

Viktor Farcic

BIRMINGHAM - MUMBAI

The DevOps 2.1 Toolkit: Docker Swarm
Copyright © 2017 Viktor Farcic

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2017

Production reference: 1020517

Published by Packt Publishing Ltd.

ISBN 978-1-78728-970-3

Credits

Author
Viktor Farcic

Acquisition Editor
Frank Pohlmann

Technical Editors
Joel Wilfred D'souza
Devesh Chugh

Production Coordinator
Shraddha Falebhai

Indexer
Francy Puthiry

About the Author
Viktor Farcic is a senior consultant at CloudBees (), a member
of the Docker Captains () group,
and an author.

He codes using a plethora of languages starting with Pascal (yes, he is old), Basic (before it
got the Visual prefix), ASP (before it got the .NET suffix), C, C++, Perl, Python, ASP.NET,
Visual Basic, C#, JavaScript, Java, Scala, and so on. He never worked with Fortran. His
current favorite is Go.

Viktor's big passions are Microservices, Continuous Deployment, and Test-Driven
Development (TDD).

He often speaks at community gatherings and conferences. Viktor wrote Test-Driven Java
Development by Packt Publishing, and The DevOps 2.0 Toolkit. His random thoughts and
tutorials can be found in his blog TechnologyConversations.com (

).

www.PacktPub.com
For support files and downloads related to your book, please visit .

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process.

If you'd like to join our team of regular reviewers, you can e-mail us at
. We award our regular reviewers with free eBooks and

videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

Table of Contents
Preface 1

Chapter 1: Continuous Integration with Docker Containers 5

Defining a fully Dockerized manual Continuous Integration flow 7
Running unit tests and building service binary 10
Building service images 12
Running staging tests 15
Pushing images to the registry 17

Chapter 2: Setting Up and Operating a Swarm Cluster 21

Scalability 22
Axis scaling 24

X-axis scaling 24
Y-axis scaling 26
Z-axis scaling 26

Clustering 26
Docker Swarm Mode 27
Setting up a Swarm cluster 29
Deploying services to the Swarm cluster 32
Scaling services 35
Failover 37
What now? 38

Chapter 3: Docker Swarm Networking and Reverse Proxy 39

Setting up a cluster 40
Requirements of secured and fault tolerant services running with high
availability 41
Running a database in isolation 42
Running a service through a reverse proxy 46
Creating a reverse proxy service in charge of routing requests
depending on their base URLs 48
Load balancing requests across all instances of a service 54
What now? 57

Chapter 4: Service Discovery inside a Swarm Cluster 58

What would Docker Swarm look like without? 58
What does standalone Docker Swarm look like with service discovery? 62

[ii]

Service discovery in the Swarm cluster 64
Do we need service discovery? 65
Setting up Consul as service registry inside a Swarm cluster 65
Problems when scaling stateful instances 71
Using service registry to store the state 73
Discovering addresses of all instances that form a service 78
Using service registry or key value store to store service state 81
What now? 84

Chapter 5: Continuous Delivery and Deployment with Docker
Containers 85

Defining the Continuous Delivery environment 86
Setting up Continuous Delivery clusters 87
Using node labels to constrain services 90
Creating services 94
Walking through Continuous Delivery steps 97
Walking the extra mile from Continuous Delivery to Continuous
Deployment 103
What now? 105

Chapter 6: Automating Continuous Deployment Flow with Jenkins 106

Jenkins architecture 106
Production environment setup 107
Jenkins service 108
Jenkins failover 112
Jenkins agent 114
Creating services in production and production-like environments 124
Automating Continuous Deployment flow with Jenkins 125
Creating Jenkins Pipeline jobs 126

Defining Pipeline nodes 129
Defining Pipeline stages 131
Defining Pipeline steps 132

What now? 138

Chapter 7: Exploring Docker Remote API 140

Setting up the environment 140
Operating Docker Swarm through the Docker Remote API 142
Using Docker Remote API to automate proxy configuration 153
Combining the Swarm listener with the proxy 154

Automatically reconfiguring the proxy 155
Removing a service from the proxy 157

[iii]

What now? 158

Chapter 8: Using Docker Stack and Compose YAML Files to Deploy
Swarm Services 159

Swarm cluster setup 160
Creating Swarm services through Docker stack commands 161
Deploying more stacks 163
To stack or not to stack 166
Cleanup 166

Chapter 9: Defining Logging Strategy 167

The need for centralized logging 169
Setting up ElasticSearch as the logging database 170
Setting up LogStash as the logs parser and forwarder 172
Forwarding logs from all containers running anywhere inside a Swarm
cluster 176
Exploring logs 179
Discussing other logging solutions 185
What now? 186

Chapter 10: Collecting Metrics and Monitoring the Cluster 188

The requirements of a cluster monitoring system 188
Choosing the right database to store system metrics 190
Creating the cluster 191
Prometheus metrics 194
Exporting system wide metrics 195
Scraping, querying, and visualizing Prometheus metrics 201
Using Grafana to create dashboards 209
Exploring Docker Swarm and container overview dashboard in
Grafana 217
Adjusting services through dashboard metrics 225
Monitoring best practices 228
What now? 229

Chapter 11: Embracing Destruction: Pets versus Cattle 230

What now? 233

Chapter 12: Creating and Managing a Docker Swarm Cluster in
Amazon Web Services 234

Installing AWS CLI and setting up the environment variables 235
Setting up a Swarm cluster with Docker Machine and AWS CLI 239
Setting up a Swarm cluster with Docker for AWS 248

[iv]

Automatically setting up a Swarm cluster with Docker for AWS 259
Setting up a Swarm cluster with Packer and Terraform 264

Using Packer to create Amazon Machine Images 264
Using Terraform to create a Swarm cluster in AWS 270

Choosing the right tools to create and manage Swarm clusters in AWS 288
To Docker Machine or not to Docker Machine? 289
To Docker for AWS or not to Docker for AWS? 290
To Terraform or not to Terraform? 291
The final verdict 294

Chapter 13: Creating and Managing a Docker Swarm Cluster in
DigitalOcean 295

Setting up the environment variables 297
Setting up a Swarm cluster with Docker Machine and DigitalOcean API 300
Setting up a Swarm cluster with Packer and Terraform 307

Using Packer to create DigitalOcean snapshots 307
Using Terraform to create a Swarm cluster in DigitalOcean 312

Choosing the right tools to create and manage Swarm clusters in
DigitalOcean 333

To Docker Machine or not to Docker Machine? 333
To Terraform or not to Terraform? 334
The final verdict 335

To DigitalOcean or not to DigitalOcean 336

Chapter 14: Creating and Managing Stateful Services in a Swarm
Cluster 337

Exploring the twelve-factor app methodology 337
Setting up a Swarm cluster and the proxy 342
Running stateful services without data persistence 347
Persisting stateful services on the host 352
Persisting stateful services on a Network File System 353
Data volume orchestration 358
Persisting stateful services with REX-Ray 358
Choosing the persistence method for stateful services 366
Adding REX-Ray to packer and terraform 367
Persisting stateful services without replication 374
Persisting stateful services with synchronization and replication 375
Persisting docker flow proxy state 375
Persisting MongoDB state 377
Initializing MongoDB replica set through a swarm service 386

[v]

What now? 391

Chapter 15: Managing Secrets in Docker Swarm Clusters 392

Creating secrets 392
Consuming secrets 394
A real-world example of using secrets 395
Using secrets with Docker Compose 396
Common ways to use secrets 399
What now? 400

: Monitor Your GitHub Repos with Docker and Prometheus 401

Docker, Prometheus, and Grafana 401
Getting started 402
Configuration 402
Post configuration 403
Install dashboard 404
Conclusion 405
About the author 406

Index 407

Preface
At the beginning of 2016, I published The DevOps 2.0 Toolkit (

). It took me a long time to finish it. Much longer than I imagined.

I started by writing blog posts in TechnologyConversations.com (
). They become popular and I received a lot of feedback. Through them, I

clarified the idea behind the book. The goal was to provide a guide for those who want to
implement DevOps practices and tools. At the same time, I did not want to write a material
usable to any situation. I wanted to concentrate only on people that truly want to
implement the latest and greatest practices. I hoped to make it go beyond the "traditional"
DevOps. I wished to show that the DevOps movement matured and evolved over the years
and that we needed a new name. A reset from the way DevOps is implemented in some
organizations. Hence the name, The DevOps 2.0 Toolkit (

)

As any author will tell you, technical books based mostly on hands-on material do not have
a long time span. Technology changes ever so quickly and we can expect tools and practices
that are valid today to become obsolete a couple of years afterward. I expected The DevOps
2.0 Toolkit to be a reference for two to three years (not more). After all, how much can things
change in one year? Well, Docker proved me wrong. A lot changed in only six months since
I made the book public. The new Swarm was released. It is now part of Docker Engine
v1.12+. Service discovery is bundled inside it. Networking was greatly improved with load
balancing and routing mesh. The list can go on for a while. The release 1.12 is, in my
opinion, the most significant release since the first version that went public.

I remember the days I spent together with Docker engineers in Seattle during DockerCon
2016. Instead of attending the public sessions, I spent four days with them going through
the features that will be released in version 1.12 and the roadmap beyond it. I felt I
understood all the technical concepts and features behind them. However, a week later,
when I went back home and started "playing" with the new Docker Swarm Mode, I realized
that my brain was still wired to the way the things were working before. Too many things
changed. Too many new possibilities emerged. It took a couple of weeks until my brain
reset. Only then I felt I truly understood the scope of changes they introduced in a single
release. It was massive.

In parallel with my discovery of the Swarm Mode, I continued receiving emails from The
DevOps 2.0 Toolkit () readers. They wanted more.
They wanted me to cover new topics as well as to go deeper into those already explored.

Preface

[2]

One particular request was repeated over and over. "I want you to go deeper into
clustering." Readers wanted to know in more detail how to operate a cluster and how to
combine it with continuous deployment. They requested that I explore alternative methods
for zero-downtime deployments, how to monitor the system more efficiently, how to get
closer to self-healing systems, and so on. The range of topics they wanted me to cover was
massive, and they wanted it as soon as possible.

Hence, I decided to start a new book and combine my amazement with Docker 1.12 with
some of the requests from the readers. The DevOps 2.1 Toolkit was born, and, more
importantly, The DevOps Toolkit Series came into existence.

Overview
This book explores the practices and tools required to run a Swarm cluster. We'll go beyond
a simple deployment. We'll explore how to create a Continuous Deployment process. We'll
set up multiple clusters. One will be dedicated to testing and the other for production. We'll
see how to accomplish zero-downtime deployments, what to do in case of a failover, how to
run services at scale, how to monitor the systems, and how to make it heal itself. We'll
explore the processes that will allow us to run the clusters on a laptop (for demo purposes)
as well as on different providers. I'll try to cover as many different hosting solutions as
possible. However, time and space are limited, and the one you use (be it public or on-
premise) might not be one of them. Fear not! The processes, the tools, and the practices can
be easily applied to almost any. As always, this book is very hands-on oriented, but the goal
is not to master a particular set of tools but to learn the logic behind them so that you can
apply it to your job no matter whether your choice ends up being different.

This book does not make The DevOps 2.0 Toolkit (
)obsolete. I think that the logic behind it will continue being valid for a while longer. The
DevOps 2.1 Toolkit builds on top of it. It goes deeper into some of the subjects explored
before and explains others that could not fit in 2.0. While I did my best to write this book in
a way that prior knowledge is not required, I strongly recommend starting with The DevOps
2.0 Toolkit (). The first book in the series sets the
stage for this one as well as those that will come afterward. Please consider this book as the
second episode in The DevOps Toolkit Series.

Preface

[3]

The first few chapters might, on the first look, seem repetitive to the readers of The DevOps
2.0 Toolkit. Never the less, they are important because they unravel some of the problems
we'll face when working inside a cluster. They set the stage for the chapters that follow.
While you might be tempted to skip them, my recommendation is to read everything. As in
any good story, the start sets the stage, the middle develops the story, and the end reveals
an unexpected outcome. Some of the theory will be the same as described in The DevOps 2.0
Toolkit. In such cases, I will clearly indicate it and let you choose whether to skip it or read it
as a way to refresh your memory.

While there will be a lot of theory, this is a hands-on book. You won't be able to complete it
by reading it in a metro on the way to work. You'll have to read this book while in front of a
computer getting your hands dirty. Eventually, you might get stuck and in need of help. Or
you might want to write a review or comment on the book's content. Please post your
thoughts on The DevOps 2.1 Toolkit channel in Disqus (

). If you prefer a more direct communication, please join the
DevOps2.0 () Slack channel. All the books I wrote are
very dear to me, and I want you to have a good experience reading them. Part of that
experience is the option to reach out to me. Don't be shy.

Please note that this, just as the previous book, is self-published. I believe that having no
intermediaries between the writer and the reader is the best way to go. It allows me to write
faster, update the book more frequently, and have a more direct communication with you.
Your feedback is part of the process. No matter whether you purchased the book while only
a few or all chapters were written, the idea is that it will never be truly finished. As time
passes, it will require updates so that it is aligned with the change in technology or
processes. When possible, I will try to keep it up to date and release updates whenever that
makes sense. Eventually, things might change so much that updates are not a good option
anymore, and that will be a sign that a whole new book is required. As long as I continue
getting your support, I will keep writing.

Preface

[4]

Audience
This book is for professionals interested in the full microservices life cycle combined with
continuous deployment and containers. Due to the very broad scope, target audience could
be architects who want to know how to design their systems around microservices. It could
be DevOps wanting to know how to apply modern configuration management practices and
continuously deploy applications packed in containers. It is for developers who would like to
take the process back into their hands as well as for managers who would like to gain a
better understanding of the process used to deliver software from the beginning to the end.
We'll speak about scaling and monitoring systems. We'll even work on the design (and
implementation) of self-healing systems capable of recuperation from failures (be it of
hardware or software nature). We'll deploy our applications continuously directly to
production without any downtime and with the ability to rollback at any time.

This book is for everyone wanting to know more about the software development lifecycle starting
from requirements and design, through development and testing all the way until
deployment and post-deployment phases. We'll create the processes taking into account
best practices developed by and for some of the biggest companies.

11
Continuous Integration with

Docker Containers
It is paradoxical, yet true, to say, that the more we know, the more ignorant we become in
the absolute sense, for it is only through enlightenment that we become conscious of our
limitations. Precisely one of the most gratifying results of intellectual evolution is the
continuous opening up of new and greater prospects.

—Nikola Tesla

To fully understand the challenges and benefits that Docker Swarm brings, we need to start
from the beginning. We need to go back to a code repository and decide how are we going
to build, test, run, update, and monitor the services we're developing. Even though the
objective is to implement continuous deployment to a Swarm cluster, we need to step back
and explore Continuous Integration (CI) first. The steps we'll define for the CI process will
dictate how we proceed towards Continuous Delivery (CD), from there towards
Continuous Deployment (CDP), and, finally, how we ensure that our services are
monitored and able to self-heal. This chapter explores Continuous Integration as a
prerequisite for the more advanced processes.

A note to The DevOps 2.0 Toolkit readers
The text that follows is identical to the one published in The DevOps 2.0
Toolkit. If it is still fresh in your mind, feel free to jump to the sub-section
Defining a fully Dockerized manual Continuous Integration flow . Since I wrote
the 2.0, I discovered a few better ways to implement CI processes. I hope
you'll benefit from this chapter even if you consider yourself a veteran CI
practitioner.

To understand Continuous Deployment we should first define its predecessors, Continuous
Integration and Continuous Delivery.

Continuous Integration with Docker Containers

[6]

Integration phase of a project development tended to be one of the most painful stages of
Software Development Life Cycle (SDLC). We would spend weeks, months or even years
working in separate teams dedicated to separate applications and services. Each of those
teams would have their set of requirements and tried their best to meet them. While it
wasn't hard to periodically verify each of those applications and services in isolation, we all
dreaded the moment when team leads would decide that the time has come to integrate
them into a unique delivery. Armed with the experience from previous projects, we knew
that integration would be problematic. We knew that we would discover problems, unmet
dependencies, interfaces that do not communicate with each other correctly and that
managers will get disappointed, frustrated, and nervous. It was not uncommon to spend
weeks or even months in this phase. The worse part of all that was that a bug found during
the integration phase could mean going back and redoing days or weeks worth of work. If
someone asked me how I felt about integration back then, I'd say that it was closest I could
get to becoming permanently depressed. Those were different times. We thought that was
the right way to develop applications.

A lot changed since then. Extreme Programming (XP) and other agile methodologies
became familiar, automated testing became frequent, and Continuous Integration started to
take ground. Today we know that the way we developed software back then was wrong.
The industry moved a long way since those days.

Continuous Integration usually refers to integrating, building, and testing code within the
development environment. It requires developers to integrate code into a shared repository
often. How often is often can be interpreted in many ways and it depends on the size of the
team, the size of the project and the number of hours we dedicate to coding. In most cases, it
means that coders either push directly to the shared repository or merge their code with it.
No matter whether we're pushing or merging, those actions should, in most cases, be done
at least a couple of times a day. Getting code to the shared repository is not enough, and we
need to have a pipeline that, as a minimum, checks out the code and runs all the tests
related, directly or indirectly, to the code corresponding to the repository. The result of the
execution of the pipeline can be either red or green. Something failed, or everything was run
without any problems. In the former case, minimum action would be to notify the person
who committed the code.

The Continuous Integration pipeline should run on every commit or push. Unlike
Continuous Delivery, Continuous Integration does not have a clearly defined goal of that
pipeline. Saying that one application integrates with others does not tell us a lot about its
production readiness. We do not know how much more work is required to get to the stage
when the code can be delivered to production. All we are striving for is the knowledge that
a commit did not break any of the existing tests. Nevertheless, CI is a vast improvement
when done right. In many cases, it is a very hard practice to implement, but once everyone
is comfortable with it, the results are often very impressive.

Continuous Integration with Docker Containers

[7]

Integration tests need to be committed together with the implementation code, if not before.
To gain maximum benefits, we should write tests in Test-Driven Development (TDD)
fashion. That way, not only that tests are ready for commit together with implementation,
but we know that they are not faulty and would not pass no matter what we do. There are
many other benefits TDD brings to the table and, if you haven't already, I strongly
recommend to adopt it. You might want to consult the Test-Driven Development (

) section of the
Technology Conversations () blog.

Tests are not the only CI prerequisite. One of the most important rules is that when the
pipeline fails, fixing the problem has higher priority than any other task. If this action is
postponed, next executions of the pipeline will fail as well. People will start ignoring the
failure notifications and, slowly, CI process will begin losing its purpose. The sooner we fix
the problem discovered during the execution of the CI pipeline, the better we are. If
corrective action is taken immediately, knowledge about the potential cause of the problem
is still fresh (after all, it's been only a few minutes between the commit and the failure
notification) and fixing it should be trivial.

Defining a fully Dockerized manual
Continuous Integration flow
Every Continuous Integration process starts with a code that is checked out from a
repository. We'll use the GitHub repository (

) throughout the book. It contains the code of the service we'll use throughout
the book. The service is written in Go (). Fear not! Even though I
consider it one of the best currently available languages, you will not be required to learn
Go. We'll use the go-demo service only as a demonstration of the processes explained
throughout the book. Even though I strongly recommend learning Go, the book does not
assume any knowledge of the language. All the examples will be programming language
agnostic.

All the commands from this chapter are available in the
 (

) Gist.

Continuous Integration with Docker Containers

[8]

A note to Windows users
Please make sure that your Git client is configured to check out the code
AS-IS. Otherwise, Windows might change carriage returns to the
Windows format.

Let's get going and check out the code:

git clone https://github.com/vfarcic/go-demo.git

cd go-demo

Some of the files will be shared between the host file system and Docker Machines we'll
start creating soon. Docker Machine makes the whole directory that belongs to the current
user available inside the VM. Therefore, please make sure that the code is checked out
inside one of the user's sub-folders.

Now that we have the code checked out from the repository, we need a server that we'll use
to build and run tests. For now, we'll use Docker Machine, since it provides an easy way to
create a "Docker ready" VMs on our laptops.

The Docker Machine () is a tool that lets you
install Docker Engine on virtual hosts, and manage the hosts with the
commands. You can use Machine to create Docker hosts on your local Mac or Windows
box, on your company network, in your data center, or on cloud providers like AWS or
DigitalOcean.

Using commands, you can start, inspect, stop, and restart a managed
host, upgrade the Docker client and daemon, and configure a Docker client to talk to your
host.

Machine was the only way to run Docker on Mac or Windows previous to Docker v1.12.
Starting with the beta program and Docker v1.12, Docker for Mac and Docker for Windows
are available as native apps and the better choice for this use case on newer desktops and
laptops. I encourage you to try out these new apps. The installers for Docker for Mac and
Docker for Windows include Docker Machine, along with Docker Compose.

The examples that follow assume that you have Docker Machine version
v0.9 () that includes
Docker Engine v1.13+ (

). The installation instructions can be found in the Install Docker Machine
() page.

Continuous Integration with Docker Containers

[9]

A note to Windows users
The recommendation is to run all the examples from Git Bash (installed
through Docker Toolbox as well as Git). That way the commands you'll see
throughout the book will be same as those that should be executed on OS
X or any Linux distribution.

A note to Linux users
Docker Machine on Linux might not be able to mount a host volume
inside VMs. The problem is related to the fact that both host and Docker
Machine OSes use directory. Mounting from the host would
overwrite some of the required files. If you experience problems with
mounting of the host volume, please export the

 variable:

If machines are already created, you'll have to destroy them and create
them again.
Please note that this problem should be fixed in newer Docker Machine
versions so use this workaround only if you notice that the volume is not
mounted (files from the host are not available inside VMs).

Let's create our first server called use the following command:

docker-machine create -d virtualbox go-demo

A note to Windows users
If you're using Docker for Windows instead of Docker Toolbox, you will need
to change the driver from virtualbox to Hyper-V. The problem is that
Hyper-V does not allow mounting host volumes, so it is still highly
recommended to use Docker Toolbox when working with Docker Machine.
The reason behind the choice of running Docker inside Docker Machines
instead natively on the host lies in the need to run a cluster (coming in the
next chapter). Docker Machine is the easiest way to simulate a multi-node
cluster.

The command should be self-explanatory. We specified virtualbox as the driver (or Hyper-
V if you're running Docker for Windows) and named the machine :

A note to Windows users
In some cases, Git Bash might think that it is still running as BAT. If you
experience a problem with the commands, please
export the variable:

Continuous Integration with Docker Containers

[10]

Now that the machine is running, we should instruct our local Docker Engine to use it, use
the following command:

docker-machine env go-demo

The command outputs environment variables required
for the local engine to find the server we'd like to use. In this case, the remote engine is
inside the VM we created with the command.

The output is as follows:

export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://192.168.99.100:2376"
export DOCKER_CERT_PATH="/Users/vfarcic/.docker/machine/machines/go-demo"
export DOCKER_MACHINE_NAME="go-demo"

We can envelop the command into an that will evaluate the output and, in this
case, create the environment variables using the following command:

eval $(docker-machine env go-demo)

From now on, all the Docker commands we execute locally will be channeled to the engine
running inside the machine.

Now we are ready to run the first two steps in the CI flow. We'll execute unit tests and build
the service binary.

Running unit tests and building service
binary
We'll use Docker Compose for the CI flow. As you will see soon, Docker Compose has little,
if any, value when operating the cluster. However, for operations that should be performed
on a single machine, Docker Compose is still the easiest and the most reliable way to go.

Compose is a tool for defining and running multi-container Docker applications. With
Compose, you use a Compose file to configure your application's services. Then, using a
single command, you create and start all the services from your configuration. Compose is
great for development, testing, and staging environments, as well as CI workflows.

The repository that we cloned earlier, already has all the services we'll need defined inside
the (

) file.

Continuous Integration with Docker Containers

[11]

Let's take a look at the content of the (
) file:

cat docker-compose-test-local.yml

The service we'll use for our unit tests is called . It is as follows:

unit:
 image: golang:1.6
 volumes:
 - .:/usr/src/myapp
 - /tmp/go:/go
 working_dir: /usr/src/myapp
 command: bash -c "go get -d -v -t && go test --cover -v \
./... && go build -v-o go-demo"

It is a relatively simple definition. Since the service is written in Go, we are using the
 image.

Next, we are exposing a few volumes. Volumes are directories that are, in this case,
mounted on the host. They are defined with two arguments. The first argument is the path
to the host directory while the second represents a directory inside the container. Any file
already inside the host directory will be available inside the container and vice versa.

The first volume is used for the source files. We are sharing the current host directory
with the container directory . The second volume is used for Go libraries.
Since we want to avoid downloading all the dependencies every time we run unit tests,
they will be stored inside the host directory . That way, dependencies will be
downloaded only the first time we run the service.

Volumes are followed with the instruction. When the container is run, it will
use the specified value as the starting directory.

Finally, we are specifying the command we want to run inside the container. I won't go into
details since they are specific to Go. In short, we download all the dependencies

, run tests , and build the go-demo binary
. Since the directory with the source code is mounted as a volume,

the binary will be stored on the host and available for later use.

With this single Compose service, we defined two steps of the CI flow. It contains unit tests
and build of the binary.

Please note that even though we run the service called , the real purpose of this CI step
is to run any type of tests that do not require deployment. Those are the tests we can
execute before we build the binary and, later on, Docker images.

Continuous Integration with Docker Containers

[12]

Let's run the following code:

docker-compose \
 -f docker-compose-test-local.yml \
 run --rm unit

A note to Windows users
You might experience a problem with volumes not being mapped
correctly. If you see an , please
export the environment variable

 to :

If that fixed the problem with volumes, please make sure that the variable
is exported every time you run .

We specified that Compose should use file (default
is) and run the service called . The argument means that
the container should be removed once it stops. The run command should be used for
services that are not meant to run forever. It is perfect for batch jobs and, as in this case, for
running tests.

As you can see from the output, we pulled the image, downloaded service
dependencies, successfully ran the tests, and built the binary.

We can confirm that the binary is indeed built and available on the host by listing the files
in the current directory using the following command. For brevity, we'll filter the result:

ls -l *go-demo*

Now that we passed the first round of tests and have the binary, we can proceed and build
the Docker images.

Building service images
Docker images are built through a definition stored in a Dockerfile. With few exceptions, it
takes a similar approach as if we would define a simple script. We will not explore all the
options we can use when defining a Dockerfile, but only those used for the
service. Please consult the Dockerfile reference (

) page for more info.

Continuous Integration with Docker Containers

[13]

The Dockerfile is as follows:

FROM alpine:3.4
MAINTAINER Viktor Farcic <viktor@farcic.com>

RUN mkdir /lib64 && ln -s /lib/libc.musl-x86_64.so.1 /lib64/ld-linux-
x86-64.so.2

EXPOSE 8080
ENV DB db
CMD ["go-demo"]
HEALTHCHECK --interval=10s CMD wget -qO- localhost:8080/demo/hello

COPY go-demo /usr/local/bin/go-demo
RUN chmod +x /usr/local/bin/go-demo

Each of the statements will be built as a separate image. A container is a collection of images
stacked one on top of the other.

Every Dockerfile starts with the statement. It defines the base image that should be
used. In most cases, my preference is to use Linux. With its size being around 2MB
it is probably the smallest distribution we can use. That is aligned with the idea that
containers should have only things that are needed and avoid any extra overhead.

 is for informational purposes only.

The statement executes any command set as its argument. I won't explain this one since
it is very specific to the service we're building.

The statement defines the port the service will be listening to. It is followed by the
definition of the environment variable that tells the service the address of the database.
The default value is and, as you'll see soon, it can be changed at runtime. The
statement represents the command that will be run when containers start.

The instruction tells Docker how to test a container to check that it is still
working. This can detect cases such as a web server that is stuck in an infinite loop and
unable to handle new connections, even though the server process is still running. When a
container has a healthcheck specified, it has a health status in addition to its normal status.
This status is initially starting. Whenever a health check passes, it becomes healthy (from
whatever state it was previously in). After a certain number of consecutive failures, it
becomes unhealthy.

Continuous Integration with Docker Containers

[14]

In our case, the healthcheck will be executed every ten seconds. The command sends a
simple request to one of the API endpoints. If the service responds with status , the

 command will return and Docker will consider the service healthy. Any other
response will be considered as unhealthy and Docker Engine will perform certain actions to
fix the situation.

Finally, we copy the binary from the host to the directory
inside the image and give it executable permissions with the command.

To some, the order of the statements might not look logical. However, there is a good
reason behind such declarations and their order. Those that are less likely to change are
defined before those that are prone to changes. Since will be a new binary every
time we build the images, it is defined last.

The reasons behind such order lie in the way Docker Engine creates images. It starts from
the top-most definition and checks whether it changed since the last time the build was run.
If it didn't, it moves to the next statement. As soon as it finds a statement that would
produce a new image, it, and all the statements following it are built into Docker images. By
placing those that are less likely to change closer to the top, we can reduce the build time,
disk usage, and bandwidth.

Now that we understand the Dockerfile behind the service, we can build the
images.

The command is very straightforward and is as follows:

docker build -t go-demo .

As an alternative, we can define build arguments inside a Docker Compose file. The service
defined in (

) file is as follows:

 app:
 build: .
 image: go-demo

In both cases, we specified that the current directory should be used for the build process
and that the name of the image is .

We can run the build through Docker compose with the command that is as follows:

docker-compose \
 -f docker-compose-test-local.yml \
 build app

Continuous Integration with Docker Containers

[15]

We'll use the latter method throughout the rest of the book.

We can confirm that the image was indeed built, by executing the
command as follows:

docker images

The output is as follows:

REPOSITORY TAG IMAGE ID CREATED SIZE
go-demo latest 5e90126bebf1 49 seconds ago 23.61 MB
golang 1.6 08a89f0a4ee5 11 hours ago 744.2 MB
alpine latest 4e38e38c8ce0 9 weeks ago 4.799 MB

As you can see, is one of the images we have inside the server.

Now that the images are built, we can run staging tests that depend on the service and its
dependencies to be deployed on a server.

Running staging tests
Please note that the real purpose of this step in the CI flow is to run the tests that require the
service and its dependencies to be running. Those are still not integration tests that require
production or production-like environment. The idea behind those tests is to run the service
together with its direct dependencies, run the tests, and, once they're finished, remove
everything and free the resources for some other task. Since these are still not integration
tests, some, if not all, dependencies can be mocks.

Due to the nature of these tests, we need to split the task into three actions:

Run the service and all the dependencies.1.
Run the tests.2.
Destroy the service and all the dependencies.3.

Continuous Integration with Docker Containers

[16]

The dependencies are defined as the service inside the
 (

) file. The definition is as follows:

 staging-dep:
 image: go-demo
 ports:
 - 8080:8080
 depends_on:
 - db

 db:
 image: mongo:3.2.10

The image is , and it exposes the port (both on the host and inside the
container). It depends on the service which is a image. Services defined as

 will be run before the service that defines the dependency. In other words, if
we run the target, Compose will run the first.

Let's run the dependencies as shown in the following code:

docker-compose \
 -f docker-compose-test-local.yml \
 up -d staging-dep

Once the command is finished, we will have two containers running (and). We
can confirm that by listing all the processes:

docker-compose \
 -f docker-compose-test-local.yml \
 ps

The output is as follows:

Name Command State Ports

godemo_db_1 /entrypoint.sh mongod Up 27017/tcp
godemo_staging-dep_1 go-demo Up 0.0.0.0:8080->8080/tcp

Now that the service and the database it depends on are running, we can execute the tests.
They are defined as the service staging. The definition is as follows:

 staging:
 extends:
 service: unit
 environment:
 - HOST_IP=localhost:8080

Continuous Integration with Docker Containers

[17]

 network_mode: host
command: bash -c "go get -d -v -t && go test --tags integration -v"

Since the definition of the staging tests is very similar to those we run as unit tests, the
staging service extends unit. By extending a service, we inherit its full definition. Further
on, we defined an environment variable . The tests code uses that variable to
determine the location of the service under test. In this case, since the service is
running on the same server as tests, the IP is server's localhost. Since, by default, localhost
inside a container is not the same as the one on the host, we had to define as

. Finally, we defined the command that should be executed. It will download tests
dependencies and run the tests .

Let's run the following commands:

docker-compose \
 -f docker-compose-test-local.yml \
 run --rm staging

All the tests passed, and we are one step closer to the goal of having full confidence that the
service is indeed safe to be deployed to production.

We don't have any use for keeping the service and the database running so let's remove
them and free the resources for some other task:

docker-compose \
 -f docker-compose-test-local.yml \
 down

The command stops and removes all services defined in that Compose file. We can
verify that by running the following command:

docker-compose \
 -f docker-compose-test-local.yml \
 ps

The output is as follows:

Name Command State Ports

There is only one thing missing for the CI flow to be complete. At this moment we have the
 image that is usable only inside the go-demo server. We should store it in a

registry so that it can be accessed from other servers as well.

Continuous Integration with Docker Containers

[18]

Pushing images to the registry
Before we push our image, we need a place to push to. Docker offers multiple
solutions that act as a registry. We can use Docker Hub (), Docker
Registry (), and Docker Trusted Registry (

). On top of those, there are many other
solutions from third party vendors.

Which registry should we use? Docker Hub requires a username and password, and I do
not trust you enough to provide my own. One of the goals I defined before I started
working on the book is to use only open source tools so Docker Trusted Registry, while
being an excellent choice under different circumstances, is also not suitable. The only option
left (excluding third party solutions), is Docker Registry (

).

The registry is defined as one of the services inside the (
) Compose

file. The definition is as follows:

 registry:
 container_name: registry
 image: registry:2.5.0
 ports:
 - 5000:5000
 volumes:
 - .:/var/lib/registry
 restart: always

We set registry as an explicit container name, specified the image, and opened the port
 (both on the host and inside the container).

Registry stores the images inside the directory, so we mounted it as a
volume on the host. That way, data will not be lost if the container fails. Since this is a
production service that could be used by many, we defined that it should always be
restarted on failure.

Let's run the following commands:

docker-compose \
 -f docker-compose-local.yml \
 up -d registry

Continuous Integration with Docker Containers

[19]

Now that we have the registry, we can do a dry-run. Let's confirm that we can pull and
 images to it:

docker pull alpine

docker tag alpine localhost:5000/alpine

docker push localhost:5000/alpine

Docker uses a naming convention to decide where to pull and push images from. If the
name is prefixed with an address, the engine will use it to determine the location of the
registry. Otherwise, it assumes that we want to use Docker Hub. Therefore, the first
command pulled the alpine image from Docker Hub.

The second command created a tag of the alpine image. The tag is a combination of the
address of our registry and the name of the image. Finally, we pushed
the image to the registry running on the same server.

Before we start using the registry in a more serious fashion, let's confirm that the images are
indeed persisted on the host:

ls -1 docker/registry/v2/repositories/alpine/

The output is as follows:

_layers
_manifests
_uploads

I won't go into details what each of those sub-directories contains. The important thing to
note is that registry persists the images on the host so no data will be lost if it fails or, in this
case, even if we destroy the VM since that Machine directory is mapped to the same
directory on our laptop.

We were a bit hasty when we declared that this registry should be used in production. Even
though data is persisted, if the whole VM crashes, there would be a downtime until
someone brings it up again or creates a new one. Since one of the goals is to avoid
downtime whenever possible, later on, we should look for a more reliable solution. The
current setup should do for now.

Now we are ready to push the image to the registry:

docker tag go-demo localhost:5000/go-demo:1.0

docker push localhost:5000/go-demo:1.0

Continuous Integration with Docker Containers

[20]

As with the Alpine example, we tagged the image with the registry prefix and pushed it to
the registry. We also added a version number .

The push was the last step in the CI flow. We run unit tests, built the binary, built the
Docker image, ran staging tests, and pushed the image to the registry. Even though we did
all those things, we are not yet confident that the service is ready for production. We never
tested how it would behave when deployed to a production (or production-like) cluster. We
did a lot, but not enough.

If CI were our final objective, this would be the moment when manual validations should
occur. While there is a lot of value in manual labor that requires creativity and critical
thinking, we cannot say the same for repetitive tasks. Tasks required for converting this
Continuous Integration flow into Continuous Delivery and, later on, deployment are,
indeed repetitive.

We have the CI process done, and it is time to do the extra mile and convert it into
Continuous Delivery.

Before we move into the steps required for the Continuous Integration process to become
Continuous Delivery, we need to take a step back and explore cluster management. After
all, in most cases, there is no production environment without a cluster.

We'll destroy the VMs at the end of each chapter. That way, you can come back to any of
part of the book and do the exercises without the fear that you might need to do some steps
from one of the earlier chapters. Also, such a procedure will force us to repeat a few things.
Practice makes perfect. To reduce your waiting times, I did my best to keep things as small
as possible and keep download times to a minimum. Execute the following command:

docker-machine rm -f go-demo

The next chapter is dedicated to the setup and operation of a Swarm cluster.

22
Setting Up and Operating a

Swarm Cluster
Organizations which design systems … are constrained to produce designs which are
copies of the communication structures of these organizations
 –M.Conway

Many will tell you that they have a scalable system. After all, scaling is easy. Buy a server,
install WebLogic (or whichever other monster application server you're using) and deploy
your applications. Then wait for a few weeks until you discover that everything is so fast
that you can click a button, have some coffee, and, by the time you get back to your desk,
the result will be waiting for you. What do you do? You scale. You buy a few more servers,
install your monster application servers and deploy your monster applications on top of
them. Which part of the system was the bottleneck? Nobody knows. Why did you duplicate
everything? Because you must. And then some more time passes, and you continue scaling
until you run out of money and, simultaneously, people working for you go crazy. Today
we do not approach scaling like that. Today we understand that scaling is about many other
things. It's about elasticity. It's about being able to quickly and easily scale and de-scale
depending on variations in your traffic and growth of your business, and that you should
not go bankrupt during the process. It's about the need of almost every company to scale
their business without thinking that IT department is a liability. It's about getting rid of
those monsters.

Setting Up and Operating a Swarm Cluster

[22]

A note to The DevOps 2.0 Toolkit readers
The text that follows is identical to the one published in The DevOps 2.0
Toolkit. If it is still fresh in your mind, feel free to jump to the section
Docker Swarm Mode of this chapter. You'll see that a lot has changed. One
of those changes is that the old Swarm running as a separate container is
deprecated for Swarm Mode. There are many other new things we'll
discover along the way.

Scalability
Let us, for a moment take a step back and discuss why we want to scale applications. The
main reason is high availability. Why do we want high availability? We want it because we
want our business to be available under any load. The bigger the load, the better (unless
you are under DDoS). It means that our business is booming. With high availability our
users are happy. We all want speed, and many of us simply leave the site if it takes too long
to load. We want to avoid having outages because every minute our business is not
operational can be translated into a money loss. What would you do if an online store is not
available? Probably go to another. Maybe not the first time, maybe not the second, but,
sooner or later, you would get fed up and switch it for another. We are used to everything
being fast and responsive, and there are so many alternatives that we do not think twice
before trying something else. And if that something else turns up to be better. One man's
loss is another man's gain. Do we solve all our problems with scalability? Not even close.
Many other factors decide the availability of our applications. However, scalability is an
important part of it, and it happens to be the subject of this chapter.

What is scalability? It is a property of a system that indicates its ability to handle increased
load in a graceful manner or its potential to be enlarged as demand increases. It is the
capacity to accept increased volume or traffic.

The truth is that the way we design our applications dictates the scaling options available.
Applications will not scale well if they are not designed to scale. That is not to say that an
application not designed for scaling cannot scale. Everything can scale, but not everything
can scale well.

Commonly observed scenario is as follows.

We start with a simple architecture, sometimes with load balancer sometimes without,
setup a few application servers and one database. Everything is great, complexity is low,
and we can develop new features very fast. The cost of operations is low, income is high
(considering that we just started), and everyone is happy and motivated.

Setting Up and Operating a Swarm Cluster

[23]

Business is growing, and the traffic is increasing. Things are beginning to fail, and
performance is dropping. Firewalls are added, additional load balancers are set up, the
database is scaled, more application servers are added and so on. Things are still relatively
straightforward. We are faced with new challenges, but we can overcome obstacles in time.
Even though the complexity is increasing, we can still handle it with relative ease. In other
words, what we're doing is still, more or less, the same but bigger. Business is doing well,
but it is still relatively small.

And then it happens. The big thing you've been waiting for. Maybe one of the marketing
campaigns hit the spot. Maybe there was an adverse change in your competition. Maybe
that last feature was indeed a killer one. No matter the reasons, business got a big boost.
After a short period of happiness due to this change, your pain increases tenfold. Adding
more databases does not seem to be enough. Multiplying application servers does not
appear to fulfill the needs. You start adding caching and what not. You start getting the
feeling that every time you multiply something, benefits are not equally big. Costs increase,
and you are still not able to meet the demand. Database replications are too slow. New
application servers do not make such a big difference anymore. Operational costs are
increasing faster than you expected. The situation hurts the business and the team. You are
starting to realize that the architecture you were so proud of cannot fulfill this increase in
load. You cannot split it. You cannot scale things that hurt the most. You cannot start over.
All you can do is continue multiplying with ever decreasing benefits of such actions.

The situation described above is quite common. What was good at the beginning, is not
necessarily right when the demand increases. We need to balance the need for You ain't
gonna need it (YAGNI) principle and the longer term vision. We cannot start with the
system optimized for large companies because it is too expensive and does not provide
enough benefits when business is small. On the other hand, we cannot lose the focus from
one of the primary objectives of any business. We cannot not think about scaling from the
very first day. Designing scalable architecture does not mean that we need to start with a
cluster of a hundred servers. It does not mean that we have to develop something big and
complex from the start. It means that we should start small, but in the way that, when it
becomes big, it is easy to scale. While microservices are not the only way to accomplish that
goal, they are indeed a good way to approach this problem. The cost is not in development
but operations. If operations are automated, that cost can be absorbed quickly and does not
need to represent a massive investment. As you already saw (and will continue seeing
throughout the rest of the book), there are excellent open source tools at our disposal. The
best part of automation is that the investment tends to have lower maintenance cost than
when things are done manually.

We already discussed microservices and automation of their deployments on a tiny scale.
Now it's time to convert this small scale to something bigger. Before we jump into practical
parts, let us explore what are some of the different ways one might approach scaling.

Setting Up and Operating a Swarm Cluster

[24]

We are often limited by our design and choosing the way applications are constructed
limits our choices severely. Although there are many different ways to scale, the most
common one is called Axis Scaling.

Axis scaling
Axis scaling can be best represented through three dimensions of a cube; X-Axis, Y-Axis,
and Z-Axis. Each of those dimensions describes a type of scaling:

X-Axis: Horizontal duplication
Y-Axis: Functional decomposition
Z-Axis: Data partitioning

Let's go through the Axes, one at a time.

X-axis scaling
In a nutshell, x-axis scaling is accomplished by running multiple instances of an application
or a service. In most cases, there is a load balancer on top that makes sure that the traffic is
shared among all those instances. The biggest advantage of x-axis scaling is simplicity. All
we have to do is deploy the same application on multiple servers. For that reason, this is the
most commonly used type of scaling. However, it comes with its set of disadvantages when
applied to monolithic applications.

Setting Up and Operating a Swarm Cluster

[25]

Having a large application usually requires a big cache that demands heavy usage of
memory. When such an application is multiplied, everything is multiplied with it, including
the cache. Another, often more important, problem is an inappropriate usage of resources.
Performance issues are almost never related to the whole application. Not all modules are
equally affected, and, yet, we multiply everything. That means that even though we could
be better off by scaling only part of the application that requires such an action, we scale
everything. Nevertheless, x- axis scaling is important no matter the architecture. The major
difference is the effect that such a scaling has.

By using microservices, we are not removing the need for x-axis scaling but making sure
that due to their architecture such scaling has more effect than with alternative and more
traditional approaches to architecture. With microservices, we have the option to fine-tune
scaling. We can have many instances of services that suffer a lot under heavy load and only
a few instances of those that are used less often or require fewer resources. On top of that,
since they are small, we might never reach a limit of a service. A small service in a big
server would need to receive a truly massive amount of traffic before the need for scaling
arises. Scaling microservices is more often related to fault tolerance than performance
problems. We want to have multiple copies running so that, if one of them dies, the others
can take over until recovery is performed.

Setting Up and Operating a Swarm Cluster

[26]

Y-axis scaling
Y-axis scaling is all about decomposition of an application into smaller services. Even
though there are different ways to accomplish this decomposition, microservices are
probably the best approach we can take. When they are combined with immutability and
self-sufficiency, there is indeed no better alternative (at least from the prism of y-axis
scaling). Unlike x-axis scaling, the y-axis is not accomplished by running multiple instances
of the same application but by having multiple different services distributed across the
cluster.

Z-axis scaling
Z-axis scaling is rarely applied to applications or services. Its primary and most common
usage is among databases. The idea behind this type of scaling is to distribute data among
multiple servers thus reducing the amount of work that each of them needs to perform.
Data is partitioned and distributed so that each server needs to deal only with a subset of
the data. This type of separation is often called sharding, and there are many databases
specially designed for this purpose. Benefits of z-axis scaling are most noticeable in I/O and
cache and memory utilization.

Clustering
A server cluster consists of a set of connected servers that work together and can be seen as
a single system. They are usually connected to a fast Local Area Network (LAN). The
significant difference between a cluster and a group of servers is that the cluster acts as a
single system trying to provide high availability, load balancing, and parallel processing.

If we deploy applications, or services, to individually managed servers and treat them as
separate units, the utilization of resources is sub-optimum. We cannot know in advance
which group of services should be deployed to a server and utilize resources to their
maximum. Moreover, resource usage tends to fluctuate. While, in the morning, some
service might require a lot of memory, during the afternoon that usage might be lower.
Having predefined servers prevents us from having elasticity that would balance that usage
in the best possible way. Even if such a high level of dynamism is not required, predefined
servers tend to create problems when something goes wrong, resulting in manual actions to
redeploy the affected services to a healthy node:

Setting Up and Operating a Swarm Cluster

[27]

Real clustering is accomplished when we stop thinking in terms of individual servers and
start thinking of a cluster; of all servers as one big entity. That can be better explained if we
drop to a bit lower level. When we deploy an application, we tend to specify how much
memory or CPU it might need. However, we do not decide which memory slots our
application will use nor which CPUs it should utilize. For example, we don’t specify that
some application should use CPUs 4, 5 and 7. That would be inefficient and potentially
dangerous. We only decide that three CPUs are required. The same approach should be
taken on a higher level. We should not care where an application or a service will be
deployed but what it needs. We should be able to define that the service has certain
requirements and tell some tool to deploy it to whichever server in our cluster, as long as it
fulfills the needs we have. The best (if not the only) way to accomplish that is to consider
the whole cluster as one entity.

We can increase or decrease the capacity of a cluster by adding or removing servers but, no
matter what we do, it should still be a single entity. We define a strategy and let our
services be deployed somewhere inside the cluster. Those using cloud providers like
Amazon Web Services (AWS), Microsoft Azure and Google Compute Engine (GCE) are
already accustomed to this approach, even though they might not be aware of it.

Throughout the rest of this chapter, we'll explore ways to create our cluster and explore
tools that can help us with that objective. The fact that we'll be simulating the cluster locally
does not mean that the same strategies cannot be applied to public or private clouds and
data centers. Quite the opposite:

Setting Up and Operating a Swarm Cluster

[28]

Docker Swarm Mode
Docker Engine v1.12 was released in July 2016. It is the most significant version since v1.9.
Back then, we got Docker networking that, finally, made containers ready for use in
clusters. With v1.12, Docker is reinventing itself with a whole new approach to cluster
orchestration. Say goodbye to Swarm as a separate container that depends on an external
data registry and welcome the new Docker Swarm or Swarm Mode. Everything you'll need to
manage your cluster is now incorporated into Docker Engine. Swarm is there. Service
discovery is there. Improved networking is there. That does not mean that we do not need
additional tools. We do. The major difference is that Docker Engine now incorporates all the
"essential" (not to say minimal) tools we need.

The old Swarm (before Docker v1.12) used fire-and-forget principle. We would send a
command to Swarm master, and it would execute that command. For example, if we would
send it something like , the old Swarm would
evaluate the current state of the cluster, discover that, for example, only one instance is
currently running, and decide that it should run four more. Once such a decision is made,
the old Swarm would send commands to Docker Engines. As a result, we would have five
containers running inside the cluster. For all that to work, we were required to set up
Swarm agents (as separate containers) on all the nodes that form the cluster and hook them
into one of the supported data registries (Consul, etcd, and Zookeeper).

The problem was that Swarm was executing commands we send it. It was not maintaining
the desired state. We were, effectively, telling it what we want to happen (example: scale
up), not the state we wanted (make sure that five instances are running). Later on, the old
Swarm got the feature that would reschedule containers from failed nodes. However, that
feature had a few problems that prevented it from being a reliable solution (example: failed
containers were not removed from the overlay network).

Now we got a brand new Swarm. It is part of Docker Engine (no need to run it as separate
containers), it has incorporated service discovery (no need to set up Consul or whatever is
your data registry of choice), it is designed from the ground up to accept and maintain the
desired state, and so on. It is a truly major change in how we deal with cluster orchestration.

In the past, I was inclined towards the old Swarm more than Kubernetes. However, that
inclination was only slight. There were pros and cons for using either solution. Kubernetes
had a few features Swarm was missing (example: the concept of the desired state), the old
Swarm shined with its simplicity and low usage of resources.

Setting Up and Operating a Swarm Cluster

[29]

With the new Swarm (the one that comes with v1.12), I have no more doubts which one to
use. The new Swarm is often a better choice than Kubernetes. It is part of Docker Engine, so the
whole setup is a single command that tells an engine to join the cluster. The new
networking works like a charm. The bundle that can be used to define services can be
created from Docker Compose files, so there is no need to maintain two sets of
configurations (Docker Compose for development and a different one for orchestration).
Most importantly, the new Docker Swarm continues being simple to use. From the very
beginning, Docker community pledged that they are committed to simplicity and, with this
release, they, once again, proved that to be true.

And that's not all. The new release comes with a lot of other features that are not directly
related with Swarm. However, this book is dedicated to cluster management. Therefore, I'll
focus on Swarm and leave the rest for one of the next books or a blog article.

Since I believe that code explains things better than words, we'll start with a demo of some
of the new features introduced in version 1.12.

Setting up a Swarm cluster
We'll continue using Docker Machine since it provides a very convenient way to simulate a
cluster on a laptop. Three servers should be enough to demonstrate some of the key features
of a Swarm cluster:

All the commands from this chapter are available in the
 (

) Gist

for i in 1 2 3; do
 docker-machine create -d virtualbox node-$i
done

At this moment, we have three nodes. Please note that those servers are not running
anything but Docker Engine.

We can see the status of the nodes by executing the following command:

docker-machine ls

Setting Up and Operating a Swarm Cluster

[30]

The output is as follows (ERROR column removed for brievity):

NAME ACTIVE DRIVER STATE URL SWARM DOCKER
node-1 - virtualbox Running tcp://192.168.99.100:2376 v1.12.1
node-2 - virtualbox Running tcp://192.168.99.101:2376 v1.12.1
node-3 - virtualbox Running tcp://192.168.99.102:2376 v1.12.1

With the machines up and running we can proceed and set up the Swarm cluster.

The cluster setup consists of two types of commands. We need to start by initializing the
first node which will be our manager. Refer to the following illustration:

eval $(docker-machine env node-1)

docker swarm init \
 --advertise-addr $(docker-machine ip node-1)

The first command set environment variables so that the local Docker Engine is pointing to
the . The second initialized Swarm on that machine.

We specified only one argument with the command. The
is the address that this node will expose to other nodes for internal communication.

The output of the command is as follows:

Swarm initialized: current node (1o5k7hvcply6g2excjiqqf4ed) is now a
manager.

To add a worker to this swarm, run the following command:
 docker swarm join \
--token SWMTKN-1-3czblm3rypyvrz6wyijsuwtmk1ozd7giqip0m \
6k0b3hllycgmv-3851i2gays638e7unmp2ng3az \
192.168.99.100:2377

To add a manager to this swarm, run the following command:
 docker swarm join \
--token SWMTKN-1-3czblm3rypyvrz6wyijsuwtmk1ozd7giqi \

Setting Up and Operating a Swarm Cluster

[31]

p0m6k0b3hllycgmv-6oukeshmw7a295vudzmo9mv6i \
192.168.99.100:2377

We can see that the node is now a manager and we've got the commands we can use to join
other nodes to the cluster. As a way to increase security, a new node can be added to the
cluster only if it contains the token generated when Swarm was initialized. The token was
printed as a result of the command. You can copy and paste the code
from the output or use the command. We'll use the latter.

Right now, our Swarm cluster consists of only one VM. We'll add the other two nodes to the
cluster. But, before we do that, let us discuss the difference between a manager and a worker.

A Swarm manager continuously monitors the cluster state and reconciles any differences
between the actual state and your expressed desired state. For example, if you set up a
service to run ten replicas of a container, and a worker machine hosting two of those
replicas crashes, the manager will create two new replicas to replace the ones that failed.
Swarm manager assigns new replicas to workers that are running and available. A manager
has all the capabilities of a worker.

We can get a token required for adding additional nodes to the cluster by executing the
 command.

The command to obtain a token for adding a manager is as follows:

docker swarm join-token -q manager

Similarly, to get a token for adding a worker, we would run the command that follows:

docker swarm join-token -q worker

In both cases, we'd get a long hashed string.

The output of the worker token is as follows:

SWMTKN-1-3czblm3rypyvrz6wyijsuwtmk1ozd7giqip0m6k0b3hll \
ycgmv-3851i2gays638\
e7unmp2ng3az

Please note that this token was generated on my machine and, in your case, it will be
different.

Let's put the token into an environment variable and add the other two nodes as workers:

TOKEN=$(docker swarm join-token -q worker)

Setting Up and Operating a Swarm Cluster

[32]

Now that have the token inside a variable, we can issue the command that follows:

for i in 2 3; do
eval $(docker-machine env node-$i)

 docker swarm join \
 --token $TOKEN \
 --advertise-addr $(docker-machine ip node-$i) \
 $(docker-machine ip node-1):2377
done

The command we just ran iterates over nodes two and three and executes the
. We set the token, the advertise address, and the address of our manager. As a

result, the two machines joined the cluster as workers. We can confirm that by sending the
 command to the manager node :

eval $(docker-machine env node-1)

docker node ls

The output of the command is as follows:

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
3vlq7dsa8g2sqkp6vl911nha8 node-3 Ready Active
6cbtgzk19rne5mzwkwugiolox node-2 Ready Active
b644vkvs6007rpjre2bfb8cro * node-1 Ready Active Leader

The asterisk tells us which node we are currently using. The indicates
that the is the leader:

In a production environment, we would probably set more than one node to be a manager
and, thus, avoid deployment downtime if one of them fails. For the purpose of this demo,
having one manager should suffice.

Setting Up and Operating a Swarm Cluster

[33]

Deploying services to the Swarm cluster
Before we deploy a demo service, we should create a new network so that all containers
that constitute the service can communicate with each other no matter on which nodes they
are deployed:

docker network create --driver overlay go-demo

The next chapter will explore networking in more details. Right now, we'll discuss and do
only the absolute minimum required for an efficient deployment of services inside a Swarm
cluster.

We can check the status of all networks with the command that follows:

docker network ls

The output of the command is as follows:

NETWORK ID NAME DRIVER SCOPE
e263fb34287a bridge bridge local
c5b60cff0f83 docker_gwbridge bridge local
8d3gs95h5c5q go-demo overlay swarm
4d0719f20d24 host host local
eafx9zd0czuu ingress overlay swarm
81d392ce8717 none null local

As you can see, we have two networks that have the scope. The one named
was created by default when we set up the cluster. The second was created with
the command. We'll assign all containers that constitute the
service to that network.

The next chapter will go deep into the Swarm networking. For now, it is important to
understand that all services that belong to the same network can speak with each other
freely.

The go-demo application requires two containers. Data will be stored in MongoDB. The
back-end that uses that is defined as container.

Let's start by deploying the container somewhere within the cluster.

Setting Up and Operating a Swarm Cluster

[34]

Usually, we'd use constraints to specify the requirements for the container (example: HD
type, the amount of memory and CPU, and so on). We'll skip that, for now, and tell Swarm
to deploy it anywhere within the cluster:

docker service create --name go-demo-db \
 --network go-demo \
 mongo:3.2.10

Please note that we haven't specified the port listens to . That means that the
database will not be accesible to anyone but other services that belong to the same
network .

As you can see, the way we use service create is similar to the Docker command you
are, probably, already used to.

We can list all the running services:

docker service ls

Depending on how much time passed between and
commands, you'll see the value of the column being zero or one. Immediately
after creating the service, the value should be 0/1, meaning that zero replicas are running,
and the objective is to have one. Once the image is pulled, and the container is
running, the value should change to 1/1.

The final output of the command should be as follows (IDs are removed for
brevity):

NAME MODE REPLICAS IMAGE
go-demo-db replicated 1/1 mongo:3.2.10

If we need more information about the service, we can run the service inspect
command:

docker service inspect go-demo-db

Now that the database is running, we can deploy the container:

docker service create --name go-demo \
 -e DB=go-demo-db \
 --network go-demo \
 vfarcic/go-demo:1.0

There's nothing new about that command. The service will be attached to the
network. The environment variable is an internal requirement of the service
that tells the code the address of the database.

Setting Up and Operating a Swarm Cluster

[35]

At this point, we have two containers (and) running inside the cluster and
communicating with each other through the network. Please note that none of
them is yet accessible from outside the network. At this point, your users do not have access
to the service API. We'll discuss this in more details soon. Until then, I'll give you only a
hint: you need a reverse proxy capable of utilizing the new Swarm networking.

Let's run the command one more time:

docker service ls

The result, after the service is pulled to the destination node, should be as follows
(IDs are removed for brevity):

NAME MODE REPLICAS IMAGE
go-demo replicated 1/1 vfarcic/go-demo:1.0
go-demo-db replicated 1/1 mongo:3.2.10

As you can see, both services are running as a single replica:

What happens if we want to scale one of the containers? How do we scale our services?

Scaling services
We should always run at least two instances of any given service. That way they can share
the load and, if one of them fails, there will be no downtime. We'll explore Swarm's failover
capability soon and leave load balancing for the next chapter.

We can, for example, tell Swarm that we want to run five replicas of then service:

docker service scale go-demo=5

Setting Up and Operating a Swarm Cluster

[36]

With the command, we scheduled five replicas. Swarm will make sure
that five instances of are running somewhere inside the cluster.

We can confirm that, indeed, five replicas are running through the, already familiar,
 command:

docker service ls

The output is as follows (IDs are removed for brevity):

NAME MODE REPLICAS IMAGE
go-demo replicated 5/5 vfarcic/go-demo:1.0
go-demo-db replicated 1/1 mongo:3.2.10

As we can see, five out of five of the service are running.

The command provides more detailed information about a single service:

docker service ps go-demo

The output is as follows (IDs and ERROR PORTs columns are removed for brevity):

NAME IMAGE NODE DESIRED STATE CURRENT STATE
go-demo.1 vfarcic/go-demo:1.0 node-3 Running Running 1 minute ago
go-demo.2 vfarcic/go-demo:1.0 node-2 Running Running 51 seconds ago
go-demo.3 vfarcic/go-demo:1.0 node-2 Running Running 51 seconds ago
go-demo.4 vfarcic/go-demo:1.0 node-1 Running Running 53 seconds ago
go-demo.5 vfarcic/go-demo:1.0 node-3 Running Running 1 minute ago

We can see that the service is running five instances distributed across the three
nodes. Since they all belong to the same go-demo SDN, they can communicate with each
other no matter where they run inside the cluster. At the same time, none of them is
accessible from outside:

Setting Up and Operating a Swarm Cluster

[37]

What happens if one of the containers is stopped or if the entire node fails? After all,
processes and nodes do fail sooner or later. Nothing is perfect, and we need to be prepared
for such situations.

Failover
Fortunately, failover strategies are part of Docker Swarm. Remember, when we execute a

 command, we are not telling Swarm what to do but the state we desire. In turn,
Swarm will do its best to maintain the specified state no matter what happens.

To test a failure scenario, we'll destroy one of the nodes:

docker-machine rm -f node-3

Swarm needs a bit of time until it detects that the node is down. Once it does, it will
reschedule containers. We can monitor the situation through :

docker service ps go-demo

The output (after rescheduling) is as follows (is removed for brevity):

As you can see, after a short period, Swarm rescheduled containers among healthy nodes
(and) and changed the state of those that were running on the failed node
to . If your output still shows that some instances are running on the ,
please wait for a few moments and repeat the .

Setting Up and Operating a Swarm Cluster

[38]

What now?
That concludes the exploration of basic concepts of the new Swarm features we got with
Docker v1.12+.

Is this everything there is to know to run a Swarm cluster successfully? Not even close!
What we explored by now is only the beginning. There are quite a few questions waiting to
be answered. How do we expose our services to the public? How do we deploy new
releases without downtime? I'll try to give answers to those and quite a few other questions
in the chapters that follow. The next one will be dedicated to the exploration of the ways we
can expose our services to the public. We'll try to integrate a proxy with a Swarm cluster. To
do that, we need to dive deeper into Swarm networking.

Now is the time to take a break before diving into the next chapter. As before, we'll destroy
the machines we created and start fresh:

docker-machine rm -f node-1 node-2

33
Docker Swarm Networking and

Reverse Proxy
The most compelling reason for most people to buy a computer for the home will be to link
it to a nationwide communications network. We’re just in the beginning stages of what
will be a truly remarkable breakthrough for most people - as remarkable as the telephone.

–Steve Jobs

Software-Defined Network (SDN) is a cornerstone of efficient cluster management.
Without it, services distributed across the cluster would not be able to find each other.

Having proxies based on static configuration does not fit the world of highly dynamic
scheduling. Services are created, updated, moved around the cluster, scaled and de-scaled,
and so on. In such a setting, information changes all the time.

One approach we can take is to use a proxy as a central communication point and make all
the services speak with each other through it. Such a setting would require us to monitor
changes in the cluster continuously and update the proxy accordingly. To make our lives
easier, a monitoring process would probably use one of the service registries to store the
information and a templating solution that would update proxy configuration whenever a
change in the registry is detected. As you can imagine, building such a system is anything
but trivial.

Fortunately, Swarm comes with a brand new networking capability. In a nutshell, we can
create networks and attach them to services. All services that belong to the same network
can speak with each other using only the name of the service. It goes even further. If we
scale a service, Swarm networking will perform round-robin load balancing and distribute
the requests across all the instances. When even that is not enough, we have a new network
called with that has all those and a few additional features.

Docker Swarm Networking and Reverse Proxy

[40]

Efficient usage of Swarm networking is not sufficient by itself. We still need a reverse proxy
that will be a bridge between the external world and our services. Unless there are special
requirements, the proxy does not need to perform load balancing (Swarm networking does
that for us). However, it does need to evaluate request paths and forward requests to a
destination service. Even in that case, Swarm networking helps a lot. Configuring reverse
proxy becomes a relatively easy thing to do as long as we understand how networking
works and can harness its full potential.

Let’s see the networking in practice.

Setting up a cluster
We’ll create a similar environment as we did in the previous chapter. We'll have three
nodes which will form a Swarm cluster.

All the commands from this chapter are available in the (
) Gist.

By this time, you already know how to set up a cluster so we'll skip the explanation and just
do it:

for i in 1 2 3; do
 docker-machine create -d virtualbox node-$i
done

eval $(docker-machine env node-1)

docker swarm init \
 --advertise-addr $(docker-machine ip node-1)

TOKEN=$(docker swarm join-token -q worker)

for i in 2 3; do
eval $(docker-machine env node-$i)

 docker swarm join \
 --token $TOKEN \
 --advertise-addr $(docker-machine ip node-$i) \
 $(docker-machine ip node-1):2377
done

eval $(docker-machine env node-1)

docker node ls

Docker Swarm Networking and Reverse Proxy

[41]

The output of the last command is as follows (IDs were removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
node-2 Ready Active
node-1 Ready Active Leader
node-3 Ready Active

As you can see, we have a cluster of three nodes with being the only manager (and
hence the leader).

Now that we have a fully operating cluster, we can explore the benefits Docker networking
provides in conjunction with Swarm. We already worked with Swarm networking in the
previous chapter. Now its time to go deeper, gain a better understanding of what we
already saw, and unlock some new features and use cases.

Requirements of secured and fault tolerant
services running with high availability
Let us quickly go over the internals of the go-demo application. It consists of two services.
Data is stored in a MongoDB. The database is consumed by a backend service called

. No other service should access the database directly. If another service needs the
data, it should send a request to the service. That way we have clear boundaries.
Data is owned and managed by the service. It exposes an API that is the only
access point to the data.

The system should be able to host multiple applications. Each will have a unique base URL.
For example, the path starts with . The other applications will have different
paths (example: , , and so on). The system will be accessible only
through ports for HTTP and HTTPS. Please note that there can be no two processes
that can listen to the same port. In other words, only a single service can be configured to
listen to port .

To meet load fluctuations and use the resources effectively, we must be able to scale (or de-
scale) each service individually and independently from the others. Any request to any of
the services should pass through a load balancer that will distribute the load across all
instances. As a minimum, at least two instances of any service should be running at any
given moment. That way, we can accomplish high availability even in case one of the
instances stops working. We should aim even higher than that and make sure that even a
failure of a whole node does not interrupt the system as a whole.

To meet performance and fail-over needs services should be distributed across the cluster.

Docker Swarm Networking and Reverse Proxy

[42]

We'll make a temporary exception to the rule that each service should run multiple
instances. Mongo volumes do not work with Docker Machine on OS X and Windows. Later
on, when we reach the chapters that provide guidance towards production setup inside
major hosting providers (example: AWS), we'll remove this exception and make sure that
the database is also configured to run with multiple instances.

Taking all this into account, we can make the following requirements:

A load balancer will distribute requests evenly (round-robin) across all instances1.
of any given service (proxy included). It should be fault tolerant and not depend
on any single node.
A reverse proxy will be in charge of routing requests based on their base URLs.2.
The go-demo service will be able to communicate freely with the go-demo-db3.
service and will be accessible only through the reverse proxy.
The database will be isolated from any but the service it belongs to go-demo.4.

A logical architecture of what we're trying to accomplish can be presented with the diagram
that follows:

How can we accomplish those requirements?

Let us solve each of the four requirements one by one. We'll start from the bottom and move
towards the top.

The first problem to tackle is how to run a database isolated from any but the service it
belongs to.

Docker Swarm Networking and Reverse Proxy

[43]

Running a database in isolation
We can isolate a database service by not exposing its ports. That can be accomplished easily
with the command:

docker service create --name go-demo-db \
 mongo:3.2.10

We can confirm that the ports are indeed not exposed by inspecting the service:

docker service inspect --pretty go-demo-db

The output is as follows:

ID: rcedo70r2f1njpm0eyb3nwf8w
Name: go-demo-db
Service Mode: Replicated
 Replicas: 1
Placement:
UpdateConfig:
 Parallelism: 1
 On failure: pause
 Max failure ratio: 0
ContainerSpec:
 Image: mongo:3.2.10@sha256:532a19da83ee0e4e2a2ec6bc4212fc4af\
26357c040675d5c2629a4e4c4563cef
Resources:
Endpoint Mode: vip

As you can see, there is no mention of any port. Our service is fully isolated
and inaccessible to anyone. However, that is too much isolation. We want the service to be
isolated from anything but the service it belongs to . We can accomplish that
through the usage of Docker Swarm networking.

