Delivery of Microservices238

Numerous Artifacts

Teams that have so far only run deployment monoliths are confronted with the
 problem that there are many additional deployable artifacts in microservices-based
systems. Each microservice is independently brought into production and therefore a
separate deployable artifact. Fifty, one hundred, or more microservices are definitely
possible. The concrete number depends on the size of the project and the size of the
microservices. Such a number of deployable artifacts is hardly met with outside of
microservices-based architectures. All these artifacts have to be versioned indepen-
dently because only then can which code runs currently in production be tracked.
Besides, this enables bringing a new version of each microservice independently into
production.

When there are so many artifacts, there has to be a correspondingly high number
of continuous delivery pipelines. They comprise not only the deployment in produc-
tion but also the different testing phases. In addition, many more artifacts have to be
surveilled in production by logging and monitoring. This is only possible when all
these processes are mostly automated. For a small number of artifacts, manual inter-
ventions might still be acceptable. Such an approach is simply not possible any more
for the large number of artifacts contained in a microservice-based architecture.

The challenges in the areas of deployment and infrastructure are the most diffi-
cult ones encountered when introducing microservices. Many organizations are not
sufficiently proficient in automation although automation is also very advantageous
in other architectural approaches and should already be routine.

There are different approaches for achieving the necessary automation.

Delegate into Teams

The easiest option is to delegate this challenge to the teams that are responsible for
the development of the microservices. In that case each team has not only to develop
its microservice but also to take care of its operation. They have the choice to either
use appropriate automation for it or to adopt automation approaches from other
teams.

The team does not even have to cover all areas. When there is no need to evaluate
log data to achieve reliable operation, the team can decide not to implement a sys-
tem for evaluating log data. A reliable operation without surveilling the log output
is hardly possible, though. However, this risk is then within the responsibility of the
respective team.

This approach only works when the teams have a lot of knowledge regarding
operation. Another problem is that the wheel is invented over and over again by the
different teams: each team implements automation independently and might use

ptg18144917

23911.1 Challenges Associated with the Operation of Microservices

different tools for it. This approach entails the danger that the laborious operation
of the microservices gets even more laborious due to the heterogeneous approaches
taken by the teams. The teams have to do this work. This interferes with the rapid
implementation of new features. However, the decentralized decision about which
technologies to use increases the independence of the teams.

Unify Tools

Because of the higher efficiency, unification can be a sensible approach for deploy-
ment. The easiest way to obtain uniform tools is to prescribe one tool for each area—
deployment, test, monitoring, logging, and deployment pipeline. In addition, there
will be guidelines and best practices such as immutable server or the separation of
build environment and deployment environment. This enables the identical imple-
mentation of all microservices and will facilitate operation since the teams only need
to be familiar with one tool for each area.

Specify Behavior

Another option is to specify the behavior of the system. For example, when log
 output is supposed to be evaluated in a uniform manner across services, it is suffi-
cient to define a uniform log format. The log framework does not necessarily have to
be prescribed. Of course, it is sensible to offer a configuration that generates this
output format for at least one log framework. This increases the motivation of the
teams to use this log framework. In this way uniformity is not forced but emerges on
its own since the teams will minimize their own effort. When a team regards the use
of another log framework or programming language that necessitates another log
framework as more advantageous, it can still use these technologies.

Defining uniform formats for log output has an additional advantage: the infor-
mation can be delivered to different tools that process log files differently. This
 enables operations to screen log files for errors while the business stakeholders create
statistics. Operation and business stakeholders can use different tools that use the
uniform format as shared basis.

Similarly, behavior can be defined for the other areas of operation such as deploy-
ment, monitoring, or the deployment pipeline.

Micro and Macro Architecture

Which decisions can be made by the team and which have to be made for the overall
project correspond to the separation of the architecture into micro and macro archi-
tecture (see section 12.3). Decisions the team can make belong to micro architecture

ptg18144917

Chapter 11 Operations and Continuous Delivery of Microservices240

while decisions that are made across all teams for the overall project are part of the
macro architecture. Technologies or the desired behavior for logging can be either
part of the macro or the micro architecture.

Templates

Templates offer the option to unify microservices in these areas and to increase the
productivity of the teams. Based on a very simple microservice, a template demon-
strates how the technologies can be used and how microservices are integrated into
the operation infrastructure. The example can simply respond to a request with a
constant value since the domain logic is not the point here.

The template will make it easy and fast for a team to implement a new micro-
service. At the same time, each team can easily make use of the standard technol-
ogy stack. So the uniform technical solution is at the same time the most attractive
for the teams. Templates achieve a large degree of technical uniformity between
microservices without prescribing the technology used. In addition, a faulty use of
the technology stack is avoided when the template demonstrates the correct use.

A template should contain the complete infrastructure in addition to the code for
an exemplary microservice. This refers to the continuous delivery pipeline, the build,
the continuous integration platform, the deployment in production, and the neces-
sary resources for running the microservice. Especially build and continuous delivery
pipeline are important since the deployment of a large number of microservices is
only possible when these are automated.

The template can be very complex when it really contains the complete
 infrastructure—even if the respective microservice is very simple. It is not necessarily
required to provide a complete and perfect solution at once. The template can also
be built up in a stepwise manner.

The template can be copied into each project. This entails the problem that
changes to the template are not propagated into the existing microservices. On the
other hand, this approach is much easier to implement than an approach that ena-
bles the automated adoption of changes. Besides, such an approach would create
dependencies between the template and practically all microservices. Such depend-
encies should be avoided for microservices.

The templates fundamentally facilitate the generation of new microservices.
Accordingly, teams are more likely to create new microservices. Therefore, they can
more easily distribute microservices in multiple smaller microservices. Thus tem-
plates help to keep microservices small. When the microservices are rather small, the
advantages of a microservice-based architecture can be exploited even better.

ptg18144917

24111.2 Logging

11.2 Logging

By logging, an application can easily provide information about which events
occurred. These can be errors, but they can also be events like the registration of a
new user that are mostly interesting for statistics. Finally, log data can help develop-
ers to locate errors by providing detailed information.

In normal systems logs have the advantage that they can be written very easily
and that the data can be persisted without huge effort. Besides, log files are human-
readable and can be easily searched.

Logging for Microservices

For microservices writing and analyzing log files is hardly sufficient:

• Many requests can only be handled by the interplay of multiple microservices.
In that case the log file of a single microservice is not sufficient to understand
the complete sequence of events.

• The load is often distributed across multiple instances of one microservice.
Therefore, the information contained in the log file of an individual instance is
not very useful.

• Finally, due to increased load, new releases, or crashes, new instances of a
microservice start constantly. The data from a log file can get lost when a vir-
tual machine is shut down and its hard disk is subsequently deleted.

It is not necessary for microservices to write logs into their file system because the
information cannot be analyzed there anyhow. Only writing to the central log server
is definitely necessary. This has also the advantage that the microservices utilize less
local storage.

Usually, applications just log text strings. The centralized logging parses the
strings. During parsing relevant pieces of information like time stamps or server
names are extracted. Often parsing goes even beyond that and scrutinizes the texts
more closely. If it is possible, for instance, to determine the identity of the current
user from the logs, all information about a user can be selected from the log data
of the microservices. In a way the microservice hides the relevant information in a
string that the log system subsequently takes apart again. To facilitate the parsing
log data can be transferred into a data format like JSON. In that case the data can
already be structured during logging. They are not first packaged into a string that

ptg18144917

Chapter 11 Operations and Continuous Delivery of Microservices242

then has to be laboriously parsed. Likewise, it is sensible to have uniform standards:
When a microservice logs something as an error, then an error should really have
occurred. In addition, the semantics of the other log levels should be uniform across
all microservices.

Technologies for Logging via the Network

Microservices can support central logging by sending log data directly via the
 network. Most log libraries support such an approach. Special protocols like GELF
(Graylog Extended Log Format)1 can be used for this or long-established protocols
like syslog, which is the basis for logging in UNIX systems. Tools like the logstash-
forwarder,2 Beaver,3 or Woodchuck4 are meant to send local files via the network to a
central log server. They are sensible in cases where the log data is supposed to be also
locally stored in files.

ELK for Centralized Logging

Logstash, Elasticsearch, and Kibana can serve as tools for the collection and
 processing of logs on a central server (see Figure 11.1). These tools form the ELK
stack (Elasticsearch, Logstash, Kibana).

• With the aid of Logstash5 log files can be parsed and collected by servers in
the network. Logstash is a very powerful tool. It can read data from a source,
modify or filter data, and finally write it into a sink. Apart from importing
logs from the network and storage in Elasticsearch, Logstash supports many
other data sources and data sinks. For example, data can be read from message
queues or databases or written into them. Finally, Logstash can also parse data
and supplement it—for example, time stamps can be added to each log entry,
or individual fields can be cut out and further processed.

• Elasticsearch6 stores log data and makes it available for analyses. Elasticsearch
cannot only search the data with full text search, but it can also search in indi-
vidual fields of structured data and permanently store the data like a database.
Finally, Elasticsearch offers statistical functions and can use those to analyze

1. https://www.graylog.org/

2. https://github.com/elastic/logstash-forwarder

3. https://github.com/python-beaver/python-beaver

4. https://github.com/danryan/woodchuck

5. https://www.elastic.co/products/logstash

6. https://www.elastic.co/products/elasticsearch

https://www.graylog.org/
https://www.github.com/elastic/logstash-forwarder
https://www.github.com/python-beaver/python-beaver
https://www.github.com/danryan/woodchuck
https://www.elastic.co/products/logstash
https://www.elastic.co/products/elasticsearch

ptg18144917

24311.2 Logging

data. As a search engine Elasticsearch is optimized for fast response times so
that the data can be analyzed quasi-interactively.

• Kibana7 is a web user interface that enables analysis of data from Elastic-
search. In addition to simple queries, statistical evaluations, visualizations and
diagrams can be created.

All three tools are open source projects and are available under the Apache 2.0
license.

Scaling ELK

Especially in case of microservices, log data often accumulates in large amounts.
Therefore, in microservice-based architectures the system for the central processing
of logs should be highly scalable. Good scalability is one of the advantages of the
ELK stack:

• Elasticsearch can distribute the indices into shards. Each data set is stored in
a single shard. As the shards can be located on different servers, this makes
possible load balancing. In addition, shards can be replicated across several
servers to improve fail-safe qualities of the system. Besides, a read access can
be directed to an arbitrary replica of the data. Therefore, replicas can serve to
scale read access.

• Logstash can write logs into different indices. Without an additional con-
figuration Logstash would write the data for each day into a different index.
Since the current data usually is read more frequently, this enables reduction of
the amount of data that has to be searched for a typical request and therefore
improves performance. Besides, there are still other possibilities to distribute
the data to indices—for instance, according to the geographic origin of the

7. https://www.elastic.co/products/kibana

Logstash Kibanaelasticsearch

Parse Store Analyze

Microservice

Transfer
Logs over

the Network

Figure 11.1 ELK Infrastructure for Log Analysis

https://www.elastic.co/products/kibana

ptg18144917

Chapter 11 Operations and Continuous Delivery of Microservices244

user. This also promotes the optimization of the data amounts that has to be
searched.

• Log data can be buffered in a broker prior to processing by Logstash. The bro-
ker serves as buffer. It stores the messages when there are so many log messages
that they cannot be immediately processed. Redis8 is often used as broker. It is
a fast in memory database.

Graylog

The ELK stack is not the only solution for the analysis of log files. Graylog9 is also an
open source solution and likewise utilizes Elasticsearch for storing log data. Besides
it uses MongoDB for metadata. Graylog defines its own format for the log messages:
The already mentioned GELF (Graylog Extended Log Format) standardizes the data
that is transmitted via the network. For many log libraries and programming lan-
guages there are extensions for GELF. Likewise, the respective information can be
extracted from the log data or surveyed with the UNIX tool syslog. Also Logstash
supports GELF as in- and output format so that Logstash can be combined with
Graylog. Graylog has a web interface that makes it possible to analyze the informa-
tion from the logs.

Splunk

Splunk10 is a commercial solution that has already been on the market for a long
time. Splunk presents itself as a solution that not only analyzes log files but can gen-
erally analyze machine data and big data. For processing logs Splunk gathers the
data via a forwarder, prepares it via an indexer for searching, and search heads take
over the processing of search requests. Its intention to serve as an enterprise solution
is underlined by the security concept. Customized analysis, but also alerts in case of
certain problems, are possible. Splunk can be extended by numerous plugins. Besides
there are apps that provide ready-made solutions for certain infrastructures, such as
Microsoft Windows Server. The software does not necessarily have to be installed in
your own computing center, but is also available as a cloud solution.

8. http://redis.io/

9. https://www.graylog.org/

 10. http://www.splunk.com/

http://www.redis.io/
https://www.graylog.org/
http://www.splunk.com/

ptg18144917

24511.2 Logging

Stakeholders for Logs

There are different stakeholders for logging. However, the analysis options of the log
servers are so flexible and the analyses so similar that one tool is normally sufficient.
The stakeholders can create their own dashboards with the information that is
 relevant to them. For specific requirements the log data can be passed on to other
systems for evaluation.

Correlation IDs

Often multiple microservices work together on a request. The path the request takes
through the microservices has to be traceable for analysis. For filtering all log entries
to a certain customer or to a certain request, a correlation ID can be used. This ID
unambiguously identifies a request to the overall system and is passed along during
all communication between microservices. In this manner log entries for all systems
to a single request are easy to find in the central log system, and the processing of the
requests can be tracked across all microservices.

Such an approach can, for instance, be implemented by transferring a request ID
for each message within the headers or within the payloads. Many projects imple-
ment the transfer in their own code without using a framework. For Java there is
the library tracee,11 which implements the transfer of the IDs. Some log frameworks
support a context that is logged together with each log message. In that case it is only
necessary to put the correlation ID into the context when receiving a message. This
obliterates the need to pass the correlation ID on from method to method. When the
correlation ID is bound to the thread, problems can arise when the processing of a
request involves several threads. Setting the correlation ID in the context ensures that
all log messages contain the correlation ID. How the correlation ID is logged has to
be uniform across all microservices so that the search for a request in the logs works
for all microservices.

Zipkin: Distributed Tracing

Also in regard to performance, evaluations have to be made across microservices.
When the complete path of the requests is traceable, which microservice represents
a bottleneck and requires an especially long time for processing requests can be
identified. With the aid of distributed tracing which microservice needs how much
time for answering a request and where optimization should start can be determined.

 11. https://github.com/tracee/tracee

https://www.github.com/tracee/tracee

ptg18144917

Chapter 11 Operations and Continuous Delivery of Microservices246

Zipkin12 enables exactly this type of investigations.13 It comprises support for
 different network protocols so that a request ID is automatically passed on via
these protocols. In contrast to the correlation IDs, the objective is not to correlate
log entries, but to analyze the time behavior of the microservices. For this purpose,
 Zipkin offers suitable analysis tools.

Try and Experiment

• Define a technology stack that enables a microservice-based architecture to
implement logging:

• How should the log messages be formatted?

• Define a logging framework if necessary.

• Determine a technology for collecting and evaluating logs.

This section listed a number of tools for the different areas. Which prop-
erties are especially important? The objective is not a complete product
 evaluation, but a general weighing of advantages and disadvantages.

• Chapter 13, “Example of a Microservice-Based Architecture,” shows an
example for a microservice-based architecture, and in section 13.15 there
are suggestions about how the architecture can be supplemented with a log
analysis.

• How does your current project handle logging? Is it possible to implement
parts of these approaches and technologies in your project also?

11.3 Monitoring

Monitoring surveils the metrics of a microservice and uses information sources other
than logging. Monitoring uses mostly numerical values that provide information
about the current state of the application and indicate how this state changes over
time. Such values can represent the number of processed calls over a certain time, the
time needed for processing the calls, or also system values like the CPU or memory

 12. https://github.com/openzipkin/zipkin

 13. https://blog.twitter.com/2012/distributed-systems-tracing-with-zipkin

https://www.github.com/openzipkin/zipkin
https://www.blog.twitter.com/2012/distributed-systems-tracing-with-zipkin

ptg18144917

24711.3 Monitoring

utilization. If certain thresholds are surpassed or not reached, this indicates a
 problem and can trigger an alarm so that somebody can solve the problem. Or even
better: The problem is solved automatically. For example, an overload can be
addressed by starting additional instances.

Monitoring offers feedback from production that is not only relevant for opera-
tion but also for developers or the users of the system. Based on the information
from monitoring they can better understand the system and therefore make informed
decisions about how the system should be developed further.

Basic Information

Basic monitoring information should be mandatory for all microservices. This
makes it easier to get an overview of the state of the system. All microservices should
deliver the required information in the same format. Besides, components of the
microservice system can likewise use the values. Load balancing, for instance, can
use a health check to avoid accessing microservices that cannot process calls.

The basic values all microservices should provide can comprise the following:

• There should be a value that indicates the availability of the microservice. In
this manner the microservice signals whether it is capable of processing calls at
all (“alive”).

• Detailed information regarding the availability of the microservice is
another important metric. One relevant piece of information is whether all
 microservices used by the microservice are accessible and whether all other
resources are available (“health”). This information does not only indicate
whether the microservice functions but also provide hints about which part
of a microservice is currently unavailable and why it failed. Importantly, it
becomes apparent whether the microservice is unavailable because of the
 failure of another microservice or because the respective microservice itself is
having a problem.

• Information about the version of a microservice and additional meta
information like the contact partner or libraries used and their versions as
well as other artifacts can also be provided as metrics. This can cover part
of the documentation (see section 7.15). Alternatively, which version of the
microservice is actually currently in production can be checked. This facilitates
the search for errors. Besides, an automated continuous inventory of the
microservices and other software used is possible, which simply inquires after
these values.

ptg18144917

Chapter 11 Operations and Continuous Delivery of Microservices248

Additional Metrics

Additional metrics can likewise be recorded by monitoring. Among the possible
 values are, for instance, response times, the frequency of certain errors, or the num-
ber of calls. These values are usually specific for a microservice so that they do not
necessarily have to be offered by all microservices. An alarm can be triggered when
certain thresholds are reached. Such thresholds are different for each microservice.

Nevertheless, a uniform interface for accessing the values is sensible when all
microservices are supposed to use the same monitoring tool. Uniformity can reduce
expenditure tremendously in this area.

Stakeholders

There are different stakeholders for the information from monitoring:

• Operations wants to be informed about problems in a timely manner to enable
a smooth operation of the microservice. In case of acute problems or failures
it wants to get an alarm—at any time of day or night—via different means like
a pager or SMS. Detailed information is only necessary when the error has to
be analyzed more closely—often together with the developers. Operations is
interested not only in observing the values from the microservice itself, but also
in monitoring values of the operating system, the hardware, or the network.

• Developers mostly focus on information from the application. They want to
understand how the application functions in production and how it is utilized
by the users. From this information they deduce optimizations, especially
at the technical level. Therefore, they need very specific information. If the
application is, for instance, too slow in responding to a certain type of call,
the system has to be optimized for this type of call. To do so it is necessary to
obtain as much information as possible about exactly this type of call. Other
calls are not as interesting. Developers evaluate this information in detail.
They might even be interested in analyzing calls of just one specific user or a
circle of users.

• The business stakeholders are interested in the business success and the result-
ing business numbers. Such information can be provided by the application
specifically for the business stakeholders. The business stakeholders then gen-
erate statistics based on this information and therefore prepare business deci-
sions. On the other hand, they are usually not interested in technical details.

The different stakeholders are not only interested in different values but also ana-
lyze them differently. Standardizing the data format is sensible to support different
tools and enables all stakeholders to access all data.

ptg18144917

24911.3 Monitoring

Figure 11.2 shows an overview of a possible monitoring of a microservice-
based system. The microservice offers the data via a uniform interface. Operations
uses monitoring to surveil for instance threshold values. Development utilizes a
detailed monitoring to understand processes within the application. Finally, the
business stakeholders look at the business data. The individual stakeholders might
use more or less similar approaches: The stakeholders can, for instance, use the
same monitoring software with different dashboards or entirely different software.

Correlate with Events

In addition, it can be sensible to correlate data with an event, such as a new release.
This requires that information about the event has to be handed over to monitoring.
When a new release creates markedly more revenue or causes decisively longer
response times, this is an interesting realization.

Monitoring = Tests?

In a certain way monitoring is another version of testing (see section 10.4). While
tests look at the correct functioning of a new release in a test environment, monitor-
ing examines the behavior of the application in a production environment. The inte-
gration tests should also be reflected in monitoring. When a problem causes an
integration test to fail, there can be an associated alarm in monitoring. Besides,
 monitoring should also be activated for test environments to pinpoint problems
already in the tests. When the risk associated with deployments is reduced by suita-
ble measures (see section 11.4), the monitoring can even take over part of the tests.

Operations

Business
Stakeholders

Development

System
Metrics

Microservice
Application

Metrics

Business
Metrics

Uniform
Interface

Figure 11.2 Stakeholders and Their Monitoring Data

ptg18144917

Chapter 11 Operations and Continuous Delivery of Microservices250

Dynamic Environment

Another challenge when working with microservice-based architectures is that
microservices come and go. During the deployment of a new release, an instance can
be stopped and started anew with a new software version. When servers fail,
instances shut down, and new ones are started. For this reason, monitoring has to
occur separately from the microservices. Otherwise the stopping of a microservice
would influence the monitoring infrastructure or may even cause it to fail. Besides,
microservices are a distributed system. The values of a single instance are not telling
in themselves. Only by collecting values of multiple instances does the monitoring
information become relevant.

Concrete Technologies

Different technologies can be used for monitoring microservices:

• Graphite14 can store numerical data and is optimized for processing time-series
data. Such data occurs frequently during monitoring. The data can be ana-
lyzed in a web application. Graphite stores the data in its own database. After
some time, the data is automatically deleted. Monitoring values are accepted
by Graphite in a very simple format via a socket interface.

• Grafana15 extends Graphite by alternative dashboards and other graphical
elements.

• Seyren16 extends Graphite by a functionality for triggering alarms.

• Nagios17 is a comprehensive solution for monitoring and can be an alternative
to Graphite.

• Icinga18 has originally been a fork of Nagios and therefore covers a very similar
use case.

• Riemann19 focuses on the processing of event streams. It uses a functional pro-
gramming language to define logic for the reaction to certain events. For this
purpose, a fitting dashboard can be configured. Messages can be sent by SMS
or email.

14. http://graphite.wikidot.com/

15. http://grafana.org/

16. https://github.com/scobal/seyren

17. http://www.nagios.org/

18. https://www.icinga.org/

19. http://riemann.io/

http://www.graphite.wikidot.com/
http://www.grafana.org/
https://www.github.com/scobal/seyren
http://www.nagios.org/
https://www.icinga.org/
http://www.riemann.io/

ptg18144917

25111.3 Monitoring

• Packetbeat20 uses an agent that records the network traffic on the computer to
be monitored. This enables Packetbeat to determine with minimal effort which
requests take how long and which nodes communicate with each other. It is
especially interesting that Packetbeat uses Elasticsearch for data storage and
Kibana for analysis. These tools are also widely used for analyzing log data
(see section 11.2). Having only one stack for the storage and analysis of logs
and monitoring reduces the complexity of the environment.

• In addition, there are different commercial tools. Among those are HP’s
 Operations Manager,21 IBM Tivoli,22 CA Opscenter23 and BMC Remedy.24

These tools are very comprehensive, have been on the market for a long time,
and offer support for many different software and hardware products. Such
platforms are often used enterprise-wide, and introducing them into an
 organization is usually a very complex project. Some of these solutions can
also analyze and monitor log files. Due to their large number and the high
dynamics of the environment, it can be sensible for microservices to establish
their own monitoring tools, even if an enterprise-wide standard exists already.
When the established processes and tools require a high manual expenditure
for administration, this expenditure might not be feasible any more in the face
of the large number of microservices and the dynamics of the microservice
environment.

• Monitoring can be moved to the Cloud. In this manner no extra infrastructure
has to be installed. This facilitates the introduction of tools and monitoring
the applications. An example is NewRelic.25

These tools are, first of all, useful for operations and for developers. Business
monitoring can be performed with different tools. Such monitoring is not only
based on current trends and data, but also on historical values. Therefore, the
amount of data is markedly larger than for operations and development. The data
can be exported into a separate database or investigated with big data solutions.
In fact, the analysis of data from web servers is one of the areas where big data
 solutions have first been used.

20. https://www.elastic.co/products/beats

21. http://www8.hp.com/us/en/software-solutions/operations-manager-infrastructure-monitoring/

22. http://www-01.ibm.com/software/tivoli/

23. http://www3.ca.com/us/opscenter.aspx

24. http://www.bmc.com/it-solutions/remedy-itsm.html

25. http://newrelic.com/

https://www.elastic.co/products/beats
http://www8.hp.com/us/en/software-solutions/operations-manager-infrastructure-monitoring/
http://www-01.ibm.com/software/tivoli/
http://www3.ca.com/us/opscenter.aspx
http://www.bmc.com/it-solutions/remedy-itsm.html
http://www.newrelic.com/

ptg18144917

Chapter 11 Operations and Continuous Delivery of Microservices252

Enabling Monitoring in Microservices

Microservices have to deliver data that is displayed in the monitoring solutions. It is
possible to provide the data via a simple interface like HTTP with a data format such
as JSON. Then the monitoring tools can read the data out and import it. For this
purpose, adaptors can be written as scripts by the developers. This makes it possible
to provide different tools via the same interface with data.

Metrics

In the Java world, the Metrics26 framework can be used. It offers functionalities for
recording custom values and sending them to a monitoring tool. This makes it pos-
sible to record metrics in the application and to hand them over to a monitoring tool.

StatsD

StatsD27 can collect values from different sources, perform calculations, and hand over
the results to monitoring tools. This enables condensing of data before it is passed on
to the monitoring tool in order to reduce the load on the monitoring tool. There are
also many client libraries for StatsD that facilitate the sending of data to StatsD.

collectd

collectd28 collects statistics about a system—for instance, the CPU utilization. The
data can be analyzed with the front end or it can be stored in monitoring tools.
 collectd can collect data from a HTTP JSON data source and send it on to the moni-
toring tool. Via different plugins, collectd can collect data from the operating system
and the basic processes.

Technology Stack for Monitoring

A technology stack for monitoring comprises different components (see Figure 11.3):

• Within the microservice itself data has to be recorded and provided to moni-
toring. For this purpose, a library can be used that directly contacts the moni-
toring tool. Alternatively, the data can be offered via a uniform interface—for

26. https://github.com/dropwizard/metrics

27. https://github.com/etsy/statsd

28. https://collectd.org/

https://www.github.com/dropwizard/metrics
https://www.github.com/etsy/statsd
https://www.collectd.org/

ptg18144917

25311.3 Monitoring

example JSON via HTTP– and another tool collects the data and sends it on
to the monitoring tool.

• In addition, if necessary, there should be an agent to record the data from the
operating system and the hardware and pass it on to monitoring.

• The monitoring tool stores and visualizes the data and can, if needed, trigger an
alarm. Different aspects can be covered by different monitoring applications.

• For analyses of historical data or by complex algorithms a solution based on
big data tools can be created in parallel.

Effects on the Individual Microservice

A microservice also has to be integrated into the infrastructure. It has to hand over
monitoring data to the monitoring infrastructure and provide some mandatory data.
This can be ensured by a suitable template for the microservice and by tests.

Microservice

Monitoring

Big Data
Tool

Agent

Figure 11.3 Parts of a Monitoring System

Try and Experiment

• Define a technology stack that enables implementation of monitoring in a
microservice-based architecture. To do so define the stakeholders and the
data that is relevant for them. Each of the stakeholders needs to have a tool
for analyzing the data that is relevant for him/her. Finally, with which tools
the data can be recorded and how it is stored has to be defined. This section
listed a number of tools for the different areas. In conjunction with further
research it is possible to assemble a technology stack that is well suited for
individual projects.

(continued)

ptg18144917

Chapter 11 Operations and Continuous Delivery of Microservices254

11.4 Deployment

Independent deployment is a central aim of microservices. Besides, the deployment
has to be automated because manual deployment or even just manual corrections are
not feasible due to the large number of microservices.

Deployment Automation

There are different possibilities for automating deployment:

• Installation scripts can be used that only install the software on the computer.
Such scripts can, for instance, be implemented as shell scripts. They can install
necessary software packages, generate configuration files, and create user
accounts. Such scripts can be problematic when they are called repeatedly. In
that case the installation finds a computer on which the software is already
installed. However, an update is different from a fresh installation. In such a
situation a script can fail, for example, because user accounts or configura-
tion files might already be present and cannot easily be overwritten. When the
scripts are supposed to handle updates, development and testing the scripts get
more laborious.

• Immutable servers are an option to handle these problems. Instead of updat-
ing the software on the servers, the server is completely deployed anew. This
facilitates not only the automation of deployment but also the exact repro-
duction of the software installed on a server. It is sufficient to consider fresh
installations. A fresh installation is easier to reproduce than an update, which
can be started from many different configuration states and should lead to the
same state from any of those. Approaches like Docker29 make it possible to
tremendously reduce the expenditure for installing software. Docker is a kind

29. https://www.docker.com/

• Chapter 13 shows an example for a microservice-based architecture, and in
section 13.15 there is also a suggestion about how the architecture can be
extended by monitoring. How does your current project handle monitor-
ing? Can some of the technologies presented in this section also be advanta-
geous for your project? Which? Why?

https://www.docker.com/

ptg18144917

25511.4 Deployment

of lightweight virtualization. It also optimizes the handling of virtual hard
drives. If there is already a virtual hard drive with the correct data, it is recycled
instead of installing the software anew. When installing a package like Java,
first a virtual hard drive is looked for that already has this installation. Only
when one does not exist is the installation really performed. Should there only
be a change in a configuration file when going from an old to a new version
of an immutable server, Docker will recycle the old virtual hard drives behind
the scenes and only supplement the new configuration file. This does not only
reduce the consumption of hard drive space, but also profoundly speeds up the
installation of the servers. Docker also decreases the time a virtual team needs
for booting. These optimizations turn immutable server in conjunction with
Docker into an interesting option. The new deployment of the servers is very
fast with Docker, and the new server can also rapidly be booted.

• Other possibilities are tools like Puppet,30 Chef,31 Ansible,32 or Salt.33 They
are specialized for installing software. Scripts for these tools describe what the
system is supposed to look like after the installation. During an installation
run the tool will take the necessary steps to transfer the system into the desired
state. During the first run on a fresh system the tool completely installs the
software. If the installation is run a second time immediately afterwards, it
will not change the system any further since the system is already in the desired
state. Besides, these tools can uniformly install a large number of servers in an
automated manner and are also able to roll out changes to a large number of
servers.

• Operating systems from the Linux area possess package managers like rpm
(RedHat), dpkg (Debian/Ubuntu), or zypper (SuSE). They make it possible to
centrally roll out software onto a large number of servers. The file formats
used are very simple, so that it is very easy to generate a package in a fitting
format. The configuration of the software poses a problem, though. Package
managers usually support scripts that are executed during installation. Such
scripts can generate the necessary configuration files. However, there can also
be an extra package with the individual configurations for each host. The
installation tools mentioned under the last bullet point can also use package
manager for installing the actual software so that they themselves only gener-
ate the configuration files.

30. http://puppetlabs.com/

31. https://www.chef.io/

32. http://www.ansible.com/

33. http://www.saltstack.com/

http://www.puppetlabs.com/
https://www.chef.io/
http://www.ansible.com/
http://www.saltstack.com/

ptg18144917

Chapter 11 Operations and Continuous Delivery of Microservices256

Installation and Configuration

Section 7.10 already described tools that can be used for configuring microservices.
In general, it is hard to separate the installation from the software configuration. The
installation has to generate a configuration. Therefore, many of the tools such as
Puppet, Chef, Ansible, or Salt can also create configurations and roll them out onto
servers. Thus, these solutions are an alternative to the configuration solutions that
are specialized for microservices.

Risks Associated with Microservice Deployments

Microservices are supposed to make possible an easy and independent deployment.
Nevertheless, it can never be excluded that problems arise in production. The
 microservice-based architecture by itself will already help to reduce the risk. When a
microservice fails as a result of a problem with a new version, this failure should be
limited to the functionality of this microservice. Apart from that, the system should
keep working. This is made possible by stability patterns and resilience described in
section 9.5. Already for this reason the deployment of a microservice is much less
risky than the deployment of a monolith. In cases of a monolith it is much harder to
limit a failure to a certain functionality. If a new version of the deployment monolith
has a memory leak, this will cause the entire process to break down so that the entire
monolith will not be available any more. A memory leak in a microservice only influ-
ences this microservice. There are different challenges for which microservices are
not helpful per se: schema changes in relational databases are, for instance, problem-
atic because they often take very long and might fail—especially when the database
already contains a lot of data. As microservices have their own data storage, a
schema migration is always limited to just one microservice.

Deployment Strategies

To further reduce the risk associated with a microservice deployment there are
 different strategies:

• A rollback brings the old version of a microservice back into production.
 Handling the database can be problematic: Often the old version of the
microservice does not work anymore with the database schema created by the
newer version. When there are already data in the database that use the new
schema, it can get very difficult to recreate the old state without losing the
new data. Besides, the rollback is hard to test.

ptg18144917

25711.4 Deployment

• A roll forward brings a new version of a microservice in production that does
not contain the error any more. The procedure is identical to the procedure for
the deployment of any other new version of the microservice so that no special
measures are necessary. The change is rather small so that deployment and the
passage through the continuous delivery pipeline should rapidly take place.

• Continuous deployment is even more radical: Each change to a microser-
vice is brought into production when the continuous delivery pipeline was
passed successfully. This further reduces the time necessary for the correction
of errors. Besides, this entails that there are fewer changes per release, which
 further decreases the risk and makes it easier to track that changes to the code
caused a problem. Continuous deployment is the logical consequence when
the deployment process works so well that going into production is just a for-
mality. Moreover, the team will pay more attention to the quality of their code
when each change really goes into production.

• A blue/green deployment builds up a completely new environment with the
new version of a microservice. The team can completely test the new version
and then bring it into production. Should problems occur, the old version can
be used again, which is kept for this purpose. Also in this scenario there are
challenges in case of changes to the database schema. When switching from
the one version to the other version of the microservice, the database has to
be switched also. Data that has been written into the old database between the
built-up of the new environment and the switch has to be transferred into the
new database.

• Canary releasing is based on the idea to deploy the new version initially just
on one server in a cluster. When the new version runs without trouble on one
server, it can also be deployed on the other servers. The database has to sup-
port the old and the new version of the microservice in parallel.

• Microservices can also run blindly in production. In that case they get all
requests, but they may not change data, and calls that they send out are not
passed on. By monitoring, log analyses, and comparison with the old version, it
is possible to determine whether the new service has been correctly implemented.

Theoretically, such procedures can also be implemented with deployment mono-
liths. However, in practice this is very difficult. With microservices it is easier since
they are much smaller deployment units. Microservices require less comprehensive
tests. Installing and starting microservices is much faster. Therefore, microservices
can more rapidly pass through the continuous delivery pipeline into production.

ptg18144917

Chapter 11 Operations and Continuous Delivery of Microservices258

This will have positive effects for roll forward or rollback because problems require
less time to fix. A microservice needs fewer resources in operation. This is helpful for
canary releasing or blue/green deployment since new environments have to be built
up. If this is possible with fewer resources, these approaches are easier to implement.
For a deployment monolith it is often very difficult to build up an environment at all.

11.5 Combined or Separate Deployment? (Jörg Müller)

by Jörg Müller, Hypoport AG

The question whether different services are rolled out together or independently
from each other is of greater relevance than sometimes suspected. This is an
 experience we had to make in the context of a project that started approximately five
years ago.

The term “microservices” was not yet important in our industry. However, achiev-
ing a good modularization was our goal right from the start. The entire application
consisted initially of a number of web modules coming in the shape of typical Java
web application archives (WAR). These comprised in turn multiple modules that
had been split based on domain as well as technical criteria. In addition to modulari-
zation we relied from the start on continuous deployment as a method for rolling out
the application. Each commit goes straight into production.

Initially, it seemed an obvious choice to build an integrated deployment pipeline
for the entire application. This enabled integration tests across all components. A
single version for the entire application enabled controlled behavior, even if multiple
components of the applications were changed simultaneously. Finally, the pipeline
itself was easier to implement. The latter was an important reason: Since there were
relatively few tools for continuous deployment at the time, we had to build most
ourselves.

