

Microservices Deployment
Cookbook

Master over 60 recipes to help you deliver complete, scalable,
microservice-based solutions and see the improved business
results immediately

Vikram Murugesan

BIRMINGHAM - MUMBAI

Microservices Deployment Cookbook

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2017

Production reference: 1240117

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-943-4

www.packtpub.com

http://www.packtpub.com

Credits

Author

Vikram Murugesan

Copy Editor

Madhusudan Uchil

Reviewer

Kishore Kumar Yekkanti

Project Coordinator

Judie Jose

Commissioning Editor

Kartikey Pandey

Proofreader

Safis Editing

Acquisition Editor

Vijin Boricha

Indexer

Pratik Shirodkar

Content Development Editor

Amedh Gemraram Pohad

Graphics

Kirk D'Penha

Technical Editors

Prashant Chaudhari
Vishal Kamal Mewada

Production Coordinator

Melwyn Dsa

  

About the Author
Vikram Murugesan is a software architect who has over 10 years of experience building
distributed systems and products. He currently works as a principal architect with Egen
Solutions Inc. In his current job, he focuses on building platforms based on JVM (Java, Scala,
and Groovy), big data, and cloud technologies. He is a passionate programmer and is
interested in learning new technologies. He is also interested in coaching, mentoring, and
building scalable teams that build great software.

I would like to take a moment to thank everyone that has been a huge support during the
course of writing this book. Firstly, thanks to Mr. Raghu Potini, who motivated me to
write this book and has been supportive throughout the writing process. Without his
support and motivation, this book would have not been possible. Secondly, I would like to
thank Mr. Andrew Leasck, who has been my inspiration since the beginning of my career.
When I started writing the book, I did not know much about the publishing process or the
amount of team work it needs. While working with the Packt Publishing team, they made
me realize that it requires enormous amount of team effort, coordination and patience. The
Packt Publishing team made it look so simple, but behind the scenes, they put so much
effort and thoughts into giving life to this book. Without them, this would have not been
possible. Hats off to the Packt team members that helped me during this process. Everyone
has a role model in life. My father has always been my role model and an inspiration.
Thanks to my father, Mr. Murugesan, who would have been really proud about this book.
Special thanks to my mother, Vijayarani, wife, Subamalar, and daughther, Sreesha, who
have been very patient and supportive during the course of writing this book.

About the Reviewer
Kishore Kumar Yekkanti is an seasoned developer who worked across various domains
and technologies over the past 10 years. He played key roles in various product and agile
consulting companies such as Stayzilla, Thoughtworks, and, currently at CurrencyFair. His
domain expertise spans the finance, supply chain, e-commerce, cloud, infrastructure
management, health, retail, ICT4D, and entertainment industries. He is passionate about
open source software and is a core contributor to many humanitarian open source projects.
His current focus is on scaling microservices in highly distributed applications that are
deployed using container-based systems in the cloud. Kishore is also a core reviewer for
another microservices book called Developing Microservices with Node.js.

I would like thank my wife, Jyothsna, and my daughter, Dhruti, who put up with me all
along irrespective of my crazy schedules.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thank you for purchasing this Packt book. We take our commitment to improving our
content and products to meet your needs seriously—that's why your feedback is so
valuable. Whatever your feelings about your purchase, please consider leaving a review on
this book's Amazon page. Not only will this help us, more importantly it will also help
others in the community to make an informed decision about the resources that they invest
in to learn.

You can also review for us on a regular basis by joining our reviewers' club. If you're
interested in joining, or would like to learn more about the benefits we offer, please
contact us: customerreviews@packtpub.com.

Table of Contents
Preface 1

Chapter 1: Building Microservices with Java 8

Introduction 9
Creating a project template using STS and Maven 11

Getting ready 11
How to do it… 11
There's more… 15

Writing microservices with Spring Boot 16
Getting ready 16
How to do it… 16

Writing REST APIs with Spring MVC 19
Getting ready 19
How to do it… 20

Writing microservices with WildFly Swarm 26
Getting ready 26
How to do it… 26

Writing microservices with Dropwizard 33
Getting ready 33
How to do it… 33

Writing REST APIs with SparkJava 40
Getting ready 40
How to do it… 40

Conclusion 44

Chapter 2: Containerizing Microservices with Docker 46

Building an executable JAR using Maven Shade plugin 46
Getting ready 47
How to do it… 47

Building an executable JAR using the Spring Boot Maven plugin 50
Getting ready 50
How to do it… 50

Installing and setting up Docker 53
Getting ready 54
How to do it… 54

Writing your Dockerfile 61

[ii]

Getting ready 61
How to do it… 62

Building your Docker image 64
Getting ready 65
How to do it… 65

Running your microservice inside a Docker container 68
Getting ready 68
How to do it… 69

Pushing your image to Docker Hub 71
Getting ready 72
How to do it… 74

Chapter 3: Deploying Microservices on Mesos 77

Introduction 77
Setting up a Mesos cluster using Docker 79

Getting ready 79
Zookeeper 80
Mesos masters and Mesos slaves 80
Mesos frameworks 80

How to do it… 82
Understanding the Mesos and Marathon interface 93

Getting ready 94
How to do it… 94

The Mesos interface 94
The Mesos home page 94
Frameworks 97

The Marathon web UI 98
Deploying your microservice to Mesos using Marathon 99

Getting ready 100
How to do it… 100

Configuring ports in Marathon 106
Getting ready 106
How to do it… 107

Configuring volumes in Marathon 113
Getting ready 113
How to do it… 113

Configuring environment variables in Marathon 122
Getting ready 122
How to do it… 122

Scaling your microservice in Marathon 127
Getting ready 127

[iii]

How to do it… 128
Destroying your microservice in Marathon 131

Getting ready 131
How to do it… 132

Monitoring your microservice logs in Marathon 133
Getting ready 133
How to do it… 134

Monitoring your microservice logs in Mesos 136
Getting ready 136
How to do it… 137

Managing your microservice using Marathon's REST API 139
Getting ready 140
How to do it… 140

Chapter 4: Deploying Microservices on Kubernetes 148

Introduction 149
Kubernetes master 150

API server 150
etcd 150
Scheduler 151
Controller manager 151
Kubernetes node 151

Setting up Kubernetes cluster using Docker 152
Getting ready 152
How to do it… 153

Understanding the Kubernetes dashboard 159
Getting ready 160
How to do it… 160

Deploying your microservice on Kubernetes 168
Getting ready 168
How to do it… 168

Configuring ports in Kubernetes 174
Getting ready 174
How to do it… 175

Configuring volumes in Kubernetes 179
Getting ready 180
How to do it… 181

Configuring environment variables in Kubernetes 185
Getting ready 186
How to do it… 186

Scaling your microservice in Kubernetes 190

[iv]

Getting ready 190
How to do it… 190

Destroying your microservice in Kubernetes 194
Getting ready 194
How to do it… 194

Monitoring your microservice logs in Kubernetes 196
Getting ready 196
How to do it… 197

Chapter 5: Service Discovery and Load Balancing Microservices 202

Introduction 202
Setting up Zookeeper using Docker 203

Getting ready 203
How to do it… 204

Load balancing microservices using Zookeeper 206
Getting ready 207
How to do it… 207

Setting up Consul using Docker 226
Getting ready 227
How to do it… 227

Understanding the concepts of Consul 227
Implementing service discovery using Spring Cloud Consul 231

Getting ready 231
How to do it… 232

Load balancing your microservice using Spring Cloud Consul 236
Getting ready 236
How to do it… 237

Load balancing your microservice using Nginx and Consul 244
Getting ready 245
How to do it… 246

Load balancing your microservice using Marathon LB 252
How it works… 252

Chapter 6: Monitoring Microservices 254

Introduction 254
Configuring Spring Boot Actuator metrics 255

Getting ready 255
How to do it… 256

Understanding Spring Boot Actuator metrics 258
Getting ready 259

[v]

How to do it… 259
Creating custom metrics using Dropwizard 266

Getting ready 267
How to do it… 267

Setting up Graphite using Docker 274
Getting ready 274
How to do it… 274

Using the Graphite interface 278
Getting ready 278
How to do it… 278

Tree view 279
Search 281
Auto-Completer 282
Graphite 283

Exporting Dropwizard metrics over to Graphite 284
Getting ready 284
How to do it… 284

Exporting Spring Boot Actuator metrics over to Graphite 289
Getting ready 289
How to do it… 289

Setting up Grafana using Docker 291
Getting ready 292
How to do it… 292

Configuring Grafana to use Graphite 295
Getting ready 295
How to do it… 296

Configuring Grafana dashboards to view metrics 298
Getting ready 298
How to do it… 299

Chapter 7: Building Asynchronous Streaming Systems with Kafka and
Spark 304

Introduction 304
Setting up Kafka using Docker 305

Kafka 305
Point-to-point mechanism 306
Pub-sub mechanism 306

Kafka terminology 306
Brokers 306
Topics 306
Partitions 306
Producers and consumers 306

[vi]

Getting ready 307
How to do it… 307

Creating Kafka topics to stream data 310
Getting ready 310
How to do it… 311

Writing a streaming program using Kafka Streams 317
Getting ready 318
How to do it… 318

Improving the performance of the Kafka Streams program 323
Getting ready 324
How to do it… 324

Writing a streaming program using Apache Spark 326
Getting ready 327
How to do it… 328

Improving the performance of the Spark job 336
How to do it… 336

Aggregating logs into Kafka using Log4J 338
Getting ready 339
How to do it… 339

Integrating Kafka with log management systems 342
How it works… 342

Chapter 8: More Clustering Frameworks - DC/OS, Docker Swarm, and
YARN 344

Introduction 344
Deploying infrastructure with DC/OS 345

Getting ready 345
How to do it… 345

Deploying containers with Docker Swarm 348
Getting ready 349
How to do it… 349

Deploying containers on YARN 353
Getting ready 353
How it works… 353

Index 356

Preface
The goal of this book is to introduce you to some of the most popular and newest
technologies and frameworks that will help you build and deploy microservices at scale.
With the current evolution in this space, it is really difficult to keep up with all the new
frameworks and tools. If you are an open source fan like me, you would already know that
you have to spend a lot of time in trying out these new frameworks and libraries in order to
understand their potential and the exact problem that they are trying to solve. Of course,
each framework would have been built for a specific purpose, and you will often end up in
a situation where you don’t have a silver bullet for all your microservice concerns. In this
book, you will learn some of the most commonly used frameworks and technologies that
help you build and deploy microservices at scale.

Throughout this book, we will be sticking to a specific application and will try to build
upon that application. For example, we will be using the same application to configure
service discovery, monitoring, streaming, log management, and load balancing. So by the
end of this book, you will have a fully loaded microservice that demonstrates every aspect
of a microservice.

This book covers several libraries and frameworks that help you build and deploy
microservices. After reading this book, you will not be an expert on all of them, but you will
know where to start and how to proceed. That’s the whole intention of this book. I hope
you'll like it. Good luck microservicing!

What this book covers
Chapter 1, Building Microservices with Java, shows you how to build Java-based RESTful
microservices using frameworks such as Spring Boot, Wildfly Swarm, Dropwizard, and
Spark Java . This chapter will also show you how to write RESTful APIs using Spring MVC
and Spark Java.

Chapter 2, Containerizing Microservices with Docker, shows you how to package your
application using Maven plugins such as the Maven Shade plugin and Spring Boot Maven
plugin. This chapter will also show you how to install Docker on your local computer. You
will also learn how to containerize your application using Docker and later push your
microservice’s Docker image to the public Docker Hub.

Preface

[2]

Chapter 3, Deploying Microservices on Mesos, shows you how to orchestrate a Dockerized
Mesos cluster with Marathon on your local machine. You will also learn how to deploy
your Dockerized microservice to a Mesos cluster using Marathon. Later, you will learn how
to scale your microservice; configure ports, volumes, and environment variables; and view
container logs in Marathon. Finally you will learn how to use Marathon's REST API for
managing your microservice.

Chapter 4, Deploying Microservices on Kubernetes, shows you how to orchestrate a
Dockerized Kubernetes cluster using Minikube on your local machine. You will also learn
how to deploy your Dockerized microservice to a Kubernetes cluster using the Kubernetes
dashboard as well as kubectl. Later, you will learn how to scale your microservice;
configure ports, volumes, and environment variables; and view container logs in
Kubernetes using the dashboard as well as kubectl.

Chapter 5, Service Discovery and Load Balancing Microservices, shows you how you to run a
Dockerized Zookeeper instance on your local machine. You will learn how to implement
service discovery and load balancing using Zookeeper. This chapter also introduces you to
Consul, where you will be running a Dockerized Consul instance on your local machine.
Later, you will learn how to implement service discovery and load balancing using Consul
and Spring Cloud. You will also learn how to implement service discovery and load
balancing using Consul and Nginx.

Chapter 6, Monitoring Microservices, shows you how to configure Spring Boot Actuator and
gives you an overview of all the metrics that are exposed by Spring Boot Actuator. You will
also learn how to create your own metrics using the Dropwizard metrics library and later
expose them via Spring Boot Actuator. Later, you will learn how to run a Dockerized
Graphite instance on your local machine. The metrics that you created using Dropwizard
will then be published to Graphite. Finally, you will learn how to run a Dockerized Grafana
instance on your local machine and then use it to expose your metrics in the form of
dashboards.

Chapter 7, Building Asynchronous Streaming Systems with Kafka and Spark, shows you how to
set up and run a Dockerized Kafka broker on your local machine. You will learn how to
create topics in Kafka and build Kafka Streams application in our microservice that will
stream data asynchronously. You will build a similar Spark Streaming job that will have the
ability to stream data asynchronously. You will get an overview of improving the
performance of your streaming application. Later, you will learn how to aggregate your
application logs into a Kafka topic and then explore the possibilities of integrating it with
popular log-management systems.

Preface

[3]

Chapter 8, More Clustering Frameworks - DC/OS, Docker Swarm, and YARN, will give you an
overview of other popular clustering frameworks in the market. You will get a high-level
idea of Mesosphere’s DC/OS, Docker Swarm, and Apache YARN. You will also get to see
how DC/OS and Docker Swarm can be used to deploy microservices on a larger scale.

What you need for this book
You will need the following software and hardware to execute the recipes on this book.

Hardware:

Desktop or laptop with at least 16 GB memory and a 4-core CPU

Software:

Java Development Kit
Apache Maven
Spring Tool Suite

Who this book is for
This book is for Java developers that would like to learn how to build microservices, deploy
them on a clustered environment, monitor them, and manage them at scale. Familiarity
with Java is a plus, as most of the recipes in this book are based on Java.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

Preface

[4]

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Start the
GeoLocationApplication.java class as a Spring Boot application from your STS IDE."

A block of code is set as follows:

 <!-- <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-consul-all</artifactId>
 <version>1.1.2.RELEASE</version>
 </dependency> -->

Any command-line input or output is written as follows:

curl -H "Content-Type: application/json" -X GET
http://localhost:8080/geolocation

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "The next button that we
would want to use most of the time is the Short URL button."

Preface

[5]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[6]

Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /M i c r o s e r v i c e s - D e p l o y m e n t - C o o k b o o k . We also have other code bundles from our
rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /.
Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a ,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/Microservices-Deployment-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[7]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Building Microservices with

Java
In this chapter, we will cover the following recipes:

Creating a project template using STS and Maven
Writing microservices with Spring Boot
Writing REST APIs with Spring MVC
Writing microservices with WildFly Swarm
Writing microservices with Dropwizard
Writing REST APIs with SparkJava

Microservices have gained a lot of traction recently. A microservice-based architecture is
one way of designing your software. In such an architecture, applications are broken down
into smaller services so that they can be deployed and managed separately. This takes away
a lot of pain points that occur in traditional monolithic applications. With that being said,
microservices can be built using any programming language. In fact, there are many
libraries and frameworks that help programmers build microservices using Java, Scala, C#,
JavaScript, Python, Ruby, and so on. In this book, we will focus more on building and
deploying microservices with Java.

Building Microservices with Java

[9]

Introduction
In a traditional microservice-based design, monolithic applications will be broken down
into smaller services that can talk to other services either in a synchronous or asynchronous
model, based on the need and use case. The first question that anyone would have when
breaking down monolithic applications is “what are the potential services that my
application can be broken down into?” There is no rule of thumb or straight-forward
answer to this. But usually, one looks for independent functionalities. Each and every
functionality can be considered to be built as its own service.

To illustrate this, let's take a look at an example application and see how it could be broken
down into smaller, manageable and deployable microservices. The sample application we
will be looking at is a biker tracking application. This application will have the following
functionalities:

Web interface to monitor the user's progress on a map
REST API to consume the user's geolocation data constantly
Analytics code to perform calculations for biking route suggestions, weather
predictions, biking gear suggestions, calories burnt, water intake, and so on

Let's take a look at how this application might have been designed as a monolithic
application:

Building Microservices with Java

[10]

As you can see, the whole application is bundled as one artifact and therefore promotes a
single point of failure (SPOF). If for some reason the analytics code crashes your JVM, we
will lose the web interface, REST APIs, and analytics as a whole. Now, let's take a look at
how this might be broken down into manageable microservices:

In this architecture diagram, you can see that each and every functionality is deployed as its
own microservice. The service implementations have been broken down into a Notification
Service, which will take care of sending notifications to the users, and the Geo Location
Tracker Service, which keeps track of the geolocation (latitude and longitude) information
of all the users. The Analytics code has been broken down into its own microservices. So if
one type of analytics microservice goes down, the other microservices will keep functioning
properly. You might have noticed that the REST APIs are missing. They are actually not
missing, but integrated into their respective microservices.

Now let's not waste any more time and jump directly into building one part of this
application. To be able to illustrate the extensive concepts that this book offers, I have
chosen the geolocation tracker service as our example microservice. This service will be
responsible for collecting the geolocation of all users of this application and then storing
them in a data store.

Building Microservices with Java

[11]

Creating a project template using STS and
Maven
Creating a project for your microservice is no different than creating a simple Java project.
We will use Maven as our build framework as it is considered to be one of the most popular
build frameworks. If you are comfortable using other frameworks, such as Gradle, SBT, or
Ivy, feel free to use them. But keep in mind that the recipes throughout this book will use
Maven extensively. Unless you are an expert in your preferred framework, I strongly
recommend using Maven.

Getting ready
In order to create your microservice project, you will need the following software. Follow
the instructions on their respective websites to install them:

JDK 1.8+
Maven 3.3.9+
Spring Tool Suite (STS) 3.8.0+

Make sure both Java and Maven are in your PATH variable so that you can use the java and
mvn commands on every terminal shell without having to set PATH each time. Spring Tool
Suite is a sophisticated version of Eclipse that has lot of Spring plugins and extensions. If
you are familiar with other IDEs, feel free to use them. But for familiarity, this book will use
STS for all recipes.

How to do it…
After you have installed the above-mentioned software, open Spring Tool Suite. The first
time you open it, you will be requested to choose a workspace. Go ahead and enter your
workspace location. In this recipe, we will learn how to create a template Maven project
using STS and Maven. STS comes with Maven Integration out of the box. So we don't have
to configure it any further. After your STS IDE has completed startup, follow the below
instructions to create a new Maven project:

Building Microservices with Java

[12]

In your STS window, right-click anywhere on the Package Explorer, select New,1.
and then select Maven Project, as shown in the following screenshot:

Building Microservices with Java

[13]

This will open a popup that will let you chose the type of Maven project you2.
would like to create. We will skip the archetype selection by checking the box
that says Create a simple project (skip archetype selection) and then hit Next:

In the next window, enter the following details to create your project:3.

Group Id: com.packt.microservices
Artifact Id: geolocation
Name: geolocation

Building Microservices with Java

[14]

After you have entered the details, hit Finish:4.

This will create a simple Maven JAR module with all the required directories in5.
place. Depending on your IDE settings, STS configures your new project with the
default Java version. If you have not set any defaults, it will configure your
project with Java 1.5. You can verify this by checking your project structure in
STS. The following screenshot shows that STS uses Java 1.5 for your project:

Building Microservices with Java

[15]

We will use Java 8's lambda expressions in other chapters. So let's change the6.
Java version from 1.5 to 1.8. In order to change the Java version, we will configure
the maven-compiler-plugin in the pom.xmlfile. Add the following section of
code to your pom.xml file's project section:

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.5.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 </plugins>
 </build>

Save your pom.xml file, right-click on your project, choose Maven, and then hit7.
Update Project… or use the keyboard shortcut Alt + F5. This will automatically
change your project's Java version to 1.8.
Our microservice project is now ready to play with.8.

There's more…
If you are more comfortable using the command line to create Maven projects, issue the
following command in your terminal to create the new project:

mvn -B archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes \
-DgroupId=com.packt.microservices -DartifactId=geolocation \
-Dname=geolocation

After Maven creates the project, you should be able to import your project into your IDE.
As this is something out of the scope of this book, we will not be looking at how to import
an existing Maven project into your IDE.

Building Microservices with Java

[16]

Writing microservices with Spring Boot
Now that our project is ready, let's look at how to write our microservice. There are several
Java-based frameworks that let you create microservices. One of the most popular
frameworks from the Spring ecosystem is the Spring Boot framework. In this recipe, we will
look at how to create a simple microservice application using Spring Boot.

Getting ready
Any application requires an entry point to start the application. For Java-based applications,
you can write a class that has the main method and run that class as a Java application.
Similarly, Spring Boot requires a simple Java class with the main method to run it as a
Spring Boot application (microservice). Before you start writing your Spring Boot
microservice, you will also require some Maven dependencies in your pom.xml file.

How to do it…
Create a Java class called1.
com.packt.microservices.geolocation.GeoLocationApplication.java

and give it an empty main method:

 package com.packt.microservices.geolocation;
 public class GeoLocationApplication {
 public static void main(String[] args) {
 // left empty intentionally
 }
 }

Now that we have our basic template project, let's make our project a child2.
project of Spring Boot's spring-boot-starter-parent pom module. This
module has a lot of prerequisite configurations in its pom.xml file, thereby
reducing the amount of boilerplate code in our pom.xml file. At the time of
writing this, 1.3.6.RELEASE was the most recent version:

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.6.RELEASE</version>
 </parent>

Building Microservices with Java

[17]

After this step, you might want to run a Maven update on your project as you3.
have added a new parent module. If you see any warnings about the version of
the maven-compiler plugin, you can either ignore it or just remove the
<version>3.5.1</version> element. If you remove the version element,
please perform a Maven update afterward.
Spring Boot has the ability to enable or disable Spring modules such as Spring4.
MVC, Spring Data, and Spring Caching. In our use case, we will be creating some
REST APIs to consume the geolocation information of the users. So we will need
Spring MVC. Add the following dependencies to your pom.xml file:

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 </dependencies>

We also need to expose the APIs using web servers such as Tomcat, Jetty, or5.
Undertow. Spring Boot has an in-memory Tomcat server that starts up as soon as
you start your Spring Boot application. So we already have an in-memory Tomcat
server that we could utilize.
Now let's modify the GeoLocationApplication.java class to make it a Spring6.
Boot application:

 package com.packt.microservices.geolocation;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure
 .SpringBootApplication;
 @SpringBootApplication
 public class GeoLocationApplication {
 public static void main(String[] args) {
 SpringApplication.run(GeoLocationApplication.class, args);
 }
 }

As you can see, we have added an annotation, @SpringBootApplication, to our class.
The @SpringBootApplication annotation reduces the number of lines of code written by
adding the following three annotations implicitly:

@Configuration

@ComponentScan

@EnableAutoConfiguration

Building Microservices with Java

[18]

If you are familiar with Spring, you will already know what the first two annotations do.
@EnableAutoConfiguration is the only annotation that is part of Spring Boot. The
AutoConfiguration package has an intelligent mechanism that guesses the configuration
of your application and automatically configures the beans that you will likely need in your
code.

You can also see that we have added one more line to the main method, which actually tells
Spring Boot the class that will be used to start this application. In our case, it is
GeoLocationApplication.class. If you would like to add more initialization logic to
your application, such as setting up the database or setting up your cache, feel free to add it
here.

Now that our Spring Boot application is all set to run, let's see how to run our1.
microservice. Right-click on GeoLocationApplication.java from Package
Explorer, select Run As, and then select Spring Boot App. You can also choose
Java Application instead of Spring Boot App. Both the options ultimately do the
same thing. You should see something like this on your STS console:

Building Microservices with Java

[19]

If you look closely at the console logs, you will notice that Tomcat is being started2.
on port number 8080. In order to make sure our Tomcat server is listening, let's
run a simple curl command. cURL is a command-line utility available on most
Unix and Mac systems. For Windows, use tools such as Cygwin or even Postman.
Postman is a Google Chrome extension that gives you the ability to send and
receive HTTP requests. For simplicity, we will use cURL. Execute the following
command on your terminal:

 curl http://localhost:8080

This should give us an output like this:3.

 {"timestamp":1467420963000,"status":404,"error":"Not
 Found","message":"No message available","path":"/"}

This error message is being produced by Spring. This verifies that our Spring Boot
microservice is ready to start building on with more features. There are more configurations
that are needed for Spring Boot, which we will perform later in this chapter along with
Spring MVC.

Writing REST APIs with Spring MVC
There are two types of communication models. One of them is synchronous, where the
client waits for the server to respond to its request. The other is asynchronous, where the
client fires a request and forgets. Though Servlet 3.0 and above let you create asynchronous
servlets, in our recipes, we will focus on traditional servlet-based HTTP APIs for simplicity.
We will also be looking at asynchronous communication in later chapters.

Getting ready
When it comes to building REST APIs, there are several frameworks to choose from. As we
already set up the Spring ecosystem in our previous recipe, it would make more sense and
be much easier to use Spring MVC to expose REST APIs.

Building Microservices with Java

[20]

How to do it…
The true advantage of Spring Boot is that you do not have to add any new dependencies to
enable web support for your application. Spring Boot's parent pom file (spring-boot-
starter-parent) takes care of that for you. Now let's take a look at how to write our first
API. If you are familiar with Spring MVC, this should be really straight-forward for you:

Create a Controller class called1.
com.packt.microservices.geolocation.GeoLocationController.java,
which will be responsible for basic CRUD operations for the geolocation of all
users:

 package com.packt.microservices.geolocation;

 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RestController;

 @RestController
 @RequestMapping("/geolocation")
 public class GeoLocationController {

 }

There are two things to note here. The @RestController annotation
indicates that we are going to use this controller to expose our REST
APIs. It implicitly adds the @ResponseBody annotation to all controller
methods as that is something you would want to do when exposing
your REST APIs using Spring MVC. The @RequestMapping annotation
specifies where your HTTP resource is located. We are setting
@RequestMapping on the controller level to apply it to all controller
methods.

Using @RequestMapping on the Controller class level to define a root
resource path is considered to be one of the best practices. Instead of
having to create API paths such as /getGeolocation or
/createGeolocation, it is always a better practice to use the same path,
/geolocation, with the GET method to get geolocation data and the POST
method to create geolocation data.

Building Microservices with Java

[21]

Before we jump into creating our APIs, we will need some classes for the domain2.
object and service. Let's start with creating our domain object. Assume that our
GeoLocation consists latitude and longitude. We will be defining both latitude
and longitude as double to provide better precision. Now we will have to say
which user's geolocation it is. So we might want to add a userId. We also need
to say at what time the user was at the geolocation. So we might want to add a
timestamp in EPOCH time format. The timestamp will be of type long. This is
how your plain old java object (POJO) class will look:

 package com.packt.microservices.geolocation;

 import java.io.Serializable;
 import java.util.UUID;

 public class GeoLocation implements Serializable {

 private static final long serialVersionUID = 1L;
 private double latitude;
 private double longitude;
 private UUID userId;
 private long timestamp;
 public double getLatitude() {
 return latitude;
 }
 public void setLatitude(double latitude) {
 this.latitude = latitude;
 }
 public double getLongitude() {
 return longitude;
 }
 public void setLongitude(double longitude) {
 this.longitude = longitude;
 }
 public UUID getUserId() {
 return userId;
 }
 public void setUserId(UUID userId) {
 this.userId = userId;
 }
 public long getTimestamp() {
 return timestamp;
 }
 public void setTimestamp(long timestamp) {
 this.timestamp = timestamp;
 }
 }

Building Microservices with Java

[22]

As you can see, we have used the java.util.UUID class to represent
the userId, assuming that this UUID uniquely identifies a user. We will
not be creating the user POJO as it is out of scope for this recipe.

In an ideal scenario, one would be using a NoSQL or relational database
to store the geolocations. In this case, NoSQL sounds more suitable due
to several reasons, including the fact that our data is time series data, in
JSON format, unstructured but will change over time and we will have a
humongous amount of data.

For simplicity purposes, we will be storing our geolocations in an in-memory3.
java.util.List<GeoLocation> collection. Let's create our repository that
holds all our geolocation objects,
com.packt.microservices.geolocation.GeoLocationRepository.java:

 package com.packt.microservices.geolocation;

 import java.util.ArrayList;
 import java.util.Collections;
 import java.util.List;

 import org.springframework.stereotype.Repository;

 @Repository
 public class GeoLocationRepository {

 private List<GeoLocation> geolocations = new
 ArrayList<GeoLocation>();
 public void addGeoLocation(GeoLocation geolocation) {
 geolocations.add(geolocation);
 }
 public List<GeoLocation> getGeoLocations() {
 return Collections.unmodifiableList(geolocations);
 }
 }

Building Microservices with Java

[23]

Now let's take a look at how your Service interface will look:4.

 package com.packt.microservices.geolocation;

 import java.util.List;

 public interface GeoLocationService {

 public GeoLocation create(GeoLocation geolocation);
 public List<GeoLocation> findAll();
 }

Both our repository and service have a very simple interface. Ideally in real-time5.
applications, you might want to add more complicated methods that not only
perform CRUD operations but also sort, filter, select only specific fields, and so
on. Now let's take a look at our
com.packt.microservices.geolocation.GeoLocationServiceImpl.java

class:

 package com.packt.microservices.geolocation;

 import java.util.List;

 import org.springframework.beans.factory.annotation.Autowired;

 import org.springframework.stereotype.Service;

 @Service
 public class GeoLocationServiceImpl implements
 GeoLocationService {
 @Autowired
 private GeoLocationRepository repository;

 @Override
 public GeoLocation create(GeoLocation geolocation) {
 repository.addGeoLocation(geolocation);
 return geolocation;
 }

 @Override
 public List<GeoLocation> findAll() {
 return repository.getGeoLocations();
 }
 }

Building Microservices with Java

[24]

It is always strongly recommended that you write unit test cases for any
new code. But as that is a little out of scope for this book, we will not be
writing unit test cases for any of the previous code. To learn more about
unit testing Spring Boot applications, please take a look at Spring Boot's
documentation at h t t p s ://d o c s . s p r i n g . i o /s p r i n g - b o o t /d o c s /c u r r e n t

/r e f e r e n c e /h t m l /b o o t - f e a t u r e s - t e s t i n g . h t m l .

Now that our domain and service classes are all set to go, let's modify our6.
Controller class to save and find geolocations. Add the following snippet into
your Controller class body:

 @Autowired
 private GeoLocationService service;

 @RequestMapping(method = RequestMethod.POST, produces =
"application/json", consumes = "application/json")
 public GeoLocation create(@RequestBody GeoLocation geolocation) {
 return service.create(geolocation);
 }

 @RequestMapping(method = RequestMethod.GET, produces =
"application/json")
 public List<GeoLocation> findAll() {
 return service.findAll();
 }

In this implementation, there are a few things to notice. The @RequestMapping annotation
does not have a path defined as it is already derived from the class-level annotation. For
both the create and findAll methods, we are using the same path but different HTTP
methods as per best practice. Since we are dealing only with JSON here, we have set the
produces and consumes values to application/json. The return types of the create
and findAll methods are GeoLocation and List<GeoLocation> respectively. Spring
MVC internally uses Jackson to convert them to their equivalent JSON strings.

That's it! We are now ready to test our application:

Let's try to create two geolocations using the POST API and later try to retrieve1.
them using the GET method. Execute the following cURL commands in your
terminal one by one:

 curl -H "Content-Type: application/json" -X POST -d'{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude": -88.144040}' http://localhost:8080/geolocation

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html

Building Microservices with Java

[25]

This should give you an output similar to the following (pretty-printed for2.
readability):

 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
9.568012, "longitude": 77.962444}' http://localhost:8080/geolocation

This should give you an output similar to the following (pretty-printed for3.
readability):

 {
 "latitude": 9.568012,
 "longitude": 77.962444,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

To verify whether your entities were stored correctly, execute the following cURL4.
command:

 curl http://localhost:8080/geolocation

This should give you an output similar to the following (pretty-printed for5.
readability):

 [
 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 },
 {
 "latitude": 9.568012,
 "longitude": 77.962444,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }
]

Building Microservices with Java

[26]

You now have a fully working version of your microservice. The remaining recipes in this
chapter try to achieve the same logic with different frameworks, such as WildFly Swarm
and Dropwizard. Later in this chapter, we will also look at another framework that helps
you build REST APIs quickly called SparkJava (different from Apache Spark). If you will be
using Spring Boot for your microservices, you can jump to the next chapter. If you are
interested in any of the frameworks that were mentioned, jump to the appropriate recipe in
this chapter.

Writing microservices with WildFly Swarm
WildFly Swarm is a J2EE application packaging framework from RedHat that utilizes the
in-memory Undertow server to deploy microservices. In this recipe, we will create the same
GeoLocation API using WildFly Swarm and JAX-RS.

To avoid confusion and dependency conflicts in our project, we will create the WildFly
Swarm microservice as its own Maven project. This recipe is just here to help you get
started on WildFly Swarm. When you are building your production-level application, it is
your choice to either use Spring Boot, WildFly Swarm, Dropwizard, or SparkJava based on
your needs.

Getting ready
Similar to how we created the Spring Boot Maven project, create a Maven WAR module
with the groupId com.packt.microservices and name/artifactId geolocation-
wildfly. Feel free to use either your IDE or the command line. Be aware that some IDEs
complain about a missing web.xml file. We will see how to fix that in the next section.

How to do it…
Before we set up the WildFly Swarm project, we have to fix the missing web.xml1.
error. The error message says that Maven expects to see a web.xml file in your
project as it is a WAR module, but this file is missing in your project. In order to
fix this, we have to add and configure maven-war-plugin. Add the following
code snippet to your pom.xml file's project section:

 <build>
 <plugins>
 <plugin>

Building Microservices with Java

[27]

 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <failOnMissingWebXml>false</failOnMissingWebXml>
 </configuration>
 </plugin>
 </plugins>
 </build>

After adding the snippet, save your pom.xml file and perform a Maven update.2.
Also, if you see that your project is using a Java version other than 1.8, follow the
Creating a project template using STS and Maven recipe to change the Java version to
1.8. Again, perform a Maven update for the changes to take effect.
Now, let's add the dependencies required for this project. As we know that we3.
will be exposing our APIs, we have to add the JAX-RS library. JAX-RS is the
standard JSR-compliant API for creating RESTful web services. JBoss has its own
version of JAX-RS. So let's add that dependency to the pom.xml file:

 <dependencies>
 <dependency>
 <groupId>org.jboss.spec.javax.ws.rs</groupId>
 <artifactId>jboss-jaxrs-api_2.0_spec</artifactId>
 <version>1.0.0.Final</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

The one thing that you have to note here is the provided scope. The
provided scope in general means that this JAR need not be bundled with
the final artifact when it is built. Usually, the dependencies with provided
scope will be available to your application either via your web server or
application server. In this case, when Wildfly Swarm bundles your app
and runs it on the in-memory Undertow server, your server will already
have this dependency.

The next step toward creating the GeoLocation API using Wildfly Swarm is4.
creating the domain object. Use the
com.packt.microservices.geolocation.GeoLocation.java file from the
previous recipe.

Building Microservices with Java

[28]

Now that we have the domain object, there are two classes that you need to create5.
in order to write your first JAX-RS web service. The first of those is the
Application class. The Application class in JAX-RS is used to define the
various components that you will be using in your application. It can also hold
some metadata about your application, such as your basePath (or
ApplicationPath) to all resources listed in this Application class. In this case,
we are going to use /geolocation as our basePath. Let's see how that looks:

 package com.packt.microservices.geolocation;

 import javax.ws.rs.ApplicationPath;
 import javax.ws.rs.core.Application;

 @ApplicationPath("/geolocation")
 public class GeoLocationApplication extends Application {

 public GeoLocationApplication() {}
 }

There are two things to note in this class; one is the Application class
and the other is the @ApplicationPath annotation-both of which
we've already talked about.

Now let's move on to the resource class, which is responsible for exposing the6.
APIs. If you are familiar with Spring MVC, you can compare Resource classes to
Controllers. They are responsible for defining the API for any specific resource.
The annotations are slightly different from that of Spring MVC. Let's create a new
resource class called
com.packt.microservices.geolocation.GeoLocationResource.java

that exposes a simple GET API:

 package com.packt.microservices.geolocation;

 import java.util.ArrayList;
 import java.util.List;

 import javax.ws.rs.GET;
 import javax.ws.rs.Path;
 import javax.ws.rs.Produces;

 @Path("/")
 public class GeoLocationResource {

 @GET
 @Produces("application/json")

Building Microservices with Java

[29]

 public List<GeoLocation> findAll() {
 return new ArrayList<>();
 }
 }

All the three annotations, @GET, @Path, and @Produces, are pretty self
explanatory.

Before we start writing the APIs and the service class, let's test the application from the
command line to make sure it works as expected. With the current implementation, any GET
request sent to the /geolocation URL should return an empty JSON array.

So far, we have created the RESTful APIs using JAX-RS. It's just another JAX-RS project:

In order to make it a microservice using Wildfly Swarm, all you have to do is add1.
the wildfly-swarm-plugin to the Maven pom.xml file. This plugin will be tied
to the package phase of the build so that whenever the package goal is triggered,
the plugin will create an uber JAR with all required dependencies. An uber JAR is
just a fat JAR that has all dependencies bundled inside itself. It also deploys our
application in an in-memory Undertow server. Add the following snippet to the
plugins section of the pom.xml file:

 <plugin>
 <groupId>org.wildfly.swarm</groupId>
 <artifactId>wildfly-swarm-plugin</artifactId>
 <version>1.0.0.Final</version>
 <executions>
 <execution>
 <id>package</id>
 <goals>
 <goal>package</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

Now execute the mvn clean package command from the project's root2.
directory, and wait for the Maven build to be successful. If you look at the logs,
you can see that wildfly-swarm-plugin will create the uber JAR, which has all
its dependencies. You should see something like this in your console logs:

Building Microservices with Java

[30]

After the build is successful, you will find two artifacts in the target directory of3.
your project. The geolocation-wildfly-0.0.1-SNAPSHOT.war file is the final
WAR created by the maven-war-plugin. The geolocation-wildfly-0.0.1-
SNAPSHOT-swarm.jar file is the uber JAR created by the wildfly-swarm-
plugin. Execute the following command in the same terminal to start your
microservice:

 java -jar target/geolocation-wildfly-0.0.1-SNAPSHOT-swarm.jar

After executing this command, you will see that Undertow has started on port4.
number 8080, exposing the geolocation resource we created. You will see
something like this:

Execute the following cURL command in a separate terminal window to make5.
sure our API is exposed. The response of the command should be [], indicating
there are no geolocations:

 curl http://localhost:8080/geolocation

Now let's build the service class and finish the APIs that we started. For6.
simplicity purposes, we are going to store the geolocations in a collection in the
service class itself. In a real-time scenario, you will be writing repository classes
or DAOs that talk to the database that holds your geolocations. Get the
com.packt.microservices.geolocation.GeoLocationService.java

interface from the previous recipe. We'll use the same interface here.
Create a new class called7.
com.packt.microservices.geolocation.GeoLocationServiceImpl.java

that extends the GeoLocationService interface:

 package com.packt.microservices.geolocation;

 import java.util.ArrayList;
 import java.util.Collections;

Building Microservices with Java

[31]

 import java.util.List;

 public class GeoLocationServiceImpl implements
 GeoLocationService {
 private static List<GeoLocation> geolocations = new
 ArrayList<>
 ();

 @Override
 public GeoLocation create(GeoLocation geolocation) {
 geolocations.add(geolocation);
 return geolocation;
 }

 @Override
 public List<GeoLocation> findAll() {
 return Collections.unmodifiableList(geolocations);
 }
 }

Now that our service classes are implemented, let's finish building the APIs. We8.
already have a very basic stubbed-out GET API. Let's just introduce the service
class to the resource class and call the findAll method. Similarly, let's use the
service's create method for POST API calls. Add the following snippet to
GeoLocationResource.java:

 private GeoLocationService service = new
 GeoLocationServiceImpl();

 @GET
 @Produces("application/json")
 public List<GeoLocation> findAll() {
 return service.findAll();
 }
 @POST
 @Produces("application/json")
 @Consumes("application/json")
 public GeoLocation create(GeoLocation geolocation) {
 return service.create(geolocation);
 }

We are now ready to test our application. Go ahead and build your application.9.
After the build is successful, run your microservice: let's try to create two
geolocations using the POST API and later try to retrieve them using the GET
method. Execute the following cURL commands in your terminal one by one:

Building Microservices with Java

[32]

 curl -H "Content-Type: application/json" -X POST -d
'{"timestamp": 1468203975, "userId": "f1196aac-470e-11e6-
beb8-9e71128cae77", "latitude": 41.803488, "longitude": -88.144040}'
http://localhost:8080/geolocation

This should give you something like the following output (pretty-printed for10.
readability):

 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
9.568012, "longitude": 77.962444}' http://localhost:8080/geolocation

This command should give you an output similar to the following (pretty-printed11.
for readability):

 {
 "latitude": 9.568012,
 "longitude": 77.962444,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

To verify whether your entities were stored correctly, execute the following cURL12.
command:

 curl http://localhost:8080/geolocation

This should give you an output like this (pretty-printed for readability):13.

 [
 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 },
 {
 "latitude": 9.568012,
 "longitude": 77.962444,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",

Building Microservices with Java

[33]

 "timestamp": 1468203975
 }
]

Whatever we have seen so far will give you a head start in building microservices with
WildFly Swarm. Of course, there are tons of features that WildFly Swarm offers. Feel free to
try them out based on your application needs. I strongly recommend going through the
WildFly Swarm documentation for any advanced usages. If you already know that you are
going to be using WildFly Swarm for your microservices, you can skip the rest of the
recipes in this chapter and jump to next chapter. The final two recipes in this chapter will
show you how to create microservices using Dropwizard and how to create RESTful APIs
with SparkJava.

Writing microservices with Dropwizard
Dropwizard is a collection of libraries that help you build powerful applications quickly
and easily. The libraries vary from Jackson, Jersey, Jetty, and so on. You can take a look at
the full list of libraries on their website. This ecosystem of libraries that help you build
powerful applications could be utilized to create microservices as well. As we saw earlier, it
utilizes Jetty to expose its services. In this recipe, we will create the same GeoLocation API
using Dropwizard and Jersey.

To avoid confusion and dependency conflicts in our project, we will create the Dropwizard
microservice as its own Maven project. This recipe is just here to help you get started with
Dropwizard. When you are building your production-level application, it is your choice to
either use Spring Boot, WildFly Swarm, Dropwizard, or SparkJava based on your needs.

Getting ready
Similar to how we created other Maven projects, create a Maven JAR module with the
groupId com.packt.microservices and name/artifactId geolocation-dropwizard.
Feel free to use either your IDE or the command line. After the project is created, if you see
that your project is using a Java version other than 1.8, follow the Creating a project template
using STS and Maven recipe to change the Java version to 1.8. Perform a Maven update for
the change to take effect.

Building Microservices with Java

[34]

How to do it…
The first thing that you will need is the dropwizard-core Maven dependency. Add the
following snippet to your project's pom.xml file:

 <dependencies>
 <dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-core</artifactId>
 <version>0.9.3</version>
 </dependency>
 </dependencies>

Guess what? This is the only dependency you will need to spin up a simple Jersey-based
Dropwizard microservice.

Before we start configuring Dropwizard, we have to create the domain object, service
class, and resource class. Follow the steps from the previous recipe to create the following
four files:

com.packt.microservices.geolocation.GeoLocation.java

com.packt.microservices.geolocation.GeoLocationService.java

com.packt.microservices.geolocation.GeoLocationServiceImpl.java

com.packt.microservices.geolocation. GeoLocationResource.java

Let's see what each of these classes does. The GeoLocation.java class is our domain
object that holds the geolocation information. The GeoLocationService.java class
defines our interface, which is then implemented by the GeoLocationServiceImpl.java
class. If you take a look at the GeoLocationServiceImpl.java class, we are using a
simple collection to store the GeoLocation domain objects. In a real-time scenario, you will
be persisting these objects in a database. But to keep it simple, we will not go that far.

To be consistent with the previous recipe, let's change the path of GeoLocationResource
to /geolocation. To do so, replace @Path("/") with @Path("/geolocation") on line
number 11 of the GeoLocationResource.java class.

We have now created the service classes, domain object, and resource class. Let's
configure Dropwizard.

Building Microservices with Java

[35]

In order to make your project a microservice, you have to do two things:

Create a Dropwizard configuration class. This is used to store any meta-1.
information or resource information that your application will need during
runtime, such as DB connection, Jetty server, logging, and metrics configurations.
These configurations are ideally stored in a YAML file, which will then be
mapped to your Configuration class using Jackson. In this application, we are
not going to use the YAML configuration as it is out of scope for this book.

If you would like to know more about configuring Dropwizard, refer to
their Getting Started documentation page at
http://www.dropwizard.io/0.7.1/docs/getting-started.html.

Let's create an empty Configuration class called2.
GeoLocationConfiguration.java:

 package com.packt.microservices.geolocation;

 import io.dropwizard.Configuration;

 public class GeoLocationConfiguration extends Configuration {

 }

The YAML configuration file has a lot to offer. Take a look at a sample YAML file3.
from Dropwizard's Getting Started documentation page to learn more. The name
of the YAML file is usually derived from the name of your microservice. The
microservice name is usually identified by the return value of the overridden
method public String getName() in your Application class. Now let's
create the GeoLocationApplication.java application class:

 package com.packt.microservices.geolocation;

 import io.dropwizard.Application;
 import io.dropwizard.setup.Environment;
 public class GeoLocationApplication extends
 Application<GeoLocationConfiguration> {
 public static void main(String[] args) throws Exception {
 new GeoLocationApplication().run(args);
 }

 @Override
 public void run(GeoLocationConfiguration config, Environment
 env) throws Exception {

http://www.dropwizard.io/0.7.1/docs/getting-started.html

Building Microservices with Java

[36]

 env.jersey().register(new GeoLocationResource());
 }
 }

There are a lot of things going on here. Let's look at them one by one.
Firstly, this class extends Application with the
GeoLocationConfiguration generic. This clearly makes an instance
of your GeoLocationConfiguraiton.java class available so that you
have access to all the properties you have defined in your YAML file at
the same time mapped in the Configuration class. The next one is the
run method. The run method takes two arguments: your
configuration and environment. The Environment instance is a
wrapper to other library-specific objects such as MetricsRegistry,
HealthCheckRegistry, and JerseyEnvironment. For example, we
could register our Jersey resources using the JerseyEnvironment
instance. The env.jersey().register(new
GeoLocationResource()) line does exactly that. The main method is
pretty straight-forward. All it does is call the run method.

Before we can start the microservice, we have to configure this project to create a4.
runnable uber JAR. Uber JARs are just fat JARs that bundle their dependencies in
themselves. For this purpose, we will be using the maven-shade-plugin. Add
the following snippet to the build section of the pom.xml file. If this is your first
plugin, you might want to wrap it in a <plugins> element under <build>:

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <createDependencyReducedPom>true</createDependencyReducedPom>
 <filters>
 <filter>
 <artifact>*:*</artifact>
 <excludes>
 <exclude>META-INF/*.SF</exclude>
 <exclude>META-INF/*.DSA</exclude>
 <exclude>META-INF/*.RSA</exclude>
 </excludes>
 </filter>
 </filters>
 </configuration>
 <executions>
 <execution>

Building Microservices with Java

[37]

 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer
implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTra
nsformer" />
 <transformer
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTra
nsformer">
<mainClass>com.packt.microservices.geolocation.GeoLocationApplication</main
Class>
 </transformer>
 </transformers>
 </configuration>
 </execution>
 </executions>
 </plugin>

The previous snippet does the following:5.

It creates a runnable uber JAR that has a reduced pom.xml file that does
not include the dependencies that are added to the uber JAR. To learn
more about this property, take a look at the documentation of maven-
shade-plugin.

It utilizes
com.packt.microservices.geolocation.GeoLocationApplicati

on as the class whose main method will be invoked when this JAR is
executed. This is done by updating the MANIFEST file.

It excludes all signatures from signed JARs. This is required to avoid
security errors.

Now that our project is properly configured, let's try to build and run it from the6.
command line. To build the project, execute mvn clean package from the
project's root directory in your terminal. This will create your final JAR in the
target directory. Execute the following command to start your microservice:

 java -jar target/geolocation-dropwizard-0.0.1-SNAPSHOT.jar server

Building Microservices with Java

[38]

The server argument instructs Dropwizard to start the Jetty server. After you7.
issue the command, you should be able to see that Dropwizard has started the in-
memory Jetty server on port 8080. If you see any warnings about health checks,
ignore them. Your console logs should look something like this:

We are now ready to test our application. Let's try to create two geolocations8.
using the POST API and later try to retrieve them using the GET method. Execute
the following cURL commands in your terminal one by one:

 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude": -88.144040}' http://localhost:8080/geolocation

This should give you an output similar to the following (pretty-printed for9.
readability):

 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

Building Microservices with Java

[39]

 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
9.568012, "longitude": 77.962444}' http://localhost:8080/geolocation

This should give you an output like this (pretty-printed for readability):10.

 {
 "latitude": 9.568012,
 "longitude": 77.962444,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

To verify whether your entities were stored correctly, execute the following cURL11.
command:

 curl http://localhost:8080/geolocation

It should give you an output similar to the following (pretty-printed for12.
readability):

 [
 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 },
 {
 "latitude": 9.568012,
 "longitude": 77.962444,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }
]

Excellent! You have created your first microservice with Dropwizard. Dropwizard offers
more than what we have seen so far. Some of it is out of scope for this book. I believe the
metrics API that Dropwizard uses could be used in any type of application. Therefore, we
will look at how to use it in later chapters.

Building Microservices with Java

[40]

Writing REST APIs with SparkJava
In the previous recipes, we saw how to create a microservice using various frameworks
such as Spring Boot, WildFly Swarm, and Dropwizard. This recipe is going to be a little
different for the fact that we are going to see how to create a self-managed RESTful API
using a framework called SparkJava. Not to be confused with Apache Spark, the SparkJava
framework claims to be a micro-framework for building web applications. Their HTTP API
was inspired by Ruby's Sinatra framework. It is so simple that bringing up an HTTP GET
API requires fewer than ten lines of code. Owing to this, SparkJava is something that could
be considered when you would like to quickly build HTTP-based microservices.

To avoid confusion and dependency conflicts in our project, we will create the SparkJava
microservice as its own Maven project. This recipe is just here to help you get started with
SparkJava. When you are building your production-level application, it is your choice to
either use Spring Boot, WildFly Swarm, Dropwizard, or SparkJava based on your needs.

Getting ready
Similar to how we created other Maven projects, create a Maven JAR module with the
groupId com.packt.microservices and name/artifactId geolocation-sparkjava.
Feel free to use either your IDE or the command line. After the project is created, if you see
that your project is using a Java version other than 1.8, follow the Creating a project template
using STS and Maven recipe to change the Java version to 1.8. Perform a Maven update for
the change to take effect.

How to do it…
The first thing that you will need is the SparkJava dependency. Add the following snippet
to your project's pom.xml file:

 <dependencies>
 <dependency>
 <groupId>com.sparkjava</groupId>
 <artifactId>spark-core</artifactId>
 <version>2.5</version>
 </dependency>
 </dependencies>

Building Microservices with Java

[41]

We now have to create the domain object and service class. Follow the Writing microservices
with WildFly Swarm recipe to create the following three files:

com.packt.microservices.geolocation.GeoLocation.java

com.packt.microservices.geolocation.GeoLocationService.java

com.packt.microservices.geolocation.GeoLocationServiceImpl.java

Let's see what each of these classes does. The GeoLocation.java class is our domain
object that holds the geolocation information. The GeoLocationService.java interface
defines our interface, which is then implemented by the GeoLocationServiceImpl.java
class. If you take a look at the GeoLocationServiceImpl.java class, we are using a
simple collection to store the GeoLocation domain objects. In a real-time scenario, you will
be persisting these objects in a database. But to keep it simple, we will not go that far.

The next thing that SparkJava needs is a controller. If you are familiar with Spring MVC,
you can relate this controller to that of Spring MVC's. The controller has a collection of
routes defined for each URL pattern in your API. Follow these steps:

Let's create our controller1.
com.packt.microservices.geolocation.GeoLocationController.java

with a stubbed-out GET API:

 package com.packt.microservices.geolocation;

 import static spark.Spark.*;

 public class GeoLocationController {

 public static void main(String[] args) {
 get("/geolocation", (req, resp) -> "[]");
 }
 }

The quickest way to test this is by running this class as a Java application. If you2.
get SLF4J errors in your console after you start the application, add the following
Maven dependency to your pom.xml file and restart your application:

 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.7.21</version>
 </dependency>

Building Microservices with Java

[42]

The slf4j-simple dependency routes all the SLF4Jlog messages to the
System.err stream.

Your console logs should look something like this after the restart:3.

From the logs, we can clearly see that the service is running on port
4567.