Let us remove the service we created and start over:

docker service rm go-demo-db

This time, we should create a network and make sure that the service is
attached to it:

docker network create --driver overlay go-demo

docker service create --name go-demo-db \
 --network go-demo \
 mongo:3.2.10

Docker Swarm Networking and Reverse Proxy

[44]

We created an overlay network called followed with the .
This time, we used the argument to attach the service to the network. From this
moment on, all services attached to the network will be accessible to each other.

Let's inspect the service and confirm that it is indeed attached to the network:

docker service inspect --pretty go-demo-db

The output of the command is as follows:

ID: ktrxcgp3gtszsjvi7xg0hmd73
Name: go-demo-db
Service Mode: Replicated
 Replicas: 1
Placement:
UpdateConfig:
 Parallelism: 1
 On failure: pause
 Max failure ratio: 0
ContainerSpec:
 Image:
mongo:3.2.10@sha256:532a19da83ee0e4e2a2ec6bc4212fc4af26357c040675d
5c2629a4e4c4563cef
Resources:
Networks: go-demo
Endpoint Mode: vip

As you can see, this time, there is a entry with the value set to the ID of the
 network we created earlier.

Let us confirm that networking truly works. To prove it, we'll create a global service called
:

docker service create --name util \
 --network go-demo --mode global \
 alpine sleep 1000000000

Just as , the service also has the network attached.

A new argument is . When set to global, the service will run on every node of the
cluster. That is a very useful feature when we want to set up infrastructure services that
should span the whole cluster.

We can confirm that it is running everywhere by executing the command:

docker service ps util

Docker Swarm Networking and Reverse Proxy

[45]

The output is as follows (IDs and ERROR PORTS columns are removed for brevity):

NAME IMAGE NODE DESIRED STATE CURRENT STATE
util... alpine:latest node-1 Running Running 6 minutes ago
util... alpine:latest node-3 Running Running 6 minutes ago
util... alpine:latest node-2 Running Running 6 minutes ago

As you can see, the service is running on all three nodes.

We are running the image (a minuscule Linux distribution). We put it to sleep for a
very long time. Otherwise, since no processes are running, the service would stop, Swarm
would restart it, it would stop again, and so on.

The purpose of the service will be to demonstrate some of the concepts we're
exploring. We'll exec into it and confirm that the networking truly works.

To enter the container, we need to find out the ID of the instance running on the
 (the node our local Docker is pointing to):

ID=$(docker ps -q --filter label=com.docker.swarm.service.name=util)

We listed all the processes in quiet mode so that only IDs are returned , and limited
the result to the service name util:

--filter label=com.docker.swarm.service.name=util

 The result is stored as the environment variable ID.

We'll install a tool called drill. It is a tool designed to get all sorts of information out of a
DNS and it will come in handy very soon:

docker exec -it $ID apk add --update drill

Alpine Linux uses the package management called , so we told it to add drill.

Now we can see whether networking truly works. Since both and util services
belong to the same network, they should be able to communicate with each other using
DNS names. Whenever we attach a service to the network, a new virtual IP is created
together with a DNS that matches the name of the services.

Let's try it out as follows:

docker exec -it $ID drill go-demo-db

Docker Swarm Networking and Reverse Proxy

[46]

We entered into one of the instances of the service and "drilled" the DNS .
The output is as follows:

;; ->>HEADER<<- opcode: QUERY, rcode: NOERROR, id: 5751
;; flags: qr rd ra ; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;; go-demo-db. IN A

;; ANSWER SECTION:
go-demo-db. 600 IN A 10.0.0.2

;; AUTHORITY SECTION:

;; ADDITIONAL SECTION:

;; Query time: 0 msec
;; SERVER: 127.0.0.11
;; WHEN: Thu Sep 1 12:53:42 2016
;; MSG SIZE rcvd: 54

The response code is and the is meaning that the DNS
responded correctly. It is reachable.

We can also observe that the DNS is associated with the IP . Every
service attached to a network gets its IP. Please note that I said service, not an instance.
That’s a huge difference that we'll explore later. For now, it is important to understand that
all services that belong to the same network are accessible through service names:

Let's move up through the requirements.

Docker Swarm Networking and Reverse Proxy

[47]

Running a service through a reverse proxy
We want the service to be able to communicate freely with the
service and to be accessible only through the reverse proxy. We already know how to
accomplish the first part. All we have to do is make sure that both services belong to the
same network .

How can we accomplish the integration with a reverse proxy?

We can start by creating a new network and attach it to all services that should be accessible
through a reverse proxy:

docker network create --driver overlay proxy

Let's list the currently running networks:

docker network ls -f "driver=overlay"

The output is as follows:

NETWORK ID NAME DRIVER SCOPE
b17kzasd3gzu go-demo overlay swarm
0d7ssryojcyg ingress overlay swarm
9e4o7abyts0v proxy overlay swarm

We have the and networks we created earlier. The third one is called
ingress. It is set up by default and has a special purpose that we'll explore later.

Now we are ready to run the service. We want it to be able to communicate with
the service so it must be attached to the network. We also want it to
be accessible to a (we'll create it soon) so we'll attach it to the network as well.

The command that creates the service is as follows:

docker service create --name go-demo \
 -e DB=go-demo-db \
 --network go-demo \
 --network proxy \
 vfarcic/go-demo:1.0

Docker Swarm Networking and Reverse Proxy

[48]

It is very similar to the command we executed in the previous chapter with the addition of
the argument:

Now both services are running somewhere inside the cluster and can communicate with
each other through the network. Let's bring the proxy into the mix. We'll use the
Docker Flow Proxy () project that is a
combination of HAProxy () and a few additional features that
make it more dynamic. The principles we'll explore are the same no matter which one will
be your choice.

Please note that, at this moment, none of the services are accessible to anyone except those
attached to the same network.

Creating a reverse proxy service in charge of
routing requests depending on their base
URLs
We can implement a reverse proxy in a couple of ways. One would be to create a new
image based on HAProxy () and include
configuration files inside it. That approach would be a good one if the number of different
services is relatively static. Otherwise, we'd need to create a new image with a new
configuration every time there is a new service (not a new release).

Docker Swarm Networking and Reverse Proxy

[49]

The second approach would be to expose a volume. That way, when needed, we could
modify the configuration file instead building a whole new image. However, that has
downsides as well. When Deploying to a cluster, we should avoid using volumes whenever
they're not necessary. As you'll see soon, a proxy is one of those that do not require a
volume. As a side note, has been replaced with the argument

.

The third option is to use one of the proxies designed to work with Docker Swarm. In this
case, we'll use the container (

) It is based on HAProxy with additional features that allow
us to reconfigure it by sending HTTP requests.

Let's give it a spin.

The command that creates the service is as follows:

docker service create --name proxy \
 -p 80:80 \
 -p 443:443 \
 -p 8080:8080 \
 --network proxy \
 -e MODE=swarm \
 vfarcic/docker-flow-proxy

We opened ports and that will serve Internet traffic (HTTP and HTTPS). The third
port is 8080. We'll use it to send configuration requests to the proxy. Further on, we
specified that it should belong to the proxy network. That way, since go-demo is also
attached to the same network, the proxy can access it through the proxy-SDN.

Through the proxy we just ran, we can observe one of the cool features of the network
routing mesh. It does not matter which server the proxy is running in. We can send a
request to any of the nodes and Docker networking will make sure that it is redirected to
one of the proxies. We'll see that in action very soon.

Docker Swarm Networking and Reverse Proxy

[50]

The last argument is the environment variable that tells the proxy that containers will
be deployed to a Swarm cluster. Please consult the project README (

) for other combinations.

Please note that the proxy, even though it is running inside one of the nodes, is placed
outside to illustrate the logical separation better.

Before we move on, let's confirm that the is running.

docker service ps proxy

We can proceed if the is . Otherwise, please wait until the service
is up and running.

Now that the proxy is Deployed, we should let it know about the existence of the
service:

curl "$(docker-machine ip node-1):8080/v1/docker-flow-\
proxy/reconfigure?serviceName=go-demo&servicePath=/demo&port=8080"

The request was sent to reconfigure the specifying the service name , base
URL path of the API , and the internal port of the service . From now on, all the
requests to the with the path that starts with will be redirected to the
service. This request is one of the additional features Docker Flow Proxy provides on top of
HAProxy.

Docker Swarm Networking and Reverse Proxy

[51]

Please note that we sent the request to . The proxy could be running inside any of
the nodes and, yet, the request was successful. That is where Docker's Routing Mesh plays a
critical role. We'll explore it in more detail later. For now, the important thing to note is that
we can send a request to any of the nodes, and it will be redirected to the service that listens
to the same port (in this case).

The output of the request is as follows (formatted for readability):

{
 "Mode": "swarm",
 "Status": "OK",
 "Message": "",
 "ServiceName": "go-demo",
 "AclName": "",
 "ConsulTemplateFePath": "",
 "ConsulTemplateBePath": "",
 "Distribute": false,
 "HttpsOnly": false,
 "HttpsPort": 0,
 "OutboundHostname": "",
 "PathType": "",
 "ReqMode": "http",
 "ReqRepReplace": "",
 "ReqRepSearch": "",
 "ReqPathReplace": "",
 "ReqPathSearch": "",
 "ServiceCert": "",
 "ServiceDomain": null,
 "SkipCheck": false,
 "TemplateBePath": "",
 "TemplateFePath": "",
 "TimeoutServer": "",
 "TimeoutTunnel": "",
 "Users": null,
 "ServiceColor": "",
 "ServicePort": "",
 "AclCondition": "",
 "FullServiceName": "",
 "Host": "",
 "LookupRetry": 0,
 "LookupRetryInterval": 0,
 "ServiceDest": [
 {
 "Port": "8080",
 "ServicePath": [
 "/demo"
],

Docker Swarm Networking and Reverse Proxy

[52]

 "SrcPort": 0,
 "SrcPortAcl": "",
 "SrcPortAclName": ""
 }
]
}

I won't go into details but note that the is indicating that the was
reconfigured correctly.

We can test that the indeed works as expected by sending an HTTP request:

curl -i "$(docker-machine ip node-1)/demo/hello"

The output of the command is as follows.

HTTP/1.1 200 OK
Date: Thu, 01 Sep 2016 14:23:33 GMT
Content-Length: 14
Content-Type: text/plain; charset=utf-8

hello, world!

The works! It responded with the HTTP status and returned the API response
. As before, the request was not, necessarily, sent to the node that hosts the

service but to the routing mesh that forwarded it to the .

As an example, let's send the same request but this time, to :

curl -i "$(docker-machine ip node-3)/demo/hello"

The result is still the same.

Let's explore the configuration generated by the . It will give us more insights into the
Docker Swarm Networking inner workings. As another benefit, if you choose to roll your
own solution, it might be useful to understand how to configure the and
leverage new Docker networking features.

We'll start by examining the configuration Docker Flow Proxy (
) created for us. We can do that by entering the running container

to take a sneak peek at the file . The problem is that finding a container
run by Docker Swarm is a bit tricky. If we deployed it with Docker Compose, the container
name would be predictable. It would use the format .

Docker Swarm Networking and Reverse Proxy

[53]

The runs containers with hashed names. The
 created on my laptop has the name .

Therefore, to get inside a running container deployed with Docker Swarm, we need to use a
filter with, for example, an image name.

First, we need to find out on which node the is running execute the following
command:

NODE=$(docker service ps proxy | tail -n +2 | awk '{print $4}')

We listed the service processes , removed the header
, and output the node that resides inside the fourth column

. The output is stored as the environment variable .

Now we can point our local Docker Engine to the node where the resides:

eval $(docker-machine env $NODE)

Finally, the only thing left is to find the ID of the container. We can do that with the
following command:

ID=$(docker ps -q \
 --filter label=com.docker.swarm.service.name=proxy)

Now that we have the container ID stored inside the variable, we can execute the command
that will retrieve the HAProxy configuration:

docker exec -it \
$ID cat /cfg/haproxy.cfg

The important part of the configuration is as follows:

frontend services
 bind *:80
 bind *:443
 mode http

 acl url_go-demo8080 path_beg /demo
 use_backend go-demo-be8080 if url_go-demo8080

backend go-demo-be8080
 mode http
 server go-demo go-demo:8080

Docker Swarm Networking and Reverse Proxy

[54]

The first part should be familiar to those who have used HAProxy. It accepts
requests on ports HTTP and HTTPS. If the path starts with , it will be
redirected to the . Inside it, requests are sent to the address
on the port . The address is the same as the name of the service we deployed. Since

 belongs to the same network as the , Docker will make sure that the request
is redirected to the destination container. Neat, isn't it? There is no need, anymore, to
specify IPs and external ports.

The next question is how to do load balancing. How should we specify that the
should, for example, perform round-robin across all instances? Should we use a for
such a task?

Load balancing requests across all
instances of a service
Before we explore load balancing, we need to have something to balance. We need multiple
instances of a service. Since we already explored scaling in the previous chapter, the
command should not come as a surprise:

eval $(docker-machine env node-1)

docker service scale go-demo=5

Within a few moments, five instances of the service will be running:

Docker Swarm Networking and Reverse Proxy

[55]

What should we do to make the proxy load balance requests across all instances? The
answer is nothing. No action is necessary on our part. Actually, the question is wrong. The
proxy will not load balance requests at all. Docker Swarm networking will. So, let us
reformulate the question. What should we do to make the Docker Swarm network load
balance requests across all instances? Again, the answer is nothing. No action is necessary
on our part.

To understand load balancing, we might want to go back in time and discuss load balancing
before Docker networking came into being.

Normally, if we didn't leverage Docker Swarm features, we would have something similar
to the following proxy configuration mock-up:

backend go-demo-be
 server instance_1 <INSTANCE_1_IP>:<INSTANCE_1_PORT>
 server instance_2 <INSTANCE_2_IP>:<INSTANCE_2_PORT>
 server instance_3 <INSTANCE_3_IP>:<INSTANCE_3_PORT>
 server instance_4 <INSTANCE_4_IP>:<INSTANCE_4_PORT>
 server instance_5 <INSTANCE_5_IP>:<INSTANCE_5_PORT>

Every time a new instance is added, we would need to add it to the configuration as well. If
an instance is removed, we would need to remove it from the configuration. If an instance
failed… Well, you get the point. We would need to monitor the state of the cluster and
update the configuration whenever a change occurs.

If you read The DevOps 2.0 Toolkit, you probably remember that I advised a combination of
Registrator (), Consul (

), and Consul Template ().
Registrator would monitor Docker events and update Consul whenever a container is
created or destroyed. With the information stored in Consul, we would use Consul
Template to update nginx or HAProxy configuration. There is no need for such a
combination anymore. While those tools still provide value, for this particular purpose,
there is no need for them.

We are not going to update the every time there is a change inside the cluster, for
example, a scaling event. Instead, we are going to update the proxy every time a new
service is created. Please note that service updates (Deployment of new releases) do not
count as service creation. We create a service once and update it with each new release
(among other reasons). So, only a new service requires a change in the configuration.

Docker Swarm Networking and Reverse Proxy

[56]

The reason behind that reasoning is in the fact that load balancing is now part of Docker
Swarm networking. Let's do another round of drilling from the service:

ID=$(docker ps -q --filter label=com.docker.swarm.service.name=util)

docker exec -it $ID apk add --update drill

docker exec -it $ID drill go-demo

The output of the previous command is as follows:

;; ->>HEADER<<- opcode: QUERY, rcode: NOERROR, id: 50359
;; flags: qr rd ra ; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;; go-demo. IN A

;; ANSWER SECTION:
go-demo. 600 IN A 10.0.0.8

;; AUTHORITY SECTION:

;; ADDITIONAL SECTION:

;; Query time: 0 msec
;; SERVER: 127.0.0.11
;; WHEN: Thu Sep 1 17:46:09 2016
;; MSG SIZE rcvd: 48

The IP represents the service, not an individual instance. When we sent
a drill request, Swarm networking performed load balancing (LB) across all of the instances
of the service. To be more precise, it performed round-robin LB.

Besides creating a virtual IP for each service, each instance gets its own IP as well. In most
cases, there is no need discovering those IPs (or any Docker network endpoint IP) since all
we need is a service name, which gets translated to an IP and load balanced in the
background.

Docker Swarm Networking and Reverse Proxy

[57]

What now?
That concludes the exploration of basic concepts of the Docker Swarm networking.

Is this everything there is to know to run a Swarm cluster successfully? In this chapter, we
went deeper into Swarm features, but we are not yet done. There are quite a few questions
waiting to be answered. In the next chapter, we'll explore service discovery and the role it has
in the Swarm Mode.

Now is the time to take a break before diving into the next chapter. As before, we'll destroy
the machines we created and start fresh:

docker-machine rm -f node-1 node-2 node-3

44
Service Discovery inside a

Swarm Cluster
It does not take much strength to do things, but it requires a great deal of strength to
decide what to do.

-Elbert Hubbard

If you used the old Swarm, the one shipped as a standalone product before Docker 1.12, you
were forced to set up a service registry alongside it. You might have chosen Consul, etcd, or
Zookeper. The standalone Swarm could not work without one of them. Why is that? What
was the reason for such a strong dependency?

Before we discuss reasons behind using an external service registry with the old Swarm,
let's discuss how would Swarm behave without it.

What would Docker Swarm look like
without?
Let's say we have a cluster with three nodes. Two of them run Swarm managers, and one is
a worker. Managers accept our requests, decide what should be done, and send tasks to
Swarm workers. In turn, workers translate those tasks into commands that are sent to the
local Docker Engine. Managers act as workers as well.

If we describe the flow we did earlier with the service, and imagine there is no
service discovery associated with Swarm, it would be as follows.

Service Discovery inside a Swarm Cluster

[59]

A user sends a request to one of the managers. The request is not a declarative instruction
but an expression of the desired state. For example, I want to have two instances of the

 service and one instance of the running inside the cluster:

Once Swarm manager receives our request for the desired state, it compares it with the
current state of the cluster, generates tasks, and sends them to Swarm workers. The tasks
might be to run an instance of the service on node-1 and node-2, and an instance
of the service on node-3:

Service Discovery inside a Swarm Cluster

[60]

Swarm workers receive tasks from the managers, translate them into Docker Engine
commands, and send them to their local Docker Engine instances:

Docker Engine receives a command from the Swarm worker and executes it:

Service Discovery inside a Swarm Cluster

[61]

Next, let's say that we send a new desired state to the manager. For example, we might
want to scale the number of the go-demo instances to node-3. We would send a request to
the Swarm manager on node-1, it would consult the cluster state it stored internally and
make a decision to, for example, run a new instance on node-2. Once the decision is made,
the manager would create a new task and send it to the Swarm worker on node-2. In turn,
the worker would translate the task into a Docker command, and send it to the local engine.
Once the command is executed, we would have the third instance of the go-demo service
running on node-2:

If the flow were as described, we would have quite a lot of problems that would make such
a solution almost useless.

Let's try to list some of the issues we would face.

A Docker manager uses the information we sent to it. That would work as long as we
always use the same manager and the state of the cluster does not change due to factors
outside the control of the manager. The important thing to understand is that the
information about the cluster is not stored in one place, nor it is complete. Each manager
knows only about the things it did. Why is that such a problem?

Let's explore a few alternative (but not uncommon) paths.

What would happen if we sent the request to scale to three instances to the manager on
node-2? That manager would be oblivious of the tasks created by the manager in node-1.
As a result, it would try to run three new instances of the go-demo service resulting in five
instances in total. We’d have two instances created by the manager in node-1 and three by
the manager in node-2.

Service Discovery inside a Swarm Cluster

[62]

It would be tempting always to use the same manager, but, in that case, we would have a
single point of failure. What would happen if the whole node-1 fails? We would have no
managers available or would be forced to use the manager on node-2.

Many other factors might produce such discrepancies. Maybe one of the containers stopped
unexpectedly. In such a case, when we decide to scale to three instances, the manager on
node-1 would think that two instances are running and would create a task to run one
more. However, that would not result in three but two instances running inside the cluster.

The list of things that might go wrong is infinite, and we won't go into more examples.

The important thing to note is that it is unacceptable for any single manager to be stateful in
isolation. Every manager needs to have the same information as any other. On the other
hand, every node needs to monitor events generated by Docker Engine and make sure that
any change to its server is propagated to all managers. Finally, we need to oversee the state
of each server in case one of them fails. In other words, each manager needs to have an up-
to-date picture of the entire cluster. Only then it can translate our requests for the desired
state into tasks that will be dispatched to the Swarm nodes.

How can all the managers have a complete view of the whole cluster no matter who made a
change to it?

The answer to that question depends on the requirements we set. We need a place where all
the information is stored. Such a place need to be distributed so that the failure of one
server does not affect the correct functioning of the tool. Being distributed provides fault
tolerance, but that, by itself, does not mean data is synchronized across the cluster. The tool
needs to maintain data replicated across all the instances. Replication is not anything new
except that, in this case, it needs to be very fast so that the services that would consult it can
receive data in (near) real-time. Moreover, we need a system that will monitor each server
inside the cluster and update the data if anything changes.

To summarize, we need a distributed service registry and a monitoring system in place. The
first requirement is best accomplished with one of the service registries or key-value stores.
The old Swarm (standalone version before Docker 1.12) supports Consul (

), etcd (), and Zookeeper (
). My preference is towards Consul, but any of the three should do.

For a more detailed discussion about service discovery and the comparison of the major
service registries, please consult the service discovery: The Key to Distributed services
chapter of The DevOps 2.0 Toolkit.

Service Discovery inside a Swarm Cluster

[63]

What does standalone Docker Swarm look
like with service discovery?
Now that we have a better understanding of the requirements and the reasons behind the
usage of service discovery, we can define the (real) flow of a request to a Docker Swarm
manager.

Please note that we are still exploring how the old (standalone) Swarm is working:

A user sends a request with the desired state to one of the Swarm managers.1.
The Swarm manager gets the cluster information from the service registry,2.
creates a set of tasks, and dispatches them to Swarm workers.
Swarm workers translate the tasks into commands and send them to the local3.
Docker Engine which, in turn, runs or stops containers.
Swarm workers continuously monitor Docker events and update the service4.
registry.

That way, information about the whole cluster is always up-to-date. The exception is when
one of the managers or workers fails. Since managers are monitoring each other, the failure
of a manager or a worker is considered a failure of the whole node. After all, without a
worker, containers cannot be scheduled on that node:

Service Discovery inside a Swarm Cluster

[64]

Now that we established that service discovery is an essential tool for managing a cluster,
the natural question is what happened to it in Swarm Mode (Docker 1.12)?

Service discovery in the Swarm cluster
The old (standalone) Swarm required a service registry so that all its managers can have the
same view of the cluster state. When instantiating the old Swarm nodes, we had to specify
the address of a service registry. However, if you take a look at setup instructions of the
new Swarm (Swarm Mode introduced in Docker 1.12), you'll notice that we did not set up
anything beyond Docker Engines. You will not find any mention of an external service
registry or a key-value store.

Does that mean that Swarm does not need service discovery? Quite the contrary. The need
for service discovery is as strong as ever, and Docker decided to incorporate it inside
Docker Engine. It is bundled inside just as Swarm is. The internal process is, essentially, still
very similar to the one used by the standalone Swarm, only with less moving parts. Docker
Engine now acts as a Swarm manager, Swarm worker, and service registry.

The decision to bundle everything inside the engine provoked a mixed response. Some
thought that such a decision creates too much coupling and increases Docker Engine's level
of instability. Others think that such a bundle makes the engine more robust and opens the
door to some new possibilities. While both sides have valid arguments, I am more inclined
towards the opinion of the latter group. Docker Swarm Mode is a huge step forward, and it
is questionable whether the same result could be accomplished without bundling service
registry inside the engine.

Knowing how Docker Swarm works, especially networking, the question that might be on
your mind is whether we need service discovery (beyond Swarms internal usage). In The
DevOps 2.0 Toolkit, I argued that service discovery is a must and urged everyone to set up
Consul () or etcd () as service
registries, Registrator as a mechanism to register changes inside the cluster, and Consul
Template or confd () as a templating
solution. Do we still need those tools?

Service Discovery inside a Swarm Cluster

[65]

Do we need service discovery?
It is hard to provide a general recommendation whether service discovery tools are needed
when working inside a Swarm cluster. If we look at the need to find services as the main
use case for those tools, the answer is usually no. We don't need external service discovery
for that. As long as all services that should communicate with each other are inside the
same network, all we need is the name of the destination service. For example, for the go-
demo () service to find the related database, it only
needs to know its DNS . The , Docker Swarm Networking and Reverse
Proxy proved that proper networking usage is enough for most use cases.

However, finding services and load balancing requests among them is not the only reason
for service discovery. We might have other uses for service registries or key-value stores.
We might need to store some information such that it is distributed and fault tolerant.

An example of the need for a key-value store can be seen inside the Docker Flow Proxy (
) project. It is based on HAProxy which is a

stateful service. It loads the information from a configuration file into memory. Having
stateful services inside a dynamic cluster represents a challenge that needs to be solved.
Otherwise, we might lose state when a service is scaled, rescheduled after a failure, and so
on.

Before we go into more details and problems related with stateful services, let's see how we
could set up Consul as our key-value store of choice and go through its basic features.

Setting up Consul as service registry inside
a Swarm cluster
As before, we'll start by setting up a Swarm cluster. From there on, we'll proceed with the
Consul setup and a quick overview of the basic operations we can do with it. That will give
us the knowledge necessary for the rest of this chapter.

A note to The DevOps 2.0 Toolkit readers
You might be tempted to skip this sub-chapter since you already learned
how to set up Consul. I recommend you read on. We'll use the official
Consul image that was not available at the time I wrote the previous book.
At the same time, I promise to keep this sub-chapter as brief as possible
without confusing the new readers too much.

Service Discovery inside a Swarm Cluster

[66]

Practice makes perfect, but there is a limit after which there is no reason to repeat the same
commands over and over. I'm sure that, by now, you got tired of writing the commands
that create a Swarm cluster. So, I prepared the (

) script that will
create Docker Machine nodes and join them into a Swarm cluster.

All the commands from this chapter are available in the
 (

) Gist.

Let's clone the code and run the script:

Some of the files will be shared between the host file system and Docker
Machines we'll create soon. Docker Machine makes the whole directory
that belongs to the current user available inside the VM. Therefore, please
make sure that the code is cloned inside one of the user's sub-folders.

git clone https://github.com/vfarcic/cloud-provisioning.git

cd cloud-provisioning

scripts/dm-swarm.sh

eval $(docker-machine env swarm-1)

docker node ls

The output of the command is as follows (IDs are removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
swarm-2 Ready Active Reachable
swarm-3 Ready Active Reachable
swarm-1 Ready Active Leader

Please note that this time there was a slight change in the commands. We used the
token so that all three nodes are set up as managers.

As a general rule, we should have a least three Swarm managers. That way, if one of them
fails, the others will reschedule the failed containers and can be used as our access points to
the system. As is often the case with solutions that require a quorum, an odd number is
usually the best. Hence, we have three.

Service Discovery inside a Swarm Cluster

[67]

You might be tempted to run all nodes as managers. I advise you against that. Managers
synchronize data between themselves. The more manager instances are running, the more
time the synchronization might last. While that is not even noticeable when there are only a
few, if, for example, you'd run a hundred managers there would be some lag. After all,
that's why we have workers. Managers are our entry points to the system and coordinators
of the tasks, while workers do the actual work.

With that out of the way, we can proceed and set up Consul.

We'll start by downloading the (
) file from the Docker Flow Proxy (

) project. It already contains Consul defined
as Compose services.

curl -o docker-compose-proxy.yml \
 https://raw.githubusercontent.com/\
vfarcic/docker-flow-proxy/master/docker-compose.yml

cat docker-compose-proxy.yml

Just as Docker Swarm node can act as a manager or a worker, Consul can be run as a server
or an agent. We'll start with the server.

The Compose definition of the Consul service that acts as a server is as follows:

consul-server:
 container_name: consul
 image: consul
 network_mode: host
 environment:
 - 'CONSUL_LOCAL_CONFIG={"skip_leave_on_interrupt": true}'
 command: agent -server -bind=$DOCKER_IP -bootstrap-expect=1 -
client=$DOCKER_IP

The important thing to note is that we set up the network mode as . That means that
the container will share the same network as the host it is running on. This is followed by an
environment variable and the command.

The command will run the agent in server mode and, initially, it expects to be the only one
in the cluster .

You'll notice the usage of the environment variable. Consul expects the
information about the binding and the client address. Since we don't know the IP of the
servers in advance, it had to be a variable.

Service Discovery inside a Swarm Cluster

[68]

At this moment you might be wondering why are we talking about Docker Compose
services inside a Swarm cluster. Shouldn't we run command?
The truth is, at the time of this writing, the official consul image is still not adapted to the
"Swarm way" of running things. Most images do not require any changes before launching
them inside a Swarm cluster. Consul is one of the very few exceptions. I will do my best to
update the instructions as soon as the situation changes. Until then, the good old Compose
should do:

export DOCKER_IP=$(docker-machine ip swarm-1)

docker-compose -f docker-compose-proxy.yml \
 up -d consul-server

You'll notice
 message in the output. It is only a friendly reminder that we are not running this as

Docker service. Feel free to ignore it.

Now that we have a Consul instance running, we can go through the basic operations.

We can, for example, put some information into the key-value store:

curl -X PUT -d 'this is a test' \
 "http://$(docker-machine ip swarm-1):8500/v1/kv/msg1"

The command put this is a test value as the key inside Consul.

We can confirm that the key-value combination is indeed stored by sending a request:

curl "http://$(docker-machine ip swarm-1):8500/v1/kv/msg1"

The output is as follows (formatted for readability):

[
 {
 "LockIndex": 0,
 "Key": "msg1",
 "Flags": 0,
 "Value": "dGhpcyBpcyBhIHRlc3Q=",
 "CreateIndex": 17,
 "ModifyIndex": 17
 }
]

Service Discovery inside a Swarm Cluster

[69]

You'll notice that the value is encoded. If we add the parameter to the request, Consul
will return only the value in its raw format:

curl "http://$(docker-machine ip swarm-1):8500/v1/kv/msg1?raw"

The output is as follows:

this is a test

Right now, we have only one Consul instance. If the node it is running in fails , all
the data will be lost and service registry will be unavailable. That's not a good situation to
be in.

We can create fault tolerance by running a few more Consul instances. This time, we'll run
agents.

Just as the Consul server instance, the agent is also defined in the (
)

file in the Docker Flow Proxy () project.
Remember, we downloaded it with the name . Let's take a
look at the service definition:

cat docker-compose-proxy.yml

The part of the output that defines the service is as follows:

consul-agent:
 container_name: consul
 image: consul
 network_mode: host
 environment:
 - 'CONSUL_LOCAL_CONFIG={"leave_on_terminate": true}'
 command: agent -bind=$DOCKER_IP -retry-join=$CONSUL_SERVER_IP \
-client=$DOCKER_IP

It is almost the same as the definition we used to run the Consul server instance. The only
important difference is that the is missing and that we have the
argument. We're using the latter to specify the address of another instance. Consul uses the
gossip protocol. As long as every instance is aware of at least one other instance, the
protocol will propagate the information across all of them.

Service Discovery inside a Swarm Cluster

[70]

Let's run agents on the other two nodes and :

export CONSUL_SERVER_IP=$(docker-machine ip swarm-1)

for i in 2 3; do
 eval $(docker-machine env swarm-$i)

 export DOCKER_IP=$(docker-machine ip swarm-$i)

 docker-compose -f docker-compose-proxy.yml \
 up -d consul-agent
done

Now that we have three Consul instances running inside the cluster (one on each node), we
can confirm that gossip indeed works.

Let's request the value of the key. This time, we'll request it from the Consul instance
running on :

curl "http://$(docker-machine ip swarm-2):8500/v1/kv/msg1"

As you can see from the output, even though we put the information to the instance
running on , it is available from the instance in . The information is
propagated through all the instances.

We can give the gossip protocol one more round of testing:

curl -X PUT -d 'this is another test' \
 "http://$(docker-machine ip swarm-2):8500/v1/kv/messages/msg2"

curl -X PUT -d 'this is a test with flags' \
 "http://$(docker-machine ip swarm-3):8500/v1/kv/messages/msg3?\
flags=1234"

curl "http://$(docker-machine ip swarm-1):8500/v1/kv/?recurse"

We sent one request to the instance running in and another to the instance in
. When we requested all the keys from the instance running in , all three

were returned. In other words, no matter what we do with data, it is always in sync in all of
the instances.

Similarly, we can delete information:

curl -X DELETE "http://$(docker-machine ip swarm-2):\
8500/v1/kv/?recurse"

curl "http://$(docker-machine ip swarm-3):8500/v1/kv/?recurse"

Service Discovery inside a Swarm Cluster

[71]

We sent the request to the to delete all keys. When we queried the instance
running in , we got an empty response meaning that everything is, indeed, gone.

With a setup similar to the one we explored, we can have a reliable, distributed, and fault-
tolerant way for storing and retrieving any information our services might need.

We'll use this knowledge to explore a possible solution for some of the problems that might
arise when running stateful services inside a Swarm cluster. But before we start discussing
the solution, let's see what the problem is with stateful services.

Problems when scaling stateful instances
Scaling services inside a Swarm cluster is easy, isn't it? Just execute

 and, all of a sudden, the service is
running multiple copies.

The previous statement is only partly true. The more precise wording would be that
"scaling stateless services inside a Swarm cluster is easy".

The reason that scaling stateless services is easy lies in the fact that there is no state to think
about. An instance is the same no matter how long it runs. There is no difference between a
new instance and one that run for a week. Since the state does not change over time, we can
create new copies at any given moment, and they will all be exactly the same.

However, the world is not stateless. State is an unavoidable part of our industry. As soon as
the first piece of information is created, it needs to be stored somewhere. The place we store
data must be stateful. It has a state that changes over time. If we want to scale such a
stateful service, there are at least two things we need to consider:

How do we propagate a change of state of one instance to the rest of the1.
instances?
How do we create a copy (a new instance) of a stateful service, and make sure2.
that the state is copied as well?

We usually combine stateless and stateful services into one logical entity. A back-end
service could be stateless and rely on a database service as an external data storage. That
way, there is a clear separation of concerns and a different lifecycle of each of those services.

Service Discovery inside a Swarm Cluster

[72]

Before we proceed, I must state that there is no silver bullet that makes stateful services
scalable and fault-tolerant. Throughout the book, I will go through a couple of examples
that might, or might not, apply to your use case. An obvious, and very typical example of a
stateful service is a database. While there are some common patterns, almost every database
provides a different mechanism for data replication. That, in itself, is enough to prevent us
from having a definitive answer that would apply to all. We'll explore scalability of a
MongoDB later on in the book. We'll also see an example with Jenkins that uses a file
system for its state.

The first case we'll tackle will be of a different type. We'll discuss scalability of a service that
has its state stored in a configuration file. To make things more complicated, the
configuration is dynamic. It changes over time, throughout the lifetime of the service. We'll
explore ways to make HAProxy scalable.

If we use the official HAProxy () image, one of the
challenges we would face is deciding how to update the state of all the instances. We'd have
to change the configuration and reload each copy of the .

We can, for example, mount an NFS volume on each node in the cluster and make sure that
the same host volume is mounted inside all HAProxy containers. At first, it might seem that
that would solve the problem with the state since all instances would share the same
configuration file. Any change to the config on the host would be available inside all the
instances we would have. However, that, in itself, would not change the state of the service.

HAProxy loads the configuration file during initialization, and it is oblivious to any changes
we might make to the configuration afterward. For the change of the state of the file to be
reflected in the state of the service, we'd need to reload it. The problem is that instances can
run on any of the nodes inside the cluster. On top of that, if we adopt dynamic scaling
(more on that later on), we might not even know how many instances are running. So we'd
need to discover how many instances we have, find out on which nodes they are running,
get IDs of each of the containers, and, only then, send a signal to reload the . While all
this can be scripted, it is far from an optimum solution. Moreover, mounting an NFS
volume is a single point of failure. If the server that hosts the volume fails, data is lost. Sure,
we can create backups, but they would only provide a way to restore lost data partially.
That is, we can restore a backup, but the data generated between the moment the last
backup was created, and the node failure would be lost.

Service Discovery inside a Swarm Cluster

[73]

An alternative would be to embed the configuration into HAProxy images. We could create
a new Dockerfile that would be based on and add the instruction that would
add the configuration. That would mean that every time we want to reconfigure the proxy,
we'd need to change the config, build a new set of images (a new release), and update the

 service currently running inside the cluster. As you can imagine, this is also not
practical. It's too big of a process for a simple proxy reconfiguration.

Docker Flow Proxy uses a different, less conventional, approach to the problem. It stores a
replica of its state in Consul. It also uses an undocumented Swarm networking feature (at
least at the time of this writing).

Using service registry to store the state
Now that we have Consul instances set up let us explore how to exploit them to our own
benefit. We'll study the design of the Docker Flow Proxy as a way to demonstrate some of the
challenges and solutions you might want to apply to your own services.

Let us create the network and the service:

eval $(docker-machine env swarm-1)

docker network create --driver overlay proxy

docker service create --name proxy \
 -p 80:80 \
 -p 443:443 \
 -p 8080:8080 \
 --network proxy \
 -e MODE=swarm \
 --replicas 3 \
 -e CONSUL_ADDRESS="$(docker-machine ip swarm-1):8500 \
,$(docker-machine ip \
swarm-2):8500,$(docker-machine ip swarm-3):8500" \
 vfarcic/docker-flow-proxy

The command we used to create the proxy service is slightly different than before. Namely,
now we have the variable with the comma separated addresses of all
three Consul instances. The proxy is made in a way that it will try the first address. If it
does not respond, it will try the next one, and so on. That way, as long as at least one
Consul instance is running, the proxy will be able to fetch and put data. We would not need
to do this loop if Consul would run as a Swarm service. In that case, all we'd need to do is
put both inside the same network and use the service name as the address.

Service Discovery inside a Swarm Cluster

[74]

Unfortunately, Consul cannot, yet, run as a Swarm service, so we are forced to specify all
addresses, refer to the following diagram:

Before we proceed, we should make sure that all instances of the are running:

docker service ps proxy

Please wait until the current state of all the instances is set to .

Let's create the service. It will act as a catalyst for a discussion around challenges
we might face with a scaled reverse :

docker network create --driver overlay go-demo

docker service create --name go-demo-db \
 --network go-demo \
 mongo:3.2.10

docker service create --name go-demo \
 -e DB=go-demo-db \
 --network go-demo \
 --network proxy \
 vfarcic/go-demo:1.0

There's no reason to explain the commands in detail. They are the same as those we've run
in the previous chapters.

Service Discovery inside a Swarm Cluster

[75]

Please wait until the current state of the service is Running. Feel free to use
 command to check the status.

If we would repeat the same process we used in the , Docker Swarm Networking
and Reverse Proxy the request to reconfigure the proxy would be as follows (please do not
run it).

curl "$(docker-machine ip swarm-1):8080/v1/\
proxy/reconfigure?serviceName=go-demo&servicePath=/demo&port=8080"

We would send a reconfigure request to the service. Can you guess what would be
the result?

A user sends a request to reconfigure the proxy. The request is picked by the routing mesh
and load balanced across all the instances of the proxy. The request is forwarded to one of
the instances. Since the proxy is using Consul to store its configuration, it sends the info to
one of the Consul instances which, in turn, synchronizes the data across all others.
As a result, we have proxy instances with different states. The one that received the request
is reconfigured to use the service. The other two are, still, oblivious to it. If we try
to ping the service through the proxy, we will get mixed responses. One out of
three times, the response would be status . The rest of the time, we would get , not
found:

Service Discovery inside a Swarm Cluster

[76]

We would experience a similar result if we scale MongoDB. The routing mesh would load
balance across all instances, and their states would start to diverge. We could solve the
problem with MongoDB by using replica sets. That's the mechanism that allows us to
replicate data across all instances. However, HAProxy does not have such a feature. So, I
had to add it myself.

The correct request to reconfigure the proxy running multiple instances is as follows:

curl "$(docker-machine ip swarm-1):8080/v1/\
docker-flow-proxy/reconfigure \
serviceName=go-demo&servicePath=/demo&port=8080&distribute=true"

Please note the new parameter . When specified, the proxy will accept
the request, reconfigure itself, and resend the request to all other instances:

That way, the proxy implements a mechanism similar to replica sets in MongoDB. A change
to one of the instances is propagated to all others.

Let us confirm that it indeed works as expected:

curl -i "$(docker-machine ip swarm-1)/demo/hello"

Service Discovery inside a Swarm Cluster

[77]

The output is as follows:

HTTP/1.1 200 OK
Date: Fri, 09 Sep 2016 16:04:05 GMT
Content-Length: 14
Content-Type: text/plain; charset=utf-8

hello, world!

The response is meaning that the service received the request forwarded by
the service. Since the routing mesh is in play, the request entered the system, was
load balanced and resent to one of the proxy instances. The proxy instance that received the
request evaluated the path and decided that it should go to the service. As a
result, the request is resent to the network, load balanced again and forwarded to
one of the instances. In other words, any of the and instances
could have received the request. If the proxy state was not synchronized across all the
instances, two out of three requests would fail.

Feel free to repeat the
command. The result should always be the same.

We can double check that the configuration is indeed synchronized by taking a peek into
one of the containers.

Let's take a look at, let's say, proxy instance number three.

The first thing we should do is find out the node the instance is running in:

NODE=$(docker service ps proxy | grep "proxy.3" | awk '{print $4}')

We listed all service processes , filtered the result with
the third instance , and returned the name of the node stored in the fourth
column of the output . The result was stored in the environment
variable .

Now that we know the server this instance is running in, we can enter the container and
display the contents of the configuration file:

eval $(docker-machine env $NODE)

ID=$(docker ps | grep "proxy.3" | awk '{print $1}')

Service Discovery inside a Swarm Cluster

[78]

We changed the Docker client to point to the node. That was followed with the command
that lists all running processes , filters out the third instance ,
and outputs the container ID stored in the first column . The result was
stored in the environment variable ID.

With the client pointing to the correct node and the ID stored as the environment variable
ID, we can, finally, enter the container and display the configuration:

docker exec -it $ID cat /cfg/haproxy.cfg

The relevant part of the output is as follows:

frontend services
 bind *:80
 bind *:443
 mode http

 acl url_go-demo8080 path_beg /demo
 use_backend go-demo-be8080 if url_go-demo8080

backend go-demo-be8080
 mode http
 server go-demo go-demo:8080

As you can see, the third instance of the is indeed configured correctly with the
 service. Feel free to repeat the process with the other two instances. The result should

be exactly the same proving that synchronization works.

How was it done? How did the instance that received the request discover the IPs of
all the other instances? After all, there is no Registrator that would provide the IPs to
Consul, and we cannot access Swarms internal service discovery API.

Discovering addresses of all instances that
form a service
If you browse through the official Docker documentation, you will not find any reference to
addresses of individual instances that form a service.

The previous sentence might not be true at the time you're reading this. Someone might
have updated the documentation. However, at the time I'm writing this chapter, there is not
a trace of such information.

Service Discovery inside a Swarm Cluster

[79]

The fact that something is not documented does not mean that it does not exist. Indeed,
there is a special DNS that will return all IPs.

To see it in action, we'll create the global service called util and attach it to the
network:

docker service create --name util \
 --network proxy --mode global \
 alpine sleep 1000000000

docker service ps util

Before proceeding, please wait until the current state is set to running.

Next, we'll find the ID of one of the util instances and install drill that will show us the
information related to DNS entries:

ID=$(docker ps -q --filter label=com.docker.swarm.service.name=util)

docker exec -it $ID apk add --update drill

Let's start by drilling the DNS proxy:

docker exec -it $ID drill proxy

The output is as follows:

;; ->>HEADER<<- opcode: QUERY, rcode: NOERROR, id: 31878
;; flags: qr rd ra ; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;; proxy. IN A

;; ANSWER SECTION:
proxy. 600 IN A 10.0.0.2

;; AUTHORITY SECTION:

;; ADDITIONAL SECTION:

;; Query time: 0 msec
;; SERVER: 127.0.0.11
;; WHEN: Fri Sep 9 16:43:23 2016
;; MSG SIZE rcvd: 44

Service Discovery inside a Swarm Cluster

[80]

As you can see, even though we are running three instances of the service, only one IP is
returned . That is the IP of the service, not an individual instance. To be more
concrete, it is the IP of the service network end-point. When a request reaches that
end-point, Docker network performs load balancing across all the instances.

In most cases, we do not need anything else. All we have to know is the name of the service
and Docker will do the rest of the work for us. However, in a few cases, we might need
more. We might need to know the IPs of every single instance of a service. That is the
problem Docker Flow Proxy faced.

To find the IPs of all the instances of a service we can use the "undocumented" feature. We
need to add the tasks prefix to the service name.

Let's drill again:

docker exec -it $ID drill tasks.proxy

This time, the output is different:

;; ->>HEADER<<- opcode: QUERY, rcode: NOERROR, id: 54408
;; flags: qr rd ra ; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;; tasks.proxy. IN A

;; ANSWER SECTION:
tasks.proxy. 600 IN A 10.0.0.4
tasks.proxy. 600 IN A 10.0.0.3
tasks.proxy. 600 IN A 10.0.0.5

;; AUTHORITY SECTION:

;; ADDITIONAL SECTION:

;; Query time: 0 msec
;; SERVER: 127.0.0.11
;; WHEN: Fri Sep 9 16:48:46 2016
;; MSG SIZE rcvd: 110

We got three answers, each with a different IP .

Knowing the IPs of all the instances solved the problem of having to synchronize data. With
tasks. we have all the info we need. The rest is only a bit of coding that
will utilize those IPs. It is a similar mechanism used when synchronizing databases (more
on that later).

Service Discovery inside a Swarm Cluster

[81]

We are not done yet. The fact that we can synchronize data on demand (or events) does not
mean that the service is fault tolerant. What should we do if we need to create a new
instance? What happens if an instance fails and Swarm reschedules it somewhere else?

Using service registry or key value store to
store service state
We'll continue using Docker Flow Proxy as a playground to explore some of the mechanisms
and decisions we might make when dealing with stateful services. Please note that, in this
chapter, we are concentrating on services with a relatively small state. We'll explore other
use cases in the chapters that follow.

Imagine that the proxy does not use Consul to store data and that we do not use volumes.
What would happen if we were to scale it up? The new instances would be out of sync.
Their state would be the same as the initial state of the first instance we created. In other
words, there would be no state, even though the instances that are already running changed
over time and generated data.

That is where Consul comes into play. Every time an instance of the proxy receives a
request that results in the change of its state, it propagates that change to other instances, as
well as to Consul. On the other hand, the first action the proxy performs when initialized is
to consult Consul, and create the configuration from its data.

We can observe the state stored in Consul by sending a request for all the data with keys
starting with :

curl "http://$(docker-machine ip swarm-1):8500/v1/kv/\
docker-flow?recurse"

A part of the output is as follows:

[
...
 {
 "LockIndex": 0,
 "Key": "docker-flow/go-demo/path",
 "Flags": 0,
 "Value": "L2RlbW8=",
 "CreateIndex": 233,
 "ModifyIndex": 245
 },
...

Service Discovery inside a Swarm Cluster

[82]

 {
 "LockIndex": 0,
 "Key": "docker-flow/go-demo/port",
 "Flags": 0,
 "Value": "ODA4MA==",
 "CreateIndex": 231,
 "ModifyIndex": 243
 },
...
]

The preceding example shows that the path and the port we specified when we
reconfigured the proxy for the service, is stored in Consul. If we instruct Swarm
manager to scale the service, new instances will be created. Those instances will
query Consul and use the information to generate their configurations.

Let's give it a try:

docker service scale proxy=6

We increased the number of instances from three to six.

Let's take a sneak peek into the instance number six:

NODE=$(docker service ps proxy | grep "proxy.6" | awk '{print $4}')

eval $(docker-machine env $NODE)

ID=$(docker ps | grep "proxy.6" | awk '{print $1}')

docker exec -it $ID cat /cfg/haproxy.cfg

A part of the output of the command is as follows:

frontend services
 bind *:80
 bind *:443
 mode http

backend go-demo-be8080
 mode http
 server go-demo :8080

As you can see, the new instance recuperated all the information from Consul. As a result,
its state became the same as the state of any other instance running inside the cluster.

Service Discovery inside a Swarm Cluster

[83]

If we destroy an instance, the result will, again, be the same. Swarm will detect that an
instance crashed and schedule a new one. The new instance will repeat the same process of
querying Consul and create the same state as the other instances:

docker rm -f $(docker ps \
 | grep proxy.6 \
 | awk '{print $1}')

We should wait for a few moments until Swarm detects the failure and creates a new
instance.

Once it's running, we can take a look at the configuration of the new instance. It will be the
same as before:

NODE=$(docker service ps \
 -f desired-state=running proxy \
 | grep "proxy.6" \
 | awk '{print $4}')

eval $(docker-machine env $NODE)

ID=$(docker ps | grep "proxy.6" | awk '{print $1}')

docker exec -it $ID cat /cfg/haproxy.cfg

The explanation of Docker Flow Proxy inner workings is mostly for educational purposes. I
wanted to show you one of the possible solutions when dealing with stateful services. The
methods we discussed are applicable only when the state is relatively small. When it is
bigger, as is the case with databases, we should employ different mechanisms to accomplish
the same goals.

If we go one level higher, the primary requirements, or prerequisites, when running stateful
services inside a cluster are as follows:

Ability to synchronize the state across all instances of the service.1.
Ability to recuperate the state during initialization.2.

If we manage to fulfill those two requirements, we are on the right path towards solving
one of the major bottlenecks when operating stateful services inside the cluster.

Service Discovery inside a Swarm Cluster

[84]

What now?
That concludes the exploration of basic concepts behind the usage of service discovery
inside a Swarm cluster.

Are we done learning about Swarm features? We are far from knowing everything there is
to know about Docker Swarm. However, at this point, we have enough knowledge to go
back to the end of , Continuous Integration with Docker Containers and make the
next logical step. We can design a Continuous Delivery flow.

Now is the time to take a break before diving into the next chapter. As before, we'll destroy
the machines we created and start fresh:

docker-machine rm -f swarm-1 swarm-2 swarm-3

55
Continuous Delivery and
Deployment with Docker

Containers
In software, when something is painful, the way to reduce the pain is to do it more
frequently, not less.

– David Farley

At the time, we could not convert the Continuous Integration (CI) into the Continuous
Delivery (CD) process because we were missing some essential knowledge. Now that we
understand the basic principles and commands behind Docker Swarm, we can go back to
the end of the , Continuous Integration with Docker Containers. We can define the
steps that will let us perform the full CD process.

I won't go into Continuous Delivery details. Instead, I'll pitch it as a single sentence.
Continuous Delivery is a process applied to every commit in a code repository and results in every
successful build being ready for deployment to production.

CD means that anyone, at any time, can click a button, and deploy a build to production
without the fear that something will go wrong. It means that the process is so robust that
we have full confidence that "almost" any problem will be detected before the deployment
to production. Needless to say, CD is an entirely automated process. There is no human
involvement from the moment a commit is sent to a code repository, all the way until a
build is ready to be deployed to production. The only manual action is that someone needs
to press the button that will run a script that performs the deployment.

Continuous Delivery and Deployment with Docker Containers

[86]

Continuous Deployment (CDP) is one step forward. It is Continuous Delivery without the
button. Continuous Deployment is a process applied to every commit in a code repository and
results with every successful build being Deployed to production.

No matter which process you choose, the steps are the same. The only difference is whether
there is a button that deploys the release to production.

At this point, it is safe to assume that we'll use Docker whenever convenient and that we'll
use Swarm clusters to run the services in production and production-like environments.

Let's start by specifying the steps that could define one possible implementation of the
CD/CDP process:

Check out the code.1.
Run unit tests.2.
Build binaries and other required artifacts.3.
Deploy the service to the staging environment.4.
Run functional tests.5.
Deploy the service to the production-like environment.6.
Run production readiness tests.7.
Deploy the service to the production environment.8.
Run production readiness tests.9.

Now, let's get going and set up the environment we'll need for practicing the CD flow.

Defining the Continuous Delivery
environment
A minimum requirement for a Continuous Delivery environment is two clusters. One
should be dedicated to running tests, building artifacts and images, and all other CD tasks.
We can use it for simulating a production cluster. The second cluster will be used for
deployments to production.

Why do we need two clusters? Can't we accomplish the same with only one?

While we certainly could get away with only one cluster, having two will simplify quite a
few processes and, more importantly, provide better isolation between production and non-
production services and tasks.

Continuous Delivery and Deployment with Docker Containers

[87]

The more we minimize the impact on the production cluster, the better. By not running
non-production services and tasks inside the production cluster, we are reducing the risk.
Therefore, we should have a production cluster separated from the rest of the environment.

Now let's get started and fire up those clusters.

Setting up Continuous Delivery clusters
What is a minimum number of servers required for a production-like cluster? I'd say two. If
there's only one server, we would not be able to test whether networking and volumes
work across nodes. So, it has to be plural. On the other hand, I don't want to push your
laptop too much so we'll avoid increasing the number unless necessary.

For the production-like cluster, two nodes should be enough. We should add one more
node that we'll use for running tests and building images. The production cluster should
probably be a bit bigger since it will have more services running. We'll make it three nodes
big. If needed, we can increase the capacity later on. As you already saw, adding nodes to a
Swarm cluster is very easy.

By now, we set up a Swarm cluster quite a few times so we'll skip the explanation and just
do it through a script.

All the commands from this chapter are available in the
 (

) Gist.

Let's go back to the cloud-provisioning directory we created in the previous chapter and
run the (

) script. It will create the production nodes and join them
into a cluster. The nodes will be called , , and :

cd cloud-provisioning

scripts/dm-swarm.sh

eval $(docker-machine env swarm-1)

docker node ls

Continuous Delivery and Deployment with Docker Containers

[88]

The output of the node ls command is as follows (IDs are removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
swarm-2 Ready Active Reachable
swarm-1 Ready Active Leader
swarm-3 Ready Active Reachable

Next, we'll create the second cluster. We'll use it for running CD tasks as well as a
simulation of a production environment. Three nodes should be enough, for now. We'll call
them and

We'll create the cluster by executing the (
) script:

scripts/dm-test-swarm.sh

eval $(docker-machine env swarm-test-1)

docker node ls

The output of the command is as follows (IDs were removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
swarm-test-2 Ready Active Reachable
swarm-test-1 Ready Active Leader
swarm-test-3 Ready Active Reachable

The only thing left, for now, is to create Docker registry services. We'll create one in each
cluster. That way, there will be no direct relation between them, and they will be able to
operate independently one from another. For registries running on separate clusters to
share the same data, we'll mount the same host volume to both services. That way, an
image pushed from one cluster will be available from the other, and vice versa. Please note
that the volumes we're creating are still a workaround. Later on, we'll explore better ways
to mount volumes.

Let's start with the production cluster.

We've already run the registry in the , Continuous Integration with Docker
Containers . Back then, we had a single node, and we used Docker Compose to deploy
services. Registry was not an option.

A note to Windows users
Git Bash has a habit of altering file system paths. To stop this, execute the
following before running the code block:

Continuous Delivery and Deployment with Docker Containers

[89]

This time, we'll run the registry as a Swarm service:

eval $(docker-machine env swarm-1)

docker service create --name registry \
 -p 5000:5000 \
 --reserve-memory 100m \
 --mount "type=bind,source=$PWD,target=/var/lib/registry" \
 registry:2.5.0

We exposed port and reserved MB of memory. We used the argument
to expose a volume. This argument is, somewhat, similar to the Docker Engine argument

 or the volumes argument in Docker compose files. The only significant difference is
in the format. In this case, we specified that the current host directory should
be mounted inside the container .

Please note that, from now on, we'll always run specific versions. While, until now, the
latest was alright as a demonstration, now we're trying to simulate CD processes we'll run
in "real" clusters. We should always be explicit which version of a service we want to run.
That way, we can be sure that the same service is tested and deployed to production.
Otherwise, we could run into a situation where one version was deployed and tested in a
production-like environment, but a different one was deployed to production.

The benefits behind specific versions are even more apparent when we use images from
Docker Hub. For example, if we just run the latest release of the registry, there is no
guarantee that, later on, when we run it in the second cluster, the latest release will not be
updated. We could, easily, end up getting different releases of the registry in different
clusters. That could lead to some really hard-to-detect bugs.

I won't bother you more with versioning. I'm sure you know what's it for and when to use
it.

Let's get back to the service. We should create it inside the second cluster as well:

eval $(docker-machine env swarm-test-1)

docker service create --name registry \
 -p 5000:5000 \
 --reserve-memory 100m \
 --mount "type=bind,source=$PWD,target=/var/lib/registry" \
 registry:2.5.0

Continuous Delivery and Deployment with Docker Containers

[90]

Now we have the service running inside both clusters.

At the moment, we do not know in which servers the registries are running. All we know is
that there is an instance of the service in each cluster. Normally, we'd have to configure
Docker Engine to treat the registry service as insecure and allow the traffic. To do that, we'd
need to know the IP of the server the registry is running in. However, since we ran it as a
Swarm service and exposed port , the routing mesh will make sure that the port is
open in every node of the cluster and forward requests to the service. That allows us to treat
the registry as localhost. We can pull and push images from any node as if the registry is
running in each of them. Moreover, Docker Engines default behavior is to allow only
localhost traffic to the registry. That means that we do not need to change its configuration.

Using node labels to constrain services
Labels are defined as key-value sets. We'll use the key (short for environment). At the
moment, we don't need to label the nodes used for CD tasks since we are not yet running
them as services. We'll change that in one of the chapters that follow. For now, we only
need to label the nodes that will be used to run our services in the production-like
environment.

We'll use the nodes and as our production-like
environment so we'll label them with the key and the value .

Continuous Delivery and Deployment with Docker Containers

[91]

Let's start with the node :

docker node update \
 --label-add env=prod-like \
 swarm-test-2

We can confirm that the label was indeed added by inspecting the node:

docker node inspect --pretty swarm-test-2

The output of the node command is as follows:

ID: vq5hj3lt7dskh54mr1jw4zunb
Labels:
 - env = prod-like
Hostname: swarm-test-2
Joined at: 2017-01-21 23:01:40.557959238 +0000 utc
Status:
 State: Ready
 Availability: Active
 Address: 192.168.99.104
Manager Status:
 Address: 192.168.99.104:2377
 Raft Status: Reachable
 Leader: No
Platform:
 Operating System: linux
 Architecture: x86_64
Resources:
 CPUs: 1
 Memory: 492.5 MiB
Plugins:
 Network: bridge, host, macvlan, null, overlay
 Volume: local
Engine Version: 1.13.0
Engine Labels:
 - provider = virtualbox

As you can see, one of the labels is with the value .

Continuous Delivery and Deployment with Docker Containers

[92]

Let's add the same label to the second node:

docker node update \
 --label-add env=prod-like \
 swarm-test-3

Now that we have a few nodes labeled as production-like, we can create services that will
run only on those servers.

Let's create a service with the image and constrain it to one of the
nodes:

docker service create --name util \
 --constraint 'node.labels.env == prod-like' \
 alpine sleep 10000000

We can list the processes of the service and confirm that it is running on one of the
 nodes:

docker service ps util

The output of the command is as follows (IDs are removed for brevity):

NAME IMAGE NODE DESIRED STATE CURRENT STATE
util.1 alpine swarm-test-2 Running Running about a minute ago

As you can see, the service is running inside the node which is labeled as
.

Continuous Delivery and Deployment with Docker Containers

[93]

That, in itself, does not prove that labels work. After all, two out of three nodes are labeled
as production-like, so there was a 66% chance that the service would run on one of them if
labels did not work. So, let's spice it up a bit.

We'll increase the number of instances to six:

docker service scale util=6

Let us take a look at the processes:

docker service ps util

The output is as follows (IDs are removed for brevity):

NAME IMAGE NODE DESIRED STATE CURRENT STATE
util.1 alpine swarm-test-2 Running Running 15 minutes ago
util.2 alpine swarm-test-2 Running Running 21 seconds ago
util.3 alpine swarm-test-3 Running Running 21 seconds ago
util.4 alpine swarm-test-3 Running Running 21 seconds ago
util.5 alpine swarm-test-2 Running Running 21 seconds ago
util.6 alpine swarm-test-3 Running Running 21 seconds ago

As you can see, all six instances are running on nodes labeled (nodes
 and).

We can observe a similar result if we would run the service in the global mode:

docker service create --name util-2 \
 --mode global \
 --constraint 'node.labels.env == prod-like' \
 alpine sleep 1000000000

Let's take a look at the processes:

docker service ps util-2

The output is as follows (IDs are removed for brevity):

NAME IMAGE NODE DESIRED STATE CURRENT STATE
util-2... alpine:latest swarm-test-3 Running Running 3 seconds ago
util-2... alpine:latest swarm-test-2 Running Running 2 seconds ago

Since we told Docker that we want the service to be global, the desired state is on
all nodes. However, since we specified the constraint ,
replicas are running only on the nodes that match it. In other words, the service is running
only on nodes and . If we would add the label to the node

, Swarm would run the service on that node as well.

Continuous Delivery and Deployment with Docker Containers

[94]

Before we move on, let's remove the services:

docker service rm util util-2

Now that we know how to constrain services to particular nodes, we must create a service
before proceeding with the Continuous Delivery steps.

Creating services
Before we continue exploring the Continuous Delivery steps, we should discuss a
deployment change introduced with Docker Swarm. We thought that each release means a
new deployment. That is not true with Docker Swarm. Instead of deploying each release,
we are now updating services. After building Docker images, all we have to do is update
the service that is already running. In most cases, all there is to do is to run the

 command. The service already
has all the information it needs and all we have to do is to change the image to the new
release.

For service update to work, we need to have a service. We need to create it and make sure
that it has all the information it needs. In other words, we create a service once and update
it with each release. That greatly simplifies the release process.

Since a service is created only once, the Return On Investment (ROI) is too low for us to
automate this step. Remember, we want to automate processes that are done many times.
Things that are done once and never again are not worth automating. One of those things is
the creation of services. We are still running all the commands manually so consider this as
a note for the next chapter that will automate the whole process.

Let us create the services that form the go-demo application. We'll need the , the
 service, and the accompanying database. As before, we'll have to create the

and the networks. Since we already did that a couple of times, we'll run all the
commands through the (

)
script. It creates the services in almost the same way as before. The only difference is that it
uses the label to restrict services only to the nodes that should be utilized for
production-like deployments.

scripts/dm-test-swarm-services.sh

eval $(docker-machine env swarm-test-1)

docker service ls

Continuous Delivery and Deployment with Docker Containers

[95]

The output of the command is as follows (IDs are removed for brevity):

NAME MODE REPLICAS IMAGE
proxy replicated 2/2 vfarcic/docker-flow-proxy:latest
go-demo replicated 2/2 vfarcic/go-demo:1.0
go-demo-db replicated 1/1 mongo:3.2.10
registry replicated 1/1 registry:2.5.0

Please note that the proxy reconfiguration port was set to on the localhost. We had to
differentiate it from the port that we'll use when running the service in the
staging environment.

On one hand, we want the services in the production-like cluster to resemble those in the
production cluster. On the other hand, we do not want to waste resources in replication of
the full production environment. For that reason, we are running two instances (replicas) of
the and services. Running only one would deviate too much from the idea
that services should be scaled in production. Two of each gives us the ability to test that
scaled services work as expected. Even if we run many more instances in production, two is
just enough to replicate scaled behavior. Since we still did not manage to set up database
replication, MongoDB is, for now, running as only one instance.

We can confirm that all services were indeed created and integrated successfully by sending
a request to :

curl -i "$(docker-machine ip swarm-test-1)/demo/hello"

Continuous Delivery and Deployment with Docker Containers

[96]

We'll also create the same services in the production cluster. The only difference will be in
the number of replicas (we'll have more) and that we won't constrain them. Since there is no
significant difference from what we did before, we'll use

 (
) script to speed up the process:

scripts/dm-swarm-services.sh

eval $(docker-machine env swarm-1)

docker service ls

The output of the is as follows (IDs are removed for brevity):

NAME MODE REPLICAS IMAGE
go-demo-db replicated 1/1 mongo:3.2.10
go-demo replicated 3/3 vfarcic/go-demo:1.0
registry replicated 1/1 registry:2.5.0
proxy replicated 3/3 vfarcic/docker-flow-proxy:latest

Now that we have the services created in both clusters, we can start working on the
Continuous Delivery steps.

Continuous Delivery and Deployment with Docker Containers

[97]

Walking through Continuous Delivery steps
We already know all the steps required for the Continuous Delivery process. We did each of
them at least once. We got introduced to some of them in the , Continuous
Integration with Docker Containers. After all, Continuous Delivery is Continuous Integration
"extended". It's what Continuous Integration would be if it would have a clear objective.

We ran the rest of the steps throughout the chapters that lead to this point. We know how to
create, and, more importantly, update a service inside a Swarm cluster. Therefore, I won't
go into many details. Consider this sub-chapter a refreshment of everything we did by now.

We'll start by checking out the code of a service we want to move through the CD flow:

git clone https://github.com/vfarcic/go-demo.git

cd go-demo

Next, we should run the tests and compile the service binary:

eval $(docker-machine env swarm-test-1)

docker-compose \
 -f docker-compose-test-local.yml \
 run --rm unit

Continuous Delivery and Deployment with Docker Containers

[98]

Please note that we used the node. Even though it belongs to the Swarm
cluster, we used it in the "traditional" mode.

With the binary compiled, we can build Docker images:

docker-compose \
 -f docker-compose-test-local.yml \
 build app

With the image built, we can run dependencies, functional tests, and tear-down
everything once we're done:

docker-compose \
 -f docker-compose-test-local.yml \
 up -d staging-dep

docker-compose \
 -f docker-compose-test-local.yml \
 run --rm staging

docker-compose \
 -f docker-compose-test-local.yml \
 down

Continuous Delivery and Deployment with Docker Containers

[99]

Now that we are confident that the new release is likely to work as expected, we can push
the result to the registry:

docker tag go-demo localhost:5000/go-demo:1.1

docker push localhost:5000/go-demo:1.1

We ran the unit tests, built the binary, built the images, ran functional tests, and pushed the
images to the registry. The release is very likely to work as expected. However, the only
true validation is whether the release works correctly in production. There is no more
reliable or worthy criteria than that. On the other hand, we want to reach production with
as much confidence as we can. We'll balance those two needs by using the
cluster that is as close to production as we can reasonably get.