However, after some time the disadvantages of our approach became obvious.
The first consequence was a longer and longer run time of our deployment pipeline.
The larger the number of components that were built, tested, and rolled out, the
longer the process took. The advantages of continuous deployments rapidly dimin-
ished when the run time of the pipeline became longer. The first countermeasure was
the optimization that only changed components were built and tested. However, this
increased the complexity of the deployment pipeline tremendously. At the same time
other problems like the runtime for changes to central components or the size of the
artifacts could not be improved this way.

But there was also a subtler problem. A combined rollout with integrative tests
offered a strong security net. It was easy to perform refactorings across multiple

ptg18144917

25911.6 Control

modules. However, this often changed interfaces between modules just because it
was so easy to do. This is, in principle, a good thing. However, it had the consequence
that it became very frequently necessary to start the entire system. Especially when
working on the developer machine, this turned into a burden. The requirements for
the hardware got very high, and the turnaround times lengthened considerably.

The approach got even more complicated when more than one team worked with
this integrated pipeline. The more components were tested in one pipeline, the more
frequently errors were uncovered. This blocked the pipeline since the errors had to
be fixed first. At the time when only one team was dependent on the pipeline, it was
easy to find somebody who took over responsibility and fixed the problem. When
there were several teams, this responsibility was not so clear any more. This meant
that errors in the pipeline persisted for a longer time. Simultaneously, the variety
of technologies increased. Again, the complexity rose. This pipeline now needed
very specialized solutions. Therefore, the expenditure for maintenance increased,
and the stability decreased. The value of continuous deployment got hard to put
into effect.

At this time it became obvious that the combined deployment in one pipeline
could not be continued any more. All new services, regardless of whether they were
microservices or larger modules, now had their own pipeline. However, it caused a
lot of expenditure to separate the previous pipeline that was based on shared deploy-
ment into multiple pipelines.

In a new project it can be the right decision to start with a combined deployment.
This especially holds true when the borders between the individual services and their
interfaces are not yet well known. In such a case good integrative tests and simple
refactoring can be very useful. However, starting at a certain size an independent
deployment is obligatory. Indications for this are the number of modules or services,
the run time and stability of the deployment pipeline, and last, but not least, the how
many teams work on the overall system. If these indications are overlooked and the
right point in time to separate the deployment is missed, it can easily happen that
one builds a monolith that consists of many small microservices.

11.6 Control

Interventions in a microservice might be necessary at run time. For instance, a
 problem with a microservice might require restarting the respective microservice.
 Likewise, a start or a stop of a microservice might be necessary. These are ways for
operation to intervene in case of a problem or for a load balancer to terminate
instances that cannot process requests any more.

ptg18144917

Chapter 11 Operations and Continuous Delivery of Microservices260

Different measures can be used for control:

• When a microservice runs in a virtual machine, the virtual machine can be
shut down or restarted. In that case the microservice itself does not have to
make special arrangements.

• The operating system supports services that are started together with the
operating system. Usually, services can also be stopped, started, or restarted
by means of the operating system. In that case the installation only has to reg-
ister the microservice as service. Working with services is nothing unusual for
operation, which is sufficient for this approach.

• Finally, an interface can be used that enables restarting or shutting down, for
instance via REST. Such an interface has to be implemented by the microservice
itself. This is supported by several libraries in the microservices area—for
instance by Spring Boot, which is used to implement the example in Chapter
13. Such an interface can be called with simple HTTP tools like curl.

Technically, the implementation of control mechanisms is not a big problem, but
they have to be present for operating the microservices. When they are identically imple-
mented for all microservices, this can reduce the expenditure for operating the system.

11.7 Infrastructure

Microservices have to run on a suitable platform. It is best to run each microservice
in a separate virtual machine (VM). Otherwise it is difficult to assure an independent
deployment of the individual microservices.

When multiple microservices run on a virtual machine, the deployment of one
microservice can influence another microservice. The deployment can generate
a high load or introduce changes to the virtual machine that also concern other
microservices running on the virtual machine.

Besides, microservices should be isolated from each other to achieve a better stabil-
ity and resilience. When multiple microservices are running on one virtual machine,
one microservice can generate so much load that the other microservices fail. However,
precisely that should be prevented: When one microservice fails, this failure should be
limited to this one microservice and not affect additional microservices. The isolation
of virtual machines is helpful for limiting the failure or the load to one microservice.

ptg18144917

26111.7 Infrastructure

Scaling microservices is likewise easier when each microservice runs in an
 individual virtual machine. When the load is too high, it is sufficient to start a new
virtual machine and register it with the load balancer.

In case of problems it is also easier to analyze the error when all processes on a
virtual machine belong to one microservice. Each metric on the system then unam-
biguously belongs to this microservice.

Finally, the microservice can be delivered as hard drive image when each microser-
vice runs on its own virtual machine. Such a deployment has the advantage that the
entire environment of the virtual machine is exactly in line with the requirements of
the microservice and that the microservice can bring along its own technology stack
up to its own operating system.

Virtualization or Cloud

It is hardly possible to install new physical hardware upon the deployment of a new
microservice. Besides, microservices profit from virtualization or a Cloud, since this
renders the infrastructures much more flexible. New virtual machines for scaling or
testing environments can easily be provided. In the continuous delivery pipeline
microservices are constantly started to perform different tests. Moreover, in produc-
tion new instances have to be started depending on the load.

Therefore, it should be possible to start a new virtual machine in a completely
automated manner. Starting new instances with simple API calls is exactly what a
Cloud offers. A cloud infrastructure should be available in order to really be able
to implement a microservice-based architecture. Virtual machines that are provided
by operation via manual processes are not sufficient. This also demonstrates that
microservices can hardly be run without modern infrastructures.

Docker

When there is an individual virtual machine for each microservice, it is laborious to
generate a test environment containing all microservices. Even creating an environ-
ment with relatively few microservices can be a challenge for a developer machine.
The usage of RAM and CPU is very high for such an environment. In fact, it is hardly
sensible to use an entire virtual machine for one microservice. In the end, the micros-
ervice should just run and integrate in logging and monitoring. Therefore, solutions
like Docker are convenient: Docker does not comprise many of the normally com-
mon operating system features.

ptg18144917

Chapter 11 Operations and Continuous Delivery of Microservices262

Instead Docker34 offers a very lightweight virtualization. To this purpose Docker
uses different technologies:

• In place of a complete virtualization Docker employs Linux Containers.35

Support for similar mechanisms in Microsoft Windows has been announced.
This enables implementation of a lightweight alternative to virtual machines:
All containers use the same kernel. There is only one instance of the kernel in
memory. Processes, networks, data systems, and users are separate from each
other. In comparison to a virtual machine with its own kernel and often also
many operating system services, a container has a profoundly lower overhead.
It is easily possible to run hundreds of Linux containers on a simple laptop.
Besides, a container starts much more rapidly than a virtual machine with its
own kernel and complete operating system. The container does not have to
boot an entire operating system; it just starts a new process. The container
itself does not add a lot of overhead since it only requires a custom configura-
tion of the operating system resources.

• In addition, the file system is optimized: basic read-only file systems can be
used. At the same time additional file systems can be added to the container,
which also enables writing. One file system can be put on top of another file
system. For instance, a basic file system can be generated that contains an
operating system. If software is installed in the running container or if files
are modified, the container only has to store these additional files in a small
container-specific file system. In this way the memory requirement for the
 containers on the hard drive is significantly reduced.

Besides, additional interesting possibilities arise: For example, a basic file system
can be started with an operating system, and subsequently software can be installed.
As mentioned, only changes to the file system are saved that are introduced upon the
installation of the software. Based on this delta a file system can be generated. Then
a container can be started that puts a file system with this delta on top of the basic
file system containing the operating system—and afterwards additional software
can be installed in yet another layer. In this manner each “layer” in the file system
can contain specific changes. The real file system at run time can be composed from
numerous such layers. This enables recycling software installations very efficiently.

34. https://www.docker.com/

35. https://linuxcontainers.org/

https://www.docker.com/
https://www.linuxcontainers.org/

ptg18144917

26311.7 Infrastructure

Figure 11.4 shows an example for the file system of a running container: The
 lowest level is an Ubuntu Linux installation. On top there are changes that have been
introduced by installing Java. Then there is the application. For the running con-
tainer to be able to write changes into the file system, there is a file system on top into
which the container writes files. When the container wants to read a file, it will move
through the layers from top to bottom until it finds the respective data.

Docker Container versus Virtualization

Docker containers offer a very efficient alternative to virtualization. However, they
are not “real” virtualization since each container has separate resources, its own
memory, and its own file systems, but all share, for instance, one kernel. Therefore,
this approach has some disadvantages. A Docker container can only use Linux and
only the same kernel as the host operating system—consequently Windows applica-
tions, for instance, cannot be run on a Linux machine this way. The separation of the
containers is not as strict as in the case of real virtual machines. An error in the ker-
nel would, for example, affect all containers. Moreover, Docker also does not run on
Mac OS X or Windows. Nevertheless, Docker can directly be installed on these plat-
forms. Behind the scenes a virtual machine with Linux is being used. Microsoft has
announced a version for Windows that can run the Windows container.

Communication between Docker Containers

Docker containers have to communicate with each other. For example, a web appli-
cation communicates with its database. For this purpose, containers export network
ports that other containers use. Besides, file systems can be used together. There con-
tainers write data that can be read by other containers.

Ubuntu

Java

Application

Written Data

Figure 11.4 Filesystems in Docker

ptg18144917

Chapter 11 Operations and Continuous Delivery of Microservices264

Docker Registry

Docker images comprise the data of a virtual hard drive. Docker registries enable
saving and downloading Docker images. This makes it possible to save Docker
images as result of a build process and subsequently to roll them out on servers.
Because of the efficient storage of images, it is easily possible to distribute even com-
plex installations in a performant manner. Besides, many cloud solutions can directly
run Docker containers.

Docker and Microservices

Docker constitutes an ideal running environment for microservices. It hardly limits
the technology used, as every type of Linux software can run in a Docker container.
Docker registries make it possible to easily distribute Docker containers. At the same
time the overhead of a Docker container is negligible in comparison to a normal pro-
cess. Since microservices require a multitude of virtual machines, these optimiza-
tions are very valuable. On the one hand, Docker is very efficient, and on the other
hand, it does not limit the technology freedom.

Try and Experiment

• At https://docs.docker.com/engine/getstarted/ the Docker online tutorial
can be found. Complete the tutorial—it demonstrates the basics of working
with Docker. The tutorial can be completed quickly.

Docker and Servers

There are different possibilities to use Docker for servers:

• On a Linux server Docker can be installed, and afterwards one or multiple
Docker containers can be run. Docker then serves as solution for the provision-
ing of the software. For a cluster new servers are started on which, again, the
Docker containers are installed. Docker only serves for the installation of the
software on the servers.

• Docker containers are run directly on a cluster. Which physical computer a
certain Docker is located on is decided by the software for cluster adminis-
tration. Such an approach is supported by the scheduler Apache Mesos.36 It
administrates a cluster of servers and directs jobs to the respective servers.

36. http://mesos.apache.org/

https://www.docs.docker.com/engine/getstarted/
http://www.mesos.apache.org/

ptg18144917

26511.7 Infrastructure

Mesosphere37 enables running of Docker containers with the aid of the Mesos
scheduler. Besides Mesos supports many additional kinds of jobs.

• Kubernetes38 likewise supports the execution of Docker containers in a cluster.
However, the approach taken is different from Mesos. Kubernetes offers a ser-
vice that distributes pods in the cluster. Pods are interconnected Docker con-
tainers, which are supposed to run on a physical server. As basis Kubernetes
requires only a simple operating system installation—Kubernetes implements
the cluster management.

• CoreOS39 is a very lightweight server operating system. With etcd it
supports the cluster-wide distribution of configurations. fleetd enables the
deployment of services in a cluster—up to redundant installation, failure
security, dependencies, and shared deployment on a node. All services
have to be deployed as Docker containers while the operating system itself
remains essentially unchanged.

• Docker Machine40 enables the installation of Docker on different virtualiza-
tion and cloud systems. Besides, Docker machine can configure the Docker
command line tool in such a manner that it communicates with such a
system. Together with Docker Compose41 multiple Docker containers can
be combined to an overall system. The example application employs this
approach—compare section 13.6 and section 13.7. Docker Swarm42 adds a
way to configure and run clusters with this tool stack: Individual servers can
be installed with Docker Machine and combined to a cluster with Docker
Swarm. Docker Compose can run each Docker container on a specific
machine in the cluster.

Kubernetes, CoreOS, Docker Compose, Docker Machine, Docker Swarm, and
Mesos, of course, influence the running of the software so that the solutions require
changes in the operation procedures in contrast to virtualization. These technologies
solve challenges that were previously addressed by virtualization solutions. Modern
virtualization technology run virtual machines on a node in a cluster and do the clus-
ter management. The container technologies mentioned above distribute containers
in the cluster. So the cluster handling is done by different software which requires a
fundamental change in the operations procedures.

37. http://mesosphere.com/

38. http://kubernetes.io/

39. http://coreos.com/

40. https://docs.docker.com/machine/

41. http://docs.docker.com/compose/

42. http://docs.docker.com/swarm/

http://www.mesosphere.com/
http://www.kubernetes.io/
http://www.coreos.com/
https://www.docs.docker.com/machine/
http://www.docs.docker.com/compose/
http://www.docs.docker.com/swarm/

ptg18144917

Chapter 11 Operations and Continuous Delivery of Microservices266

PaaS

PaaS (platform as a service) is based on a fundamentally different approach. The
deployment of an application can be done simply by updating the application in
 version control. The PaaS fetches the changes, builds the application, and rolls it out
on the servers. These servers are installed by PaaS and represent a standardized envi-
ronment. The actual infrastructure—that is, the virtual machines—are hidden from
the application. PaaS offers a standardized environment for the application. The
environment also takes care, for instance, of the scaling and can offer services like
databases and messaging systems. Because of the uniform platform PaaS systems
limit the technology freedom that is normally an advantage of microservices. Only
technologies that are supported by PaaS can be used. On the other hand, deployment
and scaling are further facilitated.

Microservices impose high demands on infrastructure. Automation is an essential
prerequisite for operating the numerous microservices. A PaaS offers a good basis for
this since it profoundly facilitates automation. To use a PaaS can be especially sensi-
ble when the development of a home-grown automation is too laborious and there
is not enough knowledge about how to build the necessary infrastructure. However,
the microservices have to restrict themselves to the features that are offered by the
PaaS. When the microservices have been developed for the PaaS from the start, this
is not very laborious. However, if they have to be ported, considerable expenditure
can ensue.

Nanoservices (Chapter 14, “Technologies for Nanoservices”) have different oper-
ating environments, which, for example, even further restrict the technology choice.
On the other hand, they are often even easier to operate and even more efficient in
regards to resource usage.

11.8 Conclusion

Operating a microservice-based system is one of the central challenges when work-
ing with microservices (section 11.1). A microservice-based system contains a tre-
mendous number of microservices and therefore operating system processes. Fifty or
one hundred virtual machines are no rarity. The responsibility for operation can be
delegated to the teams. However, this approach creates a higher overall expenditure.
Standardizing operations is a more sensible strategy. Templates are a possibility to
achieve uniformity without exerting pressure. Templates turn the uniform approach
into the easiest one.

ptg18144917

26711.8 Conclusion

For logging (section 11.2) a central infrastructure has to be provided that collects
logs from all microservices. There are different technologies available for this. To
trace a call across the different microservices a correlation ID can be used that unam-
biguously identifies a call.

Monitoring (section 11.3) has to offer at least basic information such as the
availability of the microservice. Additional metrics can, for instance, provide an
overview of the overall system or can be useful for load balancing. Metrics can
be individually defined for each microservice. There are different stakeholders for
the monitoring: operations, developers, and business stakeholders. They are inter-
ested in different values and use, where necessary, their own tools for evaluating the
microservices data. Each microservice has to offer an interface with which the dif-
ferent tools can fetch values from the application. The interface should be identical
for all microservices.

The deployment of microservices (section 11.4) has to be automated. Simple
scripts, especially in conjunction with immutable server, special deployment tools,
and package manager can be used for this purpose.

Microservices are small deployment units. They are safeguarded by stability and
resilience against the failure of other microservices. Therefore, the risk associated
with deployments is already reduced by the microservice-based architecture itself.
Strategies like rollback, roll forward, continuous deployment, blue/green- deployment,
or a blind moving along in production can further reduce the risk. Such strategies are
easy to implement with microservices since the deployment units are small and the
consumption of resources by microservices is low. Therefore, deployments are faster,
and environments for blue/green-deployment or canary releasing are much easier to
provide.

Control (section 11.6) comprises simple intervention options like starting, stop-
ping, and restarting of microservices.

Virtualization or Cloud are good options for infrastructures for microservices
(section 11.7). On each VM only a single microservice should run to achieve a bet-
ter isolation, stability, and scaling. Especially interesting is Docker because the con-
sumption of resources by a Docker container is much lower than that of a VM. This
makes it possible to provide each microservice with its own Docker container even
if the number of microservices is large. PaaS are likewise interesting. They enable a
very simple automation. However, they also restrict the choice of technologies.

This section only focuses on the specifics of continuous delivery and operation
in a microservices environment. Continuous delivery is one of the most important
reasons for the introduction of microservices. At the same time operation poses the
biggest challenges.

ptg18144917

Chapter 11 Operations and Continuous Delivery of Microservices268

Essential Points

• Operation and continuous delivery are central challenges for microservices.

• The microservices should handle monitoring, logging, and deployment in a
uniform manner. This is the only way to keep the effort reasonable.

• Virtualization, Cloud, PaaS, and Docker are interesting infrastructure alterna-
tives for microservices.

ptg18144917

269

It is an essential feature of the microservice-based approach that one team is responsible
for each microservice. Therefore, when working with microservices, it is necessary to
look not only at the architecture but also at the organization of teams and the responsi-
bilities for the individual microservices. This chapter discusses the organizational effects
of microservices.

In section 12.1 organizational advantages of microservices are described. Section
12.2 shows that collective code ownership presents an alternative to devising teams
according to Conway’s Law, which states that an organization can only generate
architectures that mirror its communication structures. The independence of the
teams is an important consequence of microservices. Section 12.3 defines micro and
macro architecture and shows how these approaches offer a high degree of auton-
omy to the teams and let them make independent decisions. Closely connected is
the question about the role of the technical leadership (section 12.4). DevOps is an
organizational approach that combines development (Dev) and operations (Ops)
(section 12.5). DevOps has synergies with microservices. Since microservices focus
on independent development from a domain perspective, they also influence prod-
uct owners and business stakeholders—for example, the departments of the business
that uses the software. Section 12.7 discusses how these groups can handle micro-
services. Reusable code can only be achieved in microservice systems via organi-
zational measures as illustrated in section 12.8. Finally, section 12.9 follows up on
the question whether an introduction of microservices is possible without changing
the organization.

Chapter 12

Organizational Effects
of a Microservices-Based
Architecture

ptg18144917

Chapter 12 Organizational Effects of Microservices270

12.1 Organizational Benefits of Microservices

Microservices are an approach for tackling large projects with small teams. As the
teams are independent of each other, less coordination is necessary between them. In
particular the communication overhead renders the work of large teams inefficient.
Microservices are an approach on the architectural level for solving this problem.
The architecture helps to reduce the need for communication and to let many small
teams work in the project instead of one large one. Each domain-based team can
have the ideal size: the Scrum guide1 recommends three to nine members.

Besides, modern enterprises stress self-organization and teams that are them-
selves active directly at the market. Microservices support this approach because
each service is in the responsibility of an individual team consistent with Conway’s
Law (Section 3.2). Therefore, microservices fit well to self-organization. Each team
can implement new features independently of other teams and can evaluate the suc-
cess on the market by themselves.

On the other hand, there is a conflict between independence and standardization:
when the teams are supposed to work on their own, they have to be independent.
Standardization restricts independence. This concerns, for instance, the decision
about which technologies should be used. If the project is standardized in regard to
a certain technology stack, the teams cannot decide independently anymore which
technology they want to use. In addition, independence conflicts with the wish to
avoid redundancy: if the system is supposed to be free of redundancy, there has to be
coordination between the teams in order to identify the redundancies and to elimi-
nate them. This, in turn, limits the independence of the teams.

Technical Independence

An important aspect is the technological decoupling. Microservices can use different
technologies and can have entirely different structures internally. This means that
developers have less need to coordinate. Only fundamental decisions have to be made
together. All other technical decisions can be made by the teams.

Separate Deployment

Each microservice can be brought into production independently of the other
microservices. There is also no need to coordinate release dates or test phases across

1. http://www.scrumguides.org/scrum-guide.html#team

http://www.scrumguides.org/scrum-guide.html#team

ptg18144917

27112.1 Organizational Benefits of Microservices

teams. Each team can choose its own speed and its own dates. A delayed release date
of one team does not influence the other teams.

Separate Requirement Streams

The teams should each implement independent stories and requirements. This ena-
bles each team to pursue its own business objectives.

Three Levels of Independence

Microservices enable independence on three levels:

• Decoupling via independent releases: each team takes care of one or multiple
microservices. The team can bring them into production independently of the
other teams and the other microservices.

• Technological decoupling: the technical decisions made by a certain team con-
cern, first of all, their microservices and none of the other microservices.

• Domain-based decoupling: the distribution of the domain in separate compo-
nents enables each team to implement their own requirements.

For deployment monoliths, in contrast, the technical coordination and deploy-
ment concerns the entire monolith (see Figure 12.1). This necessitates such a close
coordination between the developers that in the end all developers working on the
monolith have to act like one team.

Deployment
Monolith

Team

Requirements

Technical Coordination

Figure 12.1 Deployment Monolith

ptg18144917

Chapter 12 Organizational Effects of Microservices272

A prerequisite for the independence of the microservice teams is that the
architecture really offers the necessary independence of the microservices. This
requires, first of all, good domain architecture. This architecture also enables inde-
pendent requirement streams for each team.

There are the following teams in the example from Figure 12.2:

• The team “user registration” takes care of how users can register in the
e-commerce shop. A possible business objective is to achieve a high number of
registrations. New features aim at optimizing this number. The components
of the team are the processes that are necessary for the registration and the UI
elements. The team can change and optimize them at will.

• The team “order process” addresses how the shopping cart turns into an order.
Here, a possible objective is that as many shopping carts as possible turn into
orders. The entire process is implemented by this team.

• The team “product search” improves the search for products. The success of
this team depends on how many search processes lead to items being put into
a shopping cart.

Of course, there can be additional teams with other goals. Overall this
approach distributes the task of developing an e-commerce shop onto multiple
teams, which all have their own objectives. The teams can largely independently
pursue their objectives because the architecture of the system is distributed into
microservices that each team can develop independently—without much need for
coordination.

Team
User Registration

Requirements

Microservice

Technical
Coordination

Team
Order Process

Requirements

Microservice

Technical
Coordination

Team
Product Search

Requirements

Microservice

Technical
Coordination

Figure 12.2 Separation into Microservices

ptg18144917

27312.2 An Alternative Approach to Conway’s Law

In addition, small projects have many more advantages:

• Estimations are more accurate since estimates concerning smaller efforts are
easier to make.

• Small projects are easier to plan.

• The risk decreases because of the more accurate estimates and because of the
better forecast reliability.

• If there still is a problem, its effects are smaller because the project is smaller.

In addition, microservices offer much more flexibility. This makes decisions faster
and easier because the risk is smaller, and changes can be implemented more rapidly.
This ideally supports agile software development that relies on such flexibility.

12.2 An Alternative Approach to Conway’s Law

Section 3.2 introduced Conway’s Law. According to this law, an organization can
only generate architectures that mirror its communication structures. In micro-
service-based architectures the teams are built according to the microservices. Each
team develops one or multiple microservices. Thus each microservice is only devel-
oped by exactly one team. This ensures that the domain architecture is not only
implemented by the distribution into microservices but also supported by the organi-
zational distribution. This renders violations of the architecture practically impossi-
ble. Moreover, the teams can independently develop features when the features are
limited to one microservice. For this to work the distribution of domains between
the microservices has to be of very high quality.

The Challenges Associated with Conway’s Law

However, this approach also has disadvantages:

• The teams have to remain stable in the long run. Especially when the
microservices use different technologies, the ramp-up time for an individual
micro service is very long. Developers cannot easily switch between teams.
Especially in teams containing external consultants, long-term stability is
often hard to ensure. Already the usual fluctuation of personnel can turn into
a challenge when working with microservices. In the worst case, if there is
nobody left to maintain a specific microservice, it is still possible to rewrite

ptg18144917

Chapter 12 Organizational Effects of Microservices274

the respective microservice. Microservices are easy to replace due to their
limited size. Of course, this still entails some expenditure.

• Only the team understands the component. When team members quit, knowl-
edge about one or multiple microservices can get lost. In that case the micro-
service cannot be modified anymore. Such islands of knowledge need to be
avoided. In such a case it will not be an option to replace the microservice since
an exact knowledge of the domain is necessary for this.

• Changes are difficult whenever they require the coordinated work of mul-
tiple teams. When a team can implement all changes for a feature in its own
microservices, architecture and scaling of development will work very well.
However, when the feature concerns another microservice also and therefore
another team, the other team needs to implement the changes to the respective
microservice. This requires not only communication, but the necessary changes
also have to be prioritized versus the other requirements of the team. If the
teams work in sprints, a team can deliver the required changes without prema-
turely terminating the current sprint earliest in the following sprint—this causes
a marked delay. In case of a sprint length of two weeks the delay can amount to
two weeks—if the team prioritizes the change high enough so that it is taken
care of in the next sprint. Otherwise the ensuing delay can be even longer.

Collective Code Ownership

When it is always only the responsible team that can introduce changes to a micro-
service, a number of challenges result as described. Therefore, it is worthwhile to
consider alternatives. Agile processes have led to the concept of “collective code
ownership.” Here, each developer has not only the right, but even the duty to alter
any code—for example when he/she considers the code quality as insufficient in a
certain place. Therefore, all developers take care of code quality. Besides, technical
decisions are better communicated because more developers understand them due to
their reading and changing code. This leads to the critical questioning of decisions so
that the overall quality of the system increases.

Collective code ownership can relate to a team and its microservices. Since the
teams are relatively free in their organization, such an approach is possible without
much coordination.

Advantages of Collective Code Ownership

However, in principle teams can also modify microservices that belong to other
teams. This approach is used by some microservice projects to deal with the dis-
cussed challenges because it entails a number of advantages:

ptg18144917

27512.2 An Alternative Approach to Conway’s Law

• Changes to a microservice of another team can be faster and more easily
implemented. When a modification is necessary, the change does not to be
introduced by another team. Instead the team requiring the change can imple-
ment it by itself. It is not necessary anymore to prioritize the change in regard
to other changes to the component.

• Teams can be put together more flexibly. The developers are familiar with a larger
part of the code—at least superficially due to changes that they have introduced in
the code. This makes it easier to replace team members or even an entire team—
or to enlarge a team. The developers do not have to ramp up from the very basics.
A stable team is still the best option—however, often this cannot be achieved.

• The distribution in microservices is easy to change. Because of the broader
knowledge of the developers it is easier to move responsibility for a microser-
vice to a different team. This can be sensible when microservices have a lot of
dependencies on each other but are in the responsibility of different teams that
then have to closely and laboriously coordinate. If the responsibility for the
microservices is changed so that the same team is responsible for both of the
closely coupled microservices, coordination is easier than in the case where two
teams were working on these microservices. Within one team the team members
often sit in the same office. Therefore, they can easily and directly communicate
with each other.

Disadvantages of Collective Code Ownership

However, there also disadvantages associated with this approach:

• Collective code ownerships are in contrast to technology freedom: when each
team uses other technologies, it is difficult for developers outside of a team to
change the respective microservices. They might not even know the technology
used in the microservice.

• The teams can lose their focus. The developers acquire a larger overview of the
full system. However, it might be better when the developers concentrate on
their own microservices instead.

• The architecture is not as solid anymore. By knowing the code of other com-
ponents developers can exploit the internals and, therefore, rapidly create
dependencies that had not been intended in the architecture. Finally, the dis-
tribution of the teams according to Conway’s Law is supposed to support the
architecture by turning interfaces between domain components into interfaces
between teams. However, the interfaces between the teams lose importance
when everybody can change the code of every other team.

ptg18144917

Chapter 12 Organizational Effects of Microservices276

Pull Requests for Coordination

Communication between teams is still necessary; in the end, the team responsible for
the respective microservice has the most knowledge about the microservice. So
changes should be coordinated with the respective team. This can be safeguarded
technically: the changes of the external teams can initially be introduced separately
from other changes and subsequently be sent to the responsible team via a pull
request. Pull requests bundle changes to the source code. In the open source commu-
nity they are an especially popular approach to enable external contributions with-
out giving up control of the project. The responsible team can accept the pull request
or demand fixes. This means that there is a review for each change by the responsible
team. This enables the responsible team to ensure that the architecture and design of
the microservice remain sound.

Since there is still the need for communication between teams, Conway’s Law is
not violated by this approach. It is just a different way of playing the game. In case of
a bad split among teams in a microservice-based architecture all options are associ-
ated with tremendous disadvantages. To correct the distribution is difficult as larger
changes across microservices are laborious, as discussed in section 7.4. Due to the
unsuitable distribution, the teams are forced to communicate a lot with each other.
Therefore, productivity is lost. Also, there is no option to leave the distribution as it
is. Collective code ownership can be used to limit the need for communication. The
teams directly implement requirements in the code of other teams. This causes less
need for communication and better productivity. To do so the technology freedom
should be restricted. The changes to the microservices still have to be coordinated—
at least reviews are definitely necessary. However, if the architecture had been set up
appropriately from the start, this measure would not be necessary as a workaround
at all.

Try and Experiment

• Did you already encounter collective code ownership? Which experiences
did you have with it?

• Which restrictions are there in your current project when a developer wants
to change some code that has been written by another developer in the same
team or by a developer from another team? Are changes to the code of other
teams not meant to occur? In that case, how is it still possible to implement the
necessary changes? Which problems are associated with this course of action?

ptg18144917

27712.3 Micro and Macro Architecture

12.3 Micro and Macro Architecture

Microservices enable you to largely avoid overarching architecture decisions. Each
team can choose the optimal type of architecture for its microservices.

The basis for this is the microservices architecture. It provides a large degree of
technical freedom. While normally due to technical reasons, uniform technologies
are mandatory, microservices do not have these restrictions. However, there can be
other reasons for uniformity. The question is which decision is made by whom. There
are two layers of decision making:

• Macro architecture comprises the decisions that concern the overall sys-
tem. These are at least the decisions presented in Chapter 7, “Architecture of
Microservice-Based Systems,” regarding the domain architecture and basic
technologies, which have to be used by all microservices, as well as communi-
cation protocols (Chapter 8, “Integration and Communication”). The proper-
ties and technologies of individual microservices can also be preset (Chapter 9,
“Architecture of Individual Microservices”). However, this does not have to be
the case. Decisions about the internals of the individual microservices do not
have to be made in the macro architecture.

• The micro architecture deals with decisions each team can make by itself.
These should address topics that concern only the microservices developed
by the respective team. Among these topics can be all aspects presented in
Chapter 9 as long as they have not already been defined as part of the macro
architecture.

The macro architecture cannot be defined once and for all but has to undergo
continuous development. New features can require a different domain architecture
or new technologies. Optimizing the macro architecture is a permanent process.

Decision = Responsibility

The question is, who defines macro and micro architecture and takes care of their
optimization? It is important to keep in mind that each decision is linked to responsi-
bility. Whoever makes a decision is responsible for its consequences—good or bad. In
turn the responsibility for a microservice entails the necessity to make the required
decisions for its architecture. When the macro architecture defines a certain technol-
ogy stack, the responsibility for this stack rests with the persons responsible for the

ptg18144917

Chapter 12 Organizational Effects of Microservices278

macro architecture—not with the teams that use them in the microservices and
might later have problems with this technology stack. Therefore, a strong restriction
of the technology freedom of the individual microservices by the macro architecture
is often not helpful. It only shifts decisions and responsibility to a level that does not
have much to do with the individual microservices. This can lead to an ivory-tower
architecture that is not based on the real requirements. In the best case it is ignored.
In the worst case it causes serious problems in the application. Microservices enable
you to largely do without macro architecture decisions in order to avoid such an
ivory-tower architecture.

Who Creates the Macro Architecture?

For defining the macro architecture, decisions have to be made that affect all micro-
services. Such decisions cannot be made by a single team since the teams only carry
responsibility for their respective microservices. Macro architecture decisions go
beyond individual microservices.

The macro architecture can be defined by a team that is composed from members
of each individual team. This approach seems to be obvious at first glance: It enables
all teams to voice their perspectives. Nobody dictates certain approaches. The teams
are not left out of the decision process. There are many microservice projects that
very successfully employ this approach.

However, this approach has also disadvantages:

• For decisions at the macro architecture level, an overview of the overall system
and an interest to develop the system in its entirety are necessary. Members
of the individual teams often have a strong focus on their own microservices.
That is, of course, very sensible since the development of these microservices is
their primary task. However, this can make it hard for them to make overarch-
ing decisions since those require a different perspective.

• The group can be too large. Effective teams normally have five to ten members
at maximum. If there are many teams and each is supposed to participate with
at least one member, the macro architecture team will get too large and thus
cannot work effectively anymore. Large teams are hardly able to define and
maintain the macro architecture.

The alternative is to have a single architect or an architecture team that is exclusively
responsible for shaping the macro architecture. For larger projects this task is so
demanding that an entire architecture team certainly is needed to work on it. This

ptg18144917

27912.3 Micro and Macro Architecture

architecture team takes the perspective of the overall project. However, there is a dan-
ger that the architecture team distances itself too much from the real work of the
other teams and consequently makes ivory-tower decisions or solves problems the
teams do not actually have. Therefore, the architecture team should mainly moder-
ate the process of decision making and make sure that the viewpoints of the different
teams are all considered. It should not set a certain direction all by itself. In the end
the different microservices teams will have to live with the consequences of the archi-
tecture team’s decisions.

Extent of the Macro Architecture

There is no one and only way to divide the architecture into micro and macro
architecture. The company culture, the degree of self-organization, and other
organizational criteria play a prominent role. A highly hierarchical organization
will give the teams less freedom. When as many decisions as possible are made on
the level of the micro architecture, the teams will gain more responsibility. This
often has positive effects because the teams really feel responsible and will act
accordingly.

The NUMMI car factory2 in the United States, for instance, was a very unproduc-
tive factory that was known for drug abuse and sabotage. By the company focusing
more on teamwork and trust, the same workers could be turned into a very produc-
tive workforce. When teams are able to make more decisions on their own and have
more freedom of choice, the work climate as well as productivity will profoundly
benefit.

Besides, by delegating decisions to teams, less time is spent on coordination so
that the teams can work more productively. To avoid the need for communication
by delegating more decisions to the teams and therefore to micro architecture is an
essential point for architecture scaling.

However, when the teams are very restricted in their choices, one of the main
advantages of microservices is not realized. Microservices increase the technical
complexity of the system. This only makes sense if the advantages of microservices
are really exploited. Consequently, when the decision for microservices has been
made, there should also be a decision for having as much micro architecture and as
little macro architecture as possible.

The decision for more or less macro architecture can be made for each area
differently.

2. http://en.wikipedia.org/wiki/NUMMI#Background

http://www.en.wikipedia.org/wiki/NUMMI#Background

ptg18144917

Chapter 12 Organizational Effects of Microservices280

Technology: Macro/Micro Architecture

For the technologies the following decisions can be made concerning macro versus
micro architecture:

• Uniform security (section 7.14), service discovery (section 7.11), and commu-
nication protocols (Chapter 8) are necessary to enable microservices to com-
municate with each other. Therefore, decisions in these areas clearly belong to
macro architecture. Among these are also the decisions for the use and details
of downwards compatible interfaces that are required for the independent
deployment of microservices.

• Configuration and coordination (Section 7.10) do not necessarily have to be
determined globally for the complete project. When each microservice is oper-
ated by its respective team, the team can also handle the configuration and use
its own tool of choice for it. However, a uniform tool for all microservices has
clear advantages. Besides, there is hardly any sensible reason why each team
should use a different mechanism.