Execute the following curl command in a terminal window to make sure our4.
API is exposed. The response of the following command should be [], indicating
there are no geolocations:

 curl http://localhost:4567/geolocation

Now let's finish building the APIs. We already have a very basic stubbed-out GET5.
API. Let's just introduce the service class to the controller and call the findAll
method. Similarly, let's use the service's create method for POST API calls.
Before we do that, we need to do one more thing. By default, SparkJava does not
perform JSON serialization and deserialization. We will be using a library called
gson to do that. So add the following dependency to your pom.xml file:

 <dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 <version>2.7</version>
 </dependency>

Now let's replace the main method of GeoLocationController.java with this:6.

 public static void main(String[] args) {
 GeoLocationService service = new GeoLocationServiceImpl();
 Gson gson = new Gson();

 get("/geolocation", (req, resp) -> {
 return service.findAll();
 }, gson::toJson);

 post("/geolocation", (req, resp) -> {
 return service.create(gson.fromJson(req.body(),

Building Microservices with Java

[43]

GeoLocation.class));
 }, gson::toJson);
 }

Yes, there are too many things happening here. Let's try to understand them one by one:

The get method now uses the service's findAll method
The third argument to the get method is the ResponseTransformer, which
says how your response should be transformed before being sent to the client
Since the ResponseTransformer is a FunctionalInterface with just one
method render that takes in the rendering logic as an object, we are passing the
method reference to Gson's toJson method as the rendering logic here.

The post method, which uses the service's create method, uses Gson to
transform the request body to a GeoLocation value.

We are now ready to test our application. Restart the application. Let's try to create two
geolocations using the POST API and later try to retrieve them using the GET method:

Execute the following cURL commands in your terminal one by one:1.

 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude": -88.144040}' http://localhost:4567/geolocation

This should give you an output similar to the following (pretty-printed for2.
readability):

 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
9.568012, "longitude": 77.962444}' http://localhost:4567/geolocation

This should give you an output like this (pretty-printed for readability):3.

 {
 "latitude": 9.568012,
 "longitude": 77.962444,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",

Building Microservices with Java

[44]

 "timestamp": 1468203975
 }

To verify whether your entities were stored correctly, execute the following cURL4.
command:

 curl http://localhost:4567/geolocation

It should give you output similar to the following (pretty-printed for readability):5.

 [
 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 },
 {
 "latitude": 9.568012,
 "longitude": 77.962444,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }
]

There are several other configurations that you can make to SparkJava, such as changing the
default port, using query parameters, and using path parameters. I'll leave that to you to
experiment.

Conclusion
At the beginning of this chapter, we quickly saw an overview of what microservices are and
how they benefit organizations by making it easier to manage and deploy independent
services. We looked at an example of a geolocation tracker application to see how it can be
broken down into smaller and manageable services. Next, we saw how to create the
GeoLocationTracker service using the Spring Boot framework. We also learned how to
expose our APIs that consume and read geolocations using Spring MVC. Next, we saw how
to build the same application using WildFly Swarm, and JAX-RS. Later, we built the same
application using Dropwizard. Finally, we saw how to implement the same service using
the SparkJava framework.

Building Microservices with Java

[45]

I hope you now have a good understanding of what microservices are and how to create
them using your favorite framework. The choice of framework completely depends on your
needs and your current ecosystem. We strongly recommend you evaluate them before
picking one. In the next chapter, we will learn how to package this microservice and later
containerize it using Docker.

2
Containerizing Microservices

with Docker
In this chapter, we will focus more on how to package and ship our microservice. We will
learn the following recipes:

Building an executable JAR using the Maven Shade plugin
Building an executable JAR using the Spring Boot Maven plugin
Installing and setting up Docker
Writing your Dockerfile
Building your Docker image
Running your microservice inside a Docker container
Pushing your image to Docker Hub

Building an executable JAR using Maven
Shade plugin
Before we jump into this recipe, let's talk about why we are doing this. Our goal is to
construct a shippable artifact that can be executed from any platform or machine. In order
to do that, we have to make sure our final artifact has all dependencies packaged in it. All
we are trying to do here is build a fat JAR with all dependencies, called the uber JAR, which
we talked about in the previous chapter. Almost all frameworks that help build
microservices, such as Spring Boot and WildFly Swarm, have their own Maven plugins that
help you build an executable JAR.

Containerizing Microservices with Docker

[47]

But if you use frameworks such as SparkJava and RatPack that are not really microservice
frameworks but help in building HTTP APIs, you will have to make sure you use the right
Maven or Gradle plugin to create an executable JAR.

Ratpack is a framework that lets you build high-performance HTTP
services. Internally, it uses Netty as its HTTP engine. It utilizes Netty's
event-based non-blocking mechanism to expose HTTP services, so your
APIs will be asynchronous. Also, the way you write APIs in Ratpack is a
little different from how you write them in other libraries. For more
information about Ratpack, look at their documentation at
https://ratpack.io/manual/current/.

Getting ready
If you are already using Spring Boot or WildFly Swarm, you can skip this recipe as it
already takes care of packaging your application. In order to enforce the packaging of your
executable JAR, we will be using the maven-shade-plugin. This plugin is especially built
for this purpose. Let's take a look at how to do this in our SparkJava project. All this time,
we have been running our geolocation-sparkjava project from the IDE. Now let's see
how we can create an executable JAR for this project and run it from the command-line.

How to do it…
Add this snippet to the Build | Plugins section of your project's pom.xml file:1.

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>2.4.3</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer
 implementation="org.apache.maven.plugins.shade.
 resource.ManifestResourceTransformer">
 <mainClass>com.packt.microservices.

https://ratpack.io/manual/current/

Containerizing Microservices with Docker

[48]

 geolocation.GeoLocationController</mainClass>
 </transformer>
 </transformers>
 </configuration>
 </execution>
 </executions>
 </plugin>

Let's try to understand the snippet. The plugin makes sure that whenever the2.
package phase of your Maven build is triggered, it uses the
ManifestResourceTransformer to add the given mainClass name to your
META-INF/MANIFEST.MF file's Main-Class property. This property specifies the
entry point to your JAR file. With that said, let's go ahead and run the Maven
package goal. Issue the following command from the project's root directory in
your terminal:

 mvn clean package

The previous Maven command packages your project into an executable JAR3.
using the maven-shade-plugin. Before it packages, it also runs other Maven
goals, including clean, validate, compile, and test. We will not be
discussing these Maven goals in depth as they are out of the scope of this book.
The previous command should give you something like this on your console:

Containerizing Microservices with Docker

[49]

If you watch closely, you can see that towards the end of the build, the maven-4.
shade-plugin is creating a shaded artifact with dependencies such as
sparkjava, slf4j, jetty, and gson. These JARs are required during the run
time of this application. The final artifact will be available in the target directory
of the project. The maven-shade-plugin will replace the original
geolocation-sparkjava-0.0.1-SNAPSHOT.jar artifact with the shaded
artifact.
Now let's go ahead and run the application; issue the following Java command:5.

 java -jar target/geolocation-sparkjava-0.0.1-SNAPSHOT.jar

With this command, you can see that your application has started and is listening6.
for new requests on port 4567:

Now that our service is ready, let's go ahead and test it by posting a geolocation.7.
Execute the following cURL commands in your terminal:

 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude": -88.144040}' http://localhost:4567/geolocation

This should give you an output similar to the following (pretty-printed for8.
readability):

 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

The previous Maven plugin can be used with any type of project. If you are9.
planning to use other frameworks and want to make an executable JAR, you can
use the maven-shade-plugin to do so.

Containerizing Microservices with Docker

[50]

Building an executable JAR using the Spring
Boot Maven plugin
This recipe is intended for Spring Boot users only. If you are using a different framework
that does not support building executable JARS, please refer to previous recipe.

Getting ready
The spring-boot-maven-plugin is a Maven plugin built by the Spring Boot team to
make packaging your Spring Boot applications easier. It not only allows you to package
your project, but also helps with running and debugging your application. It introduces a
new goal called repackage, which pretty much repackages your original artifact (JAR or
WAR) with an executable uber JAR that has all dependencies in it. If you are familiar with
the maven-shade-plugin, the repackage goal in Spring Boot does shading.

How to do it…
In order to illustrate this recipe, we will be using the geolocation project that we built in
Chapter 1, Building Microservices with Java using Spring Boot:

Open the pom.xml file of the geolocation project and look at the parent section.1.
You will see that we have specified spring-boot-starter-parent as the parent
Maven module. This module does a few things: it is responsible for declaring the
basic spring-core dependency in the dependencyManagement section of its
pom.xml file. It also defines the pluginManagement section of the pom.xml file
with all the Maven plugins that you will need. One of those plugins is spring-
boot-maven-plugin. If you are using STS IDE, please go ahead and click on its
parent section in the pom.xml file by holding the Ctrl button (Command in Mac).
This will take you to the pom.xml file of the spring-boot-starter-parent project.2.
You will see something like this in the pluginManagement section:

 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>

Containerizing Microservices with Docker

[51]

 </execution>
 </executions>
 <configuration>
 <mainClass>${start-class}</mainClass>
 </configuration>
 </plugin>

Go ahead and add the above plugin to the pom file of geolocation project. As you3.
can see, the plugin uses the repackage goal to create the executable JAR file. The
other thing that you have to notice is the mainClass configuration. It holds the
${start-class} value. This indicates that we have to define a property in our
pom.xml file with the name start-class.
Let's go ahead and define the start-class property in the pom.xml file of our4.
geolocation project. Use the following snippet to add the start-class property
to your POM file's project section:

 <properties>
 <start-class>com.packt.microservices.geolocation.
 GeoLocationApplication</start-class>
 </properties>

After adding the property, if you see any errors in your project, perform a Maven5.
update. Now, we are ready to test our application from the command line.
Open a terminal and issue the following command from the project's root6.
directory:

mvn clean package spring-boot:run

As you can see, we are using the run goal of spring-boot-maven plugin. This7.
will first build your project and then give you something like this on the console:

Containerizing Microservices with Docker

[52]

The package goal in the previous command should have created the uber JAR in8.
the target directory for us. If you wish, you could try running the JAR using the
java -jar command as well. Now that our service is ready, let's go ahead and
test it by posting a geolocation. Execute the following curl commands in your
terminal:

 curl -H "Content-Type: application/json" -X POST -d
'{"timestamp": 1468203975, "userId": "f1196aac-470e-11e6-
beb8-9e71128cae77", "latitude": 41.803488,"longitude": -88.144040}'
http://localhost:8080/geolocation

This should give you an output similar to the following (pretty-printed for9.
readability):

 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

The previous method showed you how to package your application using the spring-
boot-maven-plugin. But if you would like to use the maven-shade-plugin, you can do
that too. The support for using maven-shade-plugin is available in the spring-boot-
starter-parent project. If you look at the POM file of the parent project, you can see the
maven-shade-plugin defined. The choice of using either spring-boot-maven-plugin
or maven-shade-plugin is left to you and purely depends on your need.

Containerizing Microservices with Docker

[53]

There are other goals that spring-boot-maven-plugin provides. Some of them are the
start and stop goals. The start goal is very similar to run, except it does not block the
operation. It is usually used when you would like to run integration tests on your
microservice. The stop goal is used to stop the application that was started using the start
goal. To learn more about this plugin, visit the documentation page at
http://docs.spring.io/spring-boot/docs/1.3.6.RELEASE/maven-plugin/index.html.

Installing and setting up Docker
Before we look at the recipe, let's quickly talk about why we will need Docker installed.
Docker has been one of the most popular container frameworks and has picked up traction
in the past few years. In fact, there are a lot many organizations that completely depend on
Docker for shipping and deploying their applications. Gone are the days when Developers,
Build Meisters, Infrastructure Engineers, and Deployment Coordinators would deploy any
new code and infrastructure every release in the middle of the night, making sure the
deployment of the new code or infrastructure does not affect existing users. With
frameworks such as Docker, Mesos, and Kubernetes, deployments have become so much
easier than how they were a few years back.

Let's say you would like to deploy a web application to Tomcat. There are definitely some
prerequisites; for instance, you will need at least a four-core machine with 16 GB memory
and 100 GB disk space. And after that, you have to install an operating system on it. After
you have your OS installed, you need many other tools, such as Java, Tomcat, Nginx, and
perhaps other monitoring and log management tools. Now you need someone to maintain
this machine–upgrades, installations, deployments, and so on. It becomes even harder if
you want a horizontal and vertical cluster.

Now you need more resources, plus you will need more administrators to manage your
machines. What if you could run your application inside a container that has all these
prerequisites already set up? What if you could create images that already have your
prerequisites and your application? That's exactly what Docker helps you with. Docker
helps you build images with whatever you need and also helps you run containers for your
images on machines that have Docker installed. Machines that have Docker installed are
called Docker hosts. You will see this term being used a lot throughout the book.

http://docs.spring.io/spring-boot/docs/1.3.6.RELEASE/maven-plugin/index.html

Containerizing Microservices with Docker

[54]

Getting ready
At the time of writing this, native Docker installations for both Mac and Windows are still
in beta. So we will be using Docker Machine in this recipe and the rest of the book.
Moreover, we will be using the Mac version of Docker Machine. If you are a Windows user,
most of the instructions are still going to be the same.

If you are a Linux user, you can skip the steps where we work with Docker Machine.
Installing Docker on Linux is so much easier compared to Mac and Windows. Please follow
the installation instructions on Docker's website to install it on your Linux machine. You
can find the documentation
here: https://docs.docker.com/engine/installation/#/on-linux.

Docker Machine for Mac or Windows utilizes Oracle VirtualBox to spin off virtual machines
that act as Docker hosts. Docker Machine will communicate with the VirtualBox VM
instances for any commands you issue in your command line. For more information on how
Docker Machine works, take a look at this link:
https://docs.docker.com/machine/concepts. As this is a little out of scope for this book, it
is strongly recommended that you read and understand how Docker and Docker Machine
work before moving to the next section.

How to do it…
Let's go to the homepage of Docker Toolbox at1.
https://www.docker.com/products/docker-toolbox. Docker Toolbox is
currently supported for Windows and Mac. It is just a package of four different
products from Docker: Docker Engine, Docker Machine, Docker Compose, and
Docker Kitematic.

Docker Kitematic is Docker's attempt at a UI-driven management console
for Docker on your machine. We will be looking at Docker Compose in the
next chapter.

https://docs.docker.com/engine/installation/#/on-linux
https://docs.docker.com/machine/concepts
https://www.docker.com/products/docker-toolbox

Containerizing Microservices with Docker

[55]

From the home page, choose your operating system type and download the DMG2.
(for Mac) or EXE (for Windows) file. At the time of writing this, the following is
how the Docker Toolbox homepage looked like. Over time, there could be
changes but the idea is to download the DMG or EXE file from the home page.

Once the download is complete, go ahead and open the downloaded installer file.3.
You should see something like this. Go ahead and click on Continue.

Containerizing Microservices with Docker

[56]

In the Overview section, you will have the option to let Docker collect4.
anonymous data for their purposes. Either check or uncheck that option and hit
Continue:

Containerizing Microservices with Docker

[57]

The next two sections, Destination Select and Installation Type, are pretty5.
straight-forward. You will be prompted to choose where you would like to install
Docker Toolbox. Choose the directory of your choice and hit Install:

You will be shown the progress of your installation, and when it is complete, you6.
will see something like this:

Containerizing Microservices with Docker

[58]

You will be prompted to either open Docker Quickstart Terminal or Kitematic.7.
Skip them both and hit Continue to complete the installation.
Now let's test our installation. As we are using Mac in our recipes, you will see8.
Unix commands used throughout the book. For Windows users, it might be a
good idea to install Cygwin if you are familiar with it. Either way, the commands
should be the same on both operating systems. Issue the following command on
your terminal:

 docker-machine ls

This command is used to list the VirtualBox VMs created in your machine. By9.
default, you will see one VM created, with the name default. You will see
something like this:

By default, this VM might not have sufficient resources to run the frameworks we10.
would want to use. So let's recreate this VM with 4 CPUs and 4096 MB memory.
Execute the following command to recreate your VM (if it asks for delete
confirmation, choose Yes):

docker-machine rm default && docker-machine create -d virtualbox --
virtualbox-memory=4096 --virtualbox-cpu-count=4 default

We are doing two things in the preceding command: removing the existing VM11.
and recreating the VM with more resources. As you can see, we are passing
VirtualBox specific arguments --virtualbox-memory and --virtualbox-
cpu-count to increase the memory and CPU count respectively. In our case, we
have provided 4 CPUs and 4096 MB memory to our VM. This should be sufficient
to run the frameworks that we will be using in this book.

Containerizing Microservices with Docker

[59]

After you run the command you should have seen something like this:

If you see that your VM is stopped, issue the following command to start it:12.

 docker-machine start default

After you issue the previous command, you will see this:13.

As you can see, you will have to run the env command to make your shell ready14.
to use this docker-machine instance. In order to do that, issue the following
command on your console:

 eval $(docker-machine env default)

This makes your shell ready to use your newly created Docker Machine instance15.
called default. If you would like to see your VirtualBox VM, open VirtualBox,
and you will see that your Docker host has been created and is running. Now let's
try to spin off our first Docker container:

 docker run hello-world

Containerizing Microservices with Docker

[60]

You should see something like this:16.

There are lots of things going on here. Let's try to understand them one by one:17.
First, let's understand the line that says Unable to find image
'hello-world:latest' locally. This line says that you are trying
to run a container for an image that does not exist in your Docker host.
Docker then downloads the image from Docker Hub (over the Internet)
and later uses that image to run a container.
You can find this image on Docker Hub here:
https://hub.docker.com/_/hello-world/. While hello-world is the
name of the image, latest is its tag.
Tags are pretty much the same as versions. As you can see, even when
we did not provide the docker tag in our docker run command,
Docker automatically used the latest tag.
After the download, you can see the hello world message. This says
that we have successfully run this container and hence successfully
installed Docker.

https://hub.docker.com/_/hello-world/

Containerizing Microservices with Docker

[61]

If you would like to see the images available on your Docker host, issue the18.
following command:

 docker images

You should see something like this:19.

If you would like to see the containers that are running on your Docker machine,20.
use the following command:

 docker ps -a

The -a flag requests Docker to show all containers, including the ones that were21.
stopped. You should see something like this:

That brings us to the end of this recipe. In the next recipe, we will see how to Dockerize our
microservice.

Writing your Dockerfile
So far in this chapter, we have seen how to package our application and how to install
Docker. Now that we have our JAR artifact and Docker set up, let's see how to Dockerize
our microservice application using Docker.

Getting ready
In order to Dockerize our application, we will have to tell Docker how our image is going to
look like. This is exactly the purpose of a Dockerfile. A Dockerfile has its own syntax (or
Dockerfile instructions) and will be used by Docker to create images. Throughout this
recipe, we will try to understand some of the most commonly used Dockerfile instructions
as we write our Dockerfile for the geolocation tracker microservice.

Containerizing Microservices with Docker

[62]

How to do it…
First, open your STS IDE and create a new file called Dockerfile in the1.
geolocation project. The first line of the Dockerfile is always the FROM instruction
followed by the base image that you would like to create your image from. There
are thousands of images on Docker Hub to choose from. In our case, we would
need something that already has Java installed on it. There are some images that
are official, meaning they are well documented and maintained.

Docker Official Repositories are very well documented, and they follow
best practices and standards. Docker has its own team to maintain these
repositories. This is essential in order to keep the repository clear, thus
helping the user make the right choice of repository. To read more about
Docker Official Repositories, take a look at h t t p s ://d o c s . d o c k e r . c o m /d o

c k e r - h u b /o f f i c i a l _ r e p o s /.

We will be using the Java official repository. To find the official repository, go to2.
hub.docker.com and search for java. You have to choose the one that says
official. At the time of writing this, the Java image documentation says it will
soon be deprecated in favor of the openjdk image. So the first line of our
Dockerfile will look like this:

 FROM openjdk:8

As you can see, we have used version (or tag) 8 for our image. If you are3.
wondering what type of operating system this image uses, take a look at the
Dockerfile of this image, which you can get from the Docker Hub page. Docker
images are usually tagged with the version of the software they are written for.
That way, it is easy for users to pick from. The next step is creating a directory for
our project where we will store our JAR artifact. Add this as your next line:

 RUN mkdir -p /opt/packt/geolocation

This is a simple Unix command that creates the
/opt/packt/geolocation directory. The -p flag instructs it to create
the intermediate directories if they don't exist. Now let's create an
instruction that will add the JAR file that was created in your local
machine into the container at /opt/packt/geolocation.

 ADD target/geolocation-0.0.1-SNAPSHOT.jar /opt/packt/geolocation/

https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/

Containerizing Microservices with Docker

[63]

As you can see, we are picking up the uber JAR from target directory and4.
dropping it into the /opt/packt/geolocation/ directory of the container. Take
a look at the / at the end of the target path. That says that the JAR has to be
copied into the directory.
Before we can start the application, there is one thing we have to do, that is,5.
expose the ports that we would like to be mapped to the Docker host ports. In our
case, the in-memory Tomcat instance is running on port 8080. In order to be able
to map port 8080 of our container to any port on our Docker host, we have to
expose it first. For that, we will use the EXPOSE instruction. Add the following
line to your Dockerfile:

 EXPOSE 8080

Now that we are ready to start the app, let's go ahead and tell Docker how to start6.
a container for this image. For that, we will use the CMD instruction:

 CMD ["java", "-jar", "/opt/packt/geolocation/geolocation-0.0.1-
SNAPSHOT.jar"]

There are two things we have to note here. One is the way we are starting the application
and the other is how the command is broken down into comma-separated Strings.

First, let's talk about how we start the application. You might be wondering why we haven't
used the mvn spring-boot:run command to start the application. Keep in mind that this
command will be executed inside the container, and our container does not have Maven
installed, only OpenJDK 8. If you would like to use the mvn command, take that as an
exercise, and try to install Maven on your container and use the mvn command to start the
application. Now that we know we have Java installed, we are issuing a very simple java -
jar command to run the JAR. In fact, the Spring Boot Maven plugin internally issues the
same command.

Containerizing Microservices with Docker

[64]

The next thing is how the command has been broken down into comma-separated Strings.
This is a standard that the CMD instruction follows. To keep it simple, keep in mind that for
whatever command you would like to run upon running the container, just break it down
into comma-separated Strings (in whitespaces).

Your final Dockerfile should look something like this:

 FROM openjdk:8
 RUN mkdir -p /opt/packt/geolocation
 ADD target/geolocation-0.0.1-SNAPSHOT.jar
 /opt/packt/geolocation/
 EXPOSE 8080
 CMD ["java", "-jar", "/opt/packt/geolocation/geolocation-
 0.0.1-SNAPSHOT.jar"]

This Dockerfile is one of the simplest implementations. Dockerfiles can sometimes get
bigger due to the fact that you need a lot of customizations to your image. In such cases, it is
a good idea to break it down into multiple images that can be reused and maintained
separately.

With that said, we've come to the completion of this recipe. There are some best practices to
follow whenever you create your own Dockerfile and image. Though we haven't covered
that here as it is out of the scope of this book, you still should take a look at them and follow
them. To learn more about the various Dockerfile instructions, go to
https://docs.docker.com/engine/reference/builder/.

Building your Docker image
In the previous recipe, we created the Dockerfile, which will be used in this recipe to create
an image for our microservice. If you are wondering why we would need an image, it is the
only way we can ship our software to any system. Once you have your image created and
uploaded to a common repository, it will be easier to pull your image from any location.

https://docs.docker.com/engine/reference/builder/

Containerizing Microservices with Docker

[65]

Getting ready
Before you jump into the actual recipe, it might be a good idea to get yourself familiar with
some of the most commonly used Docker commands. In this recipe, we will use the build
command. Take a look at this URL to understand the other commands:
https://docs.docker.com/engine/reference/commandline/#/image-commands. After
familiarizing yourself with the commands, open up a new terminal, and change your
directory to the root of the geolocation project. Make sure your docker-machine instance
is running. If it is not running, use the docker-machine start command to run your
docker-machine instance:

 docker-machine start default

If you have to configure your shell for the default Docker machine, go ahead and execute
the following command:

 eval $(docker-machine env default)

How to do it…
From the terminal, issue the following docker build command:1.

 docker build -t packt/geolocation .

We'll try to understand the command later. For now, let's see what happens after2.
you issue the preceding command. You should see Docker downloading the
openjdk image from Docker Hub.

https://docs.docker.com/engine/reference/commandline/#/image-commands

Containerizing Microservices with Docker

[66]

Once the image has been downloaded, you will see that Docker tries to validate3.
each and every instruction provided in the Dockerfile. When the last instruction
has been processed, you will see a message saying Successfully built. This
says that your image has been successfully built.

Now let's try to understand the command. There are three things to note here:4.
The first thing is the docker build command itself. The docker
build command is used to build a Docker image from a Dockerfile. It
needs at least one input, which is usually the location of the Dockerfile.

Containerizing Microservices with Docker

[67]

Dockerfiles can be renamed to something other than Dockerfile and can
be referred to using the -f option of the docker build command. An
instance of this being used is when teams have different Dockerfiles for
different build environments, for example, using DockerfileDev for the
development environment, DockerfileStaging for the staging environment,
and DockerfileProd for the production environment. It is still encouraged
as a best practice to use other Docker options (like passing arguments) in
order to keep the same Dockerfile for all environments. For more
information on how to pass arguments to Dockerfile, please take a look at
this documentation:
https://docs.docker.com/engine/reference/builder/#arg

The second thing is the -t option. The -t option takes the name of the
repo and a tag. In our case, we have not mentioned the tag, so by
default, it will pick up latest as the tag. If you look at the repo name,
it is different from the official openjdk image name. It has two parts:
packt and geolocation. It is always a good practice to put the
Docker Hub account name followed by the actual image name as the
name of your repo. For now, we will use packt as our temporary
account name, but in the next recipe, we will see how to create our own
Docker Hub account and use that account name here.
The third thing is the dot at the end. The dot operator says that the
Dockerfile is located in the current directory, or the present working
directory to be more precise.

Let's go ahead and verify whether our image was created. In order to do that,5.
issue the following command on your terminal:

 docker images

The docker images command is used to list down all images available in your6.
Docker host. After issuing the command, you should see something like this:

https://docs.docker.com/engine/reference/builder/#arg

Containerizing Microservices with Docker

[68]

As you can see, the newly built image is listed as packt/geolocation in your Docker
host. The tag for this image is latest as we did not specify any. The image ID uniquely
identifies your image. Note the size of the image. It is a few megabytes bigger than the
openjdk:8 image. That is most probably because of the size of our executable uber JAR
inside the container.

Now that we know how to build an image using an existing Dockerfile, we are at the end of
this recipe. This is just a very quick intro to the docker build command. There
are more options that you can provide to the command, such as CPUs and memory.

To learn more about the docker build command, take a look at this
page:
h t t p s ://d o c s . d o c k e r . c o m /e n g i n e /r e f e r e n c e /c o m m a n d l i n e /b u i l d /

Running your microservice inside a Docker
container
In the previous recipe, we successfully created our Docker image in the Docker host. Keep
in mind that if you are using Windows or Mac, your Docker host is the VirtualBox VM and
not your local computer. In this recipe, we will look at how to spin off a container for the
newly created image.

Getting ready
To spin off a new container for our packt/geolocation image, we will use the docker
run command. This command is used to run any command inside your container, given the
image. Open your terminal and go to the root of the geolocation project. If you have to start
your Docker machine instance, then do so by using the docker-machine start
command, and set the environment using the docker-machine env command.

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/

Containerizing Microservices with Docker

[69]

How to do it…
Go ahead and issue the following command on your terminal:1.

 docker run packt/geolocation

Right after you run the command, you should see something like this:2.

Yay! We can see that our microservice is running as a Docker container. But
wait-there is more to it. Let's see how we can access our microservice's in-
memory Tomcat instance. Try to run a curl command to see if our app is up
and running:

Open a new terminal instance and execute the following cURL command in that3.
shell:

 curl -H "Content-Type: application/json" -X POST -d'{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude":-88.144040}' http://localhost:8080/geolocation

Did you get an error message like this?4.

 curl: (7) Failed to connect to localhost port 8080:
 Connection refused

Containerizing Microservices with Docker

[70]

Let's try to understand what happened here. Why would we get a connection refused error
when our microservice logs clearly say that it is running on port 8080? Yes, you guessed it
right: the microservice is not running on your local computer; it is actually running inside
the container, which in turn is running inside your Docker host. Here, your Docker host is
the VirtualBox VM called default.

So we have to replace localhost in your cURL command with the IP of the container. But
getting the IP of the container is not straight-forward. That is the reason we are going to
map port 8080 of the container to the same port on the VM. This mapping will make sure
that any request made to port 8080 on the VM will be forwarded to port 8080 of the
container.

Now go to the shell that is currently running your container, and stop your1.
container. Usually, Ctrl + C will do the job. After your container is stopped, issue
the following command:

 docker run -p 8080:8080 packt/geolocation

The -p option does the port mapping from Docker host to container. The port2.
number to the left of the colon indicates the port number of the Docker host, and
the port number to the right of the colon indicates that of the container. In our
case, both of them are same. After you execute the previous command, you
should see the same logs that you saw before.
We are not done yet. We still have to find the IP that we have to use to hit our3.
RESTful endpoint. The IP that we have to use is the IP of our Docker Machine
VM. To find the IP of the docker-machine instance, execute the following
command in a new terminal instance:

 docker-machine ip default

This should give you the IP of the VM. Let's say the IP that you received was4.
192.168.99.100. Now, replace localhost in your cURL command with this
IP, and execute the cURL command again:

 curl -H "Content-Type: application/json" -X POST -d'{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude":-88.144040}' http://192.168.99.100:8080/geolocation

Containerizing Microservices with Docker

[71]

This should give you an output similar to the following (pretty-printed for5.
readability):

 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

This confirms that you are able to access your microservice from the outside.6.
Before you move on to the next recipe, take a moment to understand how the
port mapping is done. The following figure shows how your machine, VM, and
container are orchestrated:

As you can see, the Docker container is running inside the Docker host (VirtualBox VM),
which in turn is running on our local computer. This is the hierarchy in which the machines
are orchestrated. Our port mapping maps port 8080 on the Docker host to port 8080 of the
Docker container.

Pushing your image to Docker Hub
In the previous recipe, we saw how to run your microservice as a Docker container. Your
image is not really useful unless you make it easier for shipping. In order for your image to
be accessible from other places, you should first host it somewhere.

Containerizing Microservices with Docker

[72]

There are two ways of doing this: either push your image to the Docker Hub central
repository, or create your own private Docker registry and push it there. Repositories
created on Docker Hub are by default public. You can still purchase various plans to make
your repositories private. That is completely up to you and depends on your use case.

Getting ready
Before you can push the image to Docker Hub, you will first need a Docker Hub1.
account. If you already have one, skip this step. If you don't have one, go to
https://hub.docker.com/ and start creating an account for yourself. You will
need three things:

User ID
Email associated
Password

After you have created a new account, log in with your credentials. Take some2.
time to get familiar with the Docker Hub user interface. It is pretty simple and
straight-forward.
The next thing we have to do is create a repository for our new microservice. This3.
is required before we start trying to push the image to Docker Hub. To create a
new repository, click on the Create Repository button:

https://hub.docker.com/

Containerizing Microservices with Docker

[73]

In the Create Repository form, enter the repository name as geolocation. Give4.
the short description as Geo Location Tracking Service and the full
description as Geo location tracking microservice that will be
responsible for collecting and storing geolocations of users.
Mark the visibility of your image as public. If you have some sensitive
information in your image, it is recommended you use private. But since our
image is not that sensitive, we will use public visibility. Moreover, using the
private visibility requires additional configuration when you try to pull your
image from Marathon and Kubernetes.

After entering all these fields, hit the Create button. After the repository is5.
created, you should see a screen similar to this:

Containerizing Microservices with Docker

[74]

As you can see, for consistency, we will use my Docker Hub account throughout the book.
Now that we have our repository ready, we just have to push our image to this repository.

How to do it…
Before you can push the image to your newly created Docker Hub repo, you have1.
to first tag the image because you will be pushing it to your own repo and not
packt. In this case, we will be pushing it to my account, vikrammurugesan. But
please change it to your account name wherever you see vikrammurugesan
going forward. Open a terminal window and make sure you have docker-
machine started. If not, go ahead and start it, and set the environment as well.
Execute the following command in your shell:

 docker tag packt/geolocation vikrammurugesan/geolocation

To check whether your image was tagged with the new repo name, issue the2.
docker images command and see whether you get something like this:

Containerizing Microservices with Docker

[75]

As you can see, there is a new image now with the new repo name we just3.
created. If you look at the image IDs of these two images, they're the same. That
is because we just tagged the packt image with the new repository's account
name without any modifications.

To learn more about the docker tag command, take a look at its
documentation:
https://docs.docker.com/engine/reference/commandline/tag/

The next step will be pushing the image over to Docker Hub. To do that, execute4.
the following command:

 docker push vikrammurugesan/geolocation

You will see that in order to push the image to the repo in my account,5.
authentication is required. This is to make sure another user is not using the same
repo.

To authenticate yourself, you need to use the docker login command. Use the6.
following command to authenticate yourself:

 docker login

After you execute the previous command, Docker will ask you to enter your7.
credentials. After successful authentication, execute the same docker push
command again. This time you will see that your image is being uploaded to
Docker Hub:

https://docs.docker.com/engine/reference/commandline/tag/

Containerizing Microservices with Docker

[76]

This process usually takes some time because it is uploading a 656.6 MB file to the8.
Internet. The time taken depends on the speed of your connection. Now that your
image has been successfully uploaded to Docker Hub, let's go ahead and verify
that your image is available on it. Go to your Docker Hub page from your
browser and navigate to the geolocation repo. From there, click on the Tags tab
and make sure you see a new entry for the latest tag:

This confirms that your image has been successfully pushed to Docker Hub. Note the size of
the image: it is much smaller than the actual size of the image. That is because Docker
compresses the image before it uploads it to Docker Hub.

That's it! You have successfully created and uploaded your microservice image to Docker
Hub. Your image can now be pulled from any location.

What we have seen so far is just a simple approach to dockerizing your microservice and
pushing it to Docker Hub. In a real-life scenario, you will be required to use different
docker commands and different techniques. It is strongly recommended that you go
through Docker's documentation to understand each and every command and their
additional options.

That brings us to the end of this chapter.

3
Deploying Microservices on

Mesos
In this chapter, we will learn how to deploy microservices on Mesos, which is an open
source cluster management framework from Apache. We will cover the following recipes:

Setting up a Mesos cluster using Docker
Understanding the Mesos and Marathon interface
Deploying your microservice to Mesos using Marathon
Configuring ports in Marathon
Configuring volumes in Marathon
Configuring environment variables in Marathon
Scaling your microservice in Marathon
Destroying your microservice in Marathon
Monitoring your microservice logs in Marathon
Monitoring your microservice logs in Mesos
Managing your microservice using Marathon's REST API

Introduction
Before we jump into the recipes and try creating a Mesos cluster, it is very important that
you know what Mesos is and why we use it to deploy microservices.

Let's answer the first question: What is Mesos?

Deploying Microservices on Mesos

[78]

Mesos is a cluster management framework that makes resource allocation easier in order to
run distributed applications. If you break this sentence down, it will start making more
sense. Mesos is called a cluster management framework because it groups multiple machines
into one single virtual resource pool. Let's say you have 10 machines with 4 GB memory, 4
cores each, and 10 GB disk space. Now you would like to use these machines to do different
things, such as the following:

Run Spark jobs
Run long running services
Run Cron jobs
Run Hadoop
Run Cassandra

In this case, you would ideally have to go to a whiteboard and draw out an architecture
diagram that identifies what is going to run on what machine. You will have machines
dedicated for a single purpose. A machine dedicated to run Spark jobs might not be used to
run Docker containers unless you go and install Docker on that machine. So as you can see,
there is quite a bit of work involved in order to maintain this cluster. At the same time, this
setup is not fault tolerant. This is exactly what Mesos solves. If you install Mesos on those 10
machines, you will get a cluster with total resources of 40 GB memory, 40 cores, and 100 GB
disk space (keeping in mind that one other machine is used as the master). With that said,
Mesos makes it easier to run any type of task on any of these 10 machines.

Now let's move on to resource allocation. As Mesos groups all the resources from all the
machines (slaves or agents in Mesos terms) into one single virtual resource pool, allocation
of resources is automatically taken care of by Mesos. For example, if you would like to spin
off a Spark job that needs 2 cores, 2 GB memory and 1 GB disk space, Mesos automatically
makes a decision on where this Spark job is going to be submitted based on the availability
of resources. This is one of the true wins of Mesos compared to other cluster management
frameworks.

Finally, let's talk about running distributed applications. Part of this was actually explained in
the previous section that talked about Spark job submissions. One example of how Mesos
helps run distributed applications is the execution mode of Spark jobs. If you are running
Spark jobs on a Mesos cluster, you can choose between two modes: coarse grained and fine
grained. Both of these modes define how the cores are shared between multiple Spark tasks.
As the name suggests, fine-grained mode is responsible for sharing the cores at a more
granular level. At the time of writing this, fine-grained mode has been deprecated by Spark
and will soon be removed.

Deploying Microservices on Mesos

[79]

The other example is being able to run multiple instances of the same Docker image from
Marathon. By doing so, you are actually scaling your application without having to worry
about where your container is running. This will be covered in later recipes in this chapter.
These features clearly depict how Mesos helps us run distributed applications.

Now let's answer our second question: Why Mesos to deploy microservices?

We already answered this question in the previous section a little bit. Let's get into the
details now. Mesos basically follows a master-slave architecture, where there can be one or
more masters and multiple slaves. At any point of time, only one master will be in charge
(also called the leader). The master's responsibility is to coordinate and delegate offers
(resource requests to run tasks) between the framework schedulers and framework
executors. Frameworks in Mesos are used to run any particular task on a Mesos cluster.
These tasks could be Spark jobs, Cassandra tasks, Docker containers, and so on. The
framework that is used to run long-running jobs or Docker containers is called Marathon.

In this chapter, we will be learning extensively about Marathon. As we already have our
application Dockerized as a Docker image, we will use Marathon and its abilities to expose
our microservice.

Setting up a Mesos cluster using Docker
In this recipe, we will be learning how to orchestrate our first Mesos Cluster with Marathon
framework configured. We will be orchestrating this cluster in our local machine using
Docker and Docker Compose.

Getting ready
Now that we know what Mesos is and why we use it to deploy our microservice, let's
orchestrate our first Mesos cluster. In order to do so, we first need to understand the
building blocks of Mesos. Mesos is made of the following four components:

Zookeeper
Mesos master
Mesos slaves (also called as agents)
Mesos frameworks

Deploying Microservices on Mesos

[80]

Zookeeper
Zookeeper is an open source tool from Apache used for centralizing cluster information or
other configurations. Mesos uses Zookeeper to store its cluster information. One use of
Zookeeper in Mesos is to store information about various masters in the Mesos cluster.
Mesos clusters ideally have more than one master to provide fault tolerance; this way, if one
master goes down, another master takes charge. Another use of Zookeeper in Mesos is to
store slave information to keep track of the slaves that are part of the cluster. In production
scenarios, it is always ideal to have a zookeeper cluster instead of standalone zookeeper
instances. This makes your cluster more fault tolerant and stable.

Mesos masters and Mesos slaves
The Mesos master is usually responsible for coordinating and delegating offers to deploy
tasks to Mesos slaves. Mesos slaves ideally have framework-specific executors, which tell
Mesos how to run a specific task on a slave. Schedulers for each framework are responsible
for making a decision on whether or not to accept an offer. An offer could be as simple as
“run Docker image jenkins:latest on Marathon with 1 Core, 2 GB memory, and 10 GB
disk space.” At the same time, the master is always aware of the resource availability on
each slave, which is also sent to the scheduler. As soon as the master sends an offer over to
the scheduler, the scheduler takes a decision on whether to accept the offer or decline it
based on the resource availability and offer request.

Mesos frameworks
Mesos frameworks are composed of the Scheduler and Executor. While the Scheduler is
responsible for making offer decisions, the Executor is responsible for running the actual
framework task. Some of the most commonly used frameworks are:

Spark
Cassandra
Aurora
Marathon
Chronos

To get a full list of frameworks, visit
http://mesos.apache.org/documentation/latest/frameworks/.

http://mesos.apache.org/documentation/latest/frameworks/

Deploying Microservices on Mesos

[81]

The following diagram depicts the working of a Mesos cluster with multiple frameworks:

In this cluster, there are two or more masters, three or more slaves, and three frameworks.
There is also a Zookeeper quorum with three replicated servers. A Zookeeper quorum is a
set of replicated Zookeeper servers that have the same configuration. As you can see, the
Zookeeper quorum talks to the masters and slaves to elect leaders from masters and keep
track of slaves joining the cluster. Also, you can see how one of the masters is marked as
Leader and is currently active, and the other is grayed out to indicate that it is currently not
elected as the leader. Though the framework scheduler is shown as a separate component, it
is still part of a framework. As we've discussed already, a framework contains a Scheduler
and Executor. For simplicity and understandability, the scheduler and executor are shown
as separate components.

To learn more about the Mesos architecture, take a look at this page:
http://mesos.apache.org/documentation/latest/architecture/

Now we know that we need Zookeeper, a Mesos master, Mesos slaves, and framework to
orchestrate a minimal Mesos cluster. In this recipe, we will be using Docker to run our
Mesos cluster. This means that Zookeeper, the Mesos master, Mesos slave, and framework
will be running as Docker containers in your local machine. In order to do this, we will use
Docker Compose. Docker Compose is a utility from Docker that helps you run multiple
containers using its powerful docker-compose command. To keep our cluster simple and
reduce the resource utilization of your local machine, the cluster we are building will
consist of one Zookeeper instance, one Mesos master, and one Mesos slave.

http://mesos.apache.org/documentation/latest/architecture/

Deploying Microservices on Mesos

[82]

How to do it…
To create your first docker-compose file, open your STS IDE and create a new1.
file called docker-compose-mesos.yml in your geolocation project. The first
line of your Docker Compose file is usually the version of Docker Compose. In
this recipe, we will be using version2. So add the following line to your Docker
Compose file:

 version: "2"

At one point, Docker made a change to how the services are described in
the Docker Compose YAML file. To indicate the difference, the version
property was added as the first line of the YAML files.

To learn more about the differences, read
https://docs.docker.com/compose/compose-file/#/versioning.

Now let's start defining our services. Go ahead and add the following services2.
section to your YAML file:

 services:

Keep in mind that this is a YAML file, so make sure you use blank spaces
instead of using tabs. The indentation level used is two blank spaces.

The next section in your Docker Compose file is to spin up Zookeeper. At the3.
time of writing this, there are no official Zookeeper images available on Docker
Hub. So we will be using my Zookeeper image in this recipe. Go ahead and add
the following snippet to define your Zookeeper instance:

 zookeeper:
 image: vikrammurugesan/zookeeper
 network_mode: host

https://docs.docker.com/compose/compose-file/#/versioning

Deploying Microservices on Mesos

[83]

There are three things to note here:

The first one is the name of the service itself. In this case, we have
used Zookeeper as our service name.

The next important section is the image. This says which Docker
image should be used to spin off this container (or service).

The last one is very interesting. The network_mode command
specifies how to configure the Docker network for this container.

There are several modes, such as container, host, bridged, and
none. In this example, for simplicity, we will use host. The network
mode host says that we will be using the host network stack inside the
container, which will expose the service via 127.0.0.1.

To learn more about Docker network modes, take a look at
https://docs.docker.com/engine/userguide/networking/.

Before we move on to the next step, let's try to validate what we have done so far4.
by starting Zookeeper using docker-compose. Your docker-compose-
mesos.yml file should look something like this:

 version: "2"
 services:
 zookeeper:
 image: vikrammurugesan/zookeeper
 network_mode: host

Now go to the terminal and change the directory to the root of the geolocation5.
project, where you have created the docker-compose-mesos.yml file. Execute
the following command:

 docker-compose -f docker-compose-mesos.yml up

This command is used to bring up any services in your docker-
compose file. By default, Docker Compose assumes that the name of the
Docker Compose file is docker-compose.yml. As we have used a
different name, we are using the -f option to mention the name of our
Compose file as docker-compose-mesos.yml.

https://docs.docker.com/engine/userguide/networking/

Deploying Microservices on Mesos

[84]

If you get errors about the Docker machine being down, start your Docker6.
machine instance, set up the environment, and reissue the same command. You
will notice that Docker downloads the Zookeeper image from Docker Hub as it is
not available in your Docker host. After the download is complete, Docker
Compose will start your Zookeeper server and will show you the logs from the
container:

The preceding two log messages confirm that your Zookeeper instance
is up and running.

Before you move on to the next step, stop and remove the Zookeeper container.7.
You can stop the container either by hitting Ctrl + C in the console or using the
docker stop command.
Now let's move on and configure the Compose file to start the Mesos master8.
along with Zookeeper. Again, at the time of writing this, there is no official image
for the Mesos master. So we will be picking up an image from Docker Hub. In
this recipe, we will use the mesos-master image from mesosphere. Mesosphere
is the company behind the powerful cluster management “operating system”
called DC/OS. We will learn more about DC/OS in later chapters.
Go ahead and add the following snippet to your Docker Compose file:9.

 mesos_master:
 image: mesosphere/mesos-master:1.0.1-2.0.93.ubuntu1404
 network_mode: host
 environment:
 MESOS_ZK: zk://127.0.0.1:2181/mesos
 MESOS_HOSTNAME: 192.168.99.100
 depends_on:
 - zookeeper

As you can see, we have used the mesos-master image from
mesosphere, and the version that we have used is
1.0.1-2.0.93.ubuntu1404. This version is the latest stable version at
the time of writing this book. We already know about network_mode.

Deploying Microservices on Mesos

[85]

The two new elements are environment and depends_on. Let's talk about10.
depends_on first as it is simpler. The depends_on element simply states that the
service that is marked with the name zookeeper needs to be started before
starting this service.
Now let's talk about environment. The environment element is used to add any11.
environment variables to the container.
For example, in the previous case, we see two variables, MESOS_ZK and12.
MESOS_HOSTNAME. MESOS_ZK has the value zk://127.0.0.1:2181/mesos,
which specifies how to look up Mesos configs on Zookeeper. And the
MESOS_HOSTNAME environment variable is used to indicate the IP or hostname to
which the Mesos master will be bound.
In our case, we have used the IP of our Docker host, 192.168.99.100. If you are13.
using a docker-machine instance with a different IP, use that IP here. Your
docker-compose-mesos.yml file will look like this:

 version: "2"
 services:
 zookeeper:
 image: vikrammurugesan/zookeeper
 network_mode: host
 mesos_master:
 image: mesosphere/mesos-master:1.0.1-2.0.93.ubuntu1404
 network_mode: host
 environment:
 MESOS_ZK: zk://127.0.0.1:2181/mesos
 MESOS_HOSTNAME: 192.168.99.100
 depends_on:
 - zookeeper

Now that we have our Zookeeper instance and Mesos master, let's validate our14.
work so far. To do so, start your services using the docker-compose command:

 docker-compose -f docker-compose-mesos.yml up

Deploying Microservices on Mesos

[86]

After you execute the preceding command, you should see something
like this:

These logs are just a portion of the logs that your containers show, but
they should look similar. As you can see, logs from different containers
are marked with their name and are color-coded.

Now let's verify that our Mesos cluster is up and running by accessing its web15.
interface. Mesos' web UI is very easy to use and has all the information you will
need to know about your cluster. Though you will not be using this very often, it
is still a good idea to take a look at it. You should be able to access the Mesos web
UI using this URL: http://192.168.99.100:5050. 5050 is the default port
used by Mesos unless you change it via config. You should see something like
this:

Deploying Microservices on Mesos

[87]

On the left hand side, you can see that there are zero agent nodes available (an16.
agent is the same thing as a slave or worker). This is because we haven't added
any Mesos slaves to the cluster. At this time, our cluster is not useful, as it does
not have any slaves. Before you move on to the next step, stop and remove all
containers running in your host. You already know how to stop the containers.
You can remove the containers by running the following command:

 docker rm $(docker ps -a -q)

The preceding command can be broken down into two parts. We first
list down all the containers using the ps command. We pass -q (quiet
mode) argument to list only the container IDs. The container IDs are
then passed to the rm command for removal.

Now let's add our first Mesos slave to the cluster. In order to do that, add the17.
following snippet to the Docker Compose file:

 mesos_slave:
 image: mesosphere/mesos-slave:1.0.1-2.0.93.ubuntu1404
 network_mode: host
 environment:
 MESOS_MASTER: zk://127.0.0.1:2181/mesos
 MESOS_WORK_DIR: /tmp
 MESOS_CONTAINERIZERS: docker
 MESOS_HOSTNAME: 192.168.99.100

Deploying Microservices on Mesos

[88]

 MESOS_PORT: 5051
 volumes:
 - /sys/fs/cgroup:/sys/fs/cgroup
 - /var/run/docker.sock:/var/run/docker.sock
 - /usr/local/bin/docker:/usr/bin/docker
 depends_on:
 - zookeeper

There are a few things to note here: first, the name of the service. As the
name indicates, this service will be our mesos_slave. The image is
different from that of the master by its name. The version is exactly the
same. Again, we are taking this image from mesosphere. There are four
environment variables. The MESOS_MASTER environment variable tells
the slave how to look up the Mesos master config from Zookeeper.

In the previous snippet, we have used zk://127.0.0.1:2181/mesos.
See how 127.0.0.1 is being used as the hostname for Zookeeper.
MESOS_WORK_DIR is the directory on the slave that will be used for
storing any temp files or any other files created by the executor. We
have used /tmp for this. As for MESOS_CONTAINERIZERS, though the
name might be pretty straightforward, there are a few things that you
need to know about it.

To know more about this property, take a look at this page:
http://mesos.apache.org/documentation/latest/containerizer/

In our example, we have used just docker. The MESOS_HOSTNAME
environment is used to indicate the IP or hostname to which the slave
should be bound. In the snippet, we have used the IP of our docker-
machine instance, 192.168.99.100. If the IP of your docker-machine
instance is different, use that IP here. The MESOS_PORT environment
variable defines the port where your agent or slave is listening.

The volumes section is pretty interesting. Volumes are used to map mount paths18.
and any named volumes to any path on the Docker host. In the preceding
example, we have three different mappings. These mappings are required to run
a Docker container inside the slave, which is again a Docker container. The
mappings to the docker.sock file (/var/run/docker.sock) and the Docker
binary (/usr/bin/docker) are used to make this happen. The cgroup mapping
(/sys/fs/cgroup) is required by Mesos itself. Finally, the depends_on section
is something we saw earlier.

http://mesos.apache.org/documentation/latest/containerizer/

Deploying Microservices on Mesos

[89]

Your docker-compose-mesos.yml file will look like this:

 version: "2"
 services:
 zookeeper:
 image: vikrammurugesan/zookeeper
 network_mode: host
 mesos_master:
 image: mesosphere/mesos-master:1.0.1-2.0.93.ubuntu1404
 network_mode: host
 environment:
 MESOS_ZK: zk://127.0.0.1:2181/mesos
 MESOS_HOSTNAME: 192.168.99.100
 depends_on:
 - zookeeper
 mesos_slave_one:
 image: mesosphere/mesos-slave:1.0.1-2.0.93.ubuntu1404
 network_mode: host
 environment:
 MESOS_MASTER: zk://127.0.0.1:2181/mesos
 MESOS_WORK_DIR: /tmp
 MESOS_CONTAINERIZERS: docker
 MESOS_HOSTNAME: 192.168.99.100
 MESOS_PORT: 5051
 volumes:
 - /sys/fs/cgroup:/sys/fs/cgroup
 - /var/run/docker.sock:/var/run/docker.sock
 - /usr/local/bin/docker:/usr/bin/docker
 depends_on:
 - zookeeper

Now let's check whether we can see our new slave detected by Mesos. To do so,19.
issue the docker compose up command on your console:

 docker-compose -f docker-compose-mesos.yml up

Deploying Microservices on Mesos

[90]

This time, you should see some additional log messages from the Mesos
slave container:

Now that our Mesos cluster is running, access the web UI from a
browser using the URL http://192.168.99.100:5050:

Deploying Microservices on Mesos

[91]

As you can see, now there is one new slave (or agent) that is activated. You can20.
also see that the Resources section reflects the amount of resources available for
this cluster. The amount of resources depends on the size of our Docker host. If
you would like to increase the resources allocated to your Docker host, you have
to recreate your VM with more resources using the docker-machine create
command.

If you want another slave, feel free to copy the mesos_slave section and
paste it in the Docker Compose file again with a different MESOS_PORT
number. At the same time, you will have to change the service name.

With that said, can we say that we now have a fully functional cluster?
Maybe. That is because we still do not have a framework installed. As
we will be using this Mesos cluster to deploy our Dockerized
microservice, we will be installing the Marathon framework on this
cluster.

To register the Marathon framework, add the following snippet to your Docker21.
Compose file:

 marathon:
 image: mesosphere/marathon:v1.1.2
 network_mode: host
 environment:
 MARATHON_MASTER: zk://127.0.0.1:2181/mesos
 depends_on:
 - zookeeper

The image that we have used is again from mesosphere, and the name of
the image is marathon. See that we have used a version different than
that of the Mesos master and slave. This is because the frameworks are
not tied to any one version of master or slave images. The only
environment variable that is used is MARATHON_MASTER, which is set to
zk://127.0.0.1:2181/mesos, specifying how to look up the Mesos
configs on Zookeeper. Finally, this service depends on the Zookeeper
service.

