Petru Isfan, Bogdan Vaida

Working with
Linux - Quick
Hacks for the
Command Line

Shell scripting hacks for Linux developers

LI Packt

Working with Linux — Quick
Hacks for the Command Line

Shell scripting hacks for Linux developers

Petru Isfan

Bogdan Vaida

BIRMINGHAM - MUMBAI

Working with Linux — Quick Hacks for the Command
Line

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2017
Production reference: 1260517

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78712-918-4

www . packtpub.com

www.packtpub.com

Credits

Authors
Petru Isfan

Bogdan Vaida

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Prachi Bisht

Content Development Editor
Prachi Bisht

Trusha Shriyan

Technical Editor
Naveenkumar Jain

Copy Editor
Safis Editing

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Aishwarya Gangawane

Graphics
Kirk D'Penha

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

About the Authors

Petru I§fan is a full-stack developer, Linux evangelist, open source lover, and
cloud pioneer. Petru has worked all his engineering life in Linux, and has tried all
the major distributions out there. He specializes not only in software development,
but in the whole software engineering stack, focusing on tools and workflows that
enhance developer productivity and enjoyment.

An early adopter of technology, he uses passion and best practices to deliver
software products, mainly for the Web and the mobile world, working with clients
big and small. He is really enthusiastic about finding the most efficient and elegant
solutions for all problems.

Bogdan Vaida burst onto the training scene in 2009 using extremely old
Powerpoint presentations. Luckily, two years later, he switched to experiential
training and learning by using methodologies that he practiced devotedly in all of
his training. Known for his no-nonsense approach to getting results, Bogdan has
been told that he helps participants get their own "insanely practical insights."

What does he do? He travels around the world doing experiential training in fields
ranging from video editing to personality typologies and trainer training. While
doing this, he also manages his online courses, which have over 10,000 students from
all over the world.

In 2015, he beat the record for total time spent in airports.

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub . com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

W Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this book's
Amazon page at https://www.amazon.com/dp/1787129187.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com We award our regular reviewers with free
eBooks and videos in exchange for their valuable feedback. Help us be relentless in
improving our products!

https://www.amazon.com/dp/1787129187

Table of Contents

Preface iii
Chapter 1: Introduction 1
Are you ready? 2
Terminator — the ultimate terminal 3
Preferences menu 4
Features 6
Guake — not Quake! 1"
Cliplt — copy-paste at its finest 15
Chapter 2: Productive Shells — Reinvent the way you work 21
Oh-my-zsh — your terminal never felt this good before! 26
Basic regular expressions 33
Pipes and subshells — your shell's salt and pepper 39
Shell scripting for fun and profit 46
Shell scripting libraries 56
Chapter 3: Vim kung fu 63
Supercharging Vim 64
Color scheme desert 67
Keyboard kung fu 70
Plugin steroids for Vim 81
Vim password manager 86
Instant configuration restoring 88
Chapter 4: CLI — The Hidden Recipe 91
Sed — one-liner productivity treasure 91
You can run, but you can't hide... from find 97
tmux — virtual consoles, background jobs and the like 110

[il

Table of Contents

Network — Who's listening? 118
Autoenv — Set a lasting, project-based habitat 127
Don't rm the trash 134
Chapter 5: Developers' Treasure 139
The spot webserver 140
Shrinking spells and other ImageMagick 143
Go with the Git flow 155
Merging Git conflicts with ease 169
From localhost to instant DNS 175
JSON jamming in the new age 181
No more mister nice guy 192
Chapter 6: Terminal Art 197
Index 205

Lii]

Preface

Our mission is to save Linux users from their unproductive habits.

In this book, you will learn:

What's one of the best terminals to use (just a hint: you need that split
screen functionality).

How clipboard managers memorize the things you copy, so you don't
have to.

How to use the greatest/biggest/most intelligent :)) console editor since
humankind appeared. Yes, it's Vim. And we'll dive deep into its usefulness.

Zsh and its awesome oh-my-zsh framework featuring over 200 plugins for
developers and productivity seekers.

Extensive lessons on terminal commands: how to find and replace text, parts
of text, tiny bits of text or even non-text.

How to use pipes and subshells to create customized commands that
automate day-to-day tasks.

And much more. This book is for all the programmers that are new to the
Linux environment.

But who are we?

Petru: the infamous coder with many years of Linux experience. He types like crazy,
loves doughnuts and has Linux wired in his brain! After discovering Linux and
switching through a different distribution every week, annoying his girlfriend with
tons of geeky stuff, now he annoys everybody with geek talks and the latest news in
the tech world.