• The use of resilience (section 9.5) or load balancing (section 7.12) can be defined
in the macro architecture. The macro architecture can either define a certain
standard technology or just enforce that these points have to be addressed during
the implementation of the microservices. This can, for instance, be ensured by
tests (section 10.8). The tests can check whether a microservice is still available
after a dependent microservice failed. In addition, they can check whether the
load is distributed to multiple microservices. The decision for the use of resil-
ience or load balancing can theoretically be left to the teams. When they are
responsible for the availability and the performance of their service, they have to
have the freedom to use their choice of technologies for it. When their microser-
vices are sufficiently available without resilience and load balancing, their strat-
egy is acceptable. However, in the real world such scenarios are hard to imagine.

• In regard to platform and programming language the decision can be made
at the level of macro or micro architecture. The decision might not only influ-
ence the teams but also operations, since operations needs to understand the
technologies and to be able to deal with failures. It is not necessarily required
to prescribe a programming language. Alternatively, the technology can be
restricted, for example, to the JVM (Java Virtual Machine) that supports a
number of programming languages. In regard to the platform a potential com-
promise is that a certain database is provided by operations, but the teams can
also use and operate different ones. Whether the macro architecture defines
platform and programming language depends also on whether developers need

ptg18144917

28112.3 Micro and Macro Architecture

to be able to change between teams. A shared platform facilitates transferring
the responsibility for a microservice from one team to another team.

Figure 12.3 shows which decisions are part of the macro architecture—they are on
the right side. The micro architecture parts are on the left side. The areas in the mid-
dle can be either part of the macro or micro architecture. Each project can handle
them differently.

Operations

In the area of operations (see Figure 12.4) there is control (section 11.6), monitoring
(section 11.3), logging (section 11.2), and deployment (section 11.4). To reduce the
complexity of the environment and to enable a uniform operations solution, these
areas have to be defined by macro architecture. The same holds true for platform and
programming language. However, standardizing is not obligatory; when the entire
operations of the microservices rests with the teams, theoretically each team can use
a different technology for each of the mentioned areas. But while this scenario does

Communication
Protocols (9)

Coordination (8.8) Service
Discovery (8.9)

Security (8.12)

Resilience (10.5)

Load Balancing (8.10)

Programming
Language / Plattform

Micro
Architecture

Macro
Architecture

Figure 12.3 Technology: Macro and Micro Architecture

Monitoring (12.3)

Logging (12.2)

Deployment (12.4)

Control (12.5)

Micro
Architecture

Macro
Architecture

Figure 12.4 Operations: Macro and Micro Architecture

ptg18144917

Chapter 12 Organizational Effects of Microservices282

not generate many advantages, it creates a huge technological complexity. However,
it is, for example, possible that the teams use their own special solution for certain
tasks. When, for instance, the revenue is supposed to be transferred in a different way
into the monitoring for the business stakeholders, this is certainly doable.

Domain Architecture

In the context of domain architecture (see Figure 12.5) the distribution of domains
to teams is part of the macro architecture (section 7.1). It not only influences the
architecture but also decides which teams are responsible for which domains.
 Therefore, this task cannot be moved into the micro architecture. However, the
domain architecture of the individual microservices has to be left to the teams
(sections 9.1–9.4). To dictate the domain architecture of the individual microservices
to the teams would be equivalent to treating microservices at the organizational level
like monoliths because the entire architecture is centrally coordinated. In that case
one could as well develop a deployment monolith, which is technically easier. Such a
decision would not make sense.

Tests

In the area of testing (see Figure 12.6) integration tests (section 10.4) belong to the
macro architecture. In practice whether there should be an integration test for a

Overall Domain
Architecture (8.1)

Domain Architecture
of Individual Services

(10.1/10.2/10.3)

Micro
Architecture

Macro
Architecture

Figure 12.5 Architecture: Macro and Micro Architecture

Integrationstests
(11.4)

Consumer-driven
Contract Tests (11.7)

Micro
Architecture

Macro
Architecture

Tests of Individual
Microservices (11.6)

Testing Technical
Standards (11.8)

Stubs (11.6)

Figure 12.6 Test: Macro and Micro Architecture

ptg18144917

28312.3 Micro and Macro Architecture

certain domain and who should implement it has to be decided. Integration tests
only make sense when they concern functionalities across teams. The respective
teams can test all other functionalities on their own. Therefore, integration tests
have to be globally coordinated across teams. Technical tests (section 10.8) can be
dictated to the teams by the macro architecture. They are a good option to enforce
and control global standards and technical areas of macro architecture. Con-
sumer-driven contract tests (CDC) (section 10.7) and stubs (section 10.6) can be
coordinated between the teams themselves. A shared technological foundation as
part of macro architecture can profoundly facilitate development. Uniform tech-
nologies are especially sensible in this area since teams have to use the CDCs and
stubs of other teams. When only one technology is used, work is markedly easier.
However, it is not obligatory that technologies are rigidly prescribed by the macro
architecture.

How to test the respective microservices should be up to the individual teams as
they have the responsibility for the quality of the microservices.

In many areas decisions can be made either at the level of macro or at the level
of micro architecture. It is a central objective of microservice-based architectures
to give the individual teams as much independence as possible. Therefore, as many
decisions as possible should be made on the level of micro architecture and there-
fore by the individual teams. However, in regard to operations the question arises
whether the teams really profit from the freedom to use their own distinct tools. It
seems more likely that the technology zoo just gets bigger without real advantages.
In this area there is a connection to DevOps (section 12.5). Depending on the degree
of cooperation between developers and operations there can be different degrees of
freedom. In case of a clear division between development and operations, operations
will define many standards in macro architecture. In the end operations will have to
take care of the microservices in production. When all microservices employ a uni-
form technology, this task is easier.

When defining programming language and platform, one should likewise weigh
the advantages of specialized technology stacks versus the disadvantages of having
heterogeneous technologies in the overall system. Depending on the circumstances
the decision to prescribe a technology stack might be as sensible as the decision to
leave the technology choice to the individual teams. A uniform technology stack can
facilitate operations and make it easier for developers to change between microser-
vices and teams. Specialized technology stacks make it easier to handle special chal-
lenges and motivate employees who thus have the possibility to use cutting-edge
technologies.

Whether a microservice really conforms to the macro architecture can be evalu-
ated by a test (see section 10.8). This test can be an artifact that is likewise part of
the macro architecture. The group responsible for the macro architecture can use this

ptg18144917

Chapter 12 Organizational Effects of Microservices284

artifact to unambiguously define the macro architecture. This enables you to check
whether all microservices are in line with macro architecture.

12.4 Technical Leadership

The division in micro and macro architecture completely changes the technical lead-
ership teams and is an essential advantage of microservices. The macro architecture
defines technical duties and freedom. The freedom of choice entails also the respon-
sibility for the respective decisions.

For example, a database can be prescribed. In that case the team can delegate
the responsibility for the database to the technical leadership team. If the database
decision were part of the micro architecture, the database would be run by the team
since it made the decision for the technology. No other team would need to deal with
potential consequences of this decision (see section 7.9). Whoever makes the deci-
sion also has the responsibility. The technical leadership team certainly can make
such decisions, but by doing so it takes away responsibility from the microservices
teams and therefore independence.

A larger degree of freedom entails more responsibility. The teams have to be able
to deal with this and also have to want this freedom. Unfortunately, this is not always
the case. This can either argue for more macro architecture or for organizational
improvements that in the end lead to more self-organization and thus less macro
architecture. It is one of the objectives of the technical leadership team to enable less
macro architecture and to lead the way to more self-organization.

Developer Anarchy

The approach Developer3 Anarchy4 is even more radical in regards to the freedom of
the teams. It confers the entire responsibility to the developers. They cannot only
freely choose technologies but even rewrite code if they deem it necessary. Besides,
they communicate directly with the stakeholders. This approach is employed in very
fast growing enterprises and works very well there. Behind this idea is Fred George,
who has collected more than 40 years of experience while working in many different
companies. In a model like this, macro architecture and deployment monoliths are
abolished so that the developers can do what they think is best. This approach is very
radical and shows how far the idea can be extended.

3. http://www.infoq.com/news/2012/02/programmer-anarchy

4. https://www.youtube.com/watch?v=uk-CF7klLdA

http://www.infoq.com/news/2012/02/programmer-anarchy
https://www.youtube.com/watch?v=uk-CF7klLdA

ptg18144917

28512.5 DevOps

Try and Experiment

• In Figures 12.3–12.5 areas are marked that can belong to either micro or
macro architecture. These are the elements that are depicted in the center
of the respective figures. Look through these elements and decide whether
you would place them in micro or macro architecture. Most important is
your reasoning for the one or the other alternative. Take into considera-
tion that making decisions at the level of the micro architecture rather than
the level of the macro architecture corresponds to the microservice idea of
independent teams.

12.5 DevOps

DevOps denotes the concept that development (Dev) and operations (Ops) merge
into one team (DevOps). This is an organizational change: each team has developers
and operations experts. They work together in order to develop and operate a micro-
service. This requires a different mindset, since operations-associated topics are often
unfamiliar to developers while people working in operations often do not work in
projects but usually run systems independently of projects. Ultimately, the technical
skills become very similar: operations works more on automation and associated suit-
able tests—and this is, in the end, software development. At the same time monitor-
ing, log analysis, or deployment also turn more and more into topics for developers.

DevOps and Microservices

DevOps and microservices ideally complement each other:

• The teams cannot only take care of the development but also of the operations
of the microservices. This requires that the teams have knowledge in the areas
of operations and development.

• Orienting the teams in line with features and microservices represents a sensi-
ble organizational alternative to the division into operations and development.

• Communication between operations and development gets easier when mem-
bers of both areas work together in one team. Communication within a team
is easier than between teams. This is in line with the aim of microservices to
reduce the need for coordination and communication.

ptg18144917

Chapter 12 Organizational Effects of Microservices286

DevOps and microservices fit very well together. In fact, the aim that teams
deploy microservices up to production and keep taking care of them in production
can only be achieved with DevOps teams. This is the only way to ensure that teams
have the necessary knowledge about both areas.

Do Microservices Necessitate DevOps?

DevOps is such a profound change in organization that many enterprises are still
reluctant to take this step. Therefore the question arises whether microservices can
also be implemented without introducing DevOps. In fact, this is possible:

• Via the macro versus micro architecture division, operations can define stand-
ards. Then technical elements like logging, monitoring, or deployment belong
to the macro architecture. When these standards are conformed to, opera-
tions can take over the software and make it part of the standard operations
processes.

• In addition, platform and programming language can be defined as much as
needed for operations. When staff from operations only feels comfortable run-
ning Java applications on a Tomcat, this can be prescribed as the platform in
the macro architecture. The same holds true for infrastructure elements like
databases or messaging systems.

• Moreover, there can be organizational requirements. For example, opera-
tions can ask that members of the microservices teams are available at cer-
tain times so that problems arising in production can be referred to the teams.
To put it concretely, whoever wants to deploy on his/her own has to provide a
phone number and will be called at night in case of problems. If the call is not
answered, the manager for that developer can be called next. This increases the
likelihood that developers actually answer such calls.

In such a context the teams cannot be responsible anymore for bringing all
microservices up to production. Access and responsibility rest with operations.
There has to be a point in the continuous delivery pipeline where the microservices
are passed on to operations and then are rolled out in production. At this point the
microservice passes into the responsibility of operations that has to coordinate with
the respective team about their microservices. A typical point for the transfer to
operations is immediately after the test phases, prior to possible explorative tests.
Operations is at least responsible for the last phase, that is, the rollout in production.
Operations can turn into a bottleneck if a high number of modified microservices
have to be brought into production.

ptg18144917

28712.6 When Microservices Meet Classical IT Organizations

Overall, DevOps and microservices have synergies; however, it is not necessarily
required to also introduce DevOps when deciding for microservices.

12.6 When Microservices Meet Classical IT
Organizations (Alexander Heusingfeld)

by Alexander Heusingfeld, innoQ

The “microservices” topic has meanwhile reached numerous IT departments and is
discussed there. Interestingly, initiatives for introducing microservices are often
started by middle management. However, frequently too little thought is spent on
the effect a microservice architecture has on the (IT) organization of enterprises.
Because of this I would like to tell of a number of “surprises” that I experienced dur-
ing the introduction of such an architecture approach.

Pets versus Cattle

“Pets vs. cattle”5 is a slogan that reached a certain fame at the outset of the DevOps
movement. Its basic message is that in times of Cloud and virtualization, servers
should not be treated like pets but rather like a herd of cattle. If a pet gets sick, the
owner will likely nurse it back to health. Sick cattle, on the other hand, are killed
immediately in order not to endanger the health of the entire herd.

Thus the point is to avoid the personification of servers—for example, by giv-
ing them names (like Leviathan, Pollux, Berlin, or Lorsch). If you assign such “pet”
names to servers, there will be a tendency to care for them like pets and thus provide
individual updates, scripts, adjustments, or other specific modifications. However, it
is well known that this has negative consequences for the reproducibility of instal-
lations and server state. Especially considering auto-scaling and failover features as
they are required for microservice-based architectures, this is a deal breaker.

One of my projects addressed this problem in a very interesting manner. The
server and virtual machines still had names. However, the administration of these
systems was completely automated via Puppet. Puppet downloaded the respective
scripts from an SVN repository. In this repository individual scripts for each server
were stored. This scenario could be called “Puppets for automated pet care.” The
advantage is that crashed servers can quickly be replaced by exact copies.

However, requirements for scalability are not taken into consideration at all,
since there can always only be one instance of a “pet server” named Leviathan.

5. http://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds

http://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds

ptg18144917

Chapter 12 Organizational Effects of Microservices288

An alternative is to switch to parameterized scripts and to use templates like
“production VM for app XYZ.” At the same time this also enables more flexible
deployment scenarios like Blue/Deployments. In that case it is not relevant any-
more whether the VM app-xyz-prod08.zone1.company.com or app-xyz-prod045.
zone1.company.com gets the job done. The only relevant point is that eight
instances of this service are constantly available, and at times of high load addi-
tional instances can be started. How these instances are named does not matter.

Us versus Them

“Monitoring is our concern!”

“You shouldn’t care about that!”

“That is none of your business; it’s our area!”

Unfortunately, I frequently hear sentences like these in so-called cross-functional
teams. These are teams composed of architects, developers, testers, and administra-
tors. Especially if the members previously worked in other, purely functional teams
within the same company, old trench wars and prejudices are carried along into the
new team—often subconsciously. Therefore, it is important to be aware of the social
aspects right from the start and to counter these proactively. For example, in my
experience letting newly set-up teams work in the same office for the first two to four
weeks has very positive effects. This enables the new teammates to get to know each
other’s human side and to directly experience the colleague’s body language, charac-
ter, and humor. This will markedly facilitate communication during the later course
of the project, and misunderstandings can be avoided.

In addition, team-building measures during the first weeks that require that the
team members rely on each other can help to break the ice, to get an idea of the
strengths and weaknesses of the individual members, and to build up and strengthen
trust within the team. If these points are neglected, there will be noticeable adverse
consequences throughout the run time of the project. People who do not like each
other or do not trust each other will not rely on each other, even if only subcon-
sciously. And this means that they will not be able to work 100 percent as a team.

Development versus Test versus Operations:
Change of Perspective

In many companies there are initiatives for a change of perspective. For example,
employees from sales may work in the purchasing department for a day to get to
know the people and the processes there. The expectation is that the employees will

ptg18144917

289

develop a better understanding for their colleagues and to let that become part of
their daily work so that cross-department processes harmonize better. The motto is:
“On ‘the other side’ you get to know a new perspective!”

Such a change of perspective can also be advantageous in IT. A developer could,
for instance, get a new perspective with regard to the use cases or test cases. This
might motivate them to enforce a modularization in the development, which is easier
to test. Or they might consider early in development which criteria will be needed
later on to better monitor the software in production or to more easily find errors.
A deeper insight into the internal processes of the application can help an adminis-
trator to develop a better understanding for implementing a more specific and more
efficient monitoring. Each perspective that deviates from one’s own perspective can
raise questions that previously were not considered in this section of the application
life cycle. These questions will help the team to evolve as a whole and deliver better
software.

For Operations There Is Never an “Entirely Green Field”

Certainly, microservices are a topical subject and bring along new technologies, con-
cepts, and organizational changes. However, one should always consider that enter-
prises introducing microservices hardly ever start from scratch! There are always
some kinds of legacy systems or entire IT environments that already exist and might
better not be replaced in a Big Bang approach. Usually these legacy systems have to
be integrated into the brave new world of microservices; at least they will have to
coexist.

For this reason, it is important to take these systems into consideration when
planning a microservices-based architecture, especially in regards to IT costs. Can
the existing hardware infrastructure really be restructured for the microservices or
is there a legacy system that relies exactly on this infrastructure? These are often
questions that get caught on the infrastructure or operations team—if there is such
an organizational unit in the company. Otherwise it might happen that these ques-
tions first arise when a deployment to the system test or production environment is
supposed to be done. To recognize these questions early on, I recommend dealing
with the deployment pipeline as early as possible in the reorganization project. The
deployment pipeline should already be in place before the first business functionality
is implemented by the teams. A simple “Hello World” program will often be suffi-
cient, which then is brought towards production by the combined forces of the entire
team. While doing so, the team will almost always encounter open questions, which
in the worst case will have effects on the design of the systems. However, as not much
is implemented at this stage early on during the project, such changes are still compa-
rably cost-efficient to implement.

12.6 When Microservices Meet Classical IT Organizations

ptg18144917

Chapter 12 Organizational Effects of Microservices290

Conclusion

Up to now the organizational changes with regard to Conway’s Law that accompany
the introduction of microservices are often underestimated. Old habits, prejudices,
and maybe even trench wars are often deep-rooted, especially if the new teammates
were previously assigned to different departments. However, “one team” has to be
more than just a buzzword. If the team manages to bury their prejudices and put
their different experiences to good use, it can advance together. Everyone has to
understand that all of them now share the task and responsibility to bring a stable
software into production for the customer. Everybody can profit from the experi-
ences of the others when everybody acts on the premise: “Everybody voices their
concerns, and we will solve it jointly.”

12.7 Interface to the Customer

To ensure that the development can really be scaled to multiple teams and micro-
services, each team needs to have its own product owner. In line with Scrum
approaches, he/she is responsible for the further development of the microservice.
For this purpose, he/she defines stories that are implemented in the microservice.
The product owner is the source of all requirements and prioritizes them. This is
especially easy when a microservice only comprises features that are within the
responsibility of a single department at the business level (see Figure 12.7). Usually
this objective is achieved by adjusting microservices and teams to the organization
of departments. Each department gets its product owner and therefore its team and
its microservices.

When the microservices have a good domain architecture, they can be indepen-
dently developed. Ultimately, each domain should be implemented in one or many
microservices, and the domain should only be of interest to one department. The
architecture has to take the organization of the departments into consideration when
distributing the domains into microservices. This ensures that each department has
its own microservices that are not shared with other domains or departments.

Unfortunately, the architecture often is not perfect. Besides, microservices
have interfaces—an indication that functionalities might span multiple micro-
services. When multiple functionalities concern one microservice and therefore
multiple departments want to influence the development of a microservice, the
product owner has to ensure a prioritization that is coordinated with the differ-
ent departments. This can be a challenge because departments can have different
priorities. In that case the product owner has to coordinate between the concerned
departments.

ptg18144917

29112.7 Interface to the Customer

Let us assume that there is a department that takes care of sales campaigns in an
e-commerce shop. It starts a campaign where orders containing a certain item get
a rebate on the delivery cost. The required modification concerns the order team:
tt has to find out whether an order contains such an item. This information has to
be transmitted to the delivery microservice, which has to calculate the costs for the
delivery. Accordingly, the product owners of these two teams have to prioritize these
changes in regards to the changes desired by the departments in charge of delivery
and orders. Unfortunately, many of these sales campaigns combine different func-
tionalities so that such a prioritization is often required. The departments for orders
and deliveries have their own microservices, while the department in charge of sales
campaigns does not have its own microservices. Instead it has to introduce its fea-
tures into the other microservices.

Architecture Leads to Departments

The microservice architecture can thus be a direct result of the departmental organi-
zation of the company. However, there are also cases where a new department is cre-
ated around an IT system, which then takes care of this system from the business
side. In such a case one can argue that the microservices architecture directly influ-
ences the organization. For instance, there might be a new Internet market place that

Microservice
User

Microservice
Product Search

Microservice
Order Process

Department
Product Search

Team
User Registration

Team Order ProcessTeam Product Search

Department
User Registration

Department
Order Process

Product Owner
User Registration

Product Owner
Order Process

Product Owner
Product Search

Figure 12.7 Department, Product Owner, and Microservices

ptg18144917

Chapter 12 Organizational Effects of Microservices292

is implemented by an IT system. If it is successful, a department can be created that
takes over the further development of this marketplace. This department will con-
tinue to develop the IT system from a domain and from a business perspective. In
this case the marketplace was developed first, and subsequently the department has
been created. Therefore, the system architecture has defined the departmental struc-
ture of the organization.

12.8 Reusable Code

At first sight the reuse of code is a technical problem. Section 7.3 already described
the challenges that arise when two microservices use the same library. When the
microservices use the library in such a way that a new release of the library necessi-
tates a new deployment of the microservices, the result is a deployment dependency.
This has to be avoided to enable an independent deployment of the microservices.
There is additional expenditure because the teams responsible for the microservices
have to coordinate their changes to the library. New features for the different micros-
ervices have to be prioritized and developed. These also represent dependencies
between the teams, which should be avoided.

Client Libraries

Client libraries that encapsulate calls from a microservice can be acceptable. When
the interfaces of the microservices are downwards compatible, the client library does
not have to be replaced in case of a new version of the microservice. In such a sce-
nario client libraries do not cause problems because a new deployment of the called
microservices does not lead to an update of the client library or a new deployment of
the calling microservice.

However, when the client library also contains domain objects, problems can
occur. When a microservice wants to change the domain model, the team has to
coordinate this change with the other users of the client library and therefore can-
not develop independently anymore. The boundaries between a simplified use of
the interface, which can be sensible, and a shared implementation of logic or other
deployment dependencies, which can be problematic, is not clear cut. One option is
to entirely forbid shared code.

Reuse Anyhow?

However, obviously, projects can reuse code. Hardly any project nowadays manages
without some open source library. Using this code is obviously easy and thus facilitates

ptg18144917

29312.8 Reusable Code

work. Problems like the ones arising upon reusing code between microservices are
unlikely for a number of reasons:

• Open source projects in general are of high quality. Developers working in
different companies use the code and therefore spot errors. Often they even
remove the errors so that the quality permanently increases. To publish source
code and therefore provide insight into internals is often already motivation
enough to increase the quality.

• The documentation enables you to immediately start to use the code without a
need to directly communicate with the developers. Without good documenta-
tion open source projects hardly find enough users or additional developers
since getting started would be too hard.

• There is a coordinated development with a bug tracker and a process for
accepting code changes introduced by external developers. Therefore, errors
and their fixes can be tracked. In addition, it is clear how changes from the
outside can be incorporated into the code basis.

• Moreover, in case of a new version of the open source library it is not neces-
sary for all users to use the new version. The dependencies in regard to the
library are not so pronounced that a deployment dependency ensues.

• Finally, there are clear rules how one’s own supplements can be incorporated
into the open source library.

In the end the difference between a shared library and an open source project is
mainly a higher quality in regard to different aspects. Besides, there is also an organi-
zational aspect: there is a team that takes care of the open source project. It directs
the project and keeps developing it. This team does not necessarily make all changes,
but it coordinates them. Ideally, the team has members from different organizations
and projects so that the open source project is developed under different viewpoints
and in the context of different use cases.

Reuse as Open Source

With open source projects as role models in mind there are different options for reus-
able code in a microservices project:

• The organization around reusable libraries is structured like in an open source
project. There are employees responsible for the continued code develop-
ment, the consolidation of requirements and for incorporating the changes of

ptg18144917

Chapter 12 Organizational Effects of Microservices294

other employees. The team members ideally come from different microservice
teams.

• The reusable code turns into a real open source project. Developers outside of
the organization can use and extend the project.

Both decisions can result into a significant investment since markedly more effort
has to go into quality and documentation, etc. Besides, the employees working on the
project have to get enough freedom to do so in their teams. The teams can control the
prioritization in the open source project by only making their members available for
certain tasks. Due to the large investment and potential problems with prioritization the
decision to establish an open source project should be well considered. The idea itself
is not new—experiences6 in this area have already been collected for quite some time.

If the investment is very high, it means that the code is hardly reusable for the
moment, and using the code in its current state causes quite some effort. Probably
the code is not only hard to reuse, but hard to use at all. The question is why team
members would accept such a bad code quality. Investing into code quality in order
to make the code reusable can pay off already by reusing it just once.

At first glance it does not appear very sensible to make code available to external
developers. This requires that code quality and documentation are of high enough
quality for external developers to be able to use the code without direct contact to
the developers of the open source project. Only the external developers seem to
profit from this approach as they get good code for free.

However, a real open source project has a number of advantages:

• External developers find weak spots by using the code. Besides, they will use
the code in different projects so that it gets more generalized. This will improve
quality as well as documentation.

• Maybe external developers contribute to the further development of the code.
However, this is the exception rather than the norm. But having external feed-
back via bug reports and requests for new features can already represent a sig-
nificant advantage.

• Running open source projects is great marketing for technical competence.
This can be useful for attracting employees as well as customers. Important is
the extent of the project. If it is only a simple supplement of an existing open
source project, the investment can be manageable. An entirely new open source
framework is a very different topic.

6. http://dirkriehle.com/2015/05/20/inner-source-in-platform-based-product-engineering/

http://dirkriehle.com/2015/05/20/inner-source-in-platform-based-product-engineering/

ptg18144917

29512.9 Microservices without Changing the Organization?

Blueprints such as documentation for certain approaches, represent elements that
are fairly easy to reuse. This can be elements of macro architecture, like a document
detailing the correct approach for logging. Likewise, there can be templates that con-
tain all necessary components of a microservice including a code skeleton, a build
script and a continuous delivery pipeline. Such artifacts can rapidly be written and
are immediately useful.

Try and Experiment

• Maybe you have already previously used your own technical libraries in
projects or even developed some yourself. Try to estimate how large the
expenditure would be to turn these libraries into real open source libraries.
Apart from a good code quality this also necessitates documentation about
the use and the extension of the code. Besides, there has to be a bug tracker
and forums. How easy would it be to reuse it in the project itself? How high
would be the quality of the library?

12.9 Microservices without Changing
the Organization?

Microservices are more than just an approach for software architecture. They have
pronounced effects on organization. Changes to the organization are often very dif-
ficult. Therefore, the question arises whether microservices can be implemented
without changing the organization.

Microservices without Changing the Organization

Microservices make independent teams possible. The domain-focused teams are
responsible for one or multiple microservices—this ideally includes their develop-
ment as well as operations. Theoretically it is possible to implement microservices
without dividing developers into domain-focused teams. In that case the developers
could modify each microservice—an extension of the ideas presented in section 12.2.
It would even be possible that technically focused teams work on microservices that
are split according to domain-based criteria. In this scenario there would be a UI, a
middle tier, and a database team that work on domain microservices such as order
process or registration. However, a number of advantages usually associated with
microservices cannot be exploited anymore in that case. First, it is not possible

ptg18144917

Chapter 12 Organizational Effects of Microservices296

anymore to scale the agile processes via microservices. Second, it will be necessary to
restrict the technology freedom since the teams will not be able to handle the differ-
ent microservices if they all employ different technologies. Besides, each team can
modify each microservice. This entails the danger that though a distributed system is
created, there are dependencies that prevent the independent development of indi-
vidual microservices. The necessity for independent microservices is obliterated
because a team can change multiple microservices together and therefore also can
handle microservices having numerous dependencies. However, even under these
conditions sustainable development, an easier start with continuous delivery, inde-
pendent scaling of individual microservices, or a simple handling of legacy systems
can still be implemented because the deployment units are smaller.

Evaluation

To put it clearly, introducing microservices without creating domain-focused teams
does not lead to the main benefits meant to be derived from microservices. It is
always problematic to implement only some parts of a certain approach as only the
synergies between the different parts will generate the overall value. Although imple-
menting microservices without domain-focused teams is a possible option—it is cer-
tainly not recommended.

Departments

As already discussed in section 12.7, the microservice structure should ideally extend
to the departments. However, in reality this is sometimes hard to achieve since the
microservice architecture often deviates too much from the organizational structure
of the departments. It is unlikely that the organization of the departments will adapt
to the distribution into microservices. When the distribution of the microservice can-
not be adjusted, the respective product owners have to take care of prioritization and
coordinate the wishes of the departments that concern multiple microservices in such
a way that all requirements are unambiguously prioritized for the teams. If this is not
possible, a collective code ownership approach (section 12.2) can limit the problem.
In this case the product owner and his/her team can also modify microservices that do
not really belong to their sphere of influence. This can be the better alternative in con-
trast to a coordination across teams—however, both solutions are not optimal.

Operations

In many organizations there is a separate team for operations. The teams responsible
for the microservices should also take care of the operations of their microservices

ptg18144917

29712.10 Conclusion

following the principle of DevOps. However, as discussed in section 12.5, it is not a
strict requirement for microservices to introduce DevOps. If the separation between
operations and development is supposed to be maintained, operations has to define
the necessary standards for the microservices in the macro architecture to ensure a
smooth operations of the system.

Architecture

Often architecture and development are likewise kept separated. In a microservices
environment there is the area of macro architecture where architects make global
decisions for all teams. Alternatively, the architects can be distributed to the different
teams and work together with the teams. In addition, they can found an overarching
committee that defines topics for macro architecture. In that case it has to be ensured
that the architects really have time for this task and are not completely busy with
work in their team.

Try and Experiment

• What does the organization of a project you know look like?

• Is there a special organizational unit that takes care of architecture? How
would they fit into a microservices-based architecture?

• How is operations organized? How can the organization of operations
best support microservices?

• How well does the domain-based division fit to the departments? How
could it be optimized?

• Can a product owner with fitting task area be assigned to each team?

12.10 Conclusion

Microservices enable the independence of teams in regard to technical decisions and
deployments (section 12.1). This enables the teams to independently implement
requirements. In the end this makes it possible for numerous small teams to work
together on a large project. This reduces the communication overhead between the
teams. Since the teams can deploy independently, the overall risk of the project is
reduced.

ptg18144917

Chapter 12 Organizational Effects of Microservices298

Ideally the teams should be put together in a way that enables them to work sepa-
rately on different domain aspects. If this is not possible or requires too much coordina-
tion between the teams, collective code ownership can be an alternative (section 12.2).
In that case each developer can change all of the code. Still, one team has the responsi-
bility for each microservice. Changes to this microservice have to be coordinated with
the responsible team.

Section 12.3 described that microservices have a macro architecture that comprises
decisions that concern all microservices. In addition, there is the micro architecture,
which can be different for each microservice. In the areas of technology, operations,
domain architecture, and testing there are decisions that can either be attributed to
micro or macro architecture. Each project has the choice to delegate them to teams
(micro architecture) or to centrally define them (macro architecture). Delegating into
teams is in line with the objective to achieve a large degree of independence and is
therefore often the better option. A separate architecture team can define the macro
architecture; alternatively, the responsible team is assembled from members of the
different microservice teams.

Responsibility for the macro architecture is closely linked to a concept for techni-
cal leadership (section 12.4). Less macro architecture means more responsibility for
the microservice teams and less responsibility for the central architecture team.

Though microservices profit from merging operations and development to
DevOps (section 12.5), it is not strictly required to introduce DevOps to do micro-
services. If DevOps is not possible or desired, operations can define guidelines in the
context of macro architecture to unify certain aspects in order to ensure a smooth
operation of the microservice-based system.

Microservices should always implement their own separate requirements. There-
fore, it is best when each microservice can be assigned to a certain department on
the business side (section 12.7). If this is not possible, the product owners have to
coordinate the requirements coming from different departments in such a way that
each microservice has clearly prioritized requirements. When collective code owner-
ship is used, a product owner and his/her team can also change microservices of
other teams, which can limit the communication overhead. Instead of coordinating
priorities, a team will introduce the changes that are necessary for a new feature
by itself—even if they concern different microservices. The team responsible for
the modified microservice can review the introduced changes and adjust them if
necessary.

Code can be reused in a microservices project if the code is treated like an open
source project (section 12.8). An internal project can be handled like an internal open
source project—or can in fact be turned into a public open source project. The effort
for a real open source project is high, which has to be considered. Therefore, it can be
more efficient not to reuse code. Besides, the developers of the open source project

ptg18144917

29912.10 Conclusion

have to prioritize domain requirements versus changes to the open source project,
which can be a difficult decision at times.

Section 12.9 discussed that an introduction of microservices without changes to
the organizational structure at the development level does not work in real life. When
there are no domain-focused teams that can develop certain domain aspects indepen-
dently of other teams, it is practically impossible to develop multiple features in par-
allel and thus to bring more features to the market within the same time. However,
this is just what microservices were meant to achieve. Sustainable development, an
easy introduction of continuous delivery, independent scaling of individual micro-
services, or a simple handling of legacy systems are still possible. Operations and an
architecture team can define the macro architecture so that changes to the organi-
zational structure in this area are not strictly required. Ideally, the requirements of
the departments are always reflected by one microservice. If that is not possible, the
product owners have to coordinate and prioritize the required changes.

Essential Points

• Microservices have significant effects on the organization. Independent small
teams that work together on a large project are an important advantage of
microservices.

• Viewing the organization as part of the architecture is an essential innovation
of microservices.

• A combination of DevOps and microservices is advantageous but not
obligatory.

ptg18144917

This page intentionally left blank

ptg18144917

301

PART IV

Technologies

Part IV moves away from the theoretical to show the technologies involved in actual
implementations of microservices.

Chapter 13, “Example of a Microservices-Based Architecture,” contains a
complete example of a microservices architecture based on Java, Spring, Spring
Boot, Spring Cloud, the Netflix stack, and Docker. The example is a good start-
ing point for your own implementation or experiments. Many of the technologi-
cal challenges discussed in Part III are solved in this part with the aid of concrete
technologies—for instance, build, deployment, service discovery, communication,
load balancing, and tests.

Even smaller than microservices are the nanoservices discussed in Chapter 14,
“Technologies for Nanoservices.” They require special technologies and a number
of compromises. The chapter introduces technologies that can implement very small
services—Amazon Lambda for JavaScript, Python and Java; OSGi for Java; Java EE;
and Vert.x on the JVM (Java Virtual Machine) with support for languages like Java,
Scala, Clojure, Groovy, Ceylon, JavaScript, Ruby, and Python. The programming
language Erlang can also be used for very small services, and it is able to integrate
with other systems. Seneca is a specialized JavaScript framework for the implementa-
tion of nanoservices.

At the close of the book Chapter 15, “Getting Started with Microservices,”
concludes by re iterating the benefits of using microservices and discusses how you
might go about starting to use them.

ptg18144917

This page intentionally left blank

ptg18144917

303

This chapter provides an example of an implementation of a microservices-based
architecture. It aims at demonstrating concrete technologies in order to lay the founda-
tion for experiments. The example application has a very simple domain architecture
containing a few compromises. Section 13.1 deals with this topic in detail.

For a real system with a comparable low complexity as in the presented example
application, an approach without microservices would be better suited. However,
the low complexity makes the example application easy to understand and simple
to extend. Some aspects of a microservice environment, such as security, documen-
tation, monitoring, or logging are not illustrated in the example application—but
these aspects can be relatively easily addressed with some experiments.

Section 13.2 explains the technology stack of the example application. The build
tools are described in section 13.3. Section 13.4 deals with Docker as a technology for
the deployment. Docker needs to run in a Linux environment. Section 13.5 describes
Vagrant as a tool for generating such environments. Section 13.6 introduces Docker
Machine as alternative tool for the generation of a Docker environment, which can be
combined with Docker Compose for the coordination of several Docker containers
(section 13.7). The implementation of Service Discovery is discussed in section 13.8.
The communication between the microservices and the user interface is the main
topic of section 13.9. Thanks to resilience other microservices are not affected if a
single microservice fails. In the example application resilience is implemented with
Hystrix (section 13.10). Load Balancing (section 13.11), which can distribute the load
onto several instances of a microservice, is closely related to that. Possibilities for
the integration of non-Java-technologies are detailed in section 13.12, and testing is
 discussed in section 13.13.