Deploying Microservices on Mesos

[92]

Your final docker-compose-mesos.yml file will look something like this:22.

 version: "2"
 services:
 zookeeper:
 image: vikrammurugesan/zookeeper
 network_mode: host
 mesos_master:
 image: mesosphere/mesos-master:1.0.1-2.0.93.ubuntu1404
 network_mode: host
 environment:
 MESOS_ZK: zk://127.0.0.1:2181/mesos
 MESOS_HOSTNAME: 192.168.99.100
 depends_on:
 - zookeeper
 mesos_slave_one:
 image: mesosphere/mesos-slave:1.0.1-2.0.93.ubuntu1404
 network_mode: host
 environment:
 MESOS_MASTER: zk://127.0.0.1:2181/mesos
 MESOS_WORK_DIR: /tmp
 MESOS_CONTAINERIZERS: docker
 MESOS_HOSTNAME: 192.168.99.100
 MESOS_PORT: 5051
 volumes:
 - /sys/fs/cgroup:/sys/fs/cgroup
 - /var/run/docker.sock:/var/run/docker.sock
 - /usr/local/bin/docker:/usr/bin/docker
 depends_on:
 - zookeeper
 marathon:
 image: mesosphere/marathon:v1.1.2
 network_mode: host
 environment:
 MARATHON_MASTER: zk://127.0.0.1:2181/mesos
 depends_on:
 - zookeeper

With that said, we are now ready to validate whether we have Marathon installed23.
on our cluster. Stop and remove any containers that are already running. Now
execute the following command on your console to start the Mesos cluster:

 docker-compose -f docker-compose-mesos.yml up

Deploying Microservices on Mesos

[93]

This time, you will see some additional logs from Marathon:

Now let's verify whether Marathon is registered as a Mesos framework on our24.
cluster. To do that, open the Mesos web UI from your browser and click on the
Frameworks tab. You should now see a new entry in the Active Frameworks
grid for Marathon. You can see the name of the framework in the Name column:

That's it! You have successfully created your first Mesos cluster using Docker. Now, it is
time to play with this cluster by spinning off some Marathon tasks.

Understanding the Mesos and Marathon
interface
Now that we have a fully functional Mesos cluster with the Marathon framework, we are
ready to spin off new tasks (or Docker containers) to Marathon. Before we do that, it is
highly important that we understand the Mesos and Marathon web interface.

Deploying Microservices on Mesos

[94]

Getting ready
We already know that the Mesos web UI is located at port 5050. To access the web UI, open
http://192.168.99.100:5050 in a web browser. Similarly, Marathon has a sophisticated
web interface located at port 8080. To access the Marathon web UI, open
http://192.168.99.100:8080 in another tab of your web browser.

How to do it…
First, let's try to get familiar with the Mesos interface.

The Mesos interface
There are four tabs in the Mesos web UI. Let's go one by one. The first one is the Mesos
home page.

The Mesos home page
This is where you actually get to see most of the information about your tasks. Let's start
with the left-hand side menu pane. The first section of the pane is the cluster information. It
has information such as cluster name, master URL, version, when this version was built,
when this master was started, and when this master was elected as leader. These are the
options that are available in this particular version of Mesos. This list is prone to change if
you use any other version of Mesos. It will look something like this:

Deploying Microservices on Mesos

[95]

The cluster name is (Unnamed) because we did not pass the MESOS_CLUSTER environment
variable to the master. If we had set that environment variable in the Docker Compose file
for the master, then that cluster name would have been displayed here. In production
systems, this is very important when you have multiple masters. We have not done that in
order to make the cluster configuration simple.

Right following the Cluster section, you will see a hyperlink called LOG. This is used to look
at the logs of the master. If you click on this, you will see the following error:

This is because we have not set the config property that specifies where we would like the
log files to be created.

To configure that, we have to set the MESOS_LOG_DIR environment variable in the Docker
Compose file for the Mesos master.

Agents

The next section is Agents. Mesos started adopting the term “agents” for slaves recently.
Wherever you see the term agents henceforth, keep in mind that they are synonymous with
slaves. This section is where you will see the number of slaves that are activated and the
number of slaves that are deactivated. It will look something like this:

Deploying Microservices on Mesos

[96]

Tasks
This next section, Tasks, shows the number of tasks grouped by their statuses on all slaves.
Mesos has been adding new statuses recently to provide a more granular understanding of
where each task is. At the time of writing this, there are nine statuses: Staging, Starting,
Running, Killing, Finished, Killed, Failed, Lost, Orphan. In your Mesos web UI, this looks
something like the following:

Resources

The next section is the Resources section, which shows the resource utilization by task and
resource availability in the slaves. Resources include CPUs, GPUs, memory, and disk space.
Let's talk about graphics processing unit (GPU) as it is new to this list. Now that Mesos is
being used for more advanced use cases such as graphics and video processing, Mesos and
Nvidia have come together to include GPUs in Mesos. This section will look something like
this:

As you can see in the preceding picture, none of the resources are being used or offered
because we have not run any tasks on the cluster yet. Moving on to the main section of the
home page is the Tasks breakout. By default, you have three grids: Active Tasks,
Completed Tasks, and Orphan Tasks.

Deploying Microservices on Mesos

[97]

Task types

Active tasks are tasks that are currently executing. Completed tasks are tasks that have
finished execution (either completed successfully or failed or killed). Orphan tasks are tasks
that are orphaned after a master failure when the framework fails to reregister. As we do
not have any tasks now, this section is empty. But ideally, you will see that for each task,
there is a new entry in one of these grids:

Frameworks
The second tab is the Frameworks tab. The Frameworks tab mainly shows the list of active,
completed, and inactive frameworks in the cluster. The frameworks can be anything, such
as Spark, Cassandra, Aurora, Marathon, and Chronos:

Deploying Microservices on Mesos

[98]

Agents

The Agents tab usually displays the list of all slaves registered in the cluster. In our cluster,
we have only one slave registered. You should see something like this:

Offers

The last tab is the Offers tab, which lists down all the offers that are currently open for a
slave to be picked up:

That's pretty much everything on the Mesos web interface. Though you will not be using
this interface a lot, it is still a good idea to become familiar with this interface so that you
can use it for debugging. Debugging situations can happen when one of your tasks keeps
restarting or when you would like to know whether you have enough resources to spin off
more tasks.

The Marathon web UI
Now let's open up the Marathon web UI and understand the main screen. As we still
haven't learned how to deploy Docker containers in Marathon, we will just understand the
basic sections of the Marathon web UI. We will learn about the other screens as we deploy
our application.

Deploying Microservices on Mesos

[99]

Open the tab that you already had for Marathon. If you closed it by mistake, use this URL to
open it: http://192.168.99.100:8080:

As you can see, it is a very simple interface with some useful filters on the left-hand side
menu. The filters are based mainly on the status, health, and volumes. The Create
Application button is used to deploy your Docker container on the Mesos cluster using
Marathon. Right now, we do not have any new applications already deployed. If we had
one, it would be displayed in the Applications section of the page. You can also create
groups to group your applications.

With that said, we come to the end of this recipe. We will get to play with the Marathon
interface in the rest of this chapter.

Deploying your microservice to Mesos using
Marathon
Now that we have a fully functional Mesos cluster with the Marathon framework, we are
ready to spin off new tasks (or Docker containers) on Marathon. In this recipe, we will
deploy our Dockerized geolocation microservice on Marathon.

Deploying Microservices on Mesos

[100]

Getting ready
Before you start, make sure your Mesos cluster is up and running. You can do this by
executing the docker ps -a command. You should see four containers running: Mesos
master, Mesos slave, Marathon, and Zookeeper:

Sometimes, it is possible that either the Mesos master or slave, or even the Marathon
container, might go down. This usually happens when it runs out of resources or probably
when you restart your computer and they try to come back up, but they might not be able
to orchestrate properly. In those cases, make sure you stop the whole cluster and perform a
clean start. You can do that by running the following command:

docker stop $(docker ps -a -q) && docker rm $(docker ps -a -q) && docker-
compose -f docker-compose-mesos.yml up

The command uses && to combine three different commands. The first one is used to stop
all running and stopped containers. The second one removes all the containers that were
stopped by the previous command (including the ones that were previously stopped, if
any), and the third command starts the cluster back up.

Now that your cluster is up and running, open a browser and navigate to the Marathon
web interface at http://192.168.99.100:8080.

How to do it…
Let's start by understanding the Marathon interface. Marathon's user interface1.
has improved a lot lately and is very easy to use. Click on the Create Application
button. You should see a modal similar to this:

Deploying Microservices on Mesos

[101]

As you can see, there are several sections on the left-hand side, such as
General, Docker Container, Ports, EnvironmentVariables, Labels, Health
Checks, and Volumes.

Let's start with the General section. The first field that is required in this section2.
is the ID field. The value of ID uniquely identifies the application in Marathon. In
our case, as we are deploying the geolocation application, we can probably use
geolocation as the ID of our application. The other fields in this modal that we
should care about now are CPUs, Memory, and Disk Space.

The default CPU value of 1 should be more than enough for
our application. Mesos' CPUs parameter is a little tricky to
understand. You can even assign values such as 0.1 or 0.25
to the CPUs field. It mainly helps you identify how many
resources are left in your cluster rather than limiting access
to the CPU itself. Even though you set the value of CPUs to
1, your application will have access to all the other CPUs in
your slave.

Deploying Microservices on Mesos

[102]

The Memory field is set at 128 MB by default. For our application, we
could go a little higher and assign it 512 MB. In production scenarios,
512 MB might not be sufficient, and you might have to go with a
minimum of 4 GB of memory based on your application's usage. If, for
some reason, you are forced to allocate more than 4 GB of memory for
a similar application, it is a signal that there could either be an
architectural refactor that could reduce your memory allocation, or
your application is becoming more monolithic, thereby defeating the
purpose of building a microservice. Here, the 4 GB limit was picked as
an example that is used for the geolocation application, but the point is
to make sure you don't build an application that is monolithic or
follows bad architectural design.
The Disk Space field is also really important when you create a new
application in Marathon. Though it might not matter a lot in our case, it
becomes super important when you are deploying a container that
stores information in the filesystem. For example, if you are running
Kafka or a database as a container, you definitely don't want to allocate
it 1 GB of disk space. It is definitely going to run out of disk space
sooner or later. For the geolocation application, as it is not going to
write anything to the filesystem, let's allocate it 1 GB of disk space.

To summarize, these are the fields and their respective values:3.
ID: geolocation
CPUs: 1
Memory: 512
Disk Space: 1024
Instances: 1
Command: Leave this field empty

Deploying Microservices on Mesos

[103]

Now, let's move on to the important section: the Docker container section. The4.
Docker container section is where we get to provide the container information to
Marathon. There are five important fields in this section:

The Image field tells Marathon, the name and tag of the Docker image
that it has to pull from Docker Hub. By default, Marathon tries to pull
the image from the public Docker Hub. But if you have your own
private Docker Hub, you have to make a few changes to your
deployment to instruct Marathon to authenticate and get the image
from your private repository. In our case, we will use the public
repository, and the name of our image is
vikrammurugesan/geolocation. Please keep in mind that this is my
Docker Hub account, and you should be using the image in your
account. We don't have to provide the latest tag as Marathon uses it
as the default tag if you don't provide one.
The Network mode can either be Bridged or Host. For now, we will
use Bridged mode. We will learn more about the bridged networking
mode in later recipes in this chapter. The Force pull image on every
launch option is pretty self-explanatory. You don't have to check this
option. The Extend run-time privileges option lets you run the
container in privileged mode. You can use this option if you are going
to run Docker inside this Docker container. For now, we will not need
it.

For more information on privileged containers, take a look at this page:
https://docs.docker.com/engine/reference/run/#/runtime-privilege
-and-linux-capabilities

https://docs.docker.com/engine/reference/run/#/runtime-privilege-and-linux-capabilities
https://docs.docker.com/engine/reference/run/#/runtime-privilege-and-linux-capabilities

Deploying Microservices on Mesos

[104]

The Parameters are nothing but Docker environment variables. If your
application needs environment variables, you can list them here. For
now, the configurations we have done so far will let us start the
application on Marathon. We will look at other sections in later recipes
in this chapter. With that said, the Docker Container section should
look something like this:

Now that you have everything set up right, click on the Create Application5.
button. You should see that Marathon is trying to deploy our microservice. You
can confirm this by looking at the status of your application. It should show up as
Deploying. During this step, the slave will try to pull the image from Docker
Hub and start the container with the configurations we provided in the Create
Application modal:

Deploying Microservices on Mesos

[105]

A few seconds later, you should see that the application's status changes from6.
Deploying to Running, indicating that it is ready to be consumed:

Without wasting any more time, let's test our service. Before that, how do you7.
know which host your application is running on? To find out, you will need the
IP of your Mesos slave. Marathon makes it easy for you to find the host and port
your application is running on. From Marathon's home page, click on your
application name. It should take you to the application details page for the
geolocation application:

Deploying Microservices on Mesos

[106]

There are lots of things on this page. But let's just focus on the Instances grid.8.
Right following the ID of the application instance, we can see a
<hostname>:<port> combination. The hostname is something you are already
familiar with. That is the IP of our Docker host (VirtualBox VM). The port is a
random port that Marathon has elected to expose our application on.
Execute a curl command to GET all geolocations saved in the application. Since9.
this is a brand new deployment, you should get an empty array back, indicating
there are no geolocations saved in the system:

 curl http://192.168.99.100:31756/geolocation

The output should be something like this:10.

 curl: (7) Failed to connect to 192.168.99.100 port 31756:
Connection refused

What just happened here? We are not able to connect to our service on host11.
192.168.99.100 and port 31756. With that said, we now clearly know that the
port number we have is not right. There is definitely a way to configure our
application in such a way that it exposes the API on the right port. We will look
at that in our next recipe.

Configuring ports in Marathon
In the previous recipe, we saw how to deploy our microservice in Marathon. We were able
to deploy the geolocation microservice on Marathon, but it was not really useful because we
haven't figured out how to talk to our microservice via its RESTful API. In this recipe, we
will learn how to configure our application's service and host ports in Marathon to expose
the RESTful APIs.

Getting ready
If you don't have your cluster up and running, bring it back up. Also make sure you have
the geolocation application up and running in your cluster. You can verify that from the
Marathon web interface.

Deploying Microservices on Mesos

[107]

How to do it…
From the Instances grid, click on the application instance and go to the1.
Configuration tab. The Configuration tab is used to show the Marathon
configurations for your application. You will see several configurations, such as
the memory, CPU, disk space, Docker container, and health checks:

Deploying Microservices on Mesos

[108]

In the Container section, you will see JSON code similar to this:2.

 {
 "type": "DOCKER",
 "volumes": [],
 "docker": {
 "image": "vikrammurugesan/geolocation",
 "network": "BRIDGE",
 "portMappings": [
 {
 "containerPort": 0,
 "hostPort": 0,
 "servicePort": 10000,
 "protocol": "tcp",
 "labels": {}
 }
],
 "privileged": false,
 "parameters": [],
 "forcePullImage": false
 }
 }

The one that we are really concerned about is portMappings in the
Container section. In some versions of Marathon, the portMappings
will be listed under Port Definitions property. So don't panic if your
interface looks different. The instructions in this recipe are still going to
be the same. You can see that the containerPort is marked as 0.
Ideally, we should expect 8080 there, as that's where our API is
listening.

The hostPort is the port on the Docker host to which Marathon will
bind this containerPort. The hostPort can also take the value 0,
instructing Marathon to choose a random port number. In most cases,
the hostPort is the port number on the Mesos slave that is running this
container. Again, identifying the slave IP on a cluster with hundreds of
slaves is not ideal.

That's where the servicePort comes to the rescue. The servicePort
is currently set to 10000 by default. In production environments, the
servicePort is manually set to a well-known value, such as 8899 or
8181. Once you set the servicePort to a well-known value that you
can remember, you can then use service discovery tools such as Consul
or tools such as HAProxy to perform a forwarding from the hostPort

Deploying Microservices on Mesos

[109]

to the servicePort. Marathon previously provided a script called
haproxy-marathon-bridge to do exactly this. It creates a HAProxy
config file that can be used with HAProxy to make this balancing
happen. At the time of writing this, this script has been deprecated in
favor of the Marathon Load Balancer (LB). We will learn more about
Marathon LB in Chapter 5, Service Discovery and Load Balancing
Microservices. After you enable service discovery and configure
Marathon, you will be able to access your service from
mesosMasterHostName:servicePort. If you have multiple masters, it
is recommended that you have a common hostname that always points
to the active master.

The protocol can be UDP or TCP. You won't have to use UDP in most
cases. We will stick to TCP throughout this book.

Now let's modify the application's Marathon configuration to include the3.
hostPort and servicePort. In order to do that, click on the Edit button on the
Configuration screen, and go to the Ports section. Enter the Container Port value
as 8080. Leave the protocol value as tcp:

Deploying Microservices on Mesos

[110]

Now, if you are wondering where hostPort and servicePort are, Marathon4.
leaves those as advanced configurations, and the only way to configure the
advanced configurations is using JSON mode. In order to use JSON mode, click
on the toggle button in the top right of the modal that says JSON Mode. You
should see the JSON that Marathon uses to post to its REST service, which in turn
converts it into a Mesos task request. In the portMappings section, you should
now see that containerPort is populated with the value 8080. Go ahead and
add these two fields to this port mapping object:

 "hostPort": 0,
 "servicePort": 8899

Deploying Microservices on Mesos

[111]

This will tell Marathon to use any random port as the host port and use
8899 as the service. Like we saw earlier, it is our responsibility to
perform a port forwarding from the host port to the service port using
tools such as HAProxy or Marathon LB, which we will be looking at in
later chapters. For now, what this will do is expose the RESTful services
in the geolocation application on any random port on the host machine.
In our case, the host machine is the Virtual Box VM at
192.168.99.100.

With that said, click on Change and deploy configuration. Usually, it
takes a few seconds to finish the deployment. You can look at the
pending deployments from the Deployments tab of Marathon. You can
make sure that your configurations are updated by looking at the
Docker container setting in the Configuration tab. It should include the
servicePort and hostPort:

 {
 "type": "DOCKER",
 "volumes": [],
 "docker": {
 "image": "vikrammurugesan/geolocation",
 "network": "BRIDGE",
 "portMappings": [
 {
 "containerPort": 8080,
 "hostPort": 0,
 "servicePort": 8899,
 "protocol": "tcp",
 "labels": {}
 }
],
 "privileged": false,
 "parameters": [],
 "forcePullImage": false
 }
 }

Deploying Microservices on Mesos

[112]

Now, let's test our service using the curl command. Before that, you have to5.
know what host port your service is running on. You can get that from the
Instances section:

As you can see, it is running on port 31434. Yours might be different as
it gets randomly generated. So please make sure you use your port
number in the next cURL command.

Now, open a new terminal session and issue the following curl command:6.

 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude": -88.144040}'
http://192.168.99.100:31434/geolocation

This should give you an output similar to the following (pretty-printed for7.
readability):

 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

Configuring ports in Marathon is trickier than you think. You have to
understand the usage of servicePorts, hostPorts, and requirePorts
as well as the various networking modes, such as HOST and BRIDGE. It
is strongly recommended you take a look at
https://mesosphere.github.io/marathon/docs/ports.html before you
start playing with them on your production cluster.

https://mesosphere.github.io/marathon/docs/ports.html

Deploying Microservices on Mesos

[113]

That brings us to the end of this recipe. You now know how to deploy your own
microservice on a Mesos cluster using Marathon.

Configuring volumes in Marathon
So far, we have learned how to deploy our microservice on a Mesos cluster using Marathon
and configure ports using Marathon's web UI. One of the most common things you would
want to do is be able to map volumes in your container to the host machine. Though this is
not something that is super important to our geolocation application, when you deal with
applications that save files on the filesystem, this is critical. You wouldn't want to lose your
data, would you? In this recipe, we will look at how to map volumes using Marathon.

Getting ready
In order to learn how to configure volume mapping in Marathon, let's make our application
save something to the filesystem. Let's say the geolocation application would like to store
the geolocation JSON to the filesystem as it receives them. It might not be a great design,
but for our understanding, let's make our geolocation application store the geolocation
JSON files in a dedicated data directory as and when they arrive. In order to do so, let's
open up our STS IDE.

How to do it…
In order to create this data directory, we have to do two things:

Create the directory on the host machine and make it accessible
Make the GeoLocationRepository.java file write any new geolocation JSON
to the data directory

Deploying Microservices on Mesos

[114]

Before we can implement this in the container, let's try to do it locally:

Issue the following two commands on your terminal:1.

 mkdir -p /opt/packt/geolocation/data
 chmod -R 777 /opt

Use sudo if needed. The mkdir command creates the given directory
structure in your local filesystem, and the chmod command gives
everyone read, write, and execute permissions on the /opt directory
and its subdirectories. You can verify this by running the ls -l
command. Setting 777 privileges is not a safe approach as it opens up
security risks. When you are doing something similar in your
application, make sure that you give just the required privileges.

Now that our directory is ready, let's make changes in our repository class to start2.
writing geolocations to this directory. As we would need one file per geolocation,
we have to come up with a naming convention so that the files don't get
overwritten. The timestamp will more or less be unique for all geolocations. But
what happens when you are writing geolocations for multiple users at the same
time? So, maybe a combination of timestamp and user ID? Yes, that should work
for now. To differentiate the user ID from the timestamp, we could use the
following convention:

 user<userId>_t<timestamp>

Let's make changes to the GeoLocationRepository.java file to follow this3.
naming convention. The first thing that we will need is an object-to-JSON string
serializer. We will use com.fasterxml.jackson.databind.ObjectMapper as
it is already used by Spring MVC. The ObjectMapper.writeValue(File,
String) method is used to write a file with the given string content, which suits
our needs perfectly.
Go ahead and use this method in the GeoLocationRepository class'4.
addGeoLocation method. After you are done, your
GeoLocationRepository.java class will look something like this:

package com.packt.microservices.geolocation;
import java.io.File;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

import org.springframework.stereotype.Repository;

Deploying Microservices on Mesos

[115]

import com.fasterxml.jackson.databind.ObjectMapper;

@Repository
public class GeoLocationRepository {

 private List<GeoLocation> geolocations = new ArrayList<GeoLocation>();

 private static final ObjectMapper MAPPER = new ObjectMapper();

 public void addGeoLocation(GeoLocation geolocation) {
 geolocations.add(geolocation);

 try {
 MAPPER.writeValue(new File("/opt/packt/geolocation/data/user" +
geolocation.getUserId() + "_t" + geolocation.getTimestamp()), geolocation);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public List<GeoLocation> getGeoLocations() {
 return Collections.unmodifiableList(geolocations);
 }
}

Now that both our directory and code are ready, let's test the application. Start5.
your GeoLocationApplication.java application as a Spring Boot application
from your STS IDE. Now issue the following curl command to create a
geolocation:

 curl -H "Content-Type: application/json" -X POST -d'{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude": -88.144040}' http://localhost:8080/geolocation

This should have given you an output similar to the following (pretty-
printed for readability):

 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

Deploying Microservices on Mesos

[116]

Also, this should have created the data file at the
/opt/packt/geolocation/data directory. Let's verify that. Issue the
following command to look at the contents of the data file:

 cat /opt/packt/geolocation/data/userf1196aac-470e-11e6-
beb8-9e71128cae77_t1468203975

This should have given you an output similar to the following (pretty-printed for6.
readability):

 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

Now that our code works great, the next steps are as follows:7.

1. Build the project to generate a new JAR artifact

2. Create a new Docker image because our code has changed

3. Upload the new image to Docker Hub

4. Redeploy the new image with volume configurations

5. Verify whether the volume is mapped

Go ahead and build your project using the mvn clean package command. This8.
should create a new geolocation-0.0.1-SNAPSHOT.jar artifact in the target
directory.
In order to create the new image, we have to add two new lines to the Dockerfile9.
to create the data directory and give it write privileges. Add the following two
lines to your Docker file:

 RUN mkdir -p /opt/packt/geolocation/data
 RUN chmod -R 777 /opt

After you add this, your Docker file will look something like this:10.

 FROM openjdk:8
 RUN mkdir -p /opt/packt/geolocation/data
 RUN chmod 777 /opt
 ADD target/geolocation-0.0.1-SNAPSHOT.jar
 /opt/packt/geolocation/

Deploying Microservices on Mesos

[117]

 EXPOSE 8080
 CMD ["java", "-jar", "/opt/packt/geolocation/geolocation-
 0.0.1-SNAPSHOT.jar"]

Now let's build the image with new code. Keep in mind that in addition to11.
creating the data directory, the other change in the image is
geolocation-0.0.1-SNAPSHOT.jar. This file would have been automatically
created by your IDE when you made the change to your
GeoLocationRepository.java file. Though I didn't explicitly mention earlier,
be aware that it is also getting changed in your image.
Before we build the new image, let's remove the image we already have. To do12.
that, run the following two commands one by one:

 docker rmi packt/geolocation
 docker rmi vikrammurugesan/geolocation

We are removing the packt/geolocation image as it references the
vikrammurugesan/geolocation image. If you try to remove the
vikrammurugesan/geolocation image without removing the
packt/geolocation image, Docker will complain about references and
will not remove the image. To build our image, issue the following
command on your terminal:

 docker build -t vikrammurugesan/geolocation .

Remember to use your account name instead of mine in this command.
After your image has been built, push your Docker image to Docker
Hub using the following command. You may be asked to log in to your
Docker Hub account if you haven't already done so.

 docker push vikrammurugesan/geolocation

Again, make sure you use your account name instead of mine. After the
image has been uploaded successfully, go to Docker Hub and verify that
the last updated time of your image shows something more recent.

Now that our image is ready to be used, let's spin off our microservice on Mesos13.
using Marathon. Make sure your Mesos cluster is up and running. If it is down,
kill your cluster and start it again. Once your cluster is back up, open the
Marathon web UI on your browser. Click on the Create Application button and
go into JSON mode. We will be using JSON mode to quickly populate the modal.

Deploying Microservices on Mesos

[118]

In JSON mode, delete the existing JSON and paste the following:

 {
 "id": "/geolocation",
 "cmd": null,
 "cpus": 1,
 "mem": 512,
 "disk": 1024,
 "instances": 1,
 "container": {
 "type": "DOCKER",
 "docker": {
 "image": "vikrammurugesan/geolocation",
 "network": "BRIDGE",
 "portMappings": [
 {
 "containerPort": 8080,
 "hostPort": 0,
 "servicePort": 8899,
 "protocol": "tcp",
 "labels": {}
 }
],
 "privileged": false,
 "parameters": [],
 "forcePullImage": false
 }
 }
 }

Now go back to UI mode by toggling the JSON Mode button. Navigate to the14.
Volumes section. In the Volumes section, you will see two things. One is
Persistent Volumes, which is mostly used in applications that need stateful
behavior. The next one is the Docker Container Volumes, which is used to map
volumes between the container and host. In our case, we have to add a Docker
container volume. Add the following entries to the Docker Container Volumes
section and hit Create Application:

Container Path: /opt/packt/geolocation/data
Host Path: /opt/packt/geolocation/data
Mode: Read and Write

As you can see, we are using the same path in the container and the
host. Marathon will deploy the application with the newer version of
your image.

Deploying Microservices on Mesos

[119]

Now that our application is ready to test, let's create two geolocations using15.
curl. Make sure the port number that you use is the same port number that is
advertised in Marathon. In my case, the port number was changed from 31434 to
31758. That's because we redeployed the application.

 curl -H "Content-Type: application/json" -X POST -d'{"timestamp":
1474843159, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude": -88.144040}'
http://192.168.99.100:31758/geolocation
 curl -H "Content-Type: application/json" -X POST -d
'{"timestamp": 1474843900, "userId": "f1196aac-470e-11e6-
beb8-9e71128cae77", "latitude": 42.803488, "longitude":-87.144040}'
http://192.168.99.100:31758/geolocation

These two commands should have created two files in the
/opt/packt/geolocation/data directory of the container as well as
the host.

First, let's verify that the file is created in the container. To list the files in the16.
/opt/packt/geolocation/data directory, we have to find out the ID of the
container. Ideally, when you have a real non-dockerized Mesos cluster, your
container will be running on a remote Mesos slave. But as our installation is a
Dockerized version, the geolocation application will be running as a container on
our Docker host. You can verify that using the docker ps -a command:

In this screenshot, some portion of the console has been cropped out to
highlight only the relevant information. But as you can see, the
geolocation application is running as a Docker container, and its ID is
924b3f748273. Now that we know the container ID, issue the following
Docker command to list the contents of the data directory and the data
files themselves:

 docker exec 924b3f748273 ls /opt/packt/geolocation/data

This should show something like the following:

 userf1196aac-470e-11e6-beb8-9e71128cae77_t1474843159
 userf1196aac-470e-11e6-beb8-9e71128cae77_t1474843900

Deploying Microservices on Mesos

[120]

To verify the contents of the files, issue the following commands one by one:17.

 docker exec 924b3f748273
cat/opt/packt/geolocation/data/userf1196aac-470e-11e6-
beb8-9e71128cae77_t1474843159

You should see this output (pretty-printed for readability):18.

 {
 "latitude":41.803488,
 "longitude":-88.14404,
 "userId":"f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp":1474843159
 }

 docker exec 924b3f748273 cat
 /opt/packt/geolocation/data/userf1196aac-470e-11e6-beb8-
 9e71128cae77_t1474843900

You should see this output (pretty-printed for readability):19.

 {
 "latitude":42.803488,
 "longitude":-87.14404,
 "userId":"f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp":1474843900
 }

With that, we have verified that our application creates the data files in
the data directory of the container.

In order to verify that our volume mappings work, we have to check whether20.
those files are available in the Docker host. Keep in mind that as we are using
Docker Machine, the Docker host in this case is the Oracle VirtualBox VM and not
our local computer. In order to look at the contents of the VM, we have to first
SSH into the VM. Docker Machine has an ssh command that lets you SSH into
the VM. Go ahead and issue the following command to SSH into the VM:

 docker-machine ssh default

Deploying Microservices on Mesos

[121]

You should see something like this:

List the files in the /opt/packt/geolocation/data directory using the ls21.
command:

 ls -l /opt/packt/geolocation/data

You should see that two files have been created with the same names as
in the container:

If you would like to look at the contents, execute the cat command to
look at the contents of the data files. That's it! We have learned how to
map volumes using Marathon. In a real-time scenario, it is worth using
volume mapping to take backups of any critical data such as DB data
files, sensitive log files, and raw machine data. Some organizations
utilize Mesos frameworks such as Chronos to perform data backups of
these data.

To learn more about Chronos, take a look at this page:
https://mesos.github.io/chronos/

https://mesos.github.io/chronos/

Deploying Microservices on Mesos

[122]

Configuring environment variables in
Marathon
Environment variables play a vital role in any container. Be it your database or messaging
server or your own RESTful API, environment variables can be used to store configurations
of your container. So far in our geolocation microservice, we haven't come across a scenario
to use environment variables as it is a standalone application and does not have to talk to
any other server or middleware. But in production scenario where you microservice has to
talk to a database or Kafka broker, you have to store the configurations of your database or
broker somewhere. That's where developers prefer using environment variables. In this
recipe we will take a look at how to configure our geolocation application to use an
environment variable and also see how to pass that variable using Marathon.

Getting ready
Before we move on, we first need to know the environment variable that we are going to
parameterize and how the geolocation application is going to use it. One use case could be
getting the location of the data files as an environment variable. Let's go ahead and do that!
As we will have to make some code changes, go ahead and open up STS IDE.

How to do it…
Open the GeolocationRepository.java file that is responsible for creating the
geolocations and persisting the geolocation JSONs to the local file system. In this recipe we
will be parameterizing the path to the data directory /opt/packt/geolocation/data.
Create a new constant called DATA_FILES_DIR and assign it with the value of the
environment variable GEOLOCATION_DATA_FILES_DIR.

 private static final String DATA_FILES_DIR =
 System.getenv("GEOLOCATION_DATA_FILES_DIR");

But wait, what if the person that deploys the application forgets to pass this environment
variable? So it is always safer to give a default value to environment values if they are null
(while they are non-nullable). With that said, lets go ahead and rewrite the preceding line
with this:

 private static final String DATA_FILES_DIR =
 System.getenv("GEOLOCATION_DATA_FILES_DIR") != null ?
 System.getenv("GEOLOCATION_DATA_FILES_DIR") :
 "/opt/packt/geolocation/data";

Deploying Microservices on Mesos

[123]

As you can see we have defaulted the value to /opt/packt/geolocation/data. Now
modify the addGeoLocation method to use this variable. After modification, this class will
look something like this:

 package com.packt.microservices.geolocation;

 import java.io.File;
 import java.util.ArrayList;
 import java.util.Collections;
 import java.util.List;

 import org.springframework.stereotype.Repository;

 import com.fasterxml.jackson.databind.ObjectMapper;

 @Repository
 public class GeoLocationRepository {

 private List<GeoLocation> geolocations = new
 ArrayList<GeoLocation>();
 private static final ObjectMapper MAPPER = new
 ObjectMapper();
 private static final String DATA_FILES_DIR =
 System.getenv("GEOLOCATION_DATA_FILES_DIR") != null
 ? System.getenv("GEOLOCATION_DATA_FILES_DIR") :
 "/opt/packt/geolocation/data";
 public void addGeoLocation(GeoLocation geolocation) {
 geolocations.add(geolocation);
 try {
 MAPPER.writeValue(new File(DATA_FILES_DIR + "/user" +
 geolocation.getUserId() + "_t" +
 geolocation.getTimestamp()), geolocation);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 public List<GeoLocation> getGeoLocations() {
 return Collections.unmodifiableList(geolocations);
 }
 }

Now that our code is ready, let's go ahead and test the application. Start your application
GeoLocationApplication.java as a Spring Boot application from your STS IDE. Now
issue the following cURL command to create a geolocation:

curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",

Deploying Microservices on Mesos

[124]

"latitude": 41.803488,"longitude":-88.144040}'
http://localhost:8080/geolocation

This should have given you an output similar to (output has been pretty printed for
readability purposes):

 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

Also, this should have created the data file at /opt/packt/geolocation/data directory.
Let's go ahead and verify that. Issue the following command to look at the contents of the
data file:

cat /opt/packt/geolocation/data/userf1196aac-470e-11e6-beb8
-9e71128cae77_t1468203975

This should have given you an output similar to (output has been pretty printed for
readability purposes):

 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

Now that our code works great, the next steps are:

Build the project to generate a new JAR artifact.1.
Creating a new Docker Image as our code has changed.2.
Upload the new image to Docker Hub.3.
Redeploy the new image with environment variable.4.
Verify if the environment variable is being used.5.

Go ahead and build your project using the mvn clean package command. This should
create a new geolocation-0.0.1-SNAPSHOT.jar artifact in the target directory.

Before we build the new image, let's go ahead and remove the existing image that we
already have. To do that go ahead and run the following command:

 docker rmi vikrammurugesan/geolocation

Deploying Microservices on Mesos

[125]

To build our image, issue the following command on your terminal:

 docker build -t vikrammurugesan/geolocation .

Please use your account name instead of the author's in the preceding commands. After
your image has been built, go ahead and push your Docker image to the Docker Hub using
the following command. You might be asked to log in to your Docker Hub account if you
haven't already done so.

 docker push vikrammurugesan/geolocation

Again make sure you use your account name instead of mine. After the image has been
uploaded successfully, go to Docker Hub and verify that the “Last Updated” time of your
image shows something more recent. Now that our image is ready to be used, let's go ahead
and spin off our microservice on Mesos using Marathon. Make sure your Mesos cluster is
up and running. If it is down, please kill your cluster and start it again. Once your cluster is
back up, go ahead and open up Marathon web UI on your browser. Click on the Create
Application button and go to the JSON mode. We will be using the JSON mode to quickly
populate the modal. In the JSON mode, delete the existing JSON and paste the following
JSON.

 {
 "id": "/geolocation",
 "cmd": null,
 "cpus": 1,
 "mem": 512,
 "disk": 1024,
 "instances": 1,
 "container": {
 "type": "DOCKER",
 "docker": {
 "image": "vikrammurugesan/geolocation",
 "network": "BRIDGE",
 "portMappings": [
 {
 "containerPort": 8080,
 "hostPort": 0,
 "servicePort": 8899,
 "protocol": "tcp",
 "labels": {}
 }
],
 "privileged": false,
 "parameters": [],
 "forcePullImage": false
 }

Deploying Microservices on Mesos

[126]

 }
 }

Now flip back to the friendly form view and go to the Environment Variables section. In
the environment variables section, add the following entry and hit Create Application.

Key: GEOLOCATION_DATA_FILES_DIR
Value: /opt/packt/geolocation/data

To verify if the environment variable has created correctly, go ahead and take a look at the
Configuration section of the application on Marathon. You should see something like this:

As a next step, let's go ahead and create two geolocations using the POST API and verify if
the files were created on the right directory of the container. Go ahead and issue the
following two cURL commands one by one on your terminal window:

 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1474843159, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude": -88.144040}'
http://192.168.99.100:31758/geolocation
 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1474843900, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
42.803488, "longitude": -87.144040}'
http://192.168.99.100:31758/geolocation

Deploying Microservices on Mesos

[127]

Please note that the port number of the container might be different on your installation. In
the preceding command we have used 31758 as that's what Marathon uses for this
instance. Now issue the following docker exec command to verify the contents of the data
directory inside the container:

 docker exec 1d52a2617a8e ls /opt/packt/geolocation/data

This should show something like this:

 userf1196aac-470e-11e6-beb8-9e71128cae77_t1474843159
 userf1196aac-470e-11e6-beb8-9e71128cae77_t1474843900

Again note the container ID in the preceding command. Please find your container's ID
using the docker ps command and use that container ID in the preceding command.

With that said we now know how to configure environment variables in Marathon. Though
we don't have a solid use case of the environment variable in this example, we will be using
environment variables heavily in our future chapters.

Scaling your microservice in Marathon
One of the most important design decisions in building a microservice is scalability. If your
microservice is not scalable, there is no point in deploying it as a microservice; it could in
fact be a huge monolithic application. There are several ways to scale a microservice. It also
depends on the transport type your microservice uses. If your microservice uses HTTP, you
should consider load-balancing your HTTP endpoints in various instances of your
microservice. Another approach is using an asynchronous messaging system, such as
ActiveMQ, Kafka, RabbitMQ, and ZeroMQ.

Getting ready
The geolocation microservice uses RESTful APIs to expose its endpoints. We should be
considering load-balancing tools to load-balance the endpoints across instances of the
geolocation application. In order to scale our application, let's first bring up the Marathon
web interface.

Deploying Microservices on Mesos

[128]

How to do it…
Once the Marathon web UI is up and running, deploy the application if it is not1.
already running. Instead of running the application from the Create Application
modal, using JSON mode is always quicker and simpler. Use the following JSON
to create your application:

 {
 "id": "/geolocation",
 "cmd": null,
 "cpus": 1,
 "mem": 512,
 "disk": 1024,
 "instances": 1,
 "container": {
 "type": "DOCKER",
 "volumes": [
 {
 "containerPath": "/opt/packt/geolocation/data",
 "hostPath": "/opt/packt/geolocation/data",
 "mode": "RW"
 }
],
 "docker": {
 "image": "vikrammurugesan/geolocation",
 "network": "BRIDGE",
 "portMappings": [
 {
 "containerPort": 8080,
 "hostPort": 0,
 "servicePort": 8899,
 "protocol": "tcp",
 "labels": {}
 }
],
 "privileged": false,
 "parameters": [],
 "forcePullImage": false
 }
 }
 }

Deploying Microservices on Mesos

[129]

After the geolocation application starts, click on the application from the2.
applications grid, and go to the geolocation-specific page. There, you should see
the Scale Application button. Click on it. It should open a modal like this:

Choose 4 from the dropdown and hit Scale Application. You should now see3.
that Marathon has deployed the application as four different instances, each
exposing different ports:

If you would like to verify that the app is running on these ports, test
them one by one using the curl command. If you do not have enough
resources in your cluster, scaling might not work. Please try increasing
the resources by recreating your Docker Machine VM.

Deploying Microservices on Mesos

[130]

All this time, we have been interfacing with the Marathon web UI. For a change,4.
let's look at the Mesos web UI at http://192.168.99.100:5050. You should
see that there are four different tasks running, each of them indicating the various
geolocation instances:

We just learned how to scale up applications using Marathon. Let's say you5.
would like to scale the geolocation application back to just one instance; in other
words, scale it down. You can use the same Scale Application modal to scale it
down to 1 instance. After you scale it down, you should now see that there is
only one instance of the application running. You have no control over which
three out of the previous four will get destroyed. This decision is made by Mesos
based on the resource availability on the Mesos slaves:

Deploying Microservices on Mesos

[131]

Now go back to the Mesos web interface, and you will notice that three tasks are6.
in KILLED status:

Destroying your microservice in Marathon
There might be times you want to destroy a microservice or application that is already
running on Marathon either because you want to free up some resources or because you
would like to redeploy the application with a different set of Marathon configurations. This
can be easily achieved from the application-specific page in Marathon.

Getting ready
Open the Marathon web interface in your browser, and navigate to the geolocation
application page. If you don't have the application up and running, use JSON mode and
deploy the application using the JSON that was used in previous recipe Scaling your
Microservice in Marathon.

Deploying Microservices on Mesos

[132]

How to do it…
Marathon applications can either be suspended or destroyed. Suspended1.
applications can be redeployed, while destroyed applications cannot. Click on the
button that looks like a gear. This button has two options: Suspend and Destroy.
Let's try to suspend the application:

As you can see, the status of the application is marked as Suspended,
and there are no active instances of the application running. In order to
redeploy the application, we will have to scale it.

Scale the application using the Scale Application modal with a scaling factor of 1.2.
Within a few seconds, you should see a brand new instance of the geolocation
application up and running. The Suspend option is often used to temporarily
bring down a service. When you suspend your application, Marathon saves the
configurations of your application so that you can bring it back up with the same
set of configurations without having to re-enter them.
The next option we are interested in is Destroy. Unlike Suspend, the Destroy3.
option removes the application and its configurations completely from Marathon.
Like we saw earlier, you may want to destroy your application either to free up
some resources or redeploy the application with a new set of configurations.
Go ahead and click on the gear button, and then hit the Destroy button.4.
Marathon will ask you for confirmation as you cannot recover from this step:

Deploying Microservices on Mesos

[133]

If you confirm that you would like to destroy the application, you will
be taken to the Marathon main screen, and you will not see any
applications running:

Monitoring your microservice logs in
Marathon
So far, we have learned how to deploy, scale, suspend, and destroy our microservice in a
Mesos cluster using Marathon. All these steps are part of your deployment process, but
there is one thing you would want to do post deployment: monitor the logs. In this recipe,
we will look at how to monitor our application logs using Marathon.

Deploying Microservices on Mesos

[134]

Getting ready
Fortunately, there is an easy way to look at your application's log files using Marathon's
web interface. Though it is not very user friendly, it is still possible. To illustrate this, let's
deploy the geolocation microservice using Marathon. If you have to restart your Mesos
cluster, do so. In Marathon, use JSON mode and the JSON that was used in recipe Scaling
your Microservice in Marathon to deploy the application.

How to do it…
Once your application has started, go to the geolocation application's page in1.
Marathon. You will see that one instance of your application is running. Click on
the running instance of the geolocation application. You will see something like
this:

Deploying Microservices on Mesos

[135]

The first section, at the top, provides information such as the host on
which your application is deployed, the IP address of your Docker
container, ports exposed, and endpoints exposed. The section that really
matters to us now is Working Directory. It shows two files here: stdout
and stderr. Both of them have the same permissions, rw/r/r.

Marathon uses Docker's logging behavior to consume and display the logs. Any2.
standard output logged by the Docker container goes into stdout, and any
standard error logged by Docker container goes into stderr. The version of
Marathon we are using does not let you view the logs on the screen. The only
way to look at them is to download them first and open them with your preferred
editor.
Hit the Download button on stdout. This should download the 7 KB file. Open3.
the downloaded file with your preferred editor. In the following screenshot, I
have used OS X's TextEdit application:

As you can see, there are some Spring Boot logs in stdout. Towards the
end of the logs, you can see the in-memory Tomcat service started on
port 8080 exposing our REST APIs.

Deploying Microservices on Mesos

[136]

Similarly, download stderr and take a look at its contents:4.

There are some log messages from some C++ files, showing that the
Docker container was started.

Though using the Marathon web interface to view logs is not very convenient, it is one step
toward viewing your logs. In the future, we can expect a more sophisticated interface from
Marathon. The intended use of Working Directory is when you would like to expose some
resource files used by your application. In our geolocation application, we do not have any
files in the working directory.

Monitoring your microservice logs in Mesos
We've already seen that viewing logs in Marathon is not very easy. Oftentimes, you will
want to perform more advanced operations, such as tailing logs, viewing logs on screen, or
viewing multiple logs at the same time. Fortunately, you can do this using Mesos. In this
recipe, we will learn how to monitor application logs-in other words, task logs-using the
Mesos web UI.

Getting ready
To check this out, deploy the geolocation microservice using Marathon. If you have to
restart your Mesos cluster, do so. In Marathon, use JSON mode and the JSON that was used
in recipe Scaling your Microservice in Marathon to deploy the application.

Deploying Microservices on Mesos

[137]

How to do it…
Once your application has started, go to the Mesos web interface using the URL1.
http://192.168.99.100:5050, and verify that your application's task is
running:

From the preceding screenshot, you can see that there is one active task and2.
several completed tasks for the geolocation microservice. The completed tasks
were from previous executions, and the running task is the one that we are
concerned about. In fact, you can still look at the logs of the completed tasks, but
in this recipe, we will be looking at the active task's logs, as the steps are exactly
the same. In Active Tasks, there is a hyperlink called Sandbox. Click on it. You
should see a screen that displays two items: stdout and stderr.

Deploying Microservices on Mesos

[138]

This is pretty much the same thing we saw in Marathon. You can do two
things: either download the logs using the Download button and take a
look at them using your favorite text editor, or tail the logs by clicking
on the file names.

Go ahead and click on stdout. You will see that a popup window opens up with3.
the contents of stdout:

A great advantage of this view is that it constantly tails any new stdout
calls. You can keep this window open to look at the live logs as they
come.

Similarly, click on stderr to look at the contents of stderr:4.

Deploying Microservices on Mesos

[139]

The tailing feature is especially helpful when you are monitoring logs of multiple
applications. Keep in mind that this is a feature of Mesos, and Mesos lets you look at logs on
tasks deployed using any framework: Spark, Chronos, Marathon, Aurora, Cassandra, and
so on.

In this recipe, we learned two ways of monitoring the logs of applications that are deployed
in Marathon. With this recipe, you have finished learning the basics of Mesos and
Marathon. You can now start playing around with Mesos and Marathon to fit your needs.

Managing your microservice using
Marathon's REST API
Marathon's web interface is definitely one of the best user interfaces. It is very intuitive and
sophisticated. So far, we have been using the web interface because it was the easiest way to
get you up to speed. Using the web interface might not be scalable when you are dealing
with hundreds of microservices, though. Mesos and Marathon are now production ready.
In fact, a lot of organizations have been using Mesos and Marathon to deploy hundreds of
microservices. In this recipe, we will look at how to deploy microservices in Marathon using
its REST API. This enables you to implement continuous deployments.

Continuous deployments have been picking up traction lately. Continuous deployment is a
process in which you deploy your application to production as soon as it has been checked
in, packaged, tested, and validated. Organizations use continuous integration (CI) tools
such as Jenkins, Hudson, Bamboo, and Travis CI to automate their deployments. If you
have the right set of test cases and the right tools to validate and automate your tests, you
can confidently deploy your application after it has been tested and validated. With the
recent improvements in the aforementioned tools, it is now possible to automate
deployments easily. Before Mesos or Kubernetes, deployments were done using build
frameworks such as Maven, Gradle, and Ant. One such example is the Cargo plugin. The
Cargo plugin for Maven, Ant, and Gradle can deploy your artifacts to several web and
application servers, including but not limited to Tomcat, WildFly, Glassfish, Weblogic, and
Websphere. If you have used the Cargo plugin, you will know that it is not very easy to
configure.

Deploying Microservices on Mesos

[140]

Getting ready
In this recipe, we will learn how to use the various RESTful APIs of Marathon. This will be
particularly useful when you are automating your deployments to Mesos and Marathon.
Before we start this recipe, let's rebuild the Mesos cluster. As our Mesos cluster is
Dockerized, I suggest you restart the cluster every once in a while. This is because,
sometimes the containers tend to run out of resources. However you don't have to worry
about this in production if you have sufficient resources. Once your cluster is up and
running, open the Marathon web interface in a browser. We will be using the terminal to hit
Marathon's API using curl commands. So keep a terminal window open all the time.

How to do it…
In this recipe, we will be looking at several Marathon REST APIs that let you:

Deploy an application
Scale an application
List all instances of a given application
Destroy an application

First, let's take a look at how we can deploy the geolocation application using1.
Marathon's REST endpoint. All the application-related APIs are listed under the
/apps domain. The most recent version of the Marathon REST endpoints is v2.
Hence, the /apps domain APIs are listed under the path /v2/apps. To create a
new application on Marathon, all you have to do is POST the JSON representation
of your application to the URL http://192.168.99.100:8080/v2/apps.

The schema for this JSON is exactly the same one we used in JSON
mode from previous recipes:

 {
 "id": "/geolocation",
 "cmd": null,
 "cpus": 1,
 "mem": 512,
 "disk": 1024,
 "instances": 1,
 "container": {
 "type": "DOCKER",
 "volumes": [
 {
 "containerPath": "/opt/packt/geolocation/data",

Deploying Microservices on Mesos

[141]

 "hostPath": "/opt/packt/geolocation/data",
 "mode": "RW"
 }
],
 "docker": {
 "image": "vikrammurugesan/geolocation",
 "network": "BRIDGE",
 "portMappings": [
 {
 "containerPort": 8080,
 "hostPort": 0,
 "servicePort": 8899,
 "protocol": "tcp",
 "labels": {}
 }
],
 "privileged": false,
 "parameters": [],
 "forcePullImage": false
 }
 }
 }

As we will be using curl as our client, let's make the whole JSON wrap into one2.
single line. You can use your favorite text editor to do this. The final curl
command will look something like this:

 curl -H "Content-Type: application/json" -X POST -d '{"id":
"/geolocation", "cmd": null, "cpus": 1, "mem": 512, "disk": 1024,
"instances": 1, "container": {"type": "DOCKER", "volumes":
[{"containerPath": "/opt/packt/geolocation/data", "hostPath":
"/opt/packt/geolocation/data", "mode": "RW"}], "docker": {"image":
"vikrammurugesan/geolocation", "network": "BRIDGE", "portMappings":
[{"containerPort": 8080, "hostPort": 0, "servicePort": 8899, "protocol":
"tcp", "labels": {} }], "privileged": false, "parameters": [],
"forcePullImage": false } } }' http://192.168.99.100:8080/v2/apps

You should get a response saying your application has been queued for3.
deployment (pretty-printed for readability):

 {
 "id": "/geolocation",
 "cmd": null,
 "args": null,
 "user": null,
 "env": {},
 "instances": 1,

Deploying Microservices on Mesos

[142]

 "cpus": 1,
 "mem": 512,
 "disk": 1024,
 "executor": "",
 "constraints": [],
 "uris": [],
 "fetch": [],
 "storeUrls": [],
 "ports": [
 8899
],
 "portDefinitions": [
 {
 "port": 8899,
 "protocol": "tcp",
 "labels": {}
 }
],
 "requirePorts": false,
 "backoffSeconds": 1,
 "backoffFactor": 1.15,
 "maxLaunchDelaySeconds": 3600,
 "container": {
 "type": "DOCKER",
 "volumes": [
 {
 "containerPath": "/opt/packt/geolocation/data",
 "hostPath": "/opt/packt/geolocation/data",
 "mode": "RW"
 }
],
 "docker": {
 "image": "vikrammurugesan/geolocation",
 "network": "BRIDGE",
 "portMappings": [
 {
 "containerPort": 8080,
 "hostPort": 0,
 "servicePort": 8899,
 "protocol": "tcp",
 "labels": {}
 }
],
 "privileged": false,
 "parameters": [],
 "forcePullImage": false
 }
 },

Deploying Microservices on Mesos

[143]

 "healthChecks": [],
 "readinessChecks": [],
 "dependencies": [],
 "upgradeStrategy": {
 "minimumHealthCapacity": 1,
 "maximumOverCapacity": 1
 },
 "labels": {},
 "acceptedResourceRoles": null,
 "ipAddress": null,
 "version": "2016-09-26T02:03:43.284Z",
 "residency": null,
 "tasksStaged": 0,
 "tasksRunning": 0,
 "tasksHealthy": 0,
 "tasksUnhealthy": 0,
 "deployments": [
 {
 "id": "6f569b52-181f-4909-974a-23666d7a2c6f"
 }
],
 "tasks": []
 }

Go to Marathon and make sure that your application is up and running.4.
Now let's scale our application to a factor of 2. To do this, we will use the PUT5.
method and the path /v2/apps/geolocation, where /geolocation is the
unique ID of our application in Marathon. If you look at the following request
body, it is exactly the same as the previous request, except for the number of
instances. Here, we've set the value of instances to 2:

 {
 "id": "/geolocation",
 "cmd": null,
 "cpus": 1,
 "mem": 512,
 "disk": 1024,
 "instances": 2,
 "container": {
 "type": "DOCKER",
 "volumes": [
 {
 "containerPath": "/opt/packt/geolocation/data",
 "hostPath": "/opt/packt/geolocation/data",
 "mode": "RW"
 }
],

Deploying Microservices on Mesos

[144]

 "docker": {
 "image": "vikrammurugesan/geolocation",
 "network": "BRIDGE",
 "portMappings": [
 {
 "containerPort": 8080,
 "hostPort": 0,
 "servicePort": 8899,
 "protocol": "tcp",
 "labels": {}
 }
],
 "privileged": false,
 "parameters": [],
 "forcePullImage": false
 }
 }
 }

Go ahead and execute the following curl command:6.

 curl -H "Content-Type: application/json" -X PUT -d '{"id":
"/geolocation", "cmd": null, "cpus": 1, "mem": 512, "disk": 1024,
"instances": 2, "container": {"type": "DOCKER", "volumes":
[{"containerPath": "/opt/packt/geolocation/data", "hostPath":
"/opt/packt/geolocation/data", "mode": "RW"}], "docker": {"image":
"vikrammurugesan/geolocation", "network": "BRIDGE", "portMappings":
[{"containerPort": 8080, "hostPort": 0, "servicePort": 8899, "protocol":
"tcp", "labels": {} }], "privileged": false, "parameters": [],
"forcePullImage": false } } }'
http://192.168.99.100:8080/v2/apps/geolocation

You should have received a response similar to this, indicating the
deployment ID for the request (pretty-printed for readability):

 {
 "version": "2016-09-26T02:09:51.476Z",
 "deploymentId": "1eb0ae12-8ce9-497a-b0df-0e07261e993a"
 }

Deploying Microservices on Mesos

[145]

Now if you go to Marathon, you will see that there are two instances of7.
geolocation showing up as running:

You can scale down the application by posting the same PUT request with a8.
scaling factor of 1. You might want to list down the instances that are running for
the given application. You can do that by using the GET method and URL path
/v2/apps/geolocation. Execute the following curl command on your
console:

 curl http://192.168.99.100:8080/v2/apps/geolocation

You should get the following response, indicating that two instances of the same9.
application are running in Marathon (parts of the response have been truncated
for readability):

 {
 "app": {
 "id": "/geolocation",
 .
 .
 .
 "container": {
 "type": "DOCKER",
 "volumes": [
 {

Deploying Microservices on Mesos

[146]

 "containerPath": "/opt/packt/geolocation/data",
 "hostPath": "/opt/packt/geolocation/data",
 "mode": "RW"
 }
],
 "docker": {
 "image": "vikrammurugesan/geolocation",
 "network": "BRIDGE",
 "portMappings": [
 {
 "containerPort": 8080,
 "hostPort": 0,
 "servicePort": 8899,
 "protocol": "tcp",
 "labels": {}
 }
],
 "privileged": false,
 "parameters": [],
 "forcePullImage": false
 }
 },
 .
 .
 .
 "tasksStaged": 0,
 "tasksRunning": 2,
 "tasksHealthy": 0,
 "tasksUnhealthy": 0,
 "deployments": [],
 "tasks": [
 {
 "id": "geolocation.73ad18be-838d-11e6-9e4b-
 02423267746a",
 "slaveId": "be077ff3-9864-4517-8b49-e0f8fd66d977-S0",
 "host": "192.168.99.100",
 "state": "TASK_RUNNING",
 "startedAt": "2016-09-26T02:03:44.505Z",
 "stagedAt": "2016-09-26T02:03:43.601Z",
 "ports": [
 31981
],
 "version": "2016-09-26T02:03:43.284Z",
 "ipAddresses": [
 {
 "ipAddress": "172.17.0.2",
 "protocol": "IPv4"
 }

Deploying Microservices on Mesos

[147]

],
 "appId": "/geolocation"
 },
 {
 "id": "geolocation.4efe1dbf-838e-11e6-9e4b-
 02423267746a",
 "slaveId": "be077ff3-9864-4517-8b49-e0f8fd66d977-S0",
 .
 .
 .
 }
]
 }
 }

If you would like to destroy the geolocation application completely, use the10.
DELETE method on the URL /v2/apps/geolocation. The response of the
DELETE request is usually similar to that of the GET request, listing the
application details and the tasks that were stopped by this DELETE request.
Here's the command:

 curl -X DELETE http://192.168.99.100:8080/v2/apps/geolocation

There are several ways of implementing continuous deployment to
Marathon from tools such as Jenkins, Hudson, and other CI tools. One
such option is doing the same thing we did here: use CURL. You can write
shell scripts that deploy the application to Marathon using the curl
command after your builds pass. The other approach is writing custom
build framework plugins, such as the Maven Marathon or Gradle
Marathon plugins. I'll leave that up to you to try out.
To learn how to write a Maven plugin, take a look at this page:
https://maven.apache.org/guides/plugin/guide-java-plugin-develop

ment.html.
To learn how to write a Gradle plugin, take a look at this page:
https://docs.gradle.org/current/userguide/custom_plugins.html.