Right now, the service is running the release 1.0 inside the cluster.
We can confirm that by observing the output of the command:

docker service ps go-demo -f desired-state=running

The output is as follows (IDs are removed for brevity):

NAME IMAGE NODE DESIRED STATE
go-demo.1 vfarcic/go-demo:1.0 swarm-test-2 Running
go-demo.2 vfarcic/go-demo:1.0 swarm-test-3 Running

CURRENT STATE
Running about an hour ago
Running about an hour ago

Continuous Delivery and Deployment with Docker Containers

[100]

Let's update the currently running release to the version we just built that is 1.1:

docker service update \
 --image=localhost:5000/go-demo:1.1 \
 go-demo

docker service ps go-demo -f desired-state=running

Please note that the service was initially created with the argument.
That means that each update will last for five seconds on each replica set (plus a few
moments to pull the image and initialize containers).

After a few moments (approximately 6 seconds), the output of the command
should be as follows (IDs are removed for brevity):

NAME IMAGE NODE DESIRED STATE
go-demo.1 localhost:5000/go-demo:1.1 swarm-test-3 Running
go-demo.2 localhost:5000/go-demo:1.1 swarm-test-2 Running

CURRENT STATE ERROR PORTS
Running 8 seconds ago
Running 2 seconds ago

If the output on your laptop is different, please wait for a few moments and repeat the
 command.

As you can see, the image changed to indicating that the
new release is indeed up and running.

Please note that, since the service was created with the
 argument, new releases are still running only in the

nodes marked as . That shows one of the big advantages Docker Swarm
provides. We create a service with all the arguments that define its complete behavior. From
there on, all we have to do is update the image with each release. Things will get more
complicated later on when we start scaling and doing a few other operations. However, the
logic is still essentially the same. Most of the arguments we need are defined only once
through the service creation command.

Continuous Delivery and Deployment with Docker Containers

[101]

Now we are ready to run some production tests. We are still not confident enough to run
them against the production environment. First, we want to see whether they will pass
when executed against the production-like cluster.

We'll run production tests like other types we've already run. Our Docker client is still
pointing to the node so anything we run with Docker Compose will
continue being executed inside that server.

Let's take a quick look the definition of the production service inside the
 (

) file:

production:
 extends:
 service: unit
 environment:
 - HOST_IP=${HOST_IP}
 network_mode: host
 command: bash -c "go get -d -v -t && go test --tags integration -v"

The service the service. That means that it inherits all the
properties of the service, allowing us to avoid repeating ourselves.

Further on, we are adding the environment variable The tests we are about to
run will use that variable to deduce the address of the service under test .

Continuous Delivery and Deployment with Docker Containers

[102]

Finally, we are overwriting the command used in the service. The new command
downloads go dependencies and executes all the tests tagged as
integration .

Let's see whether the service indeed works inside the cluster:

export HOST_IP=localhost

docker-compose \
 -f docker-compose-test-local.yml \
 run --rm production

We specified that the IP of the service under test is localhost. Since the node where tests are
running belongs to the cluster, the ingress network will forward the request
to the service which, in turn, will forward it to the service.

The last lines of the output are as follows:

PASS
ok _/usr/src/myapp 0.019s

All integration tests passed, and the whole operation took less than 0.2 seconds.

Continuous Delivery and Deployment with Docker Containers

[103]

From now on, we should be fairly confident that the release is ready for production. We ran
the pre-deployment unit tests, built the images, ran staging tests, updated the production-
like cluster, and ran a set of integration tests.

Our Continuous Delivery steps are officially done. The release is ready and waiting for
someone to make a decision to update the service running in production. In other words, at
this point, the Continuous Delivery is finished, and we would be waiting for someone to
press the button to update the service in the production cluster.

There is no reason to stop now. We have all the knowledge we would need to convert this
process from Continuous Delivery to Continuous Deployment. All we have to do is repeat
the last few commands inside the production cluster.

Walking the extra mile from Continuous
Delivery to Continuous Deployment
If we do have a comprehensive set of tests that give us confidence that each commit to the
code repository is working as expected and if there is a repeatable and reliable Deployment
process, there is no real reason for not taking that extra mile and automatically deploying
each release to production.

You might choose not to do Continuous Deployment. Maybe your process requires us to
cherry pick features. Maybe our marketing department does not want new features to be
available before their campaign starts. There are plenty of reasons why one would choose to
stop at Continuous Delivery. Nevertheless, from the technical perspective, the process is the
same. The only difference is that Continuous Delivery requires us to press the button that
deploys the selected release to production while Continuous Deployment does the
deployment as part of the same automated flow. In other words, the steps we are about to
run are the same, with or without a button in between.

This will probably be the shortest sub-chapter in the book. We are only a few commands
short of converting the Continuous Delivery process into Continuous Deployment. We need
to update the service in the production cluster (swarm) and go back to the
node and execute another round of tests.

Continuous Delivery and Deployment with Docker Containers

[104]

Since we already did all that, there is no strong reason to go into details. We'll just do it:

eval $(docker-machine env swarm-1)

docker service update \
 --image=localhost:5000/go-demo:1.1 \
 go-demo

Now that the service is updated inside the production cluster, we can execute the last round
of tests:

eval $(docker-machine env swarm-test-1)

export HOST_IP=$(docker-machine ip swarm-1)

docker-compose \
 -f docker-compose-test-local.yml \
 run --rm production

Continuous Delivery and Deployment with Docker Containers

[105]

We updated the release running inside the production cluster and ran another round of
integration tests. Nothing failed, indicating that the new release is, indeed, running in
production correctly.

What now?
Are we done with Continuous Deployment? The answer is no. We did not create the
automated Continuous Deployment flow, but defined the steps that will help us run the
process automatically. For the process to be fully automated and executed on each commit,
we need to use one of the CD tools.

We'll use Jenkins to transform manual steps into a fully automated Continuous Deployment
flow. For the whole process to work, we'll need to set up Jenkins master, a few agents, and a
deployment pipeline job.

Now is the time to take a break before diving into the next chapter. As before, we'll destroy
the machines we created and start fresh:

docker-machine rm -f \
 swarm-1 swarm-2 swarm-3 \
 swarm-test-1 swarm-test-2 swarm-test-3

66
Automating Continuous

Deployment Flow with Jenkins
 The most powerful tool we have as developers is automation.

-Scott Hanselman

We already have all the commands required for a fully automated Continuous Deployment
flow. Now we need a tool that will monitor changes in our code repository and trigger
those commands every time a commit is detected.

There is a plethora of CI/CD tools on the market. We'll choose Jenkins. That does not mean
that it is the only choice nor that it is the best one for all use cases. I won't compare different
tools nor provide more details behind the decision to use Jenkins. That would require a
chapter on its own or even a whole book. Instead, we'll start by discussing Jenkins
architecture.

Jenkins architecture
Jenkins is a monolithic application based on a combination of a master and agents.

Jenkins master can be described as an orchestrator. It monitors sources, triggers jobs when
predefined conditions are met, stores logs and artifacts, and performs a myriad of other
tasks related to CI/CD orchestration. It does not run actual tasks but makes sure that they
are executed.

Jenkins agent, on the other hand, does the actual work. When master triggers a job
execution, the actual work is performed by an agent.

Automating Continuous Deployment Flow with Jenkins

[107]

We cannot scale Jenkins master. At least not in the same way as we scaled the
service. We can create multiple Jenkins masters, but they cannot share the same file
systems. Since Jenkins uses files to store its state, creating multiple instances would result in
completely separate applications. Since the main reasons behind scaling are fault tolerance
and performance benefits, none of those goals would be accomplished by scaling Jenkins
master.

If Jenkins cannot be scaled, how do we meet performance requirements? We increase the
capacity by adding agents. A single master can handle many agents. In most cases, an agent
is a whole server (physical or virtual). It is not uncommon for a single master to have tens or
even hundreds of agents (servers). In turn, each of those agents runs multiple executors that
run tasks.

Traditionally, Jenkins master and agents would run on a dedicated server. That, in itself,
poses a few problems. If Jenkins is running on a dedicated server, what happens when it
fails? Remember, everything fails sooner or later.

For many organizations, Jenkins is mission critical. If it's not operational, new releases are
not made, scheduled tasks are not run, software is not deployed, and so on. Typically,
Jenkins failure would be fixed by moving the software together with the files that form its
state to a healthy server. If that is done manually, and it usually is, the downtime can be
substantial.

Throughout this chapter, we'll leverage the knowledge we obtained by now and try to make
Jenkins fault tolerant. We might not be able to accomplish zero-downtime but, at least, we'll
do our best to reduce it as much as possible. We'll also explore ways to apply what we
learned to create a master and Jenkins agents in (almost) fully automated way. We'll try to
make the master fault tolerant and agents scalable and dynamic.

Enough talk! Let's move towards more practical parts of the chapter.

Production environment setup
We'll start by recreating the production cluster we used in the previous chapters.

Automating Continuous Deployment Flow with Jenkins

[108]

All the commands from this chapter are available in the (
) Gist:

cd cloud-provisioning

git pull

scripts/dm-swarm.sh

We entered the repository we cloned earlier and pulled the latest
code. Then we executed the (

) script that created the production
cluster. It is the same script we used in the previous chapter.

Let's confirm that the cluster was indeed created correctly:

eval $(docker-machine env swarm-1)

docker node ls

The output of the command is as follows (IDs are removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
swarm-2 Ready Active Reachable
swarm-1 Ready Active Leader
swarm-3 Ready Active Reachable

Now that the production cluster is up and running, we can create the Jenkins service.

Jenkins service
Traditionally, we would run Jenkins in its own server. Even if we'd choose to share server's
resources with other applications, the Deployment would still be static. We'd run a Jenkins
instance (with or without Docker) and hope that it never fails. The problem with this
approach is in the fact that every application fails sooner or later. Either the process will
stop, or the whole node will die. Either way, Jenkins, like any other application, will stop
working at some moment.

Automating Continuous Deployment Flow with Jenkins

[109]

The problem is that Jenkins has become a critical application in many organizations. If we
move the execution or, to be more precise, triggering of all automation into Jenkins, we
create a strong dependency. If Jenkins is not running, our code is not built, it is not tested,
and it is not deployed. Sure, when it fails, you can bring it up again. If the server on which it
is running stops working, you can deploy it somewhere else. The downtime, assuming it
happens during working hours, will not be long. An hour, maybe two, or even more time
will pass since the moment it stops working, someone finds out, notifies someone else, that
someone restarts the application or provisions a new server. Is that a long time? It depends
on the size of your organization. The more people depend on something, the bigger the cost
when that something doesn't work. Even if such a downtime and the cost it produces is not
critical, we already have all the knowledge and the tools to avoid it. All we have to do is
create another service and let Swarm take care of the rest.

A note to Windows users
Git Bash has a habit of altering file system paths. To stop this, execute the
following before running the code block:

Let's create a Jenkins service. Run the following commands from within the
 directory:

mkdir -p docker/jenkins

docker service create --name jenkins \
 -p 8082:8080 \
 -p 50000:50000 \
 -e JENKINS_OPTS="--prefix=/jenkins" \
 --mount "type=bind,source=$PWD/docker/jenkins,target=/var/ \
 jenkins_home"--reserve-memory 300m \
 jenkins:2.7.4-alpine

docker service ps jenkins

A note to Linux (example: Ubuntu) users
Docker Machine mounts users directory from the host inside the VMs it
creates. That allows us to share the files. However, that feature does not
work in Docker Machine running on Linux. The easiest workaround is, for
now, to remove the argument. Later on, when we reach
persistent storage, you'll see how to mount volumes more effectively.
The good news is that the problem will be fixed soon. Please see the issue
#1376 () for the
discussion. Once the pull request #2122 (

) is merged, you will be able to use automatic mounting
on Linux.

Automating Continuous Deployment Flow with Jenkins

[110]

Jenkins stores its state in the file system. Therefore, we started by creating a directory
on the host. It will be used as Jenkins home. Since we are inside one of the subdirectories of
our host's user, the directory is mounted on all the machines we created.

Next, we created the service. It exposes the internal port as as well as the port
. The first one is used to access Jenkins UI and the second for master/agent

communication. We also defined the URL prefix and mounted the
home directory. Finally, we reserved of memory.

Once the image is downloaded, the output of the command is as follows (IDs
are removed for brevity):

NAME IMAGE NODE DESIRED STATE CURRENT STATE
jenkins.1 jenkins:2.7.4-alpine swarm-1 Running Running 52 seconds ago

Jenkins 2 changed the setup process. While the previous versions allowed us to run it
without any mandatory configuration, the new Jenkins forces us to go through some steps
manually. Unfortunately, at the time of this writing, there is no good API to help us
automate the process. While there are some tricks we could use, the benefits are not high
enough when compared with the additional complexity they introduce. After all, we'll
setup Jenkins only once, so there is no big incentive to automate the process (at least until a
configuration API is created).

Let's open the UI:

open "http://$(docker-machine ip swarm-1):8082/jenkins"

Automating Continuous Deployment Flow with Jenkins

[111]

A note to Windows users
Git Bash might not be able to use the open command. If that's the case,
execute to find out the IP of the
machine and open the URL directly in your browser of choice. For
example, the command above should be replaced with the command that
follows:

If the output would be , you should open

 in your browser.

The first thing you will notice is that you are required to introduce the Administrator
password. Quite a few enterprise users requested security hardening. As a result, Jenkins
cannot be accessed, anymore, without initializing a session. If you are new to Jenkins, or, at
least, version 2, you might wonder what the password is. It is output to logs (in our case

) as well as to the file , which will be removed at
the end of the setup process.

Let's see the content of the file:

cat docker/jenkins/secrets/initialAdminPassword

The output will be a string that represents the temporary password. Please copy it, go
back to the UI, paste it to the Administrator password field, and click the Continue button:

Automating Continuous Deployment Flow with Jenkins

[112]

Once you unlock Jenkins, you will be presented with a choice to Install suggested plugins
or select those that fit your needs. The recommended plugins fit most commonly used
scenarios so we'll go with that option.

Please click the Install suggested plugins button.

Once the plugins are downloaded and installed, we are presented with a screen that allows
us to Create the first admin user. Please use as both the Username and the Password.
Fill free to fill the rest of the fields with any value. Once you're done, click the

 button:

Jenkins is ready. All that's left, for now, is to click the button.

Now we can test whether Jenkins failover works.

Jenkins failover
Let's stop the service and observe Swarm in action. To do that, we need to find out the node
it is running in, point our Docker client to it, and remove the container:

NODE=$(docker service ps \
 -f desired-state=running jenkins \
 | tail -n +2 | awk '{print $4}')

eval $(docker-machine env $NODE)

docker rm -f $(docker ps -qa \
 -f label=com.docker.swarm.service.name=jenkins)

Automating Continuous Deployment Flow with Jenkins

[113]

We listed Jenkins processes and applied the filter that will return only the one with the
desired state running . The
output was piped to the tail command that removed the header and, later on,
piped again to the command that limited the output to the fourth column

 that contains the node the process is running in. The final result was stored
in the variable.

Later on, we used the eval command to create environment variables that will be used by
our Docker client to operate the remote engine. Finally, we retrieved the image ID and
removed the container with the combination of the and commands.

As we already learned in the previous chapters, if a container fails, Swarm will run it again
somewhere inside the cluster. When we created the service, we told Swarm that the desired
state is to have one instance running and Swarm is doing its best to make sure our
expectations are fulfilled.

Let us confirm that the service is, indeed, running:

docker service ps jenkins

If Swarm decided to re-run Jenkins on a different node, it might take a few moments until
the image is pulled. After a while, the output of the command should be as
follows:

We can do a final confirmation by reopening the the UI:

open "http://$(docker-machine ip swarm-1):8082/jenkins"

A note to Windows users
Git Bash might not be able to use the open command. If that's the case,
execute to find out the IP of the
machine and open the URL directly in your browser of choice. For
example, the command above should be replaced with the command that
follows:

If the output would be , you should open
 in your browser.

Automating Continuous Deployment Flow with Jenkins

[114]

Since Jenkins does not allow unauthenticated users, you'll have to login. Please use
as both the User and the Password.

You'll notice that, this time, we did not have to repeat the setup process. Even though a
fresh new Jenkins image is run on a different node, the state is still preserved thanks to the
host directory we mounted.

We managed to make Jenkins fault tolerant, but we did not manage to make it run without
any downtime. Due to its architecture, Jenkins master cannot be scaled. As a result, when
we simulated a failure by removing the container, there was no second instance to absorb
the traffic. Even though Swarm re-scheduled it on a different node, there was some
downtime. During a short period, the service was not accessible. While that is not a perfect
situation, we managed to reduce downtime to a minimum. We made it fault tolerant, but
could not make it run without downtime. Considering its architecture, we did the best we
could.

Now is the time to hook up Jenkins agents that will run our Continuous Deployment flow.

Jenkins agent
There are quite a few ways to run Jenkins agents. The problem with most of them is that
they force us to add agents separately through Jenkins UI. Instead of adding agents one by
one, we'll try to leverage Docker Swarms ability to scale services.

One way we can accomplish the quest for making scalable agents is the Jenkins Swarm
Plugin (). Before you
start making wrong conclusions, I must state that this plugin has nothing to do with Docker
Swarm. The only thing they share is the word Swarm.

The Jenkins Swarm Plugin (
) allows us to auto-discover nearby masters and join them automatically. We'll use it

only for the second feature. We'll create a Docker Swarm service that will act as a Jenkins
agent and join the master automatically.

First things first. We need to install the plugin.

Please open the Plugin Manager screen as shown in the following code:

open "http://$(docker-machine ip
swarm-1):8082/jenkins/pluginManager/available"

Automating Continuous Deployment Flow with Jenkins

[115]

A note to Windows users
Git Bash might not be able to use the open command. If that's the case,
execute to find out the IP of the
machine and open the URL directly in your browser of choice. For
example, the command above should be replaced with the command that
follows:

If the output would be , you should open
 in your

browser.

Next, we need to search for the Self-Organizing Swarm Plug-in Modules plugin. The easiest
way to do that is by typing the plugin name inside the Filter field located in the top-right
corner of the screen. Once you locate the plugin, please select it and click the

 button.

Now that the plugin is installed, we can set up our second cluster that will consist of three
nodes. As before, we'll call it . We'll use the script

 (
) to run all the commands required to create the machines and join

them into the cluster.

scripts/dm-test-swarm-2.sh

eval $(docker-machine env swarm-test-1)

docker node ls

The output of the command is as follows (IDs are removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
swarm-test-2 Ready Active Reachable
swarm-test-1 Ready Active Leader
swarm-test-3 Ready Active Reachable

Automating Continuous Deployment Flow with Jenkins

[116]

The only significant difference between the script we just ran and the one we used before
 is that this one adds a few labels. The first node is labeled

, while the other two are labeled . The reason behind those labels is that
we're trying to differentiate nodes that will be used to run tasks like building and testing

 from those that will be used to run services in the environment that
simulate production .

Let's inspect the node:

eval $(docker-machine env swarm-test-1)

docker node inspect swarm-test-1 --pretty

The output is as follows:

ID: 3rznbsuvvkw4wf7f4qa32cla3
Labels:
 - env = jenkins-agent
Hostname: swarm-test-1
Joined at: 2017-01-22 08:30:26.757026595 +0000 utc
Status:
 State: Ready
 Availability: Active
Manager Status:
 Address: 192.168.99.103:2377
 Raft Status: Reachable
 Leader: Yes
Platform:
 Operating System: linux
 Architecture: x86_64
Resources:
 CPUs: 1
 Memory: 492.5 MiB
Plugins:
 Network: bridge, host, null, overlay
 Volume: local
Engine Version: 1.13.0
Engine Labels:
 - provider = virtualbox

Automating Continuous Deployment Flow with Jenkins

[117]

As you can see, this node has the label with the key and the value . If
you inspect the other two nodes, you will see that they are also labeled but, this time, with
the value :

Now that the cluster is set up, we are ready to create the Jenkins agent service.
However, before we do that, let's take a quick look at the definition of the image we are
going to use. The (

) is as follows:

FROM docker:1.12.1

MAINTAINER Viktor Farcic <viktor@farcic.com>

ENV SWARM_CLIENT_VERSION 2.2
ENV DOCKER_COMPOSE_VERSION 1.8.0
ENV COMMAND_OPTIONS ""

RUN adduser -G root -D jenkins
RUN apk --update add openjdk8-jre python py-pip git

RUN wget -q
https://repo.jenkins-ci.org/releases/org/jenkins-ci/plugins/swarm-client/ \
${SWARM_CLIENT_VERSION}/swarm-client-${SWARM_CLIENT_VERSION}-jar-with- \
dependencies.jar -P /home/jenkins/
RUN pip install docker-compose

COPY run.sh /run.sh
RUN chmod +x /run.sh

CMD ["/run.sh"]

Automating Continuous Deployment Flow with Jenkins

[118]

It uses as the base image followed by a few environment variables that define
versions of the software that will be installed. Since Jenkins runs as a , we
added it as well. That is followed by the installation of OpenJDK, Python, and pip. JDK is
required for the Jenkins Swarm client and the rest for Docker Compose. With all the
prerequisites set, we download the Swarm JAR and use pip to install Docker Compose.

Finally, we copy the (
) script, set its permissions to execute, and define the runtime

command to run it. The script uses Java to run the Jenkins Swarm client.

Before we proceed with the Jenkins agents service, we'll need to create the
directory in each of the hosts where the agents will run. At the moment, that is only the

 node. Soon you'll see why we need this directory:

docker-machine ssh swarm-test-1

sudo mkdir /workspace && sudo chmod 777 /workspace && exit

We entered the node , created the directory, gave it full permissions, and
exited the machine.

Equipped with the understanding of the image (or, at
least, what it contains), we can move on and create the service:

A note to Windows users
For mounts used in the next command to work, you have to stop Git Bash
from altering file system paths. Set this environment variable as follows:

export USER=admin

export PASSWORD=admin

docker service create --name jenkins-agent \
 -e COMMAND_OPTIONS="-master \
 http://$(docker-machine ip swarm-1):8082/jenkins \
 -username $USER -password $PASSWORD \
 -labels 'docker' -executors 5" \
 --mode global \
 --constraint 'node.labels.env == jenkins-agent' \
 --mount \
 "type=bind,source=/var/run/docker.sock,target=/var/run/docker.sock" \
 --mount \
 "type=bind,source=$HOME/.docker/machine/machines,target=/machines" \
 --mount "type=bind,source=/workspace,target=/workspace" \
 vfarcic/jenkins-swarm-agent

Automating Continuous Deployment Flow with Jenkins

[119]

The command is, this time, a bit longer than what we're used to. The
 environment variable contains all the information the agent needs to

connect to the master. We specified the address of the
, defined the and

 , labeled the agent
, and set the number of executors .

Further on, we declared the service to be global and constrained it to the
nodes. That means that it will run on every node that has the matching label. At the
moment, that is only one server. Soon we'll see the benefits such a setup provides.

We mounted Docker socket. As a result, any command sent to the Docker client running
inside the container will run against Docker Engine on the host (in this case Docker
Machine). As a result, we'll avoid pitfalls that could be created by running

 or . For more information, please read the article Using Docker-in-Docker for
your CI or testing environment? Think twice (

).

We also mounted the host (laptop) directory that contains the keys. That will allow us to
send requests to engines running inside the other cluster. The final mount exposes the host
directory inside the container. All builds running inside Jenkins agents will
use that directory:

Automating Continuous Deployment Flow with Jenkins

[120]

Let's take a look at the service processes:

docker service ps jenkins-agent

As you can see, the service is global, so the desired state is for it to run on every node.
However, since we restricted it to the nodes with the label , containers are
running only inside those that have the matching label. In other words, the service is
running only on nodes.

Let's open the Jenkins screen that displays registered agents:

open "http://$(docker-machine ip swarm-1):8082/jenkins/computer/"

A note to Windows users
Git Bash might not be able to use the open command. If that’s the case,
execute to find out the IP of the
machine and open the URL directly in your browser of choice. For
example, the command above should be replaced with the command that
follows:

If the output would be , you should open
 in your browser.

As you can see, two agents are registered. The master agent is running by default with
every Jenkins instance. On my machine, the agent running as the service is
identified as :

Automating Continuous Deployment Flow with Jenkins

[121]

Since we used labels to restrict the service to the node, at the moment we
have only one agent registered (besides the master that, in most cases, should not be used).

The agent is configured to use five executors. That means that five builds can be executed in
parallel. Please note that, in this case, the number of executors is artificially high. Each
machine has only one CPU. Without any additional information, I would probably set the
number of executors to be the same as the number of CPUs. That would be only the basic
calculation that would change with time. If the tasks we're running through those executors
are CPU demanding, we might lower the number of executors. However, for the purpose of
this exercise, five executors should be OK. We have only one service, so we won't run builds
in parallel.

Let's imagine that this is the real system with more builds running in parallel than the
number of executors. In such a situation, some would be queued waiting for an executor to
finish and free its resources. If this was a temporary case, we wouldn't need to do anything.
The executing builds would end, free the resources, and run the queued builds. However, if
this is a reoccurring situation, the number of queued builds would probably start increasing
and everything would slow down. Since we already established that the speed is the critical
element of Continuous Integration, Delivery, and Deployment processes, when things start
to get in the way, we need to do something. In this case, that something is the increase of
available executors and, consequently, the number of agents.

Let's imagine that we hit the limit and need to increase the number of agents. Knowing how
global Swarm services work, all we have to do is create a new node:

docker-machine create -d virtualbox swarm-test-4

docker-machine ssh swarm-test-4

sudo mkdir /workspace && sudo chmod 777 /workspace && exit

TOKEN=$(docker swarm join-token -q worker)

eval $(docker-machine env swarm-test-4)

docker swarm join \
 --token $TOKEN \
 --advertise-addr $(docker-machine ip swarm-test-4) \
 $(docker-machine ip swarm-test-1):2377

We created the node and, inside it, the directory. Then we got
the token and joined the newly created service to the cluster as a worker.

Automating Continuous Deployment Flow with Jenkins

[122]

Let's confirm that the new node is, indeed, added to the cluster:

eval $(docker-machine env swarm-test-1)

docker node ls

The output of the command is as follows (IDs are removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
swarm-test-3 Ready Active Reachable
swarm-test-2 Ready Active Reachable
swarm-test-1 Ready Active Leader
swarm-test-4 Ready Active

Is the Jenkins agent running inside the newly created node? Let’s take a look:

docker service ps jenkins-agent

The output of the command is as follows (IDs are removed for brevity):

NAME IMAGE NODE
jenkins-agent... vfarcic/jenkins-swarm-agent:latest swarm-test-1
--
DESIRED STATE CURRENT STATE ERROR PORTS
Running Running

Since the node is not labeled as , the agent is not running inside the
 server.

Let's add the label:

docker node update \
 --label-add env=jenkins-agent \
 swarm-test-4

docker service ps jenkins-agent

This time, the output is a bit different (IDs are removed for brevity):

Swarm detected the new label, run the container, and changed the state to running.

Automating Continuous Deployment Flow with Jenkins

[123]

Let's go back to the Jenkins screen that lists the connected agents:

open "http://$(docker-machine ip swarm-1):8082/jenkins/computer"

A note to Windows users
Git Bash might not be able to use the open command. If that's the case,
execute to find out the
IP of the machine and open the URL directly in your browser of choice.
For example, the command above should be replaced with the command
that follows:

If the output would be , you should open
 in your browser.

As you can see, the new agent b76e943ffe6c-d9bf7835 was added to the list:

This was very easy, wasn't it? Usually, we'd need not only to create a new server but also to
run the agent and add it to Jenkins configuration through the UI. By combining Jenkins
Swarm plugin and Docker Swarm global services, we managed to automate most of the steps.
All we have to do is create a new node and add it to the Swarm cluster.

Before we proceed and automate the Continuous Deployment flow through Jenkins, we
should create the services in production and production-like environments.

Automating Continuous Deployment Flow with Jenkins

[124]

Creating services in production and
production-like environments
Since a service is created only once and updated whenever some of its aspects change
(example:new image with the new release), there is no strong incentive to add service
creation to the Continuous Deployment flow. All we'd get is increased complexity without
any tangible benefit. Therefore, we'll create all the services manually and, later on, discuss
how to automate the flow that will be triggered with each new release.

We already created , , , , and services quite
a few times so we'll skip the explanation and run (

) that will recreate the situation we had in the previous chapters:

scripts/dm-swarm-services-2.sh

eval $(docker-machine env swarm-1)

docker service ls

The output of the command is as follows (IDs are removed for brevity):

NAME MODE REPLICAS IMAGE
go-demo replicated 3/3 vfarcic/go-demo:1.0
jenkins replicated 1/1 jenkins:2.7.4-alpine
go-demo-db replicated 1/1 mongo:3.2.10
registry replicated 1/1 registry:2.5.0
proxy replicated 3/3 vfarcic/docker-flow-proxy:latest

All the services are running. The only difference between the script we ran now and the one
we used before (

) is that, this time, we
added to the mix.

Now that the production environment is up and running, let's create the same set of
services inside the cluster. Since this cluster is shared between services
running in the production-like environment as well as Jenkins agents, we'll constrain
services to nodes.

Automating Continuous Deployment Flow with Jenkins

[125]

As with the production cluster, we'll run the services through a script. This time we'll use
 (

):

scripts/dm-test-swarm-services-2.sh

eval $(docker-machine env swarm-test-1)

docker service ls

The output of the command is as follows (IDs are removed for brevity):

NAME MODE REPLICAS IMAGE
jenkins-agent global 2/2 vfarcic/jenkins-swarm-agent:latest
registry replicated 1/1 registry:2.5.0
go-demo replicated 2/2 vfarcic/go-demo:1.0
proxy replicated 2/2 vfarcic/docker-flow-proxy:latest
go-demo-db replicated 1/1 mongo:3.2.10

Now that the services are running in both the production and production-like
environments, we can proceed with the discussion about the approach we'll take for the CD
flow automation with Jenkins.

Automating Continuous Deployment flow
with Jenkins
Jenkins is based on plugins. Almost every feature is a plugin. If we need to use Git, there is
a plugin for it. If we want to use Active Directory for authentication, there is a plugin. You
get the point. Almost everything is a plugin. Moreover, most plugins were created and are
maintained by the community. When we are in doubt how to accomplish something, the
plugins directory () is usually
the first place we start looking.

With more than plugins available, it's no wonder that, given such a huge variety, most
users are compelled to use a plugin for almost any type of task. Jenkins old-timers would
create a Freestyle job that, for example, clones the code and builds the binaries. It would be
followed by another job that would run unit tests, another for running functional tests, and
so on. All those Freestyle jobs would be connected. When the first is finished, it would
invoke the second, the second would call the third, and so on. Freestyle jobs foment heavy
plugins usage.

Automating Continuous Deployment Flow with Jenkins

[126]

We would choose one appropriate for a given task, fill in some fields, and click save. Such
an approach allows us to automate the steps without the need for the knowledge of how
different tools work. Need to execute some Gradle tasks? Just choose the Gradle plugin, fill
in a few fields, and off you go.

Such an approach based on heavy usage of plugins can be disastrous. Understanding
automation and the tools behind it is essential. Moreover, the usage of Freestyle jobs breaks
one of the fundamental principles in our industry. Everything should be stored in a code
repository, be prone to code reviews, versioned, and so on. There is no good reason why
coding practices should not apply to the automation code.

We'll take a different approach.

I am a huge believer that the steps that form a CI/CD Pipeline should be specified outside
the tools like Jenkins. We should be able to define all the commands without CI/CD tools
and, once we’re comfortable that everything works as expected, proceed by translating
those commands to the CI/CD friendly format. In other words, automation comes first, and
CI/CD tools later.

Fortunately, not long ago, Jenkins introduced a new concept called Jenkins Pipeline. Unlike
Freestyle jobs that were defined through Jenkins UI, Pipeline allows us to define CD flow as
code. Since we already have a well-defined set of commands, converting them into Jenkins
Pipeline should be relatively straightforward.

Let's give it a try.

Creating Jenkins Pipeline jobs
We’ll start by defining a few environment variables. The reason behind declaring those
variables is that we want to have a single place where critical information is stored. That
way, when something changes (example:entry point to the cluster) we can modify a
variable or two, and the changes will be propagated throughout all jobs.

Off we go. First, we need to open Jenkins global configuration screen:

open "http://$(docker-machine ip swarm-1):8082/jenkins/configure"

Automating Continuous Deployment Flow with Jenkins

[127]

A note to Windows users:
Git Bash might not be able to use the open command. If that's the case,
execute to find out the IP of the
machine and open the URL directly in your browser of choice. For
example, the command above should be replaced with the command that
follows:

 If the output would be , you
should open in your
browser.

Once inside the configuration screen, please click the Environment variables checkbox
followed with the Add button. You will be presented with the fields Name and Value. The
first variable we'll add will hold the production IP. However, before we type it, we need to
find it out. The routing mesh redirects requests from any node to the destination service or,
to be more precise, to the service that exposes the same port as the request. Therefore, we
can use any server in the production cluster as our entry point.

To get the IP of one of the nodes, we can use the command:

docker-machine ip swarm-1

The result will differ from one case to another. On my laptop, the output is as follows:

192.168.99.107

Please copy the IP and go back to the Jenkins configuration screen. Type as Name
and paste the IP into the Value field. It is worth noting that we just introduced a single
point of failure. If the node fails, all our jobs that use this variable will fail as well.
The good news is that we can fix that quickly by changing the value of this environment
variable. The bad news is that we can do better, but not with Docker machines. If, for
example, we were to use AWS, we'd be able to utilize Elastic IP. However, we have not
reached the AWS chapter yet, so changing the variable is our best option.

Next, we should add another variable that will represent the name of the production node.
We'll see the usage of this variable later. For now, please create a new variable with

 as Name and swarm-1 as value.

Automating Continuous Deployment Flow with Jenkins

[128]

We'll need similar variables for our production-like cluster . Please enter
variables with the IP of the node

 and with the value :

Once done with the Environment variables, please click the Save button.

Now that the environment variables are defined, we can proceed and create a Jenkins
Pipeline job that will automate the execution of the CD steps we practiced.

To create the new job, please click the New Item link located in the left-hand menu. Type
 as the item name, select Pipeline, and click the OK button.

A Jenkins Pipeline definition contains three primary levels; node, stage, and step. We'll
define the go-demo Pipeline code by going through these levels one by one.

Automating Continuous Deployment Flow with Jenkins

[129]

Defining Pipeline nodes
In the Jenkins Pipeline DSL, a node is a step that does two things, typically by enlisting help
from available executors on agents.

A node schedules the steps contained within it by adding them to the Jenkins build queue.
That way, as soon as an executor slot is free on a node, the appropriate steps will be run.

It also creates a workspace, meaning a file directory specific to a particular job, where
resource-intensive processing can occur without negatively impacting your Pipeline
performance. Workspaces created by a node are automatically removed after all the steps
contained inside the node declaration finish executing. It is a best practice to do all material
work, such as building or running shell scripts, within nodes, because node blocks in a
stage tell Jenkins that the steps within them are resource-intensive enough to be scheduled,
request help from the agent pool, and lock a workspace only as long as they need it.

If that definition of the node confuses you, think of it as a location where the steps will run.
It specifies a server (agent) that will execute tasks. That specification can be the name of the
server (generally a bad idea, due to tight coupling of node configuration to agent), or a set
of labels that must match those set inside an agent. If you recall the command we used to
start the Jenkins Swarm agent service, you'll remember that we used as
one of the command options. Since Docker Engine and Compose are the only executables
we need, that was the only label we needed as our node specification.

Please type the following code into the Pipeline script field of the go-demo job
configuration and press the Save button:

node("docker") {
}

We just wrote the first iteration of the Pipeline. Let's run it.

Please click the Build Now button.

Automating Continuous Deployment Flow with Jenkins

[130]

The job started running and displayed the message stating that This Pipeline has run
successfully, but does not define any stages. We'll correct that in a moment. For now, let's
take a look at the logs:

You can access the logs by clicking the icon in the shape of a ball next to the build number
in this case #1. Builds can be accessed from the Build History widget located in the left-hand
side of the screen.

The output is as follows:

Started by user admin
[Pipeline] node
Running on be61529c010a-d9bf7835 in /workspace/go-demo
[Pipeline] {
[Pipeline] }
[Pipeline] // node
[Pipeline] End of Pipeline
Finished: SUCCESS

Automating Continuous Deployment Flow with Jenkins

[131]

Not much happened in this build. Jenkins parsed the node definition and decided to use the
agent (one of the two Jenkins Swarm service instances) and run
the steps inside the directory . The directory structure is simple. All
files generated by a build are located in a directory that matches the job name. In this case,
the directory is .

Since we did not specify any step inside the node, the Pipeline finished executing almost
immediately and the result was a success. Let's spice it up a bit with stages.

Defining Pipeline stages
A stage is a logically distinct part of the execution of any task, with parameters for locking,
ordering, and labeling its part of a process relative to other parts of the same process.
Pipeline syntax is often comprised of stages. Each stage step can have one or more build
steps within it. It is a best practice to work within stages because they help with
organization by lending logical divisions to Pipelines, and because the Jenkins Pipeline
visualization feature displays stages as unique segments of the Pipeline.

What would be the stages of the flow we practiced with manual commands? We could
divide the commands we defined into the following groups:

Pull the latest code from the repository.1.
Run unit tests and build the service and Docker images.2.
Deploy to staging environment and run tests.3.
Tag Docker images and push them to the registry.4.
Use the latest image to update the service running in production-like5.
environment and run tests.
Use the latest image to update the service running in production environment6.
and run tests.

When those groups of tasks are translated into Pipeline stages, the code inside the node is as
follows:

stage("Pull") {
}

stage("Unit") {
}

stage("Staging") {
}

Automating Continuous Deployment Flow with Jenkins

[132]

stage("Publish") {
}

stage("Prod-like") {
}

stage("Production") {
}

We should combine the node we defined earlier with those stages. To be more precise, they
should all be defined inside the node block.

Please replace the existing Pipeline definition by copying and pasting the code from
 (

). You can access the job configuration
by clicking the go-demo link inside breadcrumbs located in the top part of the screen. Once
inside the main job page, please click the Configure button located in the left-hand menu.
Once you are done writing or pasting the new Pipeline definition, save it and re-run the job
by clicking the Build Now button.

We still do not execute any actions. However, this time, the Stage View screen is much
more informative. It displays the stages we defined earlier:

Now we are ready to define the steps that will be executed inside each of the stages.

Automating Continuous Deployment Flow with Jenkins

[133]

Defining Pipeline steps
Before we start writing the steps, I must, briefly, mention that there are a couple of different
approaches people use to define Jenkins jobs. Some prefer to utilize Jenkins plugins to their
maximum. When taken to an extreme, such approach results in every action being executed
through a plugin. Do you need to run some Gradle tasks? There is a Gradle plugin (or two).
Do you need to do something with Docker? There are roughly a dozen Docker plugins.
How about configuration management with Ansible? There is a plugin as well.

I do not think that heavy reliance on plugins is a good thing. I believe that we should be
capable of creating most, if not all the automation without Jenkins. After all, does it even
make sense to use a plugin that would save us from writing a single line of command? I
don't believe it does. That doesn't mean that we should not use plugins. We should, but
only when they bring a real and tangible additional value. An example would be the Git
plugin. It evaluates whether the code should be cloned or pulled. It manages authentication.
It provides a few auto-populated environment variables we can use in conjunction with
other steps.

Should we use the Git plugin always? We shouldn't. Let's say that all we have to do is
perform a simple pull inside an already cloned repository, that we do not need
authentication, and that there will be no usage of some of the pull information in later steps
(example: commit ID). In such a case, the simplest solution possible might be the best
choice. What is the easiest way to pull the code from a Git repository? Most likely that's git

 command executed through Shell.

Only once we know what we're doing and the process is done in a CI/CD tool agnostic way,
we should proceed and tie it all together through Jenkins (or whatever is your tool of
choice). That way we understand the process and have a firm handle on what should be
done, not only from a pure automation perspective, but also as a choice of tools, processes,
and architecture as well. All pieces need to work together in an organic and efficient way. If
we manage to accomplish that, Jenkins acts as glue that ties it all together, and not as a base
we start with.

Let's define the steps required for the first stage. The objective is very simple. Get the code
from the Git repository. To make things slightly more complicated, we might need to clone
or pull the code. The first build will have nothing so we must clone. All consecutive builds
should only perform a pull into the already cloned code. While writing a script that
performs that logic is relatively straightforward, this will be a good case of using a Jenkins
plugin. To be more precise, we'll use Jenkins Pipeline step git that uses one of the Git
plugins in the background.

Automating Continuous Deployment Flow with Jenkins

[134]

The stage stage of the Pipeline is as follows:

stage("Pull") { \
 git "https://github.com/vfarcic/go-demo.git" \
}

The git step is one of the many available through Pipelines Domain Specific Language
(DSL). It clones the code. If that action was already done, the code will be pulled instead.
You can find more information in the Pipeline Steps Reference (

) page.

Please note that in the real world situation we would create a webhook inside the code
repository. It would trigger this job whenever a new commit is made. For now, we'll
simulate a web hook by triggering the job execution manually.

Feel free to replace the existing Pipeline definition by copying and pasting the code from
 (

). Once you're done, please run the job and
observe the build log.

Let's move on.

The code that follows is the translation of the commands we used in the previous chapters
to run unit tests and build a new Docker image:

withEnv([
 "COMPOSE_FILE=docker-compose-test-local.yml"
]) {

 stage("Unit") {
 sh "docker-compose run --rm unit"
 sh "docker-compose build app"
 }

}

We enveloped the whole stage inside the block that defines the
variable. That way, we won't need to repeat the
argument every time we execute . Please note that all the other stages
we'll define soon should also be inside the block.

The steps inside the Unit stage are the same as those we practiced while we run the flow
manually. The only difference is that, this time, we put the commands inside the
step. It's purpose is simple. It runs a shell command.

Automating Continuous Deployment Flow with Jenkins

[135]

We'll skip running the job and proceed to the next stage:

stage("Staging") {
try {
 sh "docker-compose up -d staging-dep"
 sh "docker-compose run --rm staging"
} catch(e) {
 error "Staging failed"
 } finally {
 sh "docker-compose down"
 }
}

The Staging stage is a bit more complex. The commands are inside the
 block. The reasons for such an approach is in the way Jenkins

behaves when something fails. If one of the steps in the previous stage Unit should fail, the
whole Pipeline build would be aborted. That suits us well when there are no additional
actions to perform. However, in the case of the Staging steps, we want to remove all the
dependency containers and free the resources for something else. In other words,

 should be executed no matter the outcome of the Staging tests. If you are a
programmer, you probably already know that the finally statement is always executed
regardless of whether the try statement produced an error or not. In our case, the finally
statement will bring down all the containers that constitute this Docker Compose project.

Off we go to the stage:

stage("Publish") {
 sh "docker tag go-demo \
 localhost:5000/go-demo:2.${env.BUILD_NUMBER}"
 sh "docker push \
 localhost:5000/go-demo:2.${env.BUILD_NUMBER}"
}

There's no mystery around this stage. We are repeating the same commands we executed in
previous chapters. The image is tagged and pushed to the registry.

Please note that we are using to provide a unique release number to the tag.
It is one of Jenkins built-in environment variables that holds the value of the currently
executing build ID.

Automating Continuous Deployment Flow with Jenkins

[136]

The stage will introduce an additional caveat. It is as follows:

stage("Prod-like") {
 withEnv([
 "DOCKER_TLS_VERIFY=1",
 "DOCKER_HOST=tcp://${env.PROD_LIKE_IP}:2376",
 "DOCKER_CERT_PATH=/machines/${env.PROD_LIKE_NAME}"
]) {
 sh "docker service update \
 --image localhost:5000/go-demo:2.${env.BUILD_NUMBER} \
 go-demo"
}
withEnv(["HOST_IP=localhost"]) {
 for (i = 0; i <10; i++) {
 sh "docker-compose run --rm production"
 }
 }
}

Since we are using rolling updates to replace the old with the new release, we have to run
tests throughout the whole process. We could create a script that would verify whether all
instances are updated but I wanted to keep it simple (this time). Instead, we are running the
tests ten times. You might need to tweak it a bit for your needs depending on the average
duration of your tests and the time required to update all instances. For demonstration
purposes, ten rounds of testing in the environment should be enough.

To summarize, in this stage we are updating the service with the new release and running
ten rounds of tests during the update process.

Please note that we declared a few more environment variables. Specifically, we defined all
those required for the Docker client to connect to the Docker Engine running on a remote
host.

We're almost done. Now that the service is tested in the environment,
we can deploy it to the production cluster.

Automating Continuous Deployment Flow with Jenkins

[137]

The stage is almost the same as :

stage("Production") {
 withEnv([
 "DOCKER_TLS_VERIFY=1",
 "DOCKER_HOST=tcp://${env.PROD_IP}:2376",
 "DOCKER_CERT_PATH=/machines/${env.PROD_NAME}"
]) {
 sh "docker service update \
 --image localhost:5000/go-demo:2.${env.BUILD_NUMBER} \
 go-demo"
 }
 withEnv(["HOST_IP=${env.PROD_IP}"]) {
 for (i = 0; i <10; i++) {
 sh "docker-compose run --rm production"
 }
 }
}

The only difference is that, this time, the and variables point to one
of the servers of the production cluster. The rest is the same as the stage.

Feel free to replace the existing Pipeline definition with the code from
. Once you're done, please run the job and observe the build log.

After a short while, the job will finish executing, and the new release will be running in the
production cluster:

Automating Continuous Deployment Flow with Jenkins

[138]

We can confirm that the service update with the new release was indeed successful by
executing the command:

eval $(docker-machine env swarm-1)

docker service ps go-demo

The output of the command is as follows (IDs are removed for brevity):

That's it! We have a full Continuous Deployment Pipeline alive and kicking. If we'd add a
webhook to the GitHub repository that hosts the code, the Pipeline would run every time a
new commit is made. As a result, the new release would be deployed to production unless
one of the steps in the Pipeline fails.

What now?
The ability to use the code to define the steps of a Continuous Deployment flow gives us
more flexibility than we had before with Freestyle jobs. Docker Compose allowed us to run
any type of tasks without the need to set up any special infrastructure. Anything can run as
long as it is inside a container. Finally, Docker Swarm simplified the Deployment to
production-like and production environments considerably.

Automating Continuous Deployment Flow with Jenkins

[139]

We only scratched the surface of using Jenkins Pipeline to automate our Continuous
Deployment flow. There are quite a few improvements we could do. For example, we might
use the Pipeline Shared Groovy Libraries Plugin (

) and move steps, or even whole
stages into functions and reduce code repetition. We could also create a Jenkinsfile (

) that would move the Pipeline
definition from Jenkins into the service repository thus keeping everything related to a
single service in one place. We could, also, run production tests continuously (not only
when making a new release) and ensure that we are notified if a service is not working or if
it does not perform as expected.

We'll leave those and other possible improvements for some other time. While not perfect
nor optimum, the go-demo Pipeline should be good enough for now.

It is the time to take a break before diving into the next chapter. As before, we'll destroy the
machines we created and start fresh:

docker-machine rm -f \
 swarm-1 swarm-2 swarm-3 \
 swarm-test-1 swarm-test-2 \
 swarm-test-3 swarm-test-4

77
Exploring Docker Remote API

You can mass-produce hardware; you cannot mass-produce software - you cannot mass-
produce the human mind.

–Michio Kaku

Up until now, we used Docker through its client. Whenever we needed something, the only
thing we had to do is execute a command (example:). In
most cases, that is enough when we are limiting ourselves to operating our cluster from a
command line.

What happens if we want to accomplish a functionality beyond what the client offers? What
if we'd like to operate Docker from inside our applications? Can we get statistics from all
the containers running on the whole cluster?

One possible answer to those and quite a few other questions lies in the adoption of tools
beyond those offered by Docker Inc. We'll explore quite a few of those in the chapters that
follow.

Another approach would be to use Docker Remote API. After all, if we choose one of the
products of the Docker ecosystem, chances are they will use the API. Docker Compose uses
it to issue commands to Docker engines. Even the client uses it to communicate with the
remote engine. You might find it useful as well.

By default, Docker daemon listens on and the client
must have root access to interact with the daemon. If a group named exists on your
system, Docker applies ownership of the socket to the group. That does not mean that the
socket is the only way to access the API. There are indeed quite a few others, and I
encourage you to experiment with different combinations. For the purpose of this chapter,
we'll stick with the socket since it is the easiest way to send API requests.

Exploring Docker Remote API

[141]

Setting up the environment
As in the previous chapters, we'll start with the creation of a cluster we'll use to experiment.

All the commands from this chapter are available in the (
)

Gist.

Please enter the directory where we pulled the repository. Since I
might have updated it since the last time you used it, we'll issue a pull. Finally, we'll run the
already familiar that will create a new Swarm cluster:

cd cloud-provisioning

git pull

scripts/dm-swarm.sh

The cluster is up and running.

VMs created with Docker Machine are based on Boot2Docker. It is a lightweight Linux
distribution made specifically to run Docker containers. It runs entirely from RAM, is a
small 38 MB download, and boots in ~5s. It is based on Tiny Core Linux (

). What distinguishes it from more popular Linux distributions is its size. It is
stripped down to a bare minimum. This approach serves us well. If we adopt containers,
there is no real need for most of the kernel modules usually seen in distributions like
Ubuntu and RedHat.

This is in line with the minimalistic approach we strive for when working with containers. I
already discussed the reasons for using as the base image we use for our containers.
The main one is its size (only a few MB). After all, why would we ship our containers with
things we don't need? The same can be said for the hosts OS. Less is better, as long as all our
needs are fulfilled.

There is a caveat. Boot2Docker is currently designed and tuned for development. Using it for
any kind of production workloads at this time is highly discouraged. That does not
diminish its value, but makes a clear distinction what it's good for, and what it's not.

The reason behind this short introduction to Boot2Docker and Tiny Core Linux lies in the
next steps. We're about to install a few programs, and we need to know the package
management tool for the distribution we're using. Tiny Core Linux uses .

Exploring Docker Remote API

[142]

In the previous chapters, we executed most of the commands from your OS (MacOS, Linux,
or Windows). This time, we'll run them inside one of the Docker Machine VMs. The reason
lies in () we'll use to format JSON output we'll be
receiving from the API. It is available on most platforms, but I thought it would be better to
avoid possible problems by putting you inside the VM. The second and more important
reason lies in the choice to send requests to the API through the Docker socket that is
available on the machines.

Without further ado, we'll proceed with installations of and :

docker-machine ssh swarm-1

tce-load -wi curl wget

wget https://github.com/stedolan/jq/releases/download/jq-1.5/jq-linux64

sudo mv jq-linux64 /usr/local/bin/jq

sudo chmod +x /usr/local/bin/jq

We entered the machine and used to install and . Since is
not available through , we used to download the binary. Finally, we moved

 to the bin directory and added execute permissions.

Now we're ready to start exploring Docker Remote API.

Operating Docker Swarm through the
Docker Remote API
We won't go through the whole API. The official documentation (

) is well written and provides
enough details. Instead, we'll go through some basic examples focused around Docker
Swarm. We'll see how we can use the API by repeating some of the client commands we
practiced earlier. The goal of this chapter is to get just enough knowledge to be able to use
the API in your applications as well as a glue between different services we'll explore in the
next chapters. Later on, we'll try to leverage this knowledge to create a monitoring system
that stores the information about the cluster in a database and performs some actions.

Let's discuss a very simple example of a possible use case for the API.

Exploring Docker Remote API

[143]

If a node fails, Swarm will make sure that the containers that were running inside it are
rescheduled. However, that does not mean that is enough. We might want to send an email
stating that a node failed. Upon receiving such an email, someone would perform an
investigation of the cause of the failed node and probably take some corrective actions.
Those tasks are not urgent since Swarm mitigated the problem. However, something not
being urgent does not mean that it should not be done.

The chapters that follow will try to make our cluster more robust, and the API will play a
crucial role in that. For now, let's have a brief overview.

We'll start with a simple example. Let's see which nodes form our cluster:

curl \
 --unix-socket /var/run/docker.sock \
 http:/nodes | jq '.'

The output displays three nodes with detailed information for each. Showing all the
information of all the nodes is too much for the book so let's limit the output to one of the
nodes. All we have to do is append the name of the node to the previous command:

curl \
 --unix-socket /var/run/docker.sock \
 http:/nodes/swarm-1 | jq '.'

The output is as follows:

[
 {
 "ID": "2vxiqun3wvh1l1g43utk2v5a7",
 "Version": {
 "Index": 23
 },
 "CreatedAt": "2017-01-23T20:30:00.402618571Z",
 "UpdatedAt": "2017-01-23T20:30:04.026051022Z",
 "Spec": {
 "Labels": {
 "env": "prod"
 },
 "Role": "manager",
 "Availability": "active"
 },
 "Description": {
 "Hostname": "swarm-1",
 "Platform": {
 "Architecture": "x86_64",
 "OS": "linux"
 },

Exploring Docker Remote API

[144]

 "Resources": {
 "NanoCPUs": 1000000000,
 "MemoryBytes": 1044131840
 },
 "Engine": {
 "EngineVersion": "1.13.0",
 "Labels": {
 "provider": "virtualbox"
 },
 "Plugins": [
 {
 "Type": "Network",
 "Name": "bridge"
 },
 {
 "Type": "Network",
 "Name": "host"
 },
 {
 "Type": "Network",
 "Name": "macvlan"
 },
 {
 "Type": "Network",
 "Name": "null"
 },
 {
 "Type": "Network",
 "Name": "overlay"
 },
 {
 "Type": "Volume",
 "Name": "local"
 }
]
 }
 },
 "Status": {
 "State": "ready",
 "Addr": "127.0.0.1"
},
"ManagerStatus": {
 "Leader": true,
 "Reachability": "reachable",
 "Addr": "192.168.99.100:2377"
}
},

Exploring Docker Remote API

[145]

The output, above, is truncated and only includes the "Leader" node. Your output will
contain three sets of nodes that start with . We won't go into details of what each of the
fields means. You should already be familiar with most of them.

Please consult Docker Remote API v1.24: Nodes (
) for more information.

The API is not limited only to queries. We can use it to perform any of the operations
available through the Docker client (and a few more). For example, we can create a new
service:

curl -XPOST \
 -d '{
 "Name": "go-demo-db",
 "TaskTemplate": {
 "ContainerSpec": {
 "Image": "mongo:3.2.10"
 }
 }
}' \
 --unix-socket /var/run/docker.sock \
 http:/services/create | jq '.'

We sent a request to create a service named . The image of the service is
. As a result, the API responded with the service :

{
 "ID": "7157kfo9cp2vhed4bidrc8hfi"
}

Please consult Docker Remote API v1.24: Create a service (
) for more information.

We can confirm that the operation was indeed successful by listing all the services:

curl \
 --unix-socket /var/run/docker.sock \
 http:/services | jq '.'

Exploring Docker Remote API

[146]

The output is as follows:

[
 {
 "ID": "s73ez21cmshwu8okipejehvo0",
 "Version": {
 "Index": 26
 },
 "CreatedAt": "2017-01-23T20:47:27.247329291Z",
 "UpdatedAt": "2017-01-23T20:47:27.247329291Z",
 "Spec": {
 "Name": "go-demo-db",
 "TaskTemplate": {
 "ContainerSpec": {
 "Image":
"mongo:3.2.10@sha256:532a19da83ee0e4e2a2ec6bc4212fc4af26357c040675d5c2\
629a4e4c4563cef"
 },
 "ForceUpdate": 0
 },
 "Mode": {
 "Replicated": {
 "Replicas": 1
 }
 }
 },
 "Endpoint": {
 "Spec": {}
 },
 "UpdateStatus": {
 "StartedAt": "0001-01-01T00:00:00Z",
 "CompletedAt": "0001-01-01T00:00:00Z"
 }
 }
]

We got a list of services (at the moment only one) with some of their properties. We can see
when was the service created, the number of replicas, and so on. Please consult Docker
Remote API v1.24: List services (

) for more information.

Similarly, we can retrieve the information of a single instance:

curl \
 --unix-socket /var/run/docker.sock \
 http:/services/go-demo-db | jq '.'

Exploring Docker Remote API

[147]

The output is almost the same as when we listed all services. The only significant difference
is that, this time, we got a single result, while the list of services returned an array enclosed
in :

{
 "ID": "s73ez21cmshwu8okipejehvo0",
 "Version": {
 "Index": 26
},
 "CreatedAt": "2017-01-23T20:47:27.247329291Z",
 "UpdatedAt": "2017-01-23T20:47:27.247329291Z",
 "Spec": {
 "Name": "go-demo-db",
 "TaskTemplate": {
 "ContainerSpec": {
 "Image":
"mongo:3.2.10@sha256:532a19da83ee0e4e2a2ec6bc4212fc4af26357c040675d5c2
629a4e4c4563cef"
 },
 "ForceUpdate": 0
 },
 "Mode": {
 "Replicated": {
 "Replicas": 1
 }
 }
 },
 "Endpoint": {
 "Spec": {}
 },
 "UpdateStatus": {
 "StartedAt": "0001-01-01T00:00:00Z",
 "CompletedAt": "0001-01-01T00:00:00Z"
 }
}

Please consult Docker Remote API v1.24: Inspect one or more services (

) for more information.

Let's spice it up a bit and scale to three replicas. We can accomplish that by updating the
service. However, before we send an update request, we need the version and ID of the
service. That information is available in the output of the service request we sent a moment
ago. However, since we are trying to do things in a way that is easy to automate, we might
be better off putting those values in environment variables.

We can use to filter the output and return a particular value.

Exploring Docker Remote API

[148]

The command that returns the version of the service is as follows:

VERSION=$(curl \
 --unix-socket /var/run/docker.sock \
 http:/services/go-demo-db | \
 jq '.Version.Index')

echo $VERSION

The output of the variable is as follows:

27

Similarly, we should retrieve the service as well:

ID=$(curl \
 --unix-socket /var/run/docker.sock \
 http:/services/go-demo-db | \
 jq --raw-output '.ID')

echo $ID

The output is as follows:

7157kfo9cp2vhed4bidrc8hfi

Now we have all the information we need to update the service. We'll change the number of
replicas to three:

curl -XPOST \
 -d '{
 "Name": "go-demo-db",
 "TaskTemplate": {
 "ContainerSpec": {
 "Image": "mongo:3.2.10"
 }
 },
 "Mode": {
 "Replicated": {
 "Replicas": 3
 }
 }
}' \
 --unix-socket /var/run/docker.sock \
 http:/services/$ID/update?version=$VERSION

Please consult Docker Remote API v1.24: Update a service (
) for more information.

Exploring Docker Remote API

[149]

Next, we can list the and confirm whether the service was indeed scaled to three
instances:

curl \
 --unix-socket /var/run/docker.sock \
 http:/tasks | jq '.'

The output is as follows:

[
 {
 "ID": "c0nev776zyuoaul51n5w9xc85",
 "Version": {
 "Index": 32
 },
 "CreatedAt": "2017-01-23T20:47:27.255828694Z",
 "UpdatedAt": "2017-01-23T20:47:51.329755266Z",
 "Spec": {
 "ContainerSpec": {
 "Image":
"mongo:3.2.10@sha256:532a19da83ee0e4e2a2ec6bc4212fc4af26357c040675d5c2\
629a4e4c4563cef"
 },
 "ForceUpdate": 0
 },
 "ServiceID": "s73ez21cmshwu8okipejehvo0",
 "Slot": 1,
 "NodeID": "2vxiqun3wvh1l1g43utk2v5a7",
 "Status": {
 "Timestamp": "2017-01-23T20:47:51.295994806Z",
 "State": "running",
 "Message": "started",
 "ContainerStatus": {
 "ContainerID":
"20112c904386733c6748bc186e84255640c9dc279fd3530b771616a1ef767957",
 "PID": 4238
 },
 "PortStatus": {}
 },
 "DesiredState": "running"
 },
 {
 "ID": "ptbp594sh5k2qey6lexafr31d",
 "Version": {
 "Index": 37
 },
 "CreatedAt": "2017-01-23T21:16:55.680872244Z",
 "UpdatedAt": "2017-01-23T21:16:55.960585822Z",

Exploring Docker Remote API

[150]

 "Spec": {
 "ContainerSpec": {
 "Image":
"mongo:3.2.10@sha256:532a19da83ee0e4e2a2ec6bc4212fc4af26357c040675d5c2\
629a4e4c4563cef"
 },
 "ForceUpdate": 0
 },
 "ServiceID": "s73ez21cmshwu8okipejehvo0",
 "Slot": 2,
 "NodeID": "skj5sjemrvnusdop3ovcv6q7h",
 "Status": {
 "Timestamp": "2017-01-23T21:16:55.882919942Z",
 "State": "preparing",
 "Message": "preparing",
 "ContainerStatus": {},
 "PortStatus": {}
 },
 "DesiredState": "running"
},
{
 "ID": "rqa04bpvdcddkeia2x1d6r95r",
 "Version": {
 "Index": 37
 },
 "CreatedAt": "2017-01-23T21:16:55.6812298Z",
 "UpdatedAt": "2017-01-23T21:16:55.960175605Z",
 "Spec": {
 "ContainerSpec": {
 "Image":
"mongo:3.2.10@sha256:532a19da83ee0e4e2a2ec6bc4212fc4af26357c040675d5c2\
629a4e4c4563cef"
 },
 "ForceUpdate": 0
 },
 "ServiceID": "s73ez21cmshwu8okipejehvo0",
 "Slot": 3,
 "NodeID": "lbgy0xih6n0w3nmzih0gnfvhd",
 "Status": {
 "Timestamp": "2017-01-23T21:16:55.881446699Z",
 "State": "preparing",
 "Message": "preparing",
 "ContainerStatus": {},
 "PortStatus": {}
 },
 "DesiredState": "running"
 }
]

Exploring Docker Remote API

[151]

As you can see, three tasks were returned, each representing one replica of the
service.

Please consult Docker Remote API v1.24: List tasks (
) for more information.

All the API requests we made so far were related to nodes and services. In some cases, we
might need to go lower and use the API on a container level. For example, we might want
to get statistics related to a single container.

Before we proceed, please make sure that the state of all the tasks is running. Feel free to
repeat the request to confirm the state. If it's not running, please wait for a
while and check it again.

To get stats of a container, first we need to find out on which node it is running:

exit

eval $(docker-machine env swarm-1)

NODE=$(docker service ps \
 -f desired-state=running \
 go-demo-db \
 | tail -n 1 \
 | awk '{print $4}')

echo $NODE

We exited the machine and used eval to create environment variables that
instructed the Docker client running on our host to use the engine running on .
Please note that those environment variables are telling the client to use the same API we've
been exploring throughout this chapter.

Further on, we retrieved the node where one of the containers forming the
service is running. We already used a similar command a couple of times, so there's no need
explaining it in more detail.

The output of the variable is as follows:

swarm-2

Exploring Docker Remote API

[152]

On my laptop, the container we're looking for is running inside the node. In your
case, it might be a different one.
Now we can enter the node and get the of the container:

docker-machine ssh $NODE

ID=$(docker ps -qa | tail -n 1)

echo $ID

The output of the variable is as follows:

f8f345042cf7

Finally, we are ready to get the statistics. The command is as follows:

curl \
 --unix-socket /var/run/docker.sock \
 http:/containers/$ID/stats

As soon as the request is sent, you will see a constant stream of statistics. Please press CTRL
+ C to stop the stream when you get tired looking at it.

Streaming stats might be a very useful feature if we would like to implement our own
monitoring solution. In many other cases, we might want to disable streaming and retrieve
only a single recordset. We can accomplish that by setting the parameter to .

The command that returns a single stats recordset is as follows:

curl \
 --unix-socket /var/run/docker.sock \
 http:/containers/$ID/stats?stream=false

The output is still too big to be presented in the book, so you have to inspect it from your
screen.

We won't go into details of what each field from stats means. You'll have to wait until we
reach the monitoring chapter for deeper exploration. For now, the important thing to note is
that you can retrieve them for each container inside your cluster.

As an exercise, create a script that retrieves all the containers running on the node. Iterate
through each to get stats of all the containers running inside that VM.

Please consult Docker Remote API v1.24: Get container stats based on resource usage (

) for more information.

Exploring Docker Remote API

[153]

We are almost finished with the exploration of basic API requests related to Swarm services
so let's remove the service we created:

curl -XDELETE \
 --unix-socket /var/run/docker.sock \
 http:/services/go-demo-db

curl \
 --unix-socket /var/run/docker.sock \
 http:/services

We sent the request to remove the service followed with the request to
retrieve all services. The output of the later is as follows:

[]

Our service is no more. We removed it from the cluster and, since that was the only one we
created, the request to retrieve the list of services returned an empty array .

Please consult Docker Remote API v1.24: Remove a service (
) for more information.

Finally, let's get out of the machine:

exit

Now that you have a basic understanding of the API, we can explore one possible use case.

Using Docker Remote API to automate proxy
configuration
Up until now, we were sending reconfigure and remove requests to our proxy. That greatly
simplified the configuration. Instead of changing HAProxy config ourselves, we let the
service reconfigure itself. We used Consul to persist the state of the proxy. Can we improve
the existing design by leveraging Docker Remote API? I think we can.

Instead of sending reconfigure and remove requests, we can have a service that would
monitor the cluster state through the API. Such a tool could detect new and removed
services and send the same request to the like the one we would send manually.

We can go even further. Since the API allows us to retrieve any information related to the
cluster, we don't need to store it in Consul anymore. Whenever a new instance of the service
is created, it can retrieve all the information it needs from the API.

Exploring Docker Remote API

[154]

All in all, we can use the API to fully automate changes to the configuration as well
as its state. We can create a new service that will monitor the cluster state. We can also
modify the to consult that service during its initialization.

I thought to save you some time by taking the liberty to create such a service. The project
behind it is called Docker Flow Swarm Listener (

).

Let's see it in action.

Combining the Swarm listener with the
proxy
The Docker Flow Swarm Listener (

) project leverages Docker Remote API. It has many usages but, for now, we'll limit
ourselves to the features that can help make our proxy configuration fully hands-free.

We'll start by creating two networks:

eval $(docker-machine env swarm-1)

docker network create --driver overlay proxy

docker network create --driver overlay go-demo

We created those two networks so many times that there is no reason to go over their
usefulness. The only difference is that this time, we'll have one more service to attach to the

 network.

Next, we'll create the (
) service. It will act as a companion to the Docker Flow Proxy. Its purpose is to

monitor Swarm services and send requests to the proxy whenever a service is created or
destroyed.

A note to Windows users
Git Bash has a habit of altering file system paths. To stop this, execute the
following:

Exploring Docker Remote API

[155]

Let's create the service:

ocker service create --name swarm-listener \
 --network proxy \
 --mount \
 "type=bind,source=/var/run/docker.sock,target=/var/run/\
 docker.sock" \
-e DF_NOTIF_CREATE_SERVICE_URL=http://proxy:8080/v1/
 docker-flow-proxy/reconfigure \
-e DF_NOTIF_REMOVE_SERVICE_URL=http://proxy:8080/v1/
 docker-flow-proxy/remove \
 --constraint 'node.role==manager' \
 vfarcic/docker-flow-swarm-listener

The service is attached to the network, mounts the Docker socket, and declares the
environment variables and

. We'll see the purpose of those variables soon. The
service is constrained to the manager nodes.

The next step is to create the service:

docker service create --name proxy \
 -p 80:80 \
 -p 443:443 \
 --network proxy \
 -e MODE=swarm \
 -e LISTENER_ADDRESS=swarm-listener \
 vfarcic/docker-flow-proxy

We opened ports 80 and 443. External requests will be routed through them towards
destination services. Please note that this time, we did not open port . Since the
will be receiving notifications from the , there is no need for having
available for manual notifications.