Chapter 13

Example of a
Microservices-Based
Architecture

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 304

The code of the example application can be found at https://github.com/ewolff/
microservice. It is Apache-licensed, and can, accordingly, be used and extended freely
for any purpose.

13.1 Domain Architecture

The example application has a simple web interface, with which users can submit
orders. There are three microservices (see Figure 13.1):

• “Catalog” keeps track of products. Items can be added or deleted.

• “Customer” performs the same task in regards to customers: It can register
new customers or delete existing ones.

• “Order” can not only show orders but also create new orders.

For the orders the microservice “Order” needs access to the two other micro-
services, “Customer” and “Catalog.” The communication is achieved via REST.
However, this interface is only meant for the internal communication between the
microservices. The user can interact with all three microservices via the HTML-/
HTTP-interface.

Separate Data Storages

The data storages of the three microservices are completely separate. Only the
respective microservice knows the information about the business objects. The
microservice “Order” saves only the primary keys of the items and customers, which
are necessary for the access via the REST interface. A real system should use

Customer Order Catalog

HTTP / HTML

RESTREST

Figure 13.1 Architecture of the Example Application

https://www.github.com/ewolff/microservice
https://github.com/ewolff/microservice

ptg18144917

13.1 Domain Architecture 305

artificial keys as the internal primary keys so that they do not become visible to the
outside. These are internal details of the data storage that should be hidden. To
expose the primary keys, the class SpringRestDataConfig within the micro-
services configures Spring Data REST accordingly.

Lots of Communication

Whenever an order needs to be shown, the microservice “Customer is called for the
customer data and the microservice “Catalog” for each line of the order in order to
determine the price of the item. This can have a negative influence on the response
times of the application as the display of the order cannot take place before all requests
have been answered by the other microservices. As the requests to the other services
take place synchronously and sequentially, latencies will add up. This problem can be
solved by using asynchronous parallel requests.

In addition, a lot of computing power is needed to marshal the data for send-
ing and receiving. This is acceptable in case of such a small example application.
When such an application is supposed to run in production, alternatives have to be
considered.

This problem can, for instance, be solved by caching. This is relatively easy as
customer data will not change frequently. Items can change more often—still, not
so fast that caching would pose a problem. Only the amount of data can interfere
with this approach. The use of microservices has the advantage that such a cache
can be implemented relatively simply at the interface of the microservices, or even
at the level of HTTP, if this protocol is used. An HTTP cache, like the one used for
websites, can be added to REST services in a transparent manner and without much
programming effort.

Bounded Context

Caching will solve the problem of too long response times technically. However, very
long response times can also be a sign of a fundamental problem. Section 3.3 argued
that a microservice should contain a Bounded Context. A specific domain model is
only valid in a Bounded Context. The modularization into microservices in this
example contradicts this idea: The domain model is used to modularize the system
into the microservices “Order” for orders, “Catalog” for items, and “Customer” for
customers. In principle the data of these entities should be modularized in different
Bounded Contexts.

The described modularization implements, in spite of low domain complexity,
a system consisting of three microservices. In this manner the example application
is easy to understand while still having several microservices and demonstrating the

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 306

communication between microservices. In a real system the microservice “Order” can
also handle information about the items that is relevant for the order process such as
the price. If necessary, the service can replicate the data from another microservice into
its own database in order to access it efficiently. This is an alternative to the aforemen-
tioned caching. There are different possibilities how the domain models can be modu-
larized into the different Bounded Contexts “Order,” “Customer,” and “Catalog.”

This design can cause errors: when an order has been put into the system and the
price of the item is changed afterwards, the price of the order changes as well, which
should not happen. In case the item is deleted, there is even an error when displaying
the order. In principle the information concerning the item and the customer should
become part of the order. In that case the historical data of the orders including cus-
tomer and item data would be transferred into the service “Order.”

Don’t Modularize Microservices by Data!

It is important to understand the problem inherent in architecting a microservices
system by domain model. Often the task of a global architecture is misunderstood:
The team designs a domain model, which comprises, for instance, objects such as
customers, orders, and items. Based on this model microservices are defined. That is
how the modularization into microservices could have come about in the example
application, resulting in a huge amount of communication. A modularization based
on processes such as ordering, customer registration, and product search might be
more advantageous. Each process could be a Bounded Context that has its own
domain model for the most important domain objects. For product search the cate-
gories of items might be the most relevant, while for the ordering process, data like
weight and size might matter more.

The modularization by data can also be advantageous in a real system. When the
microservice “Order” gets too big in combination with the handling of customer
and product data, it is sensible to modularize data handling. In addition, the data
can be used by other microservices. When devising the architecture for a system,
there is rarely a single right way of doing things. The best approach depends on the
system and the properties the system should have.

13.2 Basic Technologies

Microservices in the example application are implemented with Java. Basic function-
alities for the example application are provided by the Spring Framework.1 This

1. http://projects.spring.io/spring-framework/

http://www.projects.spring.io/spring-framework/

ptg18144917

13.2 Basic Technologies 307

framework offers not only dependency injection, but also a web framework, which
enables the implementation of REST-based services.

HSQL Database

The database HSQLDB handles and stores data. It is an in-memory database, which
is written in Java. The database stores the data only in RAM so that all data is lost
upon restarting the application. In line with this, this database is not really suited for
production use, even if it can write data to a hard disk. On the other hand, it is not
necessary to install an additional database server, which keeps the example applica-
tion easy. The database runs in the respective Java application.

Spring Data REST

The microservices use Spring Data REST 2 in order to provide the domain objects
with little effort via REST and to write them into the database. Handing objects out
directly means that the internal data representation leaks into the interface between
the services. Changing the data structures is very difficult as the clients need to be
adjusted as well. However, Spring Data REST can hide certain data elements and can
be configured flexibly so that the tight coupling between the internal model and the
interface can be decoupled if necessary.

Spring Boot

Spring Boot3 facilitates Spring further. Spring Boot makes the generation of a Spring
system very easy: with Spring Boot starters predefined packages are available that
contain everything that is necessary for a certain type of application. Spring Boot can
generate WAR files, which can be installed on a Java application or web server. In
addition, it is possible to run the application without an application or web server.
The result of the build is a JAR file in that case, which can be run with a Java Runtime
Environment (JRE). The JAR file contains everything for running the application
and also the necessary code to deal with HTTP requests. This approach is by far less
demanding and simpler than the use of an application server (https://jaxenter.com/
java-application-servers-dead-112186.html).

A simple example for a Spring Boot application is shown in Listing 13.1. The main
program main hands control over to Spring Boot. The class is passed in as a parameter
so that the application can be called. The annotation @SpringBootApplication

2. http://projects.spring.io/spring-data-rest/

3. http://projects.spring.io/spring-boot/

https://jaxenter.com/java-application-servers-dead-112186.html
https://www.jaxenter.com/java-application-servers-dead-112186.html
http://www.projects.spring.io/spring-data-rest/
http://www.projects.spring.io/spring-boot/

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 308

makes sure that Spring Boot generates a suitable environment. For example, a web
server is started, and an environment for a Spring web application is generated as the
application is a web application. Because of @RestController the Spring Frame-
work instantiates the class and calls methods for the processing of REST requests.
@RequestMapping shows which method is supposed to handle which request. Upon
request of the URL “/” the method hello() is called, which returns as result the sign
chain “hello” in the HTTP body. In an @RequestMapping annotation, URL templates
such as “/customer/{id}” can be used. Then a URL like “/customer/42” can be cut into
separate parts and the 42 bound to a parameter annotated with @PathVariable. As
dependency the application uses only spring-boot-starter-web pulling all necessary
libraries for the application along—for instance the web server, the Spring Framework,
and additional dependent classes. Section 13.3 will discuss this topic in more detail.

Listing 13.1 A simple Spring Boot REST Service

@RestController

@SpringBootApplication

public class ControllerAndMain {

 @RequestMapping("/")

 public String hello() {

 return "hello";

 }

 public static void main(String[] args) {

 SpringApplication.run(ControllerAndMain.class, args);

 }

}

Spring Cloud

Finally, the example application uses Spring Cloud4 to gain easy access to the Netflix
Stack. Figure 13.2 shows an overview.

Spring Cloud offers via the Spring Cloud Connectors access to the PaaS (platform
as a service) Heroku and Cloud Foundry. Spring Cloud for Amazon Web Services
offers an interface for services from the Amazon Cloud. This part of Spring Cloud is
responsible for the name of the project but is not helpful for the implementation of
microservices.

4. http://projects.spring.io/spring-cloud/

http://www.projects.spring.io/spring-cloud/

ptg18144917

13.2 Basic Technologies 309

However, the other sub-projects of Spring Cloud provide a very good basis for the
implementation of microservices:

• Spring Cloud Security supports the implementation of security mechanisms
as typically required for microservices, among those single sign on into a
microservices environment. That way a user can use each of the microservices
without having to log in anew every time. In addition, the user token is trans-
ferred automatically for all calls to other REST services to ensure that those
calls can also work with the correct user rights.

• Spring Cloud Config can be used to centralize and dynamically adjust the
configuration of microservices. Section 11.4 already presented technologies,
which configure microservices during deployment. To be able to reproduce
the state of a server at any time, a new server should be started with a new
microservice instance in case of a configuration change instead of dynami-
cally adjusting an existing server. If a server is dynamically adjusted, there is no
guarantee that new servers are generated with the right configuration as they

Figure 13.2 Overview of Spring Cloud

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 310

are configured in a different way. Because of these disadvantages the example
application refrains from using this technology.

• Spring Cloud Bus can send dynamic configuration changes for Spring Cloud
Config. Moreover, the microservices can communicate via Spring Cloud
Bus. However, the example application does not use this technology because
Spring Cloud Config is not used, and the microservices communicate via
REST.

• Spring Cloud Sleuth enables distributed tracing with tools like Zipkin or
Htrace. It can also use a central log storage with ELK (see section 11.2).

• Spring Cloud Zookeeper supports Apache Zookeeper (see section 7.10). This
technology can be used to coordinate and configure distributed services.

• Spring Cloud Consul facilitates Services Discovery using Consul (see section 7.11).

• Spring Cloud Cluster implements leader election and stateful patterns using
technologies like Zookeeper or Consul. It can also use the NoSQL data store
Redis or the Hazelcast cache.

• Spring Cloud for Cloud Foundry provides support for the Cloud Foundry
PaaS. For example, single sign on (SSO) and OAuth2 protected resources are
supported as well as creating managed service for the Cloud Foundry service
broker.

• Spring Cloud Connectors support access to services provided by PaaS like
Heroku or Cloud Foundry.

• Spring Cloud Data Flow helps with the implementation of applications and
microservices for Big Data analysis.

• Spring Cloud Tasks provides features for short lived microservices.

• Finally, Spring Cloud Stream supports messaging using Redis, Rabbit, or
Kafka.

Spring Cloud Netflix

Spring Cloud Netflix offers simple access to Netflix Stack, which has been especially
designed for the implementation of microservices. The following technologies are
part of this stack:

• Zuul can implement routing of requests to different services.

• Ribbon serves as a load balancer.

ptg18144917

13.3 Build 311

• Hystrix assists with implementing resilience in microservices.

• Turbine can consolidate monitoring data from different Hystrix servers.

• Feign is an option for an easier implementation of REST clients. It is not lim-
ited to microservices. It is not used in the example application.

• Eureka can be used for Service Discovery.

These technologies are the ones that influence the implementation of the example
application most.

Try and Experiment

For an introduction into Spring it is worthwhile to check out the Spring Guides
at https://spring.io/guides/. They show in detail how Spring can be used to
implement REST services or to realize messaging solutions via JMS. An intro-
duction into Spring Boot can be found at https://spring.io/guides/gs/spring-
boot/. Working your way through these guides provides you with the necessary
know-how for understanding the additional examples in this chapter.

13.3 Build

The example project is built with the tool Maven.5 The installation of the tool is
described at https://maven.apache.org/download.cgi. The command mvn package
in the directory microservice/microservice-demo can be used to download all
dependent libraries from the Internet and to compile the application.

The configuration of the projects for Maven is saved in files named pom.xml. The
example project has a Parent-POM in the directory microservice-demo. It contains
the universal settings for all modules and in addition a list of the example project
modules. Each microservice is such a module, and some infrastructure servers are
modules as well. The individual modules have their own pom.xml, which contains
the module name among other information. In addition, they contain the dependen-
cies, i.e., the Java libraries they use.

5. http://maven.apache.org/

https://www.spring.io/guides/
https://www.spring.io/guides/gs/spring-boot/
https://spring.io/guides/gs/spring-boot/
https://www.maven.apache.org/download.cgi
http://www.maven.apache.org/

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 312

Listing 13.2 Part of pom.xml Including Dependencies

...

<dependencies>

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-starter-eureka</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>

spring-boot-starter-data-jpa

</artifactId>

 </dependency>

Listing 13.2 shows a part of a pom.xml, which lists the dependencies of the mod-
ule. Depending on the nature of the Spring Cloud features the project is using, addi-
tional entries have to be added in this part of the pom.xml usually with the groupId
org.springframework.cloud.

The build process results in one JAR file per microservice, which contains the
compiled code, the configuration, and all necessary libraries. Java can directly start
such JAR files. Although the microservices can be accessed via HTTP, they do not
have to be deployed on an application or web server. This part of the infrastructure is
also contained in the JAR file.

As the projects are built with Maven, they can be imported into all usual Java
IDEs (integrated development environment) for further development. IDEs simplify
code changes tremendously.

Try and Experiment

• Download and compile the example:

Download the example provided at https://github.com/ewolff/microservice.
Install Maven; see https://maven.apache.org/download.cgi. In the subdirec-
tory microservices-demo execute the command mvn package. This will
build the complete project.

• Create a continuous integration server for the project:

https://github.com/ewolff/user-registration-V2 is an example project for
a continuous delivery project. This contains in subdirectory ci-setup a

https://www.github.com/ewolff/microservice
https://www.maven.apache.org/download.cgi
https://www.github.com/ewolff/user-registration-V2

ptg18144917

13.4 Deployment Using Docker 313

setup for a continuous integration server (Jenkins) with static code analysis
(Sonarqube) and Artifactory for the handling of binary artifacts. Integrate
the microservices project into this infrastructure so that a new build is trig-
gered upon each change.

The next section (13.4) will discuss Vagrant in more detail. This tool is used
for the continuous integration servers. It simplifies the generation of test
environments greatly.

13.4 Deployment Using Docker

Deploying microservices is very easy:

• Java has to be installed on the server.

• The JAR file, which resulted from the build, has to be copied to the server.

• A separate configuration file application.properties can be created for further
configurations. It is automatically read out by Spring Boot and can be used
for additional configurations. An application.properties containing default
 values is comprised in the JAR file.

• Finally, a Java process has to start the application out of the JAR file.

Each microservice starts within its own Docker container. As discussed in
section 11.7, Docker uses Linux containers. In this manner the microservice
cannot interfere with processes in other Docker containers and has a completely
independent file system. The Docker image is the basis for this file system. However,
all Docker containers share the Linux kernel. This saves resources. In comparison
to an operating system process a Docker container has virtually no additional
overhead.

Listing 13.3 Dockerfile for a Microservice Used in the Example Application

FROM java

CMD /usr/bin/java -Xmx400m -Xms400m \

-jar /microservice-demo/microservice-demo-catalog\

/target/microservice-demo-catalog-0.0.1-SNAPSHOT.jar

EXPOSE 8080

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 314

A file called Dockerfile defines the composition of a Docker container. Listing 13.3
shows a Dockerfile for a microservice used in the example application:

• FROM determines the base image used by the Docker container. A Dockerfile
for the image java is contained in the example project. It generates a minimal
Docker image with only a JVM installed.

• CMD defines the command executed at the start of the Docker container. In the
case of this example it is a simple command line. This line starts a Java appli-
cation out of the JAR file generated by the build.

• Docker containers are able to communicate with the outside via network ports.
EXPOSE determines which ports are accessible from outside. In the example
the application receives HTTP requests via port 8080.

13.5 Vagrant

Docker runs exclusively under Linux, because it uses Linux containers. However,
there are solutions for other operating systems, which start a virtual Linux machine
and thus enable the use of Docker. This is largely transparent so that the use is prac-
tically identical to the use under Linux. But in addition all Docker containers need to
be built and started.

To make installing and handling Docker as easy as possible, the example applica-
tion uses Vagrant. Figure 13.3 shows how Vagrant works:

Vagrant

Virtual
Machine

e.g.
VirtualBox

e.g. Docker
Software
(Docker

Container)

1. Starts

Provisions

2. Starts

Installs

Figure 13.3 How Vagrant Works

ptg18144917

13.5 Vagrant 315

To configure Vagrant a single file is necessary, the Vagrantfile. Listing 13.4 shows
the Vagrantfile of the example application:

Listing 13.4 Vagrantfile from the Example Application

Vagrant.configure("2") do |config|

 config.vm.box = " ubuntu/trusty64"

 config.vm.synced_folder ."./microservice-demo",

 "/microservice-demo", create: true

 config.vm.network "forwarded_port",

 guest: 8080, host: 18080

 config.vm.network "forwarded_port",

 guest: 8761, host: 18761

 config.vm.network "forwarded_port",

guest: 8989, host: 18989

config.vm.provision "docker" do |d|

d.build_image "--tag=java /vagrant/java"

d.build_image "--tag=eureka /vagrant/eureka"

d.build_image

"--tag=customer-app /vagrant/customer-app"

d.build_image "

"--tag=catalog-app /vagrant/catalog-app"

d.build_image "--tag=order-app /vagrant/order-app"

d.build_image "--tag=turbine /vagrant/turbine"

d.build_image "--tag=zuul /vagrant/zuul"

end

config.vm.provision "docker", run: "always" do |d|

d.run "eureka",

args: "-p 8761:8761"+

"-v /microservice-demo:/microservice-demo"

d.run "customer-app",

args: "-v /microservice-demo:/microservice-demo"+

"--link eureka:eureka"

d.run "catalog-app",

args: "-v /microservice-demo:/microservice-demo"+

"--link eureka:eureka"

d.run "order-app",

args: "-v /microservice-demo:/microservice-demo"+

"--link eureka:eureka"

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 316

d.run "zuul",

args: "-v /microservice-demo:/microservice-demo"+

" -p 8080:8080 --link eureka:eureka"

d.run "turbine",

args: "-v /microservice-demo:/microservice-demo"+

" --link eureka:eureka"

 end

end

• config.vm.box selects a base image—in this case an Ubuntu-13.04 Linux
installation (Trusty Tahr).

• config.vm. synced_folder mounts the directory containing the results of
the Maven build into the virtual machine. In this manner the Docker contain-
ers can directly make use of the build results.

• The ports of the virtual machine can be linked to the ports of the computer
running the virtual machine. The config.vm.network settings can be used
for that. In this manner applications in the Vagrant virtual machine become
accessible as if running directly on the computer.

• config.vm.provision starts the part of the configuration that deals with
the software provisioning within the virtual machine. Docker serves as provi-
sioning tool and is automatically installed within the virtual machine.

• d.build_image generates the Docker images using Dockerfiles. First the base
image java is created. Images for the three microservices customer-app, catalog-
app and order-app follow. The images for the Netflix technologies servers belong
to the infrastructure: Eureka for Service Discovery, Turbine for monitoring, and
Zuul for routing of client requests.

• Vagrant starts the individual images using d.run. This step is not only performed
when provisioning the virtual machine, but also when the system is started anew
(run: "always"). The option –v mounts the directory /microservice-demo
into each Docker container so that the Docker container can directly execute
the compiled code. -p links a port of the Docker container to a port of virtual
machine. This link provides access to the Docker container Eureka under the
host name eureka from within the other Docker containers.

In the Vagrant setup the JAR files containing the application code are not con-
tained in the Docker image. The directory /microservice-demo does not belong
to the Docker container. It resides on the host running the Docker containers, that
is, the Vagrant VM. It would also be possible to copy these files into the Docker
image. Afterwards the resulting image could be copied on a repository server and

ptg18144917

13.5 Vagrant 317

downloaded from there. Then the Docker container would contain all necessary files
to run the microservice. A deployment in production then only needs to start the
Docker images on a production server. This approach is used in the Docker Machine
setup (see section 13.6).

Networking in the Example Application

Figure 13.4 shows how the individual microservices of the example application com-
municate via the network. All Docker containers are accessible in the network via IP
addresses from the 172.17.0.0/16 range. Docker generates such a network automati-
cally and connects all Docker containers to the network. Within the network all ports
are accessible that are defined in the Dockerfiles using EXPOSE. The Vagrant virtual
machine is also connected to this network. Via the Docker links (see Listing 13.4) all
Docker containers know the Eureka container and can access it under the host name
eureka. The other microservices have to be looked up via Eureka. All further com-
munication takes place via the IP address.

In addition, the -p option in the d.run entries for the Docker containers in List-
ing 13.4 has connected the ports to the Vagrant virtual machine. These containers
can be accessed via these ports of the Vagrant virtual machine. To reach them also
from the computer running the Vagrant virtual machine there is a port mapping
that links the ports to the local computer. This is accomplished via the config.
vm. network entries in Vagrantfile. The port 8080 of the Docker container “zuul”
can, for instance, be accessed via the port 8080 in the Vagrant virtual machine.

Localhost

Vagrant VM

Eureka Zuul

Customer-
App

Catalog-
App

Turbine

Order-App

172.17.0.0/16 Network

8761

8761

8080

8080

18761 18080

8989

8989

18989

Figure 13.4 Network and Ports of the Example Application

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 318

This port can be reached from the local computer via the port 18080. So the URL
http://localhost:18080/ accesses this Docker container.

Try and Experiment

• Run the Example Application

The example application does not need much effort to make it run. A run-
ning example application lays the foundation for the experiments described
later in this chapter.

One remark: The Vagrantfile defines how much RAM and how many CPUs
the virtual machines gets. The settings v.memory and v.cpus, which are
not shown in the listing, deal with this. Depending on the computer used,
the values should be increased if a lot of RAM or many CPUs are present.
Whenever the values can be increased, they should be elevated in order to
speed the application up.

The installation of Vagrant is described in https://www.vagrantup.com/docs/
installation/index.html. Vagrant needs a virtualization solution like Virtual-
Box. The installation of VirtualBox is explained at https://www.virtualbox
.org/wiki/Downloads. Both tools are free.

The example can only be started once the code has been compiled. Instruc-
tions how to compile the code can be found in the experiment described in
section 13.3. Afterwards you can change into the directory docker-vagrant
and start the example demo using the command vagrant up.

To interact with the different Docker containers, you have to log into the
virtual machine via the command vagrant ssh. This command has to be
executed within the subdirectory docker-vagrant. For this to be possible
an ssh client has to be installed on the computer. On Linux and Mac OS X
such a client is usually already present. In Windows installing git will bring
an ssh client along as described at http://git-scm.com/download/win. After-
wards vagrant ssh should work.

• Investigate Docker Containers

Docker contains several useful commands:

• docker ps provides an overview of the running Docker containers.

• The command docker log "name of Docker container" shows
the logs.

https://www.vagrantup.com/docs/installation/index.html
https://www.vagrantup.com/docs/installation/index.html
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
http://www.git-scm.com/download/win

ptg18144917

13.5 Vagrant 319

• docker log -f "name of Docker Container" provides incessantly
the up-to-date log information of the container.

• docker kill "name of the Docker Container" terminates a
Docker container.

• docker rm "name of the Docker Container" deletes all data. For
that all containers first needs to be stopped. After starting the application,
the log files of the individual Docker containers can be looked at.

• Update Docker Containers

A Docker container can be terminated (docker kill) and the data of
the container deleted (docker rm). The commands have to be executed
inside the Vagrant virtual machine. vagrant provision starts the miss-
ing Docker containers again. This command has to be executed on the host
running Vagrant. If you want to change the Docker container, simply delete
it, compile the code again and generate the system anew using vagrant
provision. Additional Vagrant commands include the following:

• vagrant halt terminates the virtual machine.

• vagrant up starts it again.

• vagrant destroy destroys the virtual machine and all saved data.

• Store Data on Disk

Right now the Docker container does not save the data so that it is lost upon
restarting. The used HSQLDB database can also save the data into a file.
To achieve that a suitable HSQLDB URL has to be used, see http://hsqldb
.org/doc/guide/dbproperties-chapt.html#dpc_connection_url. Spring Boot
can read the JDBC URL out of the application.properties file; see http://
docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql
.html#boot-features-connect-to-production-database. Now the container
can be restarted without data loss. But what happens if the Docker container
has to be generated again? Docker can save data also outside of the con-
tainer itself; compare https://docs.docker.com/userguide/dockervolumes/.
These options provide a good basis for further experiments. Also another
database than HSQLDB can be used, such as MySQL. For that purpose
another Docker container has to be installed that contains the database.

(continued)

http://www.hsqldb.org/doc/guide/dbproperties-chapt.html#dpc_connection_url
http://www.hsqldb.org/doc/guide/dbproperties-chapt.html#dpc_connection_url
http://www.docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html#boot-features-connect-to-production-database
http://www.docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html#boot-features-connect-to-production-database
http://www.docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html#boot-features-connect-to-production-database
https://www.docs.docker.com/userguide/dockervolumes/

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 320

Docker
Machine

Virtual
Machine with

Docker

e.g.
VirtualBox

Docker/
Docker

Compose

Starts

Uses

Installs

Figure 13.5 Docker Machine

In addition to adjusting the JDBC URL, a JDBC driver has to be added to
the project.

• How is the Java Docker Image Built?

The Docker file is more complex than the ones discussed here. https://docs.
docker.com/reference/builder/ demonstrates which commands are available
in Dockerfiles. Try to understand the structure of the Dockerfiles.

13.6 Docker Machine

Vagrant serves to install environments on a developer laptop. In addition to Docker,
Vagrant can use simple shell scripts for deployment. However, for production envi-
ronments this solution is unsuitable. Docker Machine6 is specialized in Docker. It
supports many more virtualization solutions as well as some cloud providers.

Figure 13.5 demonstrates how Docker Machine builds a Docker environment:
First, using a virtualization solution like VirtualBox, a virtual machine is installed.
This virtual machine is based on boot2docker, a very lightweight version of Linux
designed specifically as a running environment for Docker containers. On that
Docker Machine installs a current version of Docker. A command like docker-
machine create --driver virtualbox dev generates, for instance, a new
environment with the name dev running on a VirtualBox computer.

The Docker tool now can communicate with this environment. The Docker
command line tools use a REST interface to communicate with the Docker server.
Accordingly, the command line tool just has to be configured in a way that enables

6. https://docs.docker.com/machine/

https://www.docs.docker.com/reference/builder/
https://www.docs.docker.com/reference/builder/
https://www.docs.docker.com/machine/

ptg18144917

13.7 Docker Compose 321

it to communicate with the server in a suitable manner. In Linux or Mac OS X, the
command eval "$(docker-machine env dev)" is sufficient to configure the
Docker appropriately. For Windows PowerShell, the command docker-machine.
exe env --shell powershell dev must be used and in Windows cmd docker-
machine.exe env --shell cmd dev.

Docker Machine thus renders it very easy to install one or several Docker envi-
ronments. All the environments can be handled by Docker Machine and accessed
by the Docker command line tool. As Docker Machine also supports technologies
like Amazon Cloud or VMware vSphere, it can be used to generate production
environments.

Try and Experiment

The example application can also run in an environment created by Docker
Machine.

The installation of Docker Machine is described at https://docs.docker.com/
machine/#installation. Docker Machine requires a virtualization solution like
VirtualBox. How to install VirtualBox can be found at https://www.virtualbox
.org/wiki/Downloads. Using docker-machine create --virtualbox-

memory "4096" --driver virtualbox dev a Docker environment called
dev can now be created on a Virtual Box. Without any further configuration the
storage space is set to 1 GB, which is not sufficient for a larger number of Java
Virtual Machines.

docker-machine without parameters displays a help text, and docker-
machine create shows the options for the generation of a new environ-
ment. https://docs.docker.com/machine/get-started-cloud/ demonstrates how
Docker Machine can be used in a Cloud. This means that the example applica-
tion can also easily be started in a cloud environment.

At the end of your experiments, docker-machine rm deletes the environment.

13.7 Docker Compose

A microservice-based system comprises typically several Docker containers. These
have to be generated together and need to be put into production simultaneously.

This can be achieved with Docker Compose.7 It enables the definition of Docker
containers, which each house one service. YAML serves as format.

7. http://docs.docker.com/compose/

https://www.docs.docker.com/machine/#installation
https://docs.docker.com/machine/#installation
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.docs.docker.com/machine/get-started-cloud/
http://www.docs.docker.com/compose/

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 322

Listing 13.5 Docker Compose Configuration for the Example Application

version: '2'

services:

 eureka:

 build: ../microservice-demo/microservice-demo-eureka-server

 ports:

- "8761:8761"

 customer:

 build: ../microservice-demo/microservice-demo-customer

 links:

- eureka

 catalog:

 build: ../microservice-demo/microservice-demo-catalog

 links:

- eureka

 order:

 build: ../microservice-demo/microservice-demo-order

 links:

- eureka

 zuul:

 build: ../microservice-demo/microservice-demo-zuul-server

 links:

- eureka

ports:

- "8080:8080"

 turbine:

 build: ../microservice-demo/microservice-demo-turbine-

server

 links:

- eureka

ports:

- "8989:8989"

Listing 13.5 shows the configuration of the example application. It consists of
the different services. build references the directory containing the Dockerfile.
The Dockerfile is used to generate the image for the service. links defines which
additional Docker containers the respective container should be able to access. All
containers can access the Eureka container under the name eureka. In contrast to
the Vagrant configuration there is no Java base image, which contains only a Java
installation. This is because Docker Compose supports only containers that really
offer a service. Therefore, this base image has to be downloaded from the Internet.
Besides, in case of the Docker Compose containers the JAR files are copied into the
Docker images so that the images contain everything for starting the microservices.

ptg18144917

13.7 Docker Compose 323

The resulting system is very similar to the Vagrant system (see Figure 13.6). The
Docker containers are linked via their own private network. From the outside, only
Zuul can be accessed for the processing of requests and Eureka for the dashboard.
They are running directly on a host that then can be accessed from the outside.

Using docker-compose build the system is created based on the Docker
 Compose configuration. Thus the suitable images are generated. docker-compose
up then starts the system. Docker Compose uses the same settings as the Docker
command line tool so it can also work together with Docker Machine. Thus it is
transparent whether the system is generated on a local virtual machine or somewhere
in the Cloud.

Docker Host

Eureka Zuul

Customer-
App

Catalog-
App

Turbine

Order-App

172.17.0.0/16 Network

8761

8761

8080

8080

8989

8989

Figure 13.6 Network and Ports of the Example Application

Try and Experiment

• Run the Example with Docker Compose

The example application possesses a suitable Docker Compose configura-
tion. Upon the generation of an environment with Docker Machine, Docker
Compose can be used to create the Docker containers. README.md in the
directory docker describes the necessary procedure.

• Scale the Application

Have a look at the docker-compose scale command. It can scale
the environment. Services can be restarted and logs can be analyzed and

(continued)

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 324

finally stopped. Once you have started the application, you can test these
functionalities.

• Cluster Environments for Docker

Mesos (http://mesos.apache.org/) together with Mesosphere (http://
mesosphere.com/), Kubernetes (http://kubernetes.io/), or CoreOS (http://
coreos.com/) offers similar options as Docker Compose and Docker
Machine. However they are meant for servers and server clusters. The
Docker Compose and Docker Machine configurations can provide a good
basis for running the application on these platforms.

13.8 Service Discovery

Section 7.11 introduced the general principles of Service Discovery. The example
application uses Eureka8 for Service Discovery.

Eureka is a REST-based server, which enables services to register themselves so that
other services can request their location in the network. In essence, each service can
register a URL under its name. Other services can find the URL by the name of the
service. Using this URL other services can then send REST messages to this service.

Eureka supports replication onto several servers and caches on the client. This
makes the system fail-safe against the failure of individual Eureka servers and ena-
bles rapid answer requests. Changes to data have to be replicated to all servers.
Accordingly, it can take some time until they are really updated everywhere. During
this time the data is inconsistent: Each server has a different version of the data.

In addition, Eureka supports Amazon Web Services because Netflix uses it in this
environment. Eureka can, for instance, quite easily be combined with Amazon’s scaling.

Eureka monitors the registered services and removes them from the server list if
they cannot be reached anymore by the Eureka server.

Eureka is the basis for many other services of the Netflix Stack and for Spring
Cloud. Through a uniform Service Discovery, other aspects such as routing can eas-
ily be implemented.

Eureka Client

For a Spring Boot application to be able to register with a Eureka server and to
find other microservices, the application has to be annotated with @Enable
DiscoveryClient or @EnableEurekaClient. In addition, a dependency from

8. https://github.com/Netflix/Eureka

http://www.mesos.apache.org/
http://www.mesosphere.com/
http://www.mesosphere.com/
http://www.kubernetes.io/
http://www.coreos.com/
http://www.coreos.com/
https://www.github.com/Netflix/Eureka

ptg18144917

13.8 Service Discovery 325

spring-cloud-starter-eureka has to be included in the file pom.xml. The
application registers automatically with the Eureka server and can access other
microservices. The example application accesses other microservices via a load bal-
ancer. This is described in detail in section 13.11.

Configuration

Configuring the application is necessary to define, for instance, the Eureka server to
be used. The file application.properties (see Listing 13.6) is used for that. Spring
Boot reads it out automatically in order to configure the application. This mecha-
nism can also be used to configure one’s own code. In the example application the
values serve to configure the Eureka client:

• The first line defines the Eureka server. The example application uses the
Docker link, which provides the Eureka server under the host name “eureka.”

• leaseRenewalIntervalInSeconds determines how often data is updated
between client and server. As the data has to be held locally in a cache on each cli-
ent, a new service first needs to create its own cache and replicate it onto the server.
Afterwards the data is replicated onto the clients. Within a test environment it is
important to track system changes rapidly so that the example application uses
five seconds instead of the preset value of 30 seconds. In production with many
clients, this value should be increased. Otherwise the updates of information will
use a lot of resources, even though the information remains essentially unchanged.

• spring.application.name serves as the name for the service during the reg-
istration at Eureka. During registration the name is converted into capital letters.
This service would thus be known by Eureka under the name “CUSTOMER.”

• There can be several instances of each service to achieve fail over and load
balancing. The instanceId has to be unique for each instance of a service.
Because of that it contains a random number, which ensures unambiguousness.

• preferIpAddress makes sure that microservices register with their IP
addresses and not with their host names. Unfortunately in a Docker envi-
ronment host names are not easily resolvable by other hosts. This problem is
 circumvented by the use of IP addresses.

Listing 13.6 Part of application.properties with Eureka Configuration

eureka.client.serviceUrl.defaultZone=http://eureka:8761/eureka/

eureka.instance.leaseRenewalIntervalInSeconds=5

spring.application.name=catalog

eureka.instance.metadataMap.instanceId=catalog:${random.value}

eureka.instance.preferIpAddress=true

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 326

Eureka Server

The Eureka server (Listing 13.7) is a simple Spring Boot application, which turns into
a Eureka server via the @EnableEurekaServer annotation. In addition, the server
needs a dependency on spring-cloud-starter-eureka-server.

Listing 13.7 Eureka Server

@EnableEurekaServer

@EnableAutoConfiguration

public class EurekaApplication {

 public static void main(String[] args) {

 SpringApplication.run(EurekaApplication.class, args);

 }

}

The Eureka server offers a dashboard that shows the registered services. In the
example application, this can be found at http://localhost:18761/ (Vagrant) or on
Docker host under port 8761 (Docker Compose). Figure 13.7 shows a screenshot of

Figure 13.7 Eureka Dashboard

ptg18144917

13.9 Communication 327

the Eureka dashboards for the example application. The three microservices and the
Zuul-Proxy, which is discussed in the next section, are present on the dashboard.