That brings us to the end of this recipe and the chapter. You are now ready to manage your
own Mesos cluster and manage your applications on a Mesos cluster using Marathon. Good
luck using Mesos and Marathon!

https://maven.apache.org/guides/plugin/guide-java-plugin-development.html
https://maven.apache.org/guides/plugin/guide-java-plugin-development.html
https://docs.gradle.org/current/userguide/custom_plugins.html

4
Deploying Microservices on

Kubernetes
In this chapter, we will learn how to deploy microservices on Kubernetes, which is an open
source framework from Google for orchestrating and managing containers. We will cover
the following recipes:

Setting up a Kubernetes cluster using Docker
Understanding the Kubernetes dashboard
Deploying your microservice on Kubernetes
Configuring ports in Kubernetes
Configuring volumes in Kubernetes
Configuring environment variables in Kubernetes
Scaling your microservice in Kubernetes
Destroying your microservice in Kubernetes
Monitoring your microservice logs in Kubernetes

Deploying Microservices on Kubernetes

[149]

Introduction
Before we jump into the recipes, it is very important that you know what Kubernetes is and
why we use it to deploy microservices.

If you've read the previous chapter, you will understand why we need a clustering
framework like Mesos. Just as Mesos is a clustering framework from the Apache
foundation, Kubernetes is a containerization platform from Google that lets you orchestrate
and manage containers. It is similar to the Mesos and Marathon combo. It comes with all
the features you will need to deploy containers, such as scaling, load balancing, deploying,
and monitoring. One more thing Kubernetes does compared to Mesos is that it lets you
deploy rkt containers. But with Mesos' recent release, they have added unified containerizer
support, which will let Mesos deploy not just Docker containers, but also rkt containers. Rkt
(pronounced “rock it”) was initially developed with the intent of providing a much more
secured containerizing framework. One thing to note here is that rkt is an implementation
of appc. It is strongly recommended that you read about appc before you move on to the
next section. We will not be discussing appc as it is out of the scope of this book

To learn more about App Container (appc), visit their GitHub
specifications page, which has lot of useful information,
at https://GitHub.com/appc/spec.

With that said, you should now have understood that Kubernetes, or K8s (the 8 stands for
ubernete) will help us deploy and manage our microservices. That's right; in this chapter, we
will learn how to work with a Kubernetes cluster.

Now let's take a moment to understand the various components that make up the
Kubernetes cluster. We will not be going deep into each and every component of
Kubernetes as it is out of scope for this book. Instead, we will just try to understand the
various components and their usage. Similar to Mesos, Kubernetes also follows a master-
slave architecture. So, obviously, there is a master that is responsible for scheduling the
containers on to one or more slaves. But unlike Mesos, in Kubernetes, containers are
organized in smaller mortal units called pods. Pods (or containers in different pods, to be
precise) can communicate using services. Take a look at the following diagram:

https://GitHub.com/appc/spec

Deploying Microservices on Kubernetes

[150]

As you can see, a simple Kubernetes cluster is composed of several components. Let's break
it down into multiple components and see what they are used for one by one.

Kubernetes master
The Kubernetes master consists of four major subcomponents that enable the functions of a
Kubernetes cluster. In the previous diagram, we only have one master. But in an ideal
production infrastructure, it is normal to have multiple masters in order to provide high
availability. Now let's take a look at the four different components of the master.

API server
The master API server is responsible for handling and configuring the data for pods,
services, and replication controllers. The API server holds the REST endpoints that can be
used to talk to the cluster.

etcd
The etcd service is used as a persistent storage to hold the state of the master. In general,
etcd is a distributed key-value store that uses the Raft protocol. It is most commonly used in
cases where there are multiple nodes in a cluster trying to share configurations. Kubernetes
relies heavily on etcd for storing the master's state as well as for HA configurations.

Deploying Microservices on Kubernetes

[151]

If you would like to know more about etcd, then please take a look at their
website
 h t t p s ://c o r e o s . c o m /e t c d .

Scheduler
Simply put, the scheduler is used to bind any unbound pods to the nodes. There is a lot
going on behind the binding process, such as priorities and predicates. As it is out of scope
for this book, we will not be discussing them now.

If you would like to learn more about the binding process, take a look at
this GitHub readme at h t t p s ://g i t h u b . c o m /k u b e r n e t e s /c o m m u n i t y /b l o

b /m a s t e r /c o n t r i b u t o r s /d e v e l /s c h e d u l e r . m d .

Controller manager
The controller manager itself is composed of several controllers, such as a replication
controller, endpoint controller, and namespace controller, which help in maintaining the
state of the cluster by watching for any changes to the states in etcd. For example, the
replication controller is responsible for replicating pods across nodes, also known as pod
replicas.

Kubernetes node
Kubernetes nodes are similar to Mesos slaves (or agents), which are responsible for holding
pods and their containers. Nodes can be either physical servers or virtual machines. Earlier,
we were introduced to a new term called Pod. In very simple terms, a pod is just a group of
containers in the same logical host. With that said, containers in the same pod share the
same IP and pool of ports. In order to run a Docker container on a Kubernetes node, the
node first needs Docker installed on it. That's what you see in the diagram.

In addition to Docker, a node has two other components: kubeproxy and kubelet. Let's talk
about them one by one. Before we try to understand what a kubeproxy is, we have to know
about Kubernetes' services. Now that we know containers reside in pods, and pods can be
replicated across nodes. What if you have an application that is scaled to a factor greater
than one and you would like to load-balance between the containers? That's where
Kubernetes' services come in.

https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://coreos.com/etcd
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md

Deploying Microservices on Kubernetes

[152]

Kubernetes services are just abstractions of pods that define policies to access them. Services
are usually identified by labels on the pods. The service and the kubeproxy together work
with the DNS server to perform load balancing on requests to services (containers).

A kubelet is an agent that runs on each node. The kubelet is responsible for maintaining a
YAML manifest file that describes the pods. It is also responsible for running the containers
and make sure they are up and running all the time.

That was a very quick and simple illustration of a Kubernetes cluster. Of course, the
functioning and internals of a Kubernetes cluster are much more complicated and
sophisticated than what we've talked about here. But our goal for now is to understand the
components and construction of a Kubernetes cluster. With that said, let's move on to our
first recipe, where we will look at different ways to orchestrate a Kubernetes cluster.

Setting up Kubernetes cluster using Docker
We now have a basic understanding of Kubernetes and its components. Though this is
sufficient to get started with our recipes, it is strongly recommended that you learn more
about Kubernetes from Google's documentation at http://kubernetes.io/docs/ before
you start using Kubernetes at scale.

Getting ready
In this recipe, we will orchestrate a local Dockerized Kubernetes cluster.

The easiest way to create a Kubernetes cluster at scale is using Google Cloud1.
Platform at https://cloud.google.com/container-engine. If you have a Google
account, you should be able to use Google Cloud Platform right away. But for
simplicity, in this recipe, we will be building our Kubernetes cluster on our local
machines using Docker.
There are several ways to run a Dockerized Kubernetes cluster, including but not2.
limited to:

Building our own Docker Compose file
Using kid
Using Minikube

http://kubernetes.io/docs/
https://cloud.google.com/container-engine

Deploying Microservices on Kubernetes

[153]

Building our own Docker Compose file might take longer compared to using kid3.
and Minikube. Kid stands for Kubernetes in Docker. It is a third-party script that
will spin off a Kubernetes cluster using Docker. Minikube is Kubernetes'
recommended method for creating a single-node cluster on the local machine. In
this recipe, we will be using Minikube and kubectl to orchestrate and manage
our local single-node Kubernetes cluster. kubectl is a CLI for managing
Kubernetes clusters.

Before you start using kubectl, it is strongly recommended that you read
its manual pages. A very descriptive overview of kubectl is given here
at http://kubernetes.io/docs/user-guide/kubectl-overview.

One of the prerequisites for running Minikube is Oracle VirtualBox. You should4.
already have it on your local machine if you are using docker-machine. If you
are using native Docker, you might have to install the most recent version of
VirtualBox.

You can download and find installation instructions for VirtualBox here
at h t t p s ://w w w . v i r t u a l b o x . o r g /w i k i /D o w n l o a d s .

How to do it…
Minikube is maintained by the Kubernetes community. Installing it is as simple as running
a shell script. The installation instructions for Minikube are usually included in the release
page of each version. You can find the instructions for the most recent version here:
https://GitHub.com/kubernetes/minikube/releases. At the time of writing this, the most
recent version of Minikube is v0.12.0. You could install the most recent version. This page
has instructions for OS X, Linux, and Windows.

http://kubernetes.io/docs/user-guide/kubectl-overview
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://GitHub.com/kubernetes/minikube/releases

Deploying Microservices on Kubernetes

[154]

In this recipe, you will find instructions for OS X. You should follow the right instructions
for your operating system.

Open a terminal window and execute the following command,1.

 curl -Lo minikube
https://storage.googleapis.com/minikube/releases/v0.12.0/minikube-darwin-am
d64 && chmod +x minikube && sudo mv minikube /usr/local/bin/

This command does three things:2.

Download the minikube package
Add execute permissions to the minikube binary file for all users
Move the minikube binary file to /usr/local/bin

If you are familiar with the Linux environment, you should already understand3.
the command. The && operator executes the second command only when the first
is successful. The first two commands are pretty self-explanatory. The third
command is required so you don't have to configure your PATH variable each
time you open a new terminal. Upon execution, you should see something like
this:

If you are prompted for your password, type it. It might be required to run the mv4.
command as it is executed with sudo permissions.
Now let's verify that we have the minikube package installed successfully. Go5.
ahead and issue the following command from the same terminal window:

 minikube

Deploying Microservices on Kubernetes

[155]

You should see something like this:6.

Take a few minutes to get familiar with the Minikube commands. If you
would like to know more about Minikube, read their documentation:
https://GitHub.com/kubernetes/minikube/blob/master/README.md

Deploying Microservices on Kubernetes

[156]

If you look at the possible commands in Minikube from the screenshot,
you can see that Minikube by itself is just used for orchestrating a
cluster. When it comes to managing the cluster itself, you will need
something like kubectl. Fortunately, minikube can work along with
kubectl if you have it installed.

So let's install kubectl. In the same terminal window, execute the following7.
command:

 curl -LO
https://storage.googleapis.com/kubernetes-release/release/$(curl -s
https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/d
arwin/amd64/kubectl && chmod +x ./kubectl && sudo mv ./kubectl
/usr/local/bin/kubectl

The preceding command is very similar to the command we used to install8.
minikube. It has three commands executed one after the other: the first
command downloads the most recent version of kubectl binary, the second
command adds execute permissions to the binary file for all users, and the third
command moves the kubectl file to the /usr/local/bin directory so that you
don't have to configure your PATH to include the kubectl binary each time you
open a new terminal.

Alternatively, if you are a Mac OS X user, you could also use Homebrew
to install kubectl. This way, you don't have to worry about permissions
and configuring the PATH as Homebrew takes care of that for you. To
install kubectl via Homebrew, all you have to do is run this simple
Homebrew command:
brew install kubectl

Deploying Microservices on Kubernetes

[157]

To verify that you have kubectl installed correct, execute the following9.
command on the same terminal:

 kubectl

Remember to take a moment to read through the manual pages of kubectl. It is10.
a very powerful CLI tool that is capable of managing your entire Kubernetes
cluster. With that said, let's create our first Kubernetes cluster. Issue the following
command:

 minikube start

Deploying Microservices on Kubernetes

[158]

It usually takes a few minutes to start your cluster because behind the scenes,11.
Minikube tries to create a new VirtualBox VM with all necessary tools and
software installed on it. You should see something like this:

 Starting local Kubernetes cluster...
 Kubectl is now configured to use the cluster.

As you can see, kubectl is now configured to use the cluster that was created by12.
Minikube. Now that we have our cluster running locally, let's make sure our
cluster is up and running. One way to do this is listing all the Docker containers
running on the VirtualBox VM. In order to do that, you need to perform an extra
step. Go ahead and run the following command:

 eval $(minikube docker-env)

This eval command sets your Docker variables to work with the minikube VM.13.
If you are curious about the minikube VM, open up VirtualBox, and you should
see a newly created VM called minikube. Now that our environment is set, issue
the following command to list all the Docker containers that are running:

 docker ps -a

You should be able to see the containers running on the minikube VM:14.

As you can see, there is one container called kube-addon-manager and two15.
containers for the image pause-amd64. The addon-manager container makes
sure all the add-ons are update as per the Kubernetes manifest.

To learn more about add-ons, take a look at this GitHub page
https://github.com/kubernetes/kubernetes/tree/master/cluster/add

ons.

https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons

Deploying Microservices on Kubernetes

[159]

The pause container is something special. It is responsible for storing the16.
network information for any new pod. In our cluster, there are two pause
containers, meaning there could potentially be two pods even before we create
one. We will take a look at them in the next recipe.

The other components will be already installed on the minikube VM. If you want17.
to be very sure about whether or not your cluster is running, you can execute the
minikube status command. It will spit out something like this:

 minikubeVM: Running
 localkube: Running

We know that minikubeVM indicates the VirtualBox VM. localkube is nothing18.
but the name of our Kubernetes cluster. You can stop your cluster by issuing the
following command:

 minikube stop

This will shut down the minikube VM in VirtualBox.19.

That brings us to the end of this recipe. Congratulations! You have successfully created
your first Kubernetes cluster.

Understanding the Kubernetes dashboard
In the previous recipe, we learned how to start and stop our local single-node Kubernetes
cluster. We call it a single-node cluster because it will just have one Kubernetes node
configured. So all the containers that you deploy are going to be deployed on this single
Kubernetes node. Kubernetes comes with a sophisticated web UI. The web UI acts as an
administration console for your cluster. You can perform almost all operations that you can
with kubectl, on the web UI. In fact, you could also monitor the resource utilization of
your cluster from the web UI. In this recipe, we are going to get familiar with the
Kubernetes dashboard so that we can easily manage our microservice on any Kubernetes
cluster.

Deploying Microservices on Kubernetes

[160]

Getting ready
The first thing you need to know is the URL to the Kubernetes UI dashboard. One1.
way to do that is identifying the IP of your minikube VM and use the default
Kubernetes dashboard port, 30000.
To find the IP of your minikube VM, run the following command on your2.
terminal:

 minikube ip

After you get the IP, use the port number 30000 to access the Kubernetes3.
dashboard from your web browser.

Though this approach works most of the time, we're still making an assumption about the
port number. What if the default port number changes? So let's see the other way to open
our dashboard.

How to do it…
Fortunately, Minikube comes with an easy-to-use command that when executed1.
in your terminal will automatically open the dashboard in your default web
browser. Let's try that out:

 minikube dashboard

Deploying Microservices on Kubernetes

[161]

If your cluster is already running, you should see the dashboard in your web2.
browser. Sometimes, if you try to run this command right after your minikube
start command, it might take a while to open up. Ideally, it pings the cluster
status API to check the status of your Kubernetes cluster. On your browser, you
should see something like this:

To better understand the interface, let's spin off a simple echoserver container3.
on Kubernetes. Execute the following command on your terminal:

 kubectl run hello-minikube --
image=gcr.io/google_containers/echoserver:1.4

Deploying Microservices on Kubernetes

[162]

For now, let's not dig deeper into how the command works. All we did was spin4.
off a simple echoserver container. We are doing this only to populate the UI
with some information. We will dig deeper into how to run a container in our
next recipe. You should get a response similar to this:

 deployment "hello-minikube" created

Now go to the dashboard and refresh the Workloads page. You should now see5.
something like this:

As you can see, there are three sections:6.

Deployments
Replica sets
Pods

Deployments shows all the containers that are deployed on your pod. A
replica set is nothing but the next generation of replication controller.
Replica sets sections shows the different replicas of your containers. The
Pods section, as its name indicates, shows all the pods that are currently
available in your cluster.

Deploying Microservices on Kubernetes

[163]

Instead of going into these individual sections on the left-hand side pane, let's go7.
directly to the items listed in each of these sections. First, let's start with the
hello-minikube deployment by clicking on the hello-minikube deployment
item from the Deployments grid. You should see something like this:

Some sections have been ignored in the preceding screenshot to focus just on the8.
most important sections and the ones you will be using very often. The Details
section is where you will find the high-level details about your Docker container
deployment. Note the word “deployment” in the previous statement. If you want
to see details about the Docker container itself, you will have to take a look at the
New Replica Set section. Note the labels associated with the deployment as well
as the replica set. These labels were auto-generated by Kubernetes when you
deployed the container using kubectl.

Deploying Microservices on Kubernetes

[164]

You can go to the Replica Sets section by using the Replica Sets option in the9.
left-hand side menu or by clicking on the hello-minikube-2713628163 replica set
on the Deployments page. Either way, you should see something like this:

The Details section is where you will find the container information, such as10.
image name, version, status, and replica set name. The Pods section lists all the
pods on which this container has been deployed or replicated. It also shows the
status of the pod and its own IP address. If you had the app in multiple pods, you
will see all the pods listed here with their unique IPs addresses. The Events
section shows the various events related to this container on the cluster. This is
especially useful when you are debugging your application or deployment.

Deploying Microservices on Kubernetes

[165]

The next important section is the Pods section. You can go to the Pods section by11.
choosing the option in the left-hand side menu or clicking on the hello-
minikube-2713628163-x6ge3 pod in the Pods grid of the Replica Sets page.
Either way, you should end up on a page like this:

The top section shows the high-level details of the pod, such as name, status,12.
labels, start time, and namespace. One important detail you will find in this
section is the Node that this pod is running on and the IP address of the pod. The
next important screen in the dashboard is the Nodes section. Let's get there by
clicking on the node named minikube. You should see something like this:

Deploying Microservices on Kubernetes

[166]

The screenshot only shows part of the page. The rest of the page will be discussed13.
in the next section. The Details and System Info sections give you a lot of useful
information, such as OS, version information, architecture, and name. Allocated
resources shows the resource allocation for this particular node.

Deploying Microservices on Kubernetes

[167]

From the screenshot, we can say that 0.005 out of 2 CPUs have been used, 50 MB14.
out of 1.955 GB of memory has been used, and 3 out of 110 pods have been
allocated. The maximum number of pods allocated per node is set to 110 due to
several performance reasons. However, this can be changed with the kubelet
configuration max-pods. The remainder of the page shows the various pods that
are available on this node. For our local cluster, you should be able to see three
pods:

As you can see, there are two additional pods: kube-addon-manager-
minikube and kubernetes-dashboard-xk3ih. From the names of these
pods, it is pretty obvious that kube-addon-manager-minikube has the
add-on manager in it and kubernetes-dashboard-xk3ih has the
Kubernetes dashboard itself deployed.

The other two important sections are Namespaces and Persistent Volumes. We15.
will be looking at Persistent Volumes in later recipes in this chapter. Let's take a
look at the Namespace section. Go ahead and click on Namespaces from the left-
hand side menu. You should see something like this:

As you can see, there are two namespaces: default and kube-system.16.
Namespaces are nothing but virtual clusters that are part of the same physical
cluster. The default namespace is where the all our new deployments go, and the
kube-system namespace is where the dashboard and add-on manager are
deployed.

Deploying Microservices on Kubernetes

[168]

All this time, we have been looking at the default namespace. If you would like to17.
look at the deployments, replication controllers, and pods in the kube-system
namespace, use the Namespace dropdown from the left-hand side menu to
choose your namespace.

That's brings us to the end of this recipe. The goal of this recipe is to get you familiar with
the Kubernetes dashboard and its various sections. Kubernetes itself is a vast topic, and it is
strongly recommended that you research it more before you start using it.

Deploying your microservice on Kubernetes
So far in this chapter, we have successfully orchestrated a single node Kubernetes cluster
using Docker, and we have familiarized ourselves with the Kubernetes dashboard. In this
recipe, we will learn how to deploy our geolocation microservice on our Kubernetes cluster.

Getting ready
Deploying a microservice in Kubernetes can be done in several ways. We can use kubectl
to submit our deployment to the Kubernetes cluster. We can also use the dashboard to
create a deployment via the UI. In the previous recipe, we used kubectl to create a
deployment for the echoserver container. In this recipe, let's use the dashboard to deploy
the geolocation microservice in Kubernetes.

Go ahead and open up the Kubernetes dashboard using the minikube command:

 minikube dashboard

How to do it…
To create a new deployment, click on the Create button at the top right of the1.
dashboard. You should see a screen similar to Marathon's New Application
modal. Most of the properties on this screen are very similar to that of
Marathon's, except maybe for the terminologies. So if you are familiar with using
Marathon, you will find this really easy.

Deploying Microservices on Kubernetes

[169]

You will find four major fields:2.
App name
Container name
Number of pods
Service

In order to deploy our geolocation microservice, we just need the app name and3.
container name. We will look at the number of pods and service in later recipes in
this chapter. Go ahead and enter geolocation as the application name and
vikrammurugesan/geolocation:latest as the container name. Please change
the Docker Hub account name from mine to your account name. The latest tag
is optional here, as it defaults to that if you don't provide one.

Deploying Microservices on Kubernetes

[170]

In the preceding screenshot, you can see another option for creating an
application: Upload a YAML or JSON file. This lets you upload your
app configurations in the form of a YAML or JSON file. We will look at
this later in this chapter; for now, we will use the user interface to create
the application.

Go ahead and click on the Deploy button when you are done. You should now4.
see that there is one new application for geolocation and a pod associated with it:

It usually takes a few seconds to a few minutes to deploy your application. Once5.
it is done, the status icons should show a green tick icon, indicating it is running.
Once your pod and replication controller are up and running, you will see that a
new IP has been assigned to your pod. That is the IP we will be using to access
our application. In my case, the IP assigned was 172.17.0.4. So we will be
using this IP in all future references to the pod.

Deploying Microservices on Kubernetes

[171]

Now that our geolocation application is running, let's invoke the GET API of6.
application to make sure we get a 200 response back. Go ahead and issue the
following cURL command in your terminal window:

 curl http://172.17.0.4:8080/geolocation
 curl: (7) Failed to connect to 172.17.0.4 port 8080: Operation
timed out

After a few seconds, your connection should time out. That is because the IP that7.
we have used is an internal IP and cannot be accessed outside our host. In this
case, the host is the minikube VirtualBox VM. Now we clearly know that we still
have some work to do with respect to the ports. And that's what you will be
learning in the next recipe.

But before you jump into the next recipe, if you are curious to know how the same process
can be done using the YAML or JSON file approach, keep reading:

First, delete the replication controller and service for geolocation. Deleting the1.
replication controller will automatically delete the pod and the containers in the
pod. After they have been deleted, we now have to create a YAML file with our
deployment configurations. Open your STS IDE and create a new YAML file
called kube-deployment.yml directly under the geolocation project directory.
Paste the following contents into the file:

 apiVersion: extensions/v1beta1
 kind: Deployment
 metadata:
 name: geolocation
 spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: geolocation
 spec:
 containers:
 - name: geolocation
 image: vikrammurugesan/geolocation:latest
 ports:
 - containerPort: 8080

Deploying Microservices on Kubernetes

[172]

There are a few things to talk about in this file. The apiVersion
property identifies the version of the extensions API that will be
used. The extensions API is a sophisticated API with operations
related to daemon sets, deployments, jobs, and so on.

To read more about the extensions API, visit
http://kubernetes.io/docs/api-reference/extensions/v1beta1/opera

tions.

The kind property identifies the kind of resource we are trying to
create in Kubernetes. Note that here we are creating a Deployment,
rather than replication controller like last time.
The replicas property is set to 1, indicating that we just need one
replica of this deployment. The container name is geolocation and
the image used is vikrammurugesan/geolocation:latest. Please
don't forget to use the image in your Docker Hub account instead of
the author's. Note that we have listed the container port as 8080 in the
ports section, which can later be exposed via a service.
We have added a label with the key app and value geolocation. This
label can be used when you create a service. We will see how to do that
after we deploy the container. Save the file and close your IDE.

http://kubernetes.io/docs/api-reference/extensions/v1beta1/operations
http://kubernetes.io/docs/api-reference/extensions/v1beta1/operations

Deploying Microservices on Kubernetes

[173]

Go ahead and click on the Create button to create a new application. This time,2.
choose Upload a YAML or JSON file. Choose the kube-deployment.yml file
that we just created and hit Deploy:

As you can see, there is a new deployment called geolocation. It also created a3.
pod, replication set, and replication controller. The same thing can be done using
the following kubectl command:

 kubectl create -f kube-deployment.yml

Deploying Microservices on Kubernetes

[174]

This command-line based approach is recommended when you are performing automated
deployments using continuous integration tools such as Jenkins. One thing to note in this
approach is that it will not create a service for you. You have to create the service manually,
either using kubectl or from the dashboard. We will look at how to create a service using
kubectl in the next recipe. The choice of whether to use the dashboard or kubectl
depends completely on your usage. That brings us to the end of this recipe. I hope you now
have a good hold on deploying your applications on Kubernetes. In the next recipe, we will
look at how to configure ports and services.

Configuring ports in Kubernetes
So far in this chapter, we have created our own Kubernetes cluster and deployed our
geolocation microservice on the cluster. But unfortunately, we were not able to access our
microservice because we haven't exposed our ports (in the dashboard method) or created
services (in the kubectl method). In this recipe, we will learn how to map our ports and
create services.

Getting ready
When we deploy our application from the friendly form in the Kubernetes dashboard, we
have some advanced settings that we could utilize to expose ports. Open the dashboard
using the minikube command:

 minikube dashboard

Delete any deployments, replication controllers, or services you already have for
geolocation. You can leave the echoserver container that we created earlier or delete it-it
shouldn't really affect us.

Deploying Microservices on Kubernetes

[175]

How to do it…
Go ahead and create a new application. Enter the application name geolocation1.
and container image vikrammurugesan/geolocation:latest. This time,
configure an internal service with source port 8080, target port 8080, and
protocol TCP. The source port is the port we will use to access the service, and the
target port is the port that needs to be exposed on the container.

Also expand the Advanced Options section to go through the other
options that Kubernetes offers. Scroll down to the CPU section and enter
1 for CPU requirement. Provide the value 512 for Memory
requirement. Once you are done, hit Deploy.

Now, let's verify that a service has been created for this port mapping. If you go2.
to the Services section, you should see a new service called geolocation. Click on
that to take a look at the service details. You should see something like this:

Deploying Microservices on Kubernetes

[176]

If you look at the Connection section, there is this field called Cluster IP. In the3.
screenshot, the Cluster IP is 10.0.0.20. This IP is the one that we should be
using to access our geolocation service on port 8080. Without further ado, let's
open up a terminal. On the terminal, execute the following cURL command:

 curl http://10.0.0.20:8080/geolocation
 curl: (7) Failed to connect to 10.0.0.20 port 8080: Operation timed
out

What happened now? This time, the request timed out because although you4.
have the service configured to perform a port mapping from port 8080 of the
node to the container, we are still trying to access this host from our local
computer. Since this is a Dockerized environment, we will have to run the same
command from inside the minikube VM.
In order to run this command from inside the VM, we need to SSH into the VM.5.
Fortunately, Minikube has the ability to SSH into the minikube VM. On the same
terminal, execute the following command:

 minikube ssh

Deploying Microservices on Kubernetes

[177]

You should get something like this:6.

 ## .
 ## ## ## ==
 ## ## ## ## ## ===
 /"""""""""""""""""___/ ===
          ~~~ {~~ ~~~~ ~~~ ~~~~ ~~~ ~ /  ===- ~~~
               \______ o           __/
                 \    \         __/
                  \____\_______/
     _                 _   ____     _            _
    | |__   ___   ___ | |_|___ \ __| | ___   ___| | _____ _ __
    | '_ \ / _ \ / _ \| __| __) / _` |/ _ \ / __| |/ / _ \ '__| | | | | |
    | |_) | (_) | (_) | |_ / __/ (_| | (_) | (__|   <  __/ |
    |_.__/ \___/ \___/ \__|_____\__,_|\___/ \___|_|\_\___|_|
    Boot2Docker version 1.11.1, build master : 901340f - Fri Jul  1
22:52:19 UTC 2016
    Docker version 1.11.1, build 5604cbe
    docker@minikube:~$

Once you are inside the VM, run the same cURL command again:7.

        curl http://10.0.0.20:8080/geolocation

This time, you should get an empty array ([]) from the server, indicating that8.
there are no geolocations available. We now know how to access our service. But
wait; this is not a scalable solution because we can't log in to the VM each time we
deploy one or more services. We should be able to access our services from our 
local computer. To do that, we need some kind of port forwarding mechanism.
kubectl has port forwarding capability that forwards any request from our local
machine to the pod. If we can get our request to the pod, the service will
automatically take care of sending our request to the right microservice host and
port. Exit from the minikube VM.
Before we can run the kubectl port-forward command, we need to know the9.
name of the pod. We can either get it from the dashboard or use the following
command in your terminal window:

        kubectl get pods

You should get something like this:10.

        NAME  READY  STATUS  RESTARTS  AGE
        geolocation-qr86h  1/1  Running  0  27m
        hello-minikube-2713628163-x6ge3  1/1
        Running  0  1d



Deploying Microservices on Kubernetes

[ 178 ]

Now that we know the pod name, issue the following kubectl command from11.
the same terminal window:

        kubectl port-forward geolocation-qr86
        8085:8080
        Forwarding from 127.0.0.1:8085 -> 8080
        Forwarding from [::1]:8085 -> 8080

In this command, the 8085 on the left-hand side of the colon indicates the port12.
number on our local machine, and 8080 on the right-hand side of the colon
indicates the port number to forward to on the pod. After you execute the
command, it will go to interactive mode and keep listening for any new requests
on port 8085 of your local machine. Any new requests will be forwarded to port
8080 of the pod, and the responses will be sent back to the client.
Now that we have our port forwarding agent and Kubernetes service set up, let's13.
verify that our APIs are accessible from the local machine. Open a new terminal
window and issue the following cURL command to create a new geolocation:

        curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude": -88.144040}' http://localhost:8085/geolocation

This should give you an output similar to the following (pretty-printed for14.
readability):

         {
            "latitude": 41.803488,
            "longitude": -88.14404,
            "userId": "f1196aac-470e-11e6-
             beb8-9e71128cae77",
            "timestamp": 1468203975
         }

With that, we are able to access our geolocation microservice on the Kubernetes15.
cluster from our local machine. The remainder of the recipe will help you create a
service if you would like to use the YAML-file based kubectl create command
to deploy your microservice on Kubernetes. If you prefer using the dashboard UI
to deploy applications, feel free to skip the rest of this recipe and jump to the next
recipe. If you have used the kubectl create command to create your
microservice, it will not create a service for you. You have to manually create it
using kubectl expose command. This is useful when you are automating
deployments or automating integration tests in a continuous integration
environment.



Deploying Microservices on Kubernetes

[ 179 ]

Creating a service using the kubectl command is very simple. All you need to16.
know is your deployment name. In the kube-deployment.yml file, we have set
the deployment name as geolocation, so we will use the same here. Open up a
new terminal and issue the following command:

        kubectl expose deployment/geolocation
        service "geolocation" exposed

Now let's verify that our service has been created. Execute the following17.
command in the same terminal window:

        kubectl get services
        NAME          CLUSTER-IP   EXTERNAL-IP   PORT(S)    AGE
        geolocation   10.0.0.254   <none>        8080/TCP   1m
        kubernetes    10.0.0.1     <none>        443/TCP    1d

As you can see, port 8080 has been exposed by the geolocation service. If you18.
would like to get more information about the service without having to go to the
dashboard, use the following command:

        kubectl describe service/geolocation
        Name:      geolocation
        Namespace:    default
        Labels:    app=geolocation
        Selector:    app=geolocation
        Type:      ClusterIP
        IP:      10.0.0.254
        Port:      <unset>  8080/TCP
        Endpoints:    172.17.0.4:8080
        Session Affinity:  None
        No events.

From the preceding console output, we can see that the ClusterIP is 10.0.0.254,19.
and there is one endpoint exposed by this service at 172.17.0.4:8080. If you
are in a Dockerized environment, as we discussed earlier in this recipe, you will
have to perform a port forwarding using the kubectl port-forward
command.

That brings us to the end of this recipe. We have successfully deployed our geolocation
microservice and exposed its endpoints so that it can be accessed from outside. In the
following recipes, we will look at how to configure volumes and environment variables
using the dashboard UI.



Deploying Microservices on Kubernetes

[ 180 ]

Configuring volumes in Kubernetes
Volumes are handled very differently in Kubernetes compared to Apache Mesos. In fact,
Kubernetes persistent volumes support Azure, vCloud, and AWS. Kubernetes also supports
Ceph, Flocker, Gluster FS, and even Git. This extensive support opens up opportunities for
storing your data on the cloud and also enables easy backups.

To take a look at the complete set of supported volumes, go to
http://kubernetes.io/docs/user-guide/volumes/#types-of-volumes.

Getting ready
In this recipe, we will learn how to map the volume where our data files are stored in the
geolocation microservice.

First, delete any deployments, replication controllers, port forwards, or services1.
that you already have for geolocation. You can leave the echoserver container
that we created earlier or delete it. It shouldn't really affect us. Also, always delete
the service first and the replication controller afterward. If you try to delete the
pod or container, it will be recreated by the replication controller to make sure at
least one replica of your pod and container is available (as our replication factor
is 1).
Before we jump into the recipe, you have to learn how Kubernetes handles2.
volumes. There are two concepts: persistent volumes and persistent volume
claims.

A persistent volume is just a storage provisioned on the cluster
network by the cluster administrator. The cluster administrator can be
someone in your organization responsible for the Kubernetes cluster's
infrastructure and availability.
Unlike Mesos, where you map a volume directly from the container to
the host machine, here in Kubernetes, you have to create a persistent
volume first and create a persistent volume claim, which is nothing but
a request made by the pod for storage on the cluster.

http://kubernetes.io/docs/user-guide/volumes/#types-of-volumes


Deploying Microservices on Kubernetes

[ 181 ]

It is highly recommended that you read
http://kubernetes.io/docs/user-guide/persistent-volumes before
you start using volumes on Kubernetes, as the process is not straight-
forward.

In our recipe, for simplicity, we will be creating a hostPath volume and will be3.
mapping it to the data directory of the geolocation microservice. If you remember
from Chapter 3, Deploying Microservices on Mesos, we persisted our geolocations
in the form of JSON files in the data directory at
/opt/packt/geolocation/data. The hostPath volume is mostly used when
you would like to expose something on the host machine, for example, Docker
internals, shared folders, and config directories.

How to do it…
In this recipe, we will be deploying our microservice a little differently from the previous
methods. So far, we have created replication controllers and deployments both from the UI
and using kubectl. In this recipe, we will be creating a pod using kubectl. The reason we
are creating a pod is that we will also be creating our hostPath volume along with the pod.

Open your STS IDE and go to the geolocation project. Create a new YAML file1.
called kube-pod.yml, and paste the following contents in it:

          apiVersion: v1
          kind: Pod
          metadata:
            name: geolocation
          spec:
            containers:
            - image: vikrammurugesan/geolocation:latest
              name: geolocation
              ports:
              - containerPort: 8080
              volumeMounts:
               - mountPath: /opt/packt/geolocation/data
                 name: geodata
            volumes:
              - name: geodata
                hostPath:
                  path: /opt/packt/geolocation/data

http://kubernetes.io/docs/user-guide/persistent-volumes


Deploying Microservices on Kubernetes

[ 182 ]

There are few things to take a look at here in the YAML file. The API version we2.
are using is v1. The kind of entity we are creating is Pod. The name of the pod is
geolocation. The pod has one container with the name geolocation. It uses
the vikrammurugesan/geolocation:latest image, and the container port for
this container is 8080. The pod has one volume called geodata. The volume
geodata is of type hostPath, and the path in the host is
/opt/packt/geolocation/data. The geolocation container has one volume
mapping for the /opt/packt/geolocation/data container path on the volume
that matches the name geodata which is the hostPath volume.
Go ahead and create a new pod using the following kubectl create command:3.

        kubectl create -f kube-pod.yml
        pod "geolocation" created

Now let's make sure our pod is up and running. To verify its status, issue the4.
following command on the terminal:

        kubectl get pods
        NAME                            READY     STATUS     RESTARTS   AGE
        geolocation                     0/1      ContainerCreating 0    5m
        hello-minikube-2713628163-x6ge3 1/1   Running        1          5d

As you can see, the geolocation pod is in the ContainerCreating state,5.
which means it is in the process of pulling and starting the container. It may take
a few seconds for your pod to go into the Running state.



Deploying Microservices on Kubernetes

[ 183 ]

You can always take a look at your pod in the Kubernetes dashboard as well.6.
Once the pod is created, look at the details of the geolocation pod in the
dashboard. You should see something like this:

The next step is setting up port forwarding using kubectl. Use the following7.
command to setup port forwarding:

        kubectl port-forward geolocation 8085:8080

Now that you know your pod and container are up and running, let's send a8.
couple of geolocations to the POST API. Use the following two curl commands
to create geolocations:

        curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude": -88.144040}' http://localhost:8085/geolocation

This should give you an output similar to the following (pretty-printed for9.
readability):

        {
          "latitude": 41.803488,
          "longitude": -88.14404,
          "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",



Deploying Microservices on Kubernetes

[ 184 ]

          "timestamp": 1468203975
        }
        curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203976, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
9.568012, "longitude": 77.962444}' http://localhost:8085/geolocation

This should give you an output like this (pretty-printed for readability):10.

        {
          "latitude": 9.568012,
          "longitude": 77.962444,
          "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
          "timestamp": 1468203975
        }

Now let's verify whether the files we created are available on the host machine.11.
But the question here is this: which one is the host machine? Since we are using a
Dockerized environment, the host machine will be the minikube VirtualBox VM.
To check whether the files are available in the VM, we have to SSH into the VM
first. To do that, let's use the minikubessh command:

        minikube ssh

You should get something like this:12.

                            ##         .
                      ## ## ##        ==
                   ## ## ## ## ##    ===
               /"""""""""""""""""\___/ ===
          ~~~ {~~ ~~~~ ~~~ ~~~~ ~~~ ~ /  ===- ~~~
 ______ o __/
 \ \ __/
 ___________/
 _ _ ____ _ _
 | |__ ___ ___ | |_|___ \ __| | ___ ___| | _____ _ __
 | '_ \ / _ \ / _ \| __| __) / _` |/ _ \ / __| |/ / _ \ '__| | | | | |
 | |_) | (_) | (_) | |_ / __/ (_| | (_) | (__| < __/ |
 |_.__/ ___/ ___/ __|_______,_|___/ ___|_|____|_|
 Boot2Docker version 1.11.1, build master : 901340f - Fri Jul 1
22:52:19 UTC 2016
 Docker version 1.11.1, build 5604cbe
 docker@minikube:~$

Deploying Microservices on Kubernetes

[185]

Once you are inside the VM, execute the following ls command to check whether13.
the files have been created successfully:

 ls -ls /opt/packt/geolocation/data

You should get something like this:14.

We have successfully configured volume mappings on Kubernetes using the hostPath
method. Though this is one of the simplest configurations you can achieve with Kubernetes,
the idea here is to give you an introduction to the abilities of Kubernetes when it comes to
Microservice deployments. In production scenarios, it is more ideal to use Azure, AWS, or
vCloud, based on your stack.

Before we move on to the next recipe, let's delete our pod using the following command:

 kubectl delete pod/geolocation
 pod "geolocation" deleted

That brings us to the end of this recipe. In the next recipe, we will look at how to configure
environment variables in Kubernetes.

Configuring environment variables in
Kubernetes
In the previous chapter, we used Marathon to add an environment variable for the
geolocation data directory path, which will in turn be used by the application to locate
the data directory. In this recipe, we will learn how to use the Kubernetes dashboard as well
as kubectl to configure the same environment variable.

Deploying Microservices on Kubernetes

[186]

Getting ready
First, delete any replication controllers, services, port forwards or pods that were created in
the previous recipe. You can leave the echoserver up and running; it should not affect
anything. There are two ways you might want to add environment variables to your
container: from the dashboard UI or from the command line using kubectl.

We will look at the dashboard UI first. If you don't have the dashboard up and running,
issue the following command to open up the Kubernetes dashboard:

 minikube dashboard

How to do it…
Once the dashboard is up, click on the Create button to deploy our microservice.1.
Let's use the friendly form to deploy the microservice. Use the following
configurations:

App name: geolocation
Container image: vikrammurugesan/geolocation:latest
Number of pods: 1
Service: Internal
Port: 8080
Target port: 8080
Protocol: TCP
CPU requirement (cores): 1
Memory requirement (MiB): 512
Environment Variables
Name: GEOLOCATION_DATA_FILES_DIR
Value: /opt/packt/geolocation/data

Deploying Microservices on Kubernetes

[187]

Take a look at the Environment Variables section. We have added the2.
GEOLOCATION_DATA_FILES_DIR variable with the value
/opt/packt/geolocation/data:

Keep in mind that the Environment Variables section will be buried
under the advanced options at the bottom.

Once you have entered all the values, click on Deploy to deploy the microservice.3.
It takes a few seconds for your pod and replication controller to get to the
Running state.
That's it! The geolocation microservice should now use the new environment4.
variable to locate the data directory inside the container. The next step is to check
whether the geolocation microservice is using our newly created environment
variable.
In order to verify the working of our environment variable, we have to expose5.
port 8080 of the pod to our local machine. Go ahead and issue the following
command in your terminal window:

 kubectl port-forward geolocation-qr86 8080:8080
 Forwarding from 127.0.0.1:8080 -> 8080
 Forwarding from [::1]:8080 -> 8080

Deploying Microservices on Kubernetes

[188]

In this command, the name of the pod was geolocation-qr86. If the name of6.
your pod is different, use that. Otherwise, you will get an error message from
kubectl saying that a pod with the given name is not available. Now that your
service is listening on port 8080 of localhost, open a new terminal window.
Execute the following two curl commands one by one:

 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude": -88.144040}' http://localhost:8080/geolocation

This should give you an output similar to the following (pretty-printed for7.
readability):

 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }
 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203976, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
9.568012, "longitude": 77.962444}' http://localhost:8080/geolocation

This should give you an output like the following (pretty-printed for readability):8.

 {
 "latitude": 9.568012,
 "longitude": 77.962444,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

Now let's validate whether the files have been created using a simple docker9.
exec command. You can find the ID of the geolocation container using the
docker ps command. In the same terminal window, execute the following
Docker command:

 docker exec 9ae486e3d63a ls /opt/packt/geolocation/data
 userf1196aac-470e-11e6-beb8-9e71128cae77_t1468203975
 userf1196aac-470e-11e6-beb8-9e71128cae77_t1468203976

Yay! Our data files have been created at the location that was passed in
the GEOLOCATION_DATA_FILES_DIR environment variable.

Deploying Microservices on Kubernetes

[189]

Now let's take a look at how to configure environment variables using kubectl10.
and a YAML file. Before we move on, delete the replication controller and the
services that we created.
Now, open the kube-pod.yml file that we created in the previous recipe in STS.11.
Add the following section to the geolocation container section in the YAML file.
Remember to be careful when you work with YAML files, as it does not accept
tab spaces. Instead of tab spaces, use blank spaces:

 env:
 - name: GEOLOCATION_DATA_FILES_DIR
 value: "/opt/packt/geolocation/data"

After you have added the environment variables, your final YAML file will look12.
like this:

 apiVersion: v1
 kind: pod
 metadata:
 name: geolocation
 spec:
 containers:
 - image: vikrammurugesan/geolocation:latest
 name: geolocation
 ports:
 - containerPort: 8080
 volumeMounts:
 - mountPath: /opt/packt/geolocation/data
 name: geodata
 env:
 - name: GEOLOCATION_DATA_FILES_DIR
 value: "/opt/packt/geolocation/data"
 volumes:
 - name: geodata
 hostPath:
 path: /opt/packt/geolocation/data

Spin off the pod using kubectl from any terminal window, using the following13.
command:

 kubectl create -f kube-pod.yml
 pod "geolocation" created

Now you can verify whether the environment variable was created by posting14.
some geolocations to the API and checking the contents of the
/opt/packt/geolocation/data directory in the minikube VirtualBox VM.

Deploying Microservices on Kubernetes

[190]

Scaling your microservice in Kubernetes
If you read the previous chapter, you will know how important being able to scale
microservices is. Scaling is a significant feature for any clustering framework because with
the increasing usage of containers, users prefer simpler methods to scale their containers.
Like Marathon, Kubernetes' dashboard can be used to easily scale containers up and down.
In this recipe, we will be using the Kubernetes dashboard to scale up and scale down the
geolocation microservice.

Getting ready
Open up the Kubernetes dashboard if you already have your cluster running. If not, use
Minikube to start the cluster and open the dashboard. Make sure there are no instances of
the geolocation container running on your Kubernetes cluster. If you have any instance of
geolocation running, delete the replication controllers, services, and pods.

How to do it…
Click on the Create button and fill out the friendly form with the following1.
information:

App name: geolocation
Container image: vikrammurugesan/geolocation:latest
Number of pods: 1
Service: Internal
Port: 8080
Target port: 8080
Protocol: TCP
CPU requirement (cores): 0.5
Memory requirement (MiB): 512
Environment Variables
Name: GEOLOCATION_DATA_FILES_DIR
Value: /opt/packt/geolocation/data

Deploying Microservices on Kubernetes

[191]

There is one significant change in this configuration from our previous
deployments. This time, we have set the CPUs to 0.5. This change is
required to support the number of pods that can run in our Minikube
setup. The default number of CPUs is 2, which has already been used by
our first instance of geolocation, hello-minikube, the dashboard, and
the add-on manager. You could also increase the number of CPUs used
by Minikube by recreating the minikube VM with the --cpu option.
 Go ahead and hit Deploy.

For more information, read
https://GitHub.com/kubernetes/minikube/blob/master/docs/minikube

_start.md.

Note that we have set the number of pods to 1. You must have guessed by now2.
that the number of pods is what that will help us scale our microservice. Now
let's say you would like to increase the number of instances of your application to
2: click on Workloads in the left-hand side menu. From the Replication
controllers section, click on the three dots, and select Scale:

After you click on Scale, you will be prompted to enter the number of pods you3.
would like to scale to. As you can see, you will not be scaling your application
instance in the same pod; rather, Kubernetes lets you scale the number of pods
itself. This is slightly different from how Apache Mesos and Marathon work. But
it makes a lot of sense when it comes to scaling your applications in the
Kubernetes ecosystem. In the modal, enter 2 and hit OK:

https://GitHub.com/kubernetes/minikube/blob/master/docs/minikube_start.md
https://GitHub.com/kubernetes/minikube/blob/master/docs/minikube_start.md

Deploying Microservices on Kubernetes

[192]

Now you should be able to see two pods for geolocation; they start with4.
geolocation-. If you would like to learn more about your pod and the
containers that are running inside it, click on the pod name:

With that, you have successfully scaled your application to a scaling
factor of 2. If your cluster has sufficient resources, you will be able to
easily scale your application to any number of pods.

Deploying Microservices on Kubernetes

[193]

Scaling down an application is very straight-forward and uses the same strategy.5.
Now let's say you would like to down-scale the geolocation application to a
scaling factor of 1. All you have to do is go to the Workloads page, click on the
three dots next to the geolocation replication controller, and click on Scale. In the
scaling modal, enter the scaling factor 1 and hit OK:

As you can see, there is only one instance of the geolocation pod, and
the other one was automatically destroyed. There is no guarantee which
pods will be destroyed and which ones will be retained. That decision is
made by Kubernetes. So it is highly recommended that you don't write
any logic that is very deployment specific. In fact, that is the whole point
of building microservices.

There are other ways to scale your microservice, such as modifying the YAML6.
file from inside the Kubernetes dashboard and using kubectl to change the
replicas property of your deployment. We will take a very quick look at how
you can do it with kubectl, because that is something you might want to do
when automating your deployment process. From your terminal shell, execute
the following kubectl command:

 kubectl scale rc geolocation --replicas=2
 replicationcontroller "geolocation" scaled

Here, rc stands for replication controller. We are requesting kubectl to scale the7.
replica of the geolocation replication controller to 2. Newer versions of
Kubernetes are replacing replication controllers with replica sets. Scaling them is
slightly different from the preceding approach. Now to verify the number of
geolocation pods running, execute the following command in the same terminal:

 kubectl get pods
 NAME READY STATUS RESTARTS AGE
 geolocation-a2xce 1/1 Running 0 42m
 geolocation-l50r2 1/1 Running 0 2m
 hello-minikube-2713628163-x6ge3 1/1 Running 3 11d

Deploying Microservices on Kubernetes

[194]

There are 2 geolocation pods. Scaling down is as simple as using the same8.
command with --replicas set to 1.

 kubectl scale rc geolocation --replicas=1
 replicationcontroller "geolocation" scaled

Now, verify that you have only one instance of the geolocation pod running,9.
using the following command:

 kubectl get pods
 NAME READY STATUS RESTARTS AGE
 geolocation-a2xce 1/1 Running 0 44m
 hello-minikube-2713628163-x6ge3 1/1 Running 3 11d

That brings us to the end of this recipe. In this recipe, we learned how to scale our
application using kubectl as well as the Kubernetes dashboard.

Destroying your microservice in Kubernetes
So far in this chapter, we've learned how to deploy and scale our microservice in a
Kubernetes cluster. There will be scenarios where you would want to destroy your
microservice completely from your cluster, probably because you would like to perform a
clean redeploy. In this recipe, we will learn how to destroy our microservice.

Getting ready
Open up the Kubernetes dashboard if you already have your cluster running. If not, use
Minikube to start the cluster and open the dashboard. Make sure there are no instances of
the geolocation container running on your Kubernetes cluster. If you have any instance of
geolocation running, delete the replication controllers, services, and pods.