The is attached to the network and has the mode set to swarm. The
must belong to the same network as the listener. They will exchange information whenever
a service is created or removed as well as when a new instance of the is created.

Automatically reconfiguring the proxy
Let's create the already familiar demo services:

docker service create --name go-demo-db \
 --network go-demo \
 mongo:3.2.10

Exploring Docker Remote API

[156]

docker service create --name go-demo \
 -e DB=go-demo-db \
 --network go-demo \
 --network proxy \
 --label com.df.notify=true \
 --label com.df.distribute=true \
 --label com.df.servicePath=/demo \
 --label com.df.port=8080 \
 vfarcic/go-demo:1.0

Please note the labels. We did not have them in the previous chapters. Things changed and
now they are a crucial part of the service definition. The tells the

 service whether to send notifications whenever a service is created or
removed. Since we don't want to add the service to the , the label is
defined only for the service. The rest of the labels match the query arguments we
would use if we'd reconfigure the proxy manually. The only difference is that the labels are
prefixed with . For the list of the query arguments, please see the Reconfigure (

) section of the project.

Now we should wait until all the services are running. You can see their status by executing
the command that follows:

docker service ls

Once all the replicas are set to , we can see the effect of the labels by sending a
request to the service through the :

curl -i "$(docker-machine ip swarm-1)/demo/hello"

The output is as follows:

HTTP/1.1 200 OK
Date: Thu, 13 Oct 2016 18:26:18 GMT
Content-Length: 14
Content-Type: text/plain; charset=utf-8

hello, world!

We sent a request to the (the only service listening to the port) and got back the
response from the service. The was configured automatically as soon as the

 service was created.

Exploring Docker Remote API

[157]

The way the process works is as follows:

Docker Flow Swarm Listener is running inside one of the Swarm manager nodes and queries
Docker API in search of newly created services. Once it finds a new service, it looks for its
labels. If the service contains the label (it can hold any value), the rest of
the labels with keys starting with . are retrieved. All those labels are used to form
request parameters. Those parameters are appended to the address specified as the

 environment variable defined in the
service. Finally, a request is sent. In this particular case, the request was made to
reconfigure the with the service (the name of the service), using as
the path, and running on the port 0. The distribute label is not necessary in this example
since we're running only a single instance of the . However, in production, we should
run at least two instances (for fault tolerance) and the distribute argument means
that reconfiguration should be applied to all.

Please see the Reconfigure (
) section for the list of all the arguments that can be used with the proxy.

Removing a service from the proxy
Since is monitoring services, if a service is removed, related
entries in the configuration will be removed as well:

docker service rm go-demo

If you were to check the Swarm Listener logs in the same way you would check logs for any
other container service, you'd see an entry similar to the one that follows:

Sending service removed notification to http://proxy:8080/v1/
docker-flow-proxy/remove?serviceName=go-demo

A moment later, a new entry would appear in the logs:

Processing request /v1/docker-flow-proxy/remove?serviceName=go-demo
Processing remove request /v1/docker-flow-proxy/remove
Removing go-demo configuration
Removing the go-demo configuration files
Reloading the proxy

From this moment on, the service is not available through the proxy.

Swarm Listener detected that the service was removed, sent a notification to the
which, in turn, changed its configuration and reloaded the underlying HAProxy.

Exploring Docker Remote API

[158]

What now?
Apart from the potential utility of having a proxy that is configured automatically
whenever a service is created or removed, shows how useful it is to
leverage the Docker Remote API. If you have your own needs that are not fully covered
with Docker or one of the tools in its ecosystem, it is relatively easy to write your own
service on top of the API. The truth is that, at the time this chapter was written, the Swarm
Mode is only a couple of months old, and there aren’t many third party tools that can be
used to fine tune or extend its behavior. Even if you find all the tools that do more or less
what you need, it’s still a good idea to write a bit of code yourself and switch from more or
less to exactly what you need.

I encourage you to fire up your favorite editor and write a service in your programming
language of choice. You can monitor services and send yourself an email whenever a
member of your team creates or removes one. Or you can integrate statistics with your
favorite monitoring tool.

If you are out of ideas for your own service and you're not afraid of Go (
), you might try extending Docker Flow Swarm Listener (

). Fork it, add a new feature, and make a pull request.

Remember, learning is golden. If the only outcome is that you learned something, that's
already pretty good. If it turns up to be useful, even better.

We reached the end of the chapter, and you already know the drill. We'll destroy the
machines we created and start anew.

docker-machine rm -f swarm-1 swarm-2 swarm-3

88
Using Docker Stack and

Compose YAML Files to Deploy
Swarm Services

Copy and paste is a design error.
–David Parnas

The most common question I receive during my Docker-related talks and workshops is
usually related to Swarm and Compose.

Someone: How can I use Docker Compose with Docker Swarm?

Me: You can't! You can convert your Compose files into a Bundle that does not support all
Swarm features. If you want to use Swarm to its fullest, be prepared for

 commands that contain a never ending list of arguments.

Such an answer was usually followed with disappointment. Docker Compose showed us
the advantages of specifying everything in a YAML file as opposed to trying to remember
all the arguments we have to pass to docker commands. It allowed us to store service
definitions in a repository thus providing a reproducible and well-documented process for
managing them. Docker Compose replaced bash scripts, and we loved it. Then, Docker
v1.12 came along and put a difficult choice in front of us. Should we adopt Swarm and
discard Compose? Since summer 2016, Swarm and Compose were not in love anymore. It
was a painful divorce.

Using Docker Stack and Compose YAML Files to Deploy Swarm Services

[160]

But, after almost half a year of separation, they are back together, and we can witness their
second honeymoon. Kind of… We do not need Docker Compose binary for Swarm services,
but we can use its YAML files.

Docker Engine v1.13 introduced support for Compose YAML files within the stack
command. At the same time, Docker Compose v1.10 introduced a new version 3 of its format.
Together, they allow us to manage our Swarm services using already familiar Docker
Compose YAML format.

I will assume you are already familiar with Docker Compose and won't go into details of
everything we can do with it. Instead, we'll go through an example of creating a few Swarm
services.

We'll explore how to create Docker Flow Proxy () service
through Docker Compose files and the command.

Swarm cluster setup
To setup an example Swarm cluster using Docker Machine, please run the commands that
follow.

All the commands from this chapter are available in the (
) Gist:

cd cloud-provisioning

git pull

scripts/dm-swarm.sh

Now we're ready to deploy the service.

Using Docker Stack and Compose YAML Files to Deploy Swarm Services

[161]

Creating Swarm services through Docker
stack commands
We'll start by creating a network:

A note to Windows users
You might experience a problem with volumes not being mapped
correctly. If you see an error, please
export the environment variable set
to :

Please make sure that the variable is exported before you run
 or .

eval $(docker-machine env swarm-1)

docker network create --driver overlay proxy

The network will be dedicated to the container and services that will be
attached to it.

We'll use (
) from the

 () repository to create
 services.

The content of the file is as follows:

version: "3"

services:

 proxy:
 image: vfarcic/docker-flow-proxy
 ports:
 - 80:80
 - 443:443
 networks:
 - proxy
 environment:
 - LISTENER_ADDRESS=swarm-listener
 - MODE=swarm
 deploy:
 replicas: 2

Using Docker Stack and Compose YAML Files to Deploy Swarm Services

[162]

 swarm-listener:
 image: vfarcic/docker-flow-swarm-listener
 networks:
 - proxy
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock
 environment:
 - DF_NOTIFY_CREATE_SERVICE_URL=http://proxy:8080/v1/\
docker-flow-proxy/reconfigure
 - DF_NOTIFY_REMOVE_SERVICE_URL=http://proxy:8080/v1/\
docker-flow-proxy/remove
 deploy:
 placement:
 constraints: [node.role == manager]

networks:
 proxy:
 external: true

The format is written in version 3 (mandatory for).

It contains two services; and . Since you are already familiar with
the , I won't go into the meaning of each argument.

When compared with previous Compose versions, most of the new arguments are defined
within deploy. You can think of that section as a placeholder for Swarm-specific arguments.
In this case, we are specifying that the service should have two replicas while the

 service should be constrained to manager roles. Everything else defined
for those two services is using the same format as in earlier Compose versions.

At the bottom of the YAML file is the list of networks which are referenced within services.
If a service does not specify any, the default network will be created automatically. In this
case, we opted for manual creation of a network since services from other stacks should be
able to communicate with the . Therefore, we created a network manually and
defined it as external in the YAML file.

Let's create the stack based on the YAML file we explored:

curl -o docker-compose-stack.yml \
 https://raw.githubusercontent.com/\
vfarcic/docker-flow-proxy/master/docker-compose-stack.yml

docker stack deploy \
 -c docker-compose-stack.yml proxy

Using Docker Stack and Compose YAML Files to Deploy Swarm Services

[163]

The first command downloaded the Compose file (
)

from the (
) repository. The second command created the services that form the stack.

The tasks of the stack can be seen through the command:

docker stack ps proxy

The output is as follows (IDs are removed for brevity):

NAME IMAGE NODE
proxy_proxy.1 vfarcic/docker-flow-proxy:latest node-2
proxy_swarm-listener.1 vfarcic/docker-flow-swarm-listener:latest node-1
proxy_proxy.2 vfarcic/docker-flow-proxy:latest node-3
--
DESIRED STATE CURRENT STATE ERROR PORTS
Running Running 2 minutes ago
Running Running 2 minutes ago
Running Running 2 minutes ago

We are running two replicas of the (for high-availability in the case of a failure) and
one of the .

Deploying more stacks
Let's deploy another stack.

This time we'll use Docker stack defined in the Compose file
 (

) located in the ()
repository. It is as follows:

version: '3'

services:

 main:
 image: vfarcic/go-demo
 environment:
 - DB=db
 networks:
 - proxy
 - default

Using Docker Stack and Compose YAML Files to Deploy Swarm Services

[164]

 deploy:
 replicas: 3
 labels:
 - com.df.notify=true
 - com.df.distribute=true
 - com.df.servicePath=/demo
 - com.df.port=8080

 db:
 image: mongo
 networks:
 - default

networks:
 default:
 external: false
 proxy:
 external: true

The stack defines two services (and). They will communicate with each other
through the default network that will be created automatically by the stack (no need for

 command). Since the main service is an API, it should be
accessible through the , so we're attaching network as well.

The important thing to note is that we used the deploy section to define
arguments. In this case, the main service defines that there should be three replicas and a
few labels. As with the previous stack, we won't go into details of each service. If you'd like
to go into more depth of the labels used with the main service, please visit the Running
Docker Flow Proxy In Swarm Mode With Automatic Reconfiguration (

) tutorial.

Let's deploy the stack:

curl -o docker-compose-go-demo.yml \
 https://raw.githubusercontent.com/\
vfarcic/go-demo/master/docker-compose-stack.yml

docker stack deploy \
 -c docker-compose-go-demo.yml go-demo

docker stack ps go-demo

Using Docker Stack and Compose YAML Files to Deploy Swarm Services

[165]

We downloaded the stack definition, executed command that created the
services and run the command that lists the tasks that belong to the
stack. The output is as follows (IDs and Error ports columns are removed for brevity):

NAME IMAGE NODE DESIRED STATE
go-demo_main.1 vfarcic/go-demo:latest node-2 Running
go-demo_db.1 mongo:latest node-2 Running
go-demo_main.2 vfarcic/go-demo:latest node-2 Running
go-demo_main.3 vfarcic/go-demo:latest node-2 Running
--
CURRENT STATE
Running 7 seconds ago
Running 21 seconds ago
Running 19 seconds ago
Running 20 seconds ago

Since Mongo database is much bigger than the main service, it takes more time to pull it,
resulting in a few failures. The service is designed to fail if it cannot connect to its
database. Once the service is running, the main service should stop failing, and we'll see
three replicas with the current state .

After a few moments, the service will detect the main service from the
 stack and send the a request to reconfigure itself. We can see the result by

sending an HTTP request to the :

curl -i "http://$(docker-machine ip swarm-1)/demo/hello"

The output is as follows:

HTTP/1.1 200 OK
Date: Thu, 19 Jan 2017 23:57:05 GMT
Content-Length: 14
Content-Type: text/plain; charset=utf-8

hello, world!

The was reconfigured and forwards all requests with the base path to the
main service from the stack.

Using Docker Stack and Compose YAML Files to Deploy Swarm Services

[166]

To stack or not to stack
Docker stack is a great addition to the Swarm Mode. We do not have to deal with

 commands that tend to have a never ending list of arguments. With
services specified in Compose YAML files, we can replace those long commands with a
simple . If those YAML files are stored in code repositories, we can
apply the same practices to service deployments as to any other area of software
engineering. We can track changes, do code reviews, share with others, and so on.

The addition of the Docker command and its ability to use Compose files is a very
welcome addition to the Docker ecosystem.

Throughout the rest of the book, we'll use commands when
exploring new services and to create those we are already familiar
with. If you have trouble converting commands into stacks,
please take a look at the (

) repository. It contains the stacks from some of the services we'll
use. I expect you to contribute with the stacks you use. Please fork the repository and make
a pull request. If you have trouble making a stack, please open an issue

Cleanup
Please remove Docker Machine VMs we created. You might need those resources for some
other tasks:

exit

docker-machine rm -f swarm-1 swarm-2 swarm-3

99
Defining Logging Strategy

Most software today is very much like an Egyptian pyramid with millions of bricks piled
on top of each other, with no structural integrity, but just done by brute force and
thousands of slaves.

–Alan Kay

We've reached the point where we have a fully operating Swarm cluster and a defined
Continuous Deployment Pipeline that'll update our services on each commit. Now we can
spend time coding and pushing commits to our repository knowing that the rest of the
process is automated. We can, finally, spend our time on tasks that bring real value to the
organization we're working for. We can dedicate our time to producing new features for the
services we're working on. However, when something goes wrong, we need to stop
churning new features and investigate the problem.

The first thing we tend to do when we detect an issue is to check logs. They are, by no
means, not the only source of data we can use for debugging problem. We'll also need a lot
of metrics (more on that in the next chapter). However, even if logs are not the only thing
we should look at, they are often a good start.

A note to The DevOps 2.0 Toolkit readers
The text that follows is identical to the one published in The DevOps 2.0
Toolkit. If it is still fresh in your mind, feel free to jump to the Setting up
LogStash and ElasticSearch as the logging Database () sub-
chapter. Since I wrote the 2.0, I discovered a few better ways to treat logs,
especially inside a Swarm cluster.

Our exploration of DevOps practices and tools led us towards clustering and scaling. As a
result, we developed a system that allows us to deploy services to a cluster, in an easy and
efficient way. The result is an ever increasing number of containers running inside a cluster
consisting of, potentially, many servers.

Defining Logging Strategy

[168]

Monitoring one server is easy. Monitoring many services on a single server poses some
difficulties. Monitoring many services on many servers requires a whole new way of
thinking and a new set of tools. As you start embracing microservices, containers, and
clusters, the number of created services and their instances will begin increasing rapidly.
The same holds true for servers that form the cluster. We cannot, anymore, log into a node
and look at logs. There are too many to look at. On top of that, they are distributed among
many servers. While yesterday we had two instances of a service deployed on a single
server, tomorrow we might have eight instances deployed to six servers.

We need historical and (near) real time information about our system. That information can
be in the form of logs, hardware utilization, health checking, network traffic, and many
other things. The need to store historical data is not new and has been in use for a long time.
However, the direction that information travels has changed over time. While, in the past,
most solutions were based on centralized data collectors, today, due to the very dynamic
nature of services and servers, we tend to have them decentralized.

What we need for cluster logging and monitoring is a combination of decentralized data
collectors that are sending information to a centralized parsing service and data storage.
There are plenty of products specially designed to fulfill this requirement, ranging from on-
premise to cloud solutions, and everything in between. FluentD (

), Loggly (), GrayLog (), Splunk (
), and DataDog () are only a few of the

solutions we can employ. I chose to show you the concepts through the ELK stack
(ElasticSearch (), LogStash (

), and Kibana (
)). The stack has the advantage of being free, well documented, efficient, and widely

used. ElasticSearch () established itself
as one of the best databases for real-time search and analytics. It is distributed, scalable,
highly available, and provides a sophisticated API. LogStash (

) allows us to centralize data processing. It can be easily extended to
custom data formats and offers a lot of plugins that can fulfill almost any need. Finally,
Kibana () is an analytics and visualization
platform with intuitive interface sitting on top of ElasticSearch.

The fact that we'll use the ELK stack does not mean that it is better than the other solutions.
It all depends on specific use cases and particular needs. I'll walk you through the principles
of centralized logging and monitoring using the ELK stack. Once those principles are
understood, you should have no problem applying them to a different stack if you choose
to do so.

We switched the order of things and chose the tools before discussing the need for
centralized logging. Let's remedy that.

Defining Logging Strategy

[169]

The need for centralized logging
In most cases, log messages are written to files. That is not to say that files are the only, nor
the most efficient way of storing logs. However, since most teams are using file-based logs
in one form or another, for the time being, I'll assume that is your case as well. If it is, we
identified the first thing we should fix. Containers expect us to send logs to and

. Only log entries forwarded to the standard output are retrievable with
 command. Moreover, tools designed to work with container logs will expect just that.

They'll assume that entries are not written to a file but sent to the output. Even without
containers, I believe that and are where our services should log things.
However, that's a story for some other time. For now, we'll concentrate on containers and
assume that you are outputting your logs to and If you're not, most
logging libraries will allow you to change your logging destination to standard output and
error.

Most of the time, we do not care what is written in logs. When things are working well,
there is not much need to spend valuable time browsing through them. A log is not a novel
we read to pass the time with, nor it is a technical book we read as a way to improve our
knowledge. Logs are there to provide valuable info when something, somewhere, went
wrong.

The situation seems to be simple. We write information to logs that we ignore most of the
time, and when something goes wrong, we consult them and find the cause of the problem
in no time. At least, that's what many are hoping for. The reality is far more complicated
than that. In all but the most trivial systems, the debugging process is much more
challenging. Applications and services are almost always interconnected, and it is often not
easy to know which one caused the problem. While it might manifest in one application,
investigation often shows that the cause is in another. For example, a service might have
failed to instantiate. After some time spent browsing its logs, we might discover that the
cause is in the database. The service could not connect to it and failed to launch. We got the
symptom, but not the cause. We need to switch to the database log to find it out. With this
simple example, we've already gotten to the point where looking at one log is not enough.

With distributed services running on a cluster, the situation complicates exponentially.
Which instance of the service is failing? Which server is it running on? What are the
upstream services that initiated the request? What are the memory and hard disk usage in
the node where the culprit resides? As you might have guessed, finding, gathering, and
filtering the information needed for the successful discovery of the cause is often very
complicated. The bigger the system, the harder it gets. Even with monolithic applications,
things can easily get out of hand.

Defining Logging Strategy

[170]

If a microservices approach is adopted, those problems are multiplied. Centralized logging
is a must for all but the simplest and smallest systems. Instead, many of us, when things go
wrong, start running from one server to another and jumping from one file to the other.
Like a chicken with its head cut off - running around with no direction. We tend to accept
the chaos logging creates, and consider it part of our profession.

What do we look for in centralized logging? As it happens, many things, but the most
important are as follows:

A way to parse data and send them to a central database in near real-time
The capacity of the database to handle near real-time data querying and analytics
A visual representation of the data through filtered tables, dashboards, and so on

We already chose the tools that will be able to fulfill all those requirements (and more). The
ELK stack (ElasticSearch, LogStash, and Kibana) can do all that. As in the case of all other
tools we explored, this stack can easily be extended to satisfy the particular needs we'll set
in front of us.

Now that we have a vague idea what we want to accomplish, and have the tools to do that,
let us explore a few of the logging strategies we can use. We'll start with the most
commonly used scenario and, slowly, move towards more complicated and more efficient
ways to define our logging strategy.

Without further ado, let's create the environments we'll use to experiment with centralized
logging and, later on, monitoring.

Setting up ElasticSearch as the logging
database
As in quite a few cases before, we'll start by creating the already familiar nodes (,

, and):

cd cloud-provisioning

git pull

scripts/dm-swarm.sh

Defining Logging Strategy

[171]

All the commands from this chapter are available in the
 (

) Gist.

The first service we'll create is Elastic Search ().
Since we'll need it to be accessible from a few other services, we'll also create a network
called :

eval $(docker-machine env swarm-1)

docker network create --driver overlay elk

docker service create \
 --name elasticsearch \
 --network elk \
 --reserve-memory 500m \
 elasticsearch:2.4

After a few moments, the service will be up and running.

We can check the status using the command:

docker service ps elasticsearch

The output is as follows (IDs and ERROR PORTS columns are removed for brevity):

NAME IMAGE NODE DESIRED STATE
elasticsearch.1 elasticsearch:2.4 swarm-1 Running
--
CURRENT STATE
Running 19 seconds ago

If is still not running, please wait a few moments before proceeding.
Now that we have a database where we can store our logs, the next step is to create a
service that will parse log entries and forward the results to ElasticSearch.

Defining Logging Strategy

[172]

Setting up LogStash as the logs parser and
forwarder
We did E from the ELK stack. Now let's move to L. LogStash requires a configuration file.
We'll use one that is already available inside the (

) repository. We’ll create a new directory,
copy the (

) configuration, and use it inside the service:

mkdir -p docker/logstash

cp conf/logstash.conf \
 docker/logstash/logstash.conf

cat docker/logstash/logstash.conf

The content of the file is as follows:

input {
 syslog { port => 51415 }
}

output {
 elasticsearch {
 hosts => ["elasticsearch:9200"]
 }
 # Remove in production
 stdout {
 codec => rubydebug
 }
}

This is a very simple LogStash configuration. If will listen on port for entries.

Each entry will be sent to two outputs; and . Since both
and will be attached to the same network, all we had to do is put the
service name as the host.

The second output will send everything to . Please note that this entry should be
removed before running LogStash in production. It creates an unnecessary overhead that, if
there are many services, can be substantial. The only reason we have it is to show you how
logs are passing through LogStash. In production, you'll have no need to look at its output.
Instead, you'll use Kibana to explore the logs from the whole system.

Defining Logging Strategy

[173]

Let's move on and create the second service:

A note to Windows users
For mounts used in the next command to work, you have to stop Git Bash
from altering file system paths. Set this environment variable:

docker service create --name logstash \
 --mount "type=bind,source=$PWD/docker/logstash,target=/conf" \
 --network elk \
 -e LOGSPOUT=ignore \
 --reserve-memory 100m \
 logstash:2.4 logstash -f /conf/logstash.conf

We created a service called and mounted the host volume
 inside the container. That way we'll have the configuration file currently residing

on the host available inside the container.

Please note that mounting a volume is not the best way to put the configuration inside the
container. Instead, we should have built our own image with the configuration inside. We
should have created a Dockerfile. It could be as follows:

FROM logstash

RUN mkdir /config/
COPY conf/logstash.conf /config/

CMD ["-f", "/config/logstash.conf"]

This configuration file should not change often (if ever), so the option of creating a new
image based on is much better than mounting a volume. However, for simplicity
reasons, we used the mount. Just remember to build your own image once you start
applying what you learned from this chapter.

We also defined the environment variable . It is not relevant right now. We'll
comment on it later on.

The service should be up and running by now. Let's double check it:

docker service ps logstash

The output should be as follows:

NAME IMAGE NODE DESIRED STATE CURRENT STATE
logstash.1 logstash:2.4 swarm-1 Running Running 2 seconds ago

Defining Logging Strategy

[174]

If the current state is still not running, please wait a few moments and repeat the
 command. We can proceed only after is operational.

Now we can confirm that was initialized correctly. We'll need to find out which
node it is running in, get the of the container, and output the logs:

LOGSTASH_NODE=$(docker service ps logstash | tail -n +2 | awk '{print $4}')

eval $(docker-machine env $LOGSTASH_NODE)

LOGSTASH_ID=$(docker ps -q \
 --filter label=com.docker.swarm.service.name=logstash)

docker logs $LOGSTASH_ID

The output of the previous command is as follows:

{:timestamp=>"2016-10-19T23:08:06.358000+0000", :message=>"Pipeline \
main started"}

 means that LogStash is running and waiting for input.

Before we set up a solution that will ship logs from all the containers inside the cluster, we'll
make an intermediary step and confirm that LogStash can indeed accept entries on
port . We'll create a temporary service called :

eval $(docker-machine env swarm-1)

docker service create \
 --name logger-test \
 --network elk \
 --restart-condition none \
 debian \
 logger -n logstash -P 51415 hello world

The service is attached to the network so that it can communicate with the
service.

We had to specify as . Otherwise, when the process is finished,
the container would stop, Swarm would detect it as a failure and reschedule it. In other
words, without the restart condition set to none, Swarm would enter into an endless loop
trying to reschedule containers that almost immediately stop.

The command we're executing sends a message , to running on
port . The message is .

Defining Logging Strategy

[175]

Let's output LogStash logs one more time:

eval $(docker-machine env $LOGSTASH_NODE)

docker logs $LOGSTASH_ID

The output is as follows:

{
 "message" => "<5>Oct 19 23:11:47 <someone>: hello world\u0000",
 "@version" => "1",
 "@timestamp" => "2016-10-19T23:11:47.882Z",
 "host" => "10.0.0.7",
 "tags" => [
 [0] "_grokparsefailure_sysloginput"
],
 "priority" => 0,
 "severity" => 0,
 "facility" => 0,
 "facility_label" => "kernel",
 "severity_label" => "Emergency"
}

First Swarm had to download the debian image and, once the logger message was sent,
LogStash had to start accepting entries. It takes a bit of time until LogStash processes the
first entry. All subsequent entries will be processed almost instantly. If your output is not
similar to the one above, please wait a moment and repeat the logs command.

As you can see, LogStash received the message hello world. It also recorded a few other
fields like the and . Ignore the error message

. We could configure LogStash to parse
messages correctly but, since we won't be using it anymore, it would be a waste of time.
Soon we'll see a much better way to forward logs.

LogStash acted as a parser of the message and forwarded it to ElasticSearch. At the
moment, you'll have to take my word for it. Soon we'll see how are those messages stored
and how we can explore them.

We’ll remove the service. Its purpose was only to demonstrate that we have a
LogStash instance that accepts messages:

eval $(docker-machine env swarm-1)

docker service rm logger-test

Sending messages by invoking logger is great but is not what we're trying to accomplish.

Defining Logging Strategy

[176]

The goal is to forward the logs from all the containers running anywhere inside the cluster.

Forwarding logs from all containers running
anywhere inside a Swarm cluster
How can we forward logs from all the containers no matter where they’re running? One
possible solution would be to configure logging drivers (

). We could use the argument to specify a
driver for each service. The driver could be or any other supported option. That
would solve our log shipping problem. However, using the argument for each service is
tedious and, more importantly, we could easily forget to specify it for a service or two and
discover the omission only after we encounter a problem and are in need of logs. Let's see if
there is another option to accomplish the same result.

We could specify a log driver as a configuration option of the Docker daemon on each node.
That would certainly make the setup easier. After all, there are probably fewer servers than
services. If we were to choose between setting a driver when creating a service or as the
daemon configuration, I'd choose the latter. However, we managed to get thus far without
changing the default daemon configuration and I'd prefer if we can continue working
without involving any special provisioning tools. Luckily, we still did not exhaust all our
options.

We can ship logs from all our containers with the project called (
)

LogSpout is a log router for Docker containers that runs inside Docker. It attaches to all
containers on a host, then routes their logs wherever we want. It also has an extensible
module system. It's a mostly stateless log appliance. It's not meant for managing log files or
looking at history. It is just a tool to get your logs out to live somewhere else, where they
belong.

If you go through the project documentation, you'll notice that there are no instructions on
how to run it as a Docker service. That should not matter since, by this time, you can
consider yourself an expert in creating services.

Defining Logging Strategy

[177]

What do we need from a service that should forward logs from all the containers running
inside all the nodes that form a cluster? Since we want to forward them to LogStash that is
already attached to the network, we should attach LogSpout to it as well. We need it to
ship logs from all the nodes so the service should be global. It needs to know that the
destination is the service called and that it listens on port . Finally, one of
the requirement for LogSpout is that the Docker socket from the host is mounted inside the
service containers. That’s what it'll use to monitor the logs.

The command that creates the service that fulfills all those objectives and requirements is as
follows:

A note to Windows users
For mounts used in the next command to work, you have to stop Git Bash
from altering file system paths. Set this environment variable:

docker service create --name logspout \
 --network elk \
 --mode global \
 --mount \
"type=bind,source=/var/run/docker.sock,target=/var/run/\
 docker.sock"
 -e SYSLOG_FORMAT=rfc3164 \
 gliderlabs/logspout syslog://logstash:51415

We created a service called , attached it to the network, set it to be global, and
mounted the Docker socket. The command that will be executed once containers are created
is . This tells LogSpout that we want to use protocol
to send logs to running on port .

This project is an example of the usefulness behind the Docker Remote API. The
containers will use it to retrieve the list of all currently running containers and stream their
logs. This is already the second product inside our cluster that uses the API (the first being
Docker Flow Swarm Listener (
)).

Let's see the status of the service we just created:

docker service ps logspout

Defining Logging Strategy

[178]

The output is as follows (IDs & ERROR PORTS column are removed for brevity):

NAME IMAGE NODE DESIRED STATE
logspout... gliderlabs/logspout:latest swarm-3 Running
logspout... gliderlabs/logspout:latest swarm-2 Running
logspout... gliderlabs/logspout:latest swarm-1 Running
--
CURRENT STATE
Running 11 seconds ago
Running 10 seconds ago
Running 10 seconds ago

The service is running in global mode resulting in an instance inside each node.
Let's test whether the service is indeed sending all the logs to LogStash. All we
have to do is create a service that generates some logs and observe them from the output of
LogStash . We'll use the registry to test the setup we have made so far:

docker service create --name registry \
 -p 5000:5000 \
 --reserve-memory 100m \
 registry

Before we check the LogStash logs, we should wait until the registry is running:

docker service ps registry

If the current state is still not running, please wait a few moments.

Now we can take a look at logs and confirm that sent it log entries
generated by the :

eval $(docker-machine env $LOGSTASH_NODE)

docker logs $LOGSTASH_ID

One of the entries from the output is as follows:

{
 "message" => "time=\"2016-10-19T23:14:19Z\" level=info \
msg=\"listening on [::]:5000\" go.version=go1.6.3 \
instance.id=87c31e30-a747-4f70-b7c2-396dd80eb47b version=v2.5.1 \n",
 "@version" => "1",
 "@timestamp" => "2016-10-19T23:14:19.000Z",
 "host" => "10.0.0.7",
 "priority" => 14,
 "timestamp8601" => "2016-10-19T23:14:19Z",
 "logsource" => "c51c177bd308",
 "program" => "registry.1.abszmuwq8k3d7comu504lz2mc",

Defining Logging Strategy

[179]

 "pid" => "4833",
 "severity" => 6,
 "facility" => 1,
 "timestamp" => "2016-10-19T23:14:19Z",
 "facility_label" => "user-level",
 "severity_label" => "Informational"
}

As before when we tested LogStash input with logger, we have the message, ,
, and a few other fields. We also got that holds the of the

container that produced the log as well as program that holds the container name. Both will
be useful when debugging which service and container produced a bug.

If you go back to the command we used to create the service, you'll notice the
environment variable . It tells LogSpout that the service or, to be more
precise, all containers that form the service, should be ignored. If we did not define it,
LogSpout would forward all logs to thus creating an infinite loop. As
we already discussed, in production we should not output LogStash entries to . We
did it only to get a better understanding of how it works. If output is removed from
the logstash configuration, there would be no need for the environment variable

. As a result logs would also be stored in ElasticSearch.

Now that we are shipping all the logs to LogStash and from there to ElasticSearch, we
should explore the ways to consult them.

Exploring logs
Having all the logs in a central database is a good start, but it does not allow us to explore
them in an easy and user-friendly way. We cannot expect developers to start issuing
requests to the ElasticSearch API whenever they want to explore what went wrong. We
need a UI that allows us to visualize and filter logs. We need K from the ELK stack.

A note to Windows users
You might experience a problem with volumes not being mapped
correctly with Docker Compose. If you may see an Invalid volume
specification error, please export the environment variable

 to :

Please make sure that the variable is exported every time you run
 or .

Defining Logging Strategy

[180]

Let's create one more service. This time, it'll be Kibana. Besides the need for this service to
communicate with and services, we want to expose it through
the proxy, so we'll create swarm-listener and services as well. Let's get to it:

docker network create --driver overlay proxy

curl -o docker-compose-stack.yml \
 https://raw.githubusercontent.com/\
vfarcic/docker-flow-proxy/master/docker-compose-stack.yml

docker stack deploy \
 -c docker-compose-stack.yml proxy

We created the network, downloaded Compose file with the service definitions, and
deployed the proxy stack which consists of and services. They are
the same commands as those we executed in the , Using Docker Stack and Compose
YAML Files to Deploy Swarm Services, so there’s no need to explain them again.

The only thing missing before we create the service is to wait until both swarm-
listener and proxy are up and running.

Please execute command to confirm that both services have their
replicas running.

Now we're ready to create the service:

A note to Windows users
For mounts used in the next command to work, you have to stop Git Bash
from altering file system paths. Set this environment variable:

docker service create --name kibana \
 --network elk \
 --network proxy \
-e ELASTICSEARCH_URL=http://elasticsearch:9200 \
 --reserve-memory 50m \
 --label com.df.notify=true \
 --label com.df.distribute=true \
 --label com.df.servicePath=/app/kibana,/bundles,/elasticsearch \
 --label com.df.port=5601 \
 kibana:4.6

Defining Logging Strategy

[181]

We attached it to both the elk and networks. The first is needed so that it can
communicate with the service, while the second is required for
communication with the proxy. We also set up the environment
variable that tells Kibana the address of the database, and reserved of memory. Finally,
we defined a few labels that will be used by the to notify the proxy about
the services existence. This time, the label has three paths that match
those used by Kibana.

Le's confirm that is running before opening its UI:

docker service ps kibana

The UI can be opened through the command that follows:

open "http://$(docker-machine ip swarm-1)/app/kibana"

A note to Windows users
Git Bash might not be able to use the open command. If that’s the case,
execute to find out
the IP of the machine and open the URL directly in your browser of choice.
For example, the command above should be replaced with the command
that follows:

If the output would be , you should open
 in your browser.

You should see the screen that lets you configure ElasticSearch indexes.

Now we can explore the logs by clicking the Discover button from the top menu.

Kibana, by default, displays the logs generated during the last fifteen minutes. Depending
on the time that passed since we produced the logs, fifteen minutes might be less than the
actual time that passed. We'll increase the duration to twenty-four hours.

Defining Logging Strategy

[182]

Please select as Time-field name and click the Create button to generate
LogStash indexes in ElasticSearch:

Please click the Last 15 minutes from the top-right menu. You'll see a plethora of options
we can use to filter the results based on time.

Please click the Last 24 hours link and observe that the time from the top-right menu
changed accordingly. Now click the Last 24 hours button to hide the filters.

Defining Logging Strategy

[183]

More information can be found in the Setting the Time Filter (
) section of the documentation

for Kibana :

At the moment, the central part of the screen displays all the logs that match the given
. Most of the time, on a "real" production system, we would not be interested in

all the logs produced inside the cluster. Instead, we'd filter them based on some criteria.

Let's say we want to see all the logs generated by the service. We often don't need to
know the exact name of the program that generated them. This is true because Swarm adds
an instance number and a hashtag into container names, and we are often unsure what the
exact name is, or which instance produced a problem. Instead, we'll filter the logs to display
all those that have a program containing the word .

Please type in the Search field located in the upper part of the
screen and press enter. The result will be that only logs that contain in the
program name field are displayed in the main part of the screen. Similarly, we can change
the search to the previous state and list all the logs that match the given time frame. All we
have to do is type in the Search field and press Enter.

Defining Logging Strategy

[184]

More information can be found in the Searching Your Data (
) section of documentation

for Kibanas .

The list of all fields that match the current query is located in the left-hand menu. We can
see the top values of one of those fields by clicking on it. For example, we can click on the
program field and see all the programs that produced logs during the specified time. We can
use those values as another way to filter the results. Please click the + sign next to

 (in your case the hash will be different). We just
accomplished the same result as if we typed

 in the Search field.

More information can be found in the Filtering by Field (
) section of documentation for Kibana .

The main body of the screen displays the selected fields in each row, with the option to drill
down and show all the information. The truth is that the default fields (Time and _source)
are not very helpful so we'll change them.

Please click the Add button next to program in the left-hand menu. You'll see that the
program column was added to the Time column. Let's add a few more. Please repeat the
process with the host, and @timestamp fields as well.

To see more information about a particular entry, please click the arrow pointing to the
right. A table with all the fields will appear below it, and you will be able to explore all the
details related to the particular logs entry.

More information can be found in the Filtering by Field (
) section of documentation for Kibana .

Defining Logging Strategy

[185]

The only thing left in this short tour around Kibana is to save the filter we just created.
Please click the Save Search button in the top menu to save what we created by now. Type
a name for your search and click the Save button. Your filters are now saved and can be
accessed through the Load Saved Search button located in the top menu:

That's it. Now you know the basics how to explore your logs stored in ElasticSearch. If
you're wondering what can be done with Visualize and Dashboard screens, I'll only state
that they are not very useful for logs. They become much more interesting, however, if we
start adding other types of information like resource usage (example: memory, CPU,
network traffic, and so on).

Discussing other logging solutions
Is ELK the solution you should choose for your logging purposes? That a hard question to
answer. There are a plethora of similar tools in the market, and it would be close to
impossible to give a universal answer.

Defining Logging Strategy

[186]

Do you prefer a free solution? If you do, then ELK (ElasticSearch (
), LogStash (),

and Kibana ()) is an excellent choice. If you’re
looking for an equally cheap (free) alternative, FluentD () is
something worth trying out. Many other solutions might fit your needs. A simple Google
search will reveal a plethora of options.

Are you more interested in a solution provided as a service? Would you like someone else
taking care of your logging infrastructure? If you do, many services offer, for a fee, to host
your logs in their database and provide nice interfaces you can use to explore them. I won't
list examples since I decided to base this book fully on open source solutions you can run
yourself. Again, Google is your friend if you'd prefer a service maintained by someone else.

What now?
We touched only the surface of what the ELK stack can do. ElasticSearch is a very powerful
database that can be scaled easily and store vast amounts of data. LogStash provides almost
unlimited possibilities that allow us to use virtually any data source as input (in our case

), transform it into any form we find useful, and output to many different
destinations (in our case ElasticSearch). When a need occurs, you can use Kibana to go
through the logs generated by your system. Finally, the tool that made all that happen is
LogSpout. It ensured that all the logs produced by any of the containers running inside our
cluster are collected and shipped to LogStash.

This goal of the chapter was to explore a potential solution to deal with massive quantities
of logs and give you a base understanding how to collect them from services running inside
a Swarm cluster. Do you know everything you should know about logging? You probably
don't. However, I hope you have a good base to explore the subject in more details.

Even if you choose to use a different set of tools, the process will still be the same. Use a tool
to collect logs from your services, ship them to some database, use a UI to explore them
when needed.

Now we have logs that provide only part of the information we'll need to find a cause of an
issue. Logs by themselves are often not enough. We need metrics from the system. Maybe
our services use more memory than our cluster provides. Maybe the system takes too much
time to respond. Or maybe we have a memory leak in one of our services. Those things
would be very hard to find out through logs.

Defining Logging Strategy

[187]

We need to know not only current metrics of the system but also how it behaved in the past.
Even if we do have those metrics, we need a process that will notify us of problems.
Looking at logs and metrics provides a lot of information we can use to debug issues, but
we wouldn't know that a problem exists in the first place. We need a process that will notify
us when something goes wrong or, even better, before the actual problem happens. Even
with such a system in place, we should go even further and try to prevent problems from
happening. Such prevention can often be automated. After all, why should we fix all the
problems manually when some of them can be fixed automatically by the system itself? The
ultimate goal is to make a self-healing system and involve humans only when unexpected
things happen.

Metrics, notifications, self-healing systems, and other pending tasks in front of us are too
much for a single chapter so we'll do one step at a time. For now, we’re finished with logs
and will jump into a discussion about different ways to collect metrics and use them to
monitor our cluster and services running inside it.

As always, we'll end with a destructive note:

docker-machine rm -f swarm-1 swarm-2 swarm-3

110
Collecting Metrics and
Monitoring the Cluster

Let us change our traditional attitude to the construction of programs. Instead of
imagining that our main task is to instruct a computer what to do, let us concentrate
rather on explaining to human beings what we want a computer to do.

–Donald Knuth

We managed to add centralized logging to our cluster. Logs from any container running
inside any of the nodes are shipped to a central location. They are stored in Elasticsearch
and available through Kibana. However, the fact that we have easy access to all the logs
does not mean that we have all the information we would need to debug a problem or
prevent it from happening in the first place. We need to complement our logs with the rest
of the information about the system. We need much more than what logs alone can provide.

The requirements of a cluster monitoring
system
With everything we've done until now, not to mention the tasks we'll do throughout the
rest of the book, we are simultaneously decreasing and increasing the complexity of our
system. Scaling a service is easier and less complex with Docker Swarm than it would be
with containers alone. The fact is that Docker already simplified a lot the process we had
before. Add to that the new networking with service discovery baked in, and the result is
almost too simple to be true. On the other hand, there is complexity hidden below the
surface. One of the ways such complexity manifests itself can be easily observed if we try to
combine dynamic tools we have used so far, with those created in (and for) a different era.

Collecting Metrics and Monitoring the Cluster

[189]

Take Nagios () as an example. I won't say that we could not use it
to monitor our system (we certainly can). What I will state is that it would clash with the
new system architecture we've designed so far. Our system has gotten much more complex
than it was. The number of replicas is fluctuating. While today we have four instances of a
service, tomorrow morning there could be six, only to fall to three in the afternoon. They are
distributed across multiple nodes of the cluster, and being moved around. Servers are being
created and destroyed. Our cluster and everything inside it is truly dynamic and elastic.

The dynamic nature of the system we are building would not fit into Nagios, which expects
services and servers to be relatively static. It expects us to define things in advance. The
problem with such an approach is that we do not have the information in advance. Swarm
does. Even if we get the information we need, it will change soon.

The system we're building is highly dynamic, and the tools we should use to monitor such a
system need to be able to cope with this dynamism.

It's more than that. Most of the "traditional" tools tend to treat the whole system as a black
box. That, on the one hand, has a certain number of advantages. The main one is that it
allows us to decouple our services from the rest of the system. In many (but not all) cases,
white box monitoring means that we need to add to our services monitoring libraries and
write some code around them so that they can expose the internals of our services.

Think twice before choosing to add something to your service that is not strictly its job.
When we adopt a microservices approach, we should strive towards services being
functionally limited to their primary goal. If it's a shopping cart, it should be an API that
will allow us to add and remove items. Adding libraries and code that will extend such a
service so that it can register itself in a service discovery store, or expose its metrics to the
monitoring tool, produces too much coupling. Once we do that, our future options will be
very limited, and making a change in the system might require considerable time and effort.

We already managed to avoid coupling service discovery with our services. The
service does not have any knowledge of service discovery and yet, our system has all the
information it needs. There are many other examples where organizations fall into a trap
and start coupling their services with the system around them. In this case, our main
preoccupation is whether we can accomplish the same with monitoring. Can we avoid
coupling creation of metrics with the code we write for our services?

Then again, being able to do white box monitoring provides a lot of benefits black box does
not have. For one, understanding the internals of a service allows us to operate with a much
finer level of detail. It gives us knowledge that we could not obtain if we were to treat the
system as a black box.

Collecting Metrics and Monitoring the Cluster

[190]

In a world of distributed systems designed for high availability and fast response time, it is
not enough to be limited to health checks and CPU, memory, and disk usage monitoring.
We already have Swarm that makes sure the services are healthy and we could easily make
scripts that check essential resource usage. We need much more than that. We need white
box monitoring that does not introduce unnecessary coupling. We need intelligent alerting
that will notify us when something is wrong, or even automatically fix the problem. Ideally,
we would have alerts and automated corrections executed before the problems even
happen.

Some of the requirements we'd need from a monitoring system would be as follows:

A decentralized way of generating metrics that will be able to cope with the highly
dynamic nature of our cluster
A multi-dimensional data model that can be queried across as many dimensions as
needed
An efficient query language that will allow us to exploit our monitoring data model
and create effective alerting and visualization
Simplicity that will allow (almost) anyone to utilize the system without extensive
training

In this chapter, we'll continue the work we started in the previous. We'll explore ways to
export a different set of metrics, a way to collect them, query them, and expose them
through dashboards.

Before we do all that, we should make some choices. Which tools shall we use for our
monitoring solution?

Choosing the right database to store system
metrics
In The DevOps 2.0 Toolkit, I argued against "traditional" monitoring tools like Nagios (

) and Icinga (). Instead, we chose to use
Elasticsearch for both the logs and the system metrics. In the previous chapter, I reiterated
the choice for using Elasticsearch as the logging solution. Can we extend its usage by
storing metrics? Yes, we can. Should we do that? Should we use it as a place to store system
metrics? Are there better solutions?

Collecting Metrics and Monitoring the Cluster

[191]

The biggest problem with Elasticsearch, if used as a database to store system metrics, is that
it is not a time series type of database. Logs benefit greatly from Elasticsearch ability to
perform free text search and store data in an unstructured way. However, for system
metrics, we might take advantage of a different type of data storage. We need a time series
database.

Time series databases are designed around optimized ways to store and retrieve time series
data. One of their greatest benefits is that they store information in a very compact format
allowing them to host a vast amount of data. If you compare storage needs for time-based
data in other types of databases (Elasticsearch included), you'll discover that time series
databases are much more efficient. In other words, if your data are time-based metrics, use
a database designed for such data.

The biggest problem with most (if not all) time series databases is distributed storage.
Running them with replication is not possible, or a challenge at best. To put it bluntly, such
databases are designed to run a single instance. Luckily we often do not need to store long
term data in such databases and can clean them up periodically. If long term storage is a
must, the solution would be to export aggregated data into some other type of database like
Elasticsearch which, by the way, shines when it comes to replication and sharding.
However, before you go "crazy" and start exporting data, make sure that you truly need to
do something like that. Time series databases can easily store a vast amount of information
in a single instance. The chances are that you won't need to scale them for capacity reasons.
On the other hand, if a database fails, Swarm will reschedule it, and you'll lose only a few
seconds of information. Such a scenario should not be a disaster since we are dealing with
aggregated data, not individual transactions.

One of the most prominent time series databases is InfluxDB (
). Prometheus () is a commonly used alternative. We'll skip the

comparison of these two products except to note that we'll use the latter. Both are worthy
candidates for your monitoring solution with Prometheus having a potential advantage we
should not ignore. The community plan is to expose Docker metrics natively in Prometheus
format. At the time of this writing, there is no fixed date when that'll happen, but we'll do
our best to design the system around that plan. If you'd like to monitor the progress
yourself, please watch Docker issue 27307 (

). We'll use Prometheus in such a way that we'll be able to switch to Docker native
metrics once they are available.

Let's convert words into actions and create the cluster that we'll use throughout this
chapter.

Collecting Metrics and Monitoring the Cluster

[192]

Creating the cluster
This time we'll create more services than before so we'll need a bit bigger cluster. It's not
that the services will be very demanding but that our VMs have only one CPU and 1GB
memory each. Such machines are not something to brag about. This time, we'll create a
cluster that consists of five machines. Apart from increasing the capacity of the cluster,
everything else will be the same as before, so there's no good reason to go through the
process again. We'll simply execute (

):

All the commands from this chapter are available in the
 (

) Gist.

cd cloud-provisioning

git pull

scripts/dm-swarm-5.sh

eval $(docker-machine env swarm-1)

docker node ls

The output of the command is as follows (IDs are removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
swarm-4 Ready Active
swarm-2 Ready Active Reachable
swarm-1 Ready Active Leader
swarm-5 Ready Active
swarm-3 Ready Active Reachable

We created a Swarm cluster with five nodes, three of them acting as managers and the rest
as workers.

Collecting Metrics and Monitoring the Cluster

[193]

Now we can create the services we used before. Since this is also something we practiced
quite a few times, we'll create stacks from Compose files

 (
) and

 (
):

A note to Windows users
You might experience a problem with volumes not being mapped
correctly with Docker Compose. If you see an Invalid volume specification
error, please export the environment variable

 set to :

Please make sure that the variable is exported every time you run
 or .

docker network create --driver overlay proxy

curl -o proxy-stack.yml \
 https://raw.githubusercontent.com/\
vfarcic/docker-flow-proxy/master/docker-compose-stack.yml

docker stack deploy \
 -c proxy-stack.yml proxy

curl -o go-demo-stack.yml \
 https://raw.githubusercontent.com/\
vfarcic/go-demo/master/docker-compose-stack.yml

docker stack deploy \
 -c go-demo-stack.yml go-demo

docker service create --name util \
 --network proxy \
 --mode global \
 alpine sleep 1000000000

docker service ls

Collecting Metrics and Monitoring the Cluster

[194]

After a while, the output of the command is as follows (IDs are
removed for brevity):

NAME REPLICAS IMAGE COMMAND
swarm-listener 1/1 vfarcic/docker-flow-swarm-listener
go-demo 3/3 vfarcic/go-demo:1.2
util global alpine sleep 1000000000
go-demo-db 1/1 mongo:3.2.10
proxy 3/3 vfarcic/docker-flow-proxy

We used stacks downloaded from GitHub repositories to create all the services except util.
Right now, our cluster is hosting the demo services and , the ,
the , and the globally scheduled util service that we'll use to experiment
with monitoring metrics.

We're ready to start generating some metrics.

Prometheus metrics
Prometheus stores all data as time series. It is a stream of timestamped values that belong to
the same metric and the same labels. The labels provide multiple dimensions to the metrics.

For example, if we'd like to export data based on HTTP requests from the , we might
create a metric called . Such a metric could have labels with
the method, , and . These three could be specified as follows:

{method="GET", url="/demo/person", status="200"}
{method="PUT", url="/demo/person", status="200"}
{method="GET", url="/demo/person", status="403"}

Finally, we need a value of the metric, which, in our example, would be the total number of
requests.

When we combine metric names with the labels and values, the example result could be as
follows:

proxy_http_requests_total{method="GET", url="/demo/person", status="200"}
654
proxy_http_requests_total{method="PUT", url="/demo/person", status="200"}
143
proxy_http_requests_total{method="GET", url="/demo/person", status="403"}
13

Collecting Metrics and Monitoring the Cluster

[195]

Through these three metrics, we can see that there were successful requests,
successful requests, and failed requests .

Now that the format is more or less clear, we can discuss different ways to generate metrics
and feed them to Prometheus.

Prometheus is based on a pull mechanism that scrapes metrics from the configured targets.
There are two ways we can generate Prometheus-friendly data. One is to instrument our
own services. Prometheus offers client libraries for Go (

), Python (), Ruby (
), and Java (

). On top of those, there are quite a few unofficial libraries available for other
languages. Exposing metrics of our services is called instrumentation. Instrumenting your
code is, in a way, similar to logging.

Even though instrumentation is the preferred way of providing data that will be stored in
Prometheus, I advise against it. That is, unless the same data cannot be obtained by
different means. The reasons for such a suggestion lie in my preference for keeping
microservices decoupled from the rest of the system. If we managed to keep service
discovery outside our services, maybe we can do the same with metrics.

When our service cannot be instrumented or, even better, when we do not want to
instrument it, we can utilize Prometheus exporters. Their purpose is to collect already
existing metrics and convert them to Prometheus format. As you'll see, our system already
exposes quite a lot of metrics. Since it would be unrealistic to expect all our solutions to
provide metrics in Prometheus format, we'll use exporters to do the transformation.

When scraping (pulling) data is not enough, we can change direction and push them. Even
though scraping is the preferred way for Prometheus to get metrics, there are cases when
such an approach is not appropriate. An example would be short-lived batch jobs. They
might be so short lived that Prometheus might not be able to pull the data before the job is
finished and destroyed. In such cases, the batch job can push data to the Push Gateway (

) from which Prometheus can scrape metrics.

For the list of currently supported exporters, please consult the Exporters and Integrations (
) section of the Prometheus

documentation.

Now, after a short introduction to metrics, we're ready to create services that will host the
exporters.

Collecting Metrics and Monitoring the Cluster

[196]

Exporting system wide metrics
We'll start with the Node Exporter ()
service. It'll export different types of metrics related to our servers:

A note to Windows users
For mounts used in the next command to work, you have to stop Git Bash
from altering file system paths. Set this environment variable:

This chapter contains many commands that
use mounts. Before you execute those commands, please ensure that the
environment variable exists and is set to :

docker service create \
 --name node-exporter \
 --mode global \
 --network proxy \
 --mount "type=bind,source=/proc,target=/host/proc" \
 --mount "type=bind,source=/sys,target=/host/sys" \
 --mount "type=bind,source=/,target=/rootfs" \
 prom/node-exporter:0.12.0 \
 -collector.procfs /host/proc \
 -collector.sysfs /host/proc \
 -collector.filesystem.ignored-mount-points \
 "^/(sys|proc|dev|host|etc)($|/)"

Since we need the to be available on each server, we specified that the
service should be global. Normally, we'd attach it to a separate network dedicated to
monitoring tools (example:monitoring). However, Docker machines running locally might
have problems with more than two networks. Since we already created the and

 networks through (
) we've

reached the safe limit. For that reason, we'll use the existing network for monitoring
services as well. When operating the "real" cluster, you should create a separate network for
monitoring services.

We mounted a few volumes as well.

The directory is very special in that it is also a virtual filesystem. It's sometimes
referred to as a process information pseudo-file system. It doesn't contain "real" files but
runtime system information (example: system memory, devices mounted, hardware
configuration, and so on).

Collecting Metrics and Monitoring the Cluster

[197]

For this reason, it can be regarded as a control and information center for the kernel. In fact,
quite a lot of system utilities are simply calls to files in this directory. For example, is
the same as while is a synonym for . By
altering files located in that directory, you can even kernel parameters

 while the system is running. The service will use it to find all the
processes running inside our system.

Modern Linux distributions include a directory as a virtual filesystem (,
comparable to , which is a), which stores and allows modification of the
devices connected to the system, whereas many traditional UNIX and Unix-like operating
systems use as a symbolic link to the kernel source tree.

The directory is a virtual file system provided by Linux. It provides a set of virtual files
by exporting information about various kernel subsystems, hardware devices and
associated device drivers from the kernel's device model to user space. By exposing it as a
volume, the service will be able to gather information about the kernel.

Finally, we defined the image and passed a few command
arguments. We specified the target volumes for and followed with the
instruction to ignore mount points inside the container.

Please visit the Node Exporter project ()
for more information.

By this time, the service should be running inside the cluster. Let's confirm that:

docker service ps node-exporter

The output of the command is as follows (IDs are removed for brevity):

NAME IMAGE NODE DESIRED STATE
node-exporter... prom/node-exporter:0.12.0 swarm-5 Running
node-exporter... prom/node-exporter:0.12.0 swarm-4 Running
node-exporter... prom/node-exporter:0.12.0 swarm-3 Running
node-exporter... prom/node-exporter:0.12.0 swarm-2 Running
node-exporter... prom/node-exporter:0.12.0 swarm-1 Running
--
CURRENT STATE ERROR PORTS
Running 6 seconds ago
Running 7 seconds ago
Running 7 seconds ago
Running 7 seconds ago
Running 7 seconds ago

Collecting Metrics and Monitoring the Cluster

[198]

Let's have a quick look at the metrics provided by the service. We'll use
the service to retrieve the metrics:

UTIL_ID=$(docker ps -q --filter \
 label=com.docker.swarm.service.name=util)

docker exec -it $UTIL_ID \
 apk add --update curl drill

docker exec -it $UTIL_ID \
 curl http://node-exporter:9100/metrics

A sample of the output is as follows:

HELP go_gc_duration_seconds A summary of the GC invocation durations.
TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 0
go_gc_duration_seconds{quantile="0.25"} 0
go_gc_duration_seconds{quantile="0.5"} 0
go_gc_duration_seconds{quantile="0.75"} 0
go_gc_duration_seconds{quantile="1"} 0
go_gc_duration_seconds_sum 0
go_gc_duration_seconds_count 0
...

As you can see, the metrics are in the Prometheus-friendly format. Please explore the Node
Exporter collectors () for
more information about the meaning of each metric. For now, you should know that most
of the node information you would need is available and will be, later on, scraped by
Prometheus.

Since we sent a request through Docker networking, we got a load-balanced response and
cannot be sure which node produced the output. When we reach the Prometheus
configuration, we'll have to be more specific and skip networks load balancing.

Now that we have the information about servers, we should add metrics specific to
containers. We'll use also known as container Advisor.

The provides container users an understanding of the resource usage and
performance characteristics of their running containers. It is a running daemon that collects,
aggregates, processes, and exports information about running containers. Specifically, for
each container it keeps resource isolation parameters, historical resource usage, histograms
of complete historical resource usage and network statistics. This data is exported container
and machine-wide. It has native support for Docker containers.

Collecting Metrics and Monitoring the Cluster

[199]

Let's create the service:

docker service create --name cadvisor \
 -p 8080:8080 \
 --mode global \
 --network proxy \
 --mount "type=bind,source=/,target=/rootfs" \
 --mount "type=bind,source=/var/run,target=/var/run" \
 --mount "type=bind,source=/sys,target=/sys" \
 --mount "type=bind,source=/var/lib/docker,target=/var/lib/docker" \
 google/cadvisor:v0.24.1

Just as with the , the service is global and attached to the
network. It mounts a few directories that allows it to monitor Docker stats and events on the
host. Since comes with a web UI, we opened port that will allow us to open
it in a browser.

Before we proceed, we should confirm that the service is indeed running:

docker service ps cadvisor

The output of the is as follows (IDs are removed for brevity):

NAME IMAGE NODE DESIRED STATE
cadvisor... google/cadvisor:v0.24.1 swarm-3 Running
cadvisor... google/cadvisor:v0.24.1 swarm-2 Running
cadvisor... google/cadvisor:v0.24.1 swarm-1 Running
cadvisor... google/cadvisor:v0.24.1 swarm-5 Running
cadvisor... google/cadvisor:v0.24.1 swarm-4 Running
--
CURRENT STATE ERROR PORTS
Running 3 seconds ago
Running 3 seconds ago
Running 3 seconds ago
Running 8 seconds ago
Running 3 seconds ago

Collecting Metrics and Monitoring the Cluster

[200]

Now we can open the UI:

A note to Windows users
Git Bash might not be able to use the open command. If that's the case,
execute to find out the IP of the
machine and open the URL directly in your browser of choice. For
example, the command below should be replaced with the command that
follows:

If the output would be , you should open
 in your browser.

open "http://$(docker-machine ip swarm-1):8080"

Feel free to scroll down and explore different graphs and metrics provided by . If
they are not enough, information about running containers can be obtained by clicking the
Docker Containers link at the top of the screen.

Even though it might seem impressive on the first look, the UI is, more or less, useless for
anything but a single server. Since it is designed as a tool to monitor a single node, it does
not have much usage inside a Swarm cluster.

Collecting Metrics and Monitoring the Cluster

[201]

For one, the page and all the requests it makes are load-balanced by the ingress network.
That means not only that we do not know which server returned the UI, but requests that
return data used by metrics and graphs are load balanced as well. In other words, different
data from all the servers is mixed, giving us a very inaccurate picture. We could skip using
the service and run the image with command (repeated for each server).
However, even though that would allow us to see a particular server, the solution would
still be insufficient since we would be forced to go from one server to another. Our goal is
different. We need to gather and visualize data from the whole cluster, not individual
servers. Therefore, the UI must go.

As a side note, certain types of metrics overlap between the and
services. You might be tempted to choose only one of those. However, their focus is
different, and the full picture can be accomplished only with the combination of the two.
Since we established that the UI is useless when hosted inside a Swarm cluster, there is no
good reason to expose port . Therefore, we should remove it from the service. You
might be tempted to remove the service and create it again without exposing the port. There
is no need for such an action. Instead, we can eliminate the port by updating the service:

docker service update \
 --publish-rm 8080 cadvisor

docker service inspect cadvisor --pretty

By examining the output of the command, you'll notice that the port is
not opened (it does not exist).

Now that the service is running, and we do not generate noise from the useless
UI, we can take a quick look at the metrics exports:

docker exec -it $UTIL_ID \
 curl http://cadvisor:8080/metrics

A sample of the output is as follows:

TYPE container_cpu_system_seconds_total counter
container_cpu_system_seconds_total{id="/"} 22.91
container_cpu_system_seconds_total{id="/docker"} 0.32

We're making excellent progress. We are exporting server and container metrics. We might
continue adding metrics indefinitely and extend this chapter to an unbearable size. I'll leave
the creation of services that will provide additional info as an exercise you should perform
later on. Right now we'll move onto Prometheus. After all, having metrics is not of much
use without being able to query and visualize them.

Collecting Metrics and Monitoring the Cluster

[202]

Scraping, querying, and visualizing
Prometheus metrics
Prometheus server is designed to pull the metrics from instrumented services. However,
since we wanted to avoid unnecessary coupling, we used exporters that provide the metrics
we need. Those exporters are already running as Swarm services, and now we are ready to
exploit them through Prometheus.
To instantiate the Prometheus service, we should create a configuration file with the
exporters running in our cluster. Before we do that, we need to retrieve the IPs of all the
instances of an exporter service. If you recall the , Service Discovery inside a Swarm
Cluster, we can retrieve all the IPs by appending the tasks. prefix to the service name.

To retrieve the list of all the replicas of the service, we could, for example,
drill it from one of the instances of the service:

docker exec -it $UTIL_ID \
 drill tasks.node-exporter

The relevant part of the output is as follows:

;; ANSWER SECTION:
tasks.node-exporter. 600 IN A 10.0.0.21
tasks.node-exporter. 600 IN A 10.0.0.23
tasks.node-exporter. 600 IN A 10.0.0.22
tasks.node-exporter. 600 IN A 10.0.0.19
tasks.node-exporter. 600 IN A 10.0.0.20

We retrieved the IPs of all currently running replicas of the service.

The list of the IPs themselves is not enough. We need to tell Prometheus that it should use
them in a dynamic fashion. It should consult tasks. every time it wants to
pull new data. Fortunately, Prometheus can be configured through to use
an address as service discovery. For more information about the available options, please
consult the Configuration ()
section of the documentation.

Equipped with the knowledge of the existence of the option, we can
move forward and define a Prometheus configuration. We'll use the one I prepared for this
chapter. It is located in (

)

Collecting Metrics and Monitoring the Cluster

[203]

Let us quickly go through it:

cat conf/prometheus.yml

The output is as follows:

global:
 scrape_interval: 5s

scrape_configs:
 - job_name: 'node'
 dns_sd_configs:
 - names: ['tasks.node-exporter']
 type: A
 port: 9100
 - job_name: 'cadvisor'
 dns_sd_configs:
 - names: ['tasks.cadvisor']
 type: A
 port: 8080
 - job_name: 'prometheus'
 static_configs:
 - targets: ['prometheus:9090']

We defined three jobs. The first two and are using the
(DNS service discovery configs) option. Both have the tasks. defined as
the name, are of type A (you'll notice the type from the output), and have the
internal ports defined. The last one will provide the internal metrics.

Please note that we set to five seconds. In production, you might want
more granular data and change it to, for example, one-second interval. Beware! The shorter
the interval, the higher the cost. The more often we scrape metrics, the more resources will
be required to do that, as well as to query those results, and even store the data. Try to find
a balance between data granularity and resource usage. Creating the Prometheus service is
easy (as is almost any other Swarm service).

We'll start by creating a directory where we'll persist Prometheus data:

mkdir -p docker/prometheus

Now we can create the service:

docker service create \
 --name prometheus \
 --network proxy \
 -p 9090:9090 \
 --mount "type=bind,source=$PWD/conf/prometheus.yml, \

Collecting Metrics and Monitoring the Cluster

[204]

 target=/etc/prometheus/prometheus.yml"
 --mount "type=bind,source=$PWD/docker/\
 prometheus,target=/prometheus"
 prom/prometheus:v1.2.1
docker service ps prometheus

We created the directory where we'll persist Prometheus state.

The service is quite ordinary. It is attached to the network, exposes the port ,
and mounts the configuration file and the state directory.

The output of the command is as follows (IDs and ERROR columns are
removed for brevity):

NAME IMAGE NODE DESIRED STATE
prometheus.1 prom/prometheus:v1.2.1 swarm-3 Running

CURRENT STATE
Running 59 seconds ago

Please note that it would be pointless to scale this service. Prometheus is designed to work
as a single instance. In most cases, that's not a problem since it can easily store and process a
vast amount of data. If it fails, Swarm will reschedule it somewhere else and, in that case,
we would lose only a few seconds of data.

Let's open its UI and explore what can be done with it:

A note to Windows users
Git Bash might not be able to use the open command. If that's the case,
execute to find out the IP of the
machine and open the URL directly in your browser of choice. For
example, the command below should be replaced with the command that
follows:

If the output would be , you should open
 in your browser.

pen "http://$(docker-machine ip swarm-1):9090"

The first thing we should do is check whether it registered all the exported targets.

Collecting Metrics and Monitoring the Cluster

[205]

Please click the Status button in the top menu and select Targets. You should see that five
cadvisor targets match the five servers that form the cluster. Similarly, there are five node
targets. Finally, one prometheus target is registered as well:

Now that we confirmed that all the targets are indeed registered and that Prometheus
started scraping metrics they provide, we can explore ways to retrieve data and visualize
them through queries.

Please click the Graph button from the top menu, select from
the - list, and click the Execute button.

You should see a table with the list of metrics and a value associated with each. Many prefer
a visual representation of the data which can be obtained by clicking the Graph tab located
above the list. Please click it.

You should see the available memory for each of the five servers. It is displayed as
evolution over the specified period which can be adjusted with the fields and buttons
located above the graph. Not much time passed since we created the service so
you should probably reduce the period to five or fifteen minutes.

Collecting Metrics and Monitoring the Cluster

[206]

The same result can be accomplished by typing the query (or in this case the name of the
metric) in the Expression field. Later on, we'll do a bit more complicated queries that cannot
be defined by selecting a single metric from the - - list:

Now might be a good time to discuss one of the main shortcomings of the system we set up
so far. We do not have the information that would allow us to relate data with a particular
server easily. Since the list of addresses is retrieved through Docker networking which
creates a virtual IP for each replica, the addresses are not those of the servers. There is no
easy way around this (as far as I know) so we are left with two options. One would be to
run the exporters as "normal" containers (example:) instead of as services. The
advantage of such an approach is that we could set network type as and get the IP of
the server. The problem with such an approach is that we'd need to run exporters
separately for each server.
That wouldn't be so bad except for the fact that each time we add a new server to the
cluster, we'd need to run all the exporters again. To make things more complicated, it
would also mean that we'd need to change the Prometheus configuration as well, or add a
separate service registry only for that purpose.