13.9 Communication

Chapter 8, “Integration and Communication,” explains how microservices commu-
nicate with each other and can be integrated. The example application uses REST
for internal communication. The REST end points can be contacted from outside;
however, the web interface the system offers is of far greater importance. The REST
implementation uses HATEOAS. The list containing all orders, for instance, con-
tains links to the individual orders. This is automatically implemented by Spring
Data REST. However, there are no links to the customer and the items of the order.

Using HATEOAS can go further: the JSON can contain a link to an HTML docu-
ment for each order—and vice versa. In this way a JSON-REST-based service can
generate links to HTML pages to display or modify data. Such HTML code can, for
instance, present an item in an order. As the “Catalog” team provides the HTML
code for the item, the catalog team itself can introduce changes to the presentation—
even if the items are displayed in another module.

REST is also of use here: HTML and JSON are really only representations of the
same resource that can be addressed by a URL. Via Content Negotiation the right
resource representation as JSON or HTML can be selected (see section 8.2).

Zuul: Routing

The Zuul9 proxy transfers incoming requests to the respective microservices. The
Zuul proxy is a separate Java process. To the outside only one URL is visible; how-
ever, internally the calls are processed by different microservices. This enables the
system to internally change the structure of the microservices while still offering a
URL to the outside. In addition, Zuul can provide web resources. In the example in
Figure 13.8, Zuul provides the first HTML page viewed by the user.

Zuul needs to know which requests to transfer to which microservice. With-
out additional configuration Eureka will forward a request to a URL starting with
“/customer” to the microservice called CUSTOMER. This renders the internal
microservice names visible to the outside. However, this routing can also be config-
ured differently. Moreover, Zuul filters can change the requests in order to implement
general aspects in the system. There is, for instance, an integration with Spring Cloud
Security to pass on security tokens to the microservices. Such filters can also be used
to pass on certain requests to specific servers. This makes it possible, for instance,

9. https://github.com/Netflix/zuul

https://www.github.com/Netflix/zuul

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 328

Customer Order Catalog

HTTP/HTML

Zuul
Proxy

Figure 13.8 Zuul Proxy in the Example Application

to transfer requests to servers having additional analysis options for investigating
error situations. In addition, a part of a microservice functionality can be replaced by
another microservice.

Implementing the Zuul proxy server with Spring Cloud is very easy and analogous
to the Eureka server presented in Listing 13.7. Instead of @EnableEurekaServer it
is @EnableZuulProxy, which activates the Zuul-Proxy. As an additional depend-
ency, spring-cloud-starter-zuul has to be added to the application, for
instance, within the Maven build configuration, which then integrates the remaining
dependencies of Zuul into the application.

A Zuul server represents an alternative to a Zuul proxy. It does not have routing
built in, but uses filters instead. A Zuul server is activated by @EnableZuulServer.

Try and Experiment

• Add Links to Customer and Items

Extend the application so that an order contains also links to the customer
and to the items and thus implements HATEOAS better. Supplement the
JSON documents for customers, items, and orders with links to the forms.

• Use the “Catalog” Service to Show Items in Orders

Change the order presentation so that HTML from the “Catalog” service is
used for items. To do so, you have to insert suitable JavaScript code into the
order component, which loads HTML code from the “Catalog.”

ptg18144917

13.10 Resilience 329

• Implement Zuul Filters

Implement your own Zuul filter (see https://github.com/Netflix/zuul/wiki/
Writing-Filters). The filter can, for instance, only release the requests.
Introduce an additional routing to an external URL. For instance, /google
could redirect to http://google.com/. Compare the Spring Cloud reference
documentation.10

• Authentication and Authorization

Insert an authentication and authorization with Spring Cloud Security.
Compare http://cloud.spring.io/spring-cloud-security/.

10. http://projects.spring.io/spring-cloud/docs/1.0.3/spring-cloud.html

13.10 Resilience

Resilience means that microservices can deal with the failure of other microservices.
Even if a called microservice is not available, they will still work. Section 9.5 pre-
sented this topic.

The example application implements resilience with Hystrix.11 This library pro-
tects calls so that no problems arise if a system fails. When a call is protected by
Hystrix, it is executed in a different thread than the call itself. This thread is taken
from a distinct thread pool. This makes it comparatively easy to implement a time-
out during a call.

Circuit Breaker

In addition, Hystrix implements a Circuit Breaker. If a call causes an error, the Circuit
Breaker will open after a certain number of errors. In that case subsequent calls are not
directed to the called system anymore, but generate an error immediately. After a sleep
window the Circuit Breaker closes so that calls are directed to the actual system again.
The exact behavior can be configured.12 In the configuration the error threshold per-
centage can be determined. That is the percentage of calls that have to cause an error
within the time window for the circuit breaker to open. Also the sleep window can be
defined, in which the Circuit Breaker is open and not sending calls to the system.

 11. https://github.com/Netflix/Hystrix/

 12. https://github.com/Netflix/Hystrix/wiki/Configuration

https://www.github.com/Netflix/zuul/wiki/Writing-Filters
https://www.github.com/Netflix/zuul/wiki/Writing-Filters
http://www.google.com/
http://www.cloud.spring.io/spring-cloud-security/
http://www.projects.spring.io/spring-cloud/docs/1.0.3/spring-cloud.html
https://www.github.com/Netflix/Hystrix/
https://www.github.com/Netflix/Hystrix/wiki/Configuration

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 330

Hystrix with Annotations

Spring Cloud uses Java annotations from the project hystrix-javanica for the config-
uration of Hystrix. This project is part of hystrix-contrib.13 The annotated methods
are protected according to the setting in the annotation. Without this approach
 Hystrix commands would have to be written, which is a lot more effort than just
adding some annotations to a Java method.

To be able to use Hystrix within a Spring Cloud application, the application has to be
annotated with @EnableCircuitBreaker respectively @EnableHystrix. Moreo-
ver, the project needs to contain a dependency to spring-cloud-starter-hystrix.

Listing 13.8 shows a section from the class CatalogClient of the “Order”
microservice from the example application. The method findAll() is annotated
with @HystrixCommand. This activates the processing in a different thread and the
Circuit Breaker. The Circuit Breaker can be configured—in the example the number
of calls, which have to cause an error in order to open the Circuit Breaker, is set to
2. In addition, the example defines a fallbackMethod. Hystrix calls this method
if the original method generates an error. The logic in findAll() saves the last
result in a cache, which is returned by the fallbackMethod without calling the real
 system. In this way a reply can still be returned when the called microservice fails,
however this reply might no longer be up-to-date.

Listing 13.8 Example for a Method Protected by Hystrix

@HystrixCommand(

 fallbackMethod = "getItemsCache",

 commandProperties = {

 @HystrixProperty(

name = "circuitBreaker.requestVolumeThreshold", value = "2") })

public Collection findAll() {

 this.itemsCache = ...

 ...

 return pagedResources.getContent();

}

private Collection getItemsCache() {

 return itemsCache;

}

 13. https://github.com/Netflix/Hystrix/tree/master/hystrix-contrib

https://www.github.com/Netflix/Hystrix/tree/master/hystrix-contrib

ptg18144917

13.10 Resilience 331

Monitoring with the Hystrix Dashboard

Whether a Circuit Breaker is currently open or closed gives an indication of how well
a system is running. Hystrix offers data to monitor this. A Hystrix system provides
such data as a stream of JSON documents via HTTP. The Hystrix Dashboard can
visualize the data in a web interface. The dashboard presents all Circuit Breakers
along with the number of requests and their state (open/closed) (see Figure 13.9). In
addition, it displays the state of the thread pools.

A Spring Boot Application needs to have the annotation @EnableHystrixDash-
board and a dependency to spring-cloud-starter-hystrix-dashboard to be
able to display a Hystrix Dashboard. That way any Spring Boot application might
in addition show a Hystrix Dashboard, or the dashboard can be implemented in an
application by itself.

Turbine

In a complex microservices environment it is not useful that each instance of a
microservice visualizes the information concerning the state of its Hystrix Circuit
Breaker. The state of all Circuit Breakers in the entire system should be summarized
on a single dashboard. To visualize the data of the different Hystrix systems on one

Figure 13.9 Example for a Hystrix Dashboard

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 332

dashboard, there is the Turbine project. Figure 13.10 illustrates the approach Turbine
takes: the different streams of the Hystrix enabled microservices are provided at
URLs like http://<host:port>/hystrix.stream. The Turbine server requests them and
provides them in a consolidated manner at the URL http://<host:port>/turbine.
stream. This URL can be used by the dashboard in order to display the information
of all Circuit Breakers of the different microservice instances.

Turbine runs in a separate process. With Spring Boot the Turbine server is a simple
application, which is annotated with @EnableTurbine and @EnableEurekaClient.
In the example application it has the additional annotation @EnableHystrixDash-
board so that it also displays the Hystrix Dashboard. It also needs a dependency on
spring-cloud-starter-turbine.

Which data is consolidated by the Turbine server is determined by the configura-
tion of the application. Listing 13.9 shows the configuration of the Turbine servers of
the example project. It serves as a configuration for a Spring Boot application just like
application.properties files but is written in YAML. The configuration sets the value
ORDER for turbine.aggregator.clusterConfig. This is the application name in
Eureka. turbine.aggregator.appConfig is the name of the data stream in the
Turbine server. In the Hystrix Dashboard a URL like http://172.17.0.10:8989/turbine.
stream?cluster=ORDER has to be used in visualize the data stream. Part of the URL is
the IP address of the Turbine server, which can be found in the Eureka Dashboard. The
dashboard accesses the Turbine server via the network between the Docker containers.

Listing 13.9 Configuration application.yml

turbine:

 aggregator:

 clusterConfig: ORDER

 appConfig: order

Hystrix
Dashboard

Hystrix
System

Hystrix
System

Hystrix
System

Hystrix
System

Turbine
Server

http://<host:port>/hystrix.stream

http://<host:port>/turbine.stream

Figure 13.10 Turbine Consolidates Hystrix Monitoring Data

ptg18144917

13.11 Load Balancing 333

Try and Experiment

• Terminate Microservices

Using the example application generate a number of orders. Find the name
of the “Catalog” Docker container using docke ps. Stop the “Catalog”
Docker container with docker kill. This use is protected by Hystrix.

What happens? What happens if the “Customer” Docker container is ter-
minated as well? The use of this microservice is not protected by Hystrix.

• Add Hystrix to “Customer” Microservice

Protect the use of the “Customer” Docker container with Hystrix also. In
order to do so change the class CustomerClient from the “Order” pro-
ject. CatalogClient can serve as a template.

• Change Hystrix Configuration

Change the configuration of Hystrix for the “Catalog” microservice. There are
several configuration options.14 Listing 13.8 (CatalogClient from the “Order”
Project) shows the use of the Hystrix annotations. Other time intervals for
opening and closing of the circuit breakers are, for instance, a possible change.

 14. https://github.com/Netflix/Hystrix/wiki/Configuration

 13.11 Load Balancing

For Load Balancing the example application uses Ribbon.15 Many load balancers are
proxy based. In this model the clients send all calls to a Load Balancer. The Load
Balancer runs as a distinct server and forwards the request to a web server—often
depending on the current load of the web servers.

Ribbon implements a different model called client-side load balancing: The cli-
ent has all the information to communicate with the right server. The client calls the
server directly and distributes the load by itself to different servers. In the architec-
ture there is no bottleneck as there is no central server all calls would have to pass. In
conjunction with data replication by Eureka, Ribbon is quite resilient: As long as the
client runs, it can send requests. The failure of a proxy load balancer would stop all
calls to the server.

 15. https://github.com/Netflix/ribbon/wiki

https://github.com/Netflix/Hystrix/wiki/Configuration
https://github.com/Netflix/ribbon/wiki

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 334

Dynamic scaling is very simple within this system: A new instance is started,
enlists itself at Eureka, and then the Ribbon Clients redirect load to the instance.

As already discussed in the section dealing with Eureka (section 13.8), data can be
inconsistent over the different servers. Because data is not up to date, servers can be
contacted, which really should be left out by the Load Balancing.

Ribbon with Spring Cloud

Spring Cloud simplifies the use of Ribbon. The application has to be annotated with
@RibbonClient. While doing so, a name for the application can be defined. In addi-
tion, the application needs to have a dependency on spring-cloud-starter-
ribbon. In that case an instance of a microservice can be accessed using code like
that in Listing 13.10. For that purpose, the code uses the Eureka name of the
microservice.

Listing 13.10 Determining a Server with Ribbon Load Balancing

ServiceInstance instance

 = loadBalancer.choose("CATALOG");

String url = "http://" + instance.getHost() + ":" +

 instance.getPort() + "/catalog/";

The use can also be transparent to a large extent. To illustrate this Listing 13.11
shows the use of RestTemplates with Ribbon. This is a Spring class, which can be
used to call REST services. In the Listing the RestTemplate of Spring is injected into
the object as it is annotated with @Autowired. The call in callMicroservice()
looks like it is contacting a server called “stores.” In reality this name is used to search
a server at Eureka, and the REST call is sent to this server. This is done via Ribbon so
that the load is also distributed across the available servers.

Listing 13.11 Using Ribbon with RestTemplate

@RibbonClient(name = "ribbonApp")

 … // Left out other Spring Cloud / Boot Annotations

public class RibbonApp {

 @Autowired

 private RestTemplate restTemplate;

 public void callMicroservice() {

 Store store = restTemplate.

getForObject("http://stores/store/1", Store.class);

 }

}

ptg18144917

13.12 Integrating Other Technologies 335

Try and Experiment

• Load Balance to an Additional Service Instance

The “Order” microservice distributes the load onto several instances of the
“Customer and Catalog” microservice—if several instances exist. Without
further measures, only a single instance is started. The “Order” microservice
shows in the log which “Catalog” or “Customer” microservice it contacts.
Initiate an order and observe which services are contacted.

Afterwards start an additional “Catalog” microservice. You can do that using
the command: docker run -v /microservice-demo:/microservice-
demo --link eureka:eureka catalog-app in Vagrant. For Docker
Compose docker-compose scale catalog=2 should be enough. Verify
whether the container is running and observe the log output.

For reference: “Try and Experiment” in section 13.4 shows the main com-
mands for using Docker. Section 13.7 shows how to use Docker Compose.

• Create Data

Create a new dataset with a new item. Is the item always displayed in
the selection of items? Hint: The database runs within the process of
the microservice—that is, each microservice instance possesses its own
database.

13.12 Integrating Other Technologies

Spring Cloud and the entire Netflix Stack are based on Java. Thus, it seems impossi-
ble for other programming languages and platforms to use this infrastructure. How-
ever, there is a solution: the application can be supplied with a sidecar. The sidecar is
written in Java and uses Java libraries to integrate into a Netflix-based infrastructure.
The sidecar, for instance, takes care of registration and finding other microservices in
Eureka. Netflix itself offers for this purpose the Prana project.16 The Spring Cloud
solution is explained in the documentation.17 The sidecar runs in a distinct process
and serves as an interface between the microservice itself and the microservice infra-

 16. http://github.com/Netflix/Prana/

 17. http://cloud.spring.io/spring-cloud-static/Brixton.SR5/#_polyglot_support_with_sidecar

http://github.com/Netflix/Prana/
http://cloud.spring.io/spring-cloud-static/Brixton.SR5/#_polyglot_support_with_sidecar

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 336

structure. In this manner other programming languages and platforms can be easily
integrated into a Netflix or Spring Cloud environment.

13.13 Tests

The example application contains test applications for the developers of microser-
vices. These do not need a microservice infrastructure or additional microservices—
in contrast to the production system. This enables developers to run each microservice
without a complex infrastructure.

The class OrderTestApp in the “Order” project contains such a test appli-
cation. The applications contain their own configuration file application-test.
properties with specific settings within the directory src/test/resources. The
settings prevent that the applications register with the Service Discovery Eureka.
Besides, they contain different URLs for the dependent microservices. This con-
figuration is automatically used by the test application as it uses a Spring profile
called “test.” All JUnit tests use these settings as well so that they can run without
dependent services.

Stubs

The URLs for the dependent microservices in the test application and the JUnit tests
point to stubs. These are simplified microservices, which only offer a part of the
functionalities. They run within the same Java process as the real microservices or
JUnit tests. Therefore, only a single Java process has to be started for the develop-
ment of a microservice, analogous to the usual way of developing with Java. The
stubs can be implemented differently—for instance, using a different programming
language or even a web server, which returns certain static documents representing
the test data (see section 10.6). Such approaches might be better suited for real-life
applications.

Stubs facilitate development. If each developer needs to use a complete environ-
ment including all microservices during development, a tremendous amount of hard-
ware resources and a lot of effort to keep the environment continuously up to date
would be necessary. The stubs circumvent this problem as no dependent microservices
are needed during development. Due to the stubs the effort to start a microservice is
hardly bigger than the one for a regular Java application.

In a real project the teams can implement stubs together with the real micro-
services. The “Customer” team can implement a stub for the “Customer” micro-
service in addition to the real service, which is used by the other microservices for

ptg18144917

13.13 Tests 337

development. This ensures that the stub largely resembles the microservice and is
updated if the original service is changed. The stub can be taken care of in a differ-
ent Maven projects, which can be used by the other teams.

Consumer-Driven Contract Test

It has to be ensured that the stubs behave like the microservices they simulate. In
addition, a microservice has to define the expectations regarding the interface of a
different microservice. This is achieved by consumer-driven contract tests (see
section 10.7). These are written by the team that uses the microservices. In the exam-
ple this is the team that is responsible for the “Order” microservice. In the “Order”
micro service the consumer-driven contract tests are found in the classes Catalog-
ConsumerDrivenContractTest and CustomerConsumerDrivenContract-

Test. They run there to test the stubs of the “Customer and Catalog” microservice
for correctness.

Even more important than the correct functioning of the stubs is the correct func-
tioning of the microservices themselves. For that reason, the consumer-driven con-
tract tests are also contained in the “Customer and Catalog” project. There they run
against the implemented microservices. This ensures that the stubs as well as the real
microservices are in line with this specification. In case the interface is supposed to
be changed, these tests can be used to confirm that the change does not break the
calling microservice. It is up to the used microservices—“Customer and Catalog”
in the example—to comply with these tests. In this manner the requirements of the
“Order” microservice in regard to the “Customer and Catalog” microservice can be
formally defined and tested. The consumer-driven contract tests serve in the end as
formal definition of the agreed interface.

In the example application the consumer-driven contract tests are part of the
“Customer and Catalog” projects in order to verify that the interface is correctly
implemented. Besides they are part of the “Order” project for verifying the correct
functioning of the stubs. In a real project copying the tests should be prevented. The
consumer-driven contract tests can be located in one project together with the tested
microservices. Then all teams need to have access to the microservice projects to be
able to alter the tests. Alternatively, they are located within the projects of the differ-
ent teams that are using the microservice. In that case the tested microservice has to
collect the tests from the other projects and execute them.

In a real project it is not really necessary to protect stubs by consumer-driven
contract tests, especially as it is the purpose of the stubs to offer an easier imple-
mentation than the real microservices. Thus the functionalities will be different and
conflict with consumer-driven contract tests.

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 338

Try and Experiment

• Insert a field into “Catalog” or “Customer” data. Is the system still working?
Why?

• Delete a field in the implementation of the server for “Catalog” or
 “Customer.” Where is the problem noticed? Why?

• Replace the home-grown stubs with stubs, that use a tool from Section 10.6.

• Replace the consumer-driven contract tests with tests that use a tool from
Section 10.7.

13.14 Experiences with JVM-Based Microservices in the
Amazon Cloud (Sascha Möllering)

By Sascha Möllering, zanox AG

During the last months zanox has implemented a lightweight microservices archi-
tecture in Amazon Web Services (AWS), which runs in several AWS regions. Regions
divide the Amazon Cloud into sections like US-East or EU-West, which each have
their own data centers. They work completely independently of each other and do
not exchange any data directly. Different AWS regions are used because latency is very
important for this type of application and is minimized by latency-based routing.
In addition, it was a fundamental aim to design the architecture in an event-driven
manner. Furthermore, the individual services were intended not to communicate
directly but rather to be separated by message queues respectively bus systems. An
Apache Kafka cluster as message bus in the zanox data center serves as central point
of synchronization for the different regions. Each service is implemented as a state-
less application. The state is stored in external systems like the bus systems, Amazon
ElastiCache (based on the NoSQL database Redis), the data stream processing tech-
nology Amazon Kinesis, and the NoSQL database Amazon DynamoDB. The JVM
serves as basis for the implementation of the individual services. We chose Vert.x and
the embedded web server Jetty as frameworks. We developed all applications as self-
contained services so that a Fat JAR, which can easily be started via java –jar, is
generated at the end of the build process.

There is no need to install any additional components or an application server.
Vert.x serves as basis framework for the HTTP part of the architecture. Within the
application work is performed almost completely asynchronously to achieve high

ptg18144917

33913.14 Experiences with JVM-Based Microservices in the Amazon Cloud

performance. For the remaining components we use Jetty as framework: These act
either as Kafka/Kinesis consumer or update the Redis cache for the HTTP layer.
All called applications are delivered in Docker containers. This enables the use of a
uniform deployment mechanism independent of the utilized technology. To be able
to deliver the services independently in the different regions, an individual Docker
 Registry storing the Docker images in a S3 bucket was implemented in each region.
S3 is a service that enables the storage of large file on Amazon server.

If you intend to use Cloud Services, you have to address the question of whether
you want to use the managed services of a cloud provider or develop and run the
infrastructure yourself. zanox decided to use the managed services of a cloud pro-
vider because building and administrating proprietary infrastructure modules does
not provide any business value. The EC2 computers of the Amazon portfolio are pure
infrastructure. IAM, on the other hand, offers comprehensive security mechanisms.
In the deployed services the AWS Java SDK is used, which enables it, in combination
with IAM roles for EC2,18 to generate applications that are able to access the man-
aged services of AWS without using explicit credentials. During initial bootstrapping
an IAM role containing the necessary permissions is assigned to an EC2 instance. Via
the Metadata Service19 the AWS SDK is given the necessary credentials. This enables
the application to access the managed services defined in the role. Thus, an applica-
tion can be that sends metrics to the monitoring system Amazon Cloud Watch and
events to the data streaming processing solution Amazon Kinesis without having to
roll out explicit credentials together with the application.

All applications are equipped with REST interfaces for heartbeats and health
checks so that the application itself as well as the infrastructure necessary for the
availability of the application can be monitored at all times: Each application uses
health checks to monitor the infrastructure components it uses. Application scal-
ing is implemented via Elastic Load Balancing (ELB) and AutoScaling20 to be able
to achieve a fine-grained application depending on the concrete load. AutoScaling
starts additional EC2 instances if needed. ELB distributes the load between the
instances. The AWS ELB service is not only suitable for web applications working
with HTTP protocols but for all types of applications. A health check can also be
implemented based on a TCP protocol without HTTP. This is even simpler than an
HTTP healthcheck.

Still the developer team decided to implement the ELB healthchecks via HTTP
for all services to achieve the goal that they all behave exactly the same, independent
of the implemented logic, the used frameworks, and the language. It is also quite

 18. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

 19. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

 20. https://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/as-add-elb-healthcheck.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/as-add-elb-healthcheck.html

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 340

possible that in the future applications that do not run on JVM and, for instance, use
Go or Python as programming languages, are deployed in AWS.

For the ELB healthcheck zanox uses the application heartbeat URL. As a result,
traffic is only directed to the application respectively potentially necessary infrastruc-
ture scaling operations are only performed once the EC2 instance with the application
has properly been started and the heartbeat was successfully monitored.

For application monitoring Amazon CloudWatch is a good choice as CloudWatch
alarms can be used to define scaling events for the AutoScaling Policies, that is, the
infrastructure scales automatically based on metrics. For this purpose, EC2 basis
metrics like CPU can be used, for instance. Alternatively, it is possible to send your
own metrics to CloudWatch. For this purpose, this project uses a fork of the project
jmxtrans-agent,21 which uses the CloudWatch API to send JMX metrics to the moni-
toring system. JMX (Java Management Extension) is the standard for monitoring
and metrics in the Java world. Besides metrics are sent from within the application
(i.e., from within the business logic) using the library Coda Hale Metrics22 and a
module for the CloudWatch integration by Blacklocus.23

A slightly different approach is chosen for the logging: In a cloud environment it
is never possible to rule out that a server instance is abruptly terminated. This often
causes the sudden loss of data that are stored on the server. Log files are an example
for that. For this reason, a logstash-forwarder24 runs in parallel to the core applica-
tion on the server for sending the log entries to our ELK-Service running in our own
data center. This stack consists of Elasticsearch for storage, Logstash for parsing the
log data, and Kibana for UI-based analysis. ELK is an acronym for Elasticsearch,
Logstash, und Kibana. In addition, a UUID is calculated for each request respectively
each event in our HTTP layer so that log entries can still be assigned to events after
EC2 instances have ceased to exist.

Conclusion

The pattern of microservices architectures fits well to the dynamic approach of
Amazon Cloud if the architecture is well designed and implemented. The clear
advantage over implementing in your own data center is the infrastructure flexibility.
This makes it possible to implement a nearly endlessly scalable architecture, which is,
in addition, very cost efficient.

 21. https://github.com/SaschaMoellering/jmxtrans-agent

 22. https://dropwizard.github.io/metrics/

 23. https://github.com/blacklocus/metrics-cloudwatch

 24. https://github.com/elastic/logstash-forwarder

https://github.com/SaschaMoellering/jmxtrans-agent
https://dropwizard.github.io/metrics/
https://github.com/blacklocus/metrics-cloudwatch
https://github.com/elastic/logstash-forwarder

ptg18144917

13.15 Conclusion 341

13.15 Conclusion

The technologies used in the example provide a very good foundation for imple-
menting a microservices architecture with Java. Essentially, the example is based on
the Netflix Stack, which has demonstrated its efficacy for years already in one of the
largest websites.

The example demonstrates the interplay of different technologies for Service Dis-
covery, Load Balancing, and resilience—as well as an approach for testing micro-
services and for their execution in Docker containers. The example is not meant to be
directly useable in a production context but is first of all designed to be very easy to
set up and get running. This entails a number of compromises. However, the example
serves very well as the foundation for further experiments and the testing of ideas.

In addition, the example demonstrates a Docker-based application deployment,
which is a good foundation for microservices.

Essential Points

• Spring, Spring Boot, Spring Cloud, and the Netflix Stack offer a well- integrated
stack for Java-based microservices. These technologies solve all typical chal-
lenges posed during the development of microservices.

• Docker-based deployment is easy to implement, and in conjunction with
Docker Machine and Docker Compose, can be used for deployment in the
Cloud, too.

• The example application shows how to test microservices using consumer-
driven contract tests and stubs without special tools. However, for real-life
projects tools might be more useful.

Try and Experiment

Add Log Analysis

The log analysis of all log files is important for running a microservice sys-
tem. At https://github.com/ewolff/user-registration-V2 an example project is
provided. The subdirectory log-analysis contains a setup for an ELK (Elastic-
search, Logstash und Kibana) stack-based log analysis. Use this approach to
add a log analysis to the microservice example.

(continued)

https://github.com/ewolff/user-registration-V2

ptg18144917

Chapter 13 Example of a Microservices-Based Architecture 342

Add Monitoring

In addition, the example project from the continuous delivery book contains
graphite an installation of Graphite for monitoring in the subdirectory. Adapt
this installation for the microservice example.

Rewrite a Service

Rewrite one of the services in a different programming language. Use the
consumer-driven contract tests (see sections 13.13 and 10.7) to protect the
implementation. Make use of a sidecar for the integration into the technology
stack (see section 13.12).

ptg18144917

343

Section 14.1 discusses the advantages of nanoservices and why nanoservices can be
useful. Section 14.2 defines nanoservices and distinguishes them from microservices.
Section 14.3 focuses on Amazon Lambda, a cloud technology that can be used with
Python, JavaScript, or Java. Here each function call is billed instead of renting virtual
machines or application servers. OSGi (section 14.4) modularizes Java applications
and also provides services. Another Java technology for nanoservices is Java EE
(section 14.5), if used correctly. Vert.x, another option, (section 14.6) also runs on
the JVM but supports a broad variety of programming languages in addition to
Java. Section 14.7 focuses on the programming language Erlang, which is quite old.
The architecture of Erlang enables the implementation of nanoservices. Seneca
(section 14.8) has a similar approach as Erlang but is based on JavaScript and has
been specially designed for the development of nanoservices.

The term “microservice” is not uniformly defined. Some people believe microser-
vices should be extremely small services—that is, ten to a hundred lines of code
(LoC). This book calls such services “nanoservices.” The distinction between
microservices and nanoservices is the focus of this chapter. A suitable technology
is an essential prerequisite for the implementation of small services. If the technol-
ogy, for instance, combines several services into one operating system process, the
resource utilization per service can be decreased and the service rollout in produc-
tion facilitated. This decreases the expenditure per service, which enables support of
a large number of small nanoservices.

Chapter 14

Technologies for Nanoservices

ptg18144917

Chapter 14 Technologies for Nanoservices344

14.1 Why Nanoservices?

Nanoservices are well in line with the previously discussed size limits of microser-
vices: Their size is below the maximum size, which was defined in section 3.1 and
depends, for instance, on the number of team members. In addition, a microservice
should be small enough to still be understood by a developer. With suitable technolo-
gies the technical limits for the minimal size of a microservice, which were discussed
in section 3.1, can be further reduced.

Very small modules are easier to understand and therefore easier to maintain and
change. Besides, smaller microservices can be replaced more easily by new imple-
mentations or a rewrite. Accordingly, systems consisting of minimally sized nanoser-
vices can more easily be developed further.

There are systems that successfully employ nanoservices. In fact, in practice it is
rather the too large modules that are the source of problems and prevent the success-
ful further development of a system. Each functionality could be implemented in
its own microservice—each class or function could become a separate microservice.
Section 9.2 demonstrated that it can be sensible for CQRS to implement a microser-
vice that only reads data of a certain type. Writing the same type of data can already
be implemented in another microservice. So microservices can really have a pretty
small scope.

Minimum Size of Microservices is Limited

What are reasons against very tiny microservices? Section 3.1 identified factors that
render microservices below a certain size not practicable:

• The expenditure for infrastructure increases. When each microservice is a
separate process and requires infrastructure, such as an application server and
monitoring, the expenditure necessary for running hundreds or even thou-
sands of microservices becomes too large. Therefore, nanoservices require
technologies that make it possible to keep the expenditure for infrastructure
per individual service as small as possible. In addition, a low resource utiliza-
tion is desirable. The individual services should consume as little memory and
CPU as possible.

• In the case of very small services a lot of communication via the network is
required. That has a negative influence on system performance. Consequently,
when working with nanoservices communication between the services should not
occur via the network. This might result in less technological freedom. When all
nanoservices run in a single process, they are usually required to employ the same

ptg18144917

34514.1 Why Nanoservices?

technology. Such an approach also affects system robustness. When several ser-
vices run in the same process, it is much more difficult to isolate them from each
other. A nanoservice can use up so many resources that other nanoservices do
not operate error free anymore. When two nanoservices run in the same process,
the operating system cannot intervene in such situations. In addition, a crash of
a nanoservice can result in the failure of additional nanoservices. If the processes
crash, their crash will affect all nanoservices running in the same process.

The technical compromises can have a negative effect on the properties of nanoser-
vices. In any case the essential feature of microservices has to be maintained—
namely, the independent deployment of the individual services.

Compromises

In the end the main task is to identify technologies that minimize the overhead per
nanoservice and at the same time preserve as many advantages of microservices as
possible.

In detail the following points need to be achieved:

• The expenditure for infrastructure such as monitoring and deployment has to
be kept low. It has to be possible to bring a new nanoservice into production
without much effort and to have it immediately displayed in monitoring.

• Resource utilization, for instance in regard to memory, should be as low as
possible to enable a large number of nanoservices with little hardware. This
does not only make the production environment cheaper but also facilitates the
generation of test environments.

• Communication should be possible without the network. This does not only
improve latency and performance but increases the reliability of the communi-
cation between nanoservices because it is not influenced by network failures.

• Concerning isolation, a compromise has to be found. The nanoservices should
be isolated from each other so that one nanoservice cannot cause another
nanoservice to fail. Otherwise, a single nanoservice might cause the entire
system to break down. However, achieving a perfect isolation might be less
important than having a lower expenditure for infrastructure, a low resource
utilization, and the other advantages of nanoservices.

• Using nanoservices can limit the choice of programming languages, platforms,
and frameworks. Microservices, on the other hand, enable, in principle, a free
choice of technology.

ptg18144917

Chapter 14 Technologies for Nanoservices346

Desktop Applications

Nanoservices enable the use of microservice approaches in areas in which microser-
vices themselves are hardly useable. One example is the possibility of dividing a
desktop application in nanoservices. OSGi (section 14.4) is, for instance, used for
desktop and even for embedded applications. A desktop application consisting of
microservices is, on the other hand, probably too difficult to deploy to really use it
for desktop applications. Each microservice has to be deployed by itself, and that is
hardly possible for a large number of desktop clients—some of which might even be
located in other companies. Moreover, the integration of several microservices into a
coherent desktop application is hard—in particular if they are implemented as
 completely separated processes.

14.2 Nanoservices: Definition

A nanoservice differs from a microservice. It compromises in certain areas. One of
these areas is isolation: multiple nanoservices run on a single virtual machine or in a
single process. Another area is technology freedom: nanoservices use a shared
 platform or programming language. Only with these limitations does the use of
nanoservices become feasible. The infrastructure can be so efficient that a much
larger number of services is possible. This enables the individual services to be
smaller. A nanoservice might comprise only a few lines of code.

However, by no means may the technology require a joint deployment of nanoser-
vices, for independent deployment is the central characteristic of microservices and
also nanoservices. Independent deployment constitutes the basis for the essential
advantages of microservices: Teams that can work independently, a strong modulari-
zation, and as consequence a sustainable development.

Therefore, nanoservices can be defined as follows:

• Nanoservices compromise in regard to some microservice properties such as
isolation and technology freedom. However, nanoservices still have to be inde-
pendently deployable.

• The compromises enable a larger number of services and therefore for smaller
services. Nanoservices can contain just a few lines of code.

• To achieve this, nanoservices use highly efficient runtime environments. These
exploit the restrictions of nanoservices in order to enable more and smaller
services.

ptg18144917

34714.3 Amazon Lambda

Thus, nanoservices depend a lot on the employed technologies. The technology
enables certain compromises in nanoservices and therefore nanoservices of a certain
size. Therefore, this chapter is geared to different technologies to explain the possible
varieties of nanoservices.

The objective of nanoservices is to amplify a number of advantages of microser-
vices. Having even smaller deployment units decreases the deployment risk further,
facilitates deployment even more, and achieves better, understandable, and
 replaceable services. In addition, the domain architecture will change: A Bounded
Context that might consist of one or a few microservices will now comprise a multi-
tude of nanoservices that each implement a very narrowly defined functionality.

The difference between microservices and nanoservices is not strictly defined:
If two microservices are deployed in the same virtual machine, efficiency increases,
and isolation is compromised. The two microservices now share an operating sys-
tem instance and a virtual machine. When one of the microservices uses up the
resources of the virtual machine, the other microservice running on the same virtual
machine will also fail. This is the compromise in terms of isolation. So in a sense
these microservices are already nanoservices.

By the way, the term “nanoservice” is not used very much. This book uses the
term “nanoservice” to make it plain that there are modularizations that are similar
to microservices but differ when it comes to detail, thereby enabling even smaller
 services. To distinguish these technologies with their compromises clearly from
“real” microservices the term “nanoservice” is useful.

14.3 Amazon Lambda

Amazon Lambda1 is a service in the Amazon Cloud. It is available worldwide in all
Amazon computing centers.

Amazon Lambda can execute individual functions that are written in Python,
JavaScript with Node.js, or Java 8 with OpenJDK. The code of these functions
does not have dependencies on Amazon Lambda. Access to the operating system is
 possible. The computers the code is executed on contain the Amazon Web Services
SDK as well as ImageMagick for image manipulations. These functionalities can be
used by Amazon Lambda applications. Besides, additional libraries can be installed.

Amazon Lambda functions have to start quickly because it can happen that they
are started for each request. Therefore, the functions also may not hold a state.

1. http://aws.amazon.com/lambda

http://aws.amazon.com/lambda

ptg18144917

Chapter 14 Technologies for Nanoservices348

Thus there are no costs when there are no requests that cause an execution of the
functions. Each request is billed individually. Currently, the first million requests are
free. The price depends on the required RAM and processing time.