How to do it…
To illustrate the destroy functionality, let's deploy the geolocation microservice1.
first. Use the friendly form and enter the following configurations to create your
microservice:

App name: geolocation
Container image: vikrammurugesan/geolocation:latest

Deploying Microservices on Kubernetes

[195]

Number of pods: 1
Service: Internal
Port: 8080
Target port: 8080
Protocol: TCP
CPU requirement (cores): 0.5
Memory requirement (MiB): 512
Environment Variables
Name: GEOLOCATION_DATA_FILES_DIR
Value: /opt/packt/geolocation/data

Go ahead and hit Deploy. After your pod and replication controller are up and2.
running, click on the three dots next to the geolocation replication controller.
Then, choose Delete from the popup menu:

If you are asked for confirmation, click on OK. After a few seconds, you will3.
notice that the replication controller and the pod will be destroyed successfully.
At the time of writing this, I was using a version of the dashboard that needed a
manual refresh to view the status of the pod and replication controller.
Also, if you go to the Services section, you will see that the geolocation service is4.
still running. Go ahead and delete the service from the dashboard.
You can also do the same thing using the kubectl command when you are5.
automating deployments using tools such as Jenkins or Hudson. Before we try
our kubectl command, create the microservice again using the Kubernetes
dashboard. After your service is up and running, issue the following command in
a terminal window:

 kubectl delete rc geolocation
 replicationcontroller "geolocation" deleted

Deploying Microservices on Kubernetes

[196]

After a few seconds, if you refresh your dashboard page, you will see that the6.
geolocation replication controller and pod have been successfully deleted. The
geolocation service will still be up and running. In order to delete it, execute the
following command from the same terminal window:

 kubectl delete service geolocation
 service "geolocation" deleted

Now go back to your dashboard and make sure the geolocation service has been
successfully deleted.

That brings us to the end of this recipe, where we learned how to delete our replication
controllers, pods, and services using the Kubernetes dashboard as well as kubectl.

In most automation scenarios where you are trying to automate your
deployments to a Kubernetes cluster, you would want to interact with
Kubernetes' REST API. Fortunately, Kubernetes provides a sophisticated
REST API to perform all the operations we have seen so far in this chapter.
The documentation for the REST API is available here
at http://kubernetes.io/docs/api.

Monitoring your microservice logs in
Kubernetes
One of the most important features that will be helpful after your microservices are
deployed to a cluster is being able to monitor the logs of your application. In this recipe,
you will learn how to monitor the logs of your application from the Kubernetes dashboard
as well as kubectl.

Getting ready
Open up the Kubernetes dashboard if you already have your cluster running. If not, use
Minikube to start the cluster and open the dashboard. Make sure there are no instances of
the geolocation container running on your Kubernetes cluster. If you have any instance of
geolocation running, delete the replication controllers, services, and pods.

http://kubernetes.io/docs/api

Deploying Microservices on Kubernetes

[197]

How to do it…
To be able to view the logs, we need our microservice deployed on Kubernetes1.
first. Before that, let's get familiar with viewing the logs from the Kubernetes
dashboard. Open it up. Use the friendly form and enter the following
configurations to create your microservice:

App name: geolocation
Container image: vikrammurugesan/geolocation:latest
Number of pods: 1
Service: Internal
Port: 8080
Target port: 8080
Protocol: TCP
CPU requirement (cores): 0.5
Memory requirement (MiB): 512
Environment Variables
Name: GEOLOCATION_DATA_FILES_DIR
Value: /opt/packt/geolocation/data

Go ahead and hit Deploy. Once your application is up and running, click on the2.
icon with four stripes next to the geolocation pod from the dashboard. This icon
indicates the logs button, which will tail the logs from any container in that pod:

Deploying Microservices on Kubernetes

[198]

After you click on the icon, you will be shown a screen that looks very similar to3.
your terminal shell. You should see something like this:

There are a few useful options in this terminal. From the dropdown in
the top section, you will be able to choose the pod of your choice and
view the logs for that pod. In our case, there is only one pod in the
replication controller, so if you click on that dropdown, you will be able
to see only one option. The icon that says A is used to toggle the font
color and background color of your terminal. The Tt icon next to the A
icon is used to toggle between two font sizes. These two options are
particularly useful when you have a lot of useful logs that you would
like to monitor as part of your debugging process.

Deploying Microservices on Kubernetes

[199]

This screenshot shows how the terminal will look like when you toggle the font4.
color and font size:

You will also be able to view the same logs from the Containers section under the5.
pod details. Go ahead and click on the pod name and then the View Logs
hyperlink in the geolocation container. This should take you to a log page like
the one we saw earlier:

Deploying Microservices on Kubernetes

[200]

The next useful tip is being able to view the logs using kubectl. It is very simple6.
to view the logs using kubectl. First, we need the pod name. Open a terminal
window and execute the following command:

 kubectl get pods
 NAME READY STATUS RESTARTS AGE
 geolocation-f0yk2 1/1 Running 0 26m
 hello-minikube-2713628163-x6ge3 1/1 Running 3 11d

Now that we have our pod named geolocation-f0yk2, issue the following7.
command in the same terminal:

 kubectl logs -f geolocation-f0yk2

The -f option says that you want to follow the logs or, in simpler terms, it will let8.
you tail the logs. You should see something like this:

Deploying Microservices on Kubernetes

[201]

This is very similar to the docker logs command, right? There are a few more9.
options that you can use with the kubectl logs command, for example, you
can tail logs for the past few minutes or hours, and you can tail just a few lines of
logs.

To learn more about these options, read more at
http://kubernetes.io/docs/user-guide/kubectl/kubectl_logs.

That's it! That brings us to the end of this chapter. It gave you a quick overview of the
Kubernetes cluster and how to use it locally. In production deployments, there are a lot
many considerations and design decisions that you might want to think about. As that is
completely out of scope for our book, we will not be talking about those. However, it is
strongly recommended that you read more about Kubernetes before starting to
“productionalize” your deployments using Kubernetes.

http://kubernetes.io/docs/user-guide/kubectl/kubectl_logs

5
Service Discovery and Load

Balancing Microservices
In this chapter, you will learn how to implement service discovery and load balancing in
microservices using Zookeeper and Consul. We will cover the following recipes:

Setting up Zookeeper using Docker
Load-balancing microservices using Zookeeper
Setting up Consul using Docker
Implementing service discovery using Spring Cloud Consul
Load-balancing your microservice using Spring Cloud Consul
Load-balancing your microservices using Nginx and Consul
Load-balancing your microservice using Marathon LB

Introduction
When you break down your monolithic application to several focused microservices, you
will have to find an efficient way to locate your services; moreover, services will have to
communicate with each other. That is exactly what service discovery is all about. Now let's
say you figured out a way to locate them: what happens to those services that are scaled to
a factor greater than one? You have to efficiently load-balance them. This is another
problem that this chapter intends to solve.

Service Discovery and Load Balancing Microservices

[203]

Setting up Zookeeper using Docker
In Chapter 3, Deploying Microservices on Mesos, we learned a little bit about Zookeeper. To
keep it very simple, Zookeeper is a cluster-management tool that is mainly used for storing
your cluster configurations. Zookeeper is used by several Apache big data projects such as
Mesos, Kafka, and Bookkeeper. In this chapter, we will see how we can use Zookeeper to
store our microservice configurations and later use them to perform load-balancing. This
recipe will show you how to start Zookeeper and Exhibitor using Docker. Exhibitor is a
management interface for Zookeeper. In addition to providing a web interface to manage
Zookeeper, it also performs log file cleanups and backups. We will be using the Exhibitor
web interface to verify that our service was registered on Zookeeper.

Getting ready
We now know that we need two components:1.

Zookeeper
Exhibitor

They could either be two individual containers linked together via
docker-compose or could coexist in the same container.

We will be using an existing image that has both Zookeeper and Exhibitor2.
coexisting in the same image.
We will be creating a docker-compose.yml file just for Zookeeper and3.
Exhibitor.
The reason we use Docker Compose even when there is just one container is for4.
grouping purposes. I always like keeping my containers grouped together in
Compose files so that in case you need to add a new dependent container in the
future, it will be easy to add it. It also helps in versioning. On top of that, you get
to use the sophisticated Docker Compose command-line features.
Go ahead and open your STS IDE.5.

Service Discovery and Load Balancing Microservices

[204]

How to do it…
Create a new file called docker-compose-zk.yml in the geolocation project.1.
Add the following snippet to the newly created Docker compose file:

 version: "2"
 services:
 zookeeper:
 image: mbabineau/zookeeper-exhibitor:latest
 ports:
 - "8181:8181"
 - "2181:2181"

As you can see, we are using the image called mbabineau/zookeeper-
exhibitor, and we are using the latest tag of this image. This image
comes with Zookeeper and Exhibitor by default. There are tons of other
images that you can use if you prefer to use them. You can also create
your own image with Zookeeper and Exhibitor in it or put Zookeeper
and Exhibitor in their own images and link them using docker-
compose. For simplicity, we are using this image as it comes out of the
box with all the components we need. We have exposed two ports, 2181
and 8181. 2181 is the port exposed by Zookeeper that we will be using
in our code to connect to it. Port 8181 is where the Exhibitor web
interface will be listening. So we need these two ports to be exposed
from these containers. Also, as you can see, these ports are mapped to
the same port number on the host.

Without any delay, let's spin off Zookeeper and Exhibitor. Open up a terminal2.
shell and issue the following command:

 docker-compose -f docker-compose-zk.yml up

Service Discovery and Load Balancing Microservices

[205]

As you can see, we are passing the Docker Compose YML file name as an3.
argument as we are not using the default docker-compose.yml filename. It
usually takes a few seconds to few minutes to start up Exhibitor and Zookeeper
completely. Exhibitor may be up in a few seconds, but Zookeeper takes a few
seconds to a couple of minutes. So wait for both of them to be up and running.
You can verify that Zookeeper has started if you see something like this in your
console:

After you know that both Zookeeper and Exhibitor are up and running, open up4.
a new browser tab. Enter this URL to open the Exhibitor web interface:
http://192.168.99.100:8181/exhibitor/v1/ui/index.html. You should
see the Exhibitor home page, which shows the list of instances that are currently
running:

Service Discovery and Load Balancing Microservices

[206]

Now move on to the Explorer tab. You should see a tree that lists all the5.
registered services. If you are able to see Zookeeper as shown in the next
screenshot, Exhibitor is properly configured to work with our Zookeeper
instance:

That brings us to the end of this recipe. We now have a functional Zookeeper and Exhibitor
instance. In the next recipe, we will utilize these servers to load-balance the geolocation
microservice.

Load balancing microservices using
Zookeeper
In the previous recipe, we orchestrated a Zookeeper instance along with an Exhibitor
instance. In this recipe, we will utilize these instances to load-balance the geolocation
microservice. We will be spinning off two instances of the geolocation microservice and see
how we can use Zookeeper and the Curator API to perform round-robin style load
balancing on the HTTP endpoints exposed by the geolocation microservice.

Service Discovery and Load Balancing Microservices

[207]

Load-balancing HTTP-based microservices is a significant step towards onboarding your
microservice to a cluster such as Mesos or Kubernetes. Scalability will not have any value
unless you figure out a way to load-balance your microservices. Zookeeper is just one way
to do this; with the tools currently available, there are several ways to do this: using
frameworks such as Consul and Marathon LB (Mesos/Marathon specific). In fact, there are
libraries that even let you perform load-balancing on the client side. We will be looking at
Consul and Marathon LB later in this chapter.

Getting ready
Implementing a load balancer using Zookeeper and the Curator API involves two steps.
Let's look at them one by one:

Register the geolocation microservice in Zookeeper: In this step, the geolocation1.
microservice will be configured to register itself in Zookeeper with the host and
port information of the HTTP API.
Implement load balancer: In this step, we will be creating a new load balancer2.
microservice that will look up the geolocation configs from Zookeeper and use
them to proxy the HTTP requests.

How to do it…
Let's take a look at the first step: registering the geolocation microservice in Zookeeper. This
step says that as and when a new instance of the geolocation service starts, it should register
itself on the Zookeeper instance. Registering the service is not just adding the service on
Zookeeper, but also storing any config information about the geolocation service. In this
case, it will make more sense to store the hostname and port on which the service is
listening on as config information.

In this recipe, we will be relying on the Curator API to implement service discovery.
Curator is a sophisticated Java library for Zookeeper that helps you work with any
Zookeeper cluster. It has several libraries, such as client, framework, RPC, and discovery. In
our application, we will require the framework and discovery libraries.

Service Discovery and Load Balancing Microservices

[208]

Without further ado, let's add these two dependencies to the pom.xml file of the1.
geolocation project:

 <dependency>
 <groupId>org.apache.curator</groupId>
 <artifactId>curator-framework</artifactId>
 <version>2.11.0</version>
 </dependency>

 <dependency>
 <groupId>org.apache.curator</groupId>
 <artifactId>curator-x-discovery</artifactId>
 <version>2.11.0</version>
 </dependency>

The version 2.11.0 works with the version of Zookeeper that we are
using. Usually if you don't use the right version of Curator, your code
will not be able to connect to Zookeeper.

Go ahead and perform a Maven update on the geolocation project so that Maven2.
downloads the required dependencies. Next, let's create a new class that will
register the geolocation service in Zookeeper. Create a new Java class with the
name com.packt.microservices.geolocation.Zookeeper.java. In order
to connect to Zookeeper, we need to know the host and port on which it is
running. So let's define host and port as members of this class:

 package com.packt.microservices.geolocation;

 public class Zookeeper {

 private String host;
 private int port;

 public Zookeeper(String host, int port) {
 this.host = host;
 this.port = port;
 }

 public void register() {
 }
 }

Service Discovery and Load Balancing Microservices

[209]

As you can see, we have also created a constructor to instantiate this class. If you3.
are a Spring fan, you can create this as a Spring bean too. There is also an empty
register() method that we will be later using to register this service in
Zookeeper. Before we start implementing the register() method, let's decide
where to invoke this method. Since our app is a Spring Boot application, it would
be a good idea to invoke this method from the main method of the
GeolocationApplication.java class. Go ahead and invoke the register()
method as the last line of the main method in GeolocationApplication.java.
The GeolocationApplication.java class will now look like this:

 package com.packt.microservices.geolocation;

 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.
 SpringBootApplication;

 @SpringBootApplication
 public class GeoLocationApplication {

 public static void main(String[] args) {
 SpringApplication.run(GeoLocationApplication.class,
 args);
 new Zookeeper("192.168.99.100", 2181).register();
 }
 }

As you can see, we have hard-coded the Zookeeper host and port number as4.
192.168.99.100 and 2181, respectively. To make your microservice more
configurable, these two arguments can be passed as environment variables to the
Docker container and I'll leave that as an exercise for you to try.
Now let's implement the remaining pieces in the Zookeeper.java class. There is5.
one more thing we need to do before we implement the register() method.
Yes, you are right: we need the hostname and port number on which the
geolocation microservice is running, because they (at least the host) will be
different for different containers. Let's first handle the hostname part of it. Go
ahead and add the following method to the Zookeeper.java class:

Service Discovery and Load Balancing Microservices

[210]

 private String getIp() {
 try {
 return InetAddress.getLocalHost().getHostAddress();
 } catch (UnknownHostException e) {
 System.err.println("Error while finding local IP. Using
 localhost for now. Details: " + e.getMessage());
 e.printStackTrace();
 return "localhost";
 }
 }

Here, we are using the InetAddress class to get the local IP of the
machine on which this service is running. If it throws an
UnknownHostException, we are defaulting the hostname to
localhost. Though this is not a great implementation, the goal of this
recipe is to give you an idea of how you can use Zookeeper for load-
balancing, so this implementation will work for now.

The next configuration we need is the port number on which the application is6.
running. This is a little tricky because Spring Boot defaults the port number of the
in-memory web server to 8080. But if we find a way to use an environment
variable, it would help us drive the port number dynamically, which can then be
passed as a Docker environment variable to our geolocation container. However,
if you know that you will always be using 8080, then you don't have to change
this. If you do have to change ports, fortunately, Spring Boot lets you change the
port number on which the web server starts using a property in the
application.properties file. So create a new properties file called
application.properties in src/main/resources. In the file, drop the
following line:

 server.port=${GEOLOCATION_SERVICE_PORT:8080}

Service Discovery and Load Balancing Microservices

[211]

As you can see, we are deriving the port number from an environment variable7.
called GEOLOCATION_SERVICE_PORT. If the environment variable is not defined,
it is defaulted to 8080. Now let's implement a new method in the
Zookeeper.java class to get this port number. Add the following method to
Zookeeper.java:

 private int getPort() {
 try {
 return Integer.valueOf(System.getenv
 ("GEOLOCATION_SERVICE_PORT"));
 } catch(Exception e) {
 System.err.println("Error while finding service port. Using
default port 8080. Details: " + e.getMessage());
 e.printStackTrace();
 return 8080;
 }
 }

In the getPort() method, we are parsing the port number from the
GEOLOCATION_SERVICE_PORT environment property. If the parsing
fails, we default the port number to 8080. Again, this is not a great
implementation, but it is a good start to implementing load-balancing
using Zookeeper.

With that said, let's add implementation to the register() method. Add the8.
following snippet to the register method:

 public void register() {
 CuratorFramework curator =
 CuratorFrameworkFactory.newClient(host + ":" + port,
 new RetryNTimes(3, 3000));
 curator.start();

 try {
 final ServiceInstance<Object> serviceInstance =
 ServiceInstance.builder() .uriSpec(new UriSpec("
 {scheme}://{address}:{port}"))
 .address(getIp()).port(getPort())
 .name("geolocation")
 .build();

 final ServiceDiscovery<Object> serviceDiscovery =
 ServiceDiscoveryBuilder.builder(Object.class)
 .basePath("com.packt.microservices")
 .client(curator)
 .thisInstance(serviceInstance)

Service Discovery and Load Balancing Microservices

[212]

 .build();

 serviceDiscovery.start();

 Runtime.getRuntime().addShutdownHook(new Thread(() -> {
 try {
 serviceDiscovery.unregisterService(serviceInstance);
 } catch (Exception e) {
 System.err.println("Error while unregistering service
 in Zookeeper. Details: " + e.getMessage());
 e.printStackTrace();
 }
 }));
 } catch (Exception e) {
 System.err.println("Error while registering service in
 Zookeeper. Details: " + e.getMessage());
 e.printStackTrace();
 }
 }

There are four major things happening here. Let's take a look at them one by one:9.

 CuratorFramework curator =
 CuratorFrameworkFactory.newClient(host + ":" + port, new
 RetryNTimes(3, 3000));
 curator.start();

In the preceding line, we connect to Zookeeper and start the CuratorFramework.10.
The host and port properties that are being used in the preceding line are the
hostname and port number of Zookeeper (which were hardcoded to
192.168.99.100 and 2181, respectively). RetryNTimes comes with the Curator
API, and it tries three times to connect to Zookeeper with a 3-second timeout each
time.

 final ServiceInstance<Object>
 serviceInstance =
 ServiceInstance.builder().uriSpec(new
 UriSpec("{scheme}://{address}:
 {port}")).address(getIp())
 .port(getPort())
 .name("geolocation").build();

Service Discovery and Load Balancing Microservices

[213]

The ServiceInstance identifies an instance of our geolocation service in11.
Zookeeper. As you can see, we have also passed the address and port number of
our service using the getIp() and getPort() methods. The name of the service
that will be used for registering and lookup is geolocation:

 final ServiceDiscovery<Object>
 serviceDiscovery=ServiceDiscoveryBuilder
 .builder(Object.class)
 .basePath("com.packt.microservices")
 .client(curator)
 .thisInstance(serviceInstance)
 .build();

 serviceDiscovery.start();

In the preceding snippet, we are registering the geolocation service instance in12.
Zookeeper with the base path com.packt.microservices. In the future, if you
would like to group multiple services, you could still use the same basePath but
different service names.

 Runtime.getRuntime().addShutdownHook(new Thread(() -> {
 try {
 serviceDiscovery.unregisterService(serviceInstance);
 } catch (Exception e) {
 System.err.println("Error while unregistering service in
Zookeeper. Details: " +
 e.getMessage());
 e.printStackTrace();
 }
 }));

In the preceding snippet, we are adding a shutdown hook to unregister the13.
geolocation service when the microservice shuts down. This is strongly
recommended in order to clean up Zookeeper so that you don't have stale
services registered in Zookeeper.

Service Discovery and Load Balancing Microservices

[214]

After these modifications, the Zookeeper.java class should look something like14.
this:

 package com.packt.microservices.geolocation;
 import java.net.InetAddress;
 import java.net.UnknownHostException;

 import org.apache.curator.framework.CuratorFramework;
 import org.apache.curator.framework.CuratorFrameworkFactory;
 import org.apache.curator.retry.RetryNTimes;
 import org.apache.curator.x.discovery.ServiceDiscovery;
 import org.apache.curator.x.discovery.ServiceDiscoveryBuilder;
 import org.apache.curator.x.discovery.ServiceInstance;
 import org.apache.curator.x.discovery.UriSpec;

 public class Zookeeper {

 private String host;
 private int port;

 public Zookeeper(String host, int port) {
 this.host = host;
 this.port = port;
 }

 public void register() {
 CuratorFramework curator =
CuratorFrameworkFactory.newClient(host + ":"
 + port, new RetryNTimes(3, 3000));
 curator.start();

 try {
 final ServiceInstance<Object> serviceInstance =
ServiceInstance.builder()
 .uriSpec(new UriSpec("{scheme}://{address}:{port}"))
 .address(getIp())
 .port(getPort())
 .name("geolocation")
 .build();

 final ServiceDiscovery<Object> serviceDiscovery =
 ServiceDiscoveryBuilder.builder(Object.class)
 .basePath("com.packt.microservices")
 .client(curator)
 .thisInstance(serviceInstance)
 .build();

 serviceDiscovery.start();

Service Discovery and Load Balancing Microservices

[215]

 Runtime.getRuntime().addShutdownHook(new
 Thread(() -> {
 try {
 serviceDiscovery.unregisterService
 (serviceInstance);
 } catch (Exception e) {
 System.err.println("Error while
 unregistering servicein Zookeeper. Details: " +
 e.getMessage());
 e.printStackTrace();
 }
 }));
 } catch (Exception e) {
 System.err.println("Error while registering
 service in Zookeeper. Details: " + e.getMessage());
 e.printStackTrace();
 }
 }

 private String getIp() {
 try {
 return InetAddress.getLocalHost().getHostAddress();
 } catch (UnknownHostException e) {
 System.err.println("Error while finding local
 IP. Using localhost for now. Details: " +
 e.getMessage());
 e.printStackTrace();
 return "localhost";
 }
 }
 private int getPort() {
 try {
 return Integer.valueOf(System.getenv
 ("GEOLOCATION_SERVICE_PORT"));
 } catch(Exception e) {
 System.err.println("Error while finding service
 port. Using default port 8080. Details: " +
 e.getMessage());
 e.printStackTrace();
 return 8080;
 }
 }
 }

Service Discovery and Load Balancing Microservices

[216]

Now that our microservice is ready to work with Zookeeper, let's spin off two15.
instances of the geolocation service and verify that they register successfully on
Zookeeper. But before that, let's build a new image and push it to Docker Hub.
Go ahead and build your project using the mvn clean package command. This16.
should create a new geolocation-0.0.1-SNAPSHOT.jar artifact in the target
directory.
Before we build the new image, let's remove the existing image. To do so, run the17.
following command:

 docker rmi vikrammurugesan/geolocation

To build our image, issue the following command on your terminal:18.

 docker build -t vikrammurugesan/geolocation .

Make sure you use your account name instead of mine in the preceding1Ɲ.
commands. After your image has been built, push your Docker image to Docker
Hub using the following command. You might be asked to login to your Docker
Hub account if you haven't already done so.

 docker push vikrammurugesan/geolocation

Again, make sure you use your account name instead of mine. After the imageƖƔ.
has been uploaded successfully, go to Docker Hub and verify that the Last
Updated time of your image is something more recent. Now that our image is
ready to use, open up two terminals and spin off two instances of the
geolocation microservice:

 docker run vikrammurugesan/geolocation

While you start the microservice, if you see a stack trace that says there is aƖƕ.
NullPointerException in the getIp() method, it's because we did not pass
the GEOLOCATION_SERVICE_PORT port number property to either of the
containers. You can ignore as our service will use 8080 by default.

Service Discovery and Load Balancing Microservices

[217]

After both your geolocation services have started, open up the Exhibitor UI usingƖƖ.
the URL http://192.168.99.100:8181/exhibitor/v1/ui/index.html,
and navigate to the Explorer tab. Now you should see a new item called
com.packt.microservices, and you should see geolocation under it. If you
expand geolocation, you should see two instances with their own unique
identifiers:

If you want to explore further, click on any of the instances and look at its detailsƖƗ.
at the bottom of the page. You should be able to see the service name, ID, host,
port number, and other configurations of this service under the Data as String
section:

This brings us to the end of the first part of our recipe: registering the geolocation
microservice in Zookeeper.

Now let's take a look at building our Zookeeper-based load balancer. The load balancer will
be another Spring Boot microservice that will proxy requests over to the geolocation
microservices in a round-robin fashion. In order to achieve this behavior, we need the exact
same APIs on the load balancer microservice.

Service Discovery and Load Balancing Microservices

[218]

Go ahead and create a new Maven JAR project called geolocation-zk-lb with1.
the groupId set to com.packt.microservices and artifactId set to
geolocation-zk-lb. As this is a Spring Boot project, add spring-boot-
starter-parent as the parent module:

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.6.RELEASE</version>
 </parent>

We will need two Maven plugins for this module: maven-compiler-plugin2.
and spring-boot-maven-plugin. Add the snippet to your pom.xml file:

 <properties>
 <start-class>com.packt.microservices.
 geolocation.lb.GeolocationZkLoadBalancer</start-class>
 </properties>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <mainClass>${start-class}</mainClass>
 </configuration>
 </plugin>
 </plugins>
 </build>

Service Discovery and Load Balancing Microservices

[219]

You should already be familiar with the preceding code snippet as we already3.
created a microservice using Spring Boot in the first chapter. Now let's add the
following three dependencies, which you are already familiar with:

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.apache.curator</groupId>
 <artifactId>curator-framework</artifactId>
 <version>2.11.0</version>
 </dependency>

 <dependency>
 <groupId>org.apache.curator</groupId>
 <artifactId>curator-x-discovery</artifactId>
 <version>2.11.0</version>
 </dependency>
 </dependencies>

Perform a Maven update on the project to make sure all required dependencies4.
are resolved. After the build is complete, let's create our Spring Boot application
class,
com.packt.microservices.geolocation.lb.GeolocationZkLoadBalance

r.java:

 package com.packt.microservices.geolocation.lb;

 import org.springframework.boot.SpringApplication;
 import
 org.springframework.boot.autoconfigure.SpringBootApplication;

 @SpringBootApplication
 public class GeolocationZkLoadBalancer {

 public static void main(String[] args) {
 SpringApplication.run (GeolocationZkLoadBalancer.class,
 args);
 }
 }

Service Discovery and Load Balancing Microservices

[220]

The next step in our load balancer microservice is writing the Zookeeper service-5.
discovery logic that looks up the geolocation service instances from Zookeeper in
a round-robin fashion. To do this, let's create a new class called
com.packt.microservices.geolocation.lb.ZookeeperServiceDiscover

y.java:

 package com.packt.microservices.geolocation.lb;
 import java.net.URI;

 import org.apache.curator.framework.CuratorFramework;
 import org.apache.curator.framework.CuratorFrameworkFactory;
 import org.apache.curator.retry.RetryNTimes;
 import org.apache.curator.x.discovery.ServiceDiscovery;
 import org.apache.curator.x.discovery.ServiceDiscoveryBuilder;
 import org.apache.curator.x.discovery.ServiceProvider;

 public class ZookeeperServiceDiscovery {
 private static ServiceProvider<Object>
 geolocationServiceProvider; private static
 ServiceProvider<Object> getGeolocationServiceProvider()
 throws Exception {
 if(geolocationServiceProvider == null) {
 CuratorFramework curatorFramework =
 CuratorFrameworkFactory.newClient
 ("192.168.99.100:2181", new RetryNTimes(5, 1000));
 curatorFramework.start();
 ServiceDiscovery<Object> serviceDiscovery =
 ServiceDiscoveryBuilder.builder(Object.class)
 .basePath("com.packt.microservices")
 .client(curatorFramework)
 .build();
 serviceDiscovery.start();
 geolocationServiceProvider =
 serviceDiscovery.serviceProviderBuilder()
 .serviceName("geolocation")
 .build();
 geolocationServiceProvider.start();
 }
 return geolocationServiceProvider;
 }
 public static URI getGeolocationServiceUri() throws Exception
 {
 return new
 URI(getGeolocationServiceProvider()
 .getInstance().buildUriSpec());
 }
 }

Service Discovery and Load Balancing Microservices

[221]

There are a few things going on here. First, we start the Curator
framework, and then, we use the ServiceDiscovery instance to build
the ServiceProvider object for the geolocation microservice at the
basePath com.packt.microservices. You can also see that the
geolocationServiceProvider object is kept singleton so that we
don't have to start the service-discovery instance each time.

Now that our discovery logic is ready, let's write our controller that calls proxy6.
requests to the geolocation microservice. Go ahead and create a new controller
called com.packt.microservices.geolocation.lb.GeolocationProxyController.java.
Let's first create the findAll() method, which obtains all geolocations saved by7.
the geolocation microservice. Add the following snippet to the
GeolocationProxyController.java class:

 @RequestMapping(path = "/geolocation", method =
 RequestMethod.GET, produces = "application/json")
 public @ResponseBody String findAll() throws Exception {
 URI serviceUri =
 ZookeeperServiceDiscovery.getGeolocationServiceUri();

 System.out.println("Proxying GET request to service " +
 serviceUri.toString() + " at path " +
 request.getRequestURI());
 URI uri = new URI(serviceUri.getScheme(),
 null,
 serviceUri.getHost(),
 serviceUri.getPort(),
 request.getRequestURI(),
 request.getQueryString(),
 null);

 return restTemplate.getForEntity(uri,
 String.class).getBody();
 }

In the preceding API, we are first obtaining the URI for our geolocation
microservice and then using that URI to construct a new URI with the
right path and headers. The newly created URI is then invoked using a
RestTemplate.

Service Discovery and Load Balancing Microservices

[222]

We will implement a similar API for creating geolocations. Finally, a fully8.
refactored GeolocationProxyController.java class will look like this:

 package com.packt.microservices.geolocation.lb;

 import java.net.URI;

 import javax.servlet.http.HttpServletRequest;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.http.HttpEntity;
 import org.springframework.http.HttpHeaders;
 import org.springframework.http.HttpMethod;
 import org.springframework.http.MediaType;
 import org.springframework.stereotype.Controller;
 import org.springframework.web.bind.annotation.RequestBody;
 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RequestMethod;
 import org.springframework.web.bind.annotation.ResponseBody;
 import org.springframework.web.client.RestTemplate;
 @Controller
 @RequestMapping("/geolocation")
 public class GeolocationProxyController {

 private RestTemplate restTemplate = new RestTemplate();
 @Autowired
 private HttpServletRequest request;
 @RequestMapping(path = "", method = RequestMethod.POST,
 produces = "application/json", consumes =
 "application/json")
 public @ResponseBody String create(@RequestBody String body)
 throws Exception {
 URI serviceUri =
 ZookeeperServiceDiscovery.getGeolocationServiceUri();
 System.out.println("Proxying POST request to service " +
 serviceUri.toString() + " at path " +
 request.getRequestURI());
 URI uri = new URI(serviceUri.getScheme(),
 null,
 serviceUri.getHost(),
 serviceUri.getPort(),
 request.getRequestURI(),
 request.getQueryString(),
 null);
 HttpHeaders headers = new HttpHeaders();
 headers.setContentType(MediaType.APPLICATION_JSON);
 HttpEntity<String> entity = new HttpEntity<String>(body,
 headers);

Service Discovery and Load Balancing Microservices

[223]

 return restTemplate.exchange(uri, HttpMethod.POST, entity,
 String.class).getBody();
 }
 @RequestMapping(path = "", method = RequestMethod.GET,
 produces = "application/json")
 public @ResponseBody String findAll() throws Exception {
 URI serviceUri =
 ZookeeperServiceDiscovery.getGeolocationServiceUri();
 System.out.println("Proxying GET request to service " +
 serviceUri.toString() + " at path " +
 request.getRequestURI());
 URI uri = new URI(serviceUri.getScheme(),
 null,
 serviceUri.getHost(),
 serviceUri.getPort(),
 request.getRequestURI(),
 request.getQueryString(),
 null);
 return restTemplate.getForEntity(uri,
 String.class).getBody();
 }
 }

Without further delay, let's test our newly created Zookeeper-based HTTP load9.
balancer. In order to do that, we have to follow these steps:

1. Start Zookeeper and Exhibitor.

2. Start two instances of geolocation (as Docker containers).

3. Start geolocation-zk-lb.

Use the docker-compose-zk.yml file to start Zookeeper and Exhibitor. Open10.
up two terminal sessions and issue the following command on both of them:

 docker run vikrammurugesan/geolocation

Once your geolocation instances are up and running (which includes registering11.
to Zookeeper as well), verify that these services are registered in Zookeeper with
the name geolocation under the basePath com.packt.microservices. You
should be able to use the Exhibitor UI at
http://192.168.99.100:8181/exhibitor/v1/ui/index.html to do this.

Service Discovery and Load Balancing Microservices

[224]

Before we can start the geolocation-zk-lb microservice, it needs to be12.
Dockerized so that it can run as a Docker container. Go ahead and create a
Dockerfile in the geolocation-zk-lb project, with the following contents:

 FROM openjdk:8
 ADD target/geolocation-zk-lb-0.0.1-SNAPSHOT.jar
/opt/packt/geolocation/
 EXPOSE 8080
 CMD ["java", "-jar", "/opt/packt/geolocation/geolocation-zk-
lb-0.0.1-SNAPSHOT.jar"]

Build the project using the maven command: mvn clean package13.
Now build and start the geolocation-zk-lb image using the following14.
command:

 docker build -t vikrammurugesan/geolocation-zk-lb . && docker run
-p 8080:8080 vikrammurugesan/geolocation-zk-lb

Once the geolocation-zk-lb container is up and running, issue the following15.
curl commands to test the load balancer:

 curl -H "Content-Type: application/json" -X POST -d
'{"timestamp": 1468203975, "userId": "f1196aac-470e-11e6-
beb8-9e71128cae77", "latitude": 41.803488, "longitude": -88.144040}'
http://192.168.99.100:8080/geolocation

This should give you an output like the following (pretty-printed for readability):16.

 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }
 curl -H "Content-Type: application/json" -X POST -d
'{"timestamp": 1468203975, "userId": "f1196aac-470e-11e6-
beb8-9e71128cae77", "latitude": 9.568012, "longitude": 77.962444}'
http://192.168.99.100:8080/geolocation

Service Discovery and Load Balancing Microservices

[225]

This should give you an output similar to this (pretty-printed for readability):17.

 {
 "latitude": 9.568012,
 "longitude": 77.962444,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

To check whether your entities were stored correctly, execute the following curl18.
command:

 curl http://192.168.99.100:8080/geolocation

It should give you an output similar to the following (pretty-printed for19.
readability):

 [
 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }
]

But wait! We created two geolocations, so why is it showing just one? Let's try the20.
command one more time. This time, it should give you output like this (pretty-
printed for readability):

 [
 {
 "latitude": 9.568012,
 "longitude": 77.962444,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }
]

Again, we get only one geolocation, but this time, it is a different one. In order to21.
understand what is going on, we should first look at the logs of the
geolocation-zk-lb container. You should have something like this:

 Proxying POST request to service http://172.17.0.2:8080 at path
/geolocation
 Proxying POST request to service http://172.17.0.3:8080 at path

Service Discovery and Load Balancing Microservices

[226]

/geolocation
 Proxying GET request to service http://172.17.0.2:8080 at path
/geolocation
 Proxying GET request to service http://172.17.0.3:8080 at path
/geolocation

If you notice the IPs in the preceding logs, they are alternating. This indicates that22.
our service-discovery logic uses round robin and works as expected. As our
geolocations are stored in memory, each geolocation instance was holding one
geolocation each. That is the reason we got one as a result of the GET API each
time. For simplicity, we stored our geolocations in memory, but in production
scenarios, you will be storing them in databases that are shared by all these
instances, so we will not have this issue.

The ZookeeperServiceDiscovery.java class can be refactored to hold
multiple service providers, one for each of your microservices. If your
ecosystem has several microservices, you could still use this approach to
load-balance them using Zookeeper. But this comes with its own merits
and demerits. One of the demerits is that you have to create an API that
matches the microservice's API. Any change to the microservice's API
contract will require a change in the load balancer as well. So when it
comes to several hundred microservices, this might not be scalable.

That brings us to the end of this recipe. Congrats! You now know how to load-balance your
HTTP-based microservices using Zookeeper.

Setting up Consul using Docker
So far in this chapter, we've talked about the need for service discovery and load balancing.
We also learned how to use Zookeeper to perform service discovery and load balancing. If
you've tried the previous recipes in this chapter, you will have realized it requires some
effort to manage your services in Zookeeper. It also requires some code to be written. In the
next few recipes, we will learn to do the same thing with Consul. Consul is a service-
discovery framework from HashiCorp that is multi-datacenter aware. One very useful
feature Consul comes with is distributed key-value storage. This is really useful when you
want to store configuration information. In this recipe, we will learn how to orchestrate
Consul using Docker.

Service Discovery and Load Balancing Microservices

[227]

Getting ready
HashiCorp has released official images of consul and their other products. So this recipe is
going to be pretty straightforward.

The easiest way to start Consul is by executing a docker run command with the1.
image name.
The name of the image is pretty straightforward too: consul. Like we saw in the2.
first recipe of this chapter, it is always easier to group your images into Docker
Compose files.
So we will be creating a docker-compose file that has just Consul in it. We will3.
be adding more containers to the Compose YML file in later recipes.
Open your STS IDE.4.

How to do it…
Create a new docker-compose YML file and name it docker-compose-1.
consul.yml. In the compose file, drop the following snippet:

 version: "2"
 services:
 consul:
 image: consul:latest
 ports:
 - "8500:8500"

Now that our docker-compose file is complete, we are all set to start consul.2.
Before that, let's get familiar with some basic concepts of consul. Only then will
we be able to understand why we are performing the next few steps in this
chapter.

Understanding the concepts of Consul
Like we already know, Consul is a service-discovery tool. It achieves this using agents. To
put it in a simpler way, consul agents are long-running processes that keep track of all your
services and any key-value pairs. Though this statement makes consul look as if it is a
simple tool, it actually offers more than that (such as DNS), and the working of consul is
more complicated than it looks. Now let's talk a little bit about agents. Agents can start
either as a client or server. Ideally, in any consul cluster, there will be three to five servers
and a few clients.

Service Discovery and Load Balancing Microservices

[228]

A client is a lightweight process responsible for registering services and performing health
checks. In an ideal production scenario, there could be hundreds or even thousands of
clients. One of the servers is always the leader, and the others are followers. The reason for
having more servers is to ensure that if the leader goes down, there is always another server
to be elected as leader. If you have a multi-datacenter infrastructure, it is recommended that
you have similar clusters on each datacenter, and they all will work together. This is how an
ideal consul cluster on a single datacenter looks like:

If you would like to learn more about the architecture of consul and how
all these components work together, visit consul's documentation page at
https://www.consul.io/docs/internals/architecture.html.

With that, we now know what we need to do next. You guessed it: we need to start a consul
agent. In this recipe, we will be starting an agent in development mode. Development mode
starts just one server, and consul highly discourages the use of this mode in production
unless used for local development and testing purposes.

Now, open a terminal session and issue the following command:1.

 docker-compose -f docker-compose-consul.yml up

https://www.consul.io/docs/internals/architecture.html

Service Discovery and Load Balancing Microservices

[229]

You should see something like this:2.

If you look at the console logs closely, you can see that consul has
started one server, and this node is part of the data center called DC1.
The LAN and WAN servers are both running on port 8300. While the
former is used for communication between nodes in the same data
center, the latter is used for communication with servers on another data
center.

Once you know that your consul agent has started successfully, open up a new3.
browser and navigate to this URL: http://192.168.99.100:8500.
You will see the consul home page, and the Services tab will be selected by4.
default. This is where you will see all your registered services. You should see a
service called consul. That is because consul will have registered the server as a
service:

Service Discovery and Load Balancing Microservices

[230]

The other tab you might be interested in is the Key/Value tab. This is where you5.
can create, view, update, and delete your key-value pairs. At the top right, you
should see a dropdown with the name of the currently selected data center. If you
have multiple data centers, this dropdown will have more than one value, and
you will be able to see the nodes, services, and key-value pairs in each data
center. This is very useful when you have a multi-datacenter setup.
Though Services is the default tab selected when you open the UI, the Nodes tab6.
is something that makes more sense to start with. Now let's click on it. On the
left-hand side, you will see the list of nodes with their IDs. Click on the node.
Now you will see some interesting information on the right-hand side:

As you can see, it shows the services that are currently discovered and
shows the Serf Health Status. Serf is another product from HashiCorp
that is used by consul for cluster memberships, health checks, and
failure detection.

Important information to note on this page is the port number, 8300, on
the consul server widget. It tells you that the Consul server is running on
port 8300. At the top right of the page, you should be able to see the
Deregister button, which will deregister this node from the cluster. If you
are interested, you can drill a little deeper to the service level.

Service Discovery and Load Balancing Microservices

[231]

Go ahead and click on the Consul service, and explore the various options that7.
consul offers. As that is a little out of scope for our book, we will not be talking
about it. However you will get a chance to understand some sections of the
service page in our next recipe.

Implementing service discovery using
Spring Cloud Consul
In the previous recipe, we orchestrated a consul agent in development. In this recipe, we
will be using that consul agent to implement service discovery for the geolocation
microservice. When we did something similar using Zookeeper, there was lot of code
involved to connect to Zookeeper, identify the IP, identify the port, and finally register the
service. We performed these steps using the curator API, which made our life easier. But
fortunately, you don't have to do all this for consul. Spring Cloud has a library for consul,
which automatically registers the service with the host and port information. All we have to
provide is a couple of properties. Let's take a look at how to do that now.

Getting ready
In order to register the geolocation service in consul, we first have to make sure1.
that the consul agent is up and running. If you don't have an agent running, start
it using docker-compose.
Go ahead and make sure consul was properly started by accessing the web2.
interface at http://192.168.99.100:8500.
There is one more thing we need to do before we integrate consul into our3.
microservice. We have to comment out the line of code in the
GeolocationApplication.java class, where it tries to connect to Zookeeper.
Simply comment out that line so that the next time you start the application, it
does not try to connect to Zookeeper.
Also, add a comment preceding it saying it has been commented out for a reason:4.

 // commented out so that the service does not try to connect to zk
 // new Zookeeper("192.168.99.100", 2181).register();

Service Discovery and Load Balancing Microservices

[232]

That's it! Now let's move on to the actual implementation part, where we will integrate
consul with the geolocation microservice.

How to do it…
The first thing we need to do is add the required dependencies to our pom.xml1.
file. The dependency that geolocation will need is spring-cloud-starter-
consul-all. Let's add it to the dependencies section of the pom.xml file in the
geolocation project:

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-consul-all</artifactId>
 <version>1.1.2.RELEASE</version>
 </dependency>

The preceding dependency packs pretty much all the dependencies that
are required for our project to connect to consul and register our service.
As we have added a new dependency, we have to perform a Maven
update to resolve all the new dependencies.

When the build is complete, create a new properties file called2.
bootstrap.properties in the src/main/resources directory. Add the
following snippet to the file:

 spring.application.name=geolocation
 spring.cloud.consul.host=192.168.99.100
 spring.cloud.consul.port=8500

The spring.application.name property is optional, but it is highly
recommended because that is the name with which this service will be
registered on consul.

The other two properties are required to tell Spring which Consul server
to connect to. The spring.cloud.consul.host property indicates the
host on which consul is running, and spring.cloud.consul.port
indicates the port on which the consul is listening.

Service Discovery and Load Balancing Microservices

[233]

The next step is adding the @EnableDiscoveryClient annotation to the3.
GeolocationApplication.java class. Go ahead and add this annotation:

 @SpringBootApplication
 @EnableDiscoveryClient
 public class GeoLocationApplication {

That is all you need to register this service on consul. See how easy it
was compared to doing the same thing with Zookeeper? Thanks to
Spring for eliminating most of our boilerplate code.

Before we try to spin off an instance of geolocation, let's build a Docker image4.
for the new code changes and push it to Docker Hub. Go ahead and build your
project using the mvn clean package command. This should create a new
geolocation-0.0.1-SNAPSHOT.jar artifact in the target directory.
Before we build the new image, let's remove the existing image that we already5.
have. To do that, run the following command:

 docker rmi vikrammurugesan/geolocation

To build our image, issue the following command on your terminal:6.

 docker build -t vikrammurugesan/geolocation .

Use your account name instead of mine in the command. After your image has7.
been built, push your Docker image to Docker Hub using the following
command. You might be asked to log in to your Docker Hub account if you
haven't already done so:

 docker push vikrammurugesan/geolocation

Again, make sure you use your account name instead of mine. After the image8.
has been uploaded successfully, go to Docker Hub and verify that the Last
Updated time of your image shows something more recent.
Now that our image is ready to use, let's try to start our geolocation services.9.
Usually, we start them using a docker run command, but this time, let's try
starting them using docker-compose. Go ahead and append the following
snippet to the docker-compose-consul.yml file:

 geolocation-1:
 image: vikrammurugesan/geolocation:latest
 ports:
 - "8080"
 environment:

Service Discovery and Load Balancing Microservices

[234]

 GEOLOCATION_SERVICE_PORT: "8080"
 geolocation-2:
 image: vikrammurugesan/geolocation:latest
 ports:
 - "8081"
 environment:
 GEOLOCATION_SERVICE_PORT: "8081"

As you can see, we have added two instances of geolocation; one
running on port 8080 and the other on port 8081.

Now stop any running containers on your computer. Make sure there are no10.
instances of consul or geolocation running. Start the consul agent and geolocation
services using the following docker-compose command:

 docker-compose -f docker-compose-consul.yml up

Usually, it takes a few minutes to register the two services on consul. In the11.
meantime, you can open up the consul UI console at
http://192.168.99.100:8500.
Keep refreshing the Services page and wait for both the geolocation services to be12.
up and running. It takes at least 2-5 minutes, based on the configuration of your
machine. You will know that both the services are running when you see that all
four checks passed for the geolocation service.
Both the instances will have the same name geolocation and each of them will13.
have two checks: Serf check and health check. We will talk more about health
checks in Chapter 6, Monitoring Microservices. For now, just keep in mind that it
is an endpoint exposed by Spring to provide high-level health information about
the application. You will know that both the services have been registered once
you see something like this:

Service Discovery and Load Balancing Microservices

[235]

Now move on to the Nodes tab and click on the node ID. On the right-hand side,14.
you will see that there are two instances of geolocation services registered, one
running on port 8080 and the other on port 8081:

If you do not have access to the consul UI, you can still get the list of registered15.
services using a simple cURL command. Consul has a good REST API that can be
used to perform pretty much most of the operations that you can perform from
the UI. Execute the following curl command in a terminal session:

 curl http://192.168.99.100:8500/v1/agent/services

You should have a response similar to this (pretty-printed for readability):16.

 {
 "consul": {
 "ID": "consul",
 "Service": "consul",
 "Tags": [],
 "Address": "",
 "Port": 8300,
 "EnableTagOverride": false,
 "CreateIndex": 0,
 "ModifyIndex": 0
 },
 "geolocation-8080": {
 "ID": "geolocation-8080",
 "Service": "geolocation",
 "Tags": [],
 "Address": "e5da6bf7309d",
 "Port": 8080,
 "EnableTagOverride": false,
 "CreateIndex": 0,
 "ModifyIndex": 0

Service Discovery and Load Balancing Microservices

[236]

 },
 "geolocation-8081": {
 "ID": "geolocation-8081",
 "Service": "geolocation",
 "Tags": [],
 "Address": "23039f240cd5",
 "Port": 8081,
 "EnableTagOverride": false,
 "CreateIndex": 0,
 "ModifyIndex": 0
 }
 }

Note the address field for both the geolocation services. Those addresses will be17.
resolved to the respective container's hostnames by Consul.

With that, we have successfully registered our services on Consul using Docker. The next
step will be load-balancing our APIs using Consul, which we will learn in the next recipe.

Load balancing your microservice using
Spring Cloud Consul
So far in this chapter, we've learned how to set up Consul and then learned how to
implement service discovery in Consul using Spring Cloud Consul. Now, your other
services can discover the geolocation service with the help of Consul. Earlier, we talked
about how significant load balancing is and how we can do it using Zookeeper. In this
recipe, we will learn how to perform load balancing using Consul with the help of Spring
Cloud Consul.

Getting ready
There may be scenarios where one microservice would want to invoke another
microservice's REST API. What if the target microservice is load-balanced using Consul?
That is exactly what we are going to demonstrate in this recipe. We will be writing a new
microservice called geolocation-consul-lb that will load balance against two instances
of geolocation microservice in a round-robin fashion. When you move away from a
monolithic application to more focused microservices, you will end up in a situation where
you would want your microservices to communicate in an efficient way. This recipe along
with the previous one will help you do that using Consul.

Service Discovery and Load Balancing Microservices

[237]

How to do it…
Create a new Maven JAR project with the groupId set to1.
com.packt.microservices and artifactId set to geolocation-consul-lb.
As this will be a Spring Boot project, we need to add spring-boot-start-
parent as the parent project.
We'll also need the spring-boot-maven-plugin. Go ahead and add the2.
following snippet to your newly created project's pom.xml file:

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.6.RELEASE</version>
 </parent>

 <properties>
 <start-
 class>com.packt.microservices.geolocation.lb.
 GeolocationConsulLoadBalancer</start-class>
 </properties>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>

 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <mainClass>${start-class}</mainClass>
 </configuration>
 </plugin>

Service Discovery and Load Balancing Microservices

[238]

 </plugins>
 </build>

We will require two dependencies for the project. One is the spring-boot-3.
starter-web dependency as our project will use Spring MVC, and the other is
spring-cloud-starter-consul-all as we will be looking up services from
Consul:

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-Consul-all</artifactId>
 <version>1.1.2.RELEASE</version>
 </dependency>
 </dependencies>

Now that the pom.xml file is ready, let's write our application class. Create a new4.
class called
com.packt.microservices.geolocation.lb.GeolocationConsulLoadBal

ancer.java.
Add the following snippet to the newly created class:5.

 package com.packt.microservices.geolocation.lb;

 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.
 SpringBootApplication;
 import org.springframework.cloud.client.discovery.
 EnableDiscoveryClient;
 import org.springframework.cloud.client.
 loadbalancer.LoadBalanced;
 import org.springframework.context.annotation.Bean;
 import org.springframework.web.client.RestTemplate;

 @SpringBootApplication
 @EnableDiscoveryClient
 public class GeolocationConsulLoadBalancer
 {

 @LoadBalanced
 @Bean

Service Discovery and Load Balancing Microservices

[239]

 public RestTemplate restTemplate() {
 return new RestTemplate();
 }
 public static void main(String[] args) {
 SpringApplication.run
 (GeolocationConsulLoadBalancer.class,
 args);
 }
 }

There are a couple of annotations to note here. The
@EnableDiscoveryClient annotation is required to tell Spring that we
will be connecting to Consul to look up services. The second interesting
annotation is the @LoadBalanced annotation. This annotation says that
the RestTemplate bean that is defined here should load-balance
against the given service URL. You will understand this very clearly
once we write the controller class, so hold on.

Let's write our controller,6.
com.packt.microservices.geolocation.lb.GeolocationProxyControll

er.java. Add the following snippet to the newly created class:

 package com.packt.microservices.geolocation.lb;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.http.HttpEntity;
 import org.springframework.http.HttpHeaders;
 import org.springframework.http.HttpMethod;
 import org.springframework.http.MediaType;
 import org.springframework.web.bind.annotation.RequestBody;
 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RequestMethod;
 import org.springframework.web.bind.annotation.ResponseBody;
 import org.springframework.web.bind.annotation.RestController;
 import org.springframework.web.client.RestTemplate;

 @RestController
 @RequestMapping("/geolocation")
 public class GeolocationProxyController {

 @Autowired
 private RestTemplate restTemplate;
 @RequestMapping(path = "", method = RequestMethod.GET,
 produces = "application/json")
 public @ResponseBody String findAll() throws Exception {
 return restTemplate.getForObject

Service Discovery and Load Balancing Microservices

[240]

 ("http://geolocation/geolocation", String.class);
 }
 @RequestMapping(path = "", method = RequestMethod.POST,
 produces = "application/json", consumes =
 "application/json")
 public @ResponseBody String create(@RequestBody String body)
 throws Exception {
 HttpHeaders headers = new HttpHeaders();
 headers.setContentType(MediaType.APPLICATION_JSON);
 HttpEntity<String> entity = new HttpEntity<String>(body,
 headers);
 return restTemplate.exchange
 ("http://geolocation/geolocation", HttpMethod.POST,
 entity, String.class).getBody();
 }
 }

We have created two request mappings that match the APIs in
geolocation microservice. We are actually implementing a proxy
application. In each of the methods, we are using a RestTemplate
to make calls to the geolocation service. See how we have
autowired RestTemplate instead of instantiating it. That is
because we would like to use the bean that was defined in the
GeolocationConsulLoadBalancer.java class. This
restTemplate bean will load-balance the service calls against the
different instances of the target service. Note that the
restTemplate bean makes a call to the URL
http://geolocation/geolocation. See how the hostname is set
to geolocation. As this restTemplate bean is Consul aware, it
will look up services registered with the name geolocation and
load-balance against those services in a round-robin fashion. It is as
simple as that.

The final step we need to perform is add application.properties and7.
bootstrap.properties to src/main/resources. Let's use port number 8899
as the web server port number. Add the following contents to the
application.properties file:

 server.port=8899

Service Discovery and Load Balancing Microservices

[241]

In the bootstrap.properties file, we will add the hostname and port number8.
of Consul. In addition to that, we will add the spring.application.name
property as that will be used as the service name in Consul. Add the following
snippet to the bootstrap.properties file:

 spring.application.name=geolocation-consul-lb
 spring.cloud.consul.host=192.168.99.100
 spring.cloud.consul.port=8500

Now that our load balancer is ready, let's Dockerize it. Create a new Dockerfile in9.
the geolocation-consul-lb project and add the following snippet:

 FROM openjdk:8
 ADD target/geolocation-consul-lb-0.0.1-SNAPSHOT.jar
/opt/packt/geolocation/
 EXPOSE 8080
 CMD ["java", "-jar", "/opt/packt/geolocation/geolocation-consul-
lb-0.0.1-SNAPSHOT.jar"]

Build the project using the Maven command: mvn clean package10.
Now, let's build this Docker image:11.

 docker build -t vikrammurugesan/geolocation-consul-lb .