Collecting Metrics and Monitoring the Cluster

[207]

The alternative is to wait. The inability to retrieve a host IP from a service replica is a known
limitation. It is recorded in several places, one of them being issue
25526 (). At the same time, the
community has already decided to expose Prometheus metrics natively from Docker
Engine. That would remove the need for some, if not all, of the exporters we created as
services. I'm confident that one of those two will happen soon. Until then, you'll have to
make a decision to ignore the fact that IPs are virtual or replace services with containers run
separately on each server in the cluster. No matter the choice you make, I'll show you, later
on, how to find the relation between virtual IPs and hosts.

Let's go back to querying Prometheus metrics.

The example with used only the metric and, as a result, we
got all its time series.

Let's spice it up a bit and create a graph that will return idle CPU. The query would be
. Using will limit the metric only to

data labeled as idle. Try it out and you'll discover that the graph should consist of five
almost straight lines going upwards. That does not look correct.

Let's create a bit more accurate picture by introducing the function. It calculates the
per-second instant rate of increase of the time series. That is based on the last two data
points. To use the function, we also need to specify the measurement duration. The
modified query is as follows:

irate(node_cpu{mode="idle"}[5m])

Since we are scraping metrics from the service, we can query different container
metrics as well. For example, we can see the memory usage of each container.

Please execute the query that follows:

container_memory_usage_bytes

Collecting Metrics and Monitoring the Cluster

[208]

Please execute the query and see the result for yourself. You should see the idle CPU rate
per node measured over 5 minute intervals:

If you explore the results through the graph, you'll discover that uses the most
memory (around on my machine). That does not look correct. The service should have
a much smaller footprint. If you look at its labels, you'll notice that the ID is . That's the
cumulative result of the total memory of all containers passing through . We
should exclude it from the results with the operator.

Please execute the query that follows:

container_memory_usage_bytes{id!="/"}

This time, the result makes much more sense. The service that uses the most memory is
Prometheus itself.

The previous query used label id to filter data. When combined with the operator, it
excluded all metrics that have the id set to .

Collecting Metrics and Monitoring the Cluster

[209]

Even with such a small cluster, the number of containers might be too big for a single graph
so we might want to see the results limited to a single service. That can be accomplished by
filtering the data with the .

Let's see the memory usage of all replicas:

container_memory_usage_bytes{container_label_com_docker_swarm_service_\
name="cadvisor"}

All this looks great but is not very useful as a monitoring system. Prometheus is geared
more towards queries than as a tool we can use to create dashboards that would
give us a view of the whole system. For that, we need to add one more service to the mix.

Using Grafana to create dashboards
Prometheus offers a dashboard builder called PromDash (

). However, it is deprecated for Grafana, so we won't consider it as worthy of
running inside our cluster.

Grafana () is one of the leading tools for querying and visualization
of time series metrics. It features interactive and editable graphs and supports multiple data
sources. Graphite, Elasticsearch, InfluxDB, OpenTSDB, KairosDB, and, most importantly,
Prometheus are supported out of the box. If that's not enough, additional data sources can
be added through plugins. Grafana is truly a rich UI that has established itself as a market
leader. Best of all, it's free.

Let's create a service:

docker service create \
 --name grafana \
 --network proxy \
 -p 3000:3000 \
 grafana/grafana:3.1.1

A few moments later, the status of the replica should be running:

docker service ps grafana

The output of the command is as follows (IDs are removed for brevity):

NAME IMAGE NODE DESIRED STATE CURRENT STATE
grafana.1 grafana/grafana3.1.1 swarm-1 Running Running 24 seconds
ago

Collecting Metrics and Monitoring the Cluster

[210]

Now that the service is running, we can open the UI:

A note to Windows users
Git Bash might not be able to use the command. If that's the case,
execute to find out the IP of the
machine and open the URL directly in your browser of choice. For
example, the command below should be replaced with the command that
follows:

If the output would be , you should open
 in your browser.

open "http://$(docker-machine ip swarm-1):3000"

You will be presented with the login screen. The default username and password are
admin. Go ahead and log in.

The username and password, as well as many other settings, can be adjusted through
configuration files and environment variables. Since we are running Grafana inside a
Docker container, environment variables are a better option. For more info, please visit the
Configuration () section of the
official documentation.

The first thing we should do is add Prometheus as a data source.

Please click the Grafana logo located in the top-left part of the screen, select Data Sources,
and click the + Add data source button.

We'll name it and choose the same for the Type. Enter
 as the and click the Add button. That's it. From now on,

we can visualize and query any metric stored in Prometheus.

Let's create the first dashboard.

Please click the Grafana logo, select Dashboards, and click + New. In the top-left part of the
screen, there is a green vertical button. Click it, select Add Panel, and choose Graph. You'll
see the default graph with test metrics. It's not very useful unless you'd like to admire pretty
lines going up and down. We'll change the Panel data source from default to Prometheus.
Enter as Query. A few moments later you should
see a graph with CPU usage.

Collecting Metrics and Monitoring the Cluster

[211]

By default, graphs display six hours of data. In this case, that might be OK if you are a slow
reader and it took you that much time to create the prometheus service and read the text
that followed. I will assume that you have only half an hour worth of data and want to
change the graph's timeline.

Please click the Last 6 hours button located in the top-right corner of the screen, followed by
the Last 30 minutes link. The graph should be similar to Figure 9-5:

There are quite a few things you can customize to make a graph fit your needs. I'll leave
that to you. Go ahead and play with the new toy. Explore different options it offers.
If you are lazy as I am, you might want to skip creating all the graphs and dashboards you
might need and just leverage someone else's effort. Fortunately, the Grafana community is
very active and has quite a few dashboards made by its members.

Collecting Metrics and Monitoring the Cluster

[212]

Please open the dashboards () section in grafana.net (
). You'll see a few filters on the left-hand side as well as the general search

field. We can, for example, search for .

I encourage you to explore all the offered node exporter dashboards at some later time. For
now, we'll select the Node Exporter Server Metrics ().
Inside the page, you'll see the Download Dashboard button. Use it to download the JSON
file with dashboard definition.

Let's get back to our service:

A note to Windows users
Git Bash might not be able to use the command. If that's the case,
execute to find out the IP of the
machine and open the URL directly in your browser of choice. For
example, the command below should be replaced with the command that
follows:

If the output would be , you should open
 in your browser.

open "http://$(docker-machine ip swarm-1):3000"

Open, one more time, the Dashboards option is hidden behind the Grafana logo and select
Import. Click the Upload .json file button and open the file you just downloaded. We'll
leave the Name intact and choose Prometheus as datasource. Finally, click the Save &
Open button to finish.

The magic happened, and we got quite a few graphs belonging to one of the nodes.
However, the graphs are mostly empty since the default duration is seven days and we
have only an hour or so worth of data. Change the time range to, let's say, one hour. The
graphs should start making sense.

Collecting Metrics and Monitoring the Cluster

[213]

Let's spice it up a bit and add more servers to the mix. Please click the of the
selected node and choose a few more. You should see metrics from each of the nodes:

While this dashboard is useful when we want to compare metrics between the selected
nodes, I think it is not so useful if we'd like to focus on a single node. In that case, the Node
Exporter Server Stats () dashboard might be a better
option. Please follow the same steps to import it into the service.

You can still change the node presented in the dashboard (IP in the top-left corner of the
screen). However, unlike the other dashboard, this one displays only one node at the time.

Collecting Metrics and Monitoring the Cluster

[214]

Both dashboards are very useful depending on the case. If we need to compare multiple
nodes then the Node Exporter Server Metrics () might
be a better option. On the other hand, when we want to concentrate on a specific server, the
Node Exporter Server Stats () dashboard is probably
a better option. You should go back and import the rest of the Node Exporter dashboards and
try them as well. You might find them more useful than those I suggested.

Sooner or later, you'll want to create your own dashboards that fit your needs better. Even
in that case, I still advise you to start by importing one of those made by the community
and modifying it instead of starting from scratch. That is, until you get more familiar with
Prometheus and Grafana, refer to the following image:

The next dashboard we'll create will need logs from Elasticsearch so let's set up logging as
well.

Collecting Metrics and Monitoring the Cluster

[215]

We won't go into details of the logging services since we already explored them in the
, Defining Logging Strategy:

docker service create \
 --name elasticsearch \
 --network proxy \
 --reserve-memory 300m \
 -p 9200:9200 \
 elasticsearch:2.4

Before we proceed with a service, we should confirm that is
running:

docker service ps elasticsearch

The output of the command should be similar to the one that follows (IDs &
Error Ports column are removed for brevity):

NAME IMAGE NODE DESIRED STATE CURRENT STATE
elasticsearch.1 elasticsearch:2.4 swarm-2 Running Running 1 seconds
ago

Now we can create a service:

docker service create \
 --name logstash \
 --mount "type=bind,source=$PWD/conf,target=/conf" \
 --network proxy \
 -e LOGSPOUT=ignore \
 logstash:2.4 \
 logstash -f /conf/logstash.conf

Let's confirm it's running before moving onto the last logging service:

docker service ps logstash

The output of the command should be similar to the one that follows (IDs and
ERROR PORTS columns are removed for brevity):

NAME IMAGE NODE DESIRED STATE CURRENT STATE
logstash.1 logstash:2.4 swarm-2 Running Running 2 minutes ago

Collecting Metrics and Monitoring the Cluster

[216]

Finally, we'll create a service as well:

docker service create \
 --name logspout \
 --network proxy \
 --mode global \
 --mount "type=bind,source=/var/run/docker.sock,\
 target=/var/run/docker.sock" \
 -e SYSLOG_FORMAT=rfc3164 \
 gliderlabs/logspout \
 syslog://logstash:51415

… and confirm it's running:

docker service ps logspout

The output of the command should be similar to the one that follows (IDs and
ERROR PORTS columns are removed for brevity):

NAME IMAGE NODE DESIRED STATE CURRENT STATE
logspout... gliderlabs/logspout:latest swarm-1 Running Running 9
seconds ago
logspout... gliderlabs/logspout:latest swarm-5 Running Running 9
seconds ago
logspout... gliderlabs/logspout:latest swarm-4 Running Running 9
seconds ago
logspout... gliderlabs/logspout:latest swarm-3 Running Running 9
seconds ago
logspout... gliderlabs/logspout:latest swarm-2 Running Running 10
seconds ago

Now that logging is operational, we should add Elasticsearch as one more Grafana data
source:

A note to Windows users
Git Bash might not be able to use the open command. If that's the case,
execute to find out
the IP of the machine and open the URL directly in your browser of choice.
For example, the command below should be replaced with the command
that follows:

If the output would be , you should open
 in your browser.

open "http://$(docker-machine ip swarm-1):3000"

Collecting Metrics and Monitoring the Cluster

[217]

Please click on the Grafana logo, and select Data Sources. A new screen will open with the
currently defined sources (at the moment only Prometheus). Click the + Add data source
button.

We'll use as both the name and the type. The Url should be
 and the value of the Index name should be set to . Click

the Add button when finished.

Now we can create or, to be more precise, import our third dashboard. This time, we'll
import a dashboard that will be primarily focused on Swarm services.

Please open the Docker Swarm & Container Overview (
) dashboard page, download it, and import it into Grafana. In the Import Dashboard

screen for Grafana , you will be asked to set one Prometheus and two Elasticsearch data
sources. After you click the Save & Open button, you will be presented with a dashboard
full of metrics related to Docker Swarm and containers in general.

You will notice that some of the graphs from the dashboard are empty. That's not an error
but an indication that our services are not prepared to be monitored. Let's update them with
some additional information that the dashboard expects.

Exploring Docker Swarm and container
overview dashboard in Grafana
One of the things missing from the dashboard are host names. If you select the Hostnames
list, you'll notice that it is empty. The reason behind that lies in the service.
Since it is running inside containers, it is oblivious of the name of the underlying host.

We already commented that IPs from the are not very valuable since they
represent addresses of network endpoints. What we truly need are either "real" host IPs or
host names. Since we cannot get the real IPs from Docker services, the alternative is to use
host names instead. However, the official container does not provide that
so we'll need to resort to an alternative.

Collecting Metrics and Monitoring the Cluster

[218]

We'll change our service with the image created by GitHub user . The
project can be found in the (

) GitHub repository. Therefore, we'll remove the
service and create a new one based on the (

) image:

docker service rm node-exporter

docker service create \
 --name node-exporter \
 --mode global \
 --network proxy \
 --mount "type=bind,source=/proc,target=/host/proc" \
 --mount "type=bind,source=/sys,target=/host/sys" \
 --mount "type=bind,source=/,target=/rootfs" \
 --mount "type=bind,source=/etc/hostname,target=/etc/\
 host_hostname" \
 -e HOST_HOSTNAME=/etc/host_hostname \
 basi/node-exporter:v0.1.1 \
 -collector.procfs /host/proc \
 -collector.sysfs /host/proc \
 -collector.filesystem.ignored-mount-points \
 "^/(sys|proc|dev|host|etc)($|/)" \
 -collector.textfile.directory /etc/node-exporter/ \
 -collectors.enabled="conntrack,diskstats,\
 entropy,filefd,filesystem,loadavg,\
 mdadm,meminfo,netdev,netstat,stat,textfile,time,vmstat,ipvs"

Apart from using a different image , we mounted the
 directory from which the container can retrieve the name of the

underlying host. We also added the environment variable as well as a few
additional collectors.

We won't go into details of the command since it is similar to the one we used previously.
The meaning of the additional arguments can be found in the project's (

) file.

The important thing to note is that the new service will include the
 together with the virtual IP created by Docker networking. We'll be able to use

that to establish the relation between the two.

Instead of creating the new service, we could have updated the one that was running
before. I decided against that so that you can see the complete command in case you choose
to use node metrics in your production cluster.

Collecting Metrics and Monitoring the Cluster

[219]

Please go back to the Grafana dashboard that is already opened in your browser and
refresh the screen Ctrl+R or Cmd+R. You'll notice that some of the graphs that were empty
are now colorful with metrics coming from the new .

The Hostnames list holds all the nodes with their IPs on the left side and their host names
on the right. We can now select any combination of the hosts and the CPU Usage by Node,
Free Disk by Node, Available Memory by Node, and Disk I/O by Node graphs will be
updated accordingly, as shown in the following image:

Not only have we obtained part of the data required for the dashboard, but we also
established the relation between virtual IPs and host names. Now you will be able to find
out the relation between virtual IPs used in other dashboards and . In particular,
if you monitor Node Exporter dashboards and detect a problem that should be fixed, you
can go back to the Swarm dashboard and find out the host that requires your attention.

The solution with host names is still not the best one but should be a decent workaround
until issue 27307 () is fixed. The choice
is yours. With the ability to relate virtual IPs with host names, I chose to stick with Docker
services instead resorting to non-Swarm solutions.

The next thing that needs fixing are service groups.

If you open the Service Group list, you'll notice that it is empty. The reason behind that lies
in the way the dashboard is configured. It expects that we distinguish services through the
container label . Since we did not specify any, the list
contains only the All option.

Collecting Metrics and Monitoring the Cluster

[220]

Which groups should we have? The answer to that question varies from one use case to
another. With time, you'll define the groups that best fit your organization. For now, we'll
split our services into databases, backend, and infrastructure. We'll put into
the , into , and all the rest into infra. Even though

 is a database, it is part of our infrastructure services, so we'll treat it as
such.

We can add labels to existing services. There is no need to remove them and create new
ones. Instead, we'll execute commands to add

 labels by leveraging the
argument.

The first service we'll put into a group is :

docker service update \
 --container-label-add \
 com.docker.stack.namespace=db \
 go-demo_db

Let's confirm that the label was indeed added:

docker service inspect go-demo_db \
 --format \
 "{{.Spec.TaskTemplate.ContainerSpec.Labels}}"

The argument allowed us to avoid lengthy output and display only what
interests us.

The output of the command is as follows:

map[com.docker.stack.namespace:db]

As you can see, the label was added and holds the value
.

We should do the same with the service and put it to the group:

docker service update \
 --container-label-add \
 com.docker.stack.namespace=backend \
 go-demo_main

Collecting Metrics and Monitoring the Cluster

[221]

The last group is . Since quite a few services should belong to it, we'll update them all
with a single command:

for s in \
 proxy_proxy \
 logspout \
 logstash \
 util \
 prometheus \
 elasticsearch
do
 docker service update \
 --container-label-add \
 com.docker.stack.namespace=infra \
 $s
done

We iterated over the names of all the services and executed the command
for each.

Please note that the command reschedules replicas. That means that the
containers will be stopped and run again with new parameters. It might take a while until
all services are fully operational. Please list the services with and
confirm that they are all running before proceeding. Once all the replicas are up, we should
go back to the Grafana dashboard and refresh the screen (Ctrl+R or cmd+R).

This time, when you open the Service Group list, you'll notice that the three groups we
created are now available. Go ahead, and select a group or two. You'll see that the graphs
related to services are changing accordingly.

We can also filter the result by and limit the metrics displayed in some of
the graphs to a selected set of services.

If you scroll down towards the middle of the dashboard, you'll notice that network graphs
related to the have too many services while those that exclude are empty. We
can correct that through the Proxy selector. It allows us to define which services should be
treated as a . Please open the list and select .

Collecting Metrics and Monitoring the Cluster

[222]

The two network graphs related to a are now limited to the service or, to be
more concrete, the service we identified as such. The bottom now contains metrics from all
other services. Separating monitoring of the external and internal traffic is useful. Through
the proxy graphs, you can see the traffic coming from and going to external sources while
the other two are reserved for internal communication between services.

Let's generate a bit of traffic and confirm that the change is reflected in proxy graphs. We'll
generate a hundred requests:

for i in {1..100}
do
 curl "$(docker-machine ip swarm-1)/demo/hello"
done

Collecting Metrics and Monitoring the Cluster

[223]

If you go back to network graphs, you should see a spike in traffic. Please note that
the dashboard refreshes data every minute. If the spike is still not visible, you might need to
wait, click the Refresh button located in the top-right corner of the screen, or change the
refresh frequency, refer the following image:

We'll move on towards the next option in the dashboard menu and click the Errors
checkbox. This checkbox is connected to Elasticsearch. Since there are no logged errors, the
graphs stayed the same.

Let's generate a few errors and see how they visualize in the dashboard.

The service has an API that will allow us to create random errors. On average, one
out of ten requests will produce an error. We'll need them to demonstrate one of the
integrations between Prometheus metrics and data from Elasticsearch:

for i in {1..100}
do
 curl "$(docker-machine ip swarm-1)/demo/random-error"
done

A sample of the output should be as follows:

Everything is still OK
Everything is still OK
ERROR: Something, somewhere, went wrong!
Everything is still OK
Everything is still OK

Collecting Metrics and Monitoring the Cluster

[224]

If you go back to the dashboard, you'll notice red lines representing the point of time when
the errors occurred. When such a thing happens, you can investigate system metrics and try
to deduce whether the errors were caused by some hardware failure, saturated network, or
some other reason. If all that fails, you should go to your Kibana UI, browse through logs
and try to deduce the cause from them.Refer to the following image:

It is important that your system does not report false positives as errors. If you notice that
there is an error reported through logs, but there's nothing to do, it would be better to
change the code, so that particular case is not treated as an error. Otherwise, with false
positives, you'll start seeing too many errors and start ignoring them. As a result, when a
real error occurs, the chances are that you will not notice it.

We'll skip the Alerts Fired and Alerts Resolved options since they are related to X-Pack (
), which is a commercial product. Since the book

is aimed at open source solutions, we'll skip it. That does not mean that you should not
consider purchasing it. Quite the contrary. Under certain circumstances, X-Pack is a
valuable addition to the tool set.

That concludes our quick exploration of the Docker Swarm & Container Overview
dashboard options. The graphs themselves should be self-explanatory. Take a few moments
to explore them yourself.

Collecting Metrics and Monitoring the Cluster

[225]

Adjusting services through dashboard
metrics
Our services are not static. Swarm will reschedule them with each release, when a replica
fails, when a node becomes unhealthy, or as a result of a myriad of other causes. We should
do our best to provide Swarm as much information as we can. The better we describe our
desired service state, the better will Swarm do its job.

We won't go into all the information we can provide through
and commands. Instead, we'll concentrate on the

 argument. Later on, you can apply similar logic to , ,
, and other arguments.

We'll observe the memory metrics in Grafana and update our services accordingly.

Please click on the Memory Usage per Container (Stacked) graph in Grafana and choose
View. You'll see a screen with a zoomed graph that displays the memory consumption of
the top twenty containers. Let's filter the metrics by selecting prometheus from the Service
Name list.

Prometheus uses approximately 175 MB of memory. Let's add that information to the
service:

Collecting Metrics and Monitoring the Cluster

[226]

docker service update \
 --reserve-memory 200m \
 prometheus

We updated the service by reserving of memory. We can assume that its
memory usage will increase with time, so we reserved a bit more than what it currently
needs.

Please note that does not truly reserve memory, but gives a hint to
Swarm how much we expect the service should use. With that information, Swarm will
make a better distribution of services inside the cluster.

Let's confirm that Swarm rescheduled the service:

docker service ps prometheus

The output of the command is as follows (IDs and Error columns are removed
for brevity):

NAME IMAGE NODE DESIRED STATE
prometheus.1 prom/prometheus:v1.2.1 swarm-3 Running
_ prometheus.1 prom/prometheus:v1.2.1 swarm-1 Shutdown
_ prometheus.1 prom/prometheus:v1.2.1 swarm-5 Shutdown

CURRENT STATE
Running 5 minutes ago
Shutdown 6 minutes ago
Shutdown 5 hours ago

We can also confirm that the argument is indeed applied:

docker service inspect prometheus --pretty

The output is as follows:

ID: 6yez6se1oejvfhkvyuqg0ljfy
Name: prometheus
Mode: Replicated
 Replicas: 1
Update status:
 State: completed
 Started: 10 minutes ago
 Completed: 9 minutes ago
 Message: update completed
Placement:
UpdateConfig:
 Parallelism: 1
 On failure: pause

Collecting Metrics and Monitoring the Cluster

[227]

ContainerSpec:
 Image: prom/prometheus:v1.2.1
 Mounts:
 Target = /etc/prometheus/prometheus.yml
 Source = /Users/vfarcic/IdeaProjects/cloud-
provisioning/conf/prometheus.yml
 ReadOnly = false
 Type = bind
 Target = /prometheus
 Source = /Users/vfarcic/IdeaProjects/cloud-provisioning/docker/prometheus
 ReadOnly = false
 Type = bind
Resources:
 Reservations:
 Memory: 200 MiB
Networks: 51rht5mtx58tg5gxdzo2rzirw
Ports:
 Protocol = tcp
 TargetPort = 9090
 PublishedPort = 9090

As you can observe from the section, the service now has reserved.
We should repeat a similar set of actions for , , ,

, and services.

The results might be different on your laptop. In my case, the commands that reserve
memory based on Grafana metrics are as follows:

docker service update \
 --reserve-memory 250m logstash

docker service update \
 --reserve-memory 10m go-demo_main

docker service update \
 --reserve-memory 100m go-demo_db

docker service update \
 --reserve-memory 300m elasticsearch

docker service update \
 --reserve-memory 10m proxy_proxy

After each update, Swarm will reschedule containers that belong to the service. As a result,
it'll place them inside a cluster in such a way that none is saturated with memory
consumption. You should extend the process with CPU and other metrics and repeat it
periodically.

Collecting Metrics and Monitoring the Cluster

[228]

Please note that increasing memory and CPU limits and reservations is not always the right
thing to do. In quite a few cases, you might want to scale services so that resource
utilization is distributed among multiple replicas.

We used ready-to-go dashboards throughout this chapter. I think that they are an excellent
starting point and provide a good learning experience. With time, you will discover what
works best for your organization and probably start modifying those dashboards or create
new ones specifically tailored to your needs. Hopefully, you will contribute them back to
the community.

Please let me know if you create a dashboard that complements those we used in this
chapter or even replaces them. I'd be happy to feature them in the book.

Before we move on to the next chapter, let us discuss some of the monitoring best practices.

Monitoring best practices
You might be tempted to put as much information in a dashboard as you can. There are so
many metrics, so why not visualize them? Right? Wrong! Too much data makes important
information hard to find. It makes us ignore what we see since too much of it is noise.

What you really need is to have a quick glance of the central dashboard and deduce in an
instant whether there is anything that might require your attention. If there is something to
be fixed or adjusted, you can use more specialized Grafana dashboards or ad-hoc queries in
Prometheus to drill into details.

Create the central dashboard with just enough information to fit a screen and provide a
good overview of the system. Further on, create additional dashboards with more details.
They should be organized similar to how we organize code. There is usually a main
function that is an entry point towards more specific classes. When we start coding, we tend
to open the main function and drill down from it until we reach a piece of code that will
occupy our attention. Dashboards should be similar. We start with a dashboard that
provides critical and very generic information. Such a dashboard should be our home and
provide just enough metrics to deduce whether there is a reason to go deeper into more
specific dashboards.

A single dashboard should have no more than six graphs. That's usually just the size that
fits a single screen. You are not supposed to scroll up and down to see all the graphs while
in the central dashboard. Everything essential or critical should be visible.

Each graph should be limited to no more than six plots. In many cases, more than that only
produces noise that is hard to decipher.

Collecting Metrics and Monitoring the Cluster

[229]

Do allow different teams to have different dashboards, especially those that are considered
as primary or main. Trying to create a dashboard that fits everyone's needs is a bad practice.
Each team has different priorities that should be fulfilled with different metrics
visualizations.

Do the dashboards we used in this chapter fulfill those rules? They don't. They have too
many graphs with too many plots. That begs the question: Why did we use them? The
answer is simple. I wanted to show you a quick and dirty way to get a monitoring system
up-and-running in no time. I also wanted to show you as many different graphs as I could
without overloading your brain. See for yourself which graphs do not provide value and
remove them. Keep those that are truly useful and modify those that provide partial value.
Create your own dashboards. See what works best for you.

What now?
Put the monitoring system into practice. Don't try to make it perfect from the first attempt.
You'll fail if you do. Iterate over dashboards. Start small, grow with time. If you are a bigger
organization, let each team create their own set of dashboards and share what worked well,
as well as what failed to provide enough value.

Monitoring is not a simple thing to do unless you want to spend all your time in front of a
dashboard. The solution should be designed in such a way that you need only a glance to
discover whether a part of the system requires your attention.

Now let us destroy everything we did. The next chapter will be a new subject with a new
set of challenges and solutions:

docker-machine rm -f swarm-1 \
 swarm-2 swarm-3 swarm-4 swarm-5

111
Embracing Destruction: Pets

versus Cattle
Any roles involved in a project that do not directly contribute toward the goal of putting
valuable software in the hands of users as quickly as possible should be carefully
considered.

-Stein Inge Morisbak

We should discuss the high-level strategies before we start exploring tools and processes
that will help us create and operate a "real" Swarm cluster. How are we going to treat our
servers? Are they going to be pets or cattle?

How do you know whether you are treating your servers as pets or cattle? Ask yourself the
following question. What will happen if several of your servers went offline right now? If
they are pets, such a situation will cause a significant disruption for your users. If they are
cattle, such an outcome will go unnoticed. Since you are running multiple instances of a
service distributed across multiple nodes, failure of a single server (or a couple of them),
would not result in a failure of all replicas. The only immediate effect would be that some
services would run fewer instances and would have a higher load. Failed replicas would be
rescheduled so the original number would soon be restored. In parallel, failed nodes would
be replaced with new VMs. The only adverse effect of a failure of a couple of servers would
be increased response time due to lower capacity. After a couple of minutes, everything
would get back to normal with failed replicas rescheduled, and failed nodes replaced with
new VMs. And the best thing is, it would all happen without manual interaction. If that's
how your cluster is operating right now, you are treating your servers as cattle. Otherwise,
you have pets in your data center.

Embracing Destruction: Pets versus Cattle

[231]

Traditional systems administration is based on physical servers. To add a new machine to a
data center, we need to purchase it upfront, wait until it arrives from the vendor, configure
it in our office, move it to the data center location, and plug it in. The whole process can
take a considerable amount of time. It is not uncommon for weeks, or even months to pass
until we get a new fully provisioned server operating inside a data center.

Considering such a big waiting period and the costs, it is only natural that we do our best to
keep servers as healthy as possible. If one of them starts behaving badly, we will do
everything in our power to fix it as quickly as possible. What else can we do? Wait for
weeks or months until a replacement arrives? Of course not. SSH into the faulty machine,
find out what’s wrong, and fix it. If a process died, bring it up again. If a hard disk broke,
replace it. If a server is overloaded, add more memory.

It is only natural that, in such circumstances, we develop an emotional attachment to each
of our servers. It starts with a name. Each new server gets one. There is Garfield, Mordor,
Spiderman, and Sabrina. We might even decide on a theme. Maybe all our servers will get a
name based on comic book superheroes. Or perhaps you prefer mythical creatures? How
about ex-boyfriends and ex-girlfriends? Once we give a server a name, we start treating it as
a pet. How do you feel? Do you need something? What’s wrong? Should I take you to a
veterinary? Each pet server is unique, hand raised, and cared for.

The change started with virtualization. The ability to create and destroy virtual machines
allowed us to take a different approach to computing. Virtualization enabled us to stop
treating our servers as pets. If virtualized servers are created and destroyed on a whim, it is
pointless to give them names. There is no emotional attachment since their lifespan can be
very short. Instead of Garfield, now we have vm262.ecme.com. Tomorrow, when we try to log
into it, we might discover that it was replaced with vm435.ecme.com.

With virtualization, we started treating our servers as cattle. They do not have names, but
numbers. We don’t deal with them individually but as a herd. If a specimen is sick, we kill
it. Curing it is slow and runs a risk of infecting the rest of the herd. If a server starts
manifesting problems, terminate it immediately, and replace it with a new one.

The problem with this approach lies in habits we have accumulated over the years working
with physical hardware. The switch from pets to cattle requires a mental change. It requires
unlearning obsolete practices before switching to new ways of working.

Embracing Destruction: Pets versus Cattle

[232]

Even though on-premise virtualization opened doors to quite a few new possibilities, many
continued treating virtualized servers in the same way as they were treating physical nodes.
Old habits die hard. Even though our servers became a herd, we keep treating each as pets.
Part of the reason for the difficulty making a switch towards more elastic and dynamic
computing lies in physical limitations of our data center. New VMs can be created only if
there are available resources. Once we reach the limit, a VM has to be destroyed for a new
one to be created. Our physical servers are still a valuable commodity. VMs gave us
elasticity that is still bound by limitations imposed by the total of the computing power we
possess.

We treat our valuable possessions with care since they are not cheap or easy to replace. We
take good care of them since they should last for a long time. On the other hand, we have an
entirely different approach to cheap things that are easy to replace. If a glass breaks, you
probably don’t try to glue the pieces together. You throw them to trash. There are plenty of
other glasses in a cupboard, and all we have to do when their number becomes too small is
buy a new set the next time we visit a shopping mall. Today we do not even need to go to a
shopping mall but can order a new set online, and it will be delivered to our doorstep the
same day. We should apply the same logic to servers.

Cloud computing made a big difference. Servers are no longer a valuable possession but a
commodity. We can replace a node at any time without any additional cost. We can add a
dozen servers to our cluster in a matter of minutes. We can remove them when we don't
need them and reduce the cost.

Cloud computing is fundamentally different from "traditional" data centers. When utilized
to its full potential, no server is indispensable or unique. The worst thing we can do is
transition to the cloud without changing our processes and architecture. If we simply move
our on-premise servers to the cloud without changing the processes we use to maintain
them, the only thing we'll accomplish is higher cost.

With cloud computing, the notion of a server, its value, and the time required to get it,
changed drastically. Such a significant change needs to be followed with a new set of
processes and tools that execute them. Fault tolerance is the goal, speed is the key, and
automation is a must.

Embracing Destruction: Pets versus Cattle

[233]

What now?
Up until this point, we used Docker Machine to create servers locally and join them into a
cluster. The intention was to teach you the fundamentals of creating and operating a Swarm
cluster without spending money on hosting providers. Now that we reached the point
where you are comfortable with how Docker Swarm Mode works, the time has come to
move to "real" servers. We’ll continue being "cheap" by using small instances that are either
free or very inexpensive, and create just enough servers to demonstrate the process. The
goal of the chapters that follow will be to walk you through a few setups, compare them,
and choose the one we'll apply to our production. The only things you should change are
VM instance types and the number of servers. Everything else can be the same as in the
examples we’ll work with.

We already saw how to accomplish fault tolerance by utilizing Docker Swarm as the service
scheduler. The chapters that follow will try to achieve the required speed and automation
on the infrastructure level. We'll use different tools and processes to automate the creation
of a cluster in a few cloud computing providers. The first in line is Amazon Web Services
(AWS).

struction: Pets vs Cattle

112
Creating and Managing a
Docker Swarm Cluster in

Amazon Web Services
In fast moving markets, adaptation is significantly more important than optimization.

–Larry Constantine

The time has finally come to set up a Swarm cluster that is closer to what we should have in
production. The reason I added the word "closer" lies in a few subjects that we'll explore in
later chapters. Later on, once we go through a few hosting providers, we'll work on the
missing pieces (example: persistent storage).

For now, we'll limit ourselves to the creation of a production-like cluster and exploration of
different tools we can choose from.

Since AWS holds by far the biggest share of the hosting market, it is the natural choice as
the first provider we'll explore.

I'm sure that AWS does not need much of an introduction. Even if you haven't used it, I'm
sure you are aware of its existence and a general gist.

Amazon Web Services (AWS) were created in 2006 with the offering of IT infrastructure
services. The type of services AWS offered later on became commonly known as cloud
computing. With the cloud, companies and individuals alike no longer need to plan for and
procure servers and other IT infrastructure weeks or months in advance. Instead, they can
instantly spin up hundreds or even thousands of servers in minutes.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[235]

I will assume that you already have an AWS account. If that's not the case, please head over
to Amazon Web Services and sign-up. Even if you already made up a firm decision to use a
different cloud computing provider or in-house servers, I highly recommend going through
this chapter. You will be introduced to a few tools you might not have in your tool belt and
be able to compare AWS with other solutions.

Before we jump into practical exercises, we'll need to install the AWS CLI, get the access
keys and decide the region and the zone where we'll run the cluster.

Installing AWS CLI and setting up the
environment variables
The first thing we should do is get the AWS credentials.

Please open the Amazon EC2 Console (), click on
your name from the top-right menu, and select My Security Credentials. You will see the
screen with different types of credentials. Expand the Access Keys (Access Key ID and
Secret Access Key) section and click the Create New Access Key button. Expand the Show
Access Key section to see the keys.

You will not be able to view the keys later on, so this is the only chance you'll have to
Download Key File.

All the commands from this chapter are available in the (
)

Gist.

We'll place the keys as environment variables that will be used by the tools we'll explore in
this chapter:

export AWS_ACCESS_KEY_ID=[...]

export AWS_SECRET_ACCESS_KEY=[...]

Please replace with the actual values.

We'll need to install AWS Command Line Interface (CLI) (
)and gather info about your account.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[236]

A note to Windows users
I found the most convienent way to get awscli installed on Windows is to
use Chocolatey (). Download and install
Chocolatey, then run from an Administrator
Command Prompt. Later in the chapter, Chocolatey will be used to

, , and terraform.

If you haven't already, please open the Installing the AWS Command Line Interface (
) page and follow the

installation method best suited for your OS.

Once you're done, we should confirm that the installation was successful by outputting the
version:

aws --version

The output (from my laptop) is as follows:

aws-cli/1.11.15 Python/2.7.10 Darwin/16.0.0 botocore/1.4.72

A note to Windows users
You might need to reopen your GitBash terminal for the changes to the
environment variable to take effect.

Now that the CLI is installed, we can get the region and the availability zones our cluster
will run in.

Amazon EC2 is hosted in multiple locations worldwide. These locations are composed of
regions and availability zones. Each region is a separate geographic area composed of
multiple isolated locations known as availability zones. Amazon EC2 provides you the
ability to place resources, such as instances, and data in multiple locations.

You can see the currently available regions from the Available Regions (

) section of the Regions and Availability Zones (
) page.

Throughout this chapter, I will be using (US East (N. Virginia)) region. Feel free
to change it to the region closest to your location.

Please put the region inside the environment variable :

export AWS_DEFAULT_REGION=us-east-1

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[237]

With the region selected, we can decide which availability zone we'll select to run our
cluster.

Each region is completely independent and consists of multiple availability zones. Zones
within a region are isolated and connected through low-latency links.

As a general rule, you should place all your nodes of a cluster inside one region and benefit
from low-latency links. Those nodes should be distributed across multiple availability zones
so that failure of one of them does not imply failure of the whole cluster. If you have a need
to operate across multiple regions, the best option is to set up multiple clusters (one for each
region). Otherwise, if you’d set up a single cluster that spans multiple regions, you might
experience latency problems.

A note to first time AWS users
If this is the first time you are executing , you will receive a message
asking you to configure credentials. Please run the
command and follow the instructions. You will be asked for credentials.
Use those we generated earlier. Feel free to answer the rest of the
questions with the enter key.

Let's use the AWS CLI to see the available zones within the selected region:

aws ec2 describe-availability-zones \
 --region $AWS_DEFAULT_REGION

Since I selected as the region, the output is as follows:

{
 "AvailabilityZones": [
 {
 "State": "available",
 "RegionName": "us-east-1",
 "Messages": [],
 "ZoneName": "us-east-1a"
 },
 {
 "State": "available",
 "RegionName": "us-east-1",
 "Messages": [],
 "ZoneName": "us-east-1b"
 },

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[238]

 {
 "State": "available",
 "RegionName": "us-east-1",
 "Messages": [],
 "ZoneName": "us-east-1d"
 },
 {
 "State": "available",
 "RegionName": "us-east-1",
 "Messages": [],
 "ZoneName": "us-east-1e"
 }
]
}

As you can see, there are four zones (, , , and) available for the region. In
your case, depending on the selected region, the output might be different.

Please choose the zones and put them inside environment variables, one for each of the five
servers that will form our cluster:

AWS_ZONE[1]=b

AWS_ZONE[2]=d

AWS_ZONE[3]=e

AWS_ZONE[4]=b

AWS_ZONE[5]=d

Feel free to choose any combination of availability zones. In my case, I made a decision to
distribute the cluster across zones , , and .

Now we are all set with the prerequisites that will allow us to create the first Swarm cluster
in AWS. Since we used Docker Machine throughout the most of the book, it will be our first
choice.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[239]

Setting up a Swarm cluster with Docker
Machine and AWS CLI
We'll continue using the (

) repository. It contains configurations and scripts that'll help us out.
You already have it cloned. To be on the safe side, we'll pull the latest version:

cd cloud-provisioning

git pull

Let's create the first EC2 instance:

docker-machine create \
 --driver amazonec2 \
 --amazonec2-zone ${AWS_ZONE[1]} \
 --amazonec2-tags "Type,manager" \
 swarm-1

We specified that the Docker Machine should use the driver to create an instance
in the zone we defined as the environment variable .

We made a tag with the key and the value manager. Tag are mostly for informational
purposes.

Finally, we specified the name of the instance to be .

The output is as follows:

Running pre-create checks...
Creating machine...
(swarm-1) Launching instance...
Waiting for machine to be running, this may take a few minutes...
Detecting operating system of created instance...
Waiting for SSH to be available...
Detecting the provisioner...
Provisioning with ubuntu(systemd)...
Installing Docker...
Copying certs to the local machine directory...
Copying certs to the remote machine...
Setting Docker configuration on the remote daemon...
Checking connection to Docker...
Docker is up and running!
To see how to connect your Docker Client to the Docker Engine running on
this\ virtual machine, run: docker-machine env swarm-1

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[240]

Docker machine launched an AWS EC2 instance, provisioned it with Ubuntu, and installed
and configured Docker Engine.

Now we can initialize the cluster. We should use private IPs for all communication between
nodes. Unfortunately, the command returns only the public IP, so
we'll have to resort to a different method to get the private IP.
We can use the command to retrieve all the information
about our EC2 instances. We also filter only running instances by adding

, . Doing so excludes instances that are being terminated or
that are terminated:

aws ec2 describe-instances \
 --filter "Name=tag:Name,Values=swarm-1" \
 "Name=instance-state-name,Values=running"

The command lists all the EC2 instances. We combined it with
 to limit the output to the instance tagged with the name .

The relevant sample of the output is as follows:

{
"Reservations": [
 {
 ...
 "Instances": [
 {
 ...
 "PrivateIpAddress": "172.31.51.25",
 ...

Even though we got all the information related to the EC2 instance, we still need
to limit the output to the value. We'll use (

)to filter the output and get what we need. Please download and install the
distribution suited for your OS:

A note to Windows users
Using Chocolatey, install from an Administrator Command Prompt via

.

MANAGER_IP=$(aws ec2 describe-instances \
 --filter "Name=tag:Name,Values=swarm-1" \
 "Name=instance-state-name,Values=running" \
 | jq -r ".Reservations[0].Instances[0].PrivateIpAddress")

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[241]

We used to retrieve the first element of the Reservations array. Within it, we got the first
entry of the Instances, followed with the . The returns the value in
its raw format (in this case without double quotes that surround the IP). The result of the
command is stored in the environment variable .
To be on the safe side, we can echo the value of the newly created variable:

echo $MANAGER_IP

The output is as follows:

172.31.51.25

Now we can execute the command in the same way as we did in the previous
chapters:

eval $(docker-machine env swarm-1)

docker swarm init \
 --advertise-addr $MANAGER_IP

Let's confirm that the cluster is indeed initialized:

docker node ls

The output is as follows (IDs are removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
swarm-1 Ready Active Leader

Apart from creating an EC2 instance, created a security group as well.

A security group acts as a virtual firewall that controls the traffic. When you launch an
instance, you associate one or more security groups with the instance. You add rules to each
security group that allows traffic to or from its associated instances.

At the time of this writing, Docker Machine was not yet adapted to support Swarm Mode
out of the box. As a result, it created an AWS security group named and
opened only the ingress (inbound) ports and . Egress (output) is opened for all
ports.

For Swarm Mode to function correctly, the ingress ports that should be opened are as
follows:

TCP port 2377 for cluster management communications
TCP and UDP port 7946 for communication among nodes
TCP and UDP port 4789 for overlay network traffic

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[242]

To modify the security group, we need to get its ID. We can see the info of a security group
with the command:

aws ec2 describe-security-groups \
 --filter "Name=group-name,Values=docker-machine"

The part of the output is as follows:

...
 "GroupName": "docker-machine",
 "VpcId": "vpc-7bbc391c",
 "OwnerId": "036548781187",
 "GroupId": "sg-f57bf388"
 }
]
}

The command that will assign the ID to the environment variable is
as follows:

SECURITY_GROUP_ID=$(aws ec2 \
 describe-security-groups \
 --filter \
 "Name=group-name,Values=docker-machine" |\
 jq -r '.SecurityGroups[0].GroupId')

We requested the information about the security group and filtered the
JSON output to get the key located in the first element of the
array.

Now we can use the command to open
TCP ports , , and :

for p in 2377 7946 4789; do \
 aws ec2 authorize-security-group-ingress \
 --group-id $SECURITY_GROUP_ID \
 --protocol tcp \
 --port $p \
 --source-group $SECURITY_GROUP_ID
done

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[243]

We should execute a similar command to open UDP ports and :

for p in 7946 4789; do \
 aws ec2 authorize-security-group-ingress \
 --group-id $SECURITY_GROUP_ID \
 --protocol udp \
 --port $p \
 --source-group $SECURITY_GROUP_ID
done

Please note that, in all the cases, we specified that the should be the same as
the security group. That means that the ports will be opened only to instances that belong to
the same group. In other words, those ports will not be available to the public. Since they
will be used only for internal communication within the cluster, there is no reason to put
our security at risk by exposing those ports further.

Please repeat the command to confirm that the
ports were indeed opened:

aws ec2 describe-security-groups \
 --filter \
 "Name=group-name,Values=docker-machine"

Now we can add more nodes to the cluster. We'll start by creating two new instances and
joining them as managers:

MANAGER_TOKEN=$(docker swarm join-token -q manager)

for i in 2 3; do
 docker-machine create \
 --driver amazonec2 \
 --amazonec2-zone ${AWS_ZONE[$i]} \
 --amazonec2-tags "Type,manager" \
 swarm-$i

 IP=$(aws ec2 describe-instances \
 --filter "Name=tag:Name,Values=swarm-$i" \
 "Name=instance-state-name,Values=running" \
 | jq -r ".Reservations[0].Instances[0].PrivateIpAddress")

eval $(docker-machine env swarm-$i)

 docker swarm join \
 --token $MANAGER_TOKEN \
 --advertise-addr $IP \
 $MANAGER_IP:2377
done

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[244]

There's no need to explain the commands we just executed since they are the combination
of those we used before.

We'll add a few worker nodes as well:

WORKER_TOKEN=$(docker swarm join-token -q worker)

for i in 4 5; do
 docker-machine create \
 --driver amazonec2 \
 --amazonec2-zone ${AWS_ZONE[$i]} \
 --amazonec2-tags "type,worker" \
 swarm-$i

 IP=$(aws ec2 describe-instances \
 --filter "Name=tag:Name,Values=swarm-$i" \
 "Name=instance-state-name,Values=running" \
 | jq -r ".Reservations[0].Instances[0].PrivateIpAddress")

eval $(docker-machine env swarm-$i)

 docker swarm join \
 --token $WORKER_TOKEN \
 --advertise-addr $IP \
 $MANAGER_IP:2377
done

Let's confirm that all five nodes are indeed forming the cluster:

eval $(docker-machine env swarm-1)

docker node ls

The output is as follows (IDs are removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
swarm-4 Ready Active
swarm-2 Ready Active Reachable
swarm-3 Ready Active Reachable
swarm-5 Ready Active
swarm-1 Ready Active Leader

That's it. Our cluster is ready. The only thing left is to deploy a few services and confirm
that the cluster is working as expected.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[245]

Since we already created the services quite a few times, we'll speed up the process with the
 (

) and
 (

) Compose stacks. They'll create the ,
, , and services:

docker-machine ssh swarm-1

sudo docker network create --driver overlay proxy

curl -o proxy-stack.yml \
 https://raw.githubusercontent.com/ \
vfarcic/docker-flow-proxy/master/docker-compose-stack.yml

sudo docker stack deploy \
 -c proxy-stack.yml proxy

curl -o go-demo-stack.yml \
 https://raw.githubusercontent.com/ \
vfarcic/go-demo/master/docker-compose-stack.yml

sudo docker stack deploy \
 -c go-demo-stack.yml go-demo

exit

docker service ls

Non-Windows users do not need to enter the machine and can accomplish the
same result by deploying the stacks directly from their laptops.

It'll take a few moments until all the images are downloaded. After a while, the output of
the command should be as follows (IDs are removed for brevity):

NAME MODE REPLICA IMAGE
go-demo_db replicated 1/1 mongo:latest
go-demo_main replicated 3/3 vfarcic/go-demo:latest
proxy_swarm-listener replicated 1/1 vfarcic/docker-flow-
swarmlistener:latest
proxy_proxy replicated 2/2 vfarcic/docker-flow-proxy:latest

Let's confirm that the service is accessible:

curl "$(docker-machine ip swarm-1)/demo/hello"

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[246]

The output is as follows:

curl: (7) Failed to connect to 54.157.196.113 port 80: Operation timed out

That's embarrassing. Even though all the services are running and we used the same
commands as in the previous chapters, we cannot access the and, through it, the

 service.

The explanation is quite simple. We never opened ports and . By default, all
incoming traffic to AWS EC2 instances is closed, and we opened only the ports required for
Swarm to operate properly. They are open inside EC2 instances attached to the

 group, but not outside our AWS VPC.

We'll use the command to open the
ports and . This time we'll specify instead as the source:

for p in 80 443; do
 aws ec2 authorize-security-group-ingress \
 --group-id $SECURITY_GROUP_ID \
 --protocol tcp \
 --port $p \
 --cidr "0.0.0.0/0"
done

The command was executed twice;
once for port and the second time for .

Let's send the request one more time:

curl "$(docker-machine ip swarm-1)/demo/hello"

This time the output is as expected. We got our response:

hello, world!

We set up the whole Swarm cluster in AWS using Docker Machine and AWS CLI. Is that
everything we need? That depends on the requirements we might define for our cluster. We
should probably add a few Elastic IP addresses.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[247]

An Elastic IP address is a static IP address designed for dynamic cloud computing. It is
associated with your AWS account. With an Elastic IP address, you can mask the failure of
an instance or software by rapidly remapping the address to another instance in your
account. An Elastic IP address is a public IP address which is reachable from the Internet. If
your instance does not have a public IP address, you can associate an Elastic IP address
with it to enable communication with the Internet; for example, to connect to your instance
from your local computer.

In other words, we should probably set at least two Elastic IPs and map them to two of the
EC2 instances in the cluster. Those two (or more) IPs would be set as our DNS records. That
way, when an instance fails, and we replace it with a new one, we can remap the Elastic IP
without affecting our users.

There are quite a few other improvements we could do. However, that would put us in an
awkward position. We would be using a tool that is not meant for setting up a complicated
cluster.

The creation of VMs was quite slow. Docker Machine spent too much time provisioning it
with Ubuntu and installing Docker Engine. We can reduce that time by creating our own
Amazon Machine Image (AMI) with Docker Engine pre-installed. However, with such an
action, the main reason for using Docker Machine would be gone. Its primary usefulness is
simplicity. Once we start complicating the setup with other AWS resources, we'll realize
that the simplicity is being replaced with too many ad-hoc commands.

Running and commands works great when we are dealing with a
small cluster, especially when we want to create something fast and potentially not very
durable. The biggest problem is that everything we've done so far has been ad-hoc
commands. Chances are that we would not be able to reproduce the same steps the second
time. Our infrastructure is not documented, so our team would not know what constitutes
our cluster.

My recommendation is to use and as a quick and dirty way to create
a cluster mostly for demo purposes. It can be useful for production as well, as long as the
cluster is relatively small.

We should look at alternatives if we'd like to set up a complicated, bigger, and potentially
more permanent solution.

Let us delete the cluster we created and explore the alternatives with a clean slate:

for i in 1 2 3 4 5; do
 docker-machine rm -f swarm-$i
done

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[248]

The only thing left is to remove the security group created:

aws ec2 delete-security-group \
 --group-id $SECURITY_GROUP_ID

The last command might fail if the instances are not yet terminated. If that's the case, please
wait a few moments and repeat the command.

Let us move on and explore Docker for AWS.

Setting up a Swarm cluster with Docker for
AWS
Before we create a Swarm cluster using Docker for AWS, we'll need to generate a Key Pair
that we'll use to SSH into the EC2 instances.

To create a new , please execute the command that follows:

aws ec2 create-key-pair \
 --key-name devops21 \
 | jq -r '.KeyMaterial' >devops21.pem

We executed command and passed as the name.
The output was filtered with so that only the actual value is returned. Finally, we sent
the output to the file.

If someone gets a hold of your key file, your instances would be exposed. Therefore, we
should move the key somewhere safe.

A common location for SSH keys on Linux/OSX systems is . If you are a
Windows user, feel free to change the command that follows to any destination you think is
appropriate:

mv devops21.pem $HOME/.ssh/devops21.pem

We should also change permissions by giving the current user only the read access and
removing all permissions from other users or groups. Feel free to skip the command that
follows if you are a Windows user:

chmod 400 $HOME/.ssh/devops21.pem

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[249]

Finally, we'll put the path to the key inside the environment variable :

export KEY_PATH=$HOME/.ssh/devops21.pem

Now we are ready to create a Swarm stack using Docker for AWS.

Please open the Docker for AWS Release Notes (
) page and click the Deploy Docker Community Edition for AWS

button.

After you log into the AWS Console, you will be presented with the Select Template screen.
It is a generic CloudFormation screen with the Docker for AWS template already selected:

There's not much to do here, so please click the Next button.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[250]

The next screen allows us to specify details of the stack we are about to launch. The fields
should be self-explanatory. The only modification we'll make is the reduction of Swarm
workers from 5 to 1. The exercises in this section won't need more than four servers, so
three managers and one worker should suffice. We'll leave instance types with their default
values . By creating only four micro nodes, the whole exercise should have almost
negligible cost, and you won't be able to complain to your friends that you went bankrupt
because of me. The total cost will probably be smaller than the price of a can of soda or a
cup of coffee you're drinking while reading this.

The Which SSH key to use? field should hold the key we just created. Please
select it:

Click the Next button.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[251]

We won't change anything from the Options screen. Later on, when you get comfortable
with Docker for AWS, you might want to go back to this screen and fiddle with the
additional options. For now, we'll just ignore its existence:

Click the Next button.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[252]

We reached the last screen. Feel free to review the information about the stack. Once you're
done, click the I acknowledge that AWS CloudFormation might create IAM resources.
checkbox followed by the Create button:

You will see the screen that allows you to create a new stack. Please click the refresh button
located in the top-right corner. You'll see the Docker stack with the status

.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[253]

It will take a while until all the resources are created. If you'd like to see the progress, please
select the Docker stack and click the restore button located in the bottom-right part of the
screen. You'll see the list of all the events generated by the Docker for AWS template. Feel
free to explore the content of the tabs while waiting for the stack creation to finish:

We can proceed once the Docker stack status is .

Our cluster is ready. We can enter one of the manager instances and explore the cluster in
more detail.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[254]

To find information about Swarm manager instances, please click the Outputs tab:

You'll see two rows.

We'll store the value of the DefaultDNSTarget in an environment variable. It'll come in
handy soon:

DNS=[...]

Please replace with the actual DefaultDNSTarget value.

If this were a "real" production cluster, you'd use it to update your DNS entries. It is the
public entry to your system.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[255]

Click the link next to the Managers column. You will be presented with the EC2 Instances
screen that contains the results filtered by manager nodes. The workers are hidden:

Select one of the managers and find its Public IP. As with the DNS, we'll store it as an
environment variable:

MANAGER_IP=[...]

Please replace with the actual Public IP value.

We are, finally, ready to SSH into one of the managers and explore the cluster we just
created:

ssh -i $KEY_PATH docker@$MANAGER_IP

Once inside the server, you will be presented with a welcome message. The OS specifically
made for this stack is very minimalistic, and the message reflects that:

Welcome to Docker!
~ $

As usual, we'll start by listing the nodes that form the cluster:

docker node ls

The output is as follows (IDs are removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ip-10-0-17-154.ec2.internal Ready Active Reachable
ip-10-0-15-215.ec2.internal Ready Active Reachable
ip-10-0-31-44.ec2.internal Ready Active
ip-10-0-15-214.ec2.internal Ready Active Leader

The only thing left is to create a few services that will confirm that the cluster works as
expected.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[256]

We'll deploy the same (

) and (
) stacks we used with the cluster we

created with Docker Machine:

sudo docker network create --driver overlay proxy

curl -o proxy-stack.yml \
 https://raw.githubusercontent.com/ \
vfarcic/docker-flow-proxy/master/docker-compose-stack.yml

docker stack deploy \
 -c proxy-stack.yml proxy

curl -o go-demo-stack.yml \
 https://raw.githubusercontent.com/ \
vfarcic/go-demo/master/docker-compose-stack.yml

docker stack deploy \
 -c go-demo-stack.yml go-demo

We downloaded the Compose file and deployed the stacks.

Let's confirm that the services are indeed up and running:

docker service ls

After a while, the output should be as follows (IDs are removed for brevity):

NAME MODE REPLICAS
proxy_proxy replicated 2/2
go-demo_main replicated 3/3
proxy_swarm-listener replicated 1/1
go-demo_db replicated 1/1
--
IMAGE
vfarcic/docker-flow-proxy:latest
vfarcic/go-demo:latest
vfarcic/docker-flow-swarm-listener:latest
mongo:latest

Let's get out of the server and confirm that the service is accessible to the public:

exit

curl $DNS/demo/hello

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[257]

As expected, we received the response confirming that the cluster is operational and
accessible:

hello, world!

What happens if our servers become too crowded and we need to expand the capacity?
How can we increase (or decrease) the number of nodes that form our cluster? The answer
lies in AWS Auto Scaling Groups. Please click the Auto Scaling Groups link from the
AUTO SCALING group in the left-hand menu of the EC2 console and select the row with
the group name that starts with :

To scale or de-scale the number of nodes, all we have to do is click the Edit button from the
Actions menu, change the value of the Desired field from to 2, and click the Save button.
The number of Desired instances will immediately change to . However, it might take a
while until the actual number of instances aligns with the desire. Let's go back to one of the
manager servers and confirm that the desire we expressed is indeed fulfilled:

ssh -i $KEY_PATH docker@$MANAGER_IP

docker node ls

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[258]

It might take a while until the new instance is created and joined to the cluster. The end
result should be as follows (IDs are removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ip-10-0-17-154.ec2.internal Ready Active Reachable
ip-10-0-15-215.ec2.internal Ready Active Reachable
ip-10-0-31-44.ec2.internal Ready Active
ip-10-0-15-214.ec2.internal Ready Active Leader
ip-10-0-11-174.ec2.internal Ready Active

What happens in case one of the servers fails? After all, everything fails sooner or later. We
can test that by removing one of the nodes.

Please click the Instances link from the left-hand menu of the EC2 console, select one of the
 nodes, click Actions, and change the Instance State to Terminate.

Confirm the termination by clicking the Yes, Terminate button:

docker node ls

After a while, the output of the command should be as follows (IDs are removed
for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ip-10-0-17-154.ec2.internal Ready Active Reachable
ip-10-0-15-215.ec2.internal Ready Active Reachable
ip-10-0-31-44.ec2.internal Ready Active
ip-10-0-15-214.ec2.internal Ready Active Leader
ip-10-0-11-174.ec2.internal Down Active

Once the auto scaling group realizes that the node is down, it'll start the process of creating
a new one and joining it to the cluster:

docker node ls

Before long, the output of the command should be as follows (IDs are removed for
brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ip-10-0-17-154.ec2.internal Ready Active Reachable
ip-10-0-15-215.ec2.internal Ready Active Reachable
ip-10-0-2-22.ec2.internal Ready Active
ip-10-0-31-44.ec2.internal Ready Active
ip-10-0-15-214.ec2.internal Ready Active Leader
ip-10-0-11-174.ec2.internal Down Active

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[259]

The server we terminated is still marked as , and a new one is created and added to the
cluster in its place.

There's much more to the Docker for AWS stack than we explored. I hope that what you
learned during this brief exploration gave you enough base information to expand the
knowledge by yourself.

Instead of exploring more details about the stack, we'll see how we can accomplish the same
result without the UI. By this time you should know me well enough to understand that I
prefer automatable and reproducible ways of running tasks. I broke my "no UIs unless
necessary" rule only to give you a better understanding how the Docker for AWS stack
works. A fully automated way to do the same is coming up next.

Before we proceed, we'll delete the stack and, with it, remove the cluster. That will be the
last time you'll see any UI in this chapter.

Please click the Services link from the top menu, followed by the CloudFormation link.
Select the Docker stack, and click the Delete Stack option from the Actions menu:

Confirm the destruction by clicking the Yes, Delete button that appears after you click
Delete Stack.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[260]

Automatically setting up a Swarm cluster
with Docker for AWS
Creating a Docker for AWS stack from the UI was a great exercise. It helped us understand
better how things work. However, our mission is to automate as many processes as
possible. With automation, we gain speed, reliability, and higher quality. When we run
some manual tasks, like going through a UI and selecting different options, we are
increasing the chance that something will go wrong due to human error. We are slow. We
are much slower than machines when we need to execute repeatable steps.

Due to my mistrust in manual operations of repeatable tasks, it's only natural to seek a more
automated way to create a Docker for AWS stack. All we did through the AWS console was
to fill in a few fields which, in the background, generate parameters which are later used to
execute a process. We can do the same without a UI.

We'll start by defining a few environment variables. They will be the same as those you
already created in this chapter. Feel free to skip the next set of commands if you still have
the same terminal session open:

export AWS_DEFAULT_REGION=us-east-1

export AWS_ACCESS_KEY_ID=[...]

export AWS_SECRET_ACCESS_KEY=[...]

Please change to the region of your choice and replace with the actual
values.

If you recall the first screen that allowed us to select a template, you'll remember that there
was a field with pre-populated URL of a CloudFormation template. At the time of this
writing, the template is (

) Please note that the address differs from one region to another.
I'll be using edition.

We can inspect the template by retrieving its content with :

curl https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[261]

Please spend some time exploring the output. Even if you are not familiar with
 syntax, you should recognize the AWS resources.

The part of the template that we are most interested in is Metadata:

curl https://editions-us-east-1.s3.amazonaws.com/aws/stable/ \
Docker.tmpl \
 | jq '.Metadata'

The output is as follows:

{
 "AWS::CloudFormation::Interface": {
 "ParameterGroups": [
 {
 "Label": {
 "default": "Swarm Size"
 },
 "Parameters": [
 "ManagerSize",
 "ClusterSize"
]
 },
 {
 "Label": {
 "default": "Swarm Properties"
 },
 "Parameters": [
 "KeyName",
 "EnableSystemPrune",
 "EnableCloudWatchLogs"
]
 },
 {
 "Label": {
 "default": "Swarm Manager Properties"
 },
 "Parameters": [
 "ManagerInstanceType",
 "ManagerDiskSize",
 "ManagerDiskType"
]
 },
 {
 "Label": {
 "default": "Swarm Worker Properties"
 },
 "Parameters": [

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[262]

 "InstanceType",
 "WorkerDiskSize",
 "WorkerDiskType"
]
 }
],
 "ParameterLabels": {
 "ClusterSize": {
 "default": "Number of Swarm worker nodes?"
 },
 "EnableCloudWatchLogs": {
 "default": "Use Cloudwatch for container logging?"
 },
 "EnableSystemPrune": {
 "default": "Enable daily resource cleanup?"
 },
 "InstanceType": {
 "default": "Agent worker instance type?"
 },
 "KeyName": {
 "default": "Which SSH key to use?"
 },
 "ManagerDiskSize": {
 "default": "Manager ephemeral storage volume size?"
 },
 "ManagerDiskType": {
 "default": "Manager ephemeral storage volume type"
 },
 "ManagerInstanceType": {
 "default": "Swarm manager instance type?"
 },
 "ManagerSize": {
 "default": "Number of Swarm managers?"
 },
 "WorkerDiskSize": {
 "default": "Worker ephemeral storage volume size?"
 },
 "WorkerDiskType": {
 "default": "Worker ephemeral storage volume type"
 }
 }
 }
}

We can use the to customize the result of the template.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[263]

The command that would create the same stack like the one we generated using the AWS
console is as follows:

aws cloudformation create-stack \
 --template-url https://editions-us-east \
 -1.s3.amazonaws.com/aws/stable/Docker.tmpl \
 --stack-name swarm \
 --capabilities CAPABILITY_IAM \
 --parameters \
 ParameterKey=KeyName,ParameterValue=devops21 \
 ParameterKey=InstanceType,ParameterValue=t2.micro \
 ParameterKey=ManagerInstanceType,ParameterValue=t2.micro \
 ParameterKey=ManagerSize,ParameterValue=3 \
 ParameterKey=ClusterSize,ParameterValue=1

The command should be self-explanatory. We used to create a stack
with all the required parameters.

We can monitor the status of the stack resources by executing the
 command:

aws cloudformation describe-stack-resources \
 --stack-name swarm

After a while, three manager instances should be created:

aws ec2 describe-instances \
 --filters "Name=tag:Name,Values=swarm-Manager" \
 "Name=instance-state-name,Values=running"

Now we can enter one of the managers and start creating services. I'll skip the examples
that create services and validate that they are working correctly. The end-result is the same
cluster as the one we created previously with AWS console.

Feel free to explore the cluster on your own and the stack once you're finished:

aws cloudformation delete-stack \
 --stack-name swarm

For anything but small clusters, Docker for AWS is a much better option than using the
combination with and commands. It is a more robust and reliable
solution. However, it comes with its downsides.

Docker for AWS is still young and prone to frequent changes. Moreover, it is still so new that
the documentation is close to non-existent.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[264]

By being an out-of-the-box solution, it is very easy to use and requires little effort. That is
both a blessing and a curse. It is a good choice if what you need is, more or less, what Docker
for AWS offers. However, if your needs are different, you might experience quite a few
problems when trying to adapt the template to your needs. The solution is based on a
custom OS, template, and containers built specifically for this purpose.
Changing anything but the template is highly discouraged.

Overall, I think that Docker for AWS has a very bright future and is, in most cases, a better
solution than . If those two were the only choices, my vote would be to
use Docker for AWS. Fortunately, there are many other options we can choose from; much
more than could fit into a single chapter. You might be reading the printed edition of the
book, and I don't feel comfortable sacrificing too many trees. Therefore, I'll present only one
more set of tools we can use to create a Swarm (or any other type of) cluster.

Setting up a Swarm cluster with Packer and
Terraform
This time we'll use a set of tools completely unrelated to Docker. It'll be Packer(

)and Terraform (). Both are coming from
HashiCorp ().

A note to Windows users
Using Chocolatey, install packer from an administrator command prompt
via . For terraform, execute

 in an administrator command prompt.

Packer allows us to create machine images. With Terraform we can create, change, and
improve cluster infrastructure. Both tools support almost all the major providers. They can
be used with Amazon EC2, CloudStack, DigitalOcean, Google Compute Engine (GCE),
Microsoft Azure, VMware, VirtualBox, and quite a few others. The ability to be
infrastructure agnostic allows us to avoid vendor lock-in. With a minimal change in
configuration, we can easily transfer our cluster from one provider to another. Swarm is
designed to work seamlessly no matter which hosting provider we use, as long as the
infrastructure is properly defined. With Packer and Terraform we can define infrastructure
in such a way that transitioning from one to another is as painless as possible.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[265]

Using Packer to create Amazon Machine Images
The (

) repository already has the Packer and Terraform configurations we'll use. They are
located in the directory:

cd terraform/aws

The first step is to use Packer to create an Amazon Machine Image (AMI). To do that, we'll
need AWS access keys set as environment variables. They will be the same as those you
already created in this chapter. Feel free to skip the next set of commands if you still have
the same terminal session open:

export AWS_ACCESS_KEY_ID=[...]

export AWS_SECRET_ACCESS_KEY=[...]

export AWS_DEFAULT_REGION=us-east-1

Please replace with the actual values.

We'll instantiate all Swarm nodes from the same AMI. It'll be based on Ubuntu and have the
latest Docker engine installed.

The JSON definition of the image we are about to build is in
 (

):

cat packer-ubuntu-docker.json

The configuration consists of two sections: and :

{
 "builders": [{
 ...
 }],
 "provisioners": [{
 ...
 }]
}

The builders section defines all the information Packer needs to build an image. The
 section describes the commands that will be used to install and configure

software for the machines created by builders. The only required section is builders.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[266]

Builders are responsible for creating machines and generating images from them for
various platforms. For example, there are separate builders for EC2, VMware, VirtualBox,
and so on. Packer comes with many builders by default, and can also be extended to add
new builders.