Calling Lambda Functions

Lambda functions can be called directly via a command line tool. The processing
occurs asynchronously. The functions can return results via different Amazon func-
tionalities. For this purpose, the Amazon Cloud contains messaging solutions such
as Simple Notification Service (SNS) or Simple Queue Service (SQS).

The following events can trigger a call of a Lambda function:

• In Simple Storage Service (S3) large files can be stored and downloaded. Such
actions trigger events to which an Amazon Lambda function can react.

• Amazon Kinesis can be used to administrate and distribute data streams.
This technology is meant for the real time processing of large data amounts.
Lambda can be called as reaction to new data in these streams.

• With Amazon Cognito it is possible to use Amazon Lambda to provide simple
back ends for mobile applications.

• The API Gateway provides a way to implement REST APIs using Amazon
Lambda.

• Furthermore, it is possible to have Amazon Lambda functions be called at reg-
ular intervals.

• As a reaction to a notification in Simple Notification Service (SNS), an Ama-
zon Lambda function can be executed. As there are many services which can
provide such notifications, this makes Amazon Lambda useable in many
scenarios.

• DynamoDB is a database within the Amazon Cloud. In case of changes to
the database it can call Lambda functions. So Lambda functions essentially
become database triggers.

Evaluation for Nanoservices

Amazon Lambda enables the independent deployment of different functions with-
out problems. They can also bring their own libraries along.

ptg18144917

34914.3 Amazon Lambda

The technological expenditure for infrastructure is minimal when using this tech-
nology: A new version of an Amazon Lambda function can easily be deployed with
a command line tool. Monitoring is also simple: the functions are immediately inte-
grated into Cloud Watch. Cloud Watch is offered by Amazon to create metrics of
Cloud applications and to consolidate and monitor log files. In addition, alarms
can be defined based on these data that can be forwarded by SMS or email. Since
all Amazon services can be contacted via an API, monitoring or deployment can be
automated and integrated into their own infrastructures.

Amazon Lambda provides integration with the different Amazon services such
as S3, Kinesis, and DynamoDB. It is also easily possible to contact an Amazon
Lambda function via REST using the API Gateway. However, Amazon Lambda
exacts that Node.js, Python, or Java are used. This profoundly limits the technology
freedom.

Amazon Lambda offers an excellent isolation of functions. This is also necessary
since the platform is used by many different users. It would not be acceptable for a
Lambda function of one user to negatively influence the Lambda functions of other
users.

Conclusion

Amazon Lambda enables you to implement extremely small services. The overhead
for the individual services is very small. Independent deployment is easily possible.
A Python, JavaScript, or Java function is the smallest deployment unit supported by
Amazon Lambda—it is hardly possible to make them any smaller. Even if there is a
multitude of Python, Java, or JavaScript functions, the expenditure for the deploy-
ments remains relatively low.

Amazon Lambda is a part of the Amazon ecosystem. Therefore, it can be
supplemented by technologies like Amazon Elastic Beanstalk. There, microservices
can run that can be larger and written in other languages. In addition, a
combination with Elastic Computing Cloud (EC2) is possible. EC2 offers virtual
machines on which any software can be installed. Moreover, there is a broad choice
in regard to databases and other services that can be used with little additional
effort. Amazon Lambda defines itself as a supplement of this tool kit. In the end
one of the crucial advantages of the Amazon Cloud is that nearly every possible
infrastructure is available and can easily be used. Thus developers can concentrate
on the development of specific functionalities while most standard components can
just be rented.

ptg18144917

Chapter 14 Technologies for Nanoservices350

14.4 OSGi

OSGi4 is a standard with many different implementations.5 Embedded systems often
use OSGi. Also the development environment Eclipse is based on OSGi, and many
Java desktop applications use the Eclipse framework. OSGi defines a modularization
within the JVM (Java Virtual Machine). Even though Java enables a division of code
into classes or packages, there is no modular concept for larger units.

The OSGi Module System

OSGi supplements Java by such a module system. To do so OSGi introduces bundles
into the Java world. Bundles are based on Java’s JAR files, which comprise code of
multiple classes. Bundles have a number of additional entries in the file META-INF/
MANIFEST.MF, which each JAR file should contain. These entries define which
classes and interfaces the bundle exports. Other bundles can import these classes and
interfaces. Therefore OSGi extends Java with a quite sophisticated module concept
without inventing entirely new concepts.

4. http://www.osgi.org/

5. http://en.wikipedia.org/wiki/OSGi#Current_framework_implementations

Try and Experiment

• There is a comprehensive tutorial2 that illustrates how to use Amazon
Lambda. It does not only demonstrate simple scenarios, but it also shows
how to use complex mechanisms such as different Node.js libraries, imple-
menting REST services, or how to react to different events in the Amazon
system. Amazon offers cost-free quotas of most services to new customers.
In case of Lambda each customer gets such a large free quota that it is fully
sufficient for tests and first getting to know the technology. Also note that
the first million calls during a month are free. However, you should check
the current pricing.3

2. http://aws.amazon.com/lambda/getting-started/

3. https://aws.amazon.com/lambda/pricing/

http://www.osgi.org/
http://en.wikipedia.org/wiki/OSGi#Current_framework_implementations
http://aws.amazon.com/lambda/getting-started/3
https://aws.amazon.com/lambda/pricing/

ptg18144917

35114.4 OSGi

Listing 14.1 OSGi MANIFEST.MF

Bundle-Name: A service

Bundle-SymbolicName: com.ewolff.service

Bundle-Description: A small service

Bundle-ManifestVersion: 2

Bundle-Version: 1.0.0

Bundle-Acltivator: com.ewolff.service.Activator

Export-Package: com.ewolff.service.interfaces;version="1.0.0"

Import-Package: com.ewolff.otherservice.interfaces;

version="1.3.0"

Listing 14.1 shows an example of a MANIFEST.MF file. It contains the descrip-
tion and name of the bundle and the bundle activator. This Java class is executed
upon the start of the bundle and can initialize the bundle. Export-Package
 indicates which Java packages are provided by this bundle. All classes and interfaces
of these packages are available to other bundles. Import-Package serves to import
packages from another bundle. The packages can also be versioned.

In addition to interfaces and classes bundles can also export services. However, an
entry in MANIFEST.MF is not sufficient for this. Code has to be written. Services
are only Java objects in the end. Other bundles can import and use the services. Also
calling the services happens in the code.

Bundles can be installed, started, stopped, and uninstalled at runtime. Therefore,
bundles are easy to update: Stop and uninstall the old version, then install a new
 version and start. However, if a bundle exports classes or interfaces and another
bundle uses these, an update is not so simple anymore. All bundles that use classes
or interfaces of the old bundle and now want to use the newly installed bundle have
to be restarted.

Handling Bundles in Practice

Sharing code is by far not as important for microservices as the use of services.
 Nevertheless at least the interface of the services has to be offered to other bundles.

In practice a procedure has been established where a bundle only exports the inter-
face code of the service as classes and Java interfaces. Another bundle contains the
implementation of the service. The classes of the implementation are not exported.
The service implementation is exported as OSGi service. To use the service a bundle
has to import the interface code from the one bundle and the service from the other
bundle (see Figure 14.1).

ptg18144917

Chapter 14 Technologies for Nanoservices352

OSGi enables restarting services. With the described approach the implementa-
tion of the service can be exchanged without having to restart other bundles. These
bundles only import the Java interfaces and classes of the interface code. That code
does not change for a new service implementation so that restarting is not necessary
anymore. That way the access to services can be implemented in such a manner that
the new version of the service is, in fact, used.

With the aid of OSGi blueprints6 or OSGi declarative services7 these details can
be abstracted away when dealing with the OSGi service model. This facilitates the
handling of OSGi. These technologies, for instance, render it much easier to handle
the restart of a service or its temporary failure during the restart of a bundle.

An independent deployment of services is possible but also laborious since inter-
face code and service implementation have to be contained in different bundles. This
model allows only changes to the implementation. Modifications of the interface
code are more complex. In such a case the bundles using a service have to be restarted
because they have to reload the interface.

In reality OSGi systems are often completely reinstalled for these reasons instead
of modifying individual bundles. An Eclipse update, for instance, often entails a
restart. A complete reinstallation also facilitates the reproduction of the environ-
ment. When an OSGi system is dynamically changed, at some point it will be in a
state that nobody is able to reproduce. However, modifying individual bundles is
an essential prerequisite for implementing the nanoservice approach with OSGi.

6. https://osgi.org/download/r6/osgi.cmpn-6.0.0.pdf

7. https://osgi.org/download/r6/osgi.cmpn-6.0.0.pdf

Calling Bundle
Bundle (Interface

Code)

Bundle
(Implementation

and Service)

Package
(Interface

Code)

Package
(Interface

Code)Service

Figure 14.1 OSGi Service, Implementation, and Interface Code

https://osgi.org/download/r6/osgi.cmpn-6.0.0.pdf
https://osgi.org/download/r6/osgi.cmpn-6.0.0.pdf

ptg18144917

35314.4 OSGi

Independent deployment is an essential property of a nanoservice. OSGi compro-
mises this essential property.

Evaluation for Nanoservices

OSGi has a positive effect on Java projects in regard to architecture. The bundles are
usually relatively small so that the individual bundles are easy to understand. In addi-
tion, the split into bundles forces the developers and architects to think about the
relationships between the bundles and to define them in the configurations of the
bundles. Other dependencies between bundles are not possible within the system.
Normally, this leads to a very clean architecture with clear and intended
dependencies.

However, OSGi does not offer technological freedom: It is based on the JVM and
therefore can only be used with Java or JVM-based languages. For example, it is
nearly impossible that an OSGi bundle brings along its own database because data-
bases are normally not written in Java. For such cases additional solutions alongside
the OSGi infrastructure have to be found.

For some Java technologies an integration with OSGi is difficult since loading
Java classes works differently without OSGi. Moreover, many popular Java applica-
tion servers do not support OSGi for deployed applications so that changing code at
runtime is not supported in such environments. The infrastructure has to be specially
adapted for OSGi.

Furthermore, the bundles are not fully isolated: When a bundle uses a lot of CPU
or causes the JVM to crash, the other bundles in the same JVM will be affected.
Failures can occur, for instance, due to a memory leak, which causes more and more
memory to be allocated due to an error until the system breaks down. Such errors
easily arise due to blunders.

On the other hand, the bundles can locally communicate due to OSGi. Distrib-
uted communication is also possible with different protocols. Moreover, the bundles
share a JVM, which reduces, for instance, the memory utilization.

Solutions for monitoring are likewise present in the different OSGi
implementations.

Conclusion

OSGi leads, first of all, to restrictions in regard to technological freedom. It restricts
the project to Java technologies. In practice the independent deployment of the bun-
dles is hard to implement. Interface changes are especially poorly supported. Besides
bundles are not well isolated from each other. On the other hand, bundles can easily
interact via local calls.

ptg18144917

Chapter 14 Technologies for Nanoservices354

14.5 Java EE

Java EE9 is a standard from the Java field. It comprises different APIs such as JSF (Java
ServerFaces), Servlet, and JSP (Java Server Pages) for web applications; JPA (Java Persis-
tence API) for persistence; or JTA (Java Transaction API) for transactions. Additionally,
Java EE defines a deployment model. Web applications can be packaged into WAR files
(Web ARchive), JAR files (Java ARchive) can contain logic components like Enterprise
Java Beans (EJBs), and EARs (Enterprise ARchives) can comprise a collection of JARs
and WARs. All these components are deployed in one application server. The applica-
tion server implements the Java EE APIs and offers, for instance, support for HTTP,
threads, and network connections and also support for accessing databases.

This section deals with WARs and the deployment model of Java EE applica-
tion servers. Chapter 13, “Example of a Microservice-Based Architecture,” already
described in detail a Java system that does not require an application server. Instead it
directly starts a Java application on the Java Virtual Machine (JVM). The application
is packaged in a JAR file and contains the entire infrastructure. This deployment is
called Fat JAR deployment, because the application, including the entire infrastructure,
is contained in one single JAR. The example from Chapter 13 uses Spring Boot, which
also supports a number of Java EE APIs such as JAX-RS for REST. Dropwizard10 also
offers such a JAR model. It is actually focused on JAX RS-based REST web services;
however, it can also support other applications. Wildfly Swarm11 is a variant of the Java
EE server Wildfly, which also supports such a deployment model.

9. http://www.oracle.com/technetwork/java/javaee/overview/index.html

 10. https://dropwizard.github.io/dropwizard/

 11. http://github.com/wildfly-swarm/

Try and experiment

• Get familiar with OSGi with, for instance, the aid of a tutorial.8

• Create a concept for the distribution into bundles and services for a part of
a system you know.

• If you had to implement the system with OSGi, which additional technolo-
gies (databases etc.) would you have to use? How would you handle this?

8. http://www.vogella.com/tutorials/OSGi/article.html

http://www.oracle.com/technetwork/java/javaee/overview/index.html
https://www.dropwizard.github.io/dropwizard/
http://www.github.com/wildfly-swarm/
http://www.vogella.com/tutorials/OSGi/article.html

ptg18144917

35514.5 Java EE

Nanoservices with Java EE

A Fat JAR deployment utilizes too many resources for nanoservices. In a Java EE
application server, multiple WARs can be deployed, thereby saving resources. Each
WAR can be accessed via its own URL. Furthermore, each WAR can be individually
deployed. This enables bringing each nanoservice individually into production.

However, the separation between WARs is not optimal:

• Memory and CPU are collectively used by all nanoservices. When a nanoser-
vice uses a lot of CPU or memory, this can interfere with other nanoservices.
A crash of one nanoservice propagates to all other nanoservices.

• In practice, redeployment of a WAR causes memory leaks if it is not possible
to remove the entire application from memory. Therefore, in practice the inde-
pendent deployment of individual nanoservices is hard to achieve.

• In contrast to OSGi the ClassLoaders of the WARs are completely separate.
There is no possibility for accessing the code of other nanoservices.

• Because of the separation of the code, WARs can only communicate via HTTP
or REST. Local method calls are not possible.

Since multiple nanoservices share an application server and a JVM, this solu-
tion is more efficient than the Fat JAR deployment of individual microservices in
their own JVM as described in Chapter 13. The nanoservices use a shared heap and
therefore use less memory. However, scaling works only by starting more application
 servers. Each of the application servers contains all nanoservices. All nanoservices
have to be scaled collectively. It is not possible to scale individual nanoservices.

The technology choice is restricted to JVM technologies. Besides all technologies
are excluded that do not work with the servlet model, such as Vert.x (section 14.6)
or Play.

Microservices with Java EE?

For microservices Java EE can also be an option: Theoretically it would be possible
to run each microservice in its own application server. In this case an application
server has to be installed and configured in addition to the application. The version
of the application server and its configuration have to fit to the version of the appli-
cation. For Fat JAR deployment there is no need for a specific configuration of the
application server because it is part of the Fat JAR and therefore configured just like
the application. This additional complexity of the application server is not counter-
balanced by any advantage. Since deployment and monitoring of the application

ptg18144917

Chapter 14 Technologies for Nanoservices356

server only work for Java applications, these features can only be used in a
 microservices-based architecture when the technology choice is restricted to Java
technologies. In general, application servers have hardly any advantages12—
especially for microservices.

An Example

The application from Chapter 13 is also available with the Java EE deployment
 model.13 Figure 14.2 provides an overview of the example: There are three WARs,
which comprise “Order,” “Customer,” and “Catalog.” They communicate with each
other via REST. When “Customer” fails, “Order” would also fail in the host since
“Order” communicates only with this single “Customer” instance. To achieve better
availability, the access would have to be rerouted to other “Customer” instances.

A customer can use the UI of the nanoservices from the outside via HTML/
HTTP. The code contains only small modifications compared to the solution from
Chapter 13. The Netflix libraries have been removed. On the other hand, the applica-
tion has been extended with support for servlet containers.

 12. http://jaxenter.com/java-application-servers-dead-1-111928.html

 13. https://github.com/ewolff/war-demo

Docker Container

Tomcat Java EE
Server

customer.war

catalog.war

order.war
REST

to localhost

HTTP/HTML

Figure 14.2 Example Application with Java EE Nanoservices

http://jaxenter.com/java-application-servers-dead-1-111928.html
https://github.com/ewolff/war-demo

ptg18144917

35714.6 Vert.x

14.6 Vert.x

Vert.x 15 is a framework containing numerous interesting approaches. Although it
runs on the Java Virtual Machine, it supports many different programming
 languages—such as Java, Scala, Clojure, Groovy, and Ceylon as well as JavaScript,
Ruby, or Python. A Vert.x system is built from Verticles. They receive events and can
return messages.

 15. http://vertx.io/

Try and Experiment

The application as Java EE nanoservices can be found on GitHub.14

The application does not use the Netflix technologies.

• Hystrix offers resilience (see section 13.10).

• Does it make sense to integrate Hystrix into the application?

• How are the nanoservices isolated from each other?

• Is Hystrix always helpful?

• Compare also section 9.5 concerning stability and resilience. How can
these patterns be implemented in this application?

• Eureka is helpful for service discovery. How would it fit into the Java EE
nanoservices?

• How can other service discovery technologies be integrated (see
section 7.11)?

• Ribbon for load balancing between REST services could likewise be
integrated. Which advantages would that have? Would it also be possible
to use Ribbon without Eureka?

14. https://github.com/ewolff/javaee-example/

http://vertx.io/
https://github.com/ewolff/javaee-example/

ptg18144917

Chapter 14 Technologies for Nanoservices358

Listing 14.2 shows a simple Vert.x Verticle, which only returns the incoming
 messages. The code creates a server. When a client connects to the server, a callback
is called, and the server creates a pump. The pump serves to transfer data from a
source to a target. In the example source and target are identical.

The application only becomes active when a client connects, and the callback is
called. Likewise, the pump only becomes active when new data are available from
the client. Such events are processed by the event loop, which calls the Verticles. The
Verticles then have to process the events. An event loop is a thread. Usually one event
loop is started per CPU core so that the event loops are processed in parallel. An
event loop and thus a thread running on a single CPU core can support an arbitrary
number of network connections. Events of all connections can be processed in a sin-
gle event loop. Therefore, Vert.x is also suitable for applications that have to handle a
large number of network connections.

Listing 14.2 Simple Java Vert.x Echo Verticle

public class EchoServer extends Verticle {

 public void start() {

 vertx.createNetServer().connectHandler(new Handler() {

public void handle(final NetSocket socket) {

Pump.createPump(socket, socket).start();

}

 }).listen(1234);

 }

}

As described Vert.x supports different programming languages. Listing 14.3
shows the same Echo Verticle in JavaScript. The code adheres to JavaScript conven-
tions and uses, for instance, a JavaScript function for callback. Vert.x has a layer for
each programming language that adapts the basic functionality in such a way that it
seems like a native library for the respective programming language.

Listing 14.3 Simple JavaScript Vert.x Echo Verticle

var vertx = require('vertx')

vertx.createNetServer().connectHandler(function(sock) {

 new vertx.Pump(sock, sock).start();

}).listen(1234);

Vert.x modules can contain multiple Verticles in different languages. Verticles and
modules can communicate with each other via an event bus. The messages on the
event bus use JSON as data format. The event bus can be distributed onto multiple

ptg18144917

35914.6 Vert.x

servers. In this manner Vert.x supports distribution and can implement high avail-
ability by starting modules on other servers. Besides the Verticles and modules are
loosely coupled since they only exchange messages. Vert.x also offers support for
other messaging systems and can also communicate with HTTP and REST. There-
fore, it is relatively easy to integrate Vert.x systems into microservice-based systems.

Modules can be individually deployed and also removed again. Since the modules
communicate with each other via events, modules can easily be replaced by new
modules at runtime. They only have to process the same messages. A module can
implement a nanoservice. Modules can be started in new nodes so that the failure of
a JVM can be compensated.

Vert.x also supports Fat JARs where the application brings all necessary libraries
along. This is useful for microservices since this means that the application brings
all dependencies along and is easier to deploy. For nanoservices this approach is not
so useful because the approach consumes too many resources—deploying multiple
Vert.x modules in one JVM is a better option for nanoservices.

Conclusion

Via the independent module deployment and the loose coupling by the event bus
Vert.x supports multiple nanoservices within a JVM. However, a crash of the JVM,
a memory leak, or blocking the event loop would affect all modules and Verticles in
the JVM. On the other hand, Vert.x supports many different programming
 languages—in spite of the restriction to JVM. This is not only a theoretical option.
In fact, Vert.x aims at being easily useable in all supported languages. Vert.x
 presumes that the entire application is written in a nonblocking manner. However,
there is the possibility to execute blocking tasks in Worker Verticles. They use sepa-
rate thread pools so that they do not influence the nonblocking Verticles. Therefore
even code that does not support the Vert.x nonblocking approach can still be used in
a Vert.x system. This enables even greater technological freedom.

Try and Experiment

The Vert.x homepage16 offers an easy start to developing with Vert.x. It dem-
onstrates how a web server can be implemented and executed with different
programming languages. The modules in the example use Java and Maven.17
There are also complex examples in other programming languages.18

16. http://vertx.io/

17. https://github.com/vert-x3/vertx-examples/tree/master/maven-simplest

18. https://github.com/vert-x/vertx-examples

http://vertx.io/
https://github.com/vert-x3/vertx-examples/tree/master/maven-simplest
https://github.com/vert-x/vertx-examples

ptg18144917

Chapter 14 Technologies for Nanoservices360

14.7 Erlang

Erlang19 is a functional programming language that is, first of all, used in combina-
tion with the Open Telecom Platform (OTP) framework. Originally, Erlang was
developed for telecommunication. In this field applications have to be very reliable.
Meanwhile Erlang is employed in all areas that profit from its strengths. Erlang uses a
virtual machine similar to Java as a runtime environment, which is called BEAM
(Bogdan/ Björn’s Erlang Abstract Machine).

Erlang’s strengths are, first of all, its resilience against failures and the possibility
to let systems run for years. This is only possible via dynamic software updates. At
the same time, Erlang has a lightweight concept for parallelism. Erlang uses the con-
cept of processes for parallel computing. These processes are not related to operating
system processes and are even more lightweight than operating system threads. In
an Erlang system millions of processes can run that are all isolated from each other.

Another factor contributing to the isolation is the asynchronous communication.
Processes in an Erlang system communicate with each other via messages. Messages
are sent to the mailbox of a process (see Figure 14.3). In one process only one message
is processed at a time. This facilitates the handling of parallelism: there is parallel
execution because many messages can be handled at the same time. But each process
takes care of only one message at a time. Parallelism is achieved because there are
multiple processes. The functional approach of the language, which attempts to get
by without a state, fits well to this model. This approach corresponds to the Verticles
in Vert.x and their communication via the event bus.

Listing 14.4 shows a simple Erlang server that returns the received message. It
is defined in its own module. The module exports the function loop, which does
not have any parameters. The function receives a message Msg from a node From
and then returns the same message to this node. The operator “!” serves for sending
the message. Afterwards the function is called again and waits for the next message.
Exactly the same code can also be used for being called by another computer via the

19. http://www.erlang.org/

Message

Message

Message

Mailbox

Process

Process

Message

Figure 14.3 Communication between Erlang Processes

http://www.erlang.org/

ptg18144917

36114.7 Erlang

network. Local messages and messages via the network are processed by the same
mechanisms.

Listing 14.4 An Erlang Echo Server

module(server).

-export([loop/0]).

loop() ->

 receive

{From, Msg} ->

From ! Msg,

loop()

end.

Due to the sending of messages, Erlang systems are especially robust. Erlang
makes use of “Let It Crash.” An individual process is just restarted when problems
occur. This is the responsibility of the supervisor, a process that is specifically dedi-
cated to monitoring other processes and restarting them if necessary. The supervisor
itself is also monitored and restarted in case of problems. This way a tree is cre-
ated in Erlang that in the end prepares the system in case processes should fail (see
Figure 14.4).

Since the Erlang process model is so lightweight, restarting a process is done
 rapidly. When the state is stored in other components, there will also be no informa-
tion loss. The remainder of the system is not affected by the failure of the process:
As the communication is asynchronous, the other processes can handle the higher
latency caused by the restart. In practice this approach has proven very reliable.
Erlang systems are very robust and still easy to develop.

This approach is based on the actor model:20 Actors communicate with each
other via asynchronous messages. As a response they can themselves send messages,

20. http://en.wikipedia.org/wiki/Actor_model

Supervisor

Supervisor Supervisor

Process Process Process ProcessProcess Process

Figure 14.4 Monitoring in Erlang Systems

http://en.wikipedia.org/wiki/Actor_model

ptg18144917

Chapter 14 Technologies for Nanoservices362

start new actors, or change their behavior for the next messages. Erlang’s processes
correspond to actors.

In addition, there are easy possibilities to monitor Erlang systems. Erlang itself
has built-in functions that can monitor memory utilization or the state of the mail-
boxes. OTP offers for this purpose the operations and maintenance support (OAM),
which can, for instance, also be integrated into SNMP systems.

Since Erlang solves typical problems arising upon the implementation of micro-
services like resilience, it supports the implementation of microservices21 quite well.
In that case a microservice is a system written in Erlang that internally consists of
multiple processes.

However, the services can also get smaller; each process in an Erlang system could
be considered as a nanoservice. It can be deployed independently of the others, even
during runtime. Furthermore, Erlang supports operating system processes. In that
case they are also integrated into the supervisor hierarchy and restarted in case of a
breakdown. This means that any operating system process written in any language
might become a part of an Erlang system and its architecture.

Evaluation for Nanoservices

As discussed an individual process in Erlang can be viewed as a nanoservice. The
expenditure for the infrastructure is relatively small in that case: Monitoring is
 possible with built-in Erlang functions. The same is true for deployment. Since the
processes share a BEAM instance, the overhead for a single process is not very high.
In addition, it is possible for the processes to exchange messages without having to
communicate via the network and therefore with little overhead. The isolation of
processes is also implemented.

Finally, even processes in other languages can be added to an Erlang system. For
this purpose, an operating system process that can be implemented in an arbitrary
language is put under the control of Erlang. The operating system process can, for
instance, be safeguarded by “Let It Crash.” This enables integration of practically all
technologies into Erlang—even if they run in a separate process.

On the other hand, Erlang is not very common. The consequent functional
approach also needs getting used to. Finally, the Erlang syntax is not very intuitive for
many developers.

21. https://www.innoq.com/en/talks/2015/01/talk-microservices-erlang-otp/

https://www.innoq.com/en/talks/2015/01/talk-microservices-erlang-otp/

ptg18144917

36314.8 Seneca

Try and Experiment

• A very simple example22 is based on the code from this section and demon-
strates how communication between nodes is possible. You can use it to get
a basic understanding of Erlang.

• There is a very nice tutorial 23 for Erlang, which also treats deployment and
operation. With the aid of the information from the tutorial the example 24

can be supplemented by a supervisor.

• An alternative language out of the Erlang ecosystem is Elixir.25 Elixir has a
different syntax but also profits from the concepts of OTP. Elixir is much
simpler to learn than Erlang and thus lends itself to a first start.

• There are many other implementations of the actor model.26 It is worth-
while to look more closely before deciding whether such technologies are
also useful for the implementation of microservices or nanoservices and
which advantages might be associated. Akka from the Scala/Java area might
be of interest here.

22. https://github.com/ewolff/erlang-example/

23. http://learnyousomeerlang.com/

24. https://github.com/ewolff/erlang-example/

25. http://elixir-lang.org/

26. http://en.wikipedia.org/wiki/Actor_model

14.8 Seneca

Seneca27 is based on Node.js and accordingly uses JavaScript on the server. Node.js
has a programming model where one operating system process can take care of many
tasks in parallel. To achieve this there is an event loop that handles the events. When
a message enters the system via a network connection, the system will first wait until
the event loop is free. Then the event loop processes the message. The processing has
to be fast since the loop is blocked, otherwise resulting in long waiting times for all
other messages. For this reason, the response of other servers may in no case be
waited for in the event loop. That would block the system for too long. The interac-
tion with other systems has to be implemented in such a way that the interaction is

27. http://senecajs.org/

https://github.com/ewolff/erlang-example/
http://learnyousomeerlang.com/
https://github.com/ewolff/erlang-example/
http://elixir-lang.org/
http://en.wikipedia.org/wiki/Actor_model
http://senecajs.org/

ptg18144917

Chapter 14 Technologies for Nanoservices364

only initiated. Then the event loop is freed to handle other events. Only when the
response of the other system arrives is it processed by the event loop. Then the event
loop calls a callback that has been registered upon the initiation of the interaction.
This model is similar to the approaches used by Vert.x and Erlang.

Seneca introduces a mechanism in Node.js that enables processing of commands.
Patterns of commands are defined that cause certain code to be executed.

Communicating via such commands is also easy to do via the network. Listing
14.5 shows a server that calls seneca.add(). Thereby a new pattern and code for
handling events with this pattern are defined. To the command with the component
cmd: "echo" a function reacts. It reads out the value from the command and
puts it into the value parameter of the function callback. Then the function
callback is called. With seneca.listen() the server is started and listens to
commands from the network.

Listing 14.5 Seneca Server

var seneca = require("seneca")()

seneca.add({cmd: "echo"}, function(args,callback){

 callback(null,{value:args.value})

})

seneca.listen()

The client in Listing 14.6 sends all commands that cannot be processed locally via
the network to the server. seneca.client(). seneca.act() creates the com-
mands that are sent to the server. It contains cmd: "echo"—therefore the function
of the server in Listing 14.5 is called. "echo this" is used as the value. The server
returns this string to the function that was passed in as a callback—and in this way it
is finally printed on the console. The example code can be found on GitHub.28

Listing 14.6 Seneca Client

var seneca=require("seneca")()

seneca.client()

seneca.act('cmd: "echo",value:"echo this", function(err,result){

 console.log(result.value)

})

28. https://github.com/ewolff/seneca-example/

https://github.com/ewolff/seneca-example/

ptg18144917

36514.8 Seneca

Therefore, it is very easy to implement a distributed system with Seneca. However,
the services do not use a standard protocol like REST for communicating. Neverthe-
less, REST systems also can be implemented with Seneca. Besides the Seneca protocol
is based on JSON and therefore can also be used by other languages.

A nanoservice can be a function that reacts with Seneca to calls from the
 network—and therefore it can be very small. As already described, a Node.js system
as implemented with Seneca is fragile when a function blocks the event loop. There-
fore, the isolation is not very good.

For the monitoring of a Seneca application there is an admin console that at least
offers a simple monitoring. However, in each case it is only available for one Node.js
process. Monitoring across all servers has to be achieved by different means.

An independent deployment of a single Seneca function is only possible if there is
a single Node.js process for the Seneca function. This represents a profound limita-
tion for independent deployment since the expenditure of a Node.js process is hardly
acceptable for a single JavaScript function. In addition, it is not easy to integrate
other technologies into a Seneca system. In the end the entire Seneca system has to be
implemented in JavaScript.

Evaluation for Nanoservices

Seneca has been especially developed for the implementation of microservices with
JavaScript. In fact, it enables a very simple implementation for services that can also
be contacted via the network. The basic architecture is similar to Erlang: In both
approaches services send messages or. commands to each other to which functions
react. In regard to the independent deployment of individual services, the isolation
of services from each other and the integration of other technologies, Erlang is
clearly superior. Besides, Erlang has a much longer history and has long been
employed in different very demanding applications.

Try and Experiment

The code example29 can be a first step to get familiar with Seneca. You can
also use the basic tutorial.30 In addition, it is worthwhile to look at other
 examples.31 The nanoservice example can be enlarged to a comprehensive
application or can be distributed to a larger number of Node.js processes.

29. https://github.com/ewolff/seneca-example/

30. http://senecajs.org/getting-started/

31. https://github.com/rjrodger/seneca-examples/

https://github.com/ewolff/seneca-example/
http://senecajs.org/getting-started/
https://github.com/rjrodger/seneca-examples/

ptg18144917

Chapter 14 Technologies for Nanoservices366

14.9 Conclusion

The technologies presented in this chapter show how microservices can also be
implemented very differently. Since the difference is so large, the use of the separate
term “nanoservice” appears justified. Nanoservices are not necessarily independent
processes anymore that can only be contacted via the network but might run together
in one process and use local communication mechanisms to contact each other.
Thereby not only the use of extremely small services is possible, but also the adop-
tion of microservice approaches in areas such as embedded or desktop applications.

An overview of the advantages and disadvantages of different technologies in
regard to nanoservices is provided in Table 14.1. Erlang is the most interesting tech-
nology since it also enables the integration of other technologies and is able to iso-
late the individual nanoservices quite well from each other so that a problem in one
nanoservice will not trigger the failure of the other services. In addition, Erlang has
been the basis of many important systems for a long time already so that the technol-
ogy as such has proven its reliability beyond doubt.

Seneca follows a similar approach, but cannot compete with other technologies in
terms of isolation and the integration of other technologies than JavaScript. Vert.x
has a similar approach on the JVM and supports numerous languages. However,
it does not isolate nanoservices as well as Erlang. Java EE does not allow for com-
munication without a network, and individual deployment is difficult in Java EE. In
practice memory leaks occur frequently during the deployment of WARs. Therefore,
during a deployment the application server is usually restarted to avoid memory
leaks. Then all nanoservices are unavailable for some time. Therefore, a nanoservice

Table 14.1 Technology Evaluation for Nanoservices

Lambda OSGi Java EE Vert x Erlang Seneca

Effort for
infrastructure
per service

++ + + + ++ ++

Resource
consumption

++ ++ ++ ++ ++ ++

Communication
with network

− ++ −− ++ ++ −

Isolation of services ++ −− −− − ++ −
Use of different
technologies

− −− −− + + −−

ptg18144917

36714.9 Conclusion

cannot be deployed without influencing the other nanoservices. OSGi enables the
shared use of code between nanoservices, in contrast to Java EE. In addition, OSGi
uses method calls for communication between services and not commands or mes-
sages like Erlang and Seneca. Commands or messages have the advantage of being
more flexible. Parts of a message that a certain service does not understand are not a
problem; they can just be ignored.

Amazon Lambda is especially interesting since it is integrated into the Amazon
ecosystem. This makes handling the infrastructure very easy. The infrastructure
can be a challenging problem in case of small nanoservices because so many more
 environments are needed due to the high number of services. With Amazon a data-
base server is only an API call or a click away—alternatively, an API can be used to
store data instead of a server. Servers become invisible for storing data—and this is
also the case with Amazon Lambda for executing code. There is no infrastructure for
an individual service but only code that is executed and can be used by other services.
Because of the prepared infrastructure monitoring is also no challenge anymore.

Essential Points

• Nanoservices divide systems into even smaller services. To achieve this, they
compromise in certain areas such as technology freedom or isolation.

• Nanoservices require efficient infrastructures that can handle a large number
of small nanoservices.

ptg18144917

This page intentionally left blank

ptg18144917

369

As a conclusion to the book, this chapter helps you think about how to get started with
microservices. Section 15.1 enumerates the different advantages of microservices once
more to illustrate that there is not only a single reason to introduce microservices but
several. Section 15.2 describes several ways for introducing microservices—depending
on the use context and the expected advantages. Section 15.3 finally follows up on the
question of whether microservices are more than just hype.

15.1 Why Microservices?

Microservices entail a number of advantages such as the following (see also
 Chapter 4, “Reasons for Using Microservices”):

• Microservices make it easier to implement agility for large projects since teams
can work independently.

• Microservices can help to supplement and replace legacy applications stepwise.

• Microservice-based architectures make possible sustainable development since
they are less susceptible to architecture decay and because individual microser-
vices can be easily replaced. This increases the long-term maintainability of
the system.

• In addition, there are technical reasons for microservices such as robustness
and scalability.

Chapter 15

Getting Started with
Microservices

ptg18144917

Chapter 15 Getting Started with Microservices370

To prioritize these advantages and the additional ones mentioned in Chapter 4
should be the first step when considering the adaptation of a microservice-based
architecture. Likewise, the challenges discussed in Chapter 5, “Challenges,” have to
be evaluated and, where necessary, strategies for dealing with these challenges have
to be devised.