Make sure you use your account name instead of mine. Earlier, we were using12.
the docker-compose-consul.yml file in the geolocation project to start Consul
and the geolocation services.
We will use the same docker-compose file for running the load balancer as well.13.
Append the following snippet to docker-compose-consul.yml:

 geolocation-consul-lb:
 image: vikrammurugesan/geolocation-consul-lb:latest
 ports:
 - "8899:8899"

Without further ado, open a new terminal shell and start the containers using the14.
following command:

 docker-compose -f docker-compose-consul.yml up

Service Discovery and Load Balancing Microservices

[242]

It usually takes a few minutes to register all the services in Consul. You can verify15.
that all your services have been successfully registered on Consul by viewing the
services from the Consul UI at http://192.168.99.100:8500.

When all the services have been registered successfully, you will see
something like this when you click on your node ID in the Nodes tab:

You may find that the health check for geolocation-consul-lb is
failing. We don't have to worry about that much as our goal is to just
register the geolocation services in Consul.

Now that our services are registered in Consul, let's check whether our16.
RestTemplate load-balances all HTTP requests. Issue the follwing curl
commands in a new terminal window:

 curl -H "Content-Type: application/json" -X POST -d
'{"timestamp": 1468203975, "userId": "f1196aac-470e-11e6-
beb8-9e71128cae77", "latitude": 41.803488, "longitude": -88.144040}'
http://192.168.99.100:8899/geolocation

This should give you an output similar to the following (pretty-printed for17.
readability):

 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }
 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
9.568012, "longitude": 77.962444}' http://192.168.99.100:8899/geolocation

Service Discovery and Load Balancing Microservices

[243]

This should given you an output like the following (pretty-printed for18.
readability):

 {
 "latitude": 9.568012,
 "longitude": 77.962444,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

To verify whether your entities were stored correctly, execute the following curl19.
command:

 curl http://192.168.99.100:8899/geolocation

It should give you an output that looks like the following (pretty-printed for20.
readability):

 [
 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }
]

But wait; we created two geolocations, so why is it showing just one? Let's try the21.
command one more time. This time, it should give you an output like this (pretty-
printed for readability):

 [
 {
 "latitude": 9.568012,
 "longitude": 77.962444,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }
]

Service Discovery and Load Balancing Microservices

[244]

Again, we get only one geolocation, but this time it is a different one. This is because our
request is being sent to one geolocation service each time. Each instance has one geolocation
stored in memory. As our storage mechanism uses a very simple in-memory approach, they
are not grouped together in a single repo. In a real-time scenario, you will be using a
database, and all instances of this microservice will connect to the same database. At least
now we know why our requests were acting differently. At the same time, this proves that
the load balancing works as expected.

Yay! We have learned how to use Consul and Spring Cloud Consul to load-balance HTTP-
based microservices. Consul is a very powerful tool, and it offers a great many other
features. What we saw is just a basic use case of Consul in microservices.

Do spend some time going through the Consul documentation at
https://www.consul.io/docs/index.html.

That brings us to the end of this recipe. In our next recipe, we will look at how Nginx and
Consul help with load-balancing microservices.

Load balancing your microservice using
Nginx and Consul
So far we have learned how to load balance our microservice using Zookeeper and Consul.
Both of these approaches come with their own merits and demerits. The Zookeeper
approach required us to write a lot of code, and there is still a possibility of race condition
where our proxy controller could invoke a service that just went down. The Spring Cloud
Consul approach required us to write the proxy controller. In fact, in both these approaches
we had to write our own load balancer microservice. This might not be a scalable approach
when you have hundreds of microservices and tons of APIs. That is where HTTP servers
such as Apache HTTP Server and Nginx come to the rescue. Nginx is one of the most
popular HTTP servers. We could potentially use Nginx as our proxy server to geolocation
microservices in a round robin fashion. In this recipe we will learn how to use Nginx and
Consul together to load balance our geolocation microservice.

https://www.consul.io/docs/index.html

Service Discovery and Load Balancing Microservices

[245]

Getting ready
In this recipe we will be using two new components: Nginx Server and Consul Template.
We all know what Nginx is and how it can be used for hosting our web content. However,
in our case we are very interested in Nginx's proxy_pass module. The proxy_pass
module can be used to make Nginx, forward requests received from a client to another
server and send back responses from the other server back to the client. In our case, we will
be utilizing proxy_pass to proxy requests to multiple geolocation instances. Usually
proxy_pass configurations go into the default.conf file of Nginx. Sounds easy? But
wait, how does Nginx know where our services are located, because we will never know
how many instances of geolocation are active and where they are deployed. So the easiest
way is to keep updating the default.conf file each time a geolocation service registers or
unregisters in Consul. At the same time, each time the default.conf file is updated,
Nginx needs to be reloaded. Somehow we have to keep both Consul and Nginx in sync.
That's exactly what Consul Template does. Consul Template constantly polls Consul for
any changes to our geolocation service and recreates the default.conf file. In fact, the
whole default.conf file will be represented as a Consul Template file. Consul template
uses the Go template format for creating template files.

To learn more about Go template format, please take a look at
https://golang.org/pkg/text/template. The overall architecture will look something like
this:

As you can see the client doesn't have to worry about the location of the geolocation
microservice. All it needs to know is the location of our Nginx server.

https://golang.org/pkg/text/template

Service Discovery and Load Balancing Microservices

[246]

How to do it…
The first thing that we will need is a Docker container for Nginx and Consul Template. We
will be using the official Nginx Docker image and will install Consul Template inside it.
Create a new directory along side the geolocation project called geolocation-consul-
nginx-lb. Create a new Dockerfile under geolocation-consul-nginx-lb and add the
folowing contents to it:

 FROM nginx:latest
 ENV CONSUL_URL consul:8500
 RUN apt-get update && apt-get install -y unzip wget
 RUN mkdir -p /opt/packt/consul-template
 WORKDIR /opt/packt/consul-template
 RUN wget
https://releases.hashicorp.com/consul-template/0.16.0/consul-template_0.16.
0_linux_amd64.zip && unzip consul-template_0.16.0_linux_amd64.zip
 ADD default.ctmpl /opt/packt/consul-template/
 ADD startup.sh /opt/packt/consul-template/
 RUN chmod +777 /opt/packt/consul-template/startup.sh
 RUN rm /etc/nginx/conf.d/default.conf
 EXPOSE 80
 ENTRYPOINT ["/opt/packt/consul-template/startup.sh"]

There are a lot of things going on in this file. Lets break it down into parts and try to
understand it one by one. Firstly, we are basing this image off of nginx:latest image.

 ENV CONSUL_URL consul:8500

The preceding instruction creates a new environment variable called CONSUL_URL with
value consul:8500. The hostname consul will be resolved to the hostname of the consul
service, if we use it in Docker compose.

 RUN apt-get update && apt-get install -y unzip wget

The preceding instruction installs unzip and wget. We need them to install and unpack
Consul Template.

 RUN mkdir -p /opt/packt/consul-template
 WORKDIR /opt/packt/consul-template

Service Discovery and Load Balancing Microservices

[247]

These two instructions create the /opt/packt/consul-template directory and set the
working directory to /opt/packt/consul-template. We will be using this directory as
the installation directory of consul template.

 RUN wget
https://releases.hashicorp.com/consul-template/0.16.0/consul-template_0.16.
0_linux_amd64.zip && unzip consul-template_0.16.0_linux_amd64.zip

This instruction downloads Consul Template and unpacks the downloaded ZIP file. The
content of the ZIP file is just the consul-template binary. As you can see we have used
the version 0.16.0, but feel free to use the most recent version found in
https://releases.hashicorp.com/consul-template.

 ADD default.ctmpl /opt/packt/consul-template/
 ADD startup.sh /opt/packt/consul-template/
 RUN chmod +x /opt/packt/consul-template/startup.sh

The preceding snippet does three things: adds the template file default.ctmpl to the
installation directory at /opt/packt/consul-template, adds the startup script to the
installation directory and provides execute privileges to the startup script. We will look at
how to create the default.ctmpl file and startup.sh file later.

 RUN rm /etc/nginx/conf.d/default.conf

This instruction is required to remove the default config file that comes with Nginx's
installation.

 EXPOSE 80

We are exposing port 80 of Nginx so that we can access it from outside (after mapping it).

 ENTRYPOINT ["/opt/packt/consul-template/startup.sh"]

Finally the entry point will be the startup.sh script that we will be creating next. The
startup script will do two things: start Nginx and start Consul Template. Create a new shell
script with name startup.sh and add the following contents.

 #!/bin/bash
 service nginx start && /opt/packt/consul-template/consul-template -
consul=$CONSUL_URL -
template="default.ctmpl:/etc/nginx/conf.d/default.conf:service nginx
reload"

https://releases.hashicorp.com/consul-template

Service Discovery and Load Balancing Microservices

[248]

The preceding snippet starts the service called nginx and starts Consul Template with two
arguments. The consul argument indicates the location of Consul. We have used the
CONSUL_URL environment variable that was previously defined in the Dockerfile. The
template argument is divided into three parts separated by a colon. The first part indicates
the template file itself, the second part indicates the file that needs to be replaced after
rendering the template and the third part indicates the action that needs to be performed
after each update. In our case we are reloading the nginx service after each update.

The next file we have to create is the template file. Go ahead and create a new file called
default.ctmpl. Add the following snippet to the newly created file:

 upstream geolocation {
 least_conn;
 {{range service "geolocation"}}server {{.Address}}:{{.Port}}
 max_fails=3 fail_timeout=60 weight=1;
 {{else}}server 127.0.0.1:65535; # force a 502{{end}}
 }

 server {
 listen 80 default_server;

 charset utf-8;

 location /geolocation {
 proxy_pass http://geolocation;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 }
 }

If you are familiar with Nginx, you would already know what's going on here. All we have
done is created an upstream called geolocation, which will be replaced with the list of
geolocation servers that are registered in Consul. This rendering is what Consul Template
does. Later in the server section, we have added a proxy pass to /geolocation URL path,
which will be load balanced against the list of geolocation servers listed in upstream
geolocation. This template file will be updated every time there is a change to the
geolocation service in Consul.

Service Discovery and Load Balancing Microservices

[249]

That's it. We are all set to go. In order to test our setup, lets use Docker compose. Go ahead
and create a new Docker compose file called docker-compose-nginx-consul.yml. Add
the following snippet to the newly created YAML file:

 version: "2"
 services:
 consul:
 image: consul:latest
 ports:
 - "8500:8500"

 geolocation-1:
 image: vikrammurugesan/geolocation:latest
 ports:
 - "8080"
 environment:
 GEOLOCATION_SERVICE_PORT: "8080"
 geolocation-2:
 image: vikrammurugesan/geolocation:latest
 ports:
 - "8081"
 environment:
 GEOLOCATION_SERVICE_PORT: "8081"
 nginx-consul-template:
 build: .
 links:
 - consul
 depends_on:
 - consul
 ports:
 - "8900:80"

As you can see, we have three images that we already know: consul and 2 geolocation
images. The only new image in the preceding Docker compose is the nginx-consul-
template image. This image will be built using the Dockerfile located in the current
directory. This image is linked to the consul image so that it knows where Consul is located.
The depends_on section says that, this image has to wait for the consul image to be started.
Finally port 80 of Nginx needs to be mapped to 8900 in the Docker host. Without any
further ado, go ahead and start the containers using the following command:

 docker-compose -f docker-compose-nginx-consul.yml up

Service Discovery and Load Balancing Microservices

[250]

It usually takes 2-5 minutes for the geolocation services to register to Consul depending on
the configuration of your machine. So wait for them to register in Consul. You can verify if
the services are registered in Consul by looking at Consul's web interface at
http://192.168.99.100:8500. After all your services are registered, we are ready to test
our load balancer. Open up a new terminal session and issue the following cURL
commands:

 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude": -88.144040}' http://192.168.99.100:8900/geolocation

This should give you an output similar to the following (pretty-printed for readability):

 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }
 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
9.568012, "longitude": 77.962444}' http://192.168.99.100:8900/geolocation

This should give you an output like the following (pretty-printed for readability):

 {
 "latitude": 9.568012,
 "longitude": 77.962444,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

To verify whether your entities were stored correctly, execute the following curl
command:

 curl http://192.168.99.100:8900/geolocation

It should give you an output that looks like the following (pretty-printed for readability):

 [
 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }
]

Service Discovery and Load Balancing Microservices

[251]

But wait; we created two geolocations, so why is it showing just one? Let's try the command
one more time. This time, it should give you an output like this (pretty-printed for
readability):

 [
 {
 "latitude": 9.568012,
 "longitude": 77.962444,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }
]

Again, we get only one geolocation, but this time it is a different one. This is because our
request is being sent to one geolocation service each time. Each instance has one geolocation
stored in memory. As our storage mechanism uses a very simple in-memory approach, they
are not grouped together in a single repo. In a real-time scenario, you will be using a
database, and all instances of this microservice will connect to the same database. At least
now we know that our new load balancer works as expected.

Nginx has a paid version of their software called Nginx Plus which offers
most of the features that you will need in any HTTP server like
Monitoring, Security, Load Balancing, Caching, and so on. If you are
already an Nginx user and would like to continue using it along with your
microservices, it might be worth taking a look at Nginx Plus. For more
information about load balancing using Nginx Plus, please take a look at
https://www.nginx.com/products/application-load-balancing.

That's it. That brings us to the end of this recipe. In this recipe we not only learned how to
use Consul Template and Nginx but also implemented a load balancer without having to
write too much code. The real beauty of this approach is that, it configures Nginx to load
balance between any number of geolocation instances that are currently registered in
Consul.

https://www.nginx.com/products/application-load-balancing

Service Discovery and Load Balancing Microservices

[252]

Load balancing your microservice using
Marathon LB
In this recipe, we will learn the concepts of Marathon LB and how it works behind the
screens. At the time of writing this, Marathon LB works perfectly with DC/OS. So trying to
make Marathon LB work in a non-DC/OS environment might not be the best solution in all
cases. We will be learning about DC/OS in Chapter 8, More Clustering Frameworks – DC/OS,
Docker Swarm, and YARN.

How it works…
Marathon LB is a Python-based tool that internally uses HAProxy to load-balance
applications deployed on Marathon. HAProxy is one of the proven solutions for load-
balancing HTTP-based endpoints. It has been there in the market for a while, and there are
several success stories about it. When you start Marathon LB, you need to supply the base
URL of Marathon as a configuration so that when Marathon LB starts, it knows where
Marathon is running on your cluster. Marathon LB binds to the service ports of all the
applications and routes any request that it receives to the application instances. It does three
things:

Parses the Marathon apps (using Marathon's REST API) and gets their IP and
service port
Creates a new HAProxy config and drops it in a dedicated HAProxy directory
Reloads HAProxy (does not restart)

The working of Marathon LB is simple. It uses HAProxy as the back-end load balancer and
interacts with the applications deployed on Marathon and HAProxy. The next question that
you may have is how Marathon LB knows when applications in Marathon are modified:
updated, removed, or created.

Marathon LB has a few strategies by which it will get notified when an application is
modified on Marathon. So whenever it receives such an event, it updates HAProxy
accordingly and reloads HAProxy. Not all applications will be load-balanced by
Marathon LB. Marathon LB looks for applications that have the HAPROXY_GROUP variable
set to a specific value.

Service Discovery and Load Balancing Microservices

[253]

If you would like to learn more about Marathon LB, visit their GitHub
documentation at
https://github.com/mesosphere/marathon-lb/blob/master/README.md.

Like I mentioned, the easiest way to try Marathon LB is on a DC/OS cluster. And if you are
so dependent on Mesos and Marathon, it is definitely worth taking a look at DC/OS.

With that, we come to the end of this chapter. You've learned a lot about service discovery
and load-balancing your microservices in this chapter

https://github.com/mesosphere/marathon-lb/blob/master/README.md

6
Monitoring Microservices

In this chapter, we will learn how to setup a monitoring system for our microservice. We
will cover the following recipes:

Configuring Spring Boot Actuator metrics
Understanding Spring Boot Actuator metrics
Creating custom metrics using Dropwizard
Setting up Graphite using Docker
Using the Graphite interface
Exporting Dropwizard metrics over to Graphite
Exporting Spring Boot Actuator metrics over to Graphite
Setting up Grafana using Docker
Configuring Grafana to use Graphite
Configuring Grafana dashboards to view metrics

Introduction
As you start scaling out to several microservices, it becomes difficult to monitor them. You
might want to know when some part of your platform is not working as expected. At the
same time, you want to be notified when some part of your application is not performing
well. So monitoring becomes a significant aspect of microservices. At the same time,
monitoring will not make sense if you don't monitor the right metrics. So exposing the right
metrics for each microservices matter a lot. While you spend 60 percent of your time writing
the actual functionality of the microservice, the other 40 percent should be spent on
activities such as deployments, CI, monitoring, and logging. If this sounds strange to you,
you will start understanding it as soon as you start writing more and more microservices.

Monitoring Microservices

[255]

The biggest question is where do we store these metrics. That's where Time Series
Databases come into picture. There are several time series databases in the market at the
moment like Graphite, Prometheus, Riak, and so on. In this chapter we will be looking at
how to use Graphite to store our metrics. The next step is visualizing these metrics in form
of user-friendly charts and graphs. For that purpose, we will be using one of the most
popular monitoring tools called Grafana.

Configuring Spring Boot Actuator metrics
In this recipe, we will learn how to configure the geolocation project to expose some
predefined metrics exposed by the Spring framework itself. Though you might not use all
of them, it is always better to know that they exist so that you can find some use for them in
the future. In fact, most of the metrics exposed by Spring are modifiable. On top of it, Spring
adds security to them so that not everyone can view your metrics. These are some of the
advantages that you get when you use Spring's metrics framework.

Getting ready
We will go through this recipe with the help of the geolocation project. We will be using the
Spring Boot Actuator library to expose the metrics. So open your STS IDE. Before we jump
into the actual implementation, we have to comment out a few lines of code. If you have
been working on the Setting up Consul using Docker recipe from Chapter 5, Service Discovery
and Load Balancing Microservices, you might still have the Zookeeper or Consul-related code
in your code base. As we are not going to use either of them, let's make sure they are
commented out. To comment out Zookeeper, all you have to do is comment out the line in
GeoLocationApplication.java class file where we register our service. To comment out
Consul, you have to first comment out the @EnableDiscoveryClient annotation from the
GeoLocationApplication.java class and remove the unused import. The class will now
look like this:

 package com.packt.microservices.geolocation;

 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.
 SpringBootApplication;

 @SpringBootApplication
 // @EnableDiscoveryClient
 public class GeoLocationApplication {

 public static void main(String[] args) {

Monitoring Microservices

[256]

 SpringApplication.run(GeoLocationApplication.class, args);
 // commented out so that the service does not try to connect
 to zk
 // new Zookeeper("192.168.99.100", 2181).register();
 }
 }

The next step is commenting out the spring-cloud-starter-consul-all dependency
from the pom.xml file:

 <!-- <dependency>
<groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-consul-all</artifactId>
 <version>1.1.2.RELEASE</version>
 </dependency> -->

Now that we know all the code related to Zookeeper and Consul initialization are
commented out, let's work on configuring Spring Boot Actuator.

How to do it…
Before we start, let's take a minute to talk about Spring Boot Actuator and how it works.
Spring Boot Actuator is just a Maven dependency that you need to add to your project.
Once you add this dependency, Spring automatically injects the beans that are responsible
for exposing these metrics. There are two ways to consume these metrics: HTTP or JMX.
Though JMX is considered to be the standard way, HTTP is considered an easy solution, as
REST is almost everywhere these days. For simplicity, in this recipe, we will be testing our
metrics using the HTTP endpoints. Actuator not only exposes metrics but also some useful
endpoints to manage our application. We will look at them in the next recipe.

Without any delay, lets' add the spring-boot-starter-actuator dependency1.
to our pom.xml file:

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>

We have not added the version for the spring-boot-starter-
actuator dependency. That is because it will pick up the version
managed by the spring-boot-starter-parent POM. In our case, the
version of spring-boot-starter-actuator that will be resolved is
1.3.6 release.

Monitoring Microservices

[257]

Now that our project is ready with Actuator, let's test it. Start the2.
GeoLocationApplication.java class as a Spring Boot application from your
STS IDE. If you pay close attention to the logs, this time you will see that there are
some additional request mappings registered, such as /beans, /info,
/configprops, /health, /autoconfig, /mappings, /metrics, /env, /trace,
and /dump. These request mappings were added by the Spring Actuator
dependency:

Let's test our configurations. Open a new terminal session and issue the following3.
curl command:

 curl http://localhost:8080/metrics

This should have returned a list of metrics that are currently being exposed
by your microservice using Spring Boot Actuator.

You should see something like this (pretty-printed for readability):4.

 {
 "mem": 233838,
 "mem.free": 65596,
 "processors": 4,
 "instance.uptime": 909667,
 "uptime": 924127,
 "systemload.average": 1.62548828125,
 "heap.committed": 184832,
 "heap.init": 131072,
 "heap.used": 119235,
 "heap": 1864192,
 "nonheap.committed": 49984,
 "nonheap.init": 2496,
 "nonheap.used": 49006,
 "nonheap": 0,
 "threads.peak": 29,
 "threads.daemon": 19,
 "threads.totalStarted": 36,

Monitoring Microservices

[258]

 "threads": 21,
 "classes": 6154,
 "classes.loaded": 6154,
 "classes.unloaded": 0,
 "gc.ps_scavenge.count": 8,
 "gc.ps_scavenge.time": 101,
 "gc.ps_marksweep.count": 1,
 "gc.ps_marksweep.time": 46,
 "httpsessions.max": -1,
 "httpsessions.active": 0,
 "gauge.response.metrics": 16,
 "gauge.response.star-star": 41,
 "counter.status.200.metrics": 1,
 "counter.status.404.star-star": 1
 }

Ideally, you will have more metrics. As you can see, the previous metrics are
more on the JVM level. You will also see some metrics that are HTTP related
(such as 404 counts and 200 counts). These metrics are starter based. For
example, if you have a Spring Data starter configured in your application,
you will see some database-related metrics as well. If you find it difficult to
read the metrics from the command line, feel free to use tools such as
Postman or other browser-based plugins that can render JSON in a pretty-
printed format.

This verifies that we have successfully configured Spring Boot Actuator in our5.
application. These metrics may be useful on the JVM level, but they are not going
to help us monitor our application-related metrics, which is what we will be
learning in later recipes of this chapter.

That brings us to the end of this recipe. In this recipe, we learned how to configure Spring
Boot Actuator in our application.

Understanding Spring Boot Actuator metrics
In the previous recipe, we learned how to configure Spring Boot Actuator in the geolocation
application. We also verified the configuration by accessing the /metrics endpoint. In this
recipe, we will be learning more about most of the commonly used metrics exposed by
Spring Boot Actuator.

Monitoring Microservices

[259]

Getting ready
In order to understand the various metrics and operations exposed by the Spring Boot
Actuator library, we will be invoking them one by one using cURL commands. As we will
be analyzing the JSON response of our metric APIs a lot, feel free to use a tool such as
Postman or another plugin for your browser to pretty-print JSON documents.

How to do it…
The next few steps in this recipe will help you go over the most important endpoints
exposed by Spring Boot Actuator.

Some metrics exposed by Actuator depend on the API usage, so let's create some1.
geolocations and try to query them:

 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude": -88.144040}' http://localhost:8080/geolocation

This should give you an output similar to the following (pretty-printed for2.
readability):

 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

To check whether our entity was stored correctly, execute the following curl3.
command:

 curl http://localhost:8080/geolocation

It should give you an output like this (pretty-printed for readability):4.

 [
 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }
]

Monitoring Microservices

[260]

Now let's create the second geolocation:5.

 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
9.568012, "longitude": 77.962444}' http://localhost:8080/geolocation

This should give you an output similar to the following (pretty-printed for6.
readability):

 {
 "latitude": 9.568012,
 "longitude": 77.962444,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }

To verify whether your entities were stored correctly, execute the following curl7.
command:

 curl http://localhost:8080/geolocation

It should give you an output like the following (pretty-printed for readability):8.

 [
 {
 "latitude": 41.803488,
 "longitude": -88.14404,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 },
 {
 "latitude": 9.568012,
 "longitude": 77.962444,
 "userId": "f1196aac-470e-11e6-beb8-9e71128cae77",
 "timestamp": 1468203975
 }
]

Now let's invoke the metrics API and try to understand few of the metrics:9.

 curl http://localhost:8080/metrics

You should receive a response similar to this (pretty-printed for readability):10.

 {
 "mem": 254684,
 "mem.free": 112813,

Monitoring Microservices

[261]

 "processors": 4,
 "instance.uptime": 618061,
 "uptime": 623669,
 "systemload.average": 1.8212890625,
 "heap.committed": 205312,
 "heap.init": 131072,
 "heap.used": 92498,
 "heap": 1864192,
 "nonheap.committed": 51008,
 "nonheap.init": 2496,
 "nonheap.used": 49372,
 "nonheap": 0,
 "threads.peak": 31,
 "threads.daemon": 24,
 "threads.totalStarted": 41,
 "threads": 26,
 "classes": 6262,
 "classes.loaded": 6262,
 "classes.unloaded": 0,
 "gc.ps_scavenge.count": 7,
 "gc.ps_scavenge.time": 93,
 "gc.ps_marksweep.count": 1,
 "gc.ps_marksweep.time": 58,
 "httpsessions.max": -1,
 "httpsessions.active": 0,
 "gauge.response.geolocation": 5,
 "gauge.response.metrics": 4,
 "gauge.response.star-star.favicon.ico": 3,
 "counter.status.200.star- star.favicon.ico": 3,
 "counter.status.200.metrics": 4,
 "counter.status.200.geolocation": 4
 }

Here is a quick description of some of these metrics:

mem and mem.free indicate the amount of memory used and available
in KB.
uptime indicates the uptime of the system whereas instance.uptime
indicates the uptime of the application context. They are in
milliseconds.
heap, heap.used, heap.init, and heap.committed are all used to
identify the current heap status. They are in KB.
threads, threads.peak, threads.totalStarted, and
threads.daemon provide the thread counts.

Monitoring Microservices

[262]

classes, classes.loaded, and classes.unloaded provide the
information about the classloader like total number of classes available,
total number of classes loaded, and total number of classes unloaded.
httpsessions.max and httpsessions.active indicate the
maximum number of sessions and currently active session count,
respectively.
gauge.response.<request_path> indicates the response time of the
last request for the given request path.
counter.status.<status_code>.<request_path> indicates the
number of times a particular status code was returned for the given
request path.

This list provides a quick description of the most commonly used metrics.
However, there are other metrics too, such as garbage collection-related
metrics. You might want to use them for debugging. To learn more about
those metrics please visit h t t p s ://d o c s . s p r i n g . i o /s p r i n g - b o o t /d o c s /c

u r r e n t /r e f e r e n c e /h t m l /p r o d u c t i o n - r e a d y - m e t r i c s . h t m l .

The next useful endpoint is the /health endpoint. This endpoint provides a quick snapshot
view of your application and its components' health. Components include any Spring
module, such as Consul, Eureka, MySQL, and so on depending on whether you use them in
your project. In our case, we don't have any Spring modules, so we will just see a high-level
health check for our app.

Let's test it out:1.

 curl http://localhost:8080/health

You should receive something like this (pretty-printed for readability):2.

 {
 "status": "UP",
 "diskSpace": {
 "status": "UP",
 "total": 498876809216,
 "free": 142243303424,
 "threshold": 10485760
 }
 }

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html

Monitoring Microservices

[263]

As you can see, it provides an overall health status saying it is UP and also
provides the health of the disk, including some metrics. This endpoint is
something that you will end up using very often, either to check whether you
app is up and running or to check whether all the components of your app
are working as expected.

The next most important endpoint is the /env endpoint. This endpoint provides3.
useful information such as JVM arguments, system properties, and system
environment variables. Let's take a quick look at it:

 curl http://localhost:8080/env

You should receive something like this (pretty-printed for readability):4.

{
 "profiles": [],
 "server.ports": {
 "local.server.port": 8080
 },
 "commandLineArgs": {
 "spring.output.ansi.enabled": "always"
 },
 "servletContextInitParams": {
 },
 "systemProperties": {
 "com.sun.management.jmxremote.authenticate": "false",
 "java.runtime.name": "Java(TM) SE Runtime Environment",
 "java.vm.version": "25.40-b25",
 "gopherProxySet": "false",
 "java.vm.vendor": "Oracle Corporation",
 "java.vendor.url": "http://java.oracle.com/",
 "java.rmi.server.randomIDs": "true",
 "path.separator": ":",
 "java.vm.name": "Java HotSpot(TM) 64-Bit Server VM",
 "file.encoding.pkg": "sun.io",
 "user.country": "US",
 "sun.java.launcher": "SUN_STANDARD",
 "sun.os.patch.level": "unknown",
 "PID": "10883",
 "com.sun.management.jmxremote.port": "64324",
 "java.vm.specification.name": "Java Virtual Machine Specification",
 .
 .
 .
 },
 "systemEnvironment": {
 "PATH": "/usr/bin:/bin:/usr/sbin:/sbin",

Monitoring Microservices

[264]

 "APP_ICON_6659": "../Resources/sts.icns",
 "SHELL": "/bin/bash",
 "JAVA_MAIN_CLASS_10883":
"com.packt.microservices.geolocation.GeoLocationApplication",
 "JAVA_STARTED_ON_FIRST_THREAD_6659": "1",
 .
 .
 },
 "applicationConfig: [classpath:/application.properties]": {
 "server.port": "${GEOLOCATION_SERVICE_PORT:8080}"
 }
}

The most important part of this API is that it provides the JVM arguments
and system environment variables with their values. This is very useful when
you pass arguments to your application in the form of JVM arguments or
system environment variables. In our case, we use an environment variable
called GEOLOCATION_SERVICE_PORT; however, we see that it is not being
supplied to the environment. This is the reason our server port is defaulted to
8080.

The next useful endpoint is the /dump endpoint. This endpoint performs a thread5.
dump and provides the output as the response of the API call. Go ahead and
execute the following curl command in a terminal shell:

 curl http://localhost:8080/dump
 [
 {
 "threadName": "http-nio-8080-exec-10",
 "threadId": 47,
 "blockedTime": -1,
 "blockedCount": 0,
 "waitedTime": -1,
 "waitedCount": 2,
 "lockName":
"java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject@3386
c54f",
 "lockOwnerId": -1,
 "lockOwnerName": null,
 "inNative": false,
 "suspended": false,
 "threadState": "WAITING",
 "stackTrace": [
 {
 "methodName": "park",
 "fileName": "Unsafe.java",

Monitoring Microservices

[265]

 "lineNumber": -2,
 "className": "sun.misc.Unsafe",
 "nativeMethod": true
 },

This response has been truncated as it was too lengthy. As you can see, the
response is a JSON representation of the dump. One advantage of the JSON
representation is that it can be parsed easily.

The next useful endpoint is the /info endpoint. This endpoint provides any6.
information that you would like to display about your application. Some useful
information could be the Git revision ID, application artifact version, and publish
date time.
The next useful endpoint is the /trace endpoint. It ideally provides the trace log7.
information of the last hundred requests made to the service. In the same
terminal shell, execute the following curl command:

 curl http://localhost:8080/trace

You should receive something like this (pretty-printed for readability):8.

 [
 {
 "timestamp": 1481818606409,
 "info": {
 "method": "GET",
 "path": "/info",
 "headers": {
 "request": {
 "host": "localhost:8080",
 "connection": "keep-alive",
 "upgrade-insecure-requests": "1",
 "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X
10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98
Safari/537.36",
 "accept":
"text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
",
 "accept-encoding": "gzip, deflate, sdch, br",
 "accept-language": "en-US,en;q=0.8,es;q=0.6"
 },
 "response": {
 "X-Application-Context": "application:8080",
 "Content-Type": "application/json;charset=UTF-8",
 "Transfer-Encoding": "chunked",
 "Date": "Thu, 15 Dec 2016 16:16:46 GMT",

Monitoring Microservices

[266]

 "status": "200"
 }
 }
 }
 },...

As you can see, we have truncated the response as it was too long. The
snippet shows just one request and its information. This will be particularly
useful when you are debugging your API failures.

Oftentimes, you might want to modify these metrics. Be it exposing your own9.
health status or exposing some information metrics, there are ways to do so using
Spring.

If you would like to invest more time on these topics, go over the
descriptive documentation on Spring Boot's GitHub documentation at
https://github.com/spring-projects/spring-boot/blob/master/sprin

g-boot-docs/src/main/asciidoc/production-ready-features.adoc.

That brings us to the end of this recipe. There are other endpoints that we have not
discussed in this recipe, such as /shutdown, /loggers, /mappings,
/configprops,/beans, and /autoconfig. I'll leave that as an exercise for you to try out.
The /shutdown endpoint is disabled by default. You have to enable it by setting the value
of endpoints.shutdown.enabled to true in your application.properties file.

Creating custom metrics using Dropwizard
So far in this chapter, we've learned how to use the Spring Boot Actuator metrics. But what
if your application is not Spring Boot and you still want to create metrics of your own? That
is what this recipe will help you with. Not every microservice needs to be Spring Boot
based. There are some microservices that could be written with other microservice
frameworks. In those cases, if you would like to create your own metrics, you could use
Dropwizard's Codahale library. Codahale is one of the most popular metrics libraries
available for Java-based applications. In fact, Spring Boot internally uses Codahale to create
some of its metrics. In this recipe, we will be using the Codahale library to create a metric
for the geolocation application.

https://github.com/spring-projects/spring-boot/blob/master/spring-boot-docs/src/main/asciidoc/production-ready-features.adoc
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-docs/src/main/asciidoc/production-ready-features.adoc

Monitoring Microservices

[267]

Getting ready
If you are wondering what the association between Dropwizard and Codahale is, the
answer is that Codahale falls under the Dropwizard umbrella. Dropwizard is an ecosystem
of libraries that can be used to build better microservices. Some of these libraries include
Jetty for in-memory web servers, Jersey for building REST APIs, Jackson for working with
JSON documents, and Codahale for metrics. In this recipe, we will be using just the
Codahale library to expose our metrics. The great thing about this library is that it has been
developed in such a way that it can be used independently as well-that means you can use
Codahale even when your project does not use the other Dropwizard components. Let's
create our first metric. Open your STS IDE and navigate to the geolocation project.

How to do it…
Before we jump in, let's decide which type of metric we are going to create. There are
several metric types that Dropwizard Codahale offers:

Gauges
Counters
Meters
Timers
Histograms

A gauge is a type of metric that can hold any value. It is, in fact, the most common metric
type. The next type of metric is counter. Counters, as the name indicates, are used to
maintain a counter and are usually incremented in a sequence. Any rate is usually
represented as a meter. A histogram is used to measure the distribution of values. Though
timers sound pretty straightforward, they're actually not. Timers are a combination of both
histograms and meters. Understanding timers takes some time, but putting them to use will
add great value. To learn more about histograms please take a look at
http://metrics.dropwizard.io/3.1.0/getting-started. In this recipe, let's try to create
two types of metrics: gauge and counter:

geolocationWriteRequestCount: The number of times the POST API was
invoked (counter)
geolocationLastWriteTime: The most recent timestamp of when a
geolocation was created (gauge)

http://metrics.dropwizard.io/3.1.0/getting-started

Monitoring Microservices

[268]

Let's start by creating a new counter for the geolocationWriteRequestCount metric:

First add the Maven dependencies we need:1.

 <dependency>
 <groupId>io.dropwizard.metrics</groupId>
 <artifactId>metrics-core</artifactId>
 </dependency>

Now create a bean called2.
com.packt.microservices.geolocation.MetricSystem.java, which will
be responsible for instantiating and reporting our metrics. For reporting, we will
use our basic ConsoleReporter until we set up our Graphite instance.
Create a new class called3.
com.packt.microservices.geolocation.MetricSystem.java. Annotate
this class with the @Component annotation. Also add an init() method with
@PostConstruct annotation. This is where we will be setting up our metrics:

package com.packt.microservices.geolocation;

import javax.annotation.PostConstruct;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

import com.codahale.metrics.MetricRegistry;

@Component
public class MetricSystem {
 @Autowired
 private MetricRegistry metricRegistry;
 @PostConstruct
 public void init() {
 }
}

As you can see, we have autowired a bean of type MetricRegistry instead
of creating our own MetricRegistry instance. Spring Boot makes the
MetricRegistry bean available. So any metric created with this
MetricRegistry instance will be exposed by the /metrics endpoint as
well. This is the reason we are autowiring the MetricRegistry bean.

Monitoring Microservices

[269]

Before we create the metric, let's set up a ConsoleReporter. Codahale provides4.
a set of metric reporters responsible for publishing the metrics that are created to
another consumption layer. Currently, there is support for Graphite, Ganglia,
SLF4J, CSV, and Console. The ConsoleReporter, as its name indicates, reports
all the metrics to stdout. In the next recipe, we will set up our own Graphite
instance with the help of Docker. Until then, for simplicity, we will be using the
ConsoleReporter. Add the following snippet to the init() method:

ConsoleReporter consoleReporter =
ConsoleReporter.forRegistry(metricRegistry)
 .convertRatesTo(TimeUnit.SECONDS)
 .convertDurationsTo(TimeUnit.MILLISECONDS)
 .build();

consoleReporter.start(10, TimeUnit.SECONDS);

There are three things to note here. The convertRatesTo() method says
that all the rates have to be converted to seconds, and the
convertDurationsTo() method says that all the durations should be
converted to milliseconds. The start method, however, takes two
arguments. These two arguments together tell Codahale to report metrics to
the console every 10 seconds.

Now create a new Counter variable with the name5.
geolocationWriteRequestCount. Let's define it in the init() method and
put it into action:

package com.packt.microservices.geolocation;

import java.util.concurrent.TimeUnit;

import javax.annotation.PostConstruct;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

import com.codahale.metrics.ConsoleReporter;
import com.codahale.metrics.Counter;
import com.codahale.metrics.MetricRegistry;

@Component
public class MetricSystem {
 @Autowired
 private MetricRegistry metricRegistry;
 private Counter geolocationWriteRequestCount;

Monitoring Microservices

[270]

 @PostConstruct
 public void init() {
 ConsoleReporter consoleReporter =
ConsoleReporter.forRegistry(metricRegistry)
 .convertRatesTo(TimeUnit.SECONDS)
 .convertDurationsTo(TimeUnit.MILLISECONDS)
 .build();

 consoleReporter.start(10, TimeUnit.SECONDS);
 geolocationWriteRequestCount =
metricRegistry.counter("geolocationWriteRequestCount");
 }
 public Counter geolocationWriteRequestCount() {
 return geolocationWriteRequestCount;
 }
}

It is as simple as that. We have also created a method to get this counter so
that it can be used from our controller.

Now move on to the GeoLocationController.java class and increment the6.
counter using the inc() method as and when a new geolocation is created.
Though this might not be a good practice, we are going to add it to the controller
for illustration purposes only:

@Autowired
private MetricSystem metricSystem;

@RequestMapping(method = RequestMethod.POST, produces = "application/json",
consumes = "application/json")
public GeoLocation create(@RequestBody GeoLocation geolocation) {
 GeoLocation newGeoLocation = service.create(geolocation);

 metricSystem.geolocationWriteRequestCount().inc();

 return newGeoLocation;
}

As you can see, we have autowired the MetricSystem bean and used it to
get our geolocationWriteRequestCount counter. We have then invoked
the inc() method to increment the counter.

Monitoring Microservices

[271]

That's it! Now lets' test it out. Go ahead and start the7.
GeoLocationApplication.java class as a Spring Boot application from your
STS IDE. After your application has started, issue the following curl commands
to create two new geolocations:

 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude": -88.144040}' http://localhost:8080/geolocation
 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
9.568012, "longitude": 77.962444}' http://localhost:8080/geolocation

This should have incremented the counter value to 2.

Now go back to your STS IDE, and look at the console logs of the geolocation8.
project. You should see something like this getting logged every 10 seconds:

 Gauges --
 gauge.response.geolocation
 value = 32.0
 Counters --
 counter.status.200.geolocation
 count = 2
 geolocationWriteRequestCount
 count = 2

We can clearly see that the value of geolocationWriteRequestCount is 2
now. Also note the other two metrics, gauge.response.geolocation and
counter.status.200.geolocation. These metrics are created by Spring
Boot. If you remember from the previous recipe, these metrics were
displayed on the /metrics endpoint.

Now let's quickly invoke the /metrics endpoint to check whether our metrics9.
are populated. Execute the following curl command on your terminal:

 curl http://localhost:8080/metrics
 {
 .
 .
 "counter.status.200.geolocation": 2,
 "gauge.response.geolocation": 32,
 "geolocationWriteRequestCount": 2,
 .
 .
 }

Monitoring Microservices

[272]

This response has been trimmed as it was very long. As you can see, among
other metrics, the three metrics that we saw in the console are reported.

Now let's create our next metric, geolocationLastWriteTime. This metric will10.
be a gauge, and we will be storing the epoch time as the value. We can get the
epoch time in Java using System.currentTimeMillis(). As this metric is
going to store the last write timestamp, this metric needs to be updated only
when a new geolocation is created. So we will need a holder variable in our
MetricSystem bean that is updated with the time every time a new geolocation
is created. The gauge is a little different from the counter for the fact that it gets
calculated every time it gets reported. After adding the
geolocationLastWriteTime gauge, the MetricSystem bean will look like this:

package com.packt.microservices.geolocation;

import java.util.concurrent.TimeUnit;

import javax.annotation.PostConstruct;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

import com.codahale.metrics.ConsoleReporter;
import com.codahale.metrics.Counter;
import com.codahale.metrics.Gauge;
import com.codahale.metrics.MetricRegistry;

@Component
public class MetricSystem {
 @Autowired
 private MetricRegistry metricRegistry;
 private Counter geolocationWriteRequestCount;
 private Long geolocationLastWriteTime;
 @PostConstruct
 public void init() {
 ConsoleReporter consoleReporter =
ConsoleReporter.forRegistry(metricRegistry)
 .convertRatesTo(TimeUnit.SECONDS)
 .convertDurationsTo(TimeUnit.MILLISECONDS)
 .build();

 consoleReporter.start(10, TimeUnit.SECONDS);
 geolocationWriteRequestCount =
metricRegistry.counter("geolocationWriteRequestCount");
 metricRegistry.register("geolocationLastWriteTime", new Gauge<Long>() {
 @Override

Monitoring Microservices

[273]

 public Long getValue() {
 return geolocationLastWriteTime;
 }
 });
 }
 public Counter geolocationWriteRequestCount() {
 return geolocationWriteRequestCount;
 }
 public void markGeolocationLastWriteTime() {
 geolocationLastWriteTime = System.currentTimeMillis();
 }
}

See how the gauge is registered with an inner class that has a getter method
called getValue(). Also see how we have created the
markGeolocationLastWriteTime() method that updates this variable
with the current timestamp.

We are now ready to incorporate this metric into the11.
GeoLocationController.java. All we need to do is add this line of code to the
create method:

metricSystem.markGeolocationLastWriteTime();

That's it. Our gauge is now ready to test. Restart the12.
GeolocationApplication.java class and create a couple of geolocations using
the curl command. This time around, you should see a new gauge with the last
write timestamp as its value:

 -- Gauges ---
--
 gauge.response.geolocation
 value = 11.0
 geolocationLastWriteTime
 value = 1481939509826
 -- Counters ---
--
 counter.status.200.geolocation
 count = 2
 geolocationWriteRequestCount
 count = 2

You can verify this by invoking the /metrics endpoint as well.13.

Monitoring Microservices

[274]

That's it! We now have come to the end of this recipe. In this recipe, we learned how to
create custom metrics and expose them via Spring Boot's /metrics endpoint. We also
learned how to expose them via the ConsoleReporter.

Setting up Graphite using Docker
In this recipe, we will learn how to set up Graphite using Docker. Before that, let's learn a
few things about Graphite's architecture. Graphite consists of three major components:
Whisper, Carbon, and Graphite-Web. Whisper is a database library that Graphite relies on.
It works like a round-robin database. Carbon is the backend daemon that is responsible for
handling client requests. The Graphite-Web interface is used to create dashboards and
visualize the data stored in Graphite.

Getting ready
As usual, we will be defining our Graphite image in a docker-compose file. The reason we
are using docker-compose instead of running docker run is that we will later be adding
Grafana to this docker-compose file. Open up your STS IDE and navigate to the
geolocation project.

How to do it…
The next few steps in this recipe will guide you through setting up a standalone Graphite
instance using Docker.

Create a new docker-compose YAML file called docker-compose-1.
graphite.yml. Add the following snippet to the newly created YAML file:

version: "2"

services:
 graphite:
 image: hopsoft/graphite-statsd
 ports:
 - "8100:80"
 - "2003:2003"
 - "2004:2004"

Monitoring Microservices

[275]

As you can see, we are not using an official image for Graphite.
Unfortunately, there is no official version of Graphite available at the time of
writing this. So we have picked this image that has both Graphite and
statsd configured. statsd is a daemon developed by Etsy to consolidate
application metrics and publish them over to a graphing system.

To learn more about statsd, visit their GitHub page at2.
https://github.com/etsy/statsd. If you take a look at this image's
documentation at https://hub.docker.com/r/hopsoft/graphite-statsd, there
are several ports and volumes that can be mapped. We are not mapping them as
we will not need them for this recipe. But feel free to use them if you need to. Port
80 is used by Nginx, where your web interface and REST endpoints reside. Port
2003 is where the Carbon receiver is listening. Port 2004 is where Carbon Pickle
receiver is listening. We are not mapping port 80 on the container to port 80 on
the host because port 80 is a very common port number and you might have
other apps running on port 80. So we are mapping it to port 8100 on the host
machine.

There are two types of protocols by which you can feed metrics to Carbon:
Plain text and Pickle. Plain text follows the simplest format, where it sends
metrics in the format of <path> <value> <timestamp>, where path
indicates the path at which the metric will be stored along with the metric
name. However, Pickle on the other hand is used to send a batch of
metrics all at once to Carbon. It takes metrics in form of tuples: [(path,
(timestamp, value))]. For more information, look at Graphite's
descriptive documentation at
http://graphite.readthedocs.io/en/latest/feeding-carbon.html#fee

ding-in-your-data.

Now that we have our docker-compose YAML file, let's spin off our first3.
Graphite instance. Open up a new terminal window. Start docker-machine if it
is not started already, and set up Docker using the env command. Change your
directory to the geolocation project and execute the following command:

 docker-compose -f docker-compose-graphite.yml up

https://github.com/etsy/statsd
https://hub.docker.com/r/hopsoft/graphite-statsd
http://graphite.readthedocs.io/en/latest/feeding-carbon.html#feeding-in-your-data
http://graphite.readthedocs.io/en/latest/feeding-carbon.html#feeding-in-your-data

Monitoring Microservices

[276]

You should see something like this:4.

 Creating geolocation_graphite_1
 Attaching to geolocation_graphite_1
 graphite_1 | *** Running /etc/my_init.d/00_regen_ssh_host_keys.sh...
 graphite_1 | *** Running /etc/my_init.d/01_conf_init.sh...
 graphite_1 | *** Running /etc/rc.local...
 graphite_1 | *** Booting runit daemon...
 graphite_1 | *** Runit started as PID 13

Now that our Graphite instance is up and running, let's verify it by accessing the5.
web interface. Open a new browser session and navigate to this URL:
http://192.168.99.100:8100. You should see the Graphite dashboard page:

Monitoring Microservices

[277]

If you log in to the app using the credentials root/root, you will be able to6.
manage the graphs that you have created. It will also enable certain features on
the whole UI. Now expand the Metrics node and see what kind of metrics are
being exposed:

As you can see, there are some metrics ingested by statsd. Usually, metrics created by
statsd start with the keyword stats. You can plot each of these metrics on a graph by
simply clicking on them.

That brings us to the end of this recipe. Graphite by itself offers tons of features, and its true
power can be experienced only when we run it in clustered mode. It is strongly
recommended that you understand Graphite and its components before you start using it in
production.

Monitoring Microservices

[278]

Fortunately, Graphite's documentation is very descriptive and has a lot of
useful information. You can find it at
http://graphite.readthedocs.io/en/latest/index.html.

Using the Graphite interface
In this recipe, let's familiarize ourselves with the Graphite web interface. Though it looks
very simple, it is packed with tons of graphing features. We will look at some of them in
this recipe. For graphing, we will use the metrics that are created by statsd.

Getting ready
We will be picking some basic metrics from Graphite in order to demonstrate its graphing
abilities. Also, let Graphite collect some metrics from statsd. It is recommended that you
leave the Graphite container up and running for a few minutes before you try this recipe.
After, say, 15 minutes, open a new browser tab and navigate to the Graphite web interface
at http://192.168.99.100:8100.

How to do it…
The left-hand side pane of the Graphite interface is usually the metric chooser. That's where
you will be able to find all the metrics that are available in Graphite. There are three tabs:

Tree
Search
Auto-Completer

Lets start with the Tree view first.

http://graphite.readthedocs.io/en/latest/index.html

Monitoring Microservices

[279]

Tree view
As the name indicates, you can navigate through the tree nodes and view all the metrics
available under each path. Clicking on a metric will plot the metric on the graph on the
right-hand side pane. In the following screenshot, we have picked the metric at
stats.statsd.processing_time:

Now let's move on to the graph modal. There are some useful buttons in this modal. First
off, there's the Date Range button that looks like a calendar. Clicking on this button gives
you two calendars where you can choose the from and to dates and times. This way, you
can focus on the time window that you are interested in. It looks something like this:

Monitoring Microservices

[280]

The next useful button in the modal is the Select Recent Data button, which looks like a
clock. This option lets you choose the most recent time window in the measure of minutes,
hours, days, weeks, months, and years. It looks something like this:

The next button that we would want to use most of the time is the Short URL button. This
button is used to generate a short URL that we can use to render this graph from outside the
Graphite web interface. It internally uses the Render API, and these graphs can be
embedded in any web page. Sometimes, you would want to modify your graph's
appearance, legend, and style. For this purpose, you can use the Graph Options button. It
has tons of options that you can use to modify the way your graph looks:

Monitoring Microservices

[281]

And finally, what if you want to embed multiple metrics on the same graph? You have to
plot them all in a single graph. That's where the Graph Data button will be useful. If you
click on this button, it will open up a modal from where you can choose other metrics, and
it will automatically plot them in the underlying graph:

The Auto Refresh button is a toggle button that you can enable to automatically refresh the
graph. It is useful to keep this option turned on, but keep in mind that it makes several
requests frequently, and it might slow down your dashboard if you have lot of graphs that
have this option enabled. By default, if this option is enabled, it refreshes every 60 seconds.

Search
Now lets move on to the next tab: Search. This tab might (depending on the version) be
disabled if you are logged in as root user. So go ahead and logout. As the name indicates,
the Search tab is used to search for any metrics under the given path. If you enter stats in
the search bar and hit Enter, you should see all the matching metric names in the results
section. Clicking on a metric from the result section will plot the metric on the graph in the
right-side pane. Clicking on the same metric again will remove it from the plotted graph. To
get more help on the Search feature, just click on the Help hyperlink. The following
screenshot shows the results for the stats keyword:

Monitoring Microservices

[282]

Auto-Completer
The Auto-Completer mode is very similar to the Search mode except for the fact that the
search textbox has autocomplete enabled. The other difference between these two modes is
that in Auto-Completer mode, you have to navigate to the metric in order to plot it. Use Tab
to select a suggestion in Auto-Completer mode. The results pane is not very helpful in this
mode. It is surprising why these two modes have been separated into two different tabs. It
would make a lot of sense to merge their features and keep them together in a single tab.
The following screenshot illustrates how the Auto-Completer mode works:

Monitoring Microservices

[283]

Graphite
The other important page in Graphite is the Dashboard page on the top right. The
Dashboard view is used to create multiple graphs and create a dashboard. You can in fact
save the graphs and dashboards and use them later. As we have not mapped the docker
volume that hold the dashboards, we might not be able to recover them after we recreate
the container. But in production mode, when you are running it elsewhere, keep in mind
that the graphs and dashboards should be recoverable. Refer to the documentation of this
container to see which volume holds what information. You can perform all the operations
that we just went through on the Dashboard page as well. The following screenshot shows
how you can create your own dashboard:

As you can see, the top section is where you choose the metrics, and the bottom section is
where you customize your dashboard. There are several options that you can perform on
this dashboard. I will leave it to you as an exercise to explore the Dashboard view. If you
are wondering why you would need another tool such as Grafana when Graphite already
has most of the graphing capabilities, the answer is-wait until you see the abilities of
Grafana. Grafana's only focus is building monitoring systems. We will learn more about it
in later recipes of this chapter.

Monitoring Microservices

[284]

That brings us to the end of this recipe. In this recipe, we have learned how to use the
Graphite web interface. Now you know how powerful Graphite's web interface is. In fact,
Graphite lets you create sophisticated graphs, save them, and share them. In the next few
recipes, we will be exporting the metrics that we created in the geolocation application over
to Graphite and plot them on graphs using Grafana.

Exporting Dropwizard metrics over to
Graphite
In the early recipes of this chapter, we learned how to create metrics using Dropwizard's
Codahale library. Later, we learned how to start Graphite using Docker and understood the
basics of using the Graphite interface. In this recipe, we will be exporting the metrics we
created in the geolocation application over to this Graphite instance, which will then be
used by Grafana for graphing.

Getting ready
As we will be working on the geolocation application, follow these steps:

Open the STS IDE.1.
Navigate to the geolocation project, and get ready for the next step.2.
Start Graphite if you haven't done so. You can use the docker-compose-3.
graphite.yml file that we created earlier to start Graphite.