The section we'll use is as follows:

"builders": [{
 "type": "amazon-ebs",
 "region": "us-east-1",
 "source_ami_filter": {
 "filters": {
 "virtualization-type": "hvm",
 "name": "*ubuntu-xenial-16.04-amd64-server-*",
 "root-device-type": "ebs"
 },
 "owners": ["099720109477"],
 "most_recent": true
 },
 "instance_type": "t2.micro",
 "ssh_username": "ubuntu",
 "ami_name": "devops21",
 "force_deregister": true
}],

Each type of builder has specific arguments that can be used. We specified that the is
. Besides , we can also use and

 builders for AMIs. In most cases, is what we should use. Please visit
the Amazon AMI Builder () page for
more info.

Please note that, when using type, we have to provide AWS keys. We could
have specified them through the access_key and secret_key fields. However, there is an
alternative. If those fields are not specified, Packer will try to get the values from
environment variables and . Since we
already exported them, there's no need to repeat ourselves by setting them inside the Packer
configuration. Moreover, those keys should be secret. Putting them inside the config would
risk exposure.

The region is critical since an AMI can be created only within one region. If we wanted to
share the same machine across multiple regions, each would need to be specified as a
separate builder.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[267]

We could have specified with the ID of the initial AMI that would serve as a
base for the newly created machine. However, since AMIs are unique to a particular region,
that would make it unusable if we decide to change the region. Instead, we took a different
approach and specified the which will populate the s
field. It'll filter AMIs and find an Ubuntu image with virtualization type with
Root Device Type set to . The owners field will limit the results to a trusted AMI
provider. Since the filter would fail if more than one AMI is returned, the
field will limit the result by selecting the newest image.

The field defines which EC2 instance type will be used to build the AMI.
Please note that this will not prevent us from instantiating VMs based on this image using
any other instance type supported, in this case, by Ubuntu.

Unlike other fields we used, the is not specific to the builder. It
specifies the user Packer will use while creating the image. Just like the instance type, it will
not prevent us from specifying any other user when instantiating VMs based on this image.

The field is the name we'll give to this AMI.

In case we already created an AMI with the same, the field will
remove it before creating the new one.

Please visit the AMI Builder (EBS Backed) (
) page for more information.

The second section is provisioners. It contains an array of all the provisioners that Packer
should use to install and configure software within running machines before turning them
into Machine Images.

There are quite a few provisioner types we can use. If you read The DevOps 2.0 Toolkit, you
know that I advocated Ansible as the provisioner of choice. Should we use it here as well?
In most cases, when building images meant to run Docker containers, I opt for a simple
shell. The reasons for a change from Ansible to Shell lies in the different objectives
provisioners should fulfill when running on live servers, as opposed to building images.

Unlike Shell, Ansible (and most other provisioners) are idempotent. They verify the actual
state and execute one action or another depending on what should be done for the desired
state to be fulfilled. That's a great approach since we can run Ansible as many times as we
want and the result will always be the same. For example, if we specify that we want to
have JDK 8, Ansible will SSH into a destination server, discover that the JDK is not present
and install it. The next time we run it, it'll discover that the JDK is already there and do
nothing.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[268]

Such an approach allows us to run Ansible playbooks as often as we want and it'll always
result in JDK being installed. If we'd try to accomplish the same through a Shell script, we'd
need to write lengthy statements. If JDK is installed, do nothing, if it's not
installed, install it, if it's installed, but the version is not correct, upgrade it, and so on.

So, why not use it with Packer? The answer is simple. We do not need idempotency since
we'll run it only once while creating an image. We won't use it on running instances. Do
you remember the "pets vs cattle" discussion? Our VMs will be instantiated from an image
that already has everything we need. If the state of that VM changes, we'll terminate it and
create a new one.

If we need to do an upgrade or install additional software, we won't do it inside the running
instance, but create a new image, destroy running instances, and instantiate new ones based
on the updated image.

Is idempotency the only reason we would use Ansible? Definitely not! It is a very handy
tool when we need to define a complicated server setup. However, in our case the setup is
simple. We need Docker Engine and not much more. Almost everything will be running
inside containers. Writing a few Shell commands to install Docker is easier and faster than
defining Ansible playbooks. It would probably take the same number of commands to
install Ansible as to install Docker.

To make a Long story short, we'll use as our provisioner of choice for building AMIs.

The section we'll use is as follows:

"provisioners": [{
 "type": "shell",
 "inline": [
 "sleep 15",
 "sudo apt-get update",
 "sudo apt-get install -y apt-transport-https ca-certificates \
nfs-common",
 "sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net: \
80 --recv-keys 58118E89F3A912897C070ADBF76221572C52609D",
 "echo 'deb https://apt.dockerproject.org/repo ubuntu-xenial \
main' | sudo tee /etc/apt/sources.list.d/docker.list",
 "sudo apt-get update",
 "sudo apt-get install -y docker-engine",
 "sudo usermod -aG docker ubuntu"
]
}]

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[269]

The is followed by a set of commands. They are the same as the commands we
can find in the Install Docker on Ubuntu (

) page.

Now that we have a general idea how Packer configuration works, we can proceed and
build an image:

packer build -machine-readable \
 packer-ubuntu-docker.json \
 | tee packer-ubuntu-docker.log

We ran the build of the with the
 output sent to the file. Machine readable output

will allow us to parse it easily and retrieve the ID of the AMI we just created.

The final lines of the output are as follows:

...
1480105510,,ui,say,Build 'amazon-ebs' finished.
1480105510,,ui,say,\n==> Builds finished. The artifacts of successful
builds are:
1480105510,amazon-ebs,artifact-count,1
1480105510,amazon-ebs,artifact,0,builder-id,mitchellh.amazonebs
1480105510,amazon-ebs,artifact,0,id,us-east-1:ami-02ebd915
1480105510,amazon-ebs,artifact,0,string,AMIs were \
created: \n\nus-east-1: ami-02ebd915
1480105510,amazon-ebs,artifact,0,files-count,0
1480105510,amazon-ebs,artifact,0,end
1480105510,,ui,say,--> amazon-ebs: AMIs were created: \n\nus-east-1:
ami-02ebd915

Apart from the confirmation that the build was successful, the relevant part of the output is
the line id, . It contains the AMI ID we'll need to instantiate
VMs based on the image.

You might want to store the in your code repository in case
you need to get the ID from a different server.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[270]

The flow of the process we executed can be described through figure 11-10:

Now we are ready to create a Swarm cluster with VMs based on the image we built.

Using Terraform to create a Swarm cluster in
AWS
We'll start by redefining the environment variables we used with Packer in case you start
this section in a new terminal session:

cd terraform/aws

export AWS_ACCESS_KEY_ID=[...]

export AWS_SECRET_ACCESS_KEY=[...]

export AWS_DEFAULT_REGION=us-east-1

Please replace with the actual values.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[271]

Terraform does not force us to have any particular file structure. We can define everything
in a single file. However, that does not mean that we should. Terraform configs can get big,
and separation of logical sections into separate files is often a good idea. In our case, we'll
have three files. The (

) holds all the variables.

If we need to change any parameter, we'll know where to find it. The
 (

) file contains definitions of the elements that might be
potentially reusable on other occasions. Finally, the (

) file
has the resources.

We'll explore each of the Terraform configuration files separately.

The content of the (
) file is as follows:

variable "swarm_manager_token" {
 default = ""
}
variable "swarm_worker_token" {
 default = ""
}
variable "swarm_ami_id" {
 default = "unknown"
}
variable "swarm_manager_ip" {
 default = ""
}
variable "swarm_managers" {
 default = 3
}
variable "swarm_workers" {
 default = 2
}
variable "swarm_instance_type" {
 default = "t2.micro"
}
variable "swarm_init" {
 default = false
}

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[272]

The and will be required to join the nodes
to the cluster. The will hold the ID of the image we created with Packer. The

 variable is the IP of one of the managers that we'll need to provide for
the nodes to join the cluster. The and define how many
nodes we want of each. The e is the type of the instance we want to
create. If defaults to the smallest and cheapest (often free) instance. Feel free to change it to a
more potent type later on if you start using this Terraform config to create a "real" cluster.
>Finally, the variable allows us to specify whether this is the first run and the
node should initialize the cluster. We'll see its usage very soon.

The content of the (
) file is as follows:

resource "aws_security_group" "docker" {
 name = "docker"
 ingress {
 from_port = 22
 to_port = 22
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }
 ingress {
 from_port = 80
 to_port = 80
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }
 ingress {
 from_port = 443
 to_port = 443
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }
 ingress {
 from_port = 2377
 to_port = 2377
 protocol = "tcp"
 self = true
 }
 ingress {
 from_port = 7946
 to_port = 7946
 protocol = "tcp"
 self = true
 }
 ingress {

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[273]

 from_port = 7946
 to_port = 7946
 protocol = "udp"
 self = true
 }
 ingress {
 from_port = 4789
 to_port = 4789
 protocol = "tcp"
 self = true
 }
 ingress {
 from_port = 4789
 to_port = 4789
 protocol = "udp"
 self = true
 }
 egress {
 from_port = 0
 to_port = 0
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }
}

Each resource is defined with a type (example:) and a name
(example:). The type determines which resource should be created and must be one
of those currently supported.

The first resource contains the list of all ingress ports that should be
opened. Port is required for SSH. Ports and will be used for HTTP and HTTPS
access to the . The rest of the ports will be used for Swarms internal communication.
TCP port is for cluster management communications, TCP and UDP port for
communication among nodes, and TCP and UDP port for overlay network traffic.
Those are the same ports we had to open when we created the cluster using Docker
Machine. Please note that all but ports , and are assigned to self. That means that
they will be available only to other servers that belong to the same group. Any outside
access will be blocked.

The last entry in the is allowing communication from the
cluster to the outside world without any restrictions.

Please consult the (
) page for more info.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[274]

Now comes the "real deal". The (
) file contains the

definition of all the instances we'll create. Since the content of this file is a bit bigger than the
others, we'll examine each resource separately.

The first resource in line is the type named . Its purpose is
to create Swarm manager nodes:

resource "aws_instance" "swarm-manager" {
 ami = "${var.swarm_ami_id}"
 instance_type = "${var.swarm_instance_type}"
 count = "${var.swarm_managers}"
 tags {
 Name = "swarm-manager"
 }
 vpc_security_group_ids = [
 "${aws_security_group.docker.id}"
]
 key_name = "devops21"
 connection {
 user = "ubuntu"
 private_key = "${file("devops21.pem")}"
 }
 provisioner "remote-exec" {
 inline = [
 "if ${var.swarm_init}; then docker swarm init \
--advertise-addr ${self.private_ip}; fi",
 "if ! ${var.swarm_init}; then docker swarm join \
--token ${var.swarm_manager_token} --advertise-addr \
${self.private_ip} ${var.swarm_manager_ip}:2377; fi"
]
 }
}

The resource contains the that references the image we created with Packer. The actual
value is a variable that we'll define at runtime. The specifies the type of the
instance we want to create. The default value is fetched from the variable

. By default, it is set to . Just as any other variable, it can
be overwritten at runtime.

The count field defines how many managers we want to create. The first time we run
, the value should be 1 since we want to start with one manager that will

initialize the cluster. Afterward, the value should be whatever is defined in variables. We'll
see the use case of both combinations soon.

The tags are for informational purposes only.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[275]

The s field contains the list of all groups we want to attach to the
server. In our case, we are using only the group docker defined in

.

The is the name of the key we have stored in AWS. We created the
key at the beginning of the chapter. Please double check that you did not remove it.
Without it, you won't be able to SSH into the machine.

The connection field defines the SSH connection details. The user will be . Instead of
a password, we'll use the key.

Finally, the provisioner is defined. The idea is to do as much provisioning as possible
during the creation of the images. That way, instances are created much faster since the only
action is to create a VM out of an image. However, there is often a part of provisioning that
cannot be done when creating an image. The command is one of those. We
cannot initialize the first Swarm node until we get the IP of the server. In other words, the
server needs to be running (and therefore has an IP) before the is
executed.

Since the first node has to initialize the cluster while any other should join, we're using if
statements to distinguish one case from the other. If the variable is true, the
docker swarm init command will be executed. On the other hand, if the variable

 is set to false, the command will be docker swarm join. In that case, we are
using another variable to tell the node which manager to use to join
the cluster.

Please note that the IP is obtained using the special syntax . We are
referencing oneself and getting the . There are many other attributes we can get
from a resource.

Please consult the AWS_INSTANCE (
) page for more info.

Let's take a look at the resource named :

resource "aws_instance" "swarm-worker" {
 count = "${var.swarm_workers}"
 ami = "${var.swarm_ami_id}"
 instance_type = "${var.swarm_instance_type}"
 tags {
 Name = "swarm-worker"
 }
 vpc_security_group_ids = [
 "${aws_security_group.docker.id}"

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[276]

]
 key_name = "devops21"
 connection {
 user = "ubuntu"
 private_key = "${file("devops21.pem")}"
 }
 provisioner "remote-exec" {
 inline = [
 "docker swarm join --token ${var.swarm_worker_token} \
--advertise-addr ${self.private_ip} ${var.swarm_manager_ip}:2377"
]
 }
}

The resource is almost identical to . The only difference is
in the count field that uses the variable and the provisioner. Since a
worker cannot initialize a cluster, there was no need for if statements, so the only command
we want to execute is

Terraform uses a naming convention that allows us to specify values as environment
variables by adding the . For example, we can specify the value of the
variable by setting the environment variable . The
alternative is to use the argument. I prefer environment variables since they allow me
to specify them once instead of adding to every command.

The last part of the (
) specification are outputs.

When building potentially complex infrastructure, Terraform stores hundreds or thousands
of attribute values for all resources. But, as a user, we may only be interested in a few values
of importance, such as manager IPs. Outputs are a way to tell Terraform what data is
relevant. This data is outputted when apply is called, and can be queried using the

 command.

The outputs we defined are as follows:

output "swarm_manager_1_public_ip" {
 value = "${aws_instance.swarm-manager.0.public_ip}"
}

output "swarm_manager_1_private_ip" {
 value = "${aws_instance.swarm-manager.0.private_ip}"
}
output "swarm_manager_2_public_ip" {
 value = "${aws_instance.swarm-manager.1.public_ip}"
}

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[277]

output "swarm_manager_2_private_ip" {
 value = "${aws_instance.swarm-manager.1.private_ip}"
}

output "swarm_manager_3_public_ip" {
 value = "${aws_instance.swarm-manager.2.public_ip}"
}

output "swarm_manager_3_private_ip" {
 value = "${aws_instance.swarm-manager.2.private_ip}"
}

They are public and private IPs of the managers. Since there are only a few (if any) reasons
to know worker IPs, we did not define them as outputs. Please consult the Output
Configuration () page for
more info. Since we'll use the AMI we created with Packer, we need to retrieve the ID from
the . The command that follows parses the output and
extracts the ID:

export TF_VAR_swarm_ami_id=$(\
 grep 'artifact,0,id' \
 packer-ubuntu-docker.log \
 | cut -d: -f2)

Before we create our cluster and the infrastructure around it, we should ask Terraform to
show us the execution plan:

terraform plan

The result is an extensive list of resources and their properties. Since the output is too big to
be printed, I'll limit the output only to the resource types and names:

...
+ aws_instance.swarm-manager.0
...
+ aws_instance.swarm-manager.1
...
+ aws_instance.swarm-manager.2
...
+ aws_instance.swarm-worker.0
...
+ aws_instance.swarm-worker.1
...
+ aws_security_group.docker
...
Plan: 6 to add, 0 to change, 0 to destroy.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[278]

Since this is the first execution, all the resources would be created if we were to execute
terraform apply. We would get five EC2 instances; three managers and two workers. That
would be accompanied by one security group.

If you see the complete output, you'll notice that some of the property values are set to
. That means that Terraform cannot know what will be the actual values until it

creates the resources. A good example are IPs. They do not exist until the EC2 instance is
created.

We can also output the plan using the command:

terraform graph

The output is as follows:

digraph {
 compound = "true"
 newrank = "true"
 subgraph "root" {
 "[root] aws_instance.swarm-manager" [label = \
"aws_instance.swarm-manager",shape = "box"]
 "[root] aws_instance.swarm-worker" [label = \
"aws_instance.swarm-worker", shape= "box"]
 "[root] aws_security_group.docker" [label = \
"aws_security_group.docker", shape = "box"]
 "[root] provider.aws" [label = "provider.aws", shape = \
"diamond"]
 "[root] aws_instance.swarm-man ager" -> "[root] \
aws_security_group.docker"
 "[root] aws_instance.swarm-manager" -> "[root] provider.aws" \
 "[root] aws_instance.swarm-worker" -> "[root] \
aws_security_group.docker"
 "[root] aws_instance.swarm-worker" -> "[root] provider.aws" \
 "[root] aws_security_group.docker" -> "[root] provider.aws" \
 }
}

That, in itself, is not very useful.

The command is used to generate a visual representation of either a configuration or
an execution plan. The output is in the DOT format, which can be used by GraphViz to
make graphs.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[279]

Please open Graphviz Download () page and
download and install the distribution compatible with your OS.

Now we can combine the command with dot:

terraform graph | dot -Tpng > graph.png

The output should be the same as in Figure 11-11:

Visualization of the plan allows us to see the dependencies between different resources. In
our case, all resources will use the provider. Both instance types will depend on the
security group docker.

When dependencies are defined, we don't need to explicitly specify all the resources we
need.

As an example, let's take a look at the plan Terraform will generate when we limit it to only
one Swarm manager node, so that we can initialize the cluster:

terraform plan \
 -target aws_instance.swarm-manager \
 -var swarm_init=true \
 -var swarm_managers=1

The runtime variables and will be used to tell Terraform
that we want to initialize the cluster with one manager. The plan command takes those
variables into account and outputs the execution plan.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[280]

The output, limited only to resource types and names, is as follows:

+ aws_instance.swarm-manager
+ aws_security_group.docker

Even though we specified that we only want the plan for the resource,
Terraform noticed that it depends on the security group , and included it in the
execution plan.

The only thing missing before we start creating the AWS resources is to copy the SSH key
 to the current directory. The configuration expects it to be there:

export KEY_PATH=$HOME/.ssh/devops21.pem

cp $KEY_PATH devops21.pem

Please change the value to the correct path before copying it.

We'll start small and create only one manager instance that will initialize the cluster. As we
saw from the plan, it depends on the security group, so Terraform will create it as well.

terraform apply \
 -target aws_instance.swarm-manager \
 -var swarm_init=true \
 -var swarm_managers=1

The output is too big to be presented in the book. If you look at it from your terminal, you'll
notice that the security group is created first since depends on it. Please
note that we did not specify the dependency explicitly. However, since the resource has it
specified in the field, Terraform understood that it is the
dependency.

Once the instance is created, Terraform waited until SSH access is
available. After it had managed to connect to the new instance, it executed
commands that initialized the cluster.

The final lines of the output are as follows:

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

The state of your infrastructure has been saved to the path
below. This state is required to modify and destroy your
infrastructure, so keep it safe. To inspect the complete state
use the `terraform show` command.

State path: terraform.tfstate

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[281]

Outputs:

swarm_manager_1_private_ip = 172.31.49.214
swarm_manager_1_public_ip = 52.23.252.207

The outputs are defined at the bottom of the (
) file. Please

note that not all outputs are listed but only those of the resources that were created.

We can use the public IP of the newly created EC2 instance and SSH into it.

You might be inclined to copy the IP. There's no need for that. Terraform has a command
that can be used to retrieve any information we defined as the output.

The command that retrieves the public IP of the first, and currently the only manager is as
follows:

terraform output swarm_manager_1_public_ip

The output is as follows:

52.23.252.207

We can leverage the command to construct commands. As an example, the
command that follows will SSH into the machine and retrieve the list of Swarm nodes:

ssh -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_1_public_ip) \
 docker node ls

The output is as follows (IDs are removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ip-172-31-49-214 Ready Active Leader

From now on, we won't be limited to a single manager node that initialized the cluster. We
can create all the rest of the nodes. However, before we do that, we need to discover the

 and tokens. For security reasons, it is better that they are not stored
anywhere, so we'll create environment variables:

export TF_VAR_swarm_manager_token=$(ssh \
 -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_1_public_ip) \
 docker swarm join-token -q manager)

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[282]

export TF_VAR_swarm_worker_token=$(ssh \
 -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_1_public_ip) \
 docker swarm join-token -q worker)

We'll also need to set the environment variable :

export TF_VAR_swarm_manager_ip=$(terraform \
 output swarm_manager_1_private_ip)

Even though we could use inside the
 (

), it is a good idea to have it defined as an environment
variable. That way, if the first manager fails, we can easily change it to

 without modifying the files.

Now, let us see the plan for the creation of all the missing resources:

terraform plan

The was no need to specify targets since, this time, we want to create all the resources that
are missing.

The last line of the output is as follows:

...
Plan: 4 to add, 0 to change, 0 to destroy.

We can see that the plan is to create four new resources. Since we already have one manager
running and specified that the desired number is three, two additional managers will be
created together with two workers.

Let's apply the execution plan:

terraform apply

The last lines of the output are as follows:

...
Apply complete! Resources: 4 added, 0 changed, 4 destroyed.

The state of your infrastructure has been saved to the path
below. This state is required to modify and destroy your
infrastructure, so keep it safe. To inspect the complete state
use the `terraform show` command.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[283]

State path: terraform.tfstate

Outputs:

swarm_manager_1_private_ip = 172.31.49.214
swarm_manager_1_public_ip = 52.23.252.207
swarm_manager_2_private_ip = 172.31.61.11
swarm_manager_2_public_ip = 52.90.245.134
swarm_manager_3_private_ip = 172.31.49.221
swarm_manager_3_public_ip = 54.85.49.136

All four resources were created, and we got the output of the manager public and private
IPs.

Let's enter into one of the managers and confirm that the cluster indeed works:

ssh -i devops21.pem \
 ubuntu@$(terraform \
 output swarm_manager_1_public_ip)

docker node ls

The output of the command is as follows (IDs are removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ip-172-31-61-11 Ready Active Reachable
ip-172-31-49-221 Ready Active Reachable
ip-172-31-50-78 Ready Active
ip-172-31-49-214 Ready Active Leader
ip-172-31-49-41 Ready Active

All the nodes are present, and the cluster seems to be working.

To be fully confident that everything works as expected, we'll deploy a few services. Those
will be the same services we were creating throughout the book, so we'll save ourselves
some time and deploy the

 (
) and (

l) stacks:

sudo docker network create --driver overlay proxy

curl -o proxy-stack.yml \
 https://raw.githubusercontent.com/ \
vfarcic/docker-flow-proxy/master/docker-compose-stack.yml

sudo docker stack deploy \

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[284]

 -c proxy-stack.yml proxy

curl -o go-demo-stack.yml \
 https://raw.githubusercontent.com/ \
vfarcic/go-demo/master/docker-compose-stack.yml

sudo docker stack deploy \
 -c go-demo-stack.yml go-demo

docker service ls

We downloaded the script from the repository, gave it executable permissions, and
executed it. At the end, we listed all the services.

After a while, the output of the command should be as follows (IDs are
removed for brevity):

NAME MODE REPLICAS
go-demo_db replicated 1/1
proxy_swarm-listener replicated 1/1
proxy_proxy replicated 2/2
go-demo_main replicated 3/3

IMAGE
mongo:latest
vfarcic/docker-flow-swarm-listener:latest
vfarcic/docker-flow-proxy:latest
vfarcic/go-demo:latest

Finally, let's send a request to the service through the . If it returns the
correct response, we'll know that everything works correctly:

curl localhost/demo/hello

The output is as follows:

hello, world!

It works!

Are we finished? We probably are. As a last check, let's validate that the is accessible
from outside the security group. We can confirm that by exiting the server and sending a
request from our laptop:

exit

curl $(terraform output \
 swarm_manager_1_public_ip)/demo/hello

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[285]

The output is as follows:

hello, world!

Let's see what happens if we simulate a failure of an instance.

We'll delete an instance using AWS CLI. We could use Terraform to remove an instance.
However, removing it with the AWS CLI will more closely simulate an unexpected failure
of a node. To remove an instance, we need to find its ID. We can do that with the

 command. Let's say that we want to remove the second worker. The
command to find all its information is as follows:

terraform state show "aws_instance.swarm-worker[1]"

The output is as follows:

id = i-6a3a1964
ami = ami-02ebd915
associate_public_ip_address = true
availability_zone = us-east-1b
disable_api_termination = false
ebs_block_device.# = 0
ebs_optimized = false
ephemeral_block_device.# = 0
iam_instance_profile =
instance_state = running
instance_type = t2.micro
key_name = devops21
monitoring = false
network_interface_id = eni-322fd9cc
private_dns = ip-172-31-56-227.ec2.internal
private_ip = 172.31.56.227
public_dns =
ec2-54-174-83-184.compute-1.amazonaws.com
public_ip = 54.174.83.184
root_block_device.# = 1
root_block_device.0.delete_on_termination = true
root_block_device.0.iops = 100
root_block_device.0.volume_size = 8
root_block_device.0.volume_type = gp2
security_groups.# = 0
source_dest_check = true
subnet_id = subnet-e71631cd
tags.% = 1
tags.Name = swarm-worker
tenancy = default
vpc_security_group_ids.# = 1
vpc_security_group_ids.937984769 = sg-288e1555

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[286]

Among other pieces of data, we got the ID. In my case, it is .Before running the
command that follows, please change the ID to the one you got from the

 command:

aws ec2 terminate-instances \
 --instance-ids i-6a3a1964

The output is as follows:

{
 "TerminatingInstances": [
 {
 "InstanceId": "i-6a3a1964",
 "CurrentState": {
 "Code": 32,
 "Name": "shutting-down"
 },
 "PreviousState": {
 "Code": 16,
 "Name": "running"
 }
 }
]
}

AWS changed the state of the instance from to .

Let's run the command one more time:

terraform plan

The last line of the output is as follows:

Plan: 1 to add, 0 to change, 0 to destroy.

Terraform deduced that one resource needs to be added to reconcile the
discrepancy between the state it has stored locally and the actual state of the cluster.

All we have to do to restore the cluster to the desirable state is to run :

terraform apply

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[287]

The last lines of the output are as follows:

...
Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

The state of your infrastructure has been saved to the path
below. This state is required to modify and destroy your
infrastructure, so keep it safe. To inspect the complete state
use the `terraform show` command.

State path: terraform.tfstate

Outputs:

swarm_manager_1_private_ip = 172.31.60.117
swarm_manager_1_public_ip = 52.91.201.148
swarm_manager_2_private_ip = 172.31.57.177
swarm_manager_2_public_ip = 54.91.90.33
swarm_manager_3_private_ip = 172.31.48.226
swarm_manager_3_public_ip = 54.209.238.50

We can see that one resource was added. The terminated worker has been recreated, and
the cluster continues operating at its full capacity.

The state of the cluster is stored in the file. If you are not running it
always from the same computer, you might want to store that file in your repository
together with the rest of configuration files. The alternative is to use Remote State (

)and, for example, store it in
Consul.

Changing the desired state of the cluster is easy as well. All we have to to is add more
resources and rerun .

We are finished with the brief introduction to Terraform for AWS.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[288]

The flow of the process we executed can be described through figure 11-12:

Let's destroy what we did before we compare the different approaches we took to create
and manage a Swarm cluster in AWS:

terraform destroy -force

The cluster is gone as if it never existed, saving us from unnecessary expenses.

Choosing the right tools to create and
manage Swarm clusters in AWS
We tried three different combinations to create a Swarm cluster in AWS. We used Docker
Machine with the AWS CLI, Docker for AWS with a CloudFormation template, and Packer
with Terraform. That is, by no means, the final list of the tools we can use. The time is
limited, and I promised myself that this book will be shorter than War and Peace so I had to
draw the line somewhere. Those three combinations are, in my opinion, the best candidates
as your tools of choice. Even if you do choose something else, this chapter, hopefully, gave
you an insight into the direction you might want to take.

Most likely you won't use all three combinations so the million dollar question is which one
should it be?

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[289]

Only you can answer that question. Now you have the practical experience that should be
combined with the knowledge of what you want to accomplish. Each use case is different,
and no combination would be the best fit for everyone.

Nevertheless, I will provide a brief overview and some of the use-cases that might be a
good fit for each combination.

To Docker Machine or not to Docker Machine?
Docker Machine is the weakest solution we explored. It is based on ad-hoc commands and
provides little more than a way to create an EC2 instance and install Docker Engine. It uses
Ubuntu 15.10 as the base AMI. Not only that it is old but is a temporary release. If we choose
to use Ubuntu, the correct choice is 16.04 Long Term Support (LTS).

Moreover, Docker Machine still does not support Swarm Mode so we need to manually
open the port before executing and
commands. To do that, we need to combine Docker Machine with AWS Console, AWS CLI,
or CloudFormation.

If Docker Machine would, at least, provide the minimum setup for Swarm Mode (as it did
with the old Standalone Swarm), it could be a good choice for a small cluster.

As it is now, the only true benefit Docker Machine provides when working with a Swarm
cluster in AWS is Docker Engine installation on a remote node and the ability to use the

 command to make our local Docker client seamlessly communicate
with the remote cluster. Docker Engine installation is simple so that alone is not enough. On
the other hand, the command should not be used in a production
environment. Both benefits are too weak.

Many of the current problems with Docker Machine can be fixed with some extra
arguments (example:) and in combination with other tools. However,
that only diminishes the primary benefit behind Docker Machine. It was supposed to be
simple and work out of the box. That was partly true before Docker 1.12. Now, at least in
AWS, it is lagging behind.

Does that mean we should discard Docker Machine when working with AWS? Not always.
It is still useful when we want to create an ad-hoc cluster for demo purposes or maybe
experiment with some new features. Also, if you don't want to spend time learning other
tools and just want something you're familiar with, Docker Machine might be the right
choice. I doubt that's your case.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[290]

The fact that you reached this far in this book tells me that you do want to explore better
ways of managing a cluster.

The final recommendation is to keep Docker Machine as the tool of choice when you want
to simulate a Swarm cluster locally as we did before this chapter. There are better choices
for AWS.

To Docker for AWS or not to Docker for AWS?
Docker for AWS () is opposite
from Docker Machine. It is a complete solution for your Swarm cluster. While Docker
Machine does not do much more than to create EC2 instances and install Docker Engine,
Docker for AWS sets up many of the things we might have a hard time setting up ourselves.
Autoscaling groups, VPCs, subnets, and ELB are only a few of the things we get with it.

There is almost nothing we need to do to create and manage a Swarm cluster with Docker for
AWS. Choose how many managers and how many workers you need, click the Create
Stack button, and wait a few minutes. That's all there is to it.

There's even more. Docker for AWS comes with a new OS specifically designed to run
containers.

Does so much praise for Docker for AWS inevitably mean it's the best choice? Not
necessarily. It depends on your needs and the use case. If what Docker for AWS offers is
what you need, the choice is simple. Go for it. On the other hand, if you'd like to change
some of its aspects or add things that are not included, you might have a hard time. It is not
easy to modify or extend it.

As an example, Docker for AWS will output all the logs to Amazon CloudWatch (
). That's great as long as CloudWatch is where you want to have

your logs. On the other hand, if you prefer the ELK stack, DataDog, or any other logging
solution, you will discover that changing the default setup is not that trivial.

Let's see another example. What if you'd like to add persistent storage. You might mount an
EFS volume on all servers, but that's not an optimum solution. You might want to
experiment with RexRay or Flocker. If that's the case, you will discover that, again, it's not
that simple to extend the system. You'd probably end up modifying the CloudFormation
template and risk not being able to upgrade to a new Docker for AWS version.

Did I mention that Docker for AWS is still young? At the time of this writing, it is, more or
less, stable, but it still has its problems.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[291]

More than problems, it lacks some features like, for example, persistent storage. All this
negativity does not mean that you should give up on Docker for AWS. It is a great solution
that will only become better with time.

The final recommendation is to use Docker for AWS if it provides (almost) everything you
need or if you do not want to start working on your solution from scratch. The biggest show
stopper would be if you already have a set of requirements that need to be fulfilled no
matter the tool you'll use.

If you decide to host your cluster in AWS and you do not want to spend time learning how
all its services work, read no more. Docker for AWS is what you need. It saves you from
learning about security groups, VPCs, elastic IPs, and a myriad of other services that you
might, or might not need.

To Terraform or not to Terraform?
Terraform, when combined with Packer, is an excellent choice. HashiCorp managed to
make yet another tool that changes the way we configure and provision servers.

Configuration management tools have as their primary objective the task of making a server
always be in the desired state. If a web server stops, it will be started again. If a
configuration file is changed, it will be restored. No matter what happens to a server, its
desired state will be restored. Except, when there is no fix to the issue. If a hard disk fails,
there's nothing configuration management can do.

The problem with configuration management tools is that they were designed to work with
physical, not virtual servers. Why would we fix a faulty virtual server when we can create a
new one in a matter of seconds? Terraform understands how cloud computing works better
than anyone and embraces the idea that our servers are not pets anymore. They are cattle.
It'll make sure that all your resources are available. When something is wrong on a server, it
will not try to fix it. Instead, it will destroy it and create a new one based on the image we
choose.

Does that mean that there is no place for Puppet, Chef, Ansible, and other similar tools? Are
they obsolete when operating in the cloud? Some are more outdated than others. Puppet
and Chef are designed to run an agent on each server continuously monitoring its state and
modifying it if things go astray. There is no place for such tools when we start treating our
servers as cattle. Ansible is in a bit better position since it is more useful than others as a tool
designed to configure a server instead to monitor it. As such, it could be very helpful when
creating images.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[292]

We can combine Ansible with Packer. Packer would create a new VM, Ansible would
provision that VM with everything we need, and leave it to Packer to create an image out of
it. If the server setup is complicated, that makes a lot of sense. The question is how complex
a server setup should be? With AWS, many of the resources that would traditionally run on
a server are now services. We do not set up a firewall on each server but use VPC and
security group services. We don't create a lot of system users since we do not log into a
machine to deploy software. Swarm does that for us. We do not install web servers and
runtime dependencies anymore. They are inside containers. Is there a true benefit from
using configuration management tools to install a few things into VMs that will be
converted into images? More often than not, the answer is no. The few things we need can
be just as easily installed and configured with a few Shell commands. Configuration
management of our cattle can, and often should, be done with bash.

I might have been too harsh. Ansible is still a great tool if you know when to use it and for
what purpose. If you prefer it over bash to install and configure a server before it becomes
an image, go for it. If you try to use it to control your nodes and create AWS resources,
you're on a wrong path. Terraform does that much better. If you think that it is better to
provision a running node instead instantiating images that already have everything inside,
you must have much more patience than I do.

Now that we established my bias towards tools that are designed from the ground up to
work with cloud (as opposed to on-premise physical servers), you might be wondering
whether to use CloudFormation instead of Terraform.

The major problem with CloudFormation is that it is designed to lock you into AWS. It
manages Amazon services and not much more. Personally, I think that vendor lock-in is
unacceptable if there is a good alternative. If you are already using AWS services to their
fullest, feel free to disregard my opinion on that subject. I prefer the freedom of choice. I'm
usually trying to design systems that have as little dependency on the provider as it makes
sense. I'll use a service in AWS if it's truly better or easier to setup than some other. In some
cases, that's true, while in many others it isn't. AWS VPCs and security groups are a good
example of services that provide a lot of value. I don't see a reason not to use them,
especially since they are easy to replace if I move to a different provider.

CloudWatch would be an opposite example. ELK is a better solution than CloudWatch, it's
free, and it can be ported to any provider. The same can be said, for example, for ELB. It is
mostly obsolete with Docker Networking. If you need a proxy, choose HAProxy or nginx.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[293]

For you, the vendor lock-in argument might be irrelevant. You might have chosen AWS and
will stick with it for some time to come. Fair enough. However, Terraform's ability to work
with a myriad of hosting providers is not the only advantage it has.

When compared with CloudFormation, its configuration is easier to understand, it works
well with other types of resources like DNSimple (

), and its ability to display a plan before applying it can save us from a lot
of painful errors. When combined with Packer, it is, in my opinion, the best combination for
managing a cloud infrastructure.

Let's get back to the original discussion. Should we use Docker for AWS or Terraform with
Packer?

Unlike Docker Machine that was easy to reject for most cases, the dilemma whether to use
Terraform or Docker for AWS is harder to resolve. It might take you a while to reach with
Terraform the state where the cluster has everything you need. It is not an out-of-the-box
solution. You have to write the configs yourself. If you are experienced with AWS, such a
feat should not cause much trouble. On the other hand, if AWS is not your strongest virtue,
it might take you quite a while to define everything.

Still, I would discard learning AWS as the reason to choose one over the other. Even if you
go with an out-of-the-box solution like Docker for AWS, you should still know AWS.
Otherwise, you're running a risk of failing to react to infrastructure problems when they
come. Don't think that anything can save you from understanding AWS intricacies. The
question is only whether you'll learn the details before or after you create your cluster.

The final recommendation is to use Terraform with Packer if you want to have a control of
all the pieces that constitute your cluster or if you already have a set of rules that need to be
followed. Be ready to spend some time tuning the configs until you reach the optimum
setup. Unlike with Docker for AWS, you will not have a definition of a fully functioning
cluster in an hour. If that's what you want, choose Docker for AWS. On the other hand,
when you do configure Terraform to do everything you need, the result will be beautiful.

Creating and Managing a Docker Swarm Cluster in Amazon Web Services

[294]

The final verdict
What should we use? How do we make a decision? Fully functioning cluster made by
people who know what they're doing Docker for AWS versus fully operational cluster made
by you Terraform. Docker for AWS versus whatever you'd like to label your own solution
Terraform. More things than you need (Docker for AWS) versus just the resources you want
Terraform.

Making the choice is hard. Docker for AWS is still too young and might be an immature
solution. Docker folks will continue developing it and it will almost certainly become much
better in the not so distant future. Terraform gives you freedom at a price.

Personally, I will closely watch the improvements in Docker for AWS and reserve the right to
make the verdict later. Until that time, I am slightly more inclined towards Terraform. I like
building things. It's a very narrow victory that should be revisited soon.

113
Creating and Managing a
Docker Swarm Cluster in

DigitalOcean
Plan to throw one (implementation) away; you will, anyhow.

–Fred Brooks

We already saw a few ways to create and operate a Swarm cluster in AWS. Now we'll try to
do the same in DigitalOcean (). We'll explore some of the
tools and configurations that can be used with this hosting provider.

Unlike AWS that is known to everyone, DigitalOcean is relatively new and less well known.
You might be wondering why I chose DigitalOcean before some other providers like Azure
and GCE. The reason lies in the differences between AWS (and other similar providers) and
DigitalOcean. The two differ in many aspects. Comparing them is like comparing David
and Goliath. One is small while the other (AWS) is huge. DigitalOcean understands that it
cannot compete with AWS on its own ground, so it decided to play a different game.

DigitalOcean launched in 2011 and is focused on very specific needs. Unlike AWS with its
everything-to-everyone approach, DigitalOcean provides virtual machines. There are no bells
and whistles. You do not get lost in their catalog of services since it is almost non-existent. If
you need a place to host your cluster and you do not want to use services designed to lock
you in, DigitalOcean might be the right choice.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[296]

DigitalOcean's main advantages are pricing, high performance, and simplicity. If that's
what you're looking for, it is worth trying it out.

Let's go through these three advantages one by one.

DigitalOcean's pricing is probably the best among all cloud providers. No matter whether
you are a small company in need of only a couple of servers, or a big entity that is looking
for a place to instantiate hundreds or even thousands of servers, chances are that
DigitalOcean will be cheaper than any other provider. That might leave you wondering
about the quality. After all, cheaper things tend to sacrifice it. Is that the case with
DigitalOcean?

DigitalOcean offers very high-performance machines. All disk drives are SSD, network
speed is 1 Gbps, and it takes less than a minute to create and initialize droplets (their name
for VMs). As a comparison, AWS EC2 instance startup time can vary between one and three
minutes.

The last advantages DigitalOcean offers are their UI and API. Both are clean and easy to
understand. Unlike AWS that can have a steep learning curve, you should have no trouble
learning how to use them in a few hours.

Enough with the words of praise. Not everything can be great. What are the disadvantages?

DigitalOcean does not offer a plethora of services. It does a few things, and it does them
well. It is a bare-bone Infrastructure as a service (IaaS) provider. It assumes that you will
set up the services yourself. There is no load balancing, centralized logging, sophisticated
analytics, hosted databases, and so on. If you need those things, you are expected to set
them up yourself. Depending on your use case, that can be an advantage or a disadvantage.

A comparison between DigitalOcean and AWS is unfair since the scope of what each does is
different. DigitalOcean is not trying to compete with AWS as a whole. If pressed to compare
something, that would be DigitalOcean against AWS EC2. In such a case, DigitalOcean wins
hands down.

I will assume that you already have a DigitalOcean account. If that's not the case, please
register using: . You'll get 10 in credit. That should be
more than enough to run the examples in this chapter. DigitalOcean is so cheap that you
will probably finish this chapter with more than 9 remaining balance.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[297]

Even if you've already made a firm decision to use a different cloud computing provider or
on-premise servers, I highly recommend going through this chapter. It will help you
compare DigitalOcean with your provider of choice.

Let's give DigitalOcean a spin and judge through examples whether it is a good choice to
host our Swarm cluster.

You might notice that some parts of this chapter are very similar, or even the same as those
you read in the other cloud computing chapters like , Creating and Managing
a Docker Swarm Cluster in Amazon Web Services. The reason for the partial repetition is the
goal to make the cloud computing chapters useful not only to those who read everything,
but also those who skipped other providers and jumped right here.

Before we move into practical exercises, we'll need to get the access keys and decide the
region where we'll run the cluster.

Setting up the environment variables
In the , Creating And Managing A Docker Swarm Cluster in Amazon Web
Services, we installed AWS Command Line Interface (CLI) (

) that helped us with some of the tasks. DigitalOcean has a similar interface called doctl.
Should we install it? I don't think we need a CLI for DigitalOcean. Their API is clean and
well defined, and we can accomplish everything a CLI would do with simple curl requests.
DigitalOcean proves that a well designed API goes a long way and can be the only entry
point into the system, saving us the trouble of dealing with middle-man applications like
CLIs.

Before we start using the API, we should generate an access token that will serve as the
authentication method.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[298]

Please open the DigitalOcean tokens screen (
) and click theGenerate New Token button. You'll be presented with the New

personal access token popup, as shown in the following image:

Type as Token name and click the Generate Token button. You'll see the newly
generated token. We'll put it into the environment variable .

All the commands from this chapter are available in the Gist (
).

Copy the token before running the command that follows:

export DIGITALOCEAN_ACCESS_TOKEN=[...]

Please replace with the actual token.

Now we can decide which region our cluster will run in.

We can see the currently available regions by sending a request to
:

curl -X GET
 -H "Authorization: Bearer $DIGITALOCEAN_ACCESS_TOKEN"
 "https://api.digitalocean.com/v2/regions"
 | jq '.'

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[299]

We sent an HTTP request to the regions API. The request contains the access token. The
response is piped to .

A part of the output is as follows:

{
 "regions": [
 ...
 {
 "name": "San Francisco 2",
 "slug": "sfo2",
 "sizes": [
"512mb",
"1gb",
"2gb"
],
 "features": [
"private_networking",
"backups",
"ipv6",
"metadata",
"storage"
],
 "available": true
},
 ...
],
 "links": {},
 "meta": {
 "total": 12
}
}

As we can see from the bottom of the response, DigitalOcean currently supports twelve
regions. Each contains the information about available droplet sizes and the supported
features.

Throughout this chapter, I will be using San Francisco 2 (sfo2) region. Feel free to change it
to the region closest to your location. If you choose to run the examples in a different region,
please make sure that it contains the feature.

We'll put the region inside the environment variable :

export DIGITALOCEAN_REGION=sfo2

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[300]

Now we are all set with the prerequisites that will allow us to create the first Swarm cluster
in DigitalOcean. Since we used Docker Machine throughout most of the book, it will be our
first choice.

Setting up a Swarm cluster with Docker
Machine and DigitalOcean API
We'll continue using the (

) repository. It contains configurations and scripts that'll help us out.
You already have it cloned. To be on the safe side, we'll pull the latest version:

cd cloud-provisioning

git pull

Let's create the first droplet:

docker-machine create \
 --driver digitalocean \
 --digitalocean-size 1gb \
 --digitalocean-private-networking \
 swarm-1

We specified that the Docker Machine should use the driver to create an
instance in the region we defined as the environment variable . The
size of the droplet is 1 GB and it has private networking enabled.

Docker Machine launched a DigitalOcean droplet, provisioned it with Ubuntu, and
installed and configured Docker Engine.

As you no doubt already noticed, everyone is trying to come up with a different name for
the same thing. DigitalOcean is no exception. They came up with the term droplet. It is a
different name for a virtual private server. Same thing, different name.

Now we can initialize the cluster. We should use private IPs for all communication between
nodes. Unfortunately, command returns only the public IP, so we'll
have to resort to a different method to get the private IP.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[301]

We can send a request to the droplets API:

curl -X GET \
 -H "Authorization: Bearer $DIGITALOCEAN_ACCESS_TOKEN" \
"https://api.digitalocean.com/v2/droplets" \
 | jq '.'

A part of the output is as follows:

{
"droplets": [
 {
 "id": 33906152,
 "name": "swarm-1",
 ...
 "networks": {
 "v4": [
 {
 "ip_address": "138.68.11.80",
 "netmask": "255.255.240.0",
 "gateway": "138.68.0.1",
 "type": "public"
 },
 {
 "ip_address": "10.138.64.175",
 "netmask": "255.255.0.0",
 "gateway": "10.138.0.1",
 "type": "private"
 }
],
 "v6": []
 },
 ...
],
"links": {},
"meta": {
 "total": 1
 }
}

The API returned all information about all the droplets we own (at the moment
only one). We are interested only in the private IP of the newly created instance called

. We can get it by filtering the results to include only the droplet named
and selecting the element with the type .

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[302]

We'll use () to filter the output and get what we
need. If you haven't already, please download and install the jq distribution suited for your
OS.

The command that sends the request, filters the result, and stores the private IP as an
environment variable is as follows:

MANAGER_IP=$(curl -X GET \
 -H "Authorization: Bearer $DIGITALOCEAN_ACCESS_TOKEN" \
"https://api.digitalocean.com/v2/droplets" \
 | jq -r '.droplets[]
 | select(.name=="swarm-1").networks.v4[]
 | select(.type=="private").ip_address')

We sent a request to the API, used the statement to discard all
the entries except the one with the name . That was followed with another select
statement that returned only the private address. The output was stored as the environment
variable .

To be on the safe side, we can echo the value of the newly created variable:

echo $MANAGER_IP

The output is as follows:

10.138.64.175

Now we can execute the command in the same way as we did in the previous
chapters:

eval $(docker-machine env swarm-1)

docker swarm init \
 --advertise-addr $MANAGER_IP

Let's confirm that the cluster is indeed initialized:

docker node ls

The output is as follows (IDs are removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
swarm-1 Ready Active Leader

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[303]

Now that we initialized the cluster, we can add more nodes. We'll start by creating two new
instances and joining them as managers:

MANAGER_TOKEN=$(docker swarm join-token -q manager)

for i in 2 3; do
 docker-machine create \
 --driver digitalocean \
 --digitalocean-size 1gb \
 --digitalocean-private-networking \
 swarm-$i

 IP=$(curl -X GET \
 -H "Authorization: Bearer $DIGITALOCEAN_ACCESS_TOKEN" \
"https://api.digitalocean.com/v2/droplets" \
 | jq -r ".droplets[]
 | select(.name==\"swarm-$i\").networks.v4[]
 | select(.type==\"private\").ip_address")

eval $(docker-machine env swarm-$i)

 docker swarm join \
 --token $MANAGER_TOKEN \
 --advertise-addr $IP \
$MANAGER_IP:2377
done

There's no need to explain the commands we just executed since they are the combination
of those we used before.

We'll add a few worker nodes as well:

WORKER_TOKEN=$(docker swarm join-token -q worker)

for i in 4 5; do
 docker-machine create \
 --driver digitalocean \
 --digitalocean-size 1gb \
 --digitalocean-private-networking \
 swarm-$i

 IP=$(curl -X GET \
 -H "Authorization: Bearer $DIGITALOCEAN_ACCESS_TOKEN" \
 "https://api.digitalocean.com/v2/droplets" \
 | jq -r ".droplets[]
 | select(.name==\"swarm-$i\").networks.v4[]
 | select(.type=="\private\").ip_address")

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[304]

 eval $(docker-machine env swarm-$i)

 docker swarm join \
 --token $WORKER_TOKEN \
 --advertise-addr $IP \
 $MANAGER_IP:2377
done

Let's confirm that all five nodes are indeed forming the cluster:

eval $(docker-machine env swarm-1)

docker node ls

The output is as follows (IDs are removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
swarm-5 Ready Active
swarm-1 Ready Active Leader
swarm-4 Ready Active
swarm-2 Ready Active Reachable
swarm-3 Ready Active Reachable

That's it. Our cluster is ready. The only thing left is to deploy a few services and confirm
that the cluster is working as expected.

Since we already created the services quite a few times, we'll speed up the process with the
 (

) and
 (

) Compose stacks. They'll create the ,
, , and services:

docker-machine ssh swarm-1

sudo docker network create --driver overlay proxy

curl -o proxy-stack.yml \
 https://raw.githubusercontent.com/ \
vfarcic/docker-flow-proxy/master/docker-compose-stack.yml

sudo docker stack deploy \
 -c proxy-stack.yml proxy

curl -o go-demo-stack.yml \
 https://raw.githubusercontent.com/ \
vfarcic/go-demo/master/docker-compose-stack.yml

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[305]

sudo docker stack deploy \
 -c go-demo-stack.yml go-demo

exit

docker service ls

Non-Windows users do not need to enter the machine and can accomplish the
same result by deploying the stacks directly from their laptops.

It'll take a few moments until all the images are downloaded. After a while, the output of
the should be as follows (IDs are removed for brevity):

NAME REPLICAS IMAGE COMMAND
go-demo 3/3 vfarcic/go-demo:1.2
go-demo-db 1/1 mongo:3.2.10
proxy 3/3 vfarcic/docker-flow-proxy
swarm-listener 1/1 vfarcic/docker-flow-swarm-listener

Let's confirm that the service is accessible:

curl -i $(docker-machine ip swarm-1)/demo/hello

The output is as follows:

HTTP/1.1 200 OK
Date: Wed, 07 Dec 2016 05:05:58 GMT
Content-Length: 14
Content-Type: text/plain; charset=utf-8

hello, world!

We set up the whole Swarm cluster using Docker Machine and the DigitalOcean API. Is that
everything we need? That depends on the requirements we might define for our cluster. We
should probably add a few Floating IP addresses.

A DigitalOcean Floating IP is a publicly-accessible static IP address that can be assigned to
one of your Droplets. A Floating IP can also be instantly remapped, via the DigitalOcean
Control Panel or API, to one of your other Droplets in the same data center. This instant
remapping capability grants you the ability to design and create High Availability (HA)
server infrastructure setups that do not have a single point of failure, by adding
redundancy to the entry point, or gateway, to your servers.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[306]

In other words, we should probably set at least two Floating IPs and map them to two of the
droplets in the cluster. Those two (or more) IPs would be set as our DNS records. That way,
when an instance fails, and we replace it with a new one, we can remap the Elastic IP
without affecting our users.

There are quite a few other improvements we could do. However, that would put us in an
awkward position. We would be using a tool that is not meant for setting up a complicated
cluster.

The creation of VMs was quite slow. Docker Machine spent too much time provisioning it
with Ubuntu and installing Docker Engine. We can reduce that time by creating snapshots
with Docker Engine pre-installed. However, with such an action, the main reason for using
Docker Machine would be gone. Its primary usefulness is simplicity. Once we start
complicating the setup with other resources, we'll realize that the simplicity is being
replaced with too many ad-hoc commands.

Running combined with API requests works great when we are dealing
with a small cluster, especially when we want to create something fast and potentially not
very durable. The biggest problem is that everything we've done so far has been ad-hoc
commands. Chances are that we would not be able to reproduce the same steps the second
time. Our infrastructure is not documented so our team would not know what constitutes
our cluster.

My recommendation is to use in DigitalOcean as a quick and dirty way
to create a cluster mostly for demo purposes. It can be useful for production as well, as long
as the cluster is relatively small.

We should look at alternatives if we'd like to set up a more complex, bigger, and potentially
more permanent solution.

Let us delete the cluster we created and explore the alternatives with a clean slate:

for i in 1 2 3 4 5; do
 docker-machine rm -f swarm-$i
done

If you read the previous chapter, at this point you are probably expecting to see a sub-
chapter named Docker for DigitalOcean. There is no such thing. At least not at the time I'm
writing this chapter. Therefore, we'll jump right into Packer and Terraform.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[307]

Setting up a Swarm cluster with Packer and
Terraform
This time we'll use a set of tools completely unrelated to Docker. It'll be Packer (

) and Terraform (). Both are coming from
HashiCorp (). Packer allows us to create machine images.
With Terraform we can create, change, and improve cluster infrastructure. Both tools
support almost all the major providers.

They can be used with Amazon EC2, CloudStack, DigitalOcean, Google Compute Engine
(GCE), Microsoft Azure, VMWare, VirtualBox, and quite a few others. The ability to be
infrastructure agnostic allows us to avoid vendor lock-in. With a minimal change in
configuration, we can easily transfer our cluster from one provider to another. Swarm is
designed to work seamlessly no matter which hosting provider we use, as long as the
infrastructure is properly defined. With Packer and Terraform we can define infrastructure
in such a way that transitioning from one to another is as painless as possible.

Using Packer to create DigitalOcean snapshots
The (

) repository already has the Packer and Terraform configurations we'll use. They are
located in the directory :

cd terraform/do

The first step is to use Packer to create a snapshot. To do that, we'll need our DigitalOcean
API token set as the environment variable . It is the same token
we set as the environment variable . Unfortunately, Docker
Machine and Packer have different naming standards:

export DIGITALOCEAN_API_TOKEN=[...]

Please replace with the actual token.

We'll instantiate all Swarm nodes from the same snapshot. It'll be based on Ubuntu and
have the latest Docker Engine installed.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[308]

The JSON definition of the image we are about to build is in
 (

):

cat packer-ubuntu-docker.json

The configuration consists of two sections: and :

{
 "builders": [{
 ...
 }],
 "provisioners": [{
 ...
 }]
}

The section defines all the information Packer needs to build a snapshot. The
 section describes the commands that will be used to install and configure

software for the machines created by builders. The only required section is builders.

Builders are responsible for creating machines and generating images from them for
various platforms. For example, there are separate builders for EC2, VMware, VirtualBox,
and so on. Packer comes with many builders by default, and can also be extended to add
new builders.

The builders section we'll use is as follows:

"builders": [{
 "type": "digitalocean",
 "region": "sfo2",
 "image": "ubuntu-16-04-x64",
 "size": "1gb",
 "private_networking": true,
 "snapshot_name": "devops21-{{timestamp}}"
}]

Each type of builder has specific arguments that can be used. We specified that the is
. Please visit the DigitalOcean Builder page (

) for more info.

Please note, when using the type, we have to provide the token. We could
have specified it through the field. However, there is an alternative. If the field
is not specified, Packer will try to get the value from the environment variable

. Since we already exported it, there's no need to repeat
ourselves with the token inside Packer configuration. Moreover, the token should be secret.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[309]

Putting it inside the config would risk exposure.The region is critical since a snapshot can
be created only within one region. If we wanted to share the same machine across multiple
regions, each would need to be specified as a separate builder.

We set the image to . That will be the base image which we'll use to
create our own. The size of the snapshot is not directly related to the size of the droplets
we'll create, so there's no need to make it big. We set it to 1 GB.

By default, DigitalOcean enables only public networking, so we defined
 as . Later on, we'll set up Swarm communication to be

available only through the private network.

The field is the name we'll give to this snapshot. Since there is no option to
overwrite an existing snapshot, the name must be unique so we added to the
name.

Please visit the DigitalOcean Builder page (
) for more information.

The second section is provisioners. It contains an array of all the provisioners that Packer
should use to install and configure software within running machines before turning them
into snapshots.

There are quite a few types we can use. If you read The DevOps 2.0 Toolkit (
), you know that I advocated Ansible as the

 of choice. Should we use it here as well? In most cases, when building images
meant to run Docker containers, I opt for a simple shell. The reasons for a change from
Ansible to Shell lies in the different objectives should fulfill when running
on live servers, as opposed to building images.

Unlike Shell, Ansible (and most other) are idempotent. They verify the
actual state and execute one action or another depending on what should be done for the
desired state to be fulfilled. That's a great approach since we can run Ansible as many times
as we want and the result will always be the same. For example, if we specify that we want
to have JDK 8, Ansible will SSH into a destination server, discover that the JDK is not
present and install it. The next time we run it, it'll discover that the JDK is already there and
do nothing. Such an approach allows us to run Ansible playbooks as often as we want and
it'll always result in JDK being installed. If we tried to accomplish the same through a Shell
script, we'd need to write lengthy statements. If JDK is installed, do nothing, if it's
not installed, install it, if it's installed, but the version is not correct, upgrade it, and so on.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[310]

So, why not use it with Packer? The answer is simple. We do not need idempotency since
we'll run it only once while creating an image. We won't use it on running instances. Do
you remember the pets vs cattle discussion? Our VMs will be instantiated from an image that
already has everything we need. If the state of that VM changes, we'll terminate it and
create a new one. If we need to do an upgrade or install additional software, we won't do it
inside the running instance, but create a new image, destroy running instances, and
instantiate new ones based on the updated image.

Is idempotency the only reason we would use Ansible? Definitely not! It is a very handy
tool when we need to define complicated server setup. However, in our case the setup is
simple. We need Docker Engine and not much more. Almost everything will be running
inside containers. Writing a few Shell commands to install Docker is easier and faster than
defining Ansible playbooks.

It would probably take the same number of commands to install Ansible as to install
Docker.

Long story short, we'll use shell as our of choice for building AMIs.

The section we'll use is as follows:

"provisioners": [{
 "type": "shell",
 "inline": [
 "sudo apt-get update",
 "sudo apt-get install -y apt-transport-https ca-certificates nfs-
common",
 "sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80\
--recv-keys 58118E89F3A912897C070ADBF76221572C52609D",
 "echo 'deb https://apt.dockerproject.org/repo ubuntu-xenial main'\
| sudo tee /etc/apt/sources.list.d/docker.list",
 "sudo apt-get update",
 "sudo apt-get install -y docker-engine"
]
}]

The shell type is followed by a set of commands. They are the same as the commands we
can find in the Install Docker on Ubuntu (

) page.

Now that we have a general idea how Packer configuration works, we can proceed and
build an image:

packer build -machine-readable \
 packer-ubuntu-docker.json \
 | tee packer-ubuntu-docker.log

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[311]

We run the of the with the
 output sent to the file. Machine readable output

will allow us to parse it easily and retrieve the ID of the snapshot we just created.

The final lines of the output are as follows:

...
1481087549,,ui,say,Build 'digitalocean' finished.
1481087549,,ui,say,n==> Builds finished. The artifacts of successful builds
are:
1481087549,digitalocean,artifact-count,1
1481087549,digitalocean,artifact,0,builder-id,pearkes.digitalocean
1481087549,digitalocean,artifact,0,id,sfo2:21373017
1481087549,digitalocean,artifact,0,string,A snapshot was created: \
'devops21-1481087268' (ID: 21373017) in region 'sfo2'
1481087549,digitalocean,artifact,0,files-count,0
1481087549,digitalocean,artifact,0,end
1481087549,,ui,say,--> digitalocean: A snapshot was created:\
'devops21-1481087268' (ID: 21373017) in region 'sfo2'

Apart from the confirmation that the build was successful, the relevant part of the output is
the line . It contains the snapshot ID we'll need to instantiate VMs
based on the image. You might want to store the in your
code repository in case you need to get the ID from a different server.

The flow of the process we executed can be described through figure 12-2:

Now we are ready to create a Swarm cluster with VMs based on the snapshot we built.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[312]

Using Terraform to create a Swarm cluster in
DigitalOcean
Terraform is the third member of the everyone-uses-a-different-environment-variable-for-the-
token club. It expects the token to be stored as environment variable :

export DIGITALOCEAN_TOKEN=[...]

Please replace with the actual token.

Terraform does not force us to have any particular file structure. We can define everything
in a single file. However, that does not mean that we should. Terraform configs can get big,
and separation of logical sections into separate files is often a good idea. In our case, we'll
have three files. The (

) holds all the variables. If
we need to change any parameter, we'll know where to find it. The

 (
) file contains definitions of the elements that might be

potentially reusable on other occasions. Finally, the (
) file has

the Swarm-specific resources. We'll explore each of the Terraform configuration files
separately.

The content of the (
) file is as follows:

variable "swarm_manager_token" {
 default = ""
}
variable "swarm_worker_token" {
 default = ""
}
variable "swarm_snapshot_id" {
 default = "unknown"
}
variable "swarm_manager_ip" {
 default = ""
}
variable "swarm_managers" {
 default = 3
}
variable "swarm_workers" {
 default = 2
}

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[313]

variable "swarm_region" {
 default = "sfo2"
}
variable "swarm_instance_size" {
 default = "1gb"
}
variable "swarm_init" {
 default = false
}

The and will be required to join the nodes
to the cluster. The will hold the ID of the snapshot we created with
Packer. The variable is the IP of one of the managers that we'll need to
provide for the nodes to join the cluster. The and define
how many nodes we want of each. The defines the region our cluster will
run in while the is set to 1 GB. Feel free to change it to a bigger size
if you start using this Terraform config to create a real cluster. Finally, the
variable allows us to specify whether this is the first run and the node should initialize the
cluster. We'll see its usage very soon.

The content of the (
) file is as follows:

resource "digitalocean_ssh_key" "docker" {
 name = "devops21-do"
 public_key = "${file("devops21-do.pub")}"
}

resource "digitalocean_floating_ip" "docker_1" {
 droplet_id = "${digitalocean_droplet.swarm-manager.0.id}"
 region = "${var.swarm_region}"
}

resource "digitalocean_floating_ip" "docker_2" {
 droplet_id = "${digitalocean_droplet.swarm-manager.1.id}"
 region = "${var.swarm_region}"
}

resource "digitalocean_floating_ip" "docker_3" {
 droplet_id = "${digitalocean_droplet.swarm-manager.2.id}"
 region = "${var.swarm_region}"
}
output "floating_ip_1" {
 value = "${digitalocean_floating_ip.docker_1.ip_address}"
}

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[314]

output "floating_ip_2" {
 value = "${digitalocean_floating_ip.docker_2.ip_address}"
}

output "floating_ip_3" {
 value = "${digitalocean_floating_ip.docker_3.ip_address}"
}

Each resource is defined with a type (For example,) and a name
(For example,). The type determines which resource should be created and must be
one of those currently supported.

The first resource allows us to manage SSH keys for droplet
access. Keys created with this resource can be referenced in your droplet configuration via
their ID or fingerprint. We set it as the value of the file that we'll create
soon.

The second resource we're using is the . It represents a
publicly-accessible static IP address that can be mapped to one of our droplets. We defined
three of those. They would be used in our DNS configuration. That way, when a request is
made to your domain, DNS redirects it to one of the floating IPs. If one the droplets is
down, DNS should use one of the other entries. That way, you'd have time to change the
floating IP from the failed to a new droplet.

Please consult the DIGITALOCEAN_SSH_KEY (
) and DIGITALOCEAN_FLOATING_IP (

) pages for more info.

Besides the resources, we also defined a few outputs. They represent values that will be
displayed when Terraform apply is executed and can be queried easily using the output
command.

When building potentially complex infrastructure, Terraform stores hundreds or thousands
of attribute values for all resources. But, as a user, we may only be interested in a few values
of importance, such as manager IPs. Outputs are a way to tell Terraform what data is
relevant.

In our case, the outputs are the addresses of the floating IPs.

Please consult the Output Configuration (
) page for more info.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[315]

Now comes the real deal. The (
) file contains the definition of

all the instances we'll create.
Since the content of this file is a bit bigger than the others, we'll examine each resource
separately.

The first resource in line is the type named . Its
purpose is to create Swarm manager nodes:

resource "digitalocean_droplet" "swarm-manager" {
 image = "${var.swarm_snapshot_id}"
 size = "${var.swarm_instance_size}"
 count = "${var.swarm_managers}"
 name = "${format("swarm-manager-%02d", (count.index + 1))}"
 region = "${var.swarm_region}"
 private_networking = true
 ssh_keys = [
"${digitalocean_ssh_key.docker.id}"
]
 connection {
 user = "root"
 private_key = "${file("devops21-do")}"
 agent = false
 }
 provisioner "remote-exec" {
 inline = [
"if ${var.swarm_init}; then docker swarm init \
--advertise-addr ${self.ipv4_address_private}; fi",
"if ! ${var.swarm_init}; then docker swarm join \
--token ${var.swarm_manager_token} --advertise-addr
${self.ipv4_address_private} ${var.swarm_manager_ip}:2377; fi"
]
 }
}

The resource contains the image that references the snapshot we created with Packer. The
actual value is a variable that we'll define at runtime. The size specifies the size of the
instance we want to create. The default value is fetched from the variable

. By default, it is set to 1 GB. Just as any other variable, it can be
overwritten at runtime.

The count field defines how many managers we want to create. The first time we run
terraform, the value should be 1 since we want to start with one manager that will initialize
the cluster. Afterward, the value should be whatever is defined in variables. We'll see the
use case of both combinations soon.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[316]

The name, the region, and the should be self-explanatory. The ssh-
keys type is an array that, at this moment, contains only one element; the ID of the

 resource we defined in the file.

The connection field defines the SSH connection details. The user will be root. Instead of a
password, we'll use the key.

Finally, the is defined. The idea is to do as much provisioning as possible
during the creation of the images. That way, instances are created much faster since the only
action is to create a VM out of an image. However, there is often a part of provisioning that
cannot be done when creating an image. The command is one of those. We
cannot initialize the first Swarm node until we get the IP of the server. In other words, the
server needs to be running (and therefore has an IP) before the command is
executed.

Since the first node has to initialize the cluster while any other should join, we're using
statements to distinguish one case from the other. If the variable is , the

 command will be executed. On the other hand, if the variable
 is set to , the command will be . In that case, we

are using another variable to tell the node which manager to use to
join the cluster. Please note that the IP is obtained using the special syntax

. We are referencing oneself and getting the
. There are many other attributes we can get from a resource.

Please consult the DIGITALOCEAN_DROPLET (
) page for more info.

Let's take a look at the resource named :

resource "digitalocean_droplet" "swarm-worker" {
 image = "${var.swarm_snapshot_id}"
 size = "${var.swarm_instance_size}"
 count = "${var.swarm_workers}"
 name = "${format("swarm-worker-%02d", (count.index + 1))}"
 region = "${var.swarm_region}"
 private_networking = true
 ssh_keys = [
 "${digitalocean_ssh_key.docker.id}"
]
 connection {
 user = "root"
 private_key = "${file("devops21-do")}"
 agent = false
 }
 provisioner "remote-exec" {

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[317]

 inline = [
 "docker swarm join --token ${var.swarm_worker_token} \
--advertise-addr ${self.ipv4_address_private} ${var.swarm_manager_ip}:\
2377"
]
 }
}

The resource is almost identical to . The only difference is
in the count field that uses the variable and the . Since a
worker cannot initialize a cluster, there was no need for statements, so the only
command we want to execute is . Terraform uses a naming
convention that allows us to specify values as environment variables by adding the

. For example, we can specify the value of the variable
 by setting the environment variable .