Continuous delivery and infrastructure play a prominent role in this context.
If the deployment processes are still manual, the expenditure for operating a large
number of microservices is so high that their introduction is hardly feasible. Unfor-
tunately, many organizations still have profound weaknesses, especially in the area
of continuous delivery and infrastructure. In such a case continuous delivery should
be introduced alongside microservices. Since microservices are much smaller than
deployment monoliths, continuous delivery is also easier with microservices. There-
fore, both approaches have synergies.

In addition, the organizational level (Chapter 12, “Organizational Effects of a
Microservices-Based Architecture”) has to be taken into account. When the scalabil-
ity of agile processes constitutes an important reason for introducing microservices,
the agile processes should already be well established. For example, there has to be a
product owner per team who also decides about all features as well as agile planning.
The teams should also be already largely self-reliant—otherwise in the end they
might not make use of the independence microservices offer.

Introducing microservices can solve more than just one problem. The specific
motivation for microservices will differ between projects. The large number of
advantages can be a good reason for introducing microservices on its own. In the end
the strategy for introducing microservices has to be adapted to the advantages that
are most important in the context of a specific project.

15.2 Roads towards Microservices

There are different approaches that pave the way towards microservices:

• The most typical scenario is to start out with a monolith that is converted
stepwise into a multitude of microservices. Usually, different functionalities
are transferred one by one into microservices. A driving force behind this
conversion is often the wish for an easier deployment. However, independent
scaling and achieving a more sustainable architecture can also be important
reasons.

• However, migrating from a monolith to microservices can also occur in a dif-
ferent manner. When, for instance, resilience is the main reason for switching

ptg18144917

37115.3 Microservice: Hype or Reality?

to microservices, the migration can be started by first adding technologies like
Hystrix to the monolith. Afterwards the system can be split into microservices.

• Starting a microservice-based system from scratch is by far the rarer scenario.
Even in such a case a project can start by building a monolith. However, it is
more sensible to devise a first coarse-grained domain architecture that leads to
the first microservices. Thereby an infrastructure is created that supports more
than just one microservice. This approach also enables teams to already work
independently on features. However, a fine-granular division into microser-
vices right from the start often does not make sense because it will probably
have to be revised again later on. Introducing the necessary profound changes
into an already existing microservices architecture can be highly complex.

Microservices are easy to combine with existing systems, which facilitates their
introduction. A small microservice as supplement to an existing deployment mon-
olith is rapidly written. If problems arise, such a microservice can also be rapidly
removed again from the system. Other technical elements can then be introduced in
a stepwise manner.

The easy combination of microservices with legacy systems is an essential reason
for the fact that the introduction of microservices is quite simple and can immedi-
ately result in advantages.

15.3 Microservice: Hype or Reality?

Without a doubt microservices are an approach that is in the focus of attention right
now. This does not have to be bad—yet, such approaches often are at second glance
only fashionable and do not solve any real problems.

However, the interest in microservices is more than just a fashion or hype:

• As described in the introduction, Amazon has been employing microservices
for many years. Likewise, many Internet companies have been following this
approach for a long time. Therefore, microservices are not just fashionable but
have already been used for a long time behind the scenes in many companies
before they became fashionable.

• For the microservice pioneers the advantages associated with microservices
were so profound that they were willing to invest a lot of money into creating
the not-yet-existing necessary infrastructures. These infrastructures are nowa-
days available free of cost as Open Source—Netflix is a prominent example.
Therefore, it is much easier nowadays to introduce microservices.

ptg18144917

Chapter 15 Getting Started with Microservices372

• The trend towards agility and cloud infrastructures is suitably complemented
by microservices-based architectures: They enable the scaling of agility and
fulfill the demands of the Cloud in regards to robustness and scalability.

• Likewise, microservices as small deployment units support continuous deliv-
ery, which is employed by many enterprises to increase software quality and to
bring software more rapidly into production.

• There is more than one reason for microservices. Therefore, microservices
 represent an improvement for many areas. Since there is not a single reason for
the introduction of microservices but a number of them, it is more likely that
even very diverse projects will really benefit from switching to microservices in
the end.

Presumably, everybody has already seen large, complex systems. Maybe now is
the time to develop smaller systems and to profit from the associated advantages. In
any case there seem to be only very few reasons arguing for monoliths—except for
their lower technical complexity.

15.4 Conclusion

Introducing microservices makes sense for a number of reasons:

• There is a plethora of advantages (discussed in section 15.1 and Chapter 4).

• The way to microservices is evolutionary. It is not necessary to start adopt-
ing microservices for the whole system from the beginning. Instead, a stepwise
migration is the usual way (section 15.2). Many different approaches can be
chosen in order to profit as quickly as possible from the advantages microser-
vices offer.

• The start is reversible: If microservices prove not to be suitable for a certain
project, they can easily be replaced again.

• Microservices are clearly more than a hype (section 15.3). For being just a
hype they have been in use for too long and have been too broadly adapted.
Therefore, one should at least experiment with microservices—and this books
invites the reader to do just that in many places.

ptg18144917

37315.4 Conclusion

Try and Experiment

Answer the following questions for an architecture/system you are familiar
with:

• Which are the most important advantages of microservices in this context?

• How could a migration to microservices be achieved? Possible approaches:

• Implement new functionalities in microservices

• Enable certain properties (e.g., robustness or rapid deployment) via
suitable technologies

• What could a project look like that tests the introduction of microservices
with as little expenditure as possible?

• In which case would a first project with microservives be a success and the
introduction of microservices therefore sensible?

ptg18144917

This page intentionally left blank

ptg18144917

375

Index

Symbols
0MQ (ZeroMQ), 183

A
acceptance tests, 59
acceptance-driven design (ATDD), 216
ACID, 31–33
ActiveMQ, 183
adjusting architecture

causes of bad architecture, 110–111
challenges with, 117–118
changes in microservices, 111
changes to overall architecture, 111–112
code reuse versus redundancy, 114–115
code transfer, 113–114
overview, 110
rewriting, 117
shared libraries, 112–113
shared services, 115–116
spawning new services, 116–117

Advanced Message Queuing Protocol
(AMQP), 182

advantages of microservices. See microservice
advantages

aggregates, 41–42
agile architecture, 75–76
AJAX (Asynchronous JavaScript and XML), 170
Amazon

AWS (Amazon Web Services), 338
Cloud

CloudWatch, 340, 349
JVM-based microservices in, 338–340

DynamoDB, 338
Elastic Beanstalk, 349
ElastiCache, 338
Kinesis, 338
Lambda, 347–349
modernization scenario example, 18–19

AMQP (Advanced Message Queuing
Protocol), 182

AngularJS, 165

annotations (Hystrix), 330
@Autowired, 334
@EnableCircuitBreaker, 330
@EnableDiscoveryClient, 324–325
@EnableEurekaClient, 324–325, 332
@EnableEurekaServer, 326
@EnableHystrix, 330
@EnableHystrixDashboard, 331, 332
@EnableTurbine, 332
@EnableZuulProxy, 328
@HystrixCommand, 330
@RequestMapping, 307–308
@RestController, 307–308
@RibbonClient, 334
@SpringBootApplication, 307–308

Ansible, 255
anticorruption layer, 44, 109
Apache

Kafka, 183, 338
Mesos, 265
Qpid, 182
Thrift, 180
Zookeeper, 139, 310

API keys, 157
application.properties file, 313
applications

e-commerce legacy application
migration status, 15–16
team creation, 16

e-commerce legacy application scenario
Amazon example, 18–19
approach, 14
challenges, 14–15
feature development, 17–18
general description, 11–12
influence on organization, 18
microservice advantages, 12–13, 17

microservices-based application example
build, 311–313
communication, 327–329
deployment with Docker, 313–314
Docker Compose, 321–324
Docker Machine, 320–321

ptg18144917

Index376

applications (continued)
domain architecture, 304–306
integration of other technologies, 335–336
JVM-based microservices in Amazon

Cloud, 338–340
load balancing, 333–334
overview, 303–304
resilience with Hystrix, 329–333
service discovery, 324–326
Spring Framework, 306–311
summary, 341–342
testing, 336–337
Vagrant, 314–320

application-test.properties file, 229, 233
arbitrary test frameworks, 232
architecture

agile architecture, 75–76
architecture management

Context Maps, 108–109
cycle-free software, 104–105
importance of, 107–108
tools for, 104–107

effect on departments, 291–292
of individual microservices

CQRS (Command Query Responsibility
Segregation), 195–197

domain architecture, 193–194
event sourcing, 197–199
hexagonal architecture, 199–202
microservice implementation and,

296–297
resilience, 203–208
stability, 203–208
summary, 211–212
technical architecture, 208–211

macro/micro architecture
creating, 278–279
definition of, 277
domain architecture, 282
extent of, 279
operations and, 281
operations challenges, 239–240
responsibility for, 277–278
technologies, 280–281
testing, 282–284

of microservice-based systems
architecture management, 104–110
configuration, 139–141
documentation, 159–161
domain architecture, 100–104
EDA (event-driven architecture), 134–135

legacy application integration, 126–134
load balancing, 144–148
overview, 99
planning for growth, 118–125
scalability, 148–151
security, 151–159
service discovery, 141–143
summary, 161–162
technical architecture, 136–138
techniques to adjust architecture, 110–118

refactoring, 75
requirements and, 74–75
sample microservices-based application

build, 311–313
communication, 327–329
deployment with Docker, 313–314
Docker Compose, 321–324
Docker Machine, 320–321
domain architecture, 304–306
integration of other technologies,

335–336
JVM-based microservices in Amazon

Cloud, 338–340
load balancing, 333–334
overview, 303–304
resilience with Hystrix, 329–333
service discovery, 324–326
Spring Framework, 306–311
summary, 341–342
testing, 336–337
Vagrant, 314–320

SOA (service-oriented architecture)
characteristics of, 81–82
communication, 83–84
compared to microservices, 87–92
coordination, 86
interfaces, 85–86
introducing, 84
landscape, 82–83
orchestration, 86
services in, 84–85
technologies, 86–87
versioning, 85

sustainable architecture, 29
three-tier architecture, 71

artifacts, 238–239
asset servers, 166–167
Asynchronous JavaScript and XML

(AJAX), 170
ATDD (acceptance test-driven design), 216
ATOM Feeds, 183

ptg18144917

Index 377

atomicity, 31
authentication, 329
authorization

OAuth2, 152–156
Spring Cloud Security, 329

automation (deployment), 254–255
AutoScaling, 339
@Autowired, 334
availability, 159
avoiding

CDMs (canonical data models), 47–50
erosion of microservices, 122–123

AWS (Amazon Web Services), 338
Azure Service Bus, 183

B
back-end interfaces, 174–175
bad architecture, causes of, 110–111
balancing load. See load balancing
batch data replication, 186
BDD (behavior-driven design), 216
BEAM (Bogdan/ Björn’s Erlang Abstract

Machine), 360
behavior specification, 239
behavior-driven design (BDD), 216
benefits of microservices. See microservice

advantages
Berkeley Internet Name Domain Server (BIND),

142–143
big systems, starting with, 119–120
BigPipe, 170–171
BIND (Berkeley Internet Name Domain Server),

142–143
blue/green deployment, 220, 257
blueprints (OSGi), 352
BMC Remedy, 251
Bogdan/ Björn’s Erlang Abstract Machine

(BEAM), 360
bottlenecks during testing, 13
Bounded Contexts

CDMs (canonical data models), 47–50
collaboration between, 44–45
Context Maps, 108–109
example, 42–44
large-scale structure, 46–47
microservices and, 45–46
nanoservices and, 347
overview, 52
sample microservices-based application,

305–306

breaking up code, 126–127
building sample microservices-based application,

311–313
bulkhead, 204–205
bundles, 350–353
business advantages of microservices, 65–67

C
CA Opscenter, 251
cache (REST), 176
calling

Lambda functions, 348
Seneca functions, 363–365

callMicroservice() function, 334
canary releasing, 220, 257
canonical data models (CDMs), avoiding,

47–50
capacity tests, 59
CatalogConsumerDrivenContractTest

class, 337
CDCs (consumer-driven contracts), 231
CDMs (canonical data models), avoiding, 47–50
central load balancers, 145
certificates, 157
challenges of microservices

architecture, 74–76
Conway’s Law, 273–274
infrastructure, 76–77
operations

artifacts, 238–239
micro and macro architecture, 239–240
templates, 240

overview, 8
summary, 78
technical challenges

code dependencies, 71–72
overview, 69–71
technology pluralism, 73–74
unreliable communication, 73

changes of perspective, DevOps and, 288–289
changing architecture. See adjusting architecture
Chef, 255
circuit breaker design

Hystrix, 329
resilience and stability, 203–204

classes
CatalogConsumerDrivenContractTest, 337
CustomerConsumerDrivenContractTest, 337
OrderTestApp, 336
SpringRestDataConfig, 304–305

ptg18144917

Index378

clients
client libraries, 292–293
client-based load balancing, 147–148
client-level integration, 190–191
Eureka, 324–325
mobile clients, 172–173
rich clients, 172–173

cloud
Amazon Cloud

CloudWatch, 340, 349
JVM-based microservices in, 338–340

Spring Cloud, 308–310
Spring Cloud Netflix, 310–311

Cloud Foundry, Spring Cloud for, 310
CloudWatch, 340, 349
cluster environments, 324
CMS (content management systems), 130
Coda Hale Metrics, 340
code dependencies, 71–72
code ownership, collective, 273–276
code reuse, 114–115, 292–295
code transfer, 113–114
cohesion, 194
collaboration between Bounded Contexts, 44–45
collectd, 252–253
collective code ownership, 273–276
combined deployment, 258–259
Command Query Responsibility Segregation. See

CQRS (Command Query Responsibility
Segregation)

commands. See also functions
docker kill, 319
docker log, 318
docker ps, 319
docker rm, 319
docker run, 334
docker-compose, 323, 334
docker-machine, 320–321
mvn package, 311
vagrant destroy, 319
vagrant halt, 319
vagrant provision, 319
vagrant ssh, 318
vagrant up, 319

commit phase, 59
Common Object Request Broker Architecture

(CORBA), 70
communication

data replication
batch, 186
consistency, 185–186
event, 186–187

implementation, 186
overview, 184–185
redundancy, 185–186

distributed communication, 28–29
between Docker containers, 263
between Erlang processes, 360–361
external interfaces, 187–190
internal interfaces, 187–190
levels of, 163
messaging

advantages of, 180–181
technologies, 182–184
transactions and, 181–182

REST (representational state transfer)
definition of, 175–179
load balancing, 144–145
RESTful-HTTP interfaces, 50
Spring Data REST, 307

sample microservices-based application, 305,
327–329

in SOA (service-oriented architecture),
83–84, 87

SOAP (Simple Object Access Protocol),
179–180

UIs (user interfaces)
HTML-based user interfaces, 168–175
SPAs (single-page apps), 164–168

unreliable communication, 73
compromises, nanoservices and, 345
confidentiality, 158
configuration

Eureka, 325
Hystrix, 333
microservice-based systems, 139–141
operations, 256
Spring Cloud Config, 139, 309–310
Vagrant, 315–317

conformist collaboration, 44
consistency

data replication, 185–186
definition of, 31
problems with, 139–140
size of microservices and, 31–32

Consul, 143
consumer contracts, 231
consumer-driven contract tests

contract types, 230–231
implementation, 231–232
overview, 230
sample microservices-based application, 337
tools, 232–233

containers (Docker), 262–263, 318–319

ptg18144917

Index 379

content enricher, 128–129
content filters, 128
content management systems (CMS), 130
content-based routers, 127
Context Maps, 108–109
contexts, bounded. See Bounded Contexts
continuous delivery

advantages of, 7–8
challenges, 76–77
legacy application modernization, 12
operations

challenges of, 238–240
control, 259–260
deployment, 254–259
infrastructure, 260–266
logging, 241–246
monitoring, 246–253
summary, 266–267

pipeline, 59–60, 67
testing, 220

continuous deployment, 257
contract tests

contract types, 230–231
implementation, 231–232
overview, 230

control of operations, 259–260
Conway, Melvin Edward, 35
Conway’s Law

challenges associated with, 273–274
definition of, 35, 52, 273
as enabler, 38–39
as limitation, 36–38
microservices and, 39–40
reasons for, 36

coordination
of deployments, 85–86
microservice-based systems, 139–141
pull requests for, 276
SOA (service-oriented architecture), 86

CORBA (Common Object Request Broker
Architecture), 70

CoreOS, 265, 324
correlating data with events, 249
correlation IDs, 245
CORS (cross-origin resource sharing),

166–167
CQRS (Command Query Responsibility

Segregation)
advantages of, 196–197
challenges, 197
microservices and, 196
overview, 195–196

CRM (customer relationship management),
82–83, 88–90

cross-functional teams, 285–290
cross-origin resource sharing (CORS), 166–167
customer interface, 290–292
customer relationship management (CRM),

82–83, 88–90
CustomerConsumerDrivenContractTest class,

337
customer/supplier collaboration, 44
cycle-free software, 104–105
cyclic dependencies, 103–104

D
dashboard (Hystrix), 331
data replication

batch, 186
consistency, 185–186
event, 186–187
implementation, 186
overview, 129–130, 184–185, 191–192
redundancy, 185–186

data security, 158–159
data storage for sample microservices-based

application, 304–305
databases

Amazon DynamoDB, 338
HSQL database, 307, 319–320
legacy application integration, 133–134

Datensparsamkeit, 157
DDD (domain-driven design)

Bounded Contexts
CDMs (canonical data models), 47–50
collaboration between, 44–45
Context Maps, 108–109
example, 42–44
large-scale structure, 46–47
microservices and, 45–46
nanoservices and, 347
overview, 52
sample microservices-based application,

305–306
building blocks, 41–42
CDMs (canonical data models), avoiding,

47–50
large-scale structure, 46–47
overview, 40–41, 194
strategic design, 100–101
summary, 52
ubiquitous language, 41

declarative services (OSGi), 352

ptg18144917

Index380

delegation to teams, 238–239
delivery. See continuous delivery
departments

architecture leading to, 291–292
microservice implementation and, 296

dependencies
code dependencies, 71–72
dependency management

cyclic dependencies, 103–104
overview, 101–102
unintended domain-based dependencies,

102–103
hidden dependencies, 133–134

deployment
automation, 254–255
combined versus separate, 258–259
coordination of, 85–86
deployment monoliths

migrating to microservices, 370–371
overview, 4
problems with, 121
technical coordination, 271

deployment strategies, 256–258
installation and configuration, 256
risk mitigation, 220–222, 256
sample microservices-based application,

313–314
separate deployment, 270–271

deployment monoliths
migrating to microservices, 370–371
overview, 4
problems with, 121
technical coordination, 271

desktop applications, nanoservices and, 346
Developer Anarchy, 284
development

signaling systems
challenges, 21–22
general description, 19–20
microservice advantages, 20–21, 22
suitability of microservices for, 22–23

sustainable development, 6, 57
test-driven development, 214–215

DevOps, 285–290
directories

docker-vagrant, 318
log-analysis, 341

distributed communication, 28–29
distributed systems

distributed communication, 28–29
distributed tracing, 245–246

distribution by domain. See DDD
(domain-driven design)

overview, 8, 20
DNS (Domain Name System), 142
Docker

cluster environments, 324
commands

docker kill, 319
docker log, 318
docker ps, 319
docker rm, 319
docker run, 334

containers, 262–263, 318–319
Docker Compose, 321–324
Docker Machine, 320–321
file system, 261–263
overview, 255
registry, 264
sample microservices-based application

deployment, 313–314
servers, 264–265

Docker Compose, 265, 321–324
docker kill command, 319
docker log command, 318
Docker Machine, 265, 320–321
docker ps command, 319
docker rm command, 319
docker run command, 334
Docker Swarm, 265
docker-compose command, 323, 334
Dockerfile, 313–314
docker-machine command, 320–321
docker-vagrant directory, 318
documentation

microservice-based system architecture,
159–161

Spring Guides, 311
testing as, 214–215

domain architecture
importance of, 8
of individual microservices, 193–194
macro/micro architecture, 282
of microservice-based systems

dependency management, 101–104
Otto GmbH example, 101
overview, 100
strategic design, 100–101

sample microservices-based application,
304–306

Domain Name System (DNS), 142
domain-driven design. See DDD (domain-driven

design)

ptg18144917

Index 381

dpkg, 255
durability, 32
dynamic environments, monitoring in, 250
dynamic scaling, 148–150
DynamoDB, 338

E
EC2 (Elastic Computing Cloud), 349
Echo Verticles (Vert.x), 358–359
e-commerce legacy application scenario

Amazon example, 18–19
approach, 14
challenges, 14–15
feature development, 17–18
general description, 11–12
influence on organization, 18
microservice advantages, 12–13, 17
migration status, 15–16
team creation, 16

EDA (event-driven architecture), 134–135
Edge Side Includes (ESI), 171–172
EJB (Enterprise JavaBeans), 70
Elastic Beanstalk, 349
Elastic Computing Cloud (EC2), 349
Elastic Load Balancing (ELB), 146, 339
ElastiCache, 338
elasticity, 210
Elasticsearch, 242–244
ELB (Elastic Load Balancing), 146, 339
Elixir, 363
ELK (Elasticsearch, Logstash, Kibana) stack,

242–244
Ember.js, 165
@EnableCircuitBreaker, 330
@EnableDiscoveryClient, 324–325
@EnableEurekaClient, 324–325, 332
@EnableEurekaServer, 326
@EnableHystrix, 330
@EnableHystrixDashboard, 331, 332
enabler, Conway’s Law as, 38–39
@EnableTurbine, 332
@EnableZuulProxy, 328
enabling monitoring, 252
encapsulation, 194
engines, process, 208–209
Enterprise Integration Patterns, 127–129
Enterprise JavaBeans (EJB), 70
entities, 41
E-Post Development GmbH, 122
Erlang, 360–363
erosion of microservices, avoiding, 122–123

ESI (Edge Side Includes), 171–172
etcd, 139
Eureka

client, 324–325
configuration, 325
overview, 143, 311, 324
server, 326

evaluation of nanoservices, 366–367
Evans, Eric, 40
event-driven architecture (EDA), 134–135
events

correlating data with, 249
data replication, 186–187
EDA (event-driven architecture), 134–135
event sourcing, 197–199

evolving order, 47
example application. See sample microservices-

based application
expenditures, minimizing with testing, 214
exploratorive tests, 59
Ext JS, 165
Extensible Markup Language (XML), 177–178
external interfaces, 85, 187–190

F
Facebook BigPipe, 170–171
factories, 42
fail fast, 205
Fat JARs, 359
Feign, 311
file system (Docker), 261–263
files

application.properties, 313
application-test.properties, 229, 233
Dockerfile, 313–314
JAR (Java archive) files, 307, 354
log analysis, 341
MANIFEST.MF, 350–351
pom.xml, 311–312
Vagrantfile, 315–317
WAR (web application archive), 307, 354

filters
content filters, 128
message filters, 127
Zuul filters, 329

findAll() function, 330
firewalls, 157
First Rule of Distributed Object Design, 29
flexibility (SOA), 87–88
flexible transport (SOAP), 179–180
front-end servers, 171–172

ptg18144917

Index382

functions. See also commands
callMicroservice(), 334
findAll(), 330
Lambda functions, 348
Seneca, 363–365

G
Gentsch, Lars, 122–123
George, Fred, 284
Gephi, 107
global architecture, 122
Grafana, 250
grants, authorization, 153–154
Graphite, 250
Graylog, 244
growth, planning for

big systems, 119–120
deployment monoliths, 121
erosion of microservices, avoiding, 122–123
global architecture, 122
new functionality, incorporating, 123–125
overview, 118–122
replaceability, 121
small systems, 120–121

H
HAL (Hypertext Application Language), 177
handshaking, 205
HAProxy, 146
Hashicorp Vault, 157–158
HATEOAS (Hypermedia as the Engine of

Application State), 177
Heusingfeld, Alexander, 287
hexagonal architecture

example, 201–202
versus layered architecture, 200
microservices and, 201
overview, 199–200

hidden dependencies, 132–133
high cohesion, 102
high technological complexity, 21–22
HornetQ, 183
hosts, open, 45
HP Operations Manager, 251
HSQL database, 307, 319–320
HTML (Hypertext Markup Language)

HTML-based user interfaces
back end, 174–175
front-end servers, 171–172

JavaScript, 170–171
mobile clients, 172–173
organizational levels, 173
ROCA (resource-oriented client

architecture), 168–169
routing, 169–170

overview, 178
HTTP (Hypertext Transfer Protocol)

httpd, 145
load balancing, 144–145
RESTful-HTTP interfaces, 50, 175–179

httpd, 145
hype versus reality, 371–372
Hypermedia as the Engine of Application State

(HATEOAS), 177
Hypertext Application Language (HAL), 177
Hypertext Markup Language. See HTML

(Hypertext Markup Language)
Hypertext Transfer Protocol. See HTTP

(Hypertext Transfer Protocol)
Hypoport AG, 258
Hystrix

annotations, 330
@Autowired, 334
@EnableCircuitBreaker, 330
@EnableDiscoveryClient, 324–325
@EnableEurekaClient, 324–325, 332
@EnableEurekaServer, 326
@EnableHystrix, 330
@EnableHystrixDashboard, 331, 332
@EnableTurbine, 332
@EnableZuulProxy, 328
@HystrixCommand, 330
@RequestMapping, 307–308
@RestController, 307–308
@RibbonClient, 334
@SpringBootApplication, 307–308

circuit breaker, 329
configuration, 333
dashboard, 331
overview, 311, 329
resilience and stability, 207–208
Turbine, 331–332

@HystrixCommand, 330

I
IBM Tivoli, 251
Icinga, 250
IDs, correlation IDs, 245
immutable servers, 140, 255

ptg18144917

Index 383

implementation of microservices. See also
benefits of microservices; organizational
effects of microservices

approaches, 370–371
consumer-driven contract tests, 231–232
data replication, 186
external interfaces, 188–189
hype versus reality, 371–372
microservice implementation without

organizational changes, 295–297
sample microservices-based application

build, 311–313
communication, 327–329
deployment with Docker, 313–314
Docker Compose, 321–324
Docker Machine, 320–321
domain architecture, 304–306
integration of other technologies,

335–336
JVM-based microservices in Amazon

Cloud, 338–340
load balancing, 333–334
overview, 303–304
resilience with Hystrix, 329–333
service discovery, 324–326
Spring Framework, 306–311
summary, 341–342
testing, 336–337
Vagrant, 314–320

summary, 372
without organizational changes, 295–297

independence
independent scaling, 7, 61
technical independence, 63, 270–273

infrastructure
challenges, 76–77
influence on microservice size, 30–31
legacy applications and, 131
overview, 260–261
PaaS (platform as a service), 266
virtualization with Docker, 261–265

innoQ, 47, 287
installation

deployments, 256
Docker Machine, 321
scripts, 254
tools, 140–141
Vagrant, 318

installation scripts, 254
installation tools, 140–141
integration

data replication

batch, 186
consistency, 185–186
event, 186–187
implementation, 186
overview, 184–185
redundancy, 185–186

external interfaces, 187–190
integration platforms, 83
integration tests, 216, 226–227
internal interfaces, 187–190
legacy applications

breaking up code, 126–127
CMS (content management systems), 130
databases, 133–134
Enterprise Integration Patterns, 127–129
hidden dependencies, 132–133
infrastructure and, 131
limited integration, 129
overview, 57–58, 67, 126–127
UIs (user interfaces), 129–130

levels of, 163, 190–192
messaging

advantages of, 180–181
technologies, 182–184
transactions and, 181–182

of other systems, 21
REST (representational state transfer),

175–179
shared integration tests, 223–224
SOAP (Simple Object Access Protocol),

179–180
UIs (user interfaces)

HTML-based user interfaces, 168–175
SPAs (single-page apps), 164–168

integration tests, 216, 226–227
integrity, 158
interfaces

control via, 260
customer interface, 290–292
external interfaces, 187–190
internal interfaces, 187–190
Postel’s Law, 189–190
separating, 188
SOA (service-oriented architecture), 85–86
versioning, 192

internal interfaces, 187–190
introducing

microservices
approaches, 370–371
hype versus reality, 371–372
summary, 372

SOA (service-oriented architecture), 84

ptg18144917

Index384

intrusion detection, 157
isolation, 32

J
JAR (Java archive) files, 307, 354
Java

bundles, 350–353
JAR (Java archive) files, 307, 354
Java EE

example, 356–357
microservices with, 355–356
nanoservices with, 355
overview, 354

JMS (Java Messaging Service), 183
JPA (Java Persistence API), 354
JRE (Java Runtime Environment), 307
JSF (Java ServerFaces), 354
JTA (Java Transaction API), 354
JVM-based microservices in Amazon

Cloud, 73–74
OSGi, 350–353
Spring Framework

HSQL database, 307, 319–320
Spring Boot, 307–308
Spring Cloud, 308–310
Spring Cloud Netflix, 310–311
Spring Data REST, 307

Java EE
example, 356–357
microservices with, 355–356
nanoservices with, 355
overview, 354

Java Messaging Service (JMS), 183
Java Persistence API (JPA), 354
Java Runtime Environment (JRE), 307
Java ServerFaces (JSF), 354
Java Transaction API (JTA), 354
Java Virtual Machine (JVM), 73–74
JavaScript

HTML-based user interfaces, 170–171
JSON (JavaScript Object Notation)

JWE (JSON Web Encryption), 154–155
JWT (JSON Web Token), 154–155
overview, 178

Seneca, 363–365
JavaScript Object Notation. See JSON

(JavaScript Object Notation)
JavaScript Object Notation (JSON), 178
Jetty, 338–339
JMS (Java Messaging Service), 183
JPA (Java Persistence API), 354
jQAssistant, 107

JRE (Java Runtime Environment), 307
JSF (Java ServerFaces), 354
JSON (JavaScript Object Notation)

JWE (JSON Web Encryption), 154–155
JWT (JSON Web Token), 154–155
overview, 178

JTA (Java Transaction API), 354
JUnit tests, 232
JVM (Java Virtual Machine), 73–74
JVM-based microservices in Amazon Cloud,

338–340
JWE (JSON Web Encryption), 154–155
JWT (JSON Web Token), 154–155

K
Kafka (Apache), 183, 338
Kerberos, 155
kernels, shared, 108
Kibana, 242–244
Kinesis, 338
Kubernetes, 265, 324

L
Lambda (Amazon), 347–349
landscape (SOA), 82–83
languages

Elixir, 363
Erlang, 360–363
HAL (Hypertext Application Language), 177
HTML (Hypertext Markup Language), 178
Java

bundles, 350–353
Java EE, 354–357
OSGi, 350–353

published language, 45
ubiquitious language, 41
XML (Extensible Markup Language),

177–178
large-scale structure, DDD (domain-driven

design) and, 46–47
latency, 69–70
layered architecture, 200
leadership, technical, 284
leaseRenewalIntervalInSeconds property

(Eureka), 325
legacy applications

development, 6
integration

breaking up code, 126–127
CMS (content management systems), 130
databases, 133–134

ptg18144917

Index 385

Enterprise Integration Patterns, 127–129
hidden dependencies, 132–133
infrastructure and, 131
limited integration, 129
overview, 57–58, 67, 126–127
UIs (user interfaces), 129–130

modernization scenario
Amazon example, 18–19
approach, 14
challenges, 14–15
feature development, 17–18
general description, 11–12
influence on organization, 18
microservice advantages, 12–13, 17
migration status, 15–16
team creation, 16

levelized structure maps (LSMs), 104
levels

of independence, 271–273
of integration, 163, 190–192

libraries
client libraries, 292–293
Coda Hale Metrics, 340
shared libraries, 112–113

limitations, Conway’s Law as, 36–38
limited integration, 129
lines of code (LOC), 28, 343
Linux containers, 262–263
Linux servers, 264
load balancing

architecture and, 148
central load balancers, 145
client-based load balancing, 147–148
ELB (Elastic Load Balancing), 146, 339
load balancers (HTTP), 176
number of load balancers, 145
REST/HTTP, 144–145
sample microservices-based application,

333–334
service discovery, 146–147
technologies, 145–146

load tests, 217
LOC (lines of code), 28, 343
log analysis, 341
logging

correlation IDs, 245
ELK (Elasticsearch, Logstash, Kibana) stack,

242–244
Graylog, 244
log analysis, 341
for microservices, 241–242
Splunk, 244

stakeholders, 245
Zipkin, 245–246

logic layer integration, 191
Logstash, 242–244
loose coupling, 102
LSMs (levelized structure maps), 104

M
macro architecture

creating, 278–279
definition of, 277
domain architecture, 282
extent of, 279
operations and, 281
operations challenges, 239–240
responsibility for, 277–278
technologies, 280–281
testing, 282–284

MANIFEST.MF file, 350–351
manual tests, 217
maps

Context Maps, 108–109
LSMs (levelized structure maps), 104

Maven, 311–313
Mesos, 265, 324
Mesosphere, 324
message filters, 127
message routers, 127
message translators, 127
message-driven components, 210
messaging

advantages of, 180–181
message filters, 127
message routers, 127
message translators, 127
technologies, 182–184
transactions and, 181–182

metadata, 159–160
metrics, monitoring. See monitoring
Metrics framework, 252
micro architecture

creating, 278–279
definition of, 277
domain architecture, 282
operations challenges, 239–240, 281
responsibility for, 277–278
technologies, 280–281
testing, 282–284

microservice advantages
business advantages, 65–67
choice of technologies, 7

ptg18144917

Index386

microservice advantages (continued)
continuous delivery, 7–8
independent scaling, 7
legacy application development, 6
modularization, 5
organizational benefits, 63–65
overview, 4–5, 270
replaceability, 5–6
sustainable development, 6
technical benefits

choice of technologies, 7, 62–63
continuous delivery, 7–8, 59–60
independence, 63, 270–273
independent scaling, 7
legacy integration, 6, 57–58
microservice replacement, 56–57
modularization, 5
overview, 55–56
replaceability, 5–6
robustness, 61–62
scaling, 7, 61
sustainable development, 6, 57
time to market, 6–7

time to market, 6–7
microservice challenges

architecture, 74–76
of Conway’s Law, 273–274
infrastructure, 76–77
operations

artifacts, 238–239
micro and macro architecture, 239–240
templates, 240

overview, 8
summary, 78
technical challenges

code dependencies, 71–72
overview, 69–71
technology pluralism, 73–74
unreliable communication, 73

microservice definition, 3–4
microservice-based systems

architecture management
Context Maps, 108–109
cycle-free software, 104–105
importance of, 107–108
tools for, 104–107

configuration, 139–141
documentation, 159–161
domain architecture

dependency management, 101–104
Otto GmbH example, 101

overview, 100
strategic design, 100–101

EDA (event-driven architecture), 134–135
legacy application integration

breaking up code, 126–127
CMS (content management systems), 130
databases, 133–134
Enterprise Integration Patterns, 127–129
hidden dependencies, 132–133
infrastructure and, 131
limited integration, 129
overview, 126–127
UIs (user interfaces), 129–130

load balancing
architecture and, 148
central load balancers, 145
client-based load balancing, 147–148
number of load balancers, 145
REST/HTTP, 144–145
service discovery, 146–147
technologies, 145–146

overview, 99
planning for growth

big systems, 119–120
deployment monoliths, 121
erosion of microservices, avoiding,

122–123
global architecture, 122
new functionality, incorporating,

123–125
overview, 118–119
replaceability, 121
small systems, 120–121

scalability
advantages of microservices, 150
dynamic scaling, 148–150
sharding, 150–151
throughput and response times, 151

security
availability, 159
confidentiality, 158
data security, 158–159
Datensparsamkeit, 157
firewalls, 157
Hashicorp Vault, 157–158
integrity, 158
intrusion detection, 157
JWT (JSON Web Token), 154–155
Kerberos, 155
OAuth2, 152–156
overview, 151–152

ptg18144917

Index 387

service discovery, 141–143
summary, 161–162
technical architecture, 136–138
techniques to adjust architecture

causes of bad architecture, 110–111
challenges with, 117–118
changes in microservices, 111
changes to overall architecture, 111–112
code reuse versus redundancy, 114–115
code transfer, 113–114
overview, 110
rewriting, 117
shared libraries, 112–113
shared services, 115–116
spawning new services, 116–117

middleware, uncoupling via, 206
migration status, 15–16
minimizing expenditures with testing, 214
minimum size of microservices,