How to do it…
The geolocation application currently exposes two metrics using the Codahale
MetricRegistry: geolocationWriteRequestCount and geolocationLastWriteTime.
There were two methods we used to view these metrics: using Spring's /metrics endpoint
and using the ConsoleReporter.

Monitoring Microservices

[285]

In this recipe, we will be using a different type of report to report our metrics to Graphite.
Can you guess the name of this reporter? Yes, you got it right. It is GraphiteReporter:

For the first step, let's comment out the ConsoleReporter as we will not need it1.
anymore. Going forward, if we want to look at our metrics, we can always use
the Graphite web interface or the /metrics endpoint. After you have
commented out the ConsoleReporter, go ahead and add the below dependency
to your pom.xml file:

<dependency>
 <groupId>io.dropwizard.metrics</groupId>
 <artifactId>metrics-graphite</artifactId>
</dependency>

Perform a maven update on the project to download the new dependency. Now2.
add the following snippet to the init method right after the commented-out
block:

Graphite graphite = new Graphite(new InetSocketAddress("192.168.99.100",
2003));
GraphiteReporter graphiteReporter =
GraphiteReporter.forRegistry(metricRegistry)
.prefixedWith("com.packt.microservices.geolocation")
.convertRatesTo(TimeUnit.SECONDS)
.convertDurationsTo(TimeUnit.MILLISECONDS)
.filter(MetricFilter.ALL)
.build(graphite);
graphiteReporter.start(60, TimeUnit.SECONDS);

There are six things to talk about here:3.

Firstly, the port on which we are connecting to Graphite. Port number
2003 is where the Carbon plaintext listener is running. If you would
like to use the Pickle protocol mode, you will be using port 2004.

To learn how to use Pickle mode, take a look at this page: h t t p ://m e t r i c s

. d r o p w i z a r d . i o /3. 1. 0/m a n u a l /g r a p h i t e .

http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite
http://metrics.dropwizard.io/3.1.0/manual/graphite

Monitoring Microservices

[286]

The prefixedWith() method says that any metric created on this
MetricRegistry should be prefixed with the label
com.packt.microservices.geolocation. This is mainly used to group our
metrics together.
We already know what the convertRatesTo() and convertDurationsTo()
methods are used for.
The filter() method is used to filter any metrics from being reported to
Graphite. In our case, we want all our metrics to report to Graphite, so we have
used MetricFilter.ALL, which instructs Codahale to export all metrics.

Finally, the interesting part is our publish interval. We have set the publish4.
interval to 60 seconds. The reason we moved from 10 seconds to 60 is that when
you are building a production-level application and your application is scaled,
you will end up creating tons of metrics during each interval. Setting it to a
granularity of 10 seconds might be too much. That is the reason we are going
with a higher granularity of 60 seconds. But this is completely left to you to
choose. It also depends on the type of metric you are reporting. If you would like
to go with a different interval, feel free to do so.
Now, our application is completely ready to start publishing metrics over to5.
Graphite. Go ahead and start the application as a Spring Boot application. Once
your application has started, create two geolocations using the following two
curl commands and try to get them using another curl command:

 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude": -88.144040}' http://localhost:8080/geolocation
 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
9.568012, "longitude": 77.962444}' http://localhost:8080/geolocation
 curl http://localhost:8080/geolocation

After executing these three CURL commands, wait 60 seconds. The reason we are6.
waiting 60 seconds is because we have set the reporting interval to 60 seconds in
our code. So by then, we can expect to see some metrics on the Graphite web
interface.

Monitoring Microservices

[287]

Open a new browser tab and navigate to the Graphite web interface at7.
http://192.168.99.100:8100. You should now see a new tree grouping for
our metrics at com.packt.microservices.geolocation. The following
screenshot shows how they would look like in Graphite's Tree view:

Now, there are two ways to look at your metrics stored in Graphite. The first8.
approach is something we are already familiar with: the Graphs interface. The
Graphs interface gives you a graph with all the values plotted on the graph. But
this view might not be very helpful all the time.
Now let's look at the next approach. Graphite has a sophisticated REST API. It9.
has two APIs: Metrics and Render. The Metrics API is used to search for
metrics. You can use this to perhaps build a metrics discovery system. The
Render API, however, is what we really need. As the name indicates, it is used to
render metric values in various formats, such as graphs, CSV, JSON, PDF, and
PNG.

To learn more about the REST APIs available in Graphite, visit their
documentation page at
https://graphite-api.readthedocs.io/en/latest/api.html.

Now let's look at how to use the Render API to query our metrics. The Render10.
API requires two query parameters: target and format. The target parameter
indicates the path at which the metrics value can be located. The format
parameter, however, tells which format you would like your metric to be
displayed in. By default, if you do not provide the format, it renders the data in
PNG format. But that's not what we want; we want to see the actual data. For
that, we might want to use the JSON format.

https://graphite-api.readthedocs.io/en/latest/api.html

Monitoring Microservices

[288]

Open a new browser tab and paste this URL:11.

http://192.168.99.100:8100/render?target=com.packt.microservices.geolocatio
n.geolocationWriteRequestCount.count&format=json

The previous URL says that we are rendering the metric value at12.
com.packt.microservices.geolocation.geolocationWriteRequestCoun

t.count and the format that we have requested is JSON. See how we have
appended .count to the metric name. If you want to verify, look at how the
metric value is stored in Graphite from the tree view of the web interface. You
will see that the leaf node is called count for all metrics of the counter type. This
URL would have given you something like this:

 [
 {
 "target":
"com.packt.microservices.geolocation.geolocationWriteRequestCount.count",
 "datapoints": [
 [
 null,
 1481917380
],
 [
 null,
 1481917440
],
 .
 .
 [
 2,
 1482003720
]
]
 }
]

You will notice that there are several data points. We are particularly interested13.
in the most recent data point, which will be usually populated as the last data
point. If you scroll all the way down in your browser, you will see that the last
data point is populated with the value 2, indicating that we have received two
write requests for the geolocation API so far. Though it is difficult to work
with such a huge JSON file, it is very useful when you are debugging. In fact, you
can use the from and until parameters to specify a time range to query just the
data points that were recorded during that time range.

Monitoring Microservices

[289]

The Render API is much more sophisticated with a lot of query parameters, such14.
as bgColor and areaMode. Take a look at Graphite's documentation to learn
more about the API before you start using it.

That brings us to the end of this recipe. We learned how to use Graphite to store metrics
and also learned about the Render API that Graphite offers to view metrics.

Exporting Spring Boot Actuator metrics over
to Graphite
In the previous recipe we learned how to export the metrics we created using Codahale
over to Graphite. In this recipe, we will see how we can expose some metrics Spring Boot
offers. Unfortunately, at this moment, the MetricRegistry does not expose all the metrics
that Spring Boot offers. Only few of them are created using Codahale. If you take a look at
the metrics that are available in /metrics, most of them are JVM related. So in this recipe,
we will find another way to expose the JVM metrics via Codahale.

Getting ready
In this recipe, we will be adding a Maven dependency and some Java code to the
geolocation project. So open up your STS IDE and navigate to the geolocation project.
Make sure your Graphite instance is up and running. If not, start it using the docker-
compose-graphite.yml file we created.

How to do it…
In this recipe, we are going to expose some JVM metrics using Codahale. This1.
will be exported to Graphite automatically as we have configured the
GraphiteReporter to expose metrics every 60 seconds. Add the following
Maven dependency to the pom.xml file:

<dependency>
 <groupId>io.dropwizard.metrics</groupId>
 <artifactId>metrics-jvm</artifactId>
 <version>3.1.2</version>
</dependency>

Monitoring Microservices

[290]

Note that we have added a version to this dependency. That is because this is not2.
the default in the parent POM, and we will have to use our own version in the
child POM. Now, add the following snippet as the last line of the init() method
in the MetricSystem.java bean:

metricRegistry.registerAll(new MetricSet() {
 @Override
 public Map<String, Metric> getMetrics() {

 Map<String, Metric> metrics = new HashMap<>();
 metrics.put("geolocationMemoryUsage", new MemoryUsageGaugeSet());
 metrics.put("geolocationClassLoading", new ClassLoadingGaugeSet());
 metrics.put("geolocationGarbageCollector", new
GarbageCollectorMetricSet());
 return metrics;
 }
});

The previous snippet illustrates how you can register metric sets to the
MetricRegistry. All the three sets-MemoryUsageGaugeSet,
ClassLoadingGaugeSet and GarbageCollectorMetricSet come with
the metrics-jvm dependency. There are also other sets like
BufferPoolMericSet, CachedThreadStatesGaugeSet,
ThreadStateGaugeSet and so on. You can try them out one by one as an
exercise.

Now let's test it out. Start the application as a Spring Boot application, open a3.
new browser tab, and navigate to http://localhost:8080/metrics. This
time, you should see a bunch of JVM-related metrics that start with the keyword
geolocation. If you navigate to the Graphite web interface after 60 seconds, you
will see those metrics listed under the tree.

Monitoring Microservices

[291]

The following screenshot illustrates how it will look like in the Tree view of
the Graphite web interface:

As you can see, we now have three new groupings: geolocationClassLoading,
geolocationGargbageCollector, and geolocationMemoryUsage. It is recommended
that you take some time to explore these three metric groups and the kind of metrics they
expose.

That brings us to the end of this recipe. We learned how to configure and expose JVM
metrics using Codahale over to Graphite. In the next few recipes, we will learn how to use
these metrics to create valuable graphs using Grafana.

Setting up Grafana using Docker
So far in this chapter, we have learned the basics of monitoring. We laid out the foundation
of our monitoring system: our metrics. We learned how to create metrics using
Dropwizard's Codahale library. We then spun off a brand-new Graphite instance. Later, we
exported the metrics that we created over to Graphite. In the rest of the recipes of this
chapter, we will be learning more about a tool called Grafana and how it can be used in
monitoring our microservices.

Monitoring Microservices

[292]

Getting ready
Instead of running Grafana on its own using the docker run command, we will be adding
it to the docker-compose YAML file that holds Graphite. The reason we are doing this is
because they are closely related to each other though they need not be linked. Before we
jump in, let's take some time to understand what Grafana is. Grafana is an open source tool
for metrics visualization. The Grafana interface is sophisticated enough that it be used to
create several types of graphs. Very recently, Grafana came up with their notification
system, where you will be alerted when a certain metric exceeds its threshold. The beauty of
this feature is that it can alert you not just by e-mail but also on Slack, PagerDuty, and
webhooks. Now let's open up the STS IDE.

How to do it…
The next few steps in this recipe will help you setup your first Grafana instance using
Docker.

Open up the YAML file that already has Graphite: docker-compose-1.
graphite.yml. Add the following snippet to it:

 grafana:
 image: grafana/grafana
 ports:
 - "3000:3000"

That's all you need to start Grafana. Port 3000 is where the Grafana web
interface will be running. We have mapped this port to port 3000 of the host
machine. As you can see, there are no links to the Graphite container. The
only reason we are keeping these two containers together is because they are
both used to build our monitoring system.

Now lets stop Graphite if it is already running. Open a new terminal session, and2.
start Grafana and Graphite together using the following command:

 docker-compose -f docker-compose-graphite.yml up

Monitoring Microservices

[293]

The log messages will not be very helpful to identify whether Grafana has started3.
or not. However, you will know that Grafana has started when your log
messages stop tailing. You will see something like this:

Now that your Grafana and Graphite instances are up and running, let's open the4.
Grafana web interface. Open a new browser session and enter this URL to open
Grafana: http://192.168.99.100:3000.
You will be taken to the login page. Grafana has a very good login mechanism. It5.
even has integration with LDAP:

By default, the username and password are both set to admin.

Monitoring Microservices

[294]

So enter the credentials on the login page and hit Log in. On the home page, you6.
will see that we do not have any dashboards, apps, panels, or data sources
created:

The top navigation pane of Grafana is very useful. It has pretty much all the7.
quick action buttons you will need while viewing your dashboards:

The first button, which has the Grafana icon, is the main menu. Clicking on that8.
will open links to pretty much all the options and configurations.

The Home button acts as a quick-action bar to navigate to all the Dashboards
you have in this instance of Grafana.

Monitoring Microservices

[295]

The next useful section in the top navigation bar is the Refresh Range section.9.
Clicking on the default refresh range, Last 6 hours, will open a section where you
can configure the time range as well as the refresh interval. This is a very
sophisticated section.

That's pretty much a very high-level overview of the Grafana interface. There are still lots of
features that Grafana offers. We will look at them in later recipes. With that, we've come to
the end of this recipe.

Configuring Grafana to use Graphite
We now have a working version of Graphite and Grafana configured using the docker-
compose YAML file. In this recipe, we will be configuring Grafana to use the Graphite
instance we are using to export our geolocation metrics to. When we have configured
Grafana to use the Graphite instance, we will soon be able to utilize the geolocation metrics
to create dashboards on Grafana.

Getting ready
Before we jump into the recipe, let's understand a few concepts and terminologies used in
Grafana. You will need to understand four entities:

Data sources: Data sources are entities that hold the data required to plot your
graphs.
Panels: Panels are individual visualizations that will connect to a data source,
query a certain data set, and plot them on a graph, table, single panel stat, or text.
Rows: Rows are group of panels that constitute a row on the dashboard.
Dashboards: Of course, we all know what a dashboard is. The dashboard
comprises several rows of panels.

Monitoring Microservices

[296]

How to do it…
Now guess what we need to create in order to configure Grafana to use the Graphite
instance that we have. Yes, you are right; we have to create a data source. Before that, make
sure you have both Grafana and Graphite running. If they're not, start them using the
docker-compose YAML file:

Let's start by clicking on the main menu button at the top left of the Grafana page.1.
Then, choose Data Sources from the dropdown. On the next screen, click on the
Add data source button and enter the following values in the form:

Name: graphite
Default: True (checked)
Type: Graphite
Url: http://192.168.99.100:8100
Access: direct

Make sure neither the Basic Auth nor the With Credentials checkbox is checked:2.

Monitoring Microservices

[297]

After entering the previous values in the form, hit the Add button. Right after3.
you hit Add, Grafana will try to ping Graphite with the connection parameters
that we provided here. If your connection is successful, you will receive a success
message on the same screen:

If for some reason Grafana is not able to connect to Graphite, you will receive
an error message with details. Most of the times, the error could either be that
Graphite is not running or you have not mapped the Graphite ports, or that
you are behind a proxy. Make sure you've set up everything right and try
again.

Now go back to the Data Sources page, and you should see the newly created4.
Graphite data source:

Monitoring Microservices

[298]

Here, you will have two types of views: the grid view and the list view. In older5.
versions of Grafana, the grid view is the default for some reason. However, the
list view is a better view as it shows the complete URL. The list view looks
something like this:

This clarifies that our data source was added successfully; in other words, Grafana has been
configured to use our Graphite instance.

That brings us to the end of this simple recipe.

Configuring Grafana dashboards to view
metrics
So far, we've learned how to use Graphite and Grafana. In this recipe, we will learn how to
create dashboards and panels using Grafana. Ideally, Grafana dashboards will be displayed
on a big screen in a space where developers (or concerned people) can see them so that any
odd behavior in the graphs will be clearly visible to the developers.

Getting ready
In this recipe, we will be utilizing two metrics from the geolocation JVM and the two
metrics that we created using Codahale. These four metrics will be plotted on graphs in the
dashboard.

First, make sure Graphite and Grafana are up and running. If they're not, start1.
them using the docker-compose YAML file.
Next, make sure your geolocation application is up and running. If it's not, start it2.
from your STS IDE as a Spring Boot application.

Monitoring Microservices

[299]

How to do it…
In order to generate some metrics, execute the following curl commands to1.
create two geolocations:

 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
41.803488, "longitude": -88.144040}' http://localhost:8080/geolocation
 curl -H "Content-Type: application/json" -X POST -d '{"timestamp":
1468203975, "userId": "f1196aac-470e-11e6-beb8-9e71128cae77", "latitude":
9.568012, "longitude": 77.962444}' http://localhost:8080/geolocation
 curl http://localhost:8080/geolocation

Now, in order to generate some metrics, let the geolocation microservice,2.
Graphite, and Grafana run for a few minutes. The reason we are doing this is to
publish some metrics to Graphite. After, say, 15 minutes, go to a new browser
session and navigate to the Grafana URL at http://192.168.99.100:3000.
In Grafana, change the refresh window from 6 hours to 15 minutes. Click on3.
Home and then select the Create New button. In the next section, you will see an
empty row with some panel options, such as Graphs, Singlestat, Table, Text,
Alert List, Dashboard list, and Plugin list:

Before we add any new panels, let's first name our dashboard. Click on the gear4.
button in the top navigation pane and select Settings. In the Settings section,
enter the value of Name as Geolocation Microservice, and click on the Save
button in the top navigation bar.

Monitoring Microservices

[300]

Now select Graph from the choice of panels. If your row was already5.
created, hover over the three dots on the left side of the row and select Add Panel
and then choose Graph. You will see an empty graph with no data. In order to
edit this graph, click on the graph name Panel Title and select Edit.
In the Edit pane, navigate to the Metrics tab. Then, select the metric value6.
com.packt.microservices.geolocation.geolocationMemoryUsage.heap

.used. After you have selected the metric, you will see that the graph is plotted
with some metrics. Now let's duplicate this metric and add another metric to the
same graph. Click on the hamburger menu button and select Duplicate:

This time, use the metric7.
com.packt.microservice.geolocation.geolocationMemoryUsage.heap.

commited. Once you have added both the metrics, you will see that there are two
lines, one for each metric:

Monitoring Microservices

[301]

We now have to change the unit of our Left Y axis to bytes. Go to the Axes tab8.
and select data (Metric) / bytes as the Unit:

Before you save this panel, let's give it a nice header. Go to the General section9.
and change the Title to JVM Heap. In order to save this panel, hit the small x in
the top-right section of this pane:

Now let's create panels for the other two metrics, geolocationLastWriteTime10.
and geolocationWriteRequestCount. How about creating a new row for
these two panels? Click on the Add Row button at the bottom of the existing row.
Now add a new graph and configure it with the name
geolocationWriteRequestCount and metric
com.microservices.geolocation.geolocationWriteRequestCount.coun

t. Let's add a new panel for geolocationLastWriteTime. Hover over the three
dots on the left-hand side of this panel and choose Add Panel:

Monitoring Microservices

[302]

Configure the second panel in this row with the name11.
geolocationLastWriteTime and metric value
com.microservices.geolocation.geolocationLastWriteTime. Make sure
you change the unit for the Left Y axis to none/none. After you have configured
both the panels, close the configuration pane by hitting the x button.
Finally, save the dashboard by hitting the Save button from the top navigation12.
bar. Your final dashboard will look something like this:

Monitoring Microservices

[303]

As you can see, I have added some titles to the panels in the second row. That's it! We now
have our first monitoring platform for our microservice. The previous illustration might be
pretty simple, but the capabilities of Grafana and Graphite are awesome if we use it in the
right way. We did not go in detail into either Graphite or Grafana. But I'll leave that to you
as an exercise as our goal was primarily to demonstrate the abilities of these tools. Grafana
in fact gets more interesting with the use of alerts. I strongly recommend you try them
before you start using it in your production environment. Good luck monitoring!

7
Building Asynchronous

Streaming Systems with Kafka
and Spark

In this chapter, you will learn the following recipes:

Setting up Kafka using Docker
Creating Kafka topics to stream data
Writing a streaming program using Kafka Streams
Improving the performance of the Kafka Streams program
Writing a streaming program using Apache Spark
Improving the performance of the Spark job
Aggregating logs into Kafka using Log4J
Integrating Kafka with log management systems

Introduction
Streaming has been picking up traction lately. It is one way of processing your data. In fact,
there are two modes in which your data processing application can operate: batching and
streaming. In batching, you work on batches of datasets at frequent intervals. However, in
streaming, you process data as it gets streamed. This mode has always been a challenge.
Achieving this type of streaming behavior will open up a lot of different opportunities.

Building Asynchronous Streaming Systems with Kafka and Spark

[305]

You could make things happen quickly. For example, a banking application can send you
relevant coupons based on your spending activity. Or a shopping application can
recommend products based on your viewing activity. And all this will happen right away
instead of waiting until the middle of the night for a batch job to run. Streaming has become
a critical part of many businesses these days. The past couple of years have seen a
tremendous improvement in streaming technologies. Frameworks such as Apex, Storm,
Spark, Flink, Kafka Streams, and Samza, to name a few, are some popular streaming
frameworks being used a lot these days. A streaming framework will make sense only
when you have a supporting messaging system. Kafka, RabbitMQ, and Zero MQ, to name a
few, are examples of popular messaging systems. In this chapter, we will focus more on
Spark and Kafka.

Setting up Kafka using Docker
In order to demonstrate streaming, we first require a streaming endpoint. A streaming
endpoint could be a TCP socket, messaging destination, and so on. In this chapter, we will
use Kafka heavily to demonstrate its streaming abilities. In this recipe, we will learn how to
set up Kafka using Docker Compose. Before we jump into the recipe and start orchestrating
a Kafka instance, let's first take some time to understand how Kafka works.

Kafka
According to Kafka's documentation, it is a distributed streaming platform. It is distributed
because it has clustering abilities and is fault tolerant. Achieving fault tolerance is not very
easy. But Kafka's architecture makes it fault tolerant and, at the same time, simple to work
with and understand. Simplicity is one of the reasons Kafka is being adopted by lot of
organizations. At the same time, it is very powerful. It can handle a huge amount of data at
once. Kafka utilizes Zookeeper for most of its clustering mechanism. It is a streaming
platform because it has the ability to work on streams of datasets as they come through the
destinations.

In the simplest terms, Kafka is a powerful pub-sub messaging system. If you come from a
Java background and have experience working with JMS (Java Message Service), then you
might have already guessed what Kafka could be.

There are two types of communication mechanisms possible in any messaging system:

Point-to-point
Pub-sub

Building Asynchronous Streaming Systems with Kafka and Spark

[306]

Point-to-point mechanism
Point-to-point is where a message producer sends messages to a queue, which is then
picked up by a message consumer. There can be any number of message consumers
listening on the queue; however, only one consumer can consume each message.

Pub-sub mechanism
In a pub-sub mechanism, producers publish messages to a topic, which is then broadcasted
to all the consumers subscribed to the topic. So each consumer in a pub-sub mechanism will
receive one copy of all the messages. Kafka offers both of these modes with the help of
topics.

Kafka terminology
There are five terminologies you have to know before you start working with Kafka:

Brokers
Topics
Partitions
Producers
Consumers

Brokers
Brokers are nothing but Kafka servers that will host your topics and logs inside your topics.

Topics
Topics are destinations that are used in Kafka. Each topic is partitioned into multiple
ordered partitions of messages.

Partitions
Partitions differentiate Kafka from other messaging systems. And they make the working
of Kafka much more efficient and faster.

Producers and consumers
Producers produce messages in topics whereas consumers consume messages from topics.

Building Asynchronous Streaming Systems with Kafka and Spark

[307]

The following diagram provides a high-level idea of how Kafka works:

In the preceding diagram, you can see that there are two brokers in a cluster. There is one
topic called Topic 1 on both the brokers in the cluster. The topic has two partitions. Ideally,
each broker will take ownership of one partition, and the other broker will have a replica of
that partition. For example, if Broker 1 owns Partition 0 in Topic 1, then there will be a
replica of Partition 0 in Broker 2 as well. In other words, Broker 1 is the leader for Partition
0 of Topic 1. I hope you are able to grasp the basics of Kafka. We will learn some advanced
concepts about Kafka later in this chapter, but for now, this should give you a good head
start.

Getting ready
Kafka requires Zookeeper in order to operate. It uses Zookeeper mainly for electing a
controller, storing configurations of topics, storing member information of the cluster, and
so on. At the time of writing this, it is not possible to run Kafka without Zookeeper. So,
obviously, we will need two containers: Kafka and Zookeeper. Go ahead and open up your
STS IDE and navigate to the geolocation project.

How to do it…
We will use Docker Compose to orchestrate Kafka. Go ahead and create a new YML file
called docker-compose-kafka.yml directly under the geolocation project. Then, add
the following snippet to the newly created Docker Compose file:

Building Asynchronous Streaming Systems with Kafka and Spark

[308]

version: "2"

services:
 zookeeper:
 image: wurstmeister/zookeeper
 ports:
 - "2181:2181"
 kafka:
 image: wurstmeister/kafka:0.10.1.0-1
 ports:
 - "9092:9092"
 environment:
 KAFKA_ADVERTISED_HOST_NAME: 192.168.99.100
 KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock

As you can see, we have not used any official images. At the time of writing this, there is no
official image for Kafka. However, there are Kafka images listed under the Confluent
organization in Docker Hub. Confluent is the company behind Kafka and the Confluent
platform. It was built by a few of the early committers of Kafka back from LinkedIn. The
company is primarily focused on providing streaming solutions and products to build data
pipelines and platforms.

Port 2181 of Zookeeper has been mapped to the same port on the host. Similarly, port 9092
of Kafka has been mapped to the same port on the host. Port 9092 is where Kafka will be
listening.

There are two required environment variables: KAFKA_ADVERTISED_HOST_NAME and
KAFKA_ZOOKEEPER_CONNECT. The KAFKA_ADVERTISED_HOST_NAME property defines the
hostname to which Kafka will bind to. The KAFKA_ZOOKEEPER_CONNECT property is
required to specify the URL to Zookeeper. As both the images are in the same Docker
Compose YML file, we have referenced the hostname of Zookeeper as zookeeper itself,
which happens to be the name of the Zookeeper service.

You might be wondering why we have exposed the Docker socket file as a volume. The
Docker image that we are using needs to run some Docker commands from inside the
container. So it needs the Docker daemon. Once you get a hold of the socket file, you can
run any operation you want. Though this doesn't sound very secure, it is still okay as it is
only our local development environment.

Now let's spin off our first Kafka broker using Docker Compose. Open up a new1.
terminal session and run the following docker-compose command:

 docker-compose -f docker-compose-kafka.yml up

Building Asynchronous Streaming Systems with Kafka and Spark

[309]

You should see something like this when Kafka has started:2.

Now that our Kafka broker is up and running, the next step is to verify whether it3.
started successfully. It would be great if Kafka had a UI admin interface.
Currently, there are a few third-party apps that can be used with Kafka, such as
Kafka Manager and Kafka UI. For this chapter, we will not need one. So if you
are interested in having one, feel free to try them out and see which one fits your
needs. Throughout this chapter, we will need a client that can be used to perform
operations such as creating topics, consuming messages, and producing
messages. We will be making use of some of the shell scripts that come with the
Kafka installation for that.
So download version 2-11-0.10.1.0 from the Apache Kafka website at4.
https://kafka.apache.org/downloads. The version number is split into two
parts. 2-11 indicates the version of Scala that was used to build this version of
Kafka. 0.10.1.0 is the actual version of Kafka.
After your download is complete, unpack Kafka to any directory in your5.
computer. Open a new terminal session and change the directory to the Kafka
directory. Now execute the following command (Windows users, use the binary
equivalent for Windows):

 ./bin/kafka-topics.sh --list --zookeeper 192.168.99.100:2181

https://kafka.apache.org/downloads

Building Asynchronous Streaming Systems with Kafka and Spark

[310]

The preceding command is used to list all the topics available in your broker.6.
Look how we have passed the Zookeeper URL instead of Kafka's. That is because
the broker is located using Zookeeper. If the command returned any errors, then
you didn't install Kafka correctly, or you don't have the right Zookeeper URL.
Most of the time, it is something to do with the hostname and IP of Zookeeper. If
your installation was successful, you will not get any output for this command, as
we do not have any topic in this broker.

That brings us to the end of this recipe. In the next few recipes, we will put Kafka into
action. Go Kafka!

Creating Kafka topics to stream data
In the previous recipe, we orchestrated our Kafka broker. The next step is obviously putting
Kafka to action. In order to do that, we need some topics to work with. In this recipe, we
will create some topics and will also learn how to produce and consume messages.
Exchanging messages can be done in two ways: scripts and Java programs. We will be
learning the Java way.

Getting ready
In this recipe, we will be using the same Kafka topics script to create topics:

Open a new terminal shell and navigate to the directory where you have Kafka1.
installed.
Let's create a new topic called geolocations. We will then write a basic2.
standalone producer program that will produce geolocations for this topic. We
will integrate a consumer with our geolocation application that will consume all
messages produced by our standalone producer.
So now, our geolocation application will have two modes in which you can store3.
geolocations: synchronous HTTP mode and asynchronous mode using Kafka. It
is still possible to make your HTTP APIs work asynchronous.
We will not be going in depth into that topic. For illustration, we will consider4.
our HTTP endpoint to be synchronous and our Kafka endpoint to be, obviously,
asynchronous.
Before we jump into the actual recipe, let's comment out some unused code from5.
the geolocation application. From the previous chapter, if you have either
ConsoleReporter or GraphiteReporter configured, comment them both out.

Building Asynchronous Streaming Systems with Kafka and Spark

[311]

How to do it…
The next few steps in this recipe will help you create your first Kafka Producer and Kafka
Consumer programs.

Let's create a new topic called geolocations. Go ahead and execute the
following command in your terminal shell:

 ./bin/kafka-topics.sh --create --zookeeper 192.168.99.100:2181 --
replication-factor 1 --partitions 2 --topic geolocations
 Created topic "geolocations".

There are a few things to talk about here. First, let's talk about the replication-factor
option. The replication factor says how many replicas Kafka needs to maintain for each
partition in the topic. It depends on the cluster size and configuration. In our case, we have
set it to 1. The partitions option, as the name indicates, is the number of partitions this
topic needs to have. The topic argument indicates the name of our topic. And, of course,
we need the zookeeper argument to locate our broker:

Now that our topic is ready, let's create a simple Kafka producer. Add the1.
following Maven dependency to the pom.xml file:

 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-clients</artifactId>
 <version>0.10.1.0</version>
 </dependency>

Create a new class in the geolocation repo called2.
com.packt.microservices.geolocation.GeoLocationProducer.java.
Add the following snippet to the newly created producer:3.

package com.packt.microservices.geolocation;

import java.util.Arrays;
import java.util.List;
import java.util.Properties;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

public class GeoLocationProducer {

Building Asynchronous Streaming Systems with Kafka and Spark

[312]

public static void main(String[] args) {
 Properties props = new Properties();
 props.put("bootstrap.servers", "192.168.99.100:9092");
 props.put("key.serializer", StringSerializer.class.getName());
 props.put("value.serializer", StringSerializer.class.getName());
Producer<String, String> producer = new KafkaProducer<>(props);
 List<GeoLocation> geolocations = Arrays.asList(
 new GeoLocation(38.6270, 90.1994),
 new GeoLocation(93.9879, 76.9876), // invalid lat
 new GeoLocation(41.8034, -88.1440),
 new GeoLocation(40.9879, -200.9876), // invalid long
 new GeoLocation(-93.9879, 76.9876), // invalid lat
 new GeoLocation(9.5680, 77.9624),
 new GeoLocation(13.0827, 80.2707),
 new GeoLocation(40.9879, 200.9876), // invalid long
 new GeoLocation(9.9252, 78.1198));

 for(GeoLocation geolocation : geolocations) {
 System.out.println("Sending geolocaiton [" + geolocation.toString() +
"]");
 ProducerRecord<String, String> record = new ProducerRecord<>(
 "geolocations",
 geolocation.toString());
 producer.send(record);
 }

 producer.close();
 }
}

There are three things to talk about here: producer, geolocations and4.
ProducerRecords. In order to instantiate producer, we create a Properties
object with three properties: bootstrap.servers, key.serializer, and
value.serializer:

The bootstrap.servers property indicates the URLs to the Kafka
brokers. As our cluster is a single broker cluster, we provide the URL
to that broker in this property. If you have multiple brokers, you can
provide comma-separated values.
The key.serializer property takes the fully qualified name of the
serializer that will be used to serialize the key of the message.
Likewise, the value.serializer property takes the fully qualified
name of the serializer that will be used to serialize the value of the
message.

Building Asynchronous Streaming Systems with Kafka and Spark

[313]

Later in the code, we create nine geolocations, out of which four are invalid5.
(invalid geolocations have a comment right next to them). Then, for each
geolocation, we create a ProducerRecord. The constructor of ProducerRecord
has two arguments: the topic name and the actual message. In this recipe, the
topic name is geolocations. Let's come back to the actual message later.
Also look at how the ProducerRecord is defined as a generic of <String,6.
String>. The first generic defines the type of the key, and the second defines the
type of the value. The key is usually used to assign partitions. In this recipe, the
key is not significantly important, so we are going to ignore it. If you would like
to use it, then you have to use the appropriate overloaded constructor for
ProducerRecord. We then invoke the send() method on producer with the
ProducerRecord. Finally, the producer instance is closed by invoking the
close() method.
Now let's go back to the actual message. It is a toString() of the GeoLocation7.
class. But wait; we haven't defined a toString() method in GeoLocation. Let's
do it now. We will be converting the GeoLocation object to its JSON equivalent.
Let's use GSON to do it. GSON is a JSON library from Google and is very easy to8.
use. Go ahead and add the following Maven dependency to the pom.xml file:

 <dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 </dependency>

Now that our dependency is ready, add the following constructors and9.
toString() method to GeoLocation.java:

public GeoLocation() {}

public GeoLocation(double latitude, double longitude) {
 this.latitude = latitude;
 this.longitude = longitude;
 this.userId = UUID.randomUUID();
 this.timestamp = System.currentTimeMillis();
}
@Override
public String toString() {
 return GSON.toJson(this);
}

Building Asynchronous Streaming Systems with Kafka and Spark

[314]

GSON is defined as a constant in the same class:10.

 private static final Gson GSON = new Gson();

Now all our geolocations will be sent to the Kafka topic as JSON strings.11.
The next step in this recipe is to build the Kafka consumer that will consume12.
messages from the geolocations topic. Go ahead and create a new thread
called
com.packt.microservices.geolocation.GeoLocationConsumer.java.
Add the following snippet to the newly created consumer class:13.

package com.packt.microservices.geolocation;

import java.util.Arrays;
import java.util.Properties;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;

import com.google.gson.Gson;

public class GeoLocationConsumer implements Runnable {
 private static final Gson GSON = new Gson();
 private static final GeoLocationRepository REPO = new
GeoLocationRepository();

 public void run() {
 Properties props = new Properties();
 props.put("bootstrap.servers", "192.168.99.100:9092");
 props.put("group.id", "geolocationConsumer");
 props.put("key.deserializer", StringDeserializer.class.getName());
 props.put("value.deserializer", StringDeserializer.class.getName());

 try (KafkaConsumer<String, String> consumer = new
KafkaConsumer<>(props)) {
 consumer.subscribe(Arrays.asList("geolocations"));
 while (true) {
 ConsumerRecords<String, String> records = consumer.poll(100);
 for (ConsumerRecord<String, String> record : records) {
 System.out.printf("offset = %d, key = %s, value = %s%n",
 record.offset(),
 record.key(),
 record.value());
 REPO.addGeoLocation(GSON.fromJson(record.value(),

Building Asynchronous Streaming Systems with Kafka and Spark

[315]

GeoLocation.class));
 }
 }
 } catch (Exception e) {
 System.err.println("Error while consuming geolocations. Details: " +
e.getMessage());
 }
 }
}

First, we create a new KafkaConsumer with four properties:14.
bootstrap.servers, group.id, key.deserializer, and
value.deserializer:

The bootstrap.servers property is the same as in the producer. We
will talk about group.id later in this chapter. For now, you can keep
in mind that it is used to group consumers.
The key.deserializer property will be the fully qualified class
name of the deserializer that will be used to deserialize the serialized
key of the message.
Likewise, value.deserializer is used for the value deserialization
process. As you can see, the consumer.subscribe() method takes an
argument of string arrays. So you can use the same consumer to
consume messages from multiple topics. In this case, we have
subscribed to the geolocations topic.

In an infinite loop, we create the ConsumerRecord instances for each message15.
received from the topic. The messages, along with their offset in the topic, their
key, and value, are printed out.
Finally, the message value is converted to GeoLocation using GSON and stored16.
using the GeoLocationRepository class. As we are using an infinite loop, this
code will run and keep listening for any new messages in the topic and store
them as they come through.

Building Asynchronous Streaming Systems with Kafka and Spark

[316]

If you are wondering why we instantiated a new repository instead of
autowiring it as a bean, the reason is because Spring beans and threads do
not go well with each other. Unfortunately, our consumer must be a
thread. So the best way to accomplish this is to instantiate the repository
as a regular Java object using the new keyword. The side effect of this is
that the repository (and hence the in-memory collection) used by the
GeoLocationConsumer and the GeoLocationController will be totally
different. Ideally, in a real-time scenario, we would be using a database to
store our data. So this situation will not happen. For illustrations, in this
recipe, we will be verifying whether our geolocations were created by
looking at the data directory at /opt/packt/geolocation/data.

In order to start this thread, add the following snippet to the main method of the17.
GeoLocationApplication.java class:

 new Thread(new GeoLocationConsumer()).start();

That's it. We have our producer and consumer ready. Let's test them out. Start the18.
GeoLocationApplication.java class as a Spring Boot application. This time,
along with the Spring MVC logs, you should see some Kafka consumer logs too:

Now that our consumer is ready, let's execute the GeoLocationProducer.java19.
class as a Java application from your STS IDE. The producer will drop all the nine
geolocations into the geolocations topic.
Now look at the console of your geolocation microservice:20.

Building Asynchronous Streaming Systems with Kafka and Spark

[317]

As you can see, the consumer received nine messages that the producer
produced. The offsets start from 17 instead of 0 because the producer
probably produced more messages before this (I was testing it a few times
before this execution).

Now let's verify whether our geolocations were created in the data directory.21.
Run the following ls command from a terminal shell to view the contents of your
data directory:

 ls -1 /opt/packt/geolocation/data
 user0e7b55ae-ae42-4fba-a0a7-09ea50f018b3_t1482426034840
 user2bb53438-2650-485d-ad2c-77bf53367311_t1482426034840
 user8c5334e4-8bdb-4351-af8d-20f298082a41_t1482426034840
 user92e6069f-6ec8-4339-a020-10fd5fe86502_t1482426034840
 usera4b88745-2b55-425f-bad5-d4ebea8c7b27_t1482426034840
 userb25977d7-3770-491c-8cfd-578748148ad2_t1482426034840
 userc0774179-ee5e-4bf9-92aa-03e800cf076e_t1482426034840
 userca40d66f-af00-4240-8ab0-5bfe48aa1df3_t1482426034840
 userce5d314a-763f-4010-812f-a07e1945d5f6_t1482426034840

The preceding command lists all the files in the given directory. If you are curious22.
to know whether these files have the geolocations, use the cat command to view
the contents.

That brings us to the end of this recipe. In this recipe, we wrote a simple consumer and
producer to work with Kafka topics. This application can be extended to build a more
sophisticated and robust application for geolocation entities. In the next recipe, we will see
how to use Kafka Streams to build great streaming applications.

Writing a streaming program using Kafka
Streams
In the previous recipe, we wrote a very basic Kafka producer and consumer. That might not
be sufficient when you would like to work with your data. In fact, the consumer we wrote
was not smart enough to filter out geolocations with invalid latitudes and longitudes. These
are things you would want to do when you build a streaming application. In this recipe, we
will be utilizing Kafka's Streams API to create a Kafka Streams application that will stream
messages from a new topic called geolocationStreams, filter out bad geolocations, and
forward the valid geolocations to the geolocations topic. This will make sure that we
store only valid geolocations.

Building Asynchronous Streaming Systems with Kafka and Spark

[318]

The following diagram depicts the flow of our application:

Getting ready
Before we write our Kafka Streams application, let's delete any existing1.
geolocations in the data directory. Execute the following command in a new
terminal shell:

 rm /opt/packt/geolocation/data/*

Now that you have cleaned up all the existing geolocations, make sure you have2.
Kafka up and running. If it isn't running, start it using Docker Compose. If it is a
fresh installation, create the geolocations topic.
The next step is creating a new topic for the streaming application. Execute the3.
following command in the same terminal window:

 ./bin/kafka-topics.sh --create --topic geolocationStreams --
replication-factor 1 --partitions 2 --zookeeper 192.168.99.100:2181
 Created topic "geolocationStreams".

How to do it…
The first step in creating the Kafka Streams application is writing the streaming1.
logic. Add the following dependency to the geolocation project's pom.xml file:

 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-streams</artifactId>
 <version>0.10.1.0</version>
 </dependency>

Building Asynchronous Streaming Systems with Kafka and Spark

[319]

Create a new class called2.
com.packt.microservice.geolocation.GeoLocationStreams.java. Add
the following snippet to it:

 package com.packt.microservices.geolocation;
 import java.util.HashMap;
 import java.util.Map;
 import javax.annotation.PostConstruct;
 import org.apache.kafka.common.serialization.Serdes;
 import org.apache.kafka.streams.KafkaStreams;
 import org.apache.kafka.streams.StreamsConfig;
 import org.apache.kafka.streams.kstream.KStreamBuilder;
 import org.apache.kafka.streams.kstream.Predicate;
 import org.springframework.stereotype.Component;
 @Component
 public class GeoLocationStreams {
 @PostConstruct
 public void init() {
 Map<String, Object> props = new HashMap<>();
 props.put(StreamsConfig.APPLICATION_ID_CONFIG, "geolocation-
application");
 props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,
"192.168.99.100:9092");
 props.put(StreamsConfig.KEY_SERDE_CLASS_CONFIG,
Serdes.String().getClass().getName());
 props.put(StreamsConfig.VALUE_SERDE_CLASS_CONFIG,
GeoLocationSerdes.class.getName());
 StreamsConfig config = new StreamsConfig(props);
 KStreamBuilder builder = new KStreamBuilder();
 builder.stream("geolocationStreams").filter(new Predicate<Object,
Object>() {
 @Override
 public boolean test(Object key, Object value) {
 GeoLocation geolocation = (GeoLocation) value;
 System.out.println("Stream received => " + value);
 return geolocation.getLatitude() >= -90
 && geolocation.getLatitude() < 90
 && geolocation.getLongitude() >= -180
 && geolocation.getLongitude() < 180;
 }
 }).to("geolocations");
 KafkaStreams streams = new KafkaStreams(builder, config);
 streams.start();
 }
 }

Building Asynchronous Streaming Systems with Kafka and Spark

[320]

As you can see, we first build a StreamsConfig instance. The
StreamsConfig instance primarily identifies the Kafka broker URLs, SerDes
for the key, and SerDes for the value. If you are wondering what SerDes is, it
is short for SerializerDeserializer. See how we have used a custom SerDes
for the value. We will be creating a SerDes called GeoLocationSerdes later
in this recipe. The function of this SerDes is to serialize and deserialize the
GeoLocation object to JSON (eventually bytes) and vice versa. We will look
at how to do this later.

The next step is creating the KStreamBuilder instance. KStreamBuilder3.
defines where your stream application will stream messages from, how to
process the message with the help of several methods (such as map, flatMap,
filter, and to), and, finally, send the messages over to a destination topic:

The stream() method tells where the messages should be streamed
from. In our example, we are streaming from the
geolocationStreams topic.
The filter() method takes a predicate that will filter geolocations
that have bad latitude and longitude.
The to() method tells where the valid geolocations will be sent to.

In our case, we are sending them to the geolocations topic. If you remember,4.
the GeoLocationConsumer.java class will consume these valid geolocations
and store them in the data directory. If you would like to bypass the
GeoLocationConsumer class, that is fine too. In fact, you can use the map()
method to call GeoLocationService directly as a part of KStreamBuilder.
Finally, we instantiate a new KafkaStreams instance with KStreamsBuilder
and StreamsConfig. We have to invoke the start() method to start the
streaming process.
Now let's see how to create our GeoLocationSerdes.java class. Create a new5.
class called
com.packt.microservices.geolocation.GeoLocationSerdes.java and
add the following code to it:

package com.packt.microservices.geolocation;
import java.util.Map;

import org.apache.kafka.common.serialization.Deserializer;
import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serializer;

Building Asynchronous Streaming Systems with Kafka and Spark

[321]

import com.google.gson.Gson;

public class GeoLocationSerdes implements Serde<GeoLocation> {
 private static final Gson GSON = new Gson();

 public GeoLocationSerdes() {}

 @Override
 public void configure(Map<String, ?> configs, boolean isKey) {}

 @Override
 public void close() {}

 @Override
 public Serializer<GeoLocation> serializer() {
 return new Serializer<GeoLocation>() {
 @Override
 public void configure(Map<String, ?> configs, boolean isKey) {}

 @Override
 public byte[] serialize(String topic, GeoLocation data) {
 return data.toString().getBytes();
 }

 @Override
 public void close() {}
 };
 }

 @Override
 public Deserializer<GeoLocation> deserializer() {
 return new Deserializer<GeoLocation>() {
 @Override
 public void configure(Map<String, ?> configs, boolean isKey) {}

 @Override
 public GeoLocation deserialize(String topic, byte[] data) {
 return GSON.fromJson(new String(data), GeoLocation.class);
 }

 @Override
 public void close() {}
 };
 }
}

Building Asynchronous Streaming Systems with Kafka and Spark

[322]

The GeoLocationSerdes method implements the Serde interface:6.

The configure() and close() methods are not very significant for
this recipe, so they were not implemented in the preceding snippet
The serializer() method returns a
org.apache.kafka.common.serialization.Serializer<GeoLoc

ation> that has a serialize() method that knows how to convert
the GeoLocation object to bytes
Similarly, the deserializer() method returns a
org.apache.kafka.common.serialization.Deserializer<GeoL

ocation> that has a deserialize() method that knows how to
convert bytes to the GeoLocation objects
That's it! Our Kafka Streams application is now ready to test. Before we
start testing, we have to change the GeoLocationProducer class to
produce messages for the geolocationStreams topic instead of
geolocations.

So let's make that change. With that done, run the GeoLocationApplication7.
class as a Spring Boot application. This time around, you should have see more
log messages when you application starts, as the Streams application has started
along with Spring MVC and Kafka consumer.
Without further ado, run GeoLocationProducer as a Java application. This8.
should have produced the same nine geolocations in the geolocationStreams
topic.
Now look at the console logs of the geolocation microservice. You should see9.
something like this:

Building Asynchronous Streaming Systems with Kafka and Spark

[323]

As you can see, only five geolocations that had valid latitude and longitude10.
values were sent to the geolocations topic. Let's verify the same by listing the
contents of our data directory. Execute the following command on your terminal
shell:

 ls -1 /opt/packt/geolocation/data
 user352752e1-f9df-4a2c-8bb5-00df1b001170_t1482431025183
 user4ca44a13-f737-4bba-84b8-1ef39f5ebb60_t1482431025183
 user97b60125-2ef7-48df-9d31-da755ba54bc4_t1482431025183
 user9d07e2cc-9902-4710-a311-19fc09a84f3b_t1482431025183
 usercdfb7821-20c8-474e-9cc7-65b65316a78a_t1482431025183

Perfect! That clarifies that our Kafka Streams application worked as expected.11.

With that, we come to the end of this recipe. In the next recipe, we will learn how to process
more geolocations using Kafka Streams.

Improving the performance of the Kafka
Streams program
Kafka claims that it is so fast that each broker can handle hundreds of megabytes of data per
second from several applications. That is a bold statement. In fact, Kafka has proved to be
much faster than this in several success stories. So using Kafka gives you this awesome
performance by default. What if that is not sufficient? The answer to this question is scaling.
Kafka is built in such a way that Kafka consumers or Kafka Streams applications can be
scaled in such a way that they work together as a group. That's where the term “consumer
group” kicks in. A consumer group is a group of consumers that share the same ID.
Consumers in a consumer group subscribe to the same topic(s); however, each consumer
group gets only one copy of each message produced in a topic. This is how Kafka achieves
point-to-point behavior using topics. Internally, each consumer in the consumer group will
be consuming messages from one dedicated partition. This will contribute to a parallel
processing behavior.

Building Asynchronous Streaming Systems with Kafka and Spark

[324]

Let's consider a situation where there is a topic with two partitions and
one consumer called consumer-01. Now, consumer-01 will be
responsible for consuming messages from partition-00 and
partition-01. This is really not going to give us the performance we
expect. So we have to spin off another consumer with the same group ID
so that we can consume messages from both partitions in parallel. Now if
we spin off consumer -02, consumer-01 will consume messages from
partition-00, and consumer-02 will consume messages from
partition-01 (or vice versa). Now let's say you spin off another
consumer called consumer-03. This time, it is really not going to improve
your performance any further because at least one consumer is going to be
idle all the time. Consumers do not share topic partitions. Keep this in
mind when you build your applications using Kafka.

Getting ready
Before we jump into the recipe, let's delete any existing geolocations in the data1.
directory. Execute the following command in a new terminal shell:

 rm /opt/packt/geolocation/data/*

Now that you have cleaned up all the existing geolocations, make sure you have2.
Kafka up and running. If it is not running, start it using Docker Compose. If it is a
fresh installation, create the geolocations and geolocationStreams topics.

How to do it…
In this recipe, we will be spinning off two instances of the geolocation1.
application and will be monitoring the logs to see how the messages are
distributed. Go ahead and start two instances of the GeoLocationApplication,
one running on port 8080 and the other running on port 8081. Make sure there
are no errors in your console.
Now run the GeoLocationProducer class as a Java application. This should2.
have dropped the nine geolocations into the geolocationStreams topic.

Building Asynchronous Streaming Systems with Kafka and Spark

[325]

Let's see what the console looks like for both the instances:3.

The preceding screenshot shows the console logs from the first instance of
geolocation. As you can see, the GeoLocationStreams application
received five messages out of nine. And the GeoLocationConsumer
application received three out of the five messages.

Now let's take a look at the console logs of the second instance of the4.
geolocation microservice:

As you can see, four out of nine messages were received by the
GeoLocationStreams application. And the GeoLocationConsumer
application received two out of the five messages. This demonstrates that the
KafkaStreams and KafkaConsumer instances scale as the application
scales-which is obviously great news. But the real question is how? Also, we
did not create any consumer groups in this recipe. In fact, we actually created
a consumer group earlier.

Now, go back to your consumer class, and you will notice that we passed a5.
parameter called group.id with the value geolocationConsumer. Consumers
with the same group.id property will be in the same consumer group. That is
the reason our GeoLocationConsumer application was scalable. Similarly, the
StreamsConfig.APPLICATION_ID_CONFIG property in the
GeoLocationStreams class defines the consumer group ID value. The value of
this property has been set to geolocation-application. So any Kafka Streams
application that has the consumer group value set to geolocation-
application will be part of the same consumer group.

Building Asynchronous Streaming Systems with Kafka and Spark

[326]

That brings us to the end of this recipe. In this recipe, we learned how to scale our Kafka
Streams application. Kafka Streams has a lot many methods to build a complete data
pipeline, such as map, flatMap, mapValues, flatMapValues, and filter. It is strongly
recommended that you read the documentation before you start using Kafka Streams. In
fact, there is a slightly different approach that you can use in Kafka Streams to build data
processors. Take a look at TopologyBuilder and AbstractProcessor to try that
approach. I'll leave that as an exercise for you.

Writing a streaming program using Apache
Spark
You might be wondering what Apache Spark has to do with microservices. The answer is
pretty simple: streaming and data processing. Not all microservices will require streaming,
but most of them these days do.

There are two ways you can feed data to a microservice: via REST or message brokers. With
RESTful APIs, you can achieve the performance you expect. But it has its own limitations,
which is the reason companies move towards message brokers such as Kafka, RabbitMQ,
and ZeroMQ. Using frameworks such as Kafka, you can achieve tremendous performance
and live results. In fact, today's streaming is all about live results. Before we jump into the
recipe, let's take a minute to understand Spark and some of its concepts.

Apache Spark is a fast data-processing framework. It has four major modules: Spark
Streaming, Spark SQL, Spark MLlib, and Spark Graphx. Spark Streaming is used to stream
data from messaging endpoints such as TCP Socket and Kafka. Spark SQL is used to
execute efficient queries on huge structured datasets. Spark MLlib is Spark's machine
learning library. At the time of writing this, Spark MLlib has matured so much that it can be
used for any production-level use case. Spark Graphx is Spark's graph-processing API. In
this recipe, we will be streaming geolocation off of a Kafka topic, filtering bad geolocations,
and sending the valid geolocations to another Kafka topic. At the core of Apache Spark lies
the RDD API. RDD stands for Resilient Distributed Dataset. It is resilient because when
Spark jobs are executed in a cluster, even if a node goes down while processing an RDD, the
RDD will be handed over to another active node in the cluster. It is distributed because
RDDs are distributed across nodes in the cluster. Spark's configurations let you allocate
resources such as CPU and memory for every Spark job. This makes Spark work very well
with clustering framework such as Mesos and YARN.

Building Asynchronous Streaming Systems with Kafka and Spark

[327]

Getting ready
Writing a Spark job is as simple as writing a Java program. With the current availability of
documentation on the Internet, it just takes a few minutes to write a Spark job. The real
tricky part is deploying the Spark jobs. That's where clustering frameworks such as Mesos
and YARN come into the picture. But developing a Spark job shouldn't really require a
huge cluster. That's the reason Spark came up with a Spark standalone mode. The
standalone mode runs the Spark job in memory. In this recipe, we will be executing our
Spark job in Spark standalone mode. We will perform the same logic that we did using
Kafka Streams, only this time using Apache Spark. The following diagram shows the flow
of our code:

Before we jump in, let's clean up the data directory that was populated by previous recipes:

Execute the following command from a terminal shell:1.

 rm /opt/packt/geolocation/data/*

The next step is creating the geolocationJob topic. Execute the following script2.
from Kafka's root directory:

./bin/kafka-topics.sh --create --topic geolocationJob --replication-factor
1 --partitions 2 --zookeeper 192.168.99.100:2181

Building Asynchronous Streaming Systems with Kafka and Spark

[328]

How to do it…
We will need some Maven dependencies to write a Spark Streaming program.1.
Add the following three dependencies to the pom.xml file of the geolocation
project:

<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-core_2.11</artifactId>
 <version>2.0.2</version>
</dependency>

<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-streaming_2.11</artifactId>
 <version>2.0.2</version>
</dependency>

<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
 <version>2.0.2</version>
</dependency>

Let's right away create the Spark job. Create a new java class called2.
com.packt.microservices.geolocation.GeoLocationJob.java with an
empty main method:

package com.packt.microservices.geolocation;

public class GeoLocationJob {
 public static void main(String[] args) throws Exception {
 }
}

Writing this Spark job can be broken down into multiple logical parts:3.