The alternative is to use the argument. I prefer environment variables since they allow
me to specify them once instead of adding to every command. The last part of the

 (
) specification are outputs.

The outputs we defined are as follows:

output "swarm_manager_1_public_ip" {
 value = "${digitalocean_droplet.swarm-manager.0.ipv4_address}"
}

output "swarm_manager_1_private_ip" {
 value = "${digitalocean_droplet.swarm-manager.0.ipv4_address_private}"
}

output "swarm_manager_2_public_ip" {
 value = "${digitalocean_droplet.swarm-manager.1.ipv4_address}"
}

output "swarm_manager_2_private_ip" {
 value = "${digitalocean_droplet.swarm-manager.1.ipv4_address_private}"
}

output "swarm_manager_3_public_ip" {
 value = "${digitalocean_droplet.swarm-manager.2.ipv4_address}"
}

output "swarm_manager_3_private_ip" {
 value = "${digitalocean_droplet.swarm-manager.2.ipv4_address_private}"
}

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[318]

They are public and private IPs of the managers. Since there are only a few (if any) reasons
to know worker IPs, we did not define them as outputs.

Since we'll use the snapshot we created with Packer, we need to retrieve the ID from the
. Let's take another look at the file:

cat packer-ubuntu-docker.log

The important line of the output is as follows:

1481087549,digitalocean,artifact,0,id,sfo2:21373017

The command that follows parses the output and extracts the ID:

export TF_VAR_swarm_snapshot_id=$(\
 grep 'artifact,0,id' \
 packer-ubuntu-docker.log \
 | cut -d: -f2)

Let's double-check that the command worked as expected:

echo $TF_VAR_swarm_snapshot_id

The output is as follows:

21373017

We got the ID of the snapshot. Before we start creating the resources, we need to create the
SSH key we referenced in the Terraform config.

We'll create the SSH key using :

ssh-keygen -t rsa

When asked to enter file in which to save the key, please answer with . The rest
of the questions can be answered in any way you see fit. I'll leave them all empty.

The output should be similar to the one that follows:

Generating public/private rsa key pair.
Enter file in which to save the key (/Users/vfarcic/.ssh/id_rsa): devops21-
do
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in devops21-do.
Your public key has been saved in devops21-do.pub.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[319]

The key fingerprint is:
SHA256:a9BqjLkcC9eMnuKH+TZPE6E9S0w+cDQD4HTWEY9CuVk \
vfarcic@Viktors-MacBook-Pro-2.local
The key's randomart image is:
+---[RSA 2048]----+
| o.=+*o |
| o +..E= |
| . o+= . |
| oX o |
| . X S |
| O B . |
| .o* X o |
| +=+B o |
| ..=Bo. |
+----[SHA256]-----+

Now that the key is created, we can start using Terraform. Before we create
our cluster and the infrastructure around it, we should ask Terraform to show us the
execution plan.

A note to Terraform v0.8+users.
Normally, we would not need to specify targets to see the whole execution
plan. However, Terraform v0.8 introduced a bug that sometimes prevents
us from outputting a plan if a resource has a reference to another, not yet
created, resource. In this case, the

 and
 are such resources. The targets

from the command that follows are intended to act as a workaround until
the problem is fixed:

terraform plan \
 -target digitalocean_droplet.swarm-manager \
 -target digitalocean_droplet.swarm-worker \

The result is an extensive list of resources and their properties. Since the output is too big to
be printed, I'll limit the output only to the resource types and names:

...
+ digitalocean_droplet.swarm-manager.0
...
+ digitalocean_droplet.swarm-manager.1
...
+ digitalocean_droplet.swarm-manager.2
...
+ digitalocean_droplet.swarm-worker.0

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[320]

...
+ digitalocean_droplet.swarm-worker.1
...
+ digitalocean_ssh_key.docker
...
Plan: 6 to add, 0 to change, 0 to destroy.

Since this is the first execution, all the resources would be created if we were to execute
. We would get five droplets; three managers and two workers. That

would be accompanied by three floating IPs and one SSH key.

If you see the complete output, you'll notice that some of the property values are set to
. That means that Terraform cannot know what will be the actual values until it

creates the resources. A good example is IPs. They do not exist until the droplet is created.

We can also output the plan using the command:

terraform graph

The output is as follows:

digraph {
 compound = "true"
 newrank = "true"
 subgraph "root" {
"[root] digitalocean_droplet.swarm-manager" [label = \
"digitalocean_droplet.swarm-manager", shape = "box"]
"[root] digitalocean_droplet.swarm-worker" [label = \
"digitalocean_droplet.swarm-worker", shape = "box"]
"[root] digitalocean_floating_ip.docker_1" [label = \
"digitalocean_floating_ip.docker_1", shape = "box"]
"[root] digitalocean_floating_ip.docker_2" [label = \
"digitalocean_floating_ip.docker_2", shape = "box"]
"[root] digitalocean_floating_ip.docker_3" [label = \
"digitalocean_floating_ip.docker_3", shape = "box"]
"[root] digitalocean_ssh_key.docker" [label = \
"digitalocean_ssh_key.docker", shape = "box"]
"[root] provider.digitalocean" [label = \
"provider.digitalocean", shape = "diamond"]
"[root] digitalocean_droplet.swarm-manager" \
-> "[root] digitalocean_ssh_key.docker"
"[root] digitalocean_droplet.swarm-manager" \
-> "[root] provider.digitalocean"
"[root] digitalocean_droplet.swarm-worker" \
-> "[root] digitalocean_ssh_key.docker"
"[root] digitalocean_droplet.swarm-worker" \
-> "[root] provider.digitalocean"
"[root] digitalocean_floating_ip.docker_1"

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[321]

-> "[root] digitalocean_droplet.swarm-manager"
"[root] digitalocean_floating_ip.docker_1" \
-> "[root] provider.digitalocean"
"[root] digitalocean_floating_ip.docker_2" \
-> "[root] digitalocean_droplet.swarm-manager"
"[root] digitalocean_floating_ip.docker_2" \
-> "[root] provider.digitalocean"
"[root] digitalocean_floating_ip.docker_3" \
-> "[root] digitalocean_droplet.swarm-manager"
"[root] digitalocean_floating_ip.docker_3" \
-> "[root] provider.digitalocean"
"[root] digitalocean_ssh_key.docker" \
-> "[root] provider.digitalocean"
 }
}

That, in itself, is not very useful.

The command is used to generate a visual representation of either a configuration or
an execution plan. The output is in the DOT format, which can be used by GraphViz to
make graphs.

Please open Graphviz Download page () and
download and install the distribution compatible with your OS.

Now we can combine the command with :

terraform graph | dot -Tpng > graph.png

The output should be the same as in the Figure 11-10:

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[322]

Visualization of the plan allows us to see the dependencies between different resources. In
our case, all resources will use the provider. Both instance types will
depend on the SSH key docker, and the floating IPs will be attached to manager droplets.

When dependencies are defined, we don't need to specify explicitly all the resources we
need.

As an example, let's take a look at the plan Terraform will generate when we limit it only to
one Swarm manager node so that we can initialize the cluster:

terraform plan \
 -target digitalocean_droplet.swarm-manager \
 -var swarm_init=true \
 -var swarm_managers=1

The runtime variables and will be used to tell Terraform
that we want to initialize the cluster with one manager. The plan command takes those
variables into account and outputs the execution plan.

The output, limited only to resource types and names, is as follows:

+ digitalocean_droplet.swarm-manager
...
+ digitalocean_ssh_key.docker
...
Plan: 2 to add, 0 to change, 0 to destroy.

Even though the specified that we want only the plan for the resource,
Terraform noticed that it depends on the SSH key docker, and included it in the execution
plan.

We'll start small and create only one manager instance that will initialize the cluster. As we
saw from the plan, it depends on the SSH key, so Terraform will create it as well:

terraform apply \
 -target digitalocean_droplet.swarm-manager \
 -var swarm_init=true \
 -var swarm_managers=1

The output is too big to be presented fully in the book. If you look at it from your terminal,
you'll notice that the SSH key is created first since depends on it. Please
note that we did not specify the dependency explicitly. However, since the resource has it
specified in the field, Terraform understood that it is the dependency.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[323]

Once the instance is created, Terraform waited until SSH access is
available. After it had managed to connect to the new instance, it executed provisioning
commands that initialized the cluster.

The final lines of the output are as follows:

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

...

Outputs:

swarm_manager_1_private_ip = 10.138.255.140
swarm_manager_1_public_ip = 138.68.57.39

The outputs are defined at the bottom of the (
) file. Please

note that not all outputs are listed but only those of the resources that were created.

We can use the public IP of the newly created droplet and SSH into it.

You might be inclined to copy the IP. There's no need for that. Terraform has a command
that can be used to retrieve any information we defined as the output.

The command that retrieves the public IP of the first, and currently the only manager is as
follows:

terraform output swarm_manager_1_public_ip

The output is as follows:

138.68.57.39

We can leverage the output command to construct SSH commands. As an example, the
command that follows will SSH into the machine and retrieve the list of Swarm nodes:

ssh -i devops21-do \
 root@$(terraform output \
 swarm_manager_1_public_ip) \
 docker node ls

The output is as follows (IDs are removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
swarm-manager-01 Ready Active Leader

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[324]

From now on, we won't be limited to a single manager node that initialized the cluster. We
can create all the rest of the nodes. However, before we do that, we need to discover the
manager and worker tokens. For security reasons, it is better that they are not stored
anywhere, so we'll create environment variables:

export TF_VAR_swarm_manager_token=$(ssh \
 -i devops21-do \
 root@$(terraform output \
 swarm_manager_1_public_ip) \
 docker swarm join-token -q manager)

export TF_VAR_swarm_worker_token=$(ssh \
 -i devops21-do \
 root@$(terraform output \
 swarm_manager_1_public_ip) \
 docker swarm join-token -q worker)

We'll also need to set the environment variable :

export TF_VAR_swarm_manager_ip=$(terraform \
 output swarm_manager_1_private_ip)

Even though we could use
inside the (

) it is a good idea to have it defined as an
environment variable. That way, if the first manager fails, we can easily change it to

 without modifying the files.

Now, let us see the plan for the creation of the rest of Swarm nodes:

terraform plan \
 -target digitalocean_droplet.swarm-manager \
 -target digitalocean_droplet.swarm-worker

The relevant lines of the output are as follows:

...
+ digitalocean_droplet.swarm-manager.1
...
+ digitalocean_droplet.swarm-manager.2
...
+ digitalocean_droplet.swarm-worker.0
...
+ digitalocean_droplet.swarm-worker.1
...
Plan: 4 to add, 0 to change, 0 to destroy.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[325]

We can see that the plan is to create four new resources. Since we already have one manager
running and specified that the desired number is three, two additional managers will be
created together with two workers.

Let's apply the execution plan:

terraform apply \
 -target digitalocean_droplet.swarm-manager \
 -target digitalocean_droplet.swarm-worker

The last lines of the output are as follows:

...
Apply complete! Resources: 4 added, 0 changed, 0 destroyed.

...

Outputs:

swarm_manager_1_private_ip = 10.138.255.140
swarm_manager_1_public_ip = 138.68.57.39
swarm_manager_2_private_ip = 10.138.224.161
swarm_manager_2_public_ip = 138.68.17.88
swarm_manager_3_private_ip = 10.138.224.202
swarm_manager_3_public_ip = 138.68.29.23

All four resources were created, and we got the output of the manager public and private
IPs.

Let's enter into one of the managers and confirm that the cluster indeed works:

ssh -i devops21-do \
 root@$(terraform \
 output swarm_manager_1_public_ip)

docker node ls

The output of the command is as follows (IDs are removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
swarm-manager-02 Ready Active Reachable
swarm-manager-01 Ready Active Leader
swarm-worker-02 Ready Active
swarm-manager-03 Ready Active Reachable
swarm-worker-01 Ready Active

All the nodes are present, and the cluster seems to be working.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[326]

To be fully confident that everything works as expected, we'll deploy a few services. Those
will be the same services we were creating throughout the book, so we'll save us some time
and deploy the (

)
and (

) stacks:

sudo docker network create --driver overlay proxy

curl -o proxy-stack.yml \
 https://raw.githubusercontent.com/\
vfarcic/docker-flow-proxy/master/docker-compose-stack.yml

sudo docker stack deploy \
 -c proxy-stack.yml proxy

curl -o go-demo-stack.yml \
 https://raw.githubusercontent.com/\
vfarcic/go-demo/master/docker-compose-stack.yml

sudo docker stack deploy \
 -c go-demo-stack.yml go-demo

We downloaded the stacks from the repositories and executed the
commands.

All we have to do now is wait for a few moments, execute the command, and
confirm that all the replicas are running:

docker service ls

The output of the command should be as follows (IDs are removed for
brevity):

NAME REPLICAS IMAGE COMMAND
go-demo-db 1/1 mongo:3.2.10
proxy 3/3 vfarcic/docker-flow-proxy
go-demo 3/3 vfarcic/go-demo:1.2
swarm-listener 1/1 vfarcic/docker-flow-swarm-listener

Finally, let's send a request to the service through the . If it returns the
correct response, we'll know that everything works correctly:

curl -i localhost/demo/hello

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[327]

The output is as follows:

HTTP/1.1 200 OK
Date: Wed, 07 Dec 2016 06:21:01 GMT
Content-Length: 14
Content-Type: text/plain; charset=utf-8

hello, world!

It works!

Are we finished? We probably are. As a last check, let's validate that the is accessible
from outside the servers. We can confirm that by exiting the server and sending a request
from our laptop:

exit

curl -i $(terraform output \
 swarm_manager_1_public_ip)/demo/hello

The output is as follows:

HTTP/1.1 200 OK
Date: Wed, 07 Dec 2016 06:21:33 GMT
Content-Length: 14
Content-Type: text/plain; charset=utf-8

hello, world!

We are still missing floating IPs. While they are not necessary for this demo, we would
create them if this were a production cluster, and use them to configure our DNSes.

This time, we can create the plan without specifying the targets:

terraform plan

The relevant parts of the output are as follows:

...
+ digitalocean_floating_ip.docker_1
...
+ digitalocean_floating_ip.docker_2
...
+ digitalocean_floating_ip.docker_3
...
Plan: 3 to add, 0 to change, 0 to destroy.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[328]

As you can see, Terraform detected that all the resources except floating IPs are already
created so it created the plan that would execute the creation of only three resources.

Let's apply the plan:

terraform apply

The output is as follows:

...
Apply complete! Resources: 3 added, 0 changed, 0 destroyed.

...

Outputs:

floating_ip_1 = 138.197.232.121
floating_ip_2 = 138.197.232.119
floating_ip_3 = 138.197.232.120
swarm_manager_1_private_ip = 10.138.255.140
swarm_manager_1_public_ip = 138.68.57.39
swarm_manager_2_private_ip = 10.138.224.161
swarm_manager_2_public_ip = 138.68.17.88
swarm_manager_3_private_ip = 10.138.224.202
swarm_manager_3_public_ip = 138.68.29.23

The floating IPs were created and we can see the output of their IPs.

The only thing left is to confirm that floating IPs are indeed created and configured
correctly. We can do that by sending a request through one of them:

curl -i $(terraform output \
 floating_ip_1)/demo/hello

As expected, the output is status :

HTTP/1.1 200 OK
Date: Wed, 07 Dec 2016 06:23:27 GMT
Content-Length: 14
Content-Type: text/plain; charset=utf-8

hello, world!

Let's see what happens if we simulate a failure of an instance.

We'll delete an instance using the DigitalOcean API. We could use Terraform to remove an
instance. However, removing it with the API will be a closer simulation of an unexpected
failure of a node.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[329]

To remove an instance, we need to find its ID. We can do that with the
command.

Let's say that we want to remove the second worker. The command to find all its
information is as follows:

terraform state show "digitalocean_droplet.swarm-worker[1]"

The output is as follows:

id = 33909722
disk = 30
image = 21373017
ipv4_address = 138.68.57.13
ipv4_address_private = 10.138.224.209
locked = false
name = swarm-worker-02
private_networking = true
region = sfo2
resize_disk = true
size = 1gb
ssh_keys.# = 1
ssh_keys.0 = 5080274
status = active
tags.# = 0
vcpus = 1

Among other pieces of data, we got the ID. In my case, it is .

Before running the command that follows, please change the ID to the one you got from the
 command:

curl -i -X DELETE \
 -H "Authorization: Bearer $DIGITALOCEAN_TOKEN" \
"https://api.digitalocean.com/v2/droplets/33909722"

The relevant part of the output is as follows:

HTTP/1.1 204 No Content
...

DigitalOcean does not provide any response content to requests, so the status
indicates that the operation was successful.

It will take a couple of moments until the droplet is removed entirely.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[330]

Let's run the command one more time:

terraform plan

The relevant parts of the output are as follows:

...
+ digitalocean_droplet.swarm-worker.1
...
Plan: 1 to add, 0 to change, 0 to destroy.

Terraform deduced that one resource needs to be added to reconcile the
discrepancy between the state it has stored locally and the actual state of the cluster.

All we have to do to restore the cluster to the desirable state is to run :

terraform apply

The relevant parts of the output are as follows:

...
Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

...

Outputs:

floating_ip_1 = 138.197.232.121
floating_ip_2 = 138.197.232.119
floating_ip_3 = 138.197.232.120
swarm_manager_1_private_ip = 10.138.255.140
swarm_manager_1_public_ip = 138.68.57.39
swarm_manager_2_private_ip = 10.138.224.161
swarm_manager_2_public_ip = 138.68.17.88
swarm_manager_3_private_ip = 10.138.224.202
swarm_manager_3_public_ip = 138.68.29.23

We can see that one resource was added. The terminated worker has been recreated, and
the cluster continues operating at its full capacity.

The state of the cluster is stored in the file. If you are not running it
always from the same computer, you might want to store that file in your repository
together with the rest of your configuration files. The alternative is to use Remote State (

) and, for example, store it in
Consul.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[331]

Changing the desired state of the cluster is easy as well. All we have to to is add more
resources and rerun .

We are finished with the brief introduction to Terraform for DigitalOcean.

The flow of the process we executed can be described through Figure 12-4:

Let's destroy what we did before we compare the different approaches we took to create
and manage a Swarm cluster in DigitalOcean:

terraform destroy -force

The last line of the output is as follows:

...
Destroy complete! Resources: 9 destroyed.

The cluster is gone as if it never existed, saving us from unnecessary expenses.

Let's see how to remove a snapshot.

Before we remove the snapshot we created, we need to find its .

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[332]

The request that will return the list of all snapshots is as follows:

curl -X GET \
 -H "Authorization: Bearer $DIGITALOCEAN_ACCESS_TOKEN" \
"https://api.digitalocean.com/v2/snapshots?resource_type=droplet" \
 | jq '.'

The output of the response is as follows:

{
 "snapshots": [
 {
 "id": "21373017",
 "name": "devops21-1481087268",
 "regions": [
"sfo2"
],
 "created_at": "2016-12-07T05:11:05Z",
 "resource_id": "33907398",
 "resource_type": "droplet",
 "min_disk_size": 30,
 "size_gigabytes": 1.32
}
],
 "links": {},
 "meta": {
 "total": 1
}
}

We’ll use to get the snapshot ID:

SNAPSHOT_ID=$(curl -X GET \
 -H "Authorization: Bearer $DIGITALOCEAN_ACCESS_TOKEN" \
"https://api.digitalocean.com/v2/snapshots?resource_type=droplet" \
 | jq -r '.snapshots[].id')

We sent an request to retrieve all snapshots and used to retrieve only the ID.
The result was stored in the environment variable .

Now we can send a request that will remove the snapshot:

curl -X DELETE \
 -H "Authorization: Bearer $DIGITALOCEAN_ACCESS_TOKEN" \
"https://api.digitalocean.com/v2/snapshots/$SNAPSHOT_ID"

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[333]

The relevant output of the response is as follows:

HTTP/1.1 204 No Content
...

The snapshot has been removed. No resources are running on the DigitalOcean account,
and you will not be charged anything more than what you spent from running the exercises
in this chapter.

Choosing the right tools to create and
manage Swarm clusters in DigitalOcean
We tried two different combinations to create a Swarm cluster in DigitalOcean. We used
Docker Machine with the DigitalOcean API and Packer with Terraform. That is, by no means,
the final list of the tools we can use. The time is limited, and I promised to myself that this
book will be shorter than War and Peace, so I had to draw the line somewhere. Those two
combinations are, in my opinion, the best candidates as your tools of choice. Even if you do
choose something else, this chapter, hopefully, gave you an insight into the direction you
might want to take.

Most likely you won't use both combinations so the million dollar question is which one
should it be?

Only you can answer that question. Now you have the practical experience that should be
combined with the knowledge of what you want to accomplish. Each use case is different,
and no combination would be the best fit for everyone.

Nevertheless, I will provide a brief overview and some of the use-cases that might be a
good fit for each combination.

To Docker Machine or not to Docker Machine?
Docker Machine is the weaker solution we explored. It is based on ad-hoc commands and
provides little more than a way to create droplets and install Docker Engine. It uses Ubuntu
15.10 as the base snapshot. Not only that it is old but is a temporary release. If we choose to
use Ubuntu, the correct choice is 16.04 Long Term Support (LTS).

If Docker Machine would, at least, provide the minimum setup for Swarm Mode (as it did
with the old Standalone Swarm), it could be a good choice for a small cluster.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[334]

As it is now, the only true benefit Docker Machine provides when working with a Swarm
cluster in DigitalOcean is Docker Engine installation on a remote node and the ability to use
the command to make our local Docker client seamlessly
communicate with the remote cluster. Docker Engine installation is simple so that alone is
not enough. On the other hand, command should not be used in a
production environment. Both benefits are too weak.

Many of the current problems with Docker Machine can be fixed with some extra
arguments (For example,) and in combination with other tools.
However, that only diminishes the primary benefit behind Docker Machine. It was
supposed to be simple and work out of the box. That was partly true before Docker 1.12.
Now, at least in DigitalOcean, it is lagging behind.

Does that mean we should discard Docker Machine when working with DigitalOcean? Not
always. It is still useful when we want to create an ad-hoc cluster for demo purposes or
maybe experiment with some new features. Also, if you don't want to spend time learning
other tools and just want something you're familiar with, Docker Machine might be the
right choice. I doubt that's your case. The fact that you reached this far in this book tells me
that you do want to explore better ways of managing a cluster.

The final recommendation is to keep Docker Machine as the tool of choice when you want
to simulate a Swarm cluster locally as we did in the previous chapters. There are better
choices for DigitalOcean.

To Terraform or not to Terraform?
Terraform, when combined with Packer, is an excellent choice. HashiCorp managed to
make yet another tool that changes the way we configure and provision servers.

Configuration management tools have as their primary objective the task of making a server
always be in the desired state. If a web server stops, it will be started again. If a
configuration file is changed, it will be restored. No matter what happens to a server, its
desired state will be restored. Except, when there is no fix to the issue. If a hard disk fails,
there's nothing configuration management can do.

The problem with configuration management tools is that they were designed to work with
physical, not virtual servers. Why would we fix a faulty virtual server when we can create a
new one in a matter of seconds? Terraform understands how cloud computing works better
than anyone and embraces the idea that our servers are not pets anymore. They are cattle.
It'll make sure that all your resources are available.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[335]

When something is wrong on a server, it will not try to fix it. Instead, it will destroy it and
create a new one based on the image we choose.

Does that mean that there is no place for Puppet, Chef, Ansible, and other similar tools? Are
they obsolete when operating in the cloud? Some are more outdated than others. Puppet
and Chef are designed to run an agent on each server, continuously monitoring its state and
modifying it if things go astray. There is no place for such tools when we start treating our
servers as cattle. Ansible is in a bit better position since it is more useful than others, as a
tool designed to configure a server instead of monitor it. As such, it could be very helpful
when creating images.

We can combine Ansible with Packer. Packer would create a new VM, Ansible would
provision that VM with everything we need, and leave it to Packer to create an image out of
it. If the server setup is complicated, that makes a lot of sense. We don't create a lot of
system users since we do not log into a machine to deploy software. Swarm does that for us.
We do not install web servers and runtime dependencies anymore. They are inside
containers. Is there a true benefit from using configuration management tools to install a
few things into VMs that will be converted into images? More often than not, the answer is
no. The few things we need can be just as easily installed and configured with a few Shell
commands. Configuration management of our cattle can, and often should, be done with
bash.

I might have been too harsh. Ansible is still a great tool if you know when to use it and for
what purpose. If you prefer it over bash to install and configure a server before it becomes
an image, go for it. If you try to use it to control your nodes and create DigitalOcean
resources, you're on a wrong path. Terraform does that much better. If you think that it is
better to provision a running node instead of instantiating images that already have
everything inside, you must have much more patience than I do.

The final recommendation is to use Terraform with Packer if you want to have control of all
the pieces that constitute your cluster, or if you already have a set of rules that need to be
followed. Be ready to spend some time tuning the configs until you reach the optimum
setup. Unlike AWS that, for good or bad, forces us to deal with many types of resources,
DigitalOcean is simple. You create droplets, add a few floating IPs, and that's it. You might
want to install a firewall on the machines. If you do, the best way would be to do that
during the creation of a snapshot with Packer. It is questionable whether a firewall is
needed when using Swarm networking, but that's a discussion for some other time.

Since there is no such thing as Docker for DigitalOcean, Terraform is a clear winner.
DigitalOcean is simple, and that simplicity is reflected through Terraform configuration.

Creating and Managing a Docker Swarm Cluster in DigitalOcean

[336]

The final verdict
Terraform wins over Docker Machine in a landsilde. If there is such a thing as Docker for
DigitalOcean, this discussion would be longer. As it is now, the choice is easy. If you choose
DigitalOcean, manage your cluster with Packer and Terraform.

To DigitalOcean or not to DigitalOcean
Generally speaking, I like products and services that are focused on very few things and do
them well. DigitalOcean is one of those. It is an Infrastructure as a Service(IaaS) provider
and nothing else. The services it provides are few in number (For example, floating IP) and
limited to those that are a real necessity. If you're looking for a provider that will offer you
everything you can imagine, choose Amazon Web Services(AWS), Azure, GCE, or any
other cloud computing provider that aims at delivering not only hosting but also numerous
services on top. The fact that you reached this far in this book tells me that there are strong
chances that you are interested in setting up infrastructure services yourself. If that's the
case, DigitalOcean is worth a try. Doing everything often means not doing anything really
well. DigitalOcean does a few things, and it does them well. What is does, it does better
than most.

The real question is whether you need only an Infrastructure as a Service (IaaS) provider
or you need Platform as a Service (PaaS) as well. In my opinion, containers make PaaS
obsolete. It will be gradually replaced with containers managed by schedulers (For
example, Docker Swarm) or Containers as a Service (CaaS). You might not agree with me. If
you do, a huge part of AWS becomes obsolete leaving it with EC2, storage, VPCs, and only
a handful of other services. In such a case, DigitalOcean is a mighty competitor and an
excellent choice. The few things it does, it does better than AWS at a lower price. The
performance is impressive. It's enough to measure the time it requires to create a droplet
and compare it with the time AWS requires to create and initiate an EC2 instance. The
difference is huge. The first time I created a droplet, I thought that there's something wrong.
My brain could not comprehend that it could be done in less than a minute.

Did I mention simplicity? DigitalOcean is simple, and I love simplicity. Therefore, the
logical conclusion is that I love DigitalOcean. The real mastery is to make complex things
easy to use. That's where both Docker and DigitalOcean shine.

114
Creating and Managing Stateful

Services in a Swarm Cluster
Any sufficiently advanced technology is indistinguishable from magic.

- Arthur C. Clarke

If you're attending conferences, listening to podcasts, reading forums, or you are involved
in any other form of a debate related to containers and cloud-native applications, you must
have heard the mantra stateless services. It's almost like a cult. Only stateless services are
worthy. Everything else is heresy. The solution to any problem is to remove the state. How
do we scale this application? Make it stateless. How do we put this into a container? Make it
stateless. How do we make it fault tolerant? Make it stateless. No matter the problem, the
solution is to be stateless.

Are all the services we used until now stateless? They're not. Therefore, the logic dictates,
we did not yet solve all the problems.

Before we start exploring stateless services, we should go back in time and discuss The
twelve-factor app methodology.

Exploring the twelve-factor app
methodology
Assuming that my memory still serves me well, Heroku ()
became popular somewhere around 2010. It showed us how to leverage Software-as-a-Service
principles. It freed developers from thinking too much about underlying infrastructure. It
allowed them to concentrate on development and leave the rest to others.

Creating and Managing Stateful Services in a Swarm Cluster

[338]

All we had to do is push our code to Heroku. It would detect the programming language
we use, create a VM and install all the dependencies, build, launch, and so on. The result
would be our application running on a server.

Sure, in some cases Heroku would not manage to figure out everything by itself. When that
happens, all we'd have to do is create a simple config that would give it a few extra pieces
of information. Still very easy and efficient.

Startups loved it (some still do). It allowed them to concentrate on developing new features
and leave everything else to Heroku. We write software, and someone else runs it. This is
Software-as-a-Service (SaaS) at its best. The idea and the principles behind it become so
popular that many decided to clone the idea and create their own Heroku-like services.

Shortly after Heroku received a broad adoption, its creators realized that many applications
did not perform as expected. It's one thing to have a platform that frees developers from
operations, but quite another thing to actually write code that fares well under SaaS
providers. So, Heroku folks and a few others came up with The Twelve-Factor App (

) principles. If your application fulfills all twelve factors, it will work
well as SaaS. Most of those factors are valid for any modern application, no matter whether
it will run inside on-premise servers or through a cloud computing provider, inside PaaS,
SaaS, a container, or none of the above. Every modern application should be made using
The twelve-factor app methodology. Or, at least, that's what many are saying.

Let us explore each of those factors and see how well we fare against it. Maybe, just maybe,
what we learned so far will make us twelve-factor compliant. We'll go through all the
factors and compare them with the services we used through this book.

Codebase1.

One codebase tracked in revision control, many deploys. The service is
in a single Git repository. Every commit is deployed to testing and production
environments. All other services we created are released by someone else. –
Passed

Dependencies2.

Explicitly declare and isolate dependencies. All the dependencies are inside
Dockers images. Excluding Docker Engine, there is no system-wide dependency.
Docker images fulfill this principle by default.– Passed

Creating and Managing Stateful Services in a Swarm Cluster

[339]

Config3.

Store config in the environment.

The service does not have any configuration file. Everything is set
through environment variables. The same can be said for all other services we
created. Service discovery through networking was a huge help accomplishing
this, by allowing us to find services without any configuration. Please note that
this principle applies only to configurations that vary between deployments.
Everything else can continue being a file as long as it stays the same no matter
when and where the service is deployed. - Passed

Backing services4.

Treat backing services as attached resources.

In our case, MongoDB is a backing service. It is attached to the primary service
 through networking. – Passed

Build, release, run5.

Strictly separate build and run stages.

In this context, everything except running services is considered the build phase.
In our case, the build phase is clearly separated from run stages. Jenkins is
building our services while Swarm is running them. Building and running are
performed in separate clusters. – Passed

Processes6.

Execute the app as one or more stateless processes.

We are failing this principle big time. Even though the service is
stateless, almost everything else (, , ,
and so on) is not. – Failed

Port binding7.

Export services via port binding.

Docker networking and the are taking care of port
bindings. In many cases, the only service that will bind any port is the .
Everything else should be inside one or more networks and made accessible
through the . – Passed

Creating and Managing Stateful Services in a Swarm Cluster

[340]

Concurrency8.

Scale out via the process model.

This factor is directly related to statelessness. Stateless services (example:
) are easy to scale. Some non-stateless services (example:

) are designed to be scalable, so they fulfill this principle as well. Many
other stateful services (example: Jenkins, Prometheus, and so on) cannot be scaled
horizontally. Even when they can, the process is often too complicated and prone
to errors. – Failed

Disposability9.

Maximize robustness with fast startup and graceful shutdown.

Stateless services are disposable by default. They can be started and stopped at a
moments notice, and they tend to be fault tolerant. In case an instance fails,
Swarm will reschedule it in one of the healthy nodes. The same cannot be said for
all the services we used. Jenkins and MongoDB, just to name a few, will lose their
state in case of a failure. That makes them anything but disposable. – Failed

Dev/prod parity10.

Keep development, staging, and production as similar as possible.

That is one of the main benefits Docker provides. Since containers are created
from immutable images, a service will be the same no matter whether it runs on
our laptop, testing environment, or production. – Passed

Logs11.

Treat logs as event streams.

The ELK stack together with LogSpout fulfills this principle. All the logs from all
the containers are streamed into ElasticSearch as long as applications inside the
containers are outputting them to . Jenkins, as we run it, is the exception
since it writes some of the logs to files. However, that is configurable, so we won't
fault it for that. – Passed

Creating and Managing Stateful Services in a Swarm Cluster

[341]

Admin processes12.

Run tasks as one-off processes. In our case, all the processes
are executed as Docker containers, apparently fulfilling this factor. – Passed

We passed nine out of twelve factors. Should we aim for all twelve? Actually, the
question is wrong. A better-phrased question would be whether we can aim for all
twelve factors. We often can't. The world was not built yesterday, and we cannot
throw away all the legacy code and start fresh. Even if we could, twelve-factor
app principles have one big fallacy. They assume that there is such a thing as a
system comprised completely of stateless services.

No matter which architecture style we adopt (microservices included),
applications have a state! In a microservices style architecture, each service can
have multiple instances, and each service instance should be designed to be
stateless. What that means, is that a service instance does not store any data across
operations. Hence, being stateless means that any service instance can retrieve all
application state required to execute a behavior, from somewhere else. That is a
significant architectural constraint of microservices style applications, as it enables
resiliency, elasticity, and allows any available service instance to execute any task.
Even though the state is not inside a service we are developing, it still exists and
needs to be managed somehow. The fact that we did not develop the database
where the state is stored does not mean that it should not follow the same
principles and be scalable, fault tolerant, resilient, and so on.

So, all systems have a state, but a service can be stateless if it cleanly separates
behaviors from data, and can fetch data required to perform any behavior.

Could the authors of twelve-factor app principles be so shortsighted as to assume
that state does not exist? They indeed aren't. They assume that everything but the
code we write will be a service maintained by someone else. Take MongoDB as an
example. Its primary purpose is to store state, so it is, of course, stateful. The
twelve-factor app authors assume that we are willing to let someone else manage
stateful services and focus only on those we are developing.

While, in some cases, we might choose to use Mongo as a service maintained by
one of the cloud providers, in many others such a choice is not the most efficient.
If anything else, such services tend to be very expensive. That cost is often worth
paying when we do not have the knowledge or the capacity to maintain our
backing services. However, when we do, we can expect better and cheaper results
if we run a database ourselves. In such a case, it is one of our services, and it is
obviously stateful. The fact that we did not write all the services does not mean
we are not running them and are, therefore, responsible for them.

Creating and Managing Stateful Services in a Swarm Cluster

[342]

The good news is that all three principles we failed are related to statefulness. If
we manage to create services in a way that their state is preserved on shutdown
and shared between all instances, we'll manage to make the whole system cloud
native. We'll be able to run it anywhere, scale its services as needed, and make the
system fault tolerant.

Creating and managing stateful services is the only major piece of the puzzle we
are missing. After this chapter, you will be on your way to running any type of
services inside your Swarm cluster.

We will start the practical part of this chapter by creating a Swarm cluster. We'll
use AWS only as a demonstration. The principles explored here can be applied to
almost any cloud computing provider as well as to on-premise servers.

Setting up a Swarm cluster and the proxy
We'll use Packer () and Terraform ()
to create a Swarm cluster in AWS. For now, the configuration we'll use will be (almost) the
same as the one we explored in the , Creating and Managing a Docker Swarm
Cluster in Amazon Web Services (AWS). We'll extend it later on when we reach more complex
scenarios.

All the commands from this chapter are available in the
 (

) Gist.

We'll continue using the (
) repository. It contains configurations and scripts that'll help us out.

You already have it cloned. To be on the safe side, we'll the latest version:

cd cloud-provisioning

git pull

Packer and Terraform configurations are in the (
) directory:

cd terraform/aws-full

Creating and Managing Stateful Services in a Swarm Cluster

[343]

We'll define a few environment variables that will provide Packer the information it needs
when working with AWS:

export AWS_ACCESS_KEY_ID=[...]

export AWS_SECRET_ACCESS_KEY=[...]

export AWS_DEFAULT_REGION=us-east-1

Please replace with the actual values. Consult the , Creating And
Managing A Docker Swarm Cluster in Amazon Web Services if you lost the keys and forgot how
to create them.

We are ready to create the first image we'll use in this chapter. The Packer configuration
we'll use is in (

). It is almost the same as the one we used before so we'll
comment only the relevant differences. They are as follows:

 "provisioners": [{
...
 }, {
"type": "file",
"source": "docker.service",
"destination": "/tmp/docker.service"
 }, {
"type": "shell",
"inline": [
"sudo mv /tmp/docker.service /lib/systemd/system/docker.service",
"sudo chmod 644 /lib/systemd/system/docker.service",
"sudo systemctl daemon-reload",
"sudo systemctl restart docker"
]
 }]

The file provisioner copies the docker.service file into the VM. The commands from the
shell provisioner will move the uploaded file to the correct directory, give it correct
permissions, and restart the .

Creating and Managing Stateful Services in a Swarm Cluster

[344]

The (
) file is as follows:

[Unit]
Description=Docker Application Container Engine
Documentation=https://docs.docker.com
After=network.target docker.socket
Requires=docker.socket

[Service]
Type=notify
ExecStart=/usr/bin/dockerd -H fd:// -H tcp://0.0.0.0:2375
ExecReload=/bin/kill -s HUP $MAINPID
LimitNOFILE=infinity
LimitNPROC=infinity
LimitCORE=infinity
TasksMax=infinity
TimeoutStartSec=0
Delegate=yes
KillMode=process

[Install]
WantedBy=multi-user.target

The Docker service configuration is almost identical to the default one. The only difference
is in .

By default, Docker Engine does not allow remote connections. If its configuration is left
unchanged, we cannot send commands from one server to another. By adding

, we are telling Docker to accept requests from any address
. Normally, that would be a big security risk. However, all AWS ports are closed

by default. Later on, we'll open only to servers that belong to the same security group.
As a result, we will be able to control any Docker Engine as long as we are inside one of our
servers. As you will see soon, this will come in handy in quite a few examples that follow.

Let's build the AMI defined in :

packer build -machine-readable \
 packer-ubuntu-docker.json \
 | tee packer-ubuntu-docker.log

Creating and Managing Stateful Services in a Swarm Cluster

[345]

Now we can turn our attention to Terraform that'll create our cluster. We'll copy the SSH
key that we created earlier and declare a few environment variables that
will allow Terraform to access our AWS account:

export TF_VAR_aws_access_key=$AWS_ACCESS_KEY_ID

export TF_VAR_aws_secret_key=$AWS_SECRET_ACCESS_KEY

export TF_VAR_aws_default_region=$AWS_DEFAULT_REGION

export KEY_PATH=$HOME/.ssh/devops21.pem

cp $KEY_PATH devops21.pem

export TF_VAR_swarm_ami_id=$(\
 grep 'artifact,0,id' \
 packer-ubuntu-docker.log \
 | cut -d: -f2)

Terraform expects environment variables to be prefixed with , so we had to create
new ones, even though their values are the same as those we used for Packer. The value of
the environment variable is only an example. You might have it stored
somewhere else. If that's the case, please change the value to the correct path.

The last command filters the and stores the AMI ID as the
environment variable .

Now we can create a Swarm cluster. Three VMs should suffice for the exercises that follow,
so we'll only create managers. Since the commands will be the same as those we executed in
the previous chapters, we'll just skip the explanation and run them:

terraform apply \
 -target aws_instance.swarm-manager \
 -var swarm_init=true \
 -var swarm_managers=1

export TF_VAR_swarm_manager_token=$(ssh \
 -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_1_public_ip) \
 docker swarm join-token -q manager)

export TF_VAR_swarm_manager_ip=$(terraform \
 output swarm_manager_1_private_ip)

terraform apply \
 -target aws_instance.swarm-manager

Creating and Managing Stateful Services in a Swarm Cluster

[346]

We created the first server and initialized the Swarm cluster. Later on, we retrieved the
token and the IP of one of the managers and used that data to create and join two additional
nodes.

To be on the safe side, we'll enter one of the managers and list the nodes that form the
cluster:

ssh -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_1_public_ip) \

docker node ls

The output is as follows (IDs are removed for brevity):

HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ip-172-31-16-158 Ready Active Leader
ip-172-31-31-201 Ready Active Reachable
ip-172-31-27-205 Ready Active Reachable

Where are the workers?
We did not create any worker nodes. The reason is simple. For the
exercises in this chapter, three nodes are more than enough. That should
not prevent you from adding worker nodes when you start using a similar
cluster setup in your organization.
To add worker nodes, please execute the commands that follow:

If the output would be , you should open
 in your browser.

We are almost done. The only thing left, before we move into statefulness, is to run the
 and services. Since we already

created them quite a few times, there's no need for an explanation so we can speed up the
process by deploying the

 (
) stack:

docker network create --driver overlay proxy

curl -o proxy-stack.yml \
 https://raw.githubusercontent.com/\
vfarcic/docker-flow-proxy/master/docker-compose-stack.yml

Creating and Managing Stateful Services in a Swarm Cluster

[347]

docker stack deploy \
 -c proxy-stack.yml proxy

exit

Running stateful services without data
persistence
We'll start the exploration of stateful services in a Swarm cluster by taking a look at what
would happen if we deploy them as any other service.

A good example is Jenkins. Every job we create is an XML file. Every plugin we install is an
HPI file. Every configuration change is stored as XML. You get the picture. Everything we
do in Jenkins ends up being a file. All those files form its state. Without it, Jenkins would
not be able to operate. Jenkins is also a good example of the problems we have with legacy
applications. If we were to design it today, it would probably use a database to store its
state. That would allow us to scale it since all instances would share the same state by being
connected to the same database. There are quite a few other design choices we would
probably make if we were to design it today from scratch. Being legacy is not necessarily a
bad thing. Sure, having the experience we have today would help us avoid some of the
pitfalls of the past. On the other hand, being around for a long time means that it is battle
tested, has a high rate of adoption, a huge number of contributors, a big user base, and so
on. Everything is a trade-off, and we cannot have it all.

We'll put aside the pros and cons of having a well established and battle-tested versus
young and modern, but often unproven application. Instead, let's take a look at how
Jenkins, as a representative of a stateful service, behaves when running inside the Swarm
cluster we created with Terraform:

ssh -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_1_public_ip)

docker service create --name jenkins \
-e JENKINS_OPTS="--prefix=/jenkins" \
 --label com.df.notify=true \
 --label com.df.distribute=true \
 --label com.df.servicePath=/jenkins \
 --label com.df.port=8080 \
 --network proxy \
 --reserve-memory 300m \
 jenkins:2.7.4-alpine

Creating and Managing Stateful Services in a Swarm Cluster

[348]

We entered one of the managers and created the service.

Please wait a few moments until service is running. You can use docker
 to check the current state.

Now that Jenkins is running, we should open it in a browser:

exit

open "http://$(terraform output swarm_manager_1_public_ip)/jenkins"

A note to Windows users
Git Bash might not be able to use the command. If that's the case,
execute to find out
the IP of the manager and open the URL directly in your browser of
choice. For example, the command above should be replaced with the
command that follows:

If the output would be , you should open
 in your browser.

As you remember from the , Automating Continuous Deployment Flow with Jenkins,
we need to retrieve the password from logs or its file system. However, this time, doing that
is a bit more complicated. Docker Machine mounts local (laptop's) directory into every VM
it creates so we could retrieve the without even entering VMs.

There is no such thing with AWS at least not yet, so we need to find out which EC2 instance
hosts Jenkins, find the ID of the container, and enter into it to get the file. Such a thing
would be easy to do manually but, since we are committed to automation, we'll do it the
hard way.

We'll start the quest of finding the password by entering one of the managers and list
service tasks:

ssh -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_1_public_ip) \

docker service ps jenkins

Creating and Managing Stateful Services in a Swarm Cluster

[349]

The output is as follows (IDs and ERROR coloumn are removed for brevity):

NAME IMAGE NODE DESIRED STATE
jenkins.1 jenkins:2.7.4-alpine ip-172-31-16-158 Running

CURRENT STATE
Running 8 minutes ago

Luckily, AWS EC2 instances contain internal IP in their names. We can use that to our
advantage:

JENKINS_IP=$(docker service ps jenkins \
 | tail -n 1 \
 | awk '{ print $4 }' \
 | cut -c 4- \
 | tr "-" ".")

We listed the service tasks and piped it to tail so that only the last line is returned. Then we
used to get the fourth column. The cut command printed the result from the fourth byte
effectively removing . All that was piped to tr that replaced - with Finally, the result was
stored in the environment variable .

If this was too freaky for you, feel free to assign the value manually (in my case it was

Now that we know which node is hosting Jenkins, we need to retrieve the ID of the
container. Since we modified the config to allow us to send commands to
a remote engine, we can use the argument.

The command that retrieves the ID of the Jenkins container is as follows:

JENKINS_ID=$(docker -H tcp://$JENKINS_IP:2375 \
 ps -q \
 --filter label=com.docker.swarm.service.name=jenkins)

We used to tell the local client to connect to the remote engine running in
. We listed all running containers in quiet mode so that

only IDs are returned. We also applied a filter, so that only the service named Jenkins is
retrieved. The result was stored in the environment variable .

Now we can use the IP and the ID to enter the container and output the password stored in
the file .

docker -H tcp://$JENKINS_IP:2375 \
 exec -it $JENKINS_ID \
 cat /var/jenkins_home/secrets/initialAdminPassword

Creating and Managing Stateful Services in a Swarm Cluster

[350]

The output is, in my case, as follows:

cb7483ce39894c44a48b761c4708dc7d

Please copy the password, return to the Jenkins UI, and paste it.

Complete the Jenkins setup before proceeding further. You already know the drill from the
, Automating Continuous Deployment Flow with Jenkins, so I'll let you do it in peace.

The result should be the screen similar to the one in the figure 13-1:

Here comes the easy question which I'm sure you'll know how to answer. What would
happen if, for whatever reason, Jenkins instance fails?

Let's simulate the failure and observe the outcome:

docker -H tcp://$JENKINS_IP:2375 \
 rm -f $JENKINS_ID

We used the environment variables and to send the forced
remove command to the remote node that hosts Jenkins.

Creating and Managing Stateful Services in a Swarm Cluster

[351]

Nothing lasts forever. Sooner or later, the service would fail. If it doesn't, the node where it
runs will. By removing the container, we simulated what would happen in a real-world
situation.

After a while, Swarm will detect that the jenkins replica failed and instantiate a new one.
We can confirm that by listing jenkins tasks:

docker service ps jenkins

The output is as follows (IDs are removed for brevity):

NAME IMAGE NODE DESIRED STATE CURRENT
STATE
jenkins.1 jenkins:2.7.4-alpine ip-172-31-31-201 Running Running
about 1 min
_ jenkins.1 jenkins:2.7.4-alpine ip-172-31-16-158 Shutdown Failed
about 1 min

ERROR PORT
"task: non-zero exit (137)"

So far, so good. Swarm is doing what we want it to do. It is making sure that our services
are (almost) always running.

The only thing left is to go back to the UI and refresh the screen.

The screen should look similar to the one in figure 13-2:

Creating and Managing Stateful Services in a Swarm Cluster

[352]

That's embarrassing. Everything we did is lost, and we are back to square one. Since Jenkins
state was not persisted outside the container, when Swarm created a new one, it started
with a blank slate.

How can we solve this problem? Which solutions can we employ to address the persistence
issue?

Please remove the service before proceeding:

docker service rm jenkins

exit

Persisting stateful services on the host
Host-based persistence was very common in the early Docker days when people were
running containers on predefined nodes without schedulers like Docker Swarm,
Kubernetes, or Mesos. Back then, we would choose a node where we'll run a container and
put it there. Upgrades were performed on the same server. In other words, we packaged
applications as containers and, for the most part, treated them as any other traditional
service. If a node fails... tough luck! It's a disaster with or without containers.

Since serves were prederfined, we could persist the state on the host and rely on backups
when that host dies. Depending on the backup frequency, we could lose a minute, an hour,
a day, or even a whole week worth of data. Life is hard.

The only positive thing about this approach is that persistence is easy. We would mount a
host volume inside a container. Files are persisted outside the container so no data would
be lost under "normal" circumstances. If the container is restarted as a result of a failure or
an upgrade, data would still be there when we run a new container.

There are other single-host variations of the model. Data volumes, data only containers, and
so on. All of them share the same drawback. They remove portability. Without portability,
there is no fault tolerance, nor is there scaling. There is no Swarm.

Host-based persistence is unacceptable, so I won't waste any more of your time.

If you have a sysadmin background, you are probably wondering why I haven’t mentioned
Network File System (NFS). The reason is simple. I wanted you to feel the pain before
diving into the obvious solution.

Creating and Managing Stateful Services in a Swarm Cluster

[353]

Persisting stateful services on a Network
File System
We need to find a way to retain state outside containers that run our services.

We could mount a volume on the host. That would allow us to preserve state if a container
fails and is rescheduled on the same node. The problem is that such a solution is too limited.
There is no guarantee that Swarm will reschedule the service to the same node unless we
constrain it. If we would do something like that, we'd prevent Swarm from ensuring service
availability. When that node would fail (every node fails sooner or later), Swarm could not
reschedule the service. We would be fault tolerant only as long as our servers are running.

We can solve the problem of a node failure by mounting a NFS to each of the servers. That
way, every server would have access to the same data, and we could mount a Docker
volume to it.

We'll use Amazon Elastic File System (EFS) (). Since this
book is not dedicated to AWS, I’ll skip the comparison of different AWS file systems and
only note that the choice of EFS is based on its ability to be used across multiple availability
zones.

Please open the EFS home () screen:

open "https://console.aws.amazon.com/efs/home?region=$AWS_DEFAULT_REGION"

A note to Windows users
Git Bash might not be able to use the command. If that's the case,
please replace with the region where your cluster
is running (for example,) and open it in a browser.

Click the Create file system button. For each of the availability zones, replace the default
security group with docker (we created it earlier with Terraform). Click the button Next Step
twice, followed by Create File System.

We should wait until Life cycle state is set to Available for each of the zones.

Now we are ready to mount the EFS in each of the nodes. The easiest way to do that is by
clicking the Amazon EC2 mount instructions link. We are interested only in the command
from the third point of the Mounting your file system section. Please copy it.

Creating and Managing Stateful Services in a Swarm Cluster

[354]

All that's left is to enter each of the nodes and execute the command that will mount the EFS
volume:

ssh -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_1_public_ip)

sudo mkdir -p /mnt/efs

We entered the first manager and created directory.

Paste the command you copied from the EC2 mount instructions screen. We'll make a tiny
modification before executing it. Please change the destination path from to
and execute it.

In my case, the command is as follows (yours will be different):

sudo mount -t nfs4 \
 -o nfsvers=4.1,rsize=1048576,wsize=1048576,hard,timeo=600,\
 retrans=2 fs-07538d4e.efs.us-east-1.amazonaws.com:/ \
 /mnt/efs

We should also create a sub-directory where we'll store Jenkins state:

sudo mkdir -p /mnt/efs/jenkins

sudo chmod 777 /mnt/efs/jenkins

exit

We created the directory gave full permissions to everyone, and
exited the server. Since Swarm might decide to create the service on any of the nodes, we
should repeat the same process on the rest of the servers. Please note that your mount will
be different, so do not simply paste the command that follows:

ssh -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_2_public_ip)

sudo mkdir -p /mnt/efs

sudo mount -t nfs4 \
 -o nfsvers=4.1,rsize=1048576,wsize=1048576,hard,timeo=600, \
 retrans=2 fs-07538d4e.efs.us-east-1.amazonaws.com:/ \
 /mnt/efs

exit

Creating and Managing Stateful Services in a Swarm Cluster

[355]

ssh -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_3_public_ip)

sudo mkdir -p /mnt/efs

sudo mount -t nfs4 \
 -o nfsvers=4.1,rsize=1048576,wsize=1048576,hard,timeo=600,\
 retrans=2 fs-07538d4e.efs.us-east-1.amazonaws.com:/ \
 /mnt/efs

exit

Now we can, finally, try again to create the service. Hopefully, this time the state
will be preserved in case of a failure:

ssh -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_1_public_ip) \

docker service create --name jenkins \
-e JENKINS_OPTS="--prefix=/jenkins" \
 --mount "type=bind,source=/mnt/efs/jenkins,target=/var/jenkins_home" \
 --label com.df.notify=true \
 --label com.df.distribute=true \
 --label com.df.servicePath=/jenkins \
 --label com.df.port=8080 \
 --network proxy \
 --reserve-memory 300m \
 jenkins:2.7.4-alpine

The only difference between this command and the one we used before is in the
argument. It tells Docker to mount host directory as

 inside the container. Since we mounted as EFS volume on
all nodes, the service will have access to the same files no matter which server it
will run in.

Now we should wait until the service is running. Please execute the command
to see the current state:

docker service ps jenkins

Let's open Jenkins UI in a browser:

exit

open "http://$(terraform output swarm_manager_1_public_ip)/jenkins"

Creating and Managing Stateful Services in a Swarm Cluster

[356]

A note to Windows users
Git Bash might not be able to use the command. If that's the case,
execute to find out
the IP of the manager and open the URL directly in your browser of
choice. For example, the preceding command should be replaced with the
command that follows:

If the output would be , you should open
 in your browser.

This time, since Jenkins home directory is mounted as finding the
password will be much easier. All we have to to is output the contents of the file

 from one of the servers:

ssh -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_1_public_ip)

cat /mnt/efs/jenkins/secrets/initialAdminPassword

Please copy the password and paste it to the Administrator password field in the Jenkins
UI. Complete the setup:

Creating and Managing Stateful Services in a Swarm Cluster

[357]

We'll simulate a failure one more time and observe the results. The commands that follow
are the same as those we executed previously so there should be no reason to comment
them:

JENKINS_IP=$(docker service ps jenkins \
 | tail -n 1 \
 | awk '{ print $4 }' \
 | cut -c 4- \
 | tr "-" ".")

JENKINS_ID=$(docker -H tcp://$JENKINS_IP:2375 \
 ps -q \
 --filter label=com.docker.swarm.service.name=jenkins)

docker -H tcp://$JENKINS_IP:2375 \
 rm -f $JENKINS_ID

docker service ps jenkins

Please wait until Swarm instantiates a new replica and refresh the Jenkins UI screen in your
browser. This time, we are presented with the login page instead of going back to the initial
setup. The state was preserved, making our service fault tolerant. In the worst case
scenario, when the service or the entire node fails, we'll have a short period of downtime
until Swarm recreates the failed replica. You might be wondering: why did I force you to go
through manual steps to create an EFS and mount it? Shouldn't that be done automatically
through Terraform? The reason is simple. This solution is not worth automating. It has
quite a few downsides.

We would need to place states from all the services into the same EFS drive. A better
solution would be to create an EFS volume for each service. The problem with such an
approach is that we would need to alter the Terraform config every time someone adds a
new stateful service to the cluster. In that case, Terraform would not be of much help since
it is not meant to have service-specific configs. It should act as a method to setup a cluster
that could host any service. Even if we accept a single EFS volume for all services, we
would still need to create a new sub-directory for each service. Wouldn't it be much better if
we leave Terraform as a tool for creating infrastructure and Docker for all tasks related to
services?

Fortunately, there are better ways to create and mount EFS volumes.

Before we explore alternatives, please remove the service and the server:

docker service rm jenkins

exit

Creating and Managing Stateful Services in a Swarm Cluster

[358]

There is no reason to keep the EFS volume we created earlier, so please head back to EFS
console (), select the file system, and click Actions
followed with the Delete file system button. For the rest of the steps, please follow the
instructions on the screen.

Data volume orchestration
There are quite a few storage orchestration solutions that integrate with Docker through its
volume plugins. We won’t compare them. Such an attempt would require a whole chapter,
maybe even a book.

Even if you choose a different solution, the principles that will be explained shortly apply to
(almost) all others. For a complete list of currently supported plugins, please visit the
Volume plugins (

) section of the Use Docker Engine Plugins (
) documentation.

REX-Ray () is a vendor agnostic storage
orchestration engine. It is built on top of the libStorage (

) framework. It supports EMC, Oracle VirtualBox, and Amazon EC2. At the time of this
writing, support for GCE, Open Stack, Rackspace, and DigitalOcean is under way.

I find it easier to grasp something when I see it in action. In that spirit, instead of debating
for a long time what REX-Ray does and how it works, we'll jump right into a practical
demonstration.

Persisting stateful services with REX-Ray
We'll start by setting up REX-Ray manually. If it turns out to be a good solution for our
stateful services, we'll move it to Packer and Terraform configurations. Another reason for
starting with a manual setup is to give you a better understanding how it works.

Let's get going.

Besides the AWS access keys and the region that we already used quite a few times, we'll
also need the ID of the security group we created previously with Terraform:

terraform output security_group_id

Creating and Managing Stateful Services in a Swarm Cluster

[359]

The output should be similar to the one that follows (yours will be different):

sg-d9d4d1a4

Please copy the value. We'll need it soon.

We'll enter one of the nodes where we'll install and configure REX-Ray:

ssh -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_1_public_ip)

REX-Ray is fairly simple to set up. That's one of the reasons I prefer it over some other
solutions:

curl -sSL https://dl.bintray.com/emccode/rexray/install | sh -s -- stable

The output is as follows:

REX-Ray

Binary: /usr/bin/rexray
SemVer: 0.6.3
OsArch: Linux-x86_64
Branch: v0.6.3
Commit: 69b1f5c2d86a2103c792bec23b5855babada1c0a
Formed: Wed, 07 Dec 2016 23:22:14 UTC

libStorage

SemVer: 0.3.5
OsArch: Linux-x86_64
Branch: v0.6.3
Commit: 456dd68123dd6b49da0275d9bbabd6c800583f61
Formed: Wed, 07 Dec 2016 23:21:36 UTC

We installed REX-Ray version 0.6.3, as well as its dependency libStorage version 0.3.5. In your
case, versions might be newer.

Next, we'll create environment variables with values required for REX-Ray configuration:

export AWS_ACCESS_KEY_ID=[...]

export AWS_SECRET_ACCESS_KEY=[...]

export AWS_DEFAULT_REGION=[...]

export AWS_SECURITY_GROUP=[...]

Creating and Managing Stateful Services in a Swarm Cluster

[360]

Please replace with the actual values. The value of the security group should be the
same as the one we previously retrieved with the

 command.

Now we are ready to configure REX-Ray through its YML configuration file stored in
:

echo "
libstorage:
 service: efs
 server:
 services:
 efs:
 driver: efs
 efs:
 accessKey: ${AWS_ACCESS_KEY_ID}
 secretKey: ${AWS_SECRET_ACCESS_KEY}
 securityGroups: ${AWS_SECURITY_GROUP}
 region: ${AWS_DEFAULT_REGION}
 tag: rexray" \
 | sudo tee /etc/rexray/config.yml

We set the driver to and provided it with the AWS data. The result was output to the
 file.

Now we can start the service:

sudo rexray service start

The output is as follows:

rexray.service - rexray
 Loaded: loaded (/etc/systemd/system/rexray.service; enabled; \
vendor preset: enabled)
 Active: active (running) since Thu 2016-12-22 19:34:51 UTC; 245ms ago
 Main PID: 7238 (rexray)
 Tasks: 4
 Memory: 10.6M
 CPU: 109ms
 CGroup: /system.slice/rexray.service/\
 _7238 /usr/bin/rexray start -f

Dec 22 19:34:51 ip-172-31-20-98 systemd[1]: Started rexray.

REX-Ray is running, and we can the node:

exit

Creating and Managing Stateful Services in a Swarm Cluster

[361]

Since we do not know which node will host our stateful services, we need to set up REX-
Ray on every node of the cluster. Please repeat the setup steps on Swarm manager nodes 2
and 3.

Once REX-Ray is running on all the nodes, we can give it a spin. Please enter one of the
managers:

ssh -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_1_public_ip)

REX-Ray can be used directly through the binary we installed. For example, we can
list all the volumes:

sudo rexray volume get

The output is as follows:

ID Name Status Size

There's not much to see since we have not created any volumes yet. We can do that with the
 volume create command. However, there is no need for such a thing. Thanks to its

integration with Docker, there is not much need to use the binary directly for any operation.

Let's try one more time to create the service. This time, we'll use REX-Ray as the
volume driver:

docker service create --name jenkins \
-e JENKINS_OPTS="--prefix=/jenkins" \
 --mount "type=volume,source=jenkins,target=/var/jenkins_home, \
volume-driver=rexray" \
 --label com.df.notify=true \
 --label com.df.distribute=true \
 --label com.df.servicePath=/jenkins \
 --label com.df.port=8080 \
 --network proxy \
 --reserve-memory 300m \
 jenkins:2.7.4-alpine

Creating and Managing Stateful Services in a Swarm Cluster

[362]

The only difference between the command we just executed and the previous attempt to
create the service is in the argument. The source is now simply a name

. It represents the name of the volume. The target is still the same and represents
Jenkins home inside a container. The important difference is the addition of the

 argument. That was the instruction that Docker should use to mount a
volume.

If integration between REX-Ray and Docker worked, we should see a volume:

sudo rexray volume get

The output is as follows:

ID Name Status Size
fs-0a64ba43 jenkins attached 6144

This time, the output of the volume get command is not empty. We can see the
 volume. As I already mentioned, there's not much need to use the binary.

We can accomplish many of its features directly through Docker. For example, we can
execute command to list all the volumes:

docker volume ls

The output is as follows:

DRIVER VOLUME NAME
rexray jenkins

Listing volumes proves only that Docker and REX-Ray registered a new mount. Let's take a
look at what happened in AWS:

exit

open "https://console.aws.amazon.com/efs/home?region=$AWS_DEFAULT_REGION"

A note to Windows users
Git Bash might not be able to use the command. If that's the case,
please replace with the region where your cluster
is running (for example,) and open it in a browser.

Creating and Managing Stateful Services in a Swarm Cluster

[363]

You should see a screen similar to the one presented in Figure 13-4:

As you can see, REX-Ray created a new EFS volume called and mounted
a target in the same availability zone as the node that hosts the service.

The only thing missing to satisfy my paranoid nature is to kill Jenkins and confirm that
REX-Ray mounted the EFS volume on a new container that will be re-scheduled by Swarm.

As before, we’ll start by setting up Jenkins:

open "http://$(terraform output swarm_manager_1_public_ip)/jenkins"

Creating and Managing Stateful Services in a Swarm Cluster

[364]

A note to Windows users
Git Bash might not be able to use the command. If that’s the case,
execute to find out
the IP of the manager and open the URL directly in your browser of
choice. For example, the preceding command should be replaced with the
command that follows:

If the output would be , you should open
 in your browser.

We are faced with a recurring challenge. How to find the initial Jenkins administrator
password. On the bright side, the challenge is useful as a demonstration of different ways to
access content inside containers.

This time, we'll leverage REX-Ray to access data stored in the EFS volume instead of trying
to find the node and the ID of the container that hosts the service:

ssh -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_1_public_ip)

docker run -it --rm \
 --volume-driver rexray \
 -v jenkins:/var/jenkins_home \
 alpine cat /var/jenkins_home/secrets/initialAdminPassword

The output should be similar to the one that follows:

9c5e8e51af954d7988b310d862c3d38c

We created a new alpine container that also used the rexray volume driver to attach to the
jenkins EFS volume. The command output the contents of the

 file that contains the password.
Since we specified the argument, Docker removed the container after the process
exited. The final result is the password output to the screen. Please copy it and paste it to
the Administrator password field in the Jenkins UI. Complete the setup.

Creating and Managing Stateful Services in a Swarm Cluster

[365]

Now we need to go through the painful processes of finding the node that hosts Jenkins,
getting the ID of the container, and executing the command on the remote
engine. In other words, we'll run the same set of commands we executed during previous
murderous attempts:

JENKINS_IP=$(docker service ps jenkins | tail -n 1 \
 | awk '{ print $4 }' | cut -c 4- | tr "-" ".")

JENKINS_ID=$(docker -H tcp://$JENKINS_IP:2375 \
 ps -q \
 --filter label=com.docker.swarm.service.name=jenkins)

docker -H tcp://$JENKINS_IP:2375 \
 rm -f $JENKINS_ID

A few moments later, Swarm will re-schedule the container, and Jenkins will be running
again.

Please wait until the service current state is running:

docker service ps jenkins

Reload Jenkins UI and observe that you are redirected to the login screen instead to the
initial setup. The state was preserved.

We're finished with this cluster. Now we need to remove the volume manually. Otherwise,
since it was not created by Terraform, it would be preserved even after we destroy the
cluster and AWS would continue charging us for it. The problem is that a volume cannot be
removed as long as one or more services are using it, so we'll need to destroy
service as well:

docker service rm jenkins

docker volume rm jenkins

exit

terraform destroy -force

Creating and Managing Stateful Services in a Swarm Cluster

[366]

Choosing the persistence method for
stateful services
There are quite a few other tools we could use to persist state. Most of them fall into one of
the groups we explored. Among different approaches we can take, the three most
commonly taken are as follows:

Do not persist the state.1.
Persist the state on the host.2.
Persist the state somewhere outside the cluster.3.

There’s no reason to debate why persisting data from stateful services is critical, so the first
option is automatically discarded.

Since we are operating a cluster, we cannot rely on any given host to be always available. It
might fail at any given moment. Even if a node does not fail, sooner or later a service will,
and Swarm will reschedule it. When that happens, there is no guarantee that Swarm will
run a new replica on the same host. Even if, against all odds, the node never fails, and the
service is unbreakable, the first time we execute an update of that service (example: a new
release), Swarm will, potentially, create the new replica somewhere else. All in all, we don’t
know where the service will run nor how long it will stay there. The only way to invalidate
that statement is to use constraints that would tie a service to a particular host. However, if
we do that, there would be no purpose in using Swarm nor reading this book. All in all, the
state should not be persisted on a specific host.

That leaves us with the third option. The state should be persisted somewhere outside the
cluster, probably on a network drive. Traditionally, sysadmins would mount a network
drive on all hosts, thus making the state available to services no matter where they’re
running. There are quite a few problems with that approach, the main one being the need to
mount a single drive and expect all stateful services to persist their state to it. We could,
theoretically, mount a new drive for every single service. Such a requirement would quickly
become a burden. If, for example, we used Terraform to manage our infrastructure, we’d
need to update it every time there is a new service. Do you remember the first principle of
twelve-factor apps? One service should have one codebase. Everything that a service needs
should be in a single repository. Therefore, Terraform or any other infrastructure
configuration tool should not contain any details specific to a service.

The solution to the problem is to manage volumes using similar principles as those we're
using to manage services. Just as we adopted schedulers (example: Swarm) that are
managing our services, we should adopt volume schedulers that should handle our
mounts.