344–345
mitigating risk, 220–222, 256
mobile clients, 172–173
mocks, 215–216
Moco, 229
mod_include, 171
mod_proxy_balancer, 145
modernizing legacy applications

approach, 14
overview, 57–58
sample scenarios

challenges, 14–15
feature development, 17–18
general description, 11–12
influence on organization, 18
microservice advantages, 12–13, 17
migration status, 15–16
team creation, 16

modularization
influence on microservice size, 28
overview, 5
sample microservices-based application, 306
SPAs (single-page apps), 167–168
strong modularization, 67

Möllering, Sascha, 338–340
monitoring

additional metrics, 248
with Amazon CloudWatch, 340
basic information, 247
correlation with events, 249
dynamic environments, 250
enabling, 252
Erlang, 361

with Hystrix dashboard, 331
overview, 77, 246–247
stakeholders, 248–249
technologies for, 250–253
versus testing, 249

monoliths. See deployment monoliths
mountebank, 229
Müller, Jörg, 258–259
multiple services, splitting into, 116–117
multiple single-page apps. See SPAs (single-page

apps)
mvn package command, 311

N
Nagios, 250
nanoservices

advantages of, 344–346
Amazon Lambda, 347–349
definition of, 346–347
Erlang, 360–363
Java EE

microservices with, 355–356
nanoservices with, 355
overview, 354, 355

OSGi, 350–353
overview, 343
Seneca, 363–365
technical evaluation, 366–367
Vert.x, 357–359

Netflix, 310–311, 371
networking, Vagrant, 317
NewRelic, 251
nginx, 145, 171
ngx_http_ssi_module, 171
Node.js, 363–364
NUMMI car factory, 279

O
OAM (operations and maintenance support), 362
OAuth2, 152–156
open host services, 45
open source projects, 293–295
Open Telecom Platform (OTP) framework, 360
operations

challenges
artifacts, 238–239
micro and macro architecture, 239–240
overview, 76–77
templates, 240

control, 259–260

ptg18144917

Index388

operations (continued)
deployment

automation, 254–255
combined versus separate, 258–259
deployment strategies, 256–258
installation and configuration, 256
risks associated with, 256

DevOps, 285–290
infrastructure

overview, 260–261
PaaS (platform as a service), 266
virtualization with Docker, 261–265

logging
correlation IDs, 245
ELK (Elasticsearch, Logstash, Kibana)

stack, 242–244
Graylog, 244
for microservices, 241–242
Splunk, 244
stakeholders, 245
Zipkin, 245–246

macro/micro architecture, 281
microservice implementation and, 296–297
monitoring

additional metrics, 248
basic information, 247
correlation with events, 249
dynamic environments, 250
enabling, 252
overview, 246–247
stakeholders, 248–249
technologies for, 250–253
versus testing, 249

summary, 266–267
operations and maintenance support (OAM), 362
Operations Manager, 251
Opscenter, 251
orchestration (SOA), 83, 86–87
order systems, 83
OrderTestApp class, 336
organizational effects of microservices

benefits of microservices, 63–65, 270–273
collective code ownership, 273–276
customer interface, 290–292
DevOps, 285–290
implementation without organizational

changes, 295–297
macro/micro architecture

creating, 278–279
definition of, 277
domain architecture, 282
extent of, 279

operations and, 281
responsibility for, 277–278
technologies, 280–281
testing, 282–284

overview, 18, 269
reusable code, 292–295
summary, 297–299
technical leadership, 284

organizational-level interfaces, 173
OSGi, 350–353
OTP (Open Telecom Platform) framework, 360
Otto GmbH, 101
outdated documentation, 160
ownership, collective code ownership, 273–276

P
PaaS (platform as a service), 266
package managers, 255
Packetbeat, 251
Pact, 233
pact-jvm, 233
Pacto, 233
parallel work, 12, 65–67
personification of servers, avoiding, 287–288
perspectives, DevOps and, 288–289
“pets vs. cattle” slogan (DevOps), 287–288
pipeline, continuous delivery, 59–60, 67
planning for growth

big systems, 119–120
deployment monoliths, 121
erosion of microservices, avoiding, 122–123
global architecture, 122
new functionality, incorporating, 123–125
overview, 118–119
replaceability, 121
small systems, 120–121

platform as a service (PaaS), 266
Play, 210
pluralism, 73–74
pom.xml files, 311–312
portals (SOA), 83
Postel’s Law, 189–190
Prana, 336
preferIpAddress property (Eureka), 325
process engines, 208–209
programs. See tools
projects

open source projects, 293–295
project size, 65

Protocol Buffer, 178
provider contracts, 230

ptg18144917

Index 389

proxy-based load balancing, 144–145
published language, 45
pull requests for coordination, 276
Puppet, 255

Q-R
Qpid (Apache), 182
RabbitMQ, 182
Reactive Manifesto, 207, 209–210
reactive systems, 209–210
reasons for microservices. See benefits of

microservices
redundancy, 114–115, 185–186
refactoring, 8, 29–30, 75
reference environments, 228
registry (Docker), 264
Release It!, 62, 203
Remedy, 251
remote procedure call (RPC), 179
replaceability

advantages of, 56–57
influence on microservice size, 31
overview, 5–6, 67
system planning, 121

replicating data
batch, 186
consistency, 185–186
event, 186–187
implementation, 186
overview, 129–130, 184–185, 191–192
redundancy, 185–186

repositories, 42
representational state transfer. See REST

(representational state transfer)
@RequestMapping, 307–308
requests, pull, 276
resilience

bulkhead, 204–205
circuit breaker design, 203–204
fail fast, 205
handshaking, 205
Hystrix, 207–208
overview, 203, 209
Reactive Manifesto, 207
sample microservices-based application

annotations, 330
circuit breaker, 329
configuration, 333
dashboard, 331
overview, 329
Turbine, 331–332

steady state, 205
test harnesses, 206
timeouts, 203
uncoupling via middleware, 206

resource-oriented client architecture (ROCA),
168–169

response times, 151
responsibility layers, 46–47
responsiveness, 209
REST (representational state transfer)

definition of, 175–179
load balancing, 144–145
RESTful-HTTP interfaces, 50
Spring Data REST, 307

@RestController, 307–308
reuse of code, 114–115, 292–295
rewriting services, 117
Ribbon, 310, 333–334
@RibbonClient, 334
rich clients, 172–173
Riemann, 250
risk mitigation, 220–222, 256
robustness, 61–62
Robustness Principle, 189–190
ROCA (resource-oriented client architecture),

168–169
roll forward, 257
rollbacks, 256
routers, 127–129
routing

Enterprise Integration Patterns, 127–129
HTML-based user interfaces, 169–170
Zuul, 327–328

RPC (remote procedure call), 179
rpm, 255
RSpec, 232–233
RxJava, 210
RxJS, 210

S
Salt, 255
SAML, 155
sample microservices-based application

build, 311–313
communication, 327–329
deployment with Docker, 313–314
Docker Compose, 321–324
Docker Machine, 320–321
domain architecture, 304–306
integration of other technologies,

335–336

ptg18144917

Index390

sample microservices-based application
(continued)

JVM-based microservices in Amazon Cloud,
338–340

load balancing, 333–334
overview, 303–304
resilience with Hystrix

annotations, 330
circuit breaker, 329
configuration, 333
dashboard, 331
overview, 329
Turbine, 331–332

service discovery, 324–326
Spring Framework

HSQL database, 307
Spring Boot, 307–308
Spring Cloud, 308–310
Spring Cloud Netflix, 310–311
Spring Data REST, 307, 319–320

summary, 341–342
testing

consumer-driven contract tests, 337
overview, 336
stubs, 336–337

Vagrant
configuration, 315–317
how it works, 314
installation, 318
networking, 317

Scala, 64, 210
scalability

advantages of microservices, 150
AutoScaling, 339
dynamic scaling, 148–150
ELK (Elasticsearch, Logstash, Kibana) stack,

243–244
independent scaling, 7, 61, 67
sharding, 150–151
throughput and response times, 151

scenarios
legacy application modernization

approach, 14
challenges, 14–15
feature development, 17–18
general description, 11–12
influence on organization, 18
microservice advantages, 12–13, 17
migration status, 15–16
team creation, 16, 18–19

signaling systems
challenges, 21–22
general description, 19–20

microservice advantages, 20–21, 22
suitability of microservices for, 22–23

scripts, installation, 254
SCS (self-contained system), 51
security

API keys, 157
availability, 159
certificates, 157
confidentiality, 158
data security, 158–159
Datensparsamkeit, 157
firewalls, 155
Hashicorp Vault, 157–158
integrity, 158
intrusion detection, 157
JWT (JSON Web Token), 154–155
Kerberos, 155
OAuth2, 152–156
overview, 151–152
SAML, 155
Spring Cloud Security, 309
SSL/TLS, 155

self-contained system (SCS), 51
Semantic Versioning, 189
Seneca, 363–365
seneca.act() function, 364
seneca.add() function, 364
seneca.listen() function, 364
separate deployment, 258–259
separate ways, 45
separating interfaces, 188
Server Side Includes (SSI), 171–172
servers

asset servers, 166–167
Docker and, 264–265
Eureka, 326
front-end servers, 171–172
immutable servers, 140, 255
“pets vs. cattle” slogan (DevOps), 287–288
Zuul, 327–329

Serverspec, 235
service discovery

BIND (Berkeley Internet Name Domain
Server), 142–143

Consul, 143
DNS (Domain Name System), 142
Eureka

client, 324–325
configuration, 325
overview, 143, 324
server, 326

load balancing, 146–147
overview, 141–142

ptg18144917

Index 391

service-oriented architecture. See SOA
(service-oriented architecture)

Seyren, 250
sharding, 150–151
shared integration tests, 223–224
shared kernels, 44, 108
shared libraries, 112–113, 292–293
shared services, 115–116
signaling system development

challenges, 21–22
general description, 19–20
microservice advantages, 20–21, 22
suitability of microservices for, 22–23

Simple Notification Service (SNS), 348
Simple Object Access Protocol (SOAP), 179–180
Simple Queue Service (SQS), 348
single-page apps. See SPAs (single-page apps)
size of microservices

factors influencing
consistency, 31–32
distributed communication, 28–29
infrastructure, 30–31
LOC (lines of code), 28
modularization, 28
overview, 27–28, 33–35
refactoring, 29–30
replaceability, 31
sustainable architecture, 29
team size, 30
transactions, 31–33

overview, 344–345
project size, 65
summary, 52

small systems, starting with, 120–121
SNS (Simple Notification Service), 348
SOA (service-oriented architecture)

characteristics of, 81–82
communication, 83–84
compared to microservices

architecture, 88–90
communication, 87
flexibility, 87–88
orchestration, 87
synergies, 91
table of differences, 91

coordination, 86
interfaces, 85–86
introducing, 84
landscape, 82–83
orchestration, 86
services in, 84–85
technologies, 86–87
versioning, 85

SOAP (Simple Object Access Protocol), 179–180
software development

sustainable software development, 57, 67
test-driven development, 214–215

SPAs (single-page apps)
asset servers, 166–167
SPA modules, 167–168
SPA per microservice, 165–166
technologies, 164–165

spigo, 110
Splunk, 244
Spring Boot, 307–308
Spring Cloud, 308–310
Spring Cloud Bus, 310
Spring Cloud Cluster, 310
Spring Cloud Config, 139, 309–310
Spring Cloud Connectors, 310
Spring Cloud Consul, 310
Spring Cloud Data Flow, 310
Spring Cloud Data Tasks, 310
Spring Cloud for Cloud Foundry, 310
Spring Cloud Netflix, 310–311
Spring Cloud Security, 309
Spring Cloud Sleuth, 310
Spring Cloud Stream, 310
Spring Cloud Zookeeper, 310
Spring Data REST, 307
Spring Framework

HSQL database, 307, 319–320
Spring Boot, 307–308
Spring Cloud, 308–310
Spring Cloud Netflix, 310–311
Spring Data REST, 307

Spring Guides, 311
@SpringBootApplication, 307–308
SpringRestDataConfig class, 304–305
SQS (Simple Queue Service), 348
Squid, 171
SSI (Server Side Includes), 171–172
SSL/TLS, 155
stability

bulkhead, 204–205
circuit breaker design, 203–204
fail fast, 205
handshaking, 205
Hystrix, 207–208
microservices and, 206–207
overview, 203
Reactive Manifesto, 207
steady state, 205
test harnesses, 206
timeouts, 203
uncoupling via middleware, 206

ptg18144917

Index392

stakeholders
for logs, 245
for monitoring, 248–249

statelessness, 209
StatsD, 252
status of migration, 15–16
steady state, 205
strategic design, 100–101
strategies (deployment), 256–258
strong modularization, 67
Structure 101, 107
stubby4j, 229
stubs, 216, 228–229, 336–337
sustainable architecture, 29
sustainable development, 6, 57, 67
synchronous RESTful HTTP, 179
synergies between SOA and microservices, 91
system architecture

architecture management
Context Maps, 108–109
cycle-free software, 104–105
importance of, 107–108
tools for, 104–107

configuration, 139–141
documentation, 159–161
domain architecture

dependency management, 101–104
Otto GmbH example, 101
overview, 100
strategic design, 100–101

EDA (event-driven architecture), 134–135
legacy application integration

breaking up code, 126–127
CMS (content management systems), 130
databases, 133–134
Enterprise Integration Patterns, 127–129
hidden dependencies, 132–133
infrastructure and, 131
limited integration, 129
overview, 126–127
UIs (user interfaces), 129–130

load balancing
architecture and, 148
central load balancers, 145
client-based load balancing, 147–148
number of load balancers, 145
REST/HTTP, 144–145
service discovery, 146–147
technologies, 145–146

overview, 99
planning for growth

big systems, 119–120
deployment monoliths, 121

erosion of microservices, avoiding,
122–123

global architecture, 122
new functionality, incorporating, 123–125
overview, 118–119
replaceability, 121
small systems, 120–121

scalability
advantages of microservices, 150
dynamic scaling, 148–150
sharding, 150–151
throughput and response times, 151

security
API keys, 157
availability, 159
certificates, 157
confidentiality, 158
data security, 158–159
Datensparsamkeit, 157
firewalls, 157
Hashicorp Vault, 157–158
integrity, 158
intrusion detection, 157
JWT (JSON Web Token), 154–155
Kerberos, 155
OAuth2, 152–156
overview, 151–152
SAML, 155
SSL/TLS, 156

service discovery, 141–143
summary, 161–162
technical architecture, 136–138
techniques to adjust architecture

causes of bad architecture, 110–111
challenges with, 117–118
changes in microservices, 111
changes to overall architecture, 111–112
code reuse versus redundancy, 114–115
code transfer, 113–114
overview, 110
rewriting, 117
shared libraries, 112–113
shared services, 115–116
spawning new services, 116–117

system metaphor, 46
system testing, 222–224

T
teams

creating, 16
delegating to, 238–239
DevOps, 285–290

ptg18144917

Index 393

size of, 30
us versus them attitude, 288

technical architecture, 136–138
technical benefits

choice of technologies, 62–63
continuous delivery, 59–60
independence, 63, 270–273
legacy integration, 57–58
microservice replacement, 56–57
overview, 55–56
robustness, 61–62
scaling, 61
sustainable software development, 57

technical challenges
code dependencies, 71–72
overview, 69–71
technology pluralism, 73–74
unreliable communication, 73

technical evaluation of nanoservices, 366–367
technical leadership, 284
technical standards, testing, 233–235
technologies

choice of, 7, 62–63
high technological complexity, 21–22
load balancing, 145–146
messaging, 182–184
monitoring tools, 250–253
sample microservices-based application

HSQL database, 307
Spring Boot, 307–308
Spring Cloud, 308–310
Spring Cloud Netflix, 310–311
Spring Data REST, 307, 319–320

for service discovery, 142–143
SOA (service-oriented architecture), 86–87
technology stack per team, 21

technology pluralism, 73–74
templates, 240
test harnesses, 206
test pyramid

for individual services, 217–219
for systems, 222

test-driven development, 214–215
testing

arbitrary test frameworks, 232
benefits of, 213–215
bottlenecks during, 13
continuous delivery pipeline, 220
individual services, 227–229
legacy applications, 225–227
macro/micro architecture, 282–284
versus monitoring, 249
risk mitigation, 220–222

sample microservices-based application
consumer-driven contract tests, 337
overview, 336
stubs, 336–337

summary, 235–236
system testing, 222–224
technical standards, 233–235
test pyramid

for individual services, 217–219
for systems, 222

test types
acceptance tests, 59
capacity tests, 59
consumer-driven contract tests,

230–233, 337
exploratorive tests, 59
integration tests, 216, 226–227
JUnit tests, 232
load tests, 217
manual tests, 217
shared integration tests, 223–224
UI tests, 216–217
unit tests, 215–216

three-tier architecture, 71
Thrift, 180
throughput, 151
Tilkov, Stefan, 47–50
time to market, 6–7
timeouts, 203
Tivoli, 251
Tolerant Reader concept, 190
tools

0MQ, 183
ActiveMQ, 183
Ansible, 255
Apache Kafka, 183
Apache Mesos, 265
Apache Qpid, 182
Apache Thrift, 180
Apache Zookeeper, 139
architecture management, 104–107
ATOM Feeds, 183
Azure Service Bus, 183
BIND (Berkeley Internet Name Domain

Server), 142–143
Chef, 255
collectd, 252–253
Consul, 143
CoreOS, 265, 324
DNS (Domain Name System), 142
Docker

cluster environments, 324
containers, 262–263, 318–319

ptg18144917

Index394

tools (continued)
file system, 261–263
overview, 255
registry, 264
sample microservices-based application

deployment, 313–314
servers, 264–265

Docker Compose, 265, 321–324
Docker Machine, 265, 320–321
Docker Swarm, 265
etcd, 139
Eureka

client, 324–325
configuration, 325
overview, 143, 311, 324
server, 326

Feign, 311
Gephi, 107
Grafana, 250
Graphite, 250
HAProxy, 146
Hashicorp Vault, 157–158
HornetQ, 183
httpd, 145
Hystrix

annotations, 330
circuit breaker, 329
configuration, 333
dashboard, 331
overview, 311, 329
resilience and stability, 207–208
Turbine, 331–332

Icinga, 250
jQAssistant, 107
Kerberos, 155
Kubernetes, 265, 324
Maven, 311–313
Mesos, 324
Mesosphere, 324
Metrics framework, 252
Moco, 229
mountebank, 229
Nagios, 250
nginx, 145
OAuth2, 152–156
Operations Manager, 251
Opscenter, 251
package managers, 255
Packetbeat, 251
Pact, 233
Pacto, 233

Puppet, 255
RabbitMQ, 182
Remedy, 251
Ribbon, 310, 333–334
Riemann, 250
RSpec, 232–233
Salt, 255
SAML, 155
Serverspec, 235
Seyren, 250
Spring Framework

HSQL database, 307, 319–320
Spring Boot, 307–308
Spring Cloud, 308–310
Spring Cloud Config, 139
Spring Cloud Netflix, 310–311
Spring Data REST, 307

Squid, 171
SSL/TLS, 155
StatsD, 252
Structure 101, 107
stubby4j, 229
Tivoli, 251
Turbine, 311
uniform tools, 239
Vagrant

configuration, 315–317
how it works, 314
installation, 318
networking, 317

Varnish, 171
VirtualBox, 318
WireMock, 229
Zuul, 310, 327–329

tracing, 245–246, 310
transactions

influence on microservice size, 31–33
messages and, 181–182

transferring code, 113–114
TSL, 155
Turbine, 331–332

U
ubiquitious language, 41
UIs (user interfaces)

integration
HTML-based user interfaces, 168–175
overview, 129–130
SPAs (single-page apps), 164–168

overview, 47–50, 129–130

ptg18144917

Index 395

SCS (self-contained system), 51
technical alternatives, 50
UI tests, 216–217

uncoupling via middleware, 206
uniformity

uniform tools, 239
via asset servers, 166–167, 311

unintended domain-based dependencies,
102–103

unit tests, 215–216
UNIX, 3
unreliable communication, 73
updating Docker containers, 319
“us versus them” attitude, 288
user interfaces. See UIs (user interfaces)

V
Vagrant

configuration, 315–317
how it works, 314
installation, 318
networking, 317

vagrant destroy command, 319
vagrant halt command, 319
vagrant provision command, 319
vagrant ssh command, 318
vagrant up command, 319
Vagrantfile, 315–317
value objects, 41
Varnish, 171

v.cpus setting (Vagrantfile), 318
versioning

interfaces, 192
Semantic Versioning, 189
SOA (service-oriented architecture), 85
version control, 77

Verticles (Vert.x), 358–359
Vert.x, 210, 357–359
viewing Docker containers, 318–319
virtual machines, 260
VirtualBox, 318
virtualization (Docker), 261–265
v.memory setting (Vagrantfile), 318

W
WAR (web application archive), 258, 307, 354
web integration. See UIs (user interfaces)
Wehrens, Oliver, 133–134
WireMock, 229

X-Y-Z
XML (Extensible Markup Language), 177–178
zanox AG, 338
ZeroMQ, 183
Zipkin, 245–246
ZMQ, 183
Zookeeper (Apache), 139, 310
Zuul, 310, 327–329
zypper, 255

ptg18144917

This page intentionally left blank

ptg18144917

Addison-Wesley Cisco Press IBM Press Microsoft Press Pearson IT Certif ication Prentice Hall Que Sams VMware Press

REGISTER YOUR PRODUCT at informit.com/register

 Download available product updates.

 Access bonus material when applicable.

 Receive exclusive offers on new editions and related products.
(Just check the box to hear from us when setting up your account.)

 Get a coupon for 35% for your next purchase, valid for 30 days. Your code will
be available in your InformIT cart. (You will also find it in the Manage Codes
section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

InformIT.com–The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s foremost
education company. At InformIT.com you can

 Shop our books, eBooks, software, and video training.
 Take advantage of our special offers and promotions (informit.com/promotions).
 Sign up for special offers and content newsletters (informit.com/newsletters).
 Read free articles and blogs by information technology experts.
 Access thousands of free chapters and video lessons.

Connect with InformIT–Visit informit.com/community
Learn about InformIT community events and programs.

http://www.informit.com/register
http://www.informit.com/promotions
http://www.informit.com/newsletters
http://www.informit.com/community
http://www.informit.com
http://www.informit.com
http://www.informit.com

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Author
	Part I: Motivation and Basics
	Chapter 1: Preliminaries
	1.1 Overview of Microservice
	Microservice: Preliminary Definition
	Deployment Monoliths

	1.2 Why Microservices?
	Strong Modularization
	Easy Replaceability
	Sustainable Development
	Further Development of Legacy Applications
	Time-to-Market
	Independent Scaling
	Free Choice of Technologies
	Continuous Delivery

	1.3 Challenges
	1.4 Conclusion

	Chapter 2: Microservice Scenarios
	2.1 Modernizing an E-Commerce Legacy Application
	Scenario
	Reasons to Use Microservices
	Slow Continuous Delivery Pipeline
	Parallel Work Is Complicated
	Bottleneck During Testing
	Approach
	Challenges
	Entire Migration Lengthy
	Testing Remains a Challenge
	Current Status of Migration
	Creating Teams
	Advantages
	Conclusion
	Rapid and Independent Development of New Features
	Influence on the Organization
	Amazon Has Been Doing It for a Long Time

	2.2 Developing a New Signaling System
	Scenario
	Reasons to Use Microservices
	Distributed System
	Technology Stack per Team
	Integration of Other Systems
	Challenges
	High Technological Complexity
	Advantages
	Verdict

	2.3 Conclusion
	Essential Points

	Part II: Microservices: What, Why, and Why Not?
	Chapter 3: What Are Microservices?
	3.1 Size of a Microservice
	Modularization
	Distributed Communication
	Sustainable Architecture
	Refactoring
	Team Size
	Infrastructure
	Replaceability
	Transactions and Consistency
	Consistency
	Compensation Transactions across Microservices
	Summary

	3.2 Conway’s Law
	Reasons for the Law
	The Law as Limitation
	The Law as Enabler
	The Law and Microservices

	3.3 Domain-Driven Design and Bounded Context
	Ubiquitous Language
	Building Blocks
	Bounded Context
	Collaboration between Bounded Contexts
	Bounded Context and Microservices
	Large-Scale Structure

	3.4 Why You Should Avoid a Canonical Data Model (Stefan Tilkov)
	3.5 Microservices with a UI?
	Technical Alternatives
	Self-Contained System

	3.6 Conclusion
	Essential Points

	Chapter 4: Reasons for Using Microservices
	4.1 Technical Benefits
	Replacing Microservices
	Sustainable Software Development
	Handling Legacy
	Continuous Delivery
	Scaling
	Robustness
	Free Technology Choice
	Independence

	4.2 Organizational Benefits
	Smaller Projects

	4.3 Benefits from a Business Perspective
	Parallel Work on Stories

	4.4 Conclusion
	Essential Points

	Chapter 5: Challenges
	5.1 Technical Challenges
	Code Dependencies
	Unreliable Communication
	Technology Pluralism

	5.2 Architecture
	Architecture = Organization
	Architecture and Requirements
	Refactoring
	Agile Architecture
	Summary

	5.3 Infrastructure and Operations
	Continuous Delivery Pipelines
	Monitoring
	Version Control

	5.4 Conclusion
	Essential Points

	Chapter 6: Microservices and SOA
	6.1 What Is SOA?
	Introducing SOA
	Services in an SOA
	Interfaces and Versioning
	External Interfaces
	Interfaces Enforce a Coordination of Deployments
	Coordination and Orchestration
	Technologies

	6.2 Differences between SOA and Microservices
	Communication
	Orchestration
	Flexibility
	Microservices: Project Level
	Synergies

	6.3 Conclusion
	Essential Points

	Part III: Implementing Microservices
	Chapter 7: Architecture of Microservice-Based Systems
	7.1 Domain Architecture
	Strategic Design and Domain-Driven Design
	Example Otto Shop
	Managing Dependencies
	Unintended Domain-Based Dependencies
	Cyclic Dependencies

	7.2 Architecture Management
	Tools for Architecture Management
	Cycle-Free Software
	Microservices and Architecture Management
	Tools
	Is Architecture Management Important?
	Context Map

	7.3 Techniques to Adjust the Architecture
	Where Does Bad Architecture Come From?
	Changes in Microservices
	Changes to the Overall Architecture
	Shared Libraries
	Transfer Code
	Reuse or Redundancy?
	Shared Service
	Spawn a New Microservice
	Rewriting
	A Growing Number of Microservices
	Microservice-Based Systems Are Hard to Modify

	7.4 Growing Microservice-Based Systems
	Planning Architecture?
	Start Big
	Start Small?
	Limits of Technology
	Replaceability as a Quality Criterion
	The Gravity of Monoliths
	Keep Splitting
	Global Architecture?

	7.5 Don’t Miss the Exit Point or How to Avoid the Erosion of a Microservice (Lars Gentsch)
	Incorporation of New Functionality
	What Is Happening to the Microservice Here?
	Criteria Arguing for a New Microservice Instead of Extending an Existing One
	How to Recognize Whether the Creation of a New Microservice Should Have Occurred Already
	Conclusion

	7.6 Microservices and Legacy Applications
	Breaking Up Code?
	Supplementing Legacy Applications
	Enterprise Integration Patterns
	Limiting Integration
	Advantages
	Integration via UI and Data Replication
	Content Management Systems
	Conclusion
	No Big Bang
	Legacy = Infrastructure
	Other Qualities

	7.7 Hidden Dependencies (Oliver Wehrens)
	The Database

	7.8 Event-Driven Architecture
	7.9 Technical Architecture
	Technical Decisions for the Entire System
	Sidecar

	7.10 Configuration and Coordination
	Consistency as Problem
	Immutable Server
	Alternative: Installation Tools

	7.11 Service Discovery
	Service Discovery = Configuration?
	Technologies

	7.12 Load Balancing
	REST/HTTP
	Central Load Balancer
	A Load Balancer per Microservice
	Technologies
	Service Discovery
	Client-Based Load Balancing
	Load Balancing and Architecture

	7.13 Scalability
	Scaling, Microservices, and Load Balancing
	Dynamic Scaling
	Microservices: Advantages for Scaling
	Sharding
	Scalability, Throughput, and Response Times

	7.14 Security
	Security and Microservices
	OAuth2
	Possible Authorization Grants
	JSON Web Token (JWT)
	OAuth2, JWT, and Microservices
	Technologies
	Additional Security Measures
	Hashicorp Vault
	Additional Security Goals

	7.15 Documentation and Metadata
	Outdated Documentation
	Access to Documentation

	7.16 Conclusion
	Essential Points

	Chapter 8: Integration and Communication
	8.1 Web and UI
	Multiple Single-Page-Apps
	SPA per Microservice
	Asset Server for Uniformity
	A Single-Page App for All Microservices
	HTML Applications
	ROCA
	Easy Routing
	Arrange HTML with JavaScript
	Front-End Server
	Mobile Clients and Rich Clients
	Organizational Level
	Back-End for Each Front-End

	8.2 REST
	Cache and Load Balancer
	HATEOAS
	HAL
	XML
	HTML
	JSON
	Protocol Buffer
	RESTful HTTP Is Synchronous

	8.3 SOAP and RPC
	Flexible Transport
	Thrift

	8.4 Messaging
	Messages and Transactions
	Messaging Technology

	8.5 Data Replication
	Replication
	Problems: Redundancy and Consistency
	Implementation
	Batch
	Event

	8.6 Interfaces: Internal and External
	External Interfaces
	Separating Interfaces
	Implementing External Interfaces
	Semantic Versioning
	Postel’s Law or the Robustness Principle

	8.7 Conclusion
	Client
	Logic Layer
	Data Replication
	Interfaces and Versions
	Essential Points

	Chapter 9: Architecture of Individual Microservices
	9.1 Domain Architecture
	Cohesion
	Encapsulation
	Domain-Driven Design
	Transactions

	9.2 CQRS
	CQRS
	Microservices and CQRS
	Advantages
	Challenges

	9.3 Event Sourcing
	9.4 Hexagonal Architecture
	Hexagons or Layers?
	Hexagonal Architectures and Microservices
	An Example

	9.5 Resilience and Stability
	Timeout
	Circuit Breaker
	Bulkhead
	Steady State
	Fail Fast
	Handshaking
	Test Harness
	Uncoupling via Middleware
	Stability and Microservices
	Resilience and Reactive
	Hystrix

	9.6 Technical Architecture
	Process Engines
	Statelessness
	Reactive
	Microservices without Reactive?

	9.7 Conclusion
	Essential Points

	Chapter 10: Testing Microservices and Microservice-Based Systems
	10.1 Why Tests?
	Tests Minimize Expenditure
	Tests = Documentation
	Test-Driven Development

	10.2 How to Test?
	Unit Tests
	Integration Tests
	UI Tests
	Manual Tests
	Load Tests
	Test Pyramid
	Continuous Delivery Pipeline

	10.3 Mitigate Risks at Deployment
	10.4 Testing the Overall System
	Shared Integration Tests
	Avoiding Integration Tests of the Overall System

	10.5 Testing Legacy Applications and Microservices
	Relocating Tests of the Legacy Application
	Integration Test: Legacy Application and Microservices

	10.6 Testing Individual Microservices
	Reference Environment
	Stubs

	10.7 Consumer-Driven Contract Tests
	Components of the Contract
	Contracts
	Implementation
	Tools

	10.8 Testing Technical Standards
	10.9 Conclusion
	Essential Points

	Chapter 11: Operations and Continuous Delivery of Microservices
	11.1 Challenges Associated with the Operation of Microservices
	Numerous Artifacts
	Delegate into Teams
	Unify Tools
	Specify Behavior
	Micro and Macro Architecture
	Templates

	11.2 Logging
	Logging for Microservices
	Technologies for Logging via the Network
	ELK for Centralized Logging
	Scaling ELK
	Graylog
	Splunk
	Stakeholders for Logs
	Correlation IDs
	Zipkin: Distributed Tracing

	11.3 Monitoring
	Basic Information
	Additional Metrics
	Stakeholders
	Correlate with Events
	Monitoring = Tests?
	Dynamic Environment
	Concrete Technologies
	Enabling Monitoring in Microservices
	Metrics
	StatsD
	collectd
	Technology Stack for Monitoring
	Effects on the Individual Microservice

	11.4 Deployment
	Deployment Automation
	Installation and Configuration
	Risks Associated with Microservice Deployments
	Deployment Strategies

	11.5 Combined or Separate Deployment? (Jörg Müller)
	11.6 Control
	11.7 Infrastructure
	Virtualization or Cloud
	Docker
	Docker Container versus Virtualization
	Communication between Docker Containers
	Docker Registry
	Docker and Microservices
	Docker and Servers
	PaaS

	11.8 Conclusion
	Essential Points

	Chapter 12: Organizational Effects of a Microservices-Based Architecture
	12.1 Organizational Benefits of Microservices
	Technical Independence
	Separate Deployment
	Separate Requirement Streams
	Three Levels of Independence

	12.2 An Alternative Approach to Conway’s Law
	The Challenges Associated with Conway’s Law
	Collective Code Ownership
	Advantages of Collective Code Ownership
	Disadvantages of Collective Code Ownership
	Pull Requests for Coordination

	12.3 Micro and Macro Architecture
	Decision = Responsibility
	Who Creates the Macro Architecture?
	Extent of the Macro Architecture
	Technology: Macro/Micro Architecture
	Operations
	Domain Architecture
	Tests

	12.4 Technical Leadership
	Developer Anarchy

	12.5 DevOps
	DevOps and Microservices
	Do Microservices Necessitate DevOps?

	12.6 When Microservices Meet Classical IT Organizations (Alexander Heusingfeld)
	Pets versus Cattle
	Us versus Them
	Development versus Test versus Operations: Change of Perspective
	For Operations There Is Never an “Entirely Green Field”
	Conclusion

	12.7 Interface to the Customer
	Architecture Leads to Departments

	12.8 Reusable Code
	Client Libraries
	Reuse Anyhow?
	Reuse as Open Source

	12.9 Microservices without Changing the Organization?
	Microservices without Changing the Organization
	Evaluation
	Departments
	Operations
	Architecture

	12.10 Conclusion
	Essential Points

	Part IV: Technologies
	Chapter 13: Example of a Microservices-Based Architecture
	13.1 Domain Architecture
	Separate Data Storages
	Lots of Communication
	Bounded Context
	Don’t Modularize Microservices by Data!

	13.2 Basic Technologies
	HSQL Database
	Spring Data REST
	Spring Boot
	Spring Cloud
	Spring Cloud Netflix

	13.3 Build
	13.4 Deployment Using Docker
	13.5 Vagrant
	Networking in the Example Application

	13.6 Docker Machine
	13.7 Docker Compose
	13.8 Service Discovery
	Eureka Client
	Configuration
	Eureka Server

	13.9 Communication
	Zuul: Routing

	13.10 Resilience
	Circuit Breaker
	Hystrix with Annotations
	Monitoring with the Hystrix Dashboard
	Turbine

	13.11 Load Balancing
	Ribbon with Spring Cloud

	13.12 Integrating Other Technologies
	13.13 Tests
	Stubs
	Consumer-Driven Contract Test

	13.14 Experiences with JVM-Based Microservices in the Amazon Cloud (Sascha Möllering)
	Conclusion

	13.15 Conclusion
	Essential Points

	Chapter 14: Technologies for Nanoservices
	14.1 Why Nanoservices?
	Minimum Size of Microservices is Limited
	Compromises
	Desktop Applications

	14.2 Nanoservices: Definition
	14.3 Amazon Lambda
	Calling Lambda Functions
	Evaluation for Nanoservices
	Conclusion

	14.4 OSGi
	The OSGi Module System
	Handling Bundles in Practice
	Evaluation for Nanoservices
	Conclusion

	14.5 Java EE
	Nanoservices with Java EE
	Microservices with Java EE?
	An Example

	14.6 Vert.x
	Conclusion

	14.7 Erlang
	Evaluation for Nanoservices

	14.8 Seneca
	Evaluation for Nanoservices

	14.9 Conclusion
	Essential Points

	Chapter 15: Getting Started with Microservices
	15.1 Why Microservices?
	15.2 Roads towards Microservices
	15.3 Microservice: Hype or Reality?
	15.4 Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