1. Creating a streaming context.

2. Creating a direct stream on the geolocationJob topic.

3. Converting string values to GeoLocation objects.

Building Asynchronous Streaming Systems with Kafka and Spark

[329]

4. Filtering geolocations with invalid latitude and longitude.

5. Sending valid geolocations to the geolocations topic.

6. Starting the context and await termination.

Let's move on to the first step, where we will create the streaming context. Add4.
the following snippet to the main method:

SparkConf conf = new
SparkConf().setAppName("geolocationJob").setMaster("local[1]");
JavaStreamingContext context = new JavaStreamingContext(conf, new
Duration(2000));

As you can see, the app name is set to geolocationJob and the master is set
to local[1]. This says that we will be using standalone mode and our Spark
job will use 1 thread. The JavaStreamingContext constructor instance
takes two arguments: SparkConf and Duration. Duration is used to say
how frequently the micro-batches should be created and processed.

The next step in creating our Spark job is creating a direct stream on the5.
geolocationJob topic. Add the following snippet to the main() method:

Map<String, Object> kafkaParams = new HashMap<>();
kafkaParams.put("bootstrap.servers", "192.168.99.100:9092");
kafkaParams.put("key.deserializer", StringDeserializer.class);
kafkaParams.put("value.deserializer", StringDeserializer.class);
kafkaParams.put("group.id", "geolocationJob");
kafkaParams.put("auto.offset.reset", "latest");
kafkaParams.put("enable.auto.commit", false);

Collection<String> topics = Arrays.asList("geolocationJob");

final JavaInputDStream<ConsumerRecord<String, String>> dstream =
KafkaUtils.createDirectStream
 (context,
 LocationStrategies.PreferConsistent(),
 ConsumerStrategies.<String, String>Subscribe(topics, kafkaParams));

Building Asynchronous Streaming Systems with Kafka and Spark

[330]

You should be familiar with most of the Kafka parameters. To learn more about
the properties, refer to the Kafka documentation at
https://kafka.apache.org/documentation/#newconsumerconfigs.
We then create a collection of topics. Here, we have used the topic name
geolocationJob, from which we will be streaming our messages off of. Finally,
we create a direct stream (DStream) from the context, topics, and Kafka
parameters. The LocationStrategy identifies how our partitions will be
distributed across executors. ConsumerStrategy helps Spark obtain the right
consumers. The subscribe consumer strategy is used for specific topic names, like
in our case. The preceding snippet will create a direct stream that will stream
messages from the geolocationJob topic.

Let's move on to the next step: converting string values to the GeoLocation6.
objects in ConsumerRecord. Add the following snippet to the main() method:

dstream.map(new Function<ConsumerRecord<String,String>, GeoLocation>() { //
map to GeoLocation
 private static final long serialVersionUID = -5289370913799710097L;

 @Override
 public GeoLocation call(ConsumerRecord<String, String> record) throws
Exception {
 return new Gson().fromJson(record.value(), GeoLocation.class);
 }
})

This snippet converts the string values from ConsumerRecord to the
GeoLocation objects using GSON. As you can see, we have used an
anonymous inner class of
org.apache.spark.api.java.function.Function.

Let's move on to the next step, where we will be filtering geolocations with7.
invalid latitude and longitude values. Append the following snippet to the
previous line:

.filter(new Function<GeoLocation, Boolean>() { // filter out invalid
geolocations
 private static final long serialVersionUID = 6980980875802694946L;

 @Override
 public Boolean call(GeoLocation geolocation) throws Exception {
 System.out.println("Spark Job received => " + geolocation);
 return geolocation.getLatitude() >= -90
 && geolocation.getLatitude() < 90

https://kafka.apache.org/documentation/#newconsumerconfigs

Building Asynchronous Streaming Systems with Kafka and Spark

[331]

 && geolocation.getLongitude() >= -180
 && geolocation.getLongitude() < 180;
 }
})

That preceding snippet makes use of Function that will act as a predicate to
filter out geolocations with invalid latitude and longitude values.

The next step involves writing our valid geolocations to the geolocations8.
Kafka topic. Append the following snippet to the previous line of code:

.foreachRDD(new VoidFunction<JavaRDD<GeoLocation>>() { //iterate over RDD
 private static final long serialVersionUID = -4161320579495422870L;

 @Override
 public void call(JavaRDD<GeoLocation> rdd) throws Exception {
 rdd.foreach(new VoidFunction<GeoLocation>() { // send valid
geolocations to another topic
 private static final long serialVersionUID = -3282778715126743482L;

 @Override
 public void call(GeoLocation geolocation) throws Exception {
 ProducerRecord<String, String> record = new ProducerRecord<>(
 "geolocations",
 geolocation.toString());
 getProducer().send(record);
 }
 });
 }
});

We are using the foreachRDD() method to iterate over the RDDs. Then, we
grab the geolocations from each RDD using the foreach() method. In both
these cases, we have created anonymous inner classes for
org.apache.spark.api.java.function.VoidFunction. Finally, we
create a ProducerRecord and send it to the geolocaitons topic using
KafkaProducer. We will see how the getProducer() method is
implemented later.

If you are wondering whether Spark supports an operation where it can
drop messages onto a Kafka topic, then the answer is no. Currently, Spark
does not have that support out of the box. But there are third-party
libraries that can drop messages onto a Kafka topic without you having to
create your own Kafka producer.

Building Asynchronous Streaming Systems with Kafka and Spark

[332]

The final step is starting the context and awaiting termination. In this step, we9.
will call the start()and awaitTermination() methods of the
JavaStreamingContext instance so that we can indefinitely listen for any new
messages on the geolocationJob topic:

context.start();
context.awaitTermination();

The KafkaProducer was earlier obtained using the getProducer() method.10.
Let's see how this method looks. Add the following snippet to the
GeoLocationJob.java class:

public static Producer<String, String> producer;

public static Producer<String, String> getProducer() {
if(producer == null) {
 Properties props = new Properties();
 props.put("bootstrap.servers", "192.168.99.100:9092");
 props.put("key.serializer", StringSerializer.class.getName());
 props.put("value.serializer", StringSerializer.class.getName());
 producer = new KafkaProducer<>(props);
 }
 return producer;
}

That was the last step. The final GeoLocationJob class will look something like11.
this:

package com.packt.microservices.geolocation;

import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.Map;
import java.util.Properties;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;

Building Asynchronous Streaming Systems with Kafka and Spark

[333]

import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;

import com.google.gson.Gson;

public class GeoLocationJob {
 public static Producer<String, String> producer;
 public static void main(String[] args) throws Exception {
 SparkConf conf = new
SparkConf().setAppName("geolocationJob").setMaster("local[1]");
 JavaStreamingContext context = new JavaStreamingContext(conf, new
Duration(2000));

 Map<String, Object> kafkaParams = new HashMap<>();
 kafkaParams.put("bootstrap.servers", "192.168.99.100:9092");
 kafkaParams.put("key.deserializer", StringDeserializer.class);
 kafkaParams.put("value.deserializer", StringDeserializer.class);
 kafkaParams.put("group.id", "geolocationJob");
 kafkaParams.put("auto.offset.reset", "latest");
 kafkaParams.put("enable.auto.commit", false);

 Collection<String> topics = Arrays.asList("geolocationJob");

 final JavaInputDStream<ConsumerRecord<String, String>> dstream =
KafkaUtils.createDirectStream
 (context,
 LocationStrategies.PreferConsistent(),
 ConsumerStrategies.<String, String>Subscribe(topics, kafkaParams));

 dstream.map(new Function<ConsumerRecord<String,String>, GeoLocation>()
{ // map to GeoLocation
 private static final long serialVersionUID = -5289370913799710097L;

 @Override
 public GeoLocation call(ConsumerRecord<String, String> record) throws
Exception {
 return new Gson().fromJson(record.value(), GeoLocation.class);
 }
 }).filter(new Function<GeoLocation, Boolean>() { // filter out invalid
geolocations
 private static final long serialVersionUID = 6980980875802694946L;

 @Override

Building Asynchronous Streaming Systems with Kafka and Spark

[334]

 public Boolean call(GeoLocation geolocation) throws Exception {
 System.out.println("Spark Job received => " + geolocation);
 return geolocation.getLatitude() >= -90
 && geolocation.getLatitude() < 90
 && geolocation.getLongitude() >= -180
 && geolocation.getLongitude() < 180;
 }
 }).foreachRDD(new VoidFunction<JavaRDD<GeoLocation>>() { //iterate over
RDD
 private static final long serialVersionUID = -4161320579495422870L;

 @Override
 public void call(JavaRDD<GeoLocation> rdd) throws Exception {
 rdd.foreach(new VoidFunction<GeoLocation>() { // send valid
geolocations to another topic
 private static final long serialVersionUID =
-3282778715126743482L;

 @Override
 public void call(GeoLocation geolocation) throws Exception {
 ProducerRecord<String, String> record = new ProducerRecord<>(
 "geolocations",
 geolocation.toString());
 getProducer().send(record);
 }
 });
 }
 });
 context.start();
 context.awaitTermination();
 }
 public static Producer<String, String> getProducer() {
 if(producer == null) {
 Properties props = new Properties();
 props.put("bootstrap.servers", "192.168.99.100:9092");
 props.put("key.serializer", StringSerializer.class.getName());
 props.put("value.serializer", StringSerializer.class.getName());
 producer = new KafkaProducer<>(props);
 }
 return producer;
 }
}

Building Asynchronous Streaming Systems with Kafka and Spark

[335]

Without further ado, let's test this out. Start the geolocation microservice on port12.
8080. This will start the GeoLocationStreams as well as the
GeoLocationConsumer. Now run the GeoLocationJob class as a Java
application. After both the geolocation microservice and the Spark job have
started successfully, drop some messages on the geolocationJob topic. We will
be utilizing the GeoLocationProducer class to do this. Modify the
GeoLocationProducer class to use the geolocationJob topic, and execute it
as a Java application. This should have created nine geolocations on the
geolocationJob topic.
Let's take a look at the console logs of the Spark job first:13.

As you can see, our Spark job received all the messages. The preceding
screenshot does not show them all, though.

Now let's take a look at the log messages of the geolocation microservice:14.

As you can see, GeoLocationConsumer received all the geolocations with
valid latitude and longitude.

Building Asynchronous Streaming Systems with Kafka and Spark

[336]

Let's quickly verify the data directory. Execute the following commands to list15.
the contents of the data directory:

 ls -1 /opt/packt/geolocation/data
 user2288ea0c-e3e7-453c-a31c-935210195df3_t1482514513790
 user3669998e-b114-4714-813d-f8adf9cf4a12_t1482514513790
 user45cd0dc9-df2e-4ec9-8f40-4cdd88f7e493_t1482514513790
 user6beedc41-284a-4a6a-9e9c-5434768936a0_t1482514513790
 usercaabf873-73b6-446d-a02d-c42ecce35d1b_t1482514513790

Awesome! We have created our first Spark job. That brings us to the end of this recipe.
Spark has so much to offer that it can be applied in a lot of use cases. What we learned in
this recipe was just the beginning of Spark. It is strongly recommended that your learn
Spark before you try it out. In fact, Spark's official documentation is very descriptive and
useful.

Improving the performance of the Spark job
In the previous recipe, we wrote a simple Spark job that filters out invalid geolocations and
pushes the valid geolocations into a Kafka topic. In this recipe, we will see how we can
improve the performance of our Spark job.

How to do it…
There are several ways in which you can improve the performance of your Spark job. There
are a lot many configurations that Spark provides that can be tweaked to achieve desired
performance. For example, based on the amount of data that your topic receives, you could
change the batch duration of your stream. Also, deploying your Spark job on a Mesos or
YARN cluster opens up a lot of opportunities for performance improvement. In fact,
running your Spark job in local standalone mode will not help you assess the performance
of your Spark job. The real test for a Spark job is when it is executed on a cluster. Each Spark
job requires a certain amount of resources for execution, be it CPU or memory.

Earlier in the book, we talked about fine-grained and coarse-grained modes and how Spark
utilizes the resources in both these modes. Likewise, there are several other configurations
that can be tweaked to achieve the desired performance.

Building Asynchronous Streaming Systems with Kafka and Spark

[337]

Now that we are talking about deployments, let's talk about whether or not the Spark job
should coexist alongside the microservice. Spark jobs are best executed without other
dependencies. So it is always better to run the Spark job as a separate deployment. While
the GeoLocationJob class could run on Mesos or YARN as its own task, the geolocation
microservice will run as a Docker container in Marathon or YARN. So we have two
components now: API and Spark job. The Spark job sends data to the API via a Kafka topic.
Now do you see the value of Kafka? Making your Spark job send data via the API will slow
down your Spark job. That is the reason we chose to consume messages via Kafka topics in
our geolocation microservice.

Most of the time, you can look at how your job is performing using the Spark web console
at http://localhost:4040. You should see something like this:

As you can see, the Spark Jobs page shows a high-level metric for each operation in our
Spark job. In the preceding screenshot, it shows metrics for the foreach operations in our
Spark job. Clicking on each foreach job will show more details about it, such as Event
Timeline and DAG visualization. Now let's take a quick look at the Streaming tab:

Building Asynchronous Streaming Systems with Kafka and Spark

[338]

The Streaming tab provides better insights into the streaming framework. The current
version of Spark provides metrics such as Input Rate, Scheduling Delay, Processing Time,
and Total Delay. Though there is not much data to make sense out of these charts and
histograms in our use case, when you are dealing with huge datasets, these monitoring
tools will be very useful.

That brings us to the end of this recipe. As already mentioned, Apache Spark is a huge
library and it takes time to master it. I strongly recommend that you read about it from their
documentation before using it.

Aggregating logs into Kafka using Log4J
Log management is a critical part of any microservice deployment. When it comes to
debugging your application, the two things that matter a lot are logs and metrics. We've
already learned how to use metrics to monitor our application, and in this recipe, we will
learn how to consolidate our logs. Logs can be stored in plenty of stores. In this recipe, we
will look at how to store our logs in a Kafka topic. Once we get our log messages in a Kafka
topic, we can use Log Management tools to make some sense out of it.

Building Asynchronous Streaming Systems with Kafka and Spark

[339]

Getting ready
In this recipe, we will be configuring the geolocation microservice to send log messages
over to a Kafka topic called geolocationLogs.

Let's get ready by creating the topic in Kafka. If you don't have Kafka up and running, run
it using Docker Compose.

Open a new terminal shell and navigate to the home directory of Kafka. Execute the
following command:

 ./bin/kafka-topics.sh --create --topic geolocationLogs --
replication-factor 1 --partitions 1 --zookeeper 192.168.99.100:2181

How to do it…
The easiest way to send our log messages to Kafka is using a log appender. A log appender
is a utility in any logging framework that knows how to send messages to a specific
destination. Similarly, a Kafka appender knows how to send log messages to a Kafka topic.
To make it simpler, let's try to use the underlying logging framework of Spring Boot. By
default, Spring Boot uses logback. At the time of writing this, it is not very easy to configure
logback with a Kafka appender. But Log4J2 comes with a Kafka appender out of the box.
Let's see how to use Kafka appender with Log4J2 in our Spring Boot app. If you are not
using a Spring Boot app, then it is real simple. All you have to do is add the log4j2
dependency and start configuring the Kafka appender. However, in this recipe, we will be
learning how to do it on a Spring Boot app as it is a little tricky.

The first thing we need to do is configure our app to use Log4J2 instead of1.
Logback. Add the following two dependencies to the pom.xml file of the
geolocation project:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-logging</artifactId>
 </exclusion>
 </exclusions>
</dependency>

<dependency>

Building Asynchronous Streaming Systems with Kafka and Spark

[340]

 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-log4j2</artifactId>
</dependency>

As you can see, we have excluded the basic spring-boot-starter-
logging dependency and added the spring-boot-starter-log4j2
dependency. This will introduce log4j2 into the project.

The Spark dependencies usually have slf4j-log4j12 bindings. In order to use2.
log4j2 we need to remove the slf4j-log4j12 bindings. Go ahead and exclude
this artifact from kafka-streams, spark-core_2.11 and spark-streaming-
kafka-0-10_2.11:

<dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-streams</artifactId>
 <version>0.10.1.0</version>
 <exclusions>
 <exclusion>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 </exclusion>
 </exclusions>
</dependency>

<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-core_2.11</artifactId>
 <version>2.0.2</version>
 <exclusions>
 <exclusion>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
 <version>2.0.2</version>
 <exclusions>
 <exclusion>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 </exclusion>
 </exclusions>
</dependency>

Building Asynchronous Streaming Systems with Kafka and Spark

[341]

Now let's add the log4j2.xml config file to the src/main/resources3.
directory. Add the following snippet to the log4j2.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="INFO">
 <Appenders>
 <Console name="Console" target="SYSTEM_OUT">
 <PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} -
%msg%n" />
 </Console>
 <Kafka name="Kafka" topic="geolocationLogs">
 <PatternLayout pattern="%date %message" />
 <Property name="bootstrap.servers">192.168.99.100:9092</Property>
 </Kafka>
 </Appenders>

 <Loggers>
 <Root level="INFO">
 <AppenderRef ref="Console" />
 <AppenderRef ref="Kafka" />
 </Root>
 <Logger name="org.apache.kafka" level="ERROR" /> <!-- avoid recursive
logging -->
 </Loggers>
</Configuration>

The configuration is pretty straightforward. All we have to do is add the Kafka4.
appender and define the bootstrap.servers property with the Kafka broker
URL. The logger for the org.apache.kafka package is set to ERROR to make
sure we avoid recursive logging.

That's it! We have configured a Kafka appender for Log4J2 to send our log messages to the
geolocationLogs Kafka topic. We are now ready to test this out. In order to do so, we
need a Kafka consumer that can consume messages from the geolocationLogs topic. Let's
utilize the command-line console consumer to perform this task. Open up a new terminal
window and navigate to the home folder of your Kafka installation. Execute the following
command:

 ./bin/kafka-console-consumer.sh --topic geolocationLogs --zookeeper
192.168.99.100:2181

Building Asynchronous Streaming Systems with Kafka and Spark

[342]

Now that our consumer is ready, let's start the geolocation microservice as a Spring Boot
application and keep an eye on the consumer logs:

As you can see, all our log messages are now directed to the geolocationLogs topic in
addition to the console. Now, it is up to us to use these log messages in the tool of our
choice.

That brings us to the end of this recipe. Good luck logging with Kafka!

Integrating Kafka with log management
systems
In the previous recipe, we learned how to consolidate log messages from microservices into
a Kafka topic using Log4J2 and Kafka. In this recipe, we will look at various options that we
have to visualize our logs. There are several log-management systems available in the
market at the moment. We will talk about few of them in this recipe.

How it works…
There are several log-management tools, such as Splunk, Graylog2, and Loggly. Most of
them nowadays come with a Kafka listener. However, at the time of writing this, Splunk
does not have an official Kafka consumer. There are several third-partly plugins that you
can install with Splunk to consume messages from Kafka topics.

Building Asynchronous Streaming Systems with Kafka and Spark

[343]

Graylog2 is another popular log-management tool that has picked up traction lately mostly
because it is open source. It comes packed with tons of features. Though the interface is not
very sophisticated, it gets the job done well. Graylog came with their own log format called
Graylog Extended Log Format (GELF) to address the pain points in regular log formats.
Graylog has official support to consume messages from a Kafka topic. For more information
on how to configure Graylog with Kafka, look at their documentation page at
http://docs.graylog.org.

The other way of implementing your own log-management system is using the ELK stack.
ELK stands for Elasticsearch, Log Stash, and Kibana. You can write your own microservice
to bridge messages from the Kafka topic over to Log Stash. There are several tutorials out
there to set up the ELK stack. We will not be covering them as it is out of scope for this
book.

That brings us to the end of this recipe. In this chapter, we learned how to use Kafka in a
microservice ecosystem. Later, we looked at how Apache Spark can be used so stream
messages from Kafka. Finally, we had a look at log management. Good luck streaming!

http://docs.graylog.org

8
More Clustering Frameworks -

DC/OS, Docker Swarm, and
YARN

In this chapter, we will look at the following recipes:

Deploying infrastructure with DC/OS
Deploying containers with Docker Swarm
Deploying containers on YARN

Introduction
In the previous chapters of this book, we learned how to use frameworks such as Mesos and
Kubernetes to perform deployments. There are many such frameworks like Hashicorp
Nomad, Lightbend Lagom, Mesosphere DC/OS, Docker Swarm, and YARN that can be
utilized to deploy and manage microservices. In this chapter, you will be introduced to
three of these frameworks. The goal of this chapter is to give you a heads-up of these
frameworks and their capabilities. I will also help you by listing down some tools that will
be handy when deploying your microservices on these frameworks. Of course, there are
other similar frameworks in the market that help with managing microservices. Please feel
free to choose a framework that fits your needs and go from there.

More Clustering Frameworks - DC/OS, Docker Swarm, and YARN

[345]

Deploying infrastructure with DC/OS
DC/OS stands for Datacenter Operating System. DC/OS is built and maintained by
Mesosphere. Mesosphere offers an open source version of DC/OS, as well as an enterprise
version. You can think of DC/OS as an enterprise-ready version of Mesos with sophisticated
features and a collection of installable tools and frameworks. One of the trickiest parts of
managing your own Mesos cluster is orchestrating the frameworks. DC/OS has made this
task much easier with its command-line interface. You could potentially install the DC/OS
CLI on your local computer and manage any remote DC/OS cluster. Using the CLI, you can
install Marathon, submit Docker containers, and so on. In this recipe, we will be going over
the DC/OS interface to understand its features and capabilities.

Getting ready
In this recipe, we will be orchestrating a DC/OS cluster on AWS and then we will go over
the basics of DC/OS. There are several ways you can orchestrate a DC/OS cluster: using
Vagrant, using AWS, and so on. Using Vagrant, you can spin off a minimal cluster that you
can use for local development testing. In this recipe, we have orchestrated a real DC/OS
cluster on AWS. The instructions on the DC/OS website for orchestrating DC/OS on AWS is
very easy because it uses AWS CloudFormation. AWS CloudFormation is nothing but
Infrastructure as Code. You will be describing your infrastructure using CloudFormation
templates, which can later be used for orchestration on AWS. You can learn more about
CloudFormation at
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/GettingStarted.ht

ml. Fortunately, Mesosphere was kind enough to create these CloudFormation scripts for
us. So spinning off a DC/OS cluster using CloudFormation just takes a button click and will
be done in minutes. For more information, take a look at https://dcos.io.

How to do it…
If you follow the installation instructions on the DC/OS website for installing DC/OS on
AWS, you will be able to land on the DC/OS web interface. In this recipe, we have
orchestrated the single master and five slave cluster. If you would like to pick a different
configuration, please feel free to do so. Once the orchestration is done, you should see
something like this:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/GettingStarted.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/GettingStarted.html
https://dcos.io

More Clustering Frameworks - DC/OS, Docker Swarm, and YARN

[346]

As you can see, it provides high-level resource allocation and usage details of the cluster.
The cluster in the screenshot says that, out of 24 CPUs only two of them are used. The two
of them are used by the Marathon package that was installed on this cluster. By default, the
cluster will not have any packages or services running. You can install them from the
universe of packages available for installation. They can also be installed from the DC/OS
command-line interface. Our cluster has 82 GB of memory, out of which 2 GB is being
allocated to Marathon. Similarly, our total disk space of 208 GB remains unused. The
dashboard page provides more metrics, such as node count and task count. As I've already
mentioned, this cluster has one master and five slaves, so you should see that there are six
nodes in total. If you navigate to the Nodes tab, then you will see the list of all nodes and
their resource utilization. There are two views that you can utilize in the Nodes tab: Grid
and List. The List view is a traditional list-based view. However, the Grid view is
interesting because it displays the nodes in the form of circles with the CPU utilization
percent in them. The most amazing part about these widgets is that they get updated real-
time. Also, the circles are color-coded based on the service that utilizes the resources on that
node:

More Clustering Frameworks - DC/OS, Docker Swarm, and YARN

[347]

The preceding figure illustrates the grid view of the nodes. You can see that the last node
uses 50 percent of its CPU, which is being utilized by Marathon. The List view looks
something like this:

As you can see, in the List view, you can see the actual IPs of the slave nodes and their
health status, task count, CPU utilization, memory utilization, and disk space utilization.

TASKS are nothing but Mesos tasks. DC/OS is backed by a Mesos cluster. So any task that
is being submitted to this DC/OS cluster is actually submitted to the backing Mesos cluster.
The services and packages that can be installed on DC/OS can be viewed from the Universe
tab. The Universe is a package manager for DC/OS, where you can find all the packages and
services that you can install on DC/OS. Kafka, Cassandra, Marathon, and ArangoDB are a
few of the packages that you can install on DC/OS:

More Clustering Frameworks - DC/OS, Docker Swarm, and YARN

[348]

All it takes to install a package is to hit the Install Package button, or if you would like to
use the DC/OS CLI, then it just takes one command to install packages. The newer version
of DC/OS has the ability to spin off tasks from the UI. Previously, in order to spin off tasks,
you had to use a CLI command. The true power of DC/OS is the ability to view a cluster of
six nodes as one single machine and being able to utilize resources in a very granular
manner.

Now let's come to the real usage of DC/OS in our context: microservices. We know that
microservices by themselves cannot work alone; they need to work together with other
tools such as Spark, Kafka, Consul, and Zookeeper. One good reason for using DC/OS is
being able to manage them all under one roof: Marathon, load balancer, databases,
middleware, and so on. There are several packages in the DC/OS Universe that can help us,
including databases, middleware, and even microservice-management tools such as VAMP.
If you would like to go with DC/OS, take some time to go over the list of packages and
services that are available in the Universe. That way, you will know whether your
architecture can be managed with DC/OS or not. One scenario where you might not be able
to get the most out of DC/OS is when you are on the Hadoop Ecosystem. At the time of
writing this, DC/OS has minimal support for using Hadoop. DC/OS has a framework for
HDFS. But if you are already on the Hadoop Platform and use lot of its components, you
might not be able to migrate them all over to DC/OS.

By now, you will either be very excited to learn more about DC/OS or you will have more
questions about DC/OS. Either ways, it is strongly recommended that you go over DC/OS
and its documentation before using it in production. With that said, we come to the end of
this recipe. So far in this recipe, we've seen that DC/OS is a sophisticated cluster-
management platform that not only helps us with microservice deployments but also
manages our whole infrastructure. In the next recipe, you will learn more about Docker's
clustering framework, called Docker Swarm.

Deploying containers with Docker Swarm
Docker Swarm is Docker's solution to clustering multiple Docker engines into one cluster. If
your organization is heavily reliant on Docker and Docker containers, it might be worth
looking at Docker Swarm. When you have several Docker installations that you maintain on
separate Docker hosts, then these Docker hosts will be grouped together as a cluster using
Docker Swarm. Docker Swarm brings in a whole lot of features that will help manage your
apps on a Swarm cluster. Another great advantage of using Docker Swarm is that since it
uses the Docker API, working with a Swarm cluster is no different than working with a
Docker daemon. So tools such as Shipyard still continue to work with Docker Swarm. We
will look at Shipyard later in this recipe.

More Clustering Frameworks - DC/OS, Docker Swarm, and YARN

[349]

Getting ready
At this moment, the easiest way to orchestrate a Docker Swarm cluster locally is by using
docker-machine instances. Before you start the Docker Swarm cluster, let's familiarize
ourselves with some concepts of Docker Swarm.

Docker Swarm comprises two types of nodes: manager and agent. A manager is responsible
for scheduling containers and managing the cluster. An agent is the node where the
containers are run. There can be several managers and agents, depending on the type of
architecture you require. In our recipe, we will create a Docker Swarm cluster with one
manager and one agent. So start two terminal sessions: one for the manager and the other
for the agent.

How to do it…
The first step toward creating the Swarm cluster is creating docker-machine1.
instances for the nodes themselves. Let's create our manager first. In the terminal
session dedicated for the manager, issue the following command:

 docker-machine create --driver virtualbox manager && eval $(docker-
machine env manager)

This command starts the new VM and sets the environment
variables. Also stop any docker-machine instances that are not being
used, in order to free up some resources.

Once your terminal session is ready, go ahead and SSH into the VM using the2.
following command:

 docker-machine ssh manager

You should now be logged in to the VM as the docker user. Hereafter,
we will be using some docker swarm commands.

First, we need to initiate a new cluster. For that we will need the IP of this Docker3.
machine instance. Use the docker-machine ip manager command to find the
IP of this instance. In my case the IP was 192.168.99.100. Now go ahead and
issue the following command on the same terminal:

 docker@manager:~$ docker swarm init --advertise-addr 192.168.99.100
 Swarm initialized: current node (93h99zo91q7o8cvc0s3pvlwvu) is now a
manager

More Clustering Frameworks - DC/OS, Docker Swarm, and YARN

[350]

To add a worker to this swarm, run the following command:
 docker swarm join \
 --token
SWMTKN-1-1xd50ogywv31v4dmcg70tu15xqt7opsqds3qhe0zu8dp856krl-
arslqq0p4qhd85uj2qze4ei5q \
 192.168.99.100:2377

To add a manager to this swarm, run docker swarm join-token manager and
follow the instructions.

We have successfully set up our manager and initiated a new Swarm cluster. The4.
result of the previous command actually gave us the command that we need to
execute from the agent node to join this cluster. Before we move on, let's quickly
verify whether our manager was created correctly by listing all the nodes
participating in this cluster:

 docker@manager:~$ docker node ls
 ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
 93h99zo91q7o8cvc0s3pvlwvu * manager Ready Active Leader

There is just one node in our cluster that acts as the Leader. The next step is to5.
add a new agent node to this cluster. Now move on to the next terminal window
that was dedicated for our agent. We are going to call this node worker. Go
ahead and create this new VM first:

 docker-machine create --driver virtualbox worker && eval $(docker-
machine env worker)

This command starts the new VM and sets the environment variables.

Once your terminal session is ready, go ahead and SSH into the VM using the6.
following command:

 docker-machine ssh worker

Let's issue the docker swarm join command that we received as output when7.
we initiated the cluster on the manager:

 docker@worker:~$ docker swarm join \
 > --token
SWMTKN-1-1xd50ogywv31v4dmcg70tu15xqt7opsqds3qhe0zu8dp856krl-
arslqq0p4qhd85uj2qze4ei5q \
 > 192.168.99.100:2377
 This node joined a swarm as a worker.

More Clustering Frameworks - DC/OS, Docker Swarm, and YARN

[351]

We have successfully set up our agent. Now go back to the manager terminal8.
session and execute docker node ls to verify whether there are two nodes in
the cluster now. You should receive something like this:

 ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
 3i78zp35bxmioy3dvdfmui3gv worker Ready Active
 93h99zo91q7o8cvc0s3pvlwvu * manager Ready Active Leader

That's it! You have successfully orchestrated a minimal docker swarm
cluster.

Our next step would be spinning off our geolocation service on this cluster.9.
Without any further delay, execute the following command to start the
geolocation service on the cluster:

 docker service create --replicas 2 --name geolocation
vikrammurugesan/geolocation

This command says that we would like to start two containers for the
image vikrammurugesan/geolocation with the service name
geolocation.

To list down all the services running in the cluster, execute the following docker10.
service command:

 docker service ps geolocation
 ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR
 46zzwpszqfqvmmmqz0tx8rgo3 geolocation.1 vikrammurugesan/geolocation
manager Running Preparing about a minute ago
 9ppgezl20vme1p6fi4ko7mui1 geolocation.2 vikrammurugesan/geolocation
worker Running Preparing about a minute ago

If you would like to know more about your service, you could use the inspect11.
command to do so:

 docker service inspect --pretty geolocation
 ID: 68jy7i3vwe88c2a797jri6anv
 Name: geolocation
 Mode: Replicated
 Replicas: 2
 Placement:
 UpdateConfig:
 Parallelism: 1
 On failure:pause
 ContainerSpec:
 Image: vikrammurugesan/geolocation

More Clustering Frameworks - DC/OS, Docker Swarm, and YARN

[352]

 Resources:

This console output has been truncated as it is lengthy. If you would like
to view the output in JSON format, just omit the --pretty argument
from the inspect command.

Now wait for the containers to start up. Before the containers try to start up,12.
Docker will pull the image from Docker Hub first. So for the first time, it might
take a few minutes depending on the size of your image. Great! Now the next
thing that you might want to do is scale your microservice. Fortunately, Docker
Swarm comes with a command to scale our services. Let's try to scale down our
geolocation service to a factor of 1.

 docker service scale geolocation=1
 geolocation scaled to 1

Easy, isn't it? Now let's say you would like to delete this service; you would use13.
the docker service rm command:

 docker service rm geolocation

These are some of the basic operations you would want to do with your Swarm cluster. Of
course, there are tons of other things you could do with Docker Swarm. But that is a little
out of scope for our book, so we won't go any deeper. However, one of the most common
things that you would want to do is being able to manage a Swarm cluster with ease.
Command-line management will get a little trickier if your cluster is huge. That's where
tools such as Shipyard, Rancher, and cAdvisor come into picture. Shipyard is a tool used for
managing Docker containers and images. It also has the ability to work with private
registries. Similarly, Rancher is a sophisticated tool for managing containers. cAdvisor is a
little different as it is a monitoring tool for containers. You might also want to look at
Docker's remote API, if you would like to automate deployments to Docker Swarm: h t t p s

://d o c s . d o c k e r . c o m /e n g i n e /a p i /.

That brings us to the end of this recipe. In this recipe, we learned how Docker Swarm could
be used to deploy our microservices. Of course, this is just an introduction. If you are
interested in investing more time in Docker Swarm, read their documentation; it usually
has everything you would need.

https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/

More Clustering Frameworks - DC/OS, Docker Swarm, and YARN

[353]

Deploying containers on YARN
In this recipe, you will learn how YARN can be used as a cluster to deploy applications. The
framework used to deploy applications to YARN is called Apache Slider. At the time of
writing this, Apache Slider is still in Apache's Incubator status. In order to learn Apache
Slider, you will need a YARN cluster. For those of you who are not familiar with YARN, it
stands for Yet Another Resource Navigator, and it is the cluster on which most of your
Hadoop ecosystem operates. The goal of the Slider project is to provide the ability to run
applications on the YARN cluster, scale them, and monitor them. In this recipe, I will only
be able give you an overview of Slider as it is still nascent.

Getting ready
The first thing that you need is a YARN cluster. There are several ways to orchestrate a
YARN cluster. You could orchestrate your own vanilla Hadoop cluster, or you could use
platforms such as Hortonworks or Cloudera to make it much more easier. Using platforms
such as Hortonworks or Cloudera comes with its own advantages. Read through their
documentation and pick what is right for you.

How it works…
There are three main components in a YARN cluster: Resource Manager, Node Manager
and Application Master. The Resource Manager is the core component of the cluster and is
responsible for any resource allocation to applications. The Resource Manager performs
this with the help of a Scheduler that allocates resources to applications based on the offer
and priority. Resources are nothing but CPU, memory and disk space. The Node Manager
is available on each node of the cluster and is responsible for spinning of tasks, monitoring
resource usage and so on. Lastly, the Application Master is a framework specific
component that is responsible for running the tasks on the nodes. The following diagram
shows the components of a YARN cluster:

More Clustering Frameworks - DC/OS, Docker Swarm, and YARN

[354]

Slider is a command-line tool. At the core of Slider lies the YARN Application Master
(AM), the Slider AM, and a client that communicates between YARN and Slider AM using
APIs. The client is the command line interface that can be used to talk to Slider. To learn
more about the working of Slider AM, please take a look at
https://slider.incubator.apache.org/design/architecture.html#am-architecture.
The Slider deployment requests indicate the resources required for the application as well
as the details of the application. The deployment requests are usually in the form of JSON
that looks very similar to Marathon's JSON request. There are two JSON documents that
you need to provide in order to deploy applications using Slider: resources.json and
appConfig.json.

The resources.json file is used to tell Slider how much resources (memory and CPU)
should be allocated for that particular application. Some resource config options are
yarn.memory, yarn.vcores, yarn.container.failure.threshold,
yarn.component.instances, and yarn.role.priority.

While most of these properties are self-explanatory, yarn.role.priority might deserve
an explanation. It is mainly used when you have multiple components. Components with
the highest priority (1) will be orchestrated first.

The yarn.container.failure.threshold option indicates the number of times a
component may fail within the given time window. The failure time window is usually
indicated using three properties:yarn.container.failure.window.days,
yarn.container.failure.window.hours, and yarn.container.failure.minutes.

The next JSON file that you will need is appConfig.json. While resources.json was
more of a config file to Slider (or YARN), appConfig.json is mostly for the application.
Two of the most important properties are application.def and java_home. In addition
to this, you could add your own properties as well, such as JVM size. The
application.def property indicates the location of the application package itself on
HDFS. Usually, the application is packaged as a ZIP file.

Slider is currently CLI driven. Though Slider needs more features to become more
sophisticated like other schedulers, it is currently the only available solution for YARN. If
you are using YARN already, it is worth checking out.

To learn more about Slider, visit their Getting Started page:
http://slider.incubator.apache.org/docs/getting_started.html. At the time of
writing this, the link still lives in Apache's incubator domain. If this link is broken, feel free
to visit Slider's website and navigate to their Getting Started page.

https://slider.incubator.apache.org/design/architecture.html#am-architecture
http://slider.incubator.apache.org/docs/getting_started.html

More Clustering Frameworks - DC/OS, Docker Swarm, and YARN

[355]

With that said, we come to the end of the recipe, the chapter, and the book. In this book, I
have introduced you to a lot of technologies, tools, and frameworks. While it takes more
than a book to make you an expert on each of them, my goal was to give you a head start
and show you how to proceed and solve the most common challenges. Throughout the
book, we have learned recipes to address most of the challenges that you will face when
you move toward a microservice-based architecture, including development, containerization,
deployments, service discovery, load balancing, monitoring, logging, and streaming. Of course,
there will be more challenges as you start scaling out to hundreds and hundreds of
microservices in your organization. But there are always tools and frameworks out there to
solve them. I hope this book will help you out on your microservice journey. Happy
microservicing!

Index

A
addons, Kubernetes cluster
 reference link 158
Apache Slider
 reference link 354
Apache Spark
 about 326
 used, for writing streaming program 326, 336
API server 150
App Container (appc)
 about 149
 reference link 149
asynchronous model 19
Auto-Completer, Graphite 282

B
brokers 306

C
Chronos
 reference link 121
CloudFormation
 reference link 345
Consul architecture
 reference link 228
Consul template 245
 reference link 247
Consul
 concepts 227, 230
 setting up, Docker used 226
 used, for load balancing microservices 244, 247,

251

consumer group 323
consumers 307
container engine
 reference link 152

containers
 deploying, on Yet Another Resource Navigator

(YARN) 353
 deploying, with Docker Swarm 348, 350, 352
continuous integration (CI) 139
controller manager 151
custom metrics
 creating, Dropwizard used 266, 271, 273

D
Dashboard view, Graphite 283
Datacenter Operating System (DC/OS)
 about 345
 infrastructure, deploying with 345, 347, 348
 reference link 345
direct stream (DStream) 330
Docker build command
 reference link 68
Docker container
 microservices, executing in 68, 70, 71
 reference link 103
Docker Engine
 URL, for installation 54
Docker hosts 53
Docker Hub
 image, pushing 72, 74, 75, 76
 references 60
Docker image
 building 64, 65, 66, 68
Docker Machine
 reference link 54
Docker Official Repositories
 reference link 62
Docker Remote API
 reference link 352
Docker Swarm
 containers, deploying with 348, 350, 352

[357]

Docker tag command
 reference link 75
Docker Toolbox
 reference link 54
Docker
 installing 53, 54, 55, 57, 58, 61
 setting up 53, 54, 56, 57, 59, 61
 used, for setting up Consul 227
 used, for setting up Grafana 292, 295
 used, for setting up Graphite 274, 277, 294
 used, for setting up Kafka 305, 307, 310
 used, for setting up Kubernetes cluster 152, 153,

156, 157, 158, 159
 used, for setting up Mesos cluster 79, 82, 83,

84, 85, 87, 88, 90, 91, 92, 93, 154, 155
 used, for setting up Zookeeper 203, 206
Dockerfile arguments
 reference link 67
Dockerfile
 creating 61, 62, 63, 64
 reference link 64
Dropwizard metrics
 exporting, to Graphite 284, 287, 288
Dropwizard
 counter 267
 gauge 267
 histogram 267
 meter 267
 microservices, creating with 33, 34, 38, 39
 reference link 35
 timer 267
 used, for creating custom metrics 266, 271, 273

E
Elasticsearch, Log Stash, and Kibana (ELK) 343
environment variables
 configuring, in Kubernetes 185, 186, 187, 188
 configuring, in Marathon 122, 127
etcd
 about 150
 reference link 150
Event Timeline 337
executable JAR
 building, Maven Shade plugin used 46, 47, 49
 building, Spring Boot Maven plugin used 50, 53

extensions API, Kubernetes cluster
 reference link 172

F
frameworks, Mesos
 reference link 80

G
Go template format
 reference link 245
Gradle plugin
 reference link 147
Grafana
 configuring, with Graphite 295, 297
 dashboards, configuring to view metrics 298,

300, 303
 setting up, Docker used 292, 294, 295
graphics processing unit (GPU) 96
Graphite
 Auto-Completer 282
 Carbon 274
 Dashboard view 283
 Graphite-Web 274
 references 275
 setting up, Docker used 274, 277
 Tree view 279, 281
 web interface 278
 Whisper 274
Graylog documentation
 URL 343
Graylog Extended Log Format (GELF) 343
Graylog2 343

H
host ports
 configuring, in Kubernetes 174, 175, 177, 179
 configuring, in Marathon 106, 107, 109, 110,

111, 112, 113

I
Image commands
 reference link 65
image
 pushing, to Docker Hub 71, 72, 74, 75, 76

[358]

infrastructure
 deploying, with Datacenter Operating System

(DC/OS) 345, 347, 348

J
Java project template
 creating, Maven used 11, 12, 13, 14, 15
 creating, Spring Tool Suite (STS) used 11, 12,

13, 14, 15

K
Kafka Streams
 performance, improving 323, 326
 used, for writing streaming program 317, 318,

323

Kafka topics
 creating, to stream data 310, 311, 317
Kafka
 about 305
 integrating, with log management systems 342
 logs, aggregating with Log4J 338, 342
 point-to-point mechanism 306
 pub-sub mechanism 306
 setting up, Docker used 305, 307, 310
 terminologies 306
 URL 330
kubectl logs
 reference link 201
kubectl
 reference link 153
kubelet 151
kubeproxy 151
Kubernetes cluster
 setting up, Docker used 152, 153, 154, 155,

156, 157, 158, 159
Kubernetes dashboard 159, 160, 161, 162, 163,

164, 165, 167
Kubernetes master
 about 150
 API server 150
 controller manager 151
 etcd 150
 scheduler 151
Kubernetes node 151, 152
Kubernetes

 environment variables, configuring in 185, 186,
187, 189

 high ports, configuring in 174, 175, 177, 179
 microservices, deploying on 168, 169, 170, 171,

172, 173, 174
 microservices, destroying in 194, 196
 microservices, logs monitoring in 196, 197, 198,

199, 201
 microservices, scaling in 190, 191, 193
 reference link 152
 volumes, configuring in 180, 181, 182, 184, 185

L
log appender 339
log management systems
 Kafka, integrating 342
Log4J
 used, for aggregating logs into Kafka 338, 342
logs
 aggregating, into Kafka with Log4J 338, 342

M
Marathon interface
 about 93, 94
 web UI 98, 99
Marathon LB
 reference link 252
 used, for load balancing microservices 252
Marathon
 environment variables, configuring in 122, 127
 host ports, configuring in 106, 107, 108, 110,

111, 112, 113
 microservices, destroying in 131, 133
 microservices, logs monitoring in 133, 135, 136
 microservices, scaling in 127, 128, 129, 130,

131

 volumes, configuring in 113, 114, 116, 118, 121
Maven plugin
 reference link 147
Maven Shade plugin
 used, for building executable JAR 46, 47, 49
Maven
 used, for creating Java project template 11, 12,

13, 14, 15
Mesos architecture

[359]

 reference link 81
Mesos interface
 about 93, 94
 frameworks 97, 98
 home page 94, 95, 96, 97
Mesos
 cluster, setting up Docker used 79, 82, 83, 84,

85, 88, 90, 91, 92, 93
 frameworks 80
 masters 80
 microservice, logs monitoring in 136, 139
 slaves 80
 Zookeeper 80
microservices
 creating, with Dropwizard 33, 34, 37, 39
 creating, with Spring Boot 16, 19
 creating, with WildFly Swarm 26, 29, 32
 deploying, on Kubernetes 168, 169, 170, 171,

172, 173, 174
 deploying, to Mesos using Marathon 99, 100,

102, 103, 104, 106
 destroying, in Kubernetes 194, 196
 destroying, in Marathon 131, 132
 executing, in Docker container 68, 70, 71
 load balancing, Consul used 244, 247, 251
 load balancing, Marathon LB used 252
 load balancing, Nginx used 244, 247, 251
 load balancing, Spring Cloud Consul used 236,

239, 242, 244
 load balancing, Zookeeper used 206, 212, 217,

221, 226
 logs, monitoring in Kubernetes 196, 197, 198,

199, 201
 logs, monitoring in Marathon 133
 logs, monitoring in Mesos 136, 139
 logs, monitoring, in Marathon 135, 136
 managing, Marathon REST API used 139, 140,

145

 scaling, in Kubernetes 190, 191, 193
 scaling, in Marathon 127, 128, 129, 130, 131
Minikube method
 about 153
 references 153

N
Nginx Plus 251
Nginx server 245
Nginx
 used, for load balancing microservices 244, 247,

251

P
partitions 306
Pickle mode
 reference link 285
plain old java object (POJO) 21
pods 149
point-to-point mechanism 306
producers 307

R
RatPack
 reference link 47
replication factor 311
Resilient Distributed Dataset (RDD) 326
REST APIs, in Graphite
 reference link 287
REST APIs
 creating, with SparkJava 40, 41, 43
 creating, with Spring MVC 19, 20, 22, 23, 26

S
scheduler
 about 151
 reference link 151
Search, Graphite 281
SerializerDeserializer (SerDes) 320
service discovery
 implementing, Spring Cloud Consul used 231,

234, 236
single point of failure (SPOF) 10
Slider AM
 reference link 354
Spark job
 performance, improving 336, 338
SparkJava
 about 40
 REST APIs, creating with 40, 41, 43

Spring Boot Actuator metrics
 configuring 255, 258
 exporting, to Graphite 289, 291
 implementing 258, 262, 265
 reference link 266
Spring Boot Maven plugin
 reference link 53
 used, for building executable JAR 50, 53
Spring Boot
 microservices, creating with 16, 19
 reference link 24
Spring Cloud Consul
 about 236
 used, for load balancing microservices 236, 239,

242, 244
Spring MVC
 REST APIs, creating with 19, 20, 22, 23, 26
Spring Tool Suite (STS)
 about 11
 used, for creating Java project template 11, 12,

13, 14, 15
statsd
 references 275
streaming program
 writing, Apache Spark used 326, 330, 336
 writing, Kafka Streams used 317, 318, 323
synchronous model 19

T
terminologies, Kafka
 brokers 306
 consumers 306
 partitions 306

 producers 306
 topics 306
topics 306
Tree view, Graphite 279, 281

V
VirtualBox
 URL, for downloading 153
volumes, types
 reference link 180
volumes
 configuring, in Kubernetes 180, 181, 182, 183,

185

 configuring, in Marathon 113, 114, 116, 118,
121

W
WildFly Swarm
 microservices, creating with 26, 29, 33

Y
Yet Another Resource Navigator (YARN)
 about 353
 application master 353
 containers, deploying on 353
 node manager 353
 resource manager 353

Z
Zookeeper
 setting up, Docker used 203, 206
 used, for load balancing microservices 206, 209,

212, 217, 221, 226

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Building Microservices with Java
	Introduction
	Creating a project template using STS and Maven
	Getting ready
	How to do it…
	There's more…

	Writing microservices with Spring Boot
	Getting ready
	How to do it…

	Writing REST APIs with Spring MVC
	Getting ready
	How to do it…

	Writing microservices with WildFly Swarm
	Getting ready
	How to do it…

	Writing microservices with Dropwizard
	Getting ready
	How to do it…

	Writing REST APIs with SparkJava
	Getting ready
	How to do it…

	Conclusion

	Chapter 2: Containerizing Microservices with Docker
	Building an executable JAR using Maven Shade plugin
	Getting ready
	How to do it…

	Building an executable JAR using the Spring Boot Maven plugin
	Getting ready
	How to do it…

	Installing and setting up Docker
	Getting ready
	How to do it…

	Writing your Dockerfile
	Getting ready
	How to do it…

	Building your Docker image
	Getting ready
	How to do it…

	Running your microservice inside a Docker container
	Getting ready
	How to do it…

	Pushing your image to Docker Hub
	Getting ready
	How to do it…

	Chapter 3: Deploying Microservices on Mesos
	Introduction
	Setting up a Mesos cluster using Docker
	Getting ready
	Zookeeper
	Mesos masters and Mesos slaves
	Mesos frameworks

	How to do it…

	Understanding the Mesos and Marathon interface
	Getting ready
	How to do it…
	The Mesos interface
	The Mesos home page
	Frameworks

	The Marathon web UI

	Deploying your microservice to Mesos using Marathon
	Getting ready
	How to do it…

	Configuring ports in Marathon
	Getting ready
	How to do it…

	Configuring volumes in Marathon
	Getting ready
	How to do it…

	Configuring environment variables in Marathon
	Getting ready
	How to do it…

	Scaling your microservice in Marathon
	Getting ready
	How to do it…

	Destroying your microservice in Marathon
	Getting ready
	How to do it…

	Monitoring your microservice logs in Marathon
	Getting ready
	How to do it…

	Monitoring your microservice logs in Mesos
	Getting ready
	How to do it…

	Managing your microservice using Marathon's REST API
	Getting ready
	How to do it…

	Chapter 4: Deploying Microservices on Kubernetes
	Introduction
	Kubernetes master
	API server
	etcd
	Scheduler
	Controller manager
	Kubernetes node

	Setting up Kubernetes cluster using Docker
	Getting ready
	How to do it…

	Understanding the Kubernetes dashboard
	Getting ready
	How to do it…

	Deploying your microservice on Kubernetes
	Getting ready
	How to do it…

	Configuring ports in Kubernetes
	Getting ready
	How to do it…

	Configuring volumes in Kubernetes
	Getting ready
	How to do it…

	Configuring environment variables in Kubernetes
	Getting ready
	How to do it…

	Scaling your microservice in Kubernetes
	Getting ready
	How to do it…

	Destroying your microservice in Kubernetes
	Getting ready
	How to do it…

	Monitoring your microservice logs in Kubernetes
	Getting ready
	How to do it…

	Chapter 5: Service Discovery and Load Balancing Microservices
	Introduction
	Setting up Zookeeper using Docker
	Getting ready
	How to do it…

	Load balancing microservices using Zookeeper
	Getting ready
	How to do it…

	Setting up Consul using Docker
	Getting ready
	How to do it…
	Understanding the concepts of Consul

	Implementing service discovery using Spring Cloud Consul
	Getting ready
	How to do it…

	Load balancing your microservice using Spring Cloud Consul
	Getting ready
	How to do it…

	Load balancing your microservice using Nginx and Consul
	Getting ready
	How to do it…

	Load balancing your microservice using Marathon LB
	How it works…

	Chapter 6: Monitoring Microservices
	Introduction
	Configuring Spring Boot Actuator metrics
	Getting ready
	How to do it…

	Understanding Spring Boot Actuator metrics
	Getting ready
	How to do it…

	Creating custom metrics using Dropwizard
	Getting ready
	How to do it…

	Setting up Graphite using Docker
	Getting ready
	How to do it…

	Using the Graphite interface
	Getting ready
	How to do it…
	Tree view
	Search
	Auto-Completer
	Graphite

	Exporting Dropwizard metrics over to Graphite
	Getting ready
	How to do it…

	Exporting Spring Boot Actuator metrics over to Graphite
	Getting ready
	How to do it…

	Setting up Grafana using Docker
	Getting ready
	How to do it…

	Configuring Grafana to use Graphite
	Getting ready
	How to do it…

	Configuring Grafana dashboards to view metrics
	Getting ready
	How to do it…

	Chapter 7: Building Asynchronous Streaming Systems with Kafka and Spark
	Introduction
	Setting up Kafka using Docker
	[Kafka]
	Kafka
	Point-to-point mechanism
	Pub-sub mechanism

	Kafka terminology
	Brokers
	Topics
	Partitions
	Producers and consumers

	Getting ready
	How to do it…

	Creating Kafka topics to stream data
	Getting ready
	How to do it…

	Writing a streaming program using Kafka Streams
	Getting ready
	How to do it…

	Improving the performance of the Kafka Streams program
	Getting ready
	How to do it…

	Writing a streaming program using Apache Spark
	Getting ready
	How to do it…

	Improving the performance of the Spark job
	How to do it…

	Aggregating logs into Kafka using Log4J
	Getting ready
	How to do it…

	Integrating Kafka with log management systems
	How it works…

	Chapter 8: More Clustering Frameworks - DC/OS, Docker Swarm, and YARN
	Introduction
	Deploying infrastructure with DC/OS
	Getting ready
	How to do it…

	Deploying containers with Docker Swarm
	Getting ready
	How to do it…

	Deploying containers on YARN
	Getting ready
	How it works…

	Index