Creating and Managing Stateful Services in a Swarm Cluster

[367]

Since we adopted Docker containers as a way to run our services, a volume scheduler
should be able to integrate with it and provide a seamless experience. In other words,
managing volumes should be an integral part of managing services. Docker volume plugins
allow us precisely that. Their purpose is to integrate third party solutions into the Docker
ecosystem and make volume management transparent.

REX-Ray is one of the solutions we explored. There are many others, and I'll leave it to you
to compare them and make your decision which volume scheduler works the best in your
use case.

If we are presented only with the choices we explored in this chapter, REX-Ray is a clear
winner. It allows us to persist data across the cluster in a transparent way. The only extra
requirement is to make sure that REX-Ray is installed. After that, we mount volumes with
its driver as if they are regular host volumes. Behind the scenes, REX-Ray does the heavy
lifting. It creates a network drive, mounts it, and manages it.

Long story short, we'll use REX-Rey for all our stateful services. That is not entirely accurate
so let me rephrase. We'll use REX-Ray for all our stateful services that do not use replication
and synchronization between instances. If you are wondering what that means, all I can say
is that patience is a virtue. We’ll get there soon.

Now that we decided that REX-Ray will be part of our stack, it is worthwhile adding it to
our Packer and Terraform configs.

Adding REX-Ray to packer and terraform
We already went through REX-Ray manual setup so it should be relatively easy to add it to
Packer and Terraform configurations. We'll add to Packer the static parts that do not
depend on runtime resources and the rest to Terraform. What that means is that Packer will
create AMIs with REX-Ray installed and Terraform will create its configuration and start
the service.

Let's take a look at the (

) file:

cat packer-ubuntu-docker-rexray.json

Creating and Managing Stateful Services in a Swarm Cluster

[368]

The only difference when compared with the
 (

) config we used before is an additional
command in the shell :

"provisioners": [{
 "type": "shell",
 "inline": [
 ...
 "curl -sSL https://dl.bintray.com/emccode/rexray/install | sh -s --
stable"
 ...
 }]

When creating a VM which will later become an AMI, Packer will execute the same
command that we ran when we installed REX-Ray manually.

Let's build the AMI:

packer build -machine-readable \
 packer-ubuntu-docker-rexray.json \
 | tee packer-ubuntu-docker-rexray.log

export TF_VAR_swarm_ami_id=$(\
 grep 'artifact,0,id' \
 packer-ubuntu-docker-rexray.log \
 | cut -d: -f2)

We built the AMI and stored the ID in the environment variable
It'll be used by Terraform soon.

Defining the Terraform part of the REX-Ray setup is a bit more complex since its
configuration needs to be dynamic and decided at runtime.

The configuration is defined in the (
)

template:

cat rexray.tpl

Creating and Managing Stateful Services in a Swarm Cluster

[369]

The output is as follows:

libstorage:
 service: efs
 server:
 services:
 efs:
 driver: efs
 efs:
 accessKey: ${aws_access_key}
 secretKey: ${aws_secret_key}
 region: ${aws_default_region}
 securityGroups: ${aws_security_group}
 tag: rexray

As you can see, the AWS keys, the region, and the security groups are defined as variables.
The magic happens in the (

) file:

cat common.tf

The relevant part of the output is the datasource. It is as follows:

data "template_file" "rexray" {
 template = "${file("rexray.tpl")}"

 vars {
 aws_access_key = "${var.aws_access_key}"
 aws_secret_key = "${var.aws_secret_key}"
 aws_default_region = "${var.aws_default_region}"
 aws_security_group = "${aws_security_group.docker.id}"
 }
}

Contents of the template are in the (
) file we explored earlier. The

variables from the template are defined in the vars section. The value of the last variable
 will be decided at runtime once the called

docker is created.

Finally, the last piece of the puzzle is in the (
)

file:

cat swarm.tf

Creating and Managing Stateful Services in a Swarm Cluster

[370]

Both and AWS instances have two extra lines in the
. They are as follows:

"if ${var.rexray}; then echo \"${data.template_file.rexray.rendered}\"\
 | sudo tee /etc/rexray/config.yml; fi",
"if ${var.rexray}; then sudo rexray service start >/dev/null 2>/dev/null;
fi"

Commands are inside an statement. That allows us to decide at runtime whether REX-
Ray should be configured and started or not. Normally, you would not need the if
statement. You'll either choose to use REX-Ray, or not. However, at the beginning of this
chapter we needed a cluster with REX-Ray and I did not want to maintain two almost
identical copies of the configuration (one with, and the other without REX-Ray).

The important part is inside the if statement. The first line puts the content of the template
into the (

) file. The second starts the service.

Now that it is evident how we defined REX-Ray inside Terraform configs, it is time to create
a cluster with it automatically:

terraform apply \
 -target aws_instance.swarm-manager \
 -var swarm_init=true \
 -var swarm_managers=1 \
 -var rexray=true

The first node that initializes the Swarm cluster was created and we can proceed by adding
two more manager nodes:

export TF_VAR_swarm_manager_token=$(ssh \
 -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_1_public_ip) \
 docker swarm join-token -q manager)

export TF_VAR_swarm_manager_ip=$(terraform \
 output swarm_manager_1_private_ip)

terraform apply \
 -target aws_instance.swarm-manager \
 -var rexray=true

We retrieved the token and the IP of the first manager and used that info to create the rest of
the nodes.

Creating and Managing Stateful Services in a Swarm Cluster

[371]

Let's enter one of the servers and confirm that REX-Ray is installed:

ssh -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_1_public_ip)

rexray version

The output of the command is as follows:

REX-Ray

Binary: /usr/bin/rexray
SemVer: 0.6.3
OsArch: Linux-x86_64
Branch: v0.6.3
Commit: 69b1f5c2d86a2103c792bec23b5855babada1c0a
Formed: Wed, 07 Dec 2016 23:22:14 UTC

libStorage

SemVer: 0.3.5
OsArch: Linux-x86_64
Branch: v0.6.3
Commit: 456dd68123dd6b49da0275d9bbabd6c800583f61
Formed: Wed, 07 Dec 2016 23:21:36 UTC

Both REX-Ray and libStorage are installed. Finally, before we check whether it is working,
let's have a quick look at the config.

cat /etc/rexray/config.yml

The output is as follows:

libstorage:
service: efs
server:
 services:
 efs:
 driver: efs
 efs:
 accessKey: ##########
 secretKey: ##########
 region: ##########
 securityGroups: ##########
 tag: rexray

Creating and Managing Stateful Services in a Swarm Cluster

[372]

I obscured my AWS account details for obvious reasons. Nevertheless, the config looks OK
and we can give REX-Ray a spin.

We’ll deploy the (
)

stack and create the service in the same way we did while we were experimenting
with REX-Ray installed manually:

docker network create --driver overlay proxy

curl -o proxy-stack.yml \
 https://raw.githubusercontent.com/ \
vfarcic/docker-flow-proxy/master/docker-compose-stack.yml

docker stack deploy \
 -c proxy-stack.yml proxy

docker service create --name jenkins \
-e JENKINS_OPTS="--prefix=/jenkins" \
 --mount "type=volume,source=jenkins,target=/var/jenkins_home,\
volume-driver=rexray" \
 --label com.df.notify=true \
 --label com.df.distribute=true \
 --label com.df.servicePath=/jenkins \
 --label com.df.port=8080 \
 --network proxy \
 --reserve-memory 300m \
 jenkins:2.7.4-alpine

It should take only a few moments until the script is finished. Now we can check the Docker
volumes:

docker volume ls

The output is as follows:

DRIVER VOLUME NAME
rexray jenkins

As expected, the service created the volume with the same name. We
should wait until Jenkins is running and open it in a browser:

docker service ps jenkins # Wait until finished

exit

open "http://$(terraform output swarm_manager_1_public_ip)/jenkins"

Creating and Managing Stateful Services in a Swarm Cluster

[373]

A note to Windows users
Git Bash might not be able to use the open command. If that’s the case,
execute to find out
the IP of the manager and open the URL directly in your browser of
choice. For example, the command above should be replaced with the
command that follows:

If the output would be , you should open
 in your browser.

The only thing left is to recuperate the initial administrative password and use it to setup
Jenkins:

ssh -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_1_public_ip)

docker run -it --rm \
 --volume-driver rexray \
 -v jenkins:/var/jenkins_home \
 alpine cat /var/jenkins_home/secrets/initialAdminPassword

I'll leave the rest to you. Finish the setup, destroy the container, wait until Swarm
reschedules it, confirm that the state is preserved, and so on and so forth. Spend some time
playing with it.

Unless you developed an emotional attachment with Jenkins and REX-Ray, please remove
the service and the volume. We won't need it anymore:

docker service rm jenkins

docker volume rm jenkins

exit

Prometheus, ElasticSearch, and Mongo are only a few examples of services that store the
state. Should we add REX-Ray mounts for all of them? Not necessarily. Some stateful
services already have a mechanism to preserve their state. Before we start attaching REX-
Ray mount like there is no tomorrow, we should first check whether a service already has a
data replication mechanism.

Creating and Managing Stateful Services in a Swarm Cluster

[374]

Persisting stateful services without
replication
Jenkins is a good example of a stateful service that forces us to preserve its state. Moreover,
it is incapable of sharing or synchronizing state between multiple instances. As a result, it
cannot scale. There cannot be two Jenkins masters with the same or replicated state. Sure,
you can create as many masters as you want but each will be an entirely separate service
without any relation to other instances.

The most obvious negative side-effect of Jenkins inability to scale horizontally is
performance. If a master is under heavy load, we cannot create a new instance and thus
reduce the burden from the original.

There are only three types of services that can be scaled. They need to be stateless, stateful
and capable of using shared state, or stateful and capable of synchronizing state. Jenkins is
none of those and, therefore, it cannot be scaled horizontally. The only thing we can do to
increase Jenkins capacity is to add more resources (for example: CPU and memory). Such an
action would improve its performance but would not provide high-availability. When
Jenkins fails, Swarm will re-schedule it. Still, there is a period between a failure and a new
replica being fully operational.

During that time, Jenkins would not be functional. Without the ability to scale, there is no
high-availability.

A big part of Jenkins workload is performed by its agents, so many organizations will not
need to deal with the fact that it is not scalable.

The reason for this transgression into Jenkins statefulness is to demonstrate one of the ways
stateful services can be designed. When running stateful services that do not have a
synchronization mechanism, there is no better option we can employ than to mount a
volume from an external drive. That does not mean that mounting a volume is the only
option we can use to deploy stateful services, but that is a preferable way to treat those that
cannot share or synchronize their state across multiple replicas.

Let's explore stateful services that do implement state synchronization.

Creating and Managing Stateful Services in a Swarm Cluster

[375]

Persisting stateful services with
synchronization and replication
When creating stateful services, the natural reaction is to think of a way to preserve their
state. While in many cases that is the correct thing to do, in some others it isn't. It depends
on service’s architecture.

Throughout this book, we explored at least two stateful services that can synchronize their
state across all instances. Those are Docker Flow Proxy and MongoDB. In a nutshell, the
ability to synchronize state means that when data inside one instance changes, it is capable
of propagating that change to all other instances. The biggest problem with that process is
how to guarantee that everyone has the same data without sacrificing availability. We'll
leave that discussion for some other time and place. Instead, let us go through the

 and services and decide which changes (if any) we need to apply to
accomplish high availability and performance. We'll use them as examples how to treat
stateful services capable of data replication and synchronization.

Not everyone uses Mongo for storing data, nor everyone thinks that Docker Flow Proxy is the
best choice for routing requests. The chances are that your choice of a database and the
proxy is different. Even in that case, I strongly suggest you read the text that follows since it
uses those two services only as examples of how you could design your replication and
how to set up third-party stateful service that already has it incorporated. Most DBs use the
same principles for replication and synchronization, and you should have no problem
taking MongoDB examples as a blueprint for creating your database services.

Persisting docker flow proxy state
Docker Flow Proxy is a stateful service. However, that did not prevent us from scaling it. Its
architecture is made in a way that, even though it is stateful, all instances have the same
data. The mechanism to accomplish that has quite a few names. I prefer calling it state
replication and synchronization.

When one of the instances receives a new instruction that changes its state, it should find all
the other replicas and propagate the change.

The replication flow is usually as follows:

An instance receives a request that changes its state.1.
It finds the addresses of all the other instances of the same service.2.
It re-sends the request to all other instances of the same service.3.

Creating and Managing Stateful Services in a Swarm Cluster

[376]

The ability to propagate changes is not enough. When a new instance is created, a stateful
service with data replication needs to be capable of requesting a complete state from one of
the other instances. The first action it needs to perform when initialized is to reach the same
state as other replicas. That can be accomplished through a pull mechanism. While
propagation of a change of state of one instance often entails a push to all other instances,
initialization of a new instance is often followed by a data pull.

The synchronization flow is often as follows:

A new instance of a service is created.1.
It finds the address of one of the other instances of the same service.2.
It pulls data from the other instance of the same service.3.

You already saw Docker Flow Proxy in action quite a few times. We scaled it, and we
simulated a failure which resulted in re-scheduling. In both cases, all replicas always had
the same state or, to be more precise, the same configuration. You saw it before, so there's
no need to go into another round of a practical demonstration of proxy's capabilities.

Understanding how replication and synchronization works does not mean that we should
write our services as stateful and employ those mechanisms ourselves. Quite the contrary.
When appropriate, design your services to be stateless and store their state in a database.
Otherwise, you might quickly run into problems and realize that you'll have to reinvent the
wheel. For example, you might be faced with consensus problems that are already solved in
protocols like Raft and Paxos. You might need to implement a variation of a Gossip
protocol. And so on, and so forth. Concentrate on what brings value to your project and use
proven solutions for everything else.

Recommending the usage of an external database instead of storing the state inside our
services might sound conflicting knowing that Docker Flow Proxy did the opposite. It is a
stateful application without any external data store (at least when running in Swarm mode).
The reason is simple. The proxy was not written from scratch. It uses HAProxy in the
background which, in turn, does not have the ability to store its configs (state) externally. If
I were to write a proxy from scratch, it would save its state externally. I might do that one
day. Until then, HAProxy is stateful and so is Docker Flow Proxy. From a user's perspective,
that should not be an issue since it employs data replication and synchronization between
all instances. The problem is for developers working on the project.

Let's take a look at another example of a stateful service with data replication.

Creating and Managing Stateful Services in a Swarm Cluster

[377]

Persisting MongoDB state
We used service throughout the book. It helped us understand better how Swarm
works. Among other things, we scaled the service quite a few times. That was easy to do
since it is stateless. We can create as many replicas as we want without having to worry
about data. It is stored somewhere else.

The service externalizes its state to MongoDB. If you paid attention, we never
scaled the database. The reason is simple. MongoDB cannot be scaled with a simple

 command.

Unlike Docker Flow Proxy that was designed from the ground up to leverage Swarm's
networking to find other instances before replicating data, MongoDB is network agnostic. It
cannot auto-discover its replicas. To make things more complicated, only one instance can
be primary meaning that only one instance can receive write requests. All that means that
we cannot scale Mongo using Swarm. We need a different approach. Let's try to set up three
MongoDBs with data replication by creating a replica set. We'll start with a manual process
that will provide us with an understanding of the problems we might face and solutions we
might employ. Later on, once we reach a satisfactory outcome, we'll try to automate the
process.

We'll start by entering one of the manager nodes:

ssh -i devops21.pem \
 ubuntu@$(terraform output \
 swarm_manager_1_public_ip)

All members of a Mongo replica set need to be able to communicate with each other, so
we'll create the same old network:

docker network create --driver overlay go-demo

If we were to create a single service with three replicas, Swarm would create a single
network endpoint for the service and load balance requests among all instances. The
problem with that approach is in MongoDB configuration. It needs a fixed address of every
DB that will belong to the replica set.

Instead of creating three replicas of a service, we'll create three services:

for i in 1 2 3; do
 docker service create --name go-demo-db-rs$i \
 --reserve-memory 100m \
 --network go-demo \
 mongo:3.2.10 mongod --replSet "rs0"
done

Creating and Managing Stateful Services in a Swarm Cluster

[378]

The command we executed created services , , and
. They all belong to the network so that they can communicate with

each other freely. The command specified for all services ,
making them all belong to the same Mongo replica set called Please don't confuse
Swarm replicas with Mongo replica sets. While they have a similar objective, the logic
behind them is quite different.

We should wait until all the services are running:

docker service ls

The relevant part of the output is as follows (IDs are removed for brevity):

NAME REPLICAS IMAGE COMMAND
...
go-demo-db-rs2 1/1 mongo:3.2.10 mongod --replSet rs0
go-demo-db-rs1 1/1 mongo:3.2.10 mongod --replSet rs0
go-demo-db-rs3 1/1 mongo:3.2.10 mongod --replSet rs0
...

Now we should configure Mongo's replica set. We'll do that by creating one more
service:

docker service create --name go-demo-db-util \
 --reserve-memory 100m \
 --network go-demo \
 --mode global \
 mongo:3.2.10 sleep 100000

We made the service global so that we ensure it will run on the same node we're in. That
makes the process easier than trying to figure out the IP of a node it runs in. It belongs to
the same network so that it can access the other DB services.

We do not want to run Mongo server inside this service. The purpose of
is to give us a Mongo client that we can use to connect to other DBs and configure them.
Therefore, we replaced the default command with a very long sleep.

To enter into one of the containers of the service, we need to find its ID:

UTIL_ID=$(docker ps -q \
 --filter label=com.docker.swarm.service.name=go-demo-db-util)

Now that we have the ID of the replica running on the same server, we
can enter inside the container:

docker exec -it $UTIL_ID sh

Creating and Managing Stateful Services in a Swarm Cluster

[379]

The next step is to execute a command that will initiate Mongo's replica set:

mongo --host go-demo-db-rs1 --eval '
 rs.initiate({
 _id: "rs0",
 version: 1,
 members: [
 {_id: 0, host: "go-demo-db-rs1" },
 {_id: 1, host: "go-demo-db-rs2" },
 {_id: 2, host: "go-demo-db-rs3" }
]
 })
'

We used the local client to issue the command on the server running inside
. It initiated the replica set with the ID and specified that the three

services we created previously should be its members. Thanks to Docker Swarm
networking, we do not need to know the IPs. It was enough to specify the names of the
services.

The response is as follows:

MongoDB shell version: 3.2.10
connecting to: go-demo-db-rs1:27017/test
{ "ok" : 1 }

We should not trust the acknowledgment alone. Let's take a look at the config:

mongo --host go-demo-db-rs1 --eval 'rs.conf()'

We issued another command to the remote server running in . It retrieved
the replica set configuration. Part of the output is as follows:

MongoDB shell version: 3.2.10
connecting to: go-demo-db-rs1:27017/test
{
 "_id" : "rs0",
 "version" : 1,
 "protocolVersion" : NumberLong(1),
 "members" : [
 {
 "_id" : 0,
 "host" : "go-demo-db-rs1:27017",
 "arbiterOnly" : false,
 "buildIndexes" : true,
 "hidden" : false,
 "priority" : 1,
 "tags" : {

Creating and Managing Stateful Services in a Swarm Cluster

[380]

 },
 "slaveDelay" : NumberLong(0),
 "votes" : 1
 },
 ...
],
 "settings" : {
 "chainingAllowed" : true,
 "heartbeatIntervalMillis" : 2000,
 "heartbeatTimeoutSecs" : 10,
 "electionTimeoutMillis" : 10000,
 "getLastErrorModes" : {

 },
 "getLastErrorDefaults" : {
 "w" : 1,
 "wtimeout" : 0
 },
 "replicaSetId" : ObjectId("585d643276899856d1dc5f36")
 }
}

We can see that the replica set has three members (two were removed for brevity).

Let's send one more command to the remote Mongo running in . This
time, we'll check the status of the replica set:

mongo --host go-demo-db-rs1 --eval 'rs.status()'

Part of the output is as follows:

connecting to: go-demo-db-rs1:27017/test
{
 "set" : "rs0",
 "date" : ISODate("2016-12-23T17:52:36.822Z"),
 "myState" : 1,
 "term" : NumberLong(1),
 "heartbeatIntervalMillis" : NumberLong(2000),
 "members" : [
 {
 "_id" : 0,
 "name" : "go-demo-db-rs1:27017",
 "health" : 1,
 "state" : 1,
 "stateStr" : "PRIMARY",
 "uptime" : 254,
 "optime" : {
 "ts" : Timestamp(1482515517, 2),

Creating and Managing Stateful Services in a Swarm Cluster

[381]

 "t" : NumberLong(1)
 },
 "optimeDate" : ISODate("2016-12-23T17:51:57Z"),
 "infoMessage" : "could not find member to sync from",
 "electionTime" : Timestamp(1482515517, 1),
 "electionDate" : ISODate("2016-12-23T17:51:57Z"),
 "configVersion" : 1,
 "self" : true
 },
 ...
],
 "ok" : 1
}

Info about two replicas is removed for brevity.

We can see that all the Mongo replicas are running. The service is acting
as the primary, while the other two are secondary nodes.

Setting up a Mongo replica set means that data will be replicated to all its members. One is
always a primary, while the rest are secondary servers. With the current configuration, we
can read and write data only to the primary server. Replica set can be configured to allow
read access to all the servers. Writing is always restricted to the primary.

Let us generate some sample data:

mongo --host go-demo-db-rs1

We entered into the remote Mongo running on .

The output is as follows:

MongoDB shell version: 3.2.10
connecting to: go-demo-db-rs1:27017/test
Welcome to the MongoDB shell.
For interactive help, type "help".
For more comprehensive documentation, see
 http://docs.mongodb.org/
Questions? Try the support group
 http://groups.google.com/group/mongodb-user
rs0:PRIMARY>

As you can see from the prompt, we are inside the primary database server.

Creating and Managing Stateful Services in a Swarm Cluster

[382]

We'll create a few records in the database test:

use test

db.books.insert(
 {
 title:"The DevOps 2.0 Toolkit"
 }
)

db.books.insert(
 {
 title:"The DevOps 2.1 Toolkit"
 }
)

db.books.find()

The previous command retrieved all the records from the database test.

The output is as follows:

{ "_id" : ObjectId("585d6491660a574f80478cb6"), "title" : \
"The DevOps 2.0 Toolkit" }
{ "_id" : ObjectId("585d6491660a574f80478cb7"), "title" : \
"The DevOps 2.1 Toolkit" }

Now that we have the replica set configured and a few sample records, we can simulate
failure of one of the servers and observe the result:

exit # Mongo

exit # go-demo-db-util

RS1_IP=$(docker service ps go-demo-db-rs1 \
 | tail -n 1 \
 | awk '{ print $4 }' \
 | cut -c 4- \
 | tr "-" ".")

docker -H tcp://$RS1_IP:2375 ps

We exited MongoDB and the service replica. Then we found the IP of
 (primary member of the Mongo replica set) and listed all the containers

running on the server.

Creating and Managing Stateful Services in a Swarm Cluster

[383]

The output is as follows (IDs and STATUS columns are removed for brevity):

IMAGE COMMAND CREATED
mongo:3.2.10 "/entrypoint.sh sleep" 3 minutes ago
mongo:3.2.10 "/entrypoint.sh mongo" 6 minutes ago
vfarcic/docker-flow-proxy:latest "/docker-entrypoint.s" 13 minutes ago

NAMES PORTS
go-demo-db-util.0.8qcsmlzioohn3j6p78hntskj1 27017/tcp
go-demo-db-rs1.1.86sg93z9oasd43dtgoax53nuw 27017/tcp
proxy.2.3tlpr1xyiu8wm70lmrffod7ui 80/tcp,443/tcp/,8080/tcp

Now we can find the ID of the service replica and simulate failure by
removing it:

RS1_ID=$(docker -H tcp://$RS1_IP:2375 \
 ps -q \
 --filter label=com.docker.swarm.service.name=go-demo-db-rs1) \

docker -H tcp://$RS1_IP:2375 rm -f $RS1_ID

Let's take a look at the tasks:

docker service ps go-demo-db-rs1

Swarm discovered that one of the replicas failed and re-scheduled it. A new instance will be
running a few moments later.

The output of the command is as follows (IDs are removed for brevity):

NAME IMAGE NODE DESIRED STATE
go-demo-db-rs1.1 mongo:3.2.10 ip-172-31-16-215 Running
_ go-demo-db-rs1.1 mongo:3.2.10 ip-172-31-16-215 Shutdown

CURRENT STATE ERROR
Running 28 seconds ago
Failed 35 seconds ago "task: non-zero exit (137)"

We'll enter the service replica one more time and output the status of
the Mongo replica set:

docker exec -it $UTIL_ID sh

mongo --host go-demo-db-rs1 --eval 'rs.status()'

Creating and Managing Stateful Services in a Swarm Cluster

[384]

The relevant part of the output is as follows:

MongoDB shell version: 3.2.10
connecting to: go-demo-db-rs1:27017/test
{
 "set" : "rs0",
 "date" : ISODate("2016-12-23T17:56:08.543Z"),
 "myState" : 2,
 "term" : NumberLong(2),
 "heartbeatIntervalMillis" : NumberLong(2000),
 "members" : [
 {
 "_id" : 0,
 "name" : "go-demo-db-rs1:27017",
 ...
 "stateStr" : "SECONDARY",
 ...
 },
 {
 "_id" : 1,
 "name" : "go-demo-db-rs2:27017",
 ...
 "stateStr" : "PRIMARY",
 ...
 },
 {
 "_id" : 2,
 "name" : "go-demo-db-rs3:27017",
 ...
 "stateStr" : "SECONDARY",
 ...
 }
],
 "ok" : 1
}

We can see that the become the primary Mongo replica. A simplified
flow of what happened is as follows:

Mongo replica failed
The remaining members noticed its absence and promoted to
the PRIMARY status
In the meantime, Swarm rescheduled the failed service replica
The primary Mongo replica noticed that the server came back
online and joined the Mongo replica set as secondary

Creating and Managing Stateful Services in a Swarm Cluster

[385]

The newly created synchronized its data from one of the other
members of the Mongo replica set

One of the key elements for all this to work is Docker networking. When the rescheduled
service replica came back online, it maintained the same address , and we
did not need to change the configuration of the Mongo replica set.

If we used VMs and, in the case of AWS, Auto Scaling Groups to host Mongo, when a node
fails, a new one would be created in its place. However, the new node would receive a new
IP and would not be able to join the Mongo replica set without modifications to the
configuration. The are ways we could accomplish the same in AWS without containers, but
none would be so simple and elegant as with Docker Swarm and networking.

What happened to the sample data we created? Remember, we wrote data to the primary
Mongo replica and, later on, removed it. We did not use REX-Ray or any
other solution to persist data.

Let’s enter the new primary Mongo replica:

mongo --host go-demo-db-rs2

In your cluster, the new primary might be . If that's the
case, please change the above command.

Next, we'll specify that we want to use the test database and retrieve all data:

use test

db.books.find()

The output is as follows:

{ "_id" : ObjectId("585d6491660a574f80478cb6"), "title" : \
"The DevOps 2.0 Toolkit" }
{ "_id" : ObjectId("585d6491660a574f80478cb7"), "title" : \
"The DevOps 2.1 Toolkit" }

Even though we did not setup up data persistence, all data is there.

The main purpose of Mongo replica sets is to provide fault tolerance. If a DB fails, other
members will take over. Any change to data (state) is replicated among all members of a
replica set.

Creating and Managing Stateful Services in a Swarm Cluster

[386]

Does that mean that we do not need to preserve the state to an external drive? That depends
on the use case. If data we are operating with is massive, we might employ some form of
disk persistence to speed up the synchronization process. In any other circumstances, using
volumes is a waste since most databases are designed to provide data replication and
synchronization.

The current solution worked well, and we should seek a way to set it up in a more
automated (and simpler) way.

We'll exit the MongoDB and the service replica, remove all the DB
services, and start over:

exit # Mongo

exit # go-demo-db-util

docker service rm go-demo-db-rs1 \
 go-demo-db-rs2 go-demo-db-rs3 \
 go-demo-db-util

Initializing MongoDB replica set through
a swarm service
Let's try to define a better and easier way to set up a MongoDB replica set.

We'll start by creating three services. Later on, each will become a member of a
Mongo replica set:

for i in 1 2 3; do
 docker service create --name go-demo-db-rs$i \
 --reserve-memory 100m \
 --network go-demo \
 mongo:3.2.10 mongod --replSet "rs0"

 MEMBERS="$MEMBERS go-demo-db-rs$i"
done

The only difference, when compared with the previous command we used to create
services, is the addition of the environment variable It holds service names of all
MongoDBs. We'll use that as the argument for the next service.

Since the official image does not have a mechanism to configure Mongo replica sets,
we'll use a custom one. Its purpose will be only to configure Mongo replica sets.

Creating and Managing Stateful Services in a Swarm Cluster

[387]

The definition of the image is in the (
) file. Its content is as

follows:

FROM mongo:3.2.10

COPY init-mongo-rs.sh /init-mongo-rs.sh
RUN chmod +x /init-mongo-rs.sh
ENTRYPOINT ["/init-mongo-rs.sh"]

 extends the official image, adds a custom
script, gives it execute permissions, and sets it as the entry point.

 defines the executable that will run whenever a container is run. Any
command arguments we specify will be appended to it.

The (
) script is as follows:

#!/usr/bin/env bash

for rs in "$@"; do
 mongo --host $rs --eval 'db'
 while [$? -ne 0]; do
 echo "Waiting for $rs to become available"
 sleep 3
 mongo --host $rs --eval 'db'
 done
done

i=0
for rs in "$@"; do
 if ["$rs" != "$1"]; then
 MEMBERS="$MEMBERS ,"
 fi
 MEMBERS="$MEMBERS {_id: $i, host: \"$rs\" }"
 i=$((i+1))
done

mongo --host $1 --eval "rs.initiate({_id: \"rs0\", version: 1, \
members: [$MEMBERS]})"
sleep 3
mongo --host $1 --eval 'rs.status()'

The first section loops over all addresses (defined as script arguments) and checks
whether they are available. If they're not, it waits for three seconds before repeating the
loop.

Creating and Managing Stateful Services in a Swarm Cluster

[388]

The second section formats a JSON string that defines the list of all members (id and host).
Finally, we initiate the replica set, wait for three seconds, and output its status.

This script is a slightly more elaborate version of the commands we executed previously
when we set up the replica set manually. Instead of hard-coding values (for example:

), it is written in a way that it can be reused for multiple Mongo replica sets
with varying number of members.

All that's left is to run the container as a Swarm service. I already built the image as
 and pushed it to Docker Hub:

docker service create --name go-demo-db-init \
 --restart-condition none \
 --network go-demo \
 vfarcic/mongo-devops21 $MEMBERS

When the script is finished, the container will stop. Typically, Swarm would interpret a
stopped container as a failure and re-schedule it. That's not the behavior we need. We want
this service to perform some tasks (configure replica set) and stop when finished. We
accomplished that with the argument. Otherwise, Swarm
would enter into an endless loop of continuously re-scheduling a service replica that keeps
failing a few moments later.

The command of the service is When appended to the , the full
command was

.

Let's confirm that all services (except) are running:

docker service ls

The output is as follows:

ID NAME REPLICAS IMAGE
1lpus9pvxoj6 go-demo-db-rs1 1/1 mongo:3.2.10
59eox5zqfhf8 go-demo-db-rs2 1/1 mongo:3.2.10
5tchuajhi05e go-demo-db-init 0/1 vfarcic/mongo-devops21
6cmd34ezpun9 go-demo-db-rs3 1/1 mongo:3.2.10
bvfrbwdi5li3 swarm-listener 1/1 vfarcic/docker-flow-swarm-listener
djy5p4re3sbh proxy 3/3 vfarcic/docker-flow-proxy
--
COMMAND
mongod --replSet rs0
mongod --replSet rs0
go-demo-db-rs1 go-demo-db-rs2 go-demo-db-rs3
mongod --replSet rs0

Creating and Managing Stateful Services in a Swarm Cluster

[389]

The only service that is not running is . By this time, it finished executing
and, since we used the argument, Swarm did not re-
schedule it.

We already developed a level of trust, and you probably believe me that the
 did its job correctly. Nevertheless, it doesn't hurt to double-check it. Since the last

command of the script output the replica set status, we can check its logs to see whether
everything is configured correctly. That means we'll need to go one more time into trouble
of finding the IP and the ID of the container:

DB_INIT_IP=$(docker service ps go-demo-db-init \
 | tail -n 1 \
 | awk '{ print $4 }' \
 | cut -c 4- \
 | tr "-" ".")

DB_INIT_ID=$(docker -H tcp://$DB_INIT_IP:2375 \
 ps -aq \
 --filter label=com.docker.swarm.service.name=go-demo-db-init)

docker -H tcp://$DB_INIT_IP:2375 logs $DB_INIT_ID

The relevant parts of the output of the command are as follows:

MongoDB shell version: 3.2.10
connecting to: go-demo-db-rs1:27017/test
{
 "set" : "rs0",
 "date" : ISODate("2016-12-23T18:18:30.723Z"),
 "myState" : 1,
 "term" : NumberLong(1),
 "heartbeatIntervalMillis" : NumberLong(2000),
 "members" : [
 {
 "_id" : 0,
 "name" : "go-demo-db-rs1:27017",
 ...
 "stateStr" : "PRIMARY",
 ...
 },
 {
 "_id" : 1,
 "name" : "go-demo-db-rs2:27017",
 "...
 "stateStr" : "SECONDARY",
 ...
 },

Creating and Managing Stateful Services in a Swarm Cluster

[390]

 {
 "_id" : 2,
 "name" : "go-demo-db-rs3:27017",
 ...
 "stateStr" : "SECONDARY",
 ...
 }
],
 "ok" : 1
}

Mongo replica set is indeed configured with all three members. We have a working group
of fault tolerant set of MongoDBs that provide high availability. We can use them with our

 (or any other) service:

docker service create --name go-demo \
-e DB="go-demo-db-rs1,go-demo-db-rs2,go-demo-db-rs3" \
 --reserve-memory 10m \
 --network go-demo \
 --network proxy \
 --replicas 3 \
 --label com.df.notify=true \
 --label com.df.distribute=true \
 --label com.df.servicePath=/demo \
 --label com.df.port=8080 \
 vfarcic/go-demo:1.2

There is only one difference between this command and those we used in the previous
chapters. If we continued using a single address of the primary MongoDB, we would not
have high availability. When that DB fails, the service would not be able to serve requests.
Even though Swarm would re-schedule it, the address of the primary would become
different since the replica set would elect a new one.

This time we specified all three MongoDBs as the value of the environment variable . The
code of the service will pass that string to the MongoDB driver. In turn, the driver will use
those addresses to deduce which DB is primary and use it to send requests. All Mongo
drivers have the same mechanism to specify members of a replica set.

Finally, let's confirm that all three replicas of the service are indeed running.
Remember, the service is coded in a way that it would fail if the connection to the database
could not be established. If all service replicas are running, it is the proof that we set up
everything correctly:

docker service ps go-demo

Creating and Managing Stateful Services in a Swarm Cluster

[391]

The output is as follows (IDs and ERROR columns are removed for brevity):

NAME IMAGE NODE DESIRED STATE
go-demo.1 vfarcic/go-demo:1.2 ip-172-31-23-206 Running
go-demo.2 vfarcic/go-demo:1.2 ip-172-31-25-35 Running
go-demo.3 vfarcic/go-demo:1.2 ip-172-31-25-35 Running

ERROR
Running 11 seconds ago
Running 9 seconds ago
Running 9 seconds ago

What now?
Not all stateful services should be treated in the same way. Some might need an external
drive mounted, while others already have some kind of a replication and synchronization
incorporated. In some cases, you might want to combine both mounting and replication,
while in others replication itself is enough.

Please keep in mind that there are many other combinations we did not explore.

The important thing is to understand how a service works and how it was designed to
persist its state. In many cases, the logic of the solution is the same no matter whether we
use containers or not. Containers often do not make things different, only easier.

With the right approach, there is no reason why stateful services would not be cloud-
friendly, fault tolerant, with high availability, scalable, and so on. The major question is
whether you want to manage them yourself or you'd prefer leaving it to your cloud
computing provider (if you use one). The important thing is that you got a glimpse how to
manage stateful services yourself.

Let's destroy the cluster before we move on:

exit

terraform destroy -force

115
Managing Secrets in Docker

Swarm Clusters
Docker 1.13 introduced a set of features that allow us to centrally manage secrets and pass
them only to services that need them. They provide a much-needed mechanism to provide
information that should be hidden from anyone except designated services.

A secret (at least from Docker's point of view) is a blob of data. A typical use case would be
a certificate, SSH private keys, passwords, and so on. Secrets should stay secret meaning
that they should not be stored unencrypted or transmitted over a network.

With all that being said, let's see them in action and continue our discussion through
practical examples.

All the commands from this chapter are available in the (
) Gist.

Creating secrets
Since a single node is more than enough to demonstrate Docker secrets, we'll start by
creating a one node Swarm cluster based on Docker Machines:

docker-machine create \
 -d virtualbox \
 swarm
eval $(docker-machine env swarm)

docker swarm init \
 --advertise-addr $(docker-machine ip swarm)

Managing Secrets in Docker Swarm Clusters

[393]

A note to Windows users
The recommendation is to run all the examples from Git Bash (installed
through Docker Toolbox as well as Git). That way the commands you'll see
throughout the book will be same as those that should be executed on OS
X or any Linux distribution.

We created a Docker Machine node called swarm and used it to initialize the cluster.

Now we can create a secret.

A note to Windows users
For mounts (a secret is a mount as well) used in the next command to
work, you have to stop Git Bash from altering file system paths. Set this
environment variable.

The format of the command that creates a secret is as follows (please do not run it):

docker secret create [OPTIONS] SECRET file|-

The command expects a file that contains a secret. However, creating a file
with unencrypted secret defies the purpose of having secrets in the first place. Everyone can
read that file. We could, delete the file after pushing it to Docker but that would only create
unnecessary steps. Instead, we'll use that will allow us to pipe standard output:

echo "I like candy" \
 | docker secret create my_secret -

The command we just executed created a secret called . That information was
sent to the remote Docker Engine using TLS connection. If we had a bigger cluster with
multiple managers, the secret would be replicated among all.

We can inspect the newly created secret:

docker secret inspect my_secret

The output is as follows:

[
 {
 "ID": "9iqwc8zb7xum7krgm183t4mym",
 "Version": {
 "Index": 11
},
 "CreatedAt": "2017-02-20T23:00:48.983267019Z",
 "UpdatedAt": "2017-02-20T23:00:48.983267019Z",

Managing Secrets in Docker Swarm Clusters

[394]

 "Spec": {
 "Name": "my_secret"
}
}
]

The value of the secret is hidden. Even if a malicious person gains access to Docker Engine,
the secret would still be unavailable. Truth be told, in such a case, our worries would be
much greater that protection of a Docker secret but I'll leave that discussion for some other
time.

Now that we have encrypted the secret and stored in Swarm managers, we should explore
ways to utilize it within our services.

Consuming secrets
A new argument was added to the command. If a
secret is attached, it will be available as a file in the directory inside all the
containers that form a service.

Let's see it in action:

docker service create --name test \
 --secret my_secret \
 --restart-condition none \
 alpine cat /run/secrets/my_secret

We created a service called test and attached the secret called . The service is
based on and will output the content of the secret. Since it is a one-shot command
that will terminate quickly, we set to . Otherwise, the service
would terminate a moment after it's created, Swarm would reschedule it, only to see it
terminate again, and so on. We would enter a never-ending loop.

Let's take a look at the logs:

docker logs $(docker container ps -qa)

The output is as follows:

I like candy

The secret is available as the file inside the container.

Managing Secrets in Docker Swarm Clusters

[395]

Before we start discussing a more real-world example, let us remove the service and the
secret we created:

docker service rm test

docker secret rm my_secret

A real-world example of using secrets
The Docker Flow Proxy () project exposes statistics that
should be reserved for internal use only. Therefore, it needs to be protected with a

 and . Before Docker v1.13, situations like that one would be handled by
allowing users to specify username and password through environment variables. Docker
Flow Proxy is no exception and, indeed, has the environment variables (

) .

The command that would create the service with custom and would
be as follows:

docker network create --driver overlay proxy

docker service create --name proxy \
 -p 80:80 \
 -p 443:443 \
 -p 8080:8080 \
-e STATS_USER=my-user \
-e STATS_PASS=my-pass \
 --network proxy \
-e MODE=swarm \
 vfarcic/docker-flow-proxy

While that would protect the statistics page from ordinary users, it would still leave it
exposed to anyone capable of inspecting the service. A simple example is as follows:

docker service inspect proxy --pretty

The relevant part of the output is as follows:

...
ContainerSpec:
 Image: vfarcic/docker-flow-
proxy:latest@sha256:b1014afa9706413818903671086e484d98db669576b83727801637d
1a3323910
 Env: STATS_USER=my-user STATS_PASS=my-pass MODE=swarm
...

Managing Secrets in Docker Swarm Clusters

[396]

The same result that does not reveal confidential information could be accomplished with
the commands that follow:

echo "secret-user" \
 | docker secret create dfp_stats_user -

echo "secret-pass" \
 | docker secret create dfp_stats_pass -

docker service update \
 --secret-add dfp_stats_user \
 --secret-add dfp_stats_pass \
 proxy

We created two secrets and updated our service.
From now on, those secrets would be available inside service containers as files

 and . If a secret is
named the same as the environment variable, is in lower case, and has the , it
will be used instead.

If you inspect the container one more time, you'll notice that there is no trace of the secrets.

We could stop here. After all, there's not much more to be said for Docker secrets. However,
we got used to Docker stacks and it would be great if secrets would work in the new YAML
Compose format.

Before we move on, let's remove the service:

docker service rm proxy

Using secrets with Docker Compose
True to the mission to have the same features available in all supported flavours, Docker
introduced secrets in Compose YAML format version 3.1.

We'll continue using Docker Flow Proxy to demonstrate how secrets work inside Compose
files:

curl -o dfp.yml \
 https://raw.githubusercontent.com/vfarcic/\
docker-flow-stacks/master/proxy/docker-flow-proxy-secrets.yml

Managing Secrets in Docker Swarm Clusters

[397]

We downloaded the (
) stack

from the (
) repository.

The relevant parts of the definition of the stack are as follows:

version: "3.1"

...

services:

 proxy:
 image: vfarcic/docker-flow-proxy:${TAG:-latest}
 ports:
 - 80:80
 - 443:443
 networks:
 - proxy
 environment:
 - LISTENER_ADDRESS=swarm-listener
 - MODE=swarm
 secrets:
 - dfp_stats_user
 - dfp_stats_pass
 deploy:
 replicas: 3

...

secrets:
 dfp_stats_user:
 external: true
 dfp_stats_pass:
 external: true

The version of the format is . The service has the two secrets attached. Finally,
there is a separate section that defines the as entities. The
alternative would be to specify secrets internally.

Managing Secrets in Docker Swarm Clusters

[398]

An example would be as follows:

secrets:
 dfp_stats_user:
 external: true
 dfp_stats_pass:
 external: true
secrets:
 dfp_stats_user:
 file: ./dfp_stats_user.txt
 dfp_stats_pass:
 file: ./dfp_stats_pass.txt

I prefer the first option that specifies secrets externally since that does not leave any trail. In
some other cases, secrets might be used for non-secretive information (we'll discuss it soon)
and using internal secrets specified as files would probably be a better option.

Let's run the and check whether it works:

docker stack deploy -c dfp.yml proxy

Statistics themselves are useless if there is no data so we'll deploy another service that will
be reconfigured in the and generating some stats:

curl -o go-demo.yml \
 https://raw.githubusercontent.com/vfarcic/\
go-demo/master/docker-compose-stack.yml

docker stack deploy -c go-demo.yml go-demo

Please wait a few moments until the services from the stack are running. You can
check their status by executing . You might see

 replicas in the failed status. Do not panic. They will continue failing only until
the is starts running.

Now we can, finally, confirm that the is configured to use secrets for authentication:

curl -u secret-user:secret-pass \
"http://$(docker-machine ip swarm)/admin?stats;csv;norefresh"

It works! With only a single additional step , we made our
system more secured

Managing Secrets in Docker Swarm Clusters

[399]

Common ways to use secrets
Until secrets were introduced, a common way to pass information to containers was
through environment variables. While that will continue being the preferable way for non-
confidential information, part of the setup should involve secrets as well. Both should be
combined. The question is which method to choose and when.

The obvious use case for Docker secrets are secrets. That was obvious, wasn't it. If there is a
piece of information that should remain invisible to anyone but specific containers, it
should be provided through Docker secrets. A commonly used pattern is to allow the same
information to be specified as either environment variable and a secret. In case that both a
set, secrets should take precedence. You already saw this pattern through Docker Flow Proxy.
Every piece of information that can be specified through environment variables can be
specified as a secret as well.

In some cases, you might not be able to modify code of your service and adapt it to use
secrets. Maybe it's not a question of ability but lack of desire to modify your code. If you fall
into the latter case, I will, for now, restrain myself from explaining why code should be
continuously refactored and imagine that you have a very good reason for it. In either case,
the solution is usually to create a wrapper script that transforms secrets into whatever your
service needs and then invoke the service. Put that script as CMD instruction in Dockerfile
and you're done. Secrets stay secrets and you don't get fired from refactoring your code. To
some this last sentence sounds silly but it's not uncommon for companies to consider
refactoring a waste of time.

What should be a secret? No one can truly answer that question for you since it differs from
one organization to another. Some of the examples would be usernames and passwords,
SSH keys, SSL certificates, and so on. If you don't want others to know about it, make it a
secret.

We should strive for immutability and do our best to run containers that are exactly the
same no matter where they run. True immutability means that even the configuration is
always the same across all environments. However, that is not always easy and is
sometimes even impossible to accomplish. Such a situation could be a good candidate for
Docker secrets. They do not necessarily have to be used only as means of specifying
confidential information. We can use secrets as a way to provide information that differs
from one cluster to another. In such a case, pieces of configuration that should differ from
one environment to another (example: staging and production clusters) can be stored as
secrets.

I am certain that there are quite a few other use cases I didn't even think about. After all,
secrets are a new feature (a few weeks old from the day of this writing).

Managing Secrets in Docker Swarm Clusters

[400]

What now?
Remove your Docker Machine VM and start applying secrets to your own Swarm cluster.
There's not much more to be said (for now):

docker-machine rm -f swarm

Monitor Your GitHub Repos
with Docker and Prometheus

By Brian Christner

GitHub is full of great code, information, and interesting statistics. GitHub repositories are
full of statistics that make perfect candidates to graph with Grafana. The best way to graph
this data is, of course, with Docker and Prometheus.

Prometheus contains an impressive list of Exporters (
). These Exporters range from APIs to IoT. They can also integrate

with Prometheus and Grafana which produce some beautiful graphs.

Docker, Prometheus, and Grafana
My base setup for anything monitoring related is the Docker, Prometheus, and Grafana
stack. That is the baseline I work from and add components like Exporters. I have created
the GitHub-Monitoring Repo (). It
contains a Docker compose file which makes this stack simplified and easy to start.

Monitor Your GitHub Repos with Docker and Prometheus

[402]

Getting started
Prerequisite Ensure you have a Docker host running the latest versions of Docker engine
and compose. Next, clone the GitHub-Monitoring (

) project to your Docker machine.

We can start configuring the project based on your requirements. Please edit the Prometheus
Targets (

) if you need to track additional Exporters or targets. They are located in
the static configs section at the end of the file. The Exporter uses the name metrics with port

:

static_configs:
- targets: ['node exporter:9100','localhost:9090', 'metrics:9171']

Configuration
Create a GitHub token to use for this project. That prevents us from hitting API limits
imposed by GitHub for non-authenticated traffic.

Navigate to Create GitHub Token () where we will
create a token for this project.

Please do the steps that follow:

Provide a description of the token.
Select scopes (our project only requires the permissions).
Click the generate token button.
Copy the token ID and store it in a safe place. That is the equivalent of a
password so don't keep it in a public place.

Edit the (
) file with your favorite editor. Scroll to the end of the

file where you will find the metrics service section.
First, replace the with the token you
generated earlier. Next, replace the with your desired repositories you want to track.
In my example, I have selected the Docker and repositories as they offer lots
of movement and stats.

Monitor Your GitHub Repos with Docker and Prometheus

[403]

The configuration is as follows:

metrics:
 tty: true
 stdin_open: true
expose:
 - 9171
image: infinityworks/github-exporter:latest
environment:
 - REPOS=freeCodeCamp/freeCodeCamp,docker/docker
 - GITHUB_TOKEN=<GitHub API Token see README>
networks:
 - back-tier

Once configurations are complete, we can start it up. Run the command that follows from
the directory:

docker-compose up

That's it. Docker Compose builds the entire Grafana and Prometheus stacks auto-magically.
The compose file also connects the new GitHub Exporter to our baseline stack. I choose to
run docker-compose without the flag initially. That makes it easier for troubleshooting
since log entries are printed directly to the terminal.

The Grafana Dashboard is now accessible via:
(example:).

Please use as username and as password (it is defined in the
 file that sets out a few environment variables).

Post configuration
Now we need to create the Prometheus Datasource to connect Grafana to Prometheus:

Click the Grafana menu from the top-left corner (looks like a fireball)
Click Data Sources
Click the green button Add Data Source

Monitor Your GitHub Repos with Docker and Prometheus

[404]

Refer to the following image to add a Grafana Data source:

Install dashboard
I created a Dashboard template which is available on GitHub Stats Dashboard(

). Download the dashboard and select from the Grafana menu ->
Dashboards -> Import

This dashboard is a starting point to help you get started with graphing your GitHub
Repos. Please let me know if you have any changes you would like to see in the dashboard,
so I can update Grafana site as well.

Monitor Your GitHub Repos with Docker and Prometheus

[405]

Conclusion
Prometheus in combination with Docker is a powerful yet simple way to monitor different
data sources. The GitHub Exporter is one of the many amazing Exporters available to
Prometheus.

Monitor Your GitHub Repos with Docker and Prometheus

[406]

About the author
Brian Christner hails from Arizona but now resides in the Alps of Switzerland. Brian spent
a large portion of his career in the casino industry where he made sure the house always
won. Brian is a nominated member of the Docker Captain's program and a seasoned cloud
architect. He is also a cloud subject matter expert in the topics of Docker, Cloud Foundry,
IaaS, PaaS, DevOps, CI/CD and, of course, container monitoring. Brian is passionate about
advocating for cloud and containers. When Brian is not busy trying to containerize
everything he can be found riding his mountain bike or skiing in the Swiss Alps.

Twitter -

Website -

Index

A
admin processes, Twelve-Factor App methodology

Amazon AMI Builder
 reference link
Amazon CloudWatch
 reference link
Amazon EC2 Console
 reference link
Amazon Elastic File System (EFS)
 about
 references ,
Amazon Machine Image (AMI)
 about
 creating, Packer used
Amazon Web Services (AWS) , ,
 about
 Swarm cluster, creating with right tools
 Swarm cluster, managing with right tools
 Terraform, used for creating Swarm cluster
AMI Builder (EBS Backed)
 reference link
Available Regions
 reference link
AWS Command Line Interface (CLI)
 installing
 reference link ,
 Swarm cluster, setting up
 URL, for installing
axis scaling
 about
 x-axis scaling
 y-axis scaling
 z-axis scaling

B
backing services, Twelve-Factor App methodology

build stage, Twelve-Factor App methodology

C
centralized logging
 need for
Chocolatey
 URL, for downloading
Cloud computing
CloudFormation template
 reference link
cluster monitoring system
 requisites
cluster
 creating
 setting up
clustering
codebase, Twelve-Factor App methodology
Compose file
 reference link
compose stacks
 reference link ,
concurrency, Twelve-Factor App methodology
confd
 reference link
config, Twelve-Factor App methodology
configure logging drivers
 reference link
Consul Template
 reference link
Consul
 about ,
 reference link ,
 setting up, as service registry in Swarm cluster

[408]

container Advisor
container
 executing, in Swarm cluster logs forwarding
 overview
Containers as a Service (CaaS)
Continuous Delivery (CD)
 about ,
 environment, defining
 steps
 to CDP
Continuous Delivery clusters
 setting up
Continuous Deployment (CDP)
 about ,
 conclusion
 from Continuous Delivery (CD)
Continuous Deployment flow
 automating, with Jenkins
 conclusion
Continuous Integration (CI) ,

D
dashboard metrics
 services, adjusting
dashboards
 creating, Grafana used
 in Grafana
 installing
data persistence
 stateful services, executing without
data volume orchestration
database
 executing, in isolation ,
 selecting, to store system metrics ,
 service, executing through reverse proxy ,
DataDog
 reference link
dependencies, Twelve-Factor App methodology

dev/prod parity, Twelve-Factor App methodology

DevOps 2.0 Toolkit
DigitalOcean API
 Swarm cluster, setting up

DigitalOcean Builder
 reference link ,
DigitalOcean snapshots
 creating, Packer used
DigitalOcean tokens
 reference link
DigitalOcean
 benefits
 reference link
 Swarm cluster, creating Terraform used
 Swarm cluster, creating with right tools
 Swarm cluster, managing with right tools
 URL
 URL, for registering
DIGITALOCEAN_DROPLET
 reference link
DIGITALOCEAN_FLOATING_IP
 reference link
DIGITALOCEAN_SSH_KEY
 reference link
disposability, Twelve-Factor App methodology
DNSSimple
 reference link
Docker Compose file
 references , ,
Docker Compose
 secrets, using
Docker Engine
 about ,
 reference link
Docker Flow Proxy
 persisting
 reference link , , , , , , ,

Docker Flow Stack
 reference link
Docker Flow Swarm Listener
 reference link ,
Docker for AWS
 reference link ,
 Swarm cluster, setting up
 Swarm cluster, setting up automatically
Docker Hub
 reference link
Docker issue 27307

[409]

 reference link
Docker Machine
 references
 Swarm cluster, setting up ,
Docker Registry
 references
Docker Remote API v1.24
 reference link , , , , ,
Docker Remote API
 Docker Swarm, operating
 using, to automate proxy configuration
Docker service
 reference link
Docker stack commands
 Swarm services, creating
Docker Swarm Mode
Docker Swarm
 conclusion
 exploring
 failover strategies
 operating, through Docker Remote API
 reference link
 without service discovery , ,
Docker Trusted Registry
 reference link
Docker
 about
 latest version, executing
 URL, for downloading on Ubuntu
 URL, for installing on Ubuntu
Dockerfile
 reference link
Domain Specific Language (DSL)

E
ElasticSearch
 reference link , ,
 set up, as logging database
environment variables
 reference link
 setting up ,
environment
 setting
etcd
 reference link ,

Exporters and Integrations
 reference link
Exporters, Prometheus
 reference link
Extreme Programming (XP)

F
failover strategies
fault tolerant services
 executing, requisites with HA
fire-and-forget principle
FluentD
 reference link ,
fully Dockerized manual Continuous Integration

flow
 defining

G
GitHub Stats Dashboard
 reference link
GitHub-Monitoring Repo
 reference link
GitHub-Monitoring
 references
GitHub
 creating
go-demo-db
go-demo
 about ,
 reference link ,
Go
 reference link
Google Compute Engine (GCE) , ,
Grafana
 about
 reference link , , ,
 used, for creating dashboards
Graphviz Download
 reference link
Graphviz
 reference link
GrayLog
 reference link

[410]

H
HAProxy
 reference link , ,
HashiCorp
 URL
Heroku
 URL
High Availability (HA)
 about
 fault tolerant services, executing requisites with

 secured tolerant services, executing requisites
with

host
 stateful services, persisting on

I
Icinga
 reference link
images
 pushing, to registry ,
InfluxDB
 reference link
Infrastructure as a Service (IaaS) ,

J
Java
 reference link
Jenkins agent
Jenkins architecture
Jenkins failover
Jenkins Pipeline jobs
 creating
 nodes, defining
 stages, defining
 steps, defining
Jenkins service
Jenkins Swarm Plugin
 references
Jenkins
 about
 Continuous Deployment flow, automating
Jenkinsfile
 reference link

jq
 reference link ,

K
key value store
 using, to store service state
Kibana
 reference link ,

L
list services, Docker Remote API v1.24
 reference link
load balancer
load balancing (LB)
 about
 request, across all instance of service
Local Area Network (LAN)
log forwarder
 LogStash, setting up
log parser
 LogStash, setting up
logging database
 ElasticSearch, setting up as
logging solutions
 discussing
Loggly
 reference link
logs, Twelve-Factor App methodology
logs
 about
 forwarding, from containers executing in Swarm

cluster
logspout
 reference link
LogStash
 reference link ,
 setting up, as log forwarder
 setting up, as log parser
Long Term Support (LTS) ,

M
MongoDB replica set
 initializing, through Swarm service
MongoDB state
 persisting

[411]

monitoring
 best practices
my_secret

N
Nagios
 reference link ,
Network File System (NFS)
 about
 stateful services, persisting
Node Exporter collectors
 reference link
Node Exporter Server Metrics
 reference link
Node Exporter Server Stats
 references
Node Exporter
 reference link ,
node labels
 using, to constrain services

P
Packer
 reference link ,
 REX-Ray, adding
 Swarm cluster, setting up ,
 URL ,
 used, for creating DigitalOcean snapshots
 using, to create AMI
Pipeline Nodes
 defining
Pipeline stages
 defining
Pipeline steps
 defining
 reference link
Platform as a Service (PaaS)
plugins directory
 reference link
port binding, Twelve-Factor App methodology
processes, Twelve-Factor App methodology
prod-like nodes
production cluster ,
production environment
 services, creating

 setup
production-like environment
 services, creating
PromDash
 reference link
Prometheus metrics
 about
 querying
 scraping
 visualizing
Prometheus
 about
 Datasource, creating
 reference link ,
proxy configuration
 automation, Docker Remote API used
proxy reconfiguring
 reference link ,
proxy-SDN
proxy
 about , , , , ,
 reconfiguring, automatically
 service, removing from
 setting up
 Swarm listener, combining
Push Gateway
 reference link
Python
 reference link

R
Regions and Availability Zones
 reference link
Registrator
 reference link
registry
 images, pushing ,
release stage, Twelve-Factor App methodology

Remote State
 reference link ,
Return On Investment (ROI)
reverse proxy
 service, creating
 service, executing ,

[412]

REX-Ray
 adding, to Packer
 adding, to Terraform
 reference link
 stateful services, persisting
routing mesh
Ruby
 reference link
run stage, Twelve-Factor App methodology

S
scalability
scaling
 issues, for stateful instances
 services
secrets
 applying to
 consuming
 creating
 using, common ways
 using, for real-world example
 using, with Docker Compose
secured tolerant services
 executing, requisites with HA
service binary
 building
service discovery
 conclusion
 in Swarm cluster
 reference link
 standalone Docker Swarm
 usage
service images
 building , ,
service registry
 about
 using, Consul setting up in Swarm cluster
 using, to store service state
 using, to store the state
service state
 storing, key value store used
 storing, service registry used
services
 address, discovering
 adjusting, through dashboard metrics

 constrain, node labels used
 creating
 creating, in production environment
 creating, in production-like environment
 deploying, to Swarm cluster
 load balancing, requests
 removing, from proxy
sharding
Software Development Life Cycle (SDLC)
Software-as-a-Service (SaaS)
Software-Defined Network (SDN)
Splunk
 reference link
stack
 deploying
 using
stage
 about
 reference link
staging tests
 executing , ,
standalone Docker Swarm
 with service discovery
 working
stateful instances
 scaling, issues
stateful services
 executing, without data persistence
 persistence method, selecting
 persisting, on host
 persisting, on network file system
 persisting, with replication
 persisting, with REX-Ray
 persisting, with synchronization
 persisting, without replication
Swarm cluster
 conclusion
 Consul, setting up as service registry
 creating, in AWS right tools selecting
 creating, in DigitalOcean right tools used
 creating, in DigitalOcean Terraform used
 creating, Terraform used in AWS
 Docker for AWS, using
 Docker for AWS, versus Terraform
 Docker Machine, using ,

[413]

 logs, forwarding from containers executing in

 managing, in AWS right tools selecting
 managing, in DigitalOcean right tools selecting

 reference link
 service discovery
 services, deploying
 setting up ,
 setting up, automatically with Docker for AWS

 setting up, with AWS CLI
 setting up, with DigitalOcean API
 setting up, with Docker for AWS
 setting up, with Docker Machine ,
 setting up, with Packer
 setting up, with Terraform
 setting, with Packer
 setting, with Terraform
 setup
 Terraform, using , ,
Swarm listener
 combining, with proxy
Swarm manager , ,
Swarm services
 creating, through Docker stack commands
 MongoDB replica set, initializing
Swarm worker , , ,
system wide metrics
 exporting

T
Technology Conversations
 reference link
Terraform
 reference link
 references , , , ,
 REX-Ray, adding to
 Swarm cluster, setting up ,
 URL ,
 used, for creating Swarm cluster in DigitalOcean

 used, to create Swarm cluster in AWS
 versus Docker for AWS
Test-Driven Development (TDD)

 about
 reference link
The DevOps 2.0 Toolkit
 reference link
time filter
 reference link
Tiny Core Linux
 reference link
Twelve-Factor App methodology
 about
 admin processes
 backing services
 build stage
 codebase
 concurrency
 config
 dependencies
 dev/prod parity
 disposability
 logs
 port binding
 processes
 release stage
 run stage
Twelve-Factor App
 URL

U
unit tests
 about
 executing
Use Docker Engine Plugins
 reference link

V
vfarcic/go-demo
 reference link
virtualization
Volume plugins
 reference link

X
x-axis scaling
X-Pack
 reference link

Y
y-axis scaling
You ain't gonna need it (YAGNI)

Z
z-axis scaling
Zookeeper
 reference link

	Cover
	Credits
	About the Author
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Continuous Integration with Docker Containers
	Defining a fully Dockerized manual Continuous Integration flow
	Running unit tests and building service binary
	Building service images
	Running staging tests
	Pushing images to the registry

	Chapter 2: Setting Up and Operating a Swarm Cluster
	Scalability
	Axis scaling
	X-axis scaling
	Y-axis scaling
	Z-axis scaling

	Clustering
	Docker Swarm Mode
	Setting up a Swarm cluster
	Deploying services to the Swarm cluster
	Scaling services
	Failover
	What now?

	Chapter 3: Docker Swarm Networking and Reverse Proxy
	Setting up a cluster
	Requirements of secured and fault tolerant services running with high availability
	Running a database in isolation
	Running a service through a reverse proxy
	Creating a reverse proxy service in charge of routing requests depending on their base URLs
	Load balancing requests across all instances of a service
	What now?

	Chapter 4: Service Discovery inside a Swarm Cluster
	What would Docker Swarm look like without?
	What does standalone Docker Swarm look like with service discovery?
	Service discovery in the Swarm cluster
	Do we need service discovery?
	Setting up Consul as service registry inside a Swarm cluster
	Problems when scaling stateful instances
	Using service registry to store the state
	Discovering addresses of all instances that form a service
	Using service registry or key value store to store service state
	What now?

	Chapter 5: Continuous Delivery and Deployment with Docker Containers
	Defining the Continuous Delivery environment
	Setting up Continuous Delivery clusters
	Using node labels to constrain services
	Creating services
	Walking through Continuous Delivery steps
	Walking the extra mile from Continuous Delivery to Continuous Deployment
	What now?

	Chapter 6: Automating Continuous Deployment Flow with Jenkins
	Jenkins architecture
	Production environment setup
	Jenkins service
	Jenkins failover
	Jenkins agent
	Creating services in production and production-like environments
	Automating Continuous Deployment flow with Jenkins
	Creating Jenkins Pipeline jobs
	Defining Pipeline nodes
	Defining Pipeline stages
	Defining Pipeline steps

	What now?

	Chapter 7: Exploring Docker Remote API
	Setting up the environment
	Operating Docker Swarm through the Docker Remote API
	Using Docker Remote API to automate proxy configuration
	Combining the Swarm listener with the proxy
	Automatically reconfiguring the proxy
	Removing a service from the proxy

	What now?

	Chapter 8: Using Docker Stack and Compose YAML Files to Deploy Swarm Services
	Swarm cluster setup
	Creating Swarm services through Docker stack commands
	Deploying more stacks
	To stack or not to stack
	Cleanup

	Chapter 9: Defining Logging Strategy
	The need for centralized logging
	Setting up ElasticSearch as the logging database
	Setting up LogStash as the logs parser and forwarder
	Forwarding logs from all containers running anywhere inside a Swarm cluster
	Exploring logs
	Discussing other logging solutions
	What now?

	Chapter 10: Collecting Metrics and Monitoring the Cluster
	The requirements of a cluster monitoring system
	Choosing the right database to store system metrics
	Creating the cluster
	Prometheus metrics
	Exporting system wide metrics
	Scraping, querying, and visualizing Prometheus metrics
	Using Grafana to create dashboards
	Exploring Docker Swarm and container overview dashboard in Grafana
	Adjusting services through dashboard metrics
	Monitoring best practices
	What now?

	Chapter 11: Embracing Destruction: Pets versus Cattle
	What now?

	Chapter 12: Creating and Managing a Docker Swarm Cluster in Amazon Web Services
	Installing AWS CLI and setting up the environment variables
	Setting up a Swarm cluster with Docker Machine and AWS CLI
	Setting up a Swarm cluster with Docker for AWS
	Automatically setting up a Swarm cluster with Docker for AWS
	Setting up a Swarm cluster with Packer and Terraform
	Using Packer to create Amazon Machine Images
	Using Terraform to create a Swarm cluster in AWS

	Choosing the right tools to create and manage Swarm clusters in AWS
	To Docker Machine or not to Docker Machine?
	To Docker for AWS or not to Docker for AWS?
	To Terraform or not to Terraform?
	The final verdict

	Chapter 13: Creating and Managing a Docker Swarm Cluster in DigitalOcean
	Setting up the environment variables
	Setting up a Swarm cluster with Docker Machine and DigitalOcean API
	Setting up a Swarm cluster with Packer and Terraform
	Using Packer to create DigitalOcean snapshots
	Using Terraform to create a Swarm cluster in DigitalOcean

	Choosing the right tools to create and manage Swarm clusters in DigitalOcean
	To Docker Machine or not to Docker Machine?
	To Terraform or not to Terraform?
	The final verdict

	To DigitalOcean or not to DigitalOcean

	Chapter 14: Creating and Managing Stateful Services in a Swarm Cluster
	Exploring the twelve-factor app methodology
	Setting up a Swarm cluster and the proxy
	Running stateful services without data persistence
	Persisting stateful services on the host
	Persisting stateful services on a Network File System
	Data volume orchestration
	Persisting stateful services with REX-Ray
	Choosing the persistence method for stateful services
	Adding REX-Ray to packer and terraform
	Persisting stateful services without replication
	Persisting stateful services with synchronization and replication
	Persisting docker flow proxy state
	Persisting MongoDB state
	Initializing MongoDB replica set through a swarm service
	What now?

	Chapter 15: Managing Secrets in Docker Swarm Clusters
	Creating secrets
	Consuming secrets
	A real-world example of using secrets
	Using secrets with Docker Compose
	Common ways to use secrets
	What now?

	Appendix: Monitor Your GitHub Repos with Docker and Prometheus
	Docker, Prometheus, and Grafana
	Getting started
	Configuration
	Post configuration
	Install dashboard
	Conclusion
	About the author

	Index