He spends his time coding frontends, backends, databases, Linux servers,
and clouds.

[iii]

Preface

Bogdan: the deserter! He went through more than 20 Linux and Unix distributions
including Plan 9, HP-UX and all of the BSDs. But after his girlfriend left him because
he spent way too much time in front of the computer he... switched to Mac.

Now he spends his time teaching over ten thousand students in his 8 online courses.
And we are here to help you double your terminal productivity!

If you don't know how to use sed, if you're not that used to pipeing commands, if
you use the default terminal and if you are still using BASH then this book is for you.

Read it now and double your terminal productivity!

What this book covers

Chapter 1, Introduction, introduces the most basic tools needed to transform your user
experience.

Chapter 2, Productive Shells — Reinvent the Way You Work, reinvents the way you work.
Colors, editors, and custom configurations all tailored to your custom needs.

Chapter 3, Vim kung fu, explains the way of the terminal warrior. This includes
configuration and advanced usage to cover the majority of needs.

Chapter 4, CLI - The Hidden Recipe, shows different ways of going from good to great
and boosting the command-line capabilities to new frontiers.

Chapter 5, Developers' Treasure, explains how to maximize productivity with these
simple hacks. It's the small things that produce the big difference.

Chapter 6, Terminal Art, prepares you to become amazed at what creativity can do
with limited resources. This is where the fun begins.

What you need for this book

Ideally, you can equip yourself with a fresh Ubuntu operating system and go
through the samples while reading. Remember there is a git repository available at
https://github.com/petruisfan/linux-for-developers

Go ahead and clone this locally so that you can use the project's sample files.

[iv]

https://github.com/petruisfan/linux-for-developers

Preface

Who this book is for

This book is for Linux users who already have some form of basic knowledge and
are looking to improve their skills and become more productive in the command-
line environment. It is for users who want to learn tips and tricks that master's use,
without going through all the trials and errors in the vast open source ocean of tools
and technologies. It's for the users who want to feel at home at the terminal prompt
and are eager to do the vast majority of tasks from there.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Open the terminator and type sudo apt install zsh to install zsh, as shown in."

A block of code is set as follows:

case ${CMD} in
publicip)
print public_ip
ip)
IFACE=S (getarg iface s@)
print_ip $IFACE
*)
echo "invalid command"
esac

Any command-line input or output is written as follows:

sh -c "$(curl -£fsSL https://raw.githubusercontent.com/robbyrussell/oh-my-
zsh/master/tools/install.sh) "

[v]

Preface

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Go to
shell and enable Open new tab in current directory."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub. com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

[vil

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questionsepacktpub.com, and we will do our best to address the problem.

[vii]

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Introduction

This book is split into multiple parts. In part 1, we'll explore a new terminal

and show you how to install and configure it. In part 2, we will concentrate on
configuring your shell, adding plugins, understanding regular expressions, and
working with pipes and subshells. Everything will then be coagulated into a shell
scripting lesson. In part 3, we'll work with Vim, our recommended editor. We will
cover everything from configuring it, to learning keyboard shortcuts, installing
plugins, and even using it as a password manager. So let's get started.

In the following chapter, we will learn the following topics:

* Understanding the working of Terminator
* Using Guake for your quick commands or long running tasks
* Using Cliplt to copy-paste text

So, we will start with a terminal after which everything will be wild! When it comes
to working long hours in a terminal, our choice is to use Terminator for its fast and
easy split screen functionality. Then, we will focus on Guake, a terminal that opens
really fast and wherever you are. Towards the end, you will understand the working
of Clipit and use its copy and paste feature effectively.

[11]

Introduction

Are you ready?

We will dive deep into the Linux environment, giving you tips and tricks to increase
your productivity, make you more comfortable with the command line, and
automate your tasks.

The book is based on Ubuntu Linux version 16.04, which is the latest long-term
support version. We chose Ubuntu because it's the most common Linux distribution
out there, it's really simple to use, has a lot of graphical tools, and you can find a
huge online community ready to answer all your questions. Ubuntu is also the

most supported Linux distribution. This means that companies that create software,
especially graphics software, and offer them for Linux, usually start with Ubuntu.

This makes it easier for us to use tools such as Skype, Slack, or Visual Studio Code.
Although the book is based on Ubuntu, most of the commands are not related to
Ubuntu, so you can easily use another distribution and apply the same lessons. A
large part of the book can even be applied applicable to Mac, as we can have the
same tools installed on Mac — bash, zsh, vim all work the same way across Linux
and Mac--and with the release of Windows 10, bash support is built in, so tools such
as zsh and vim can easily be installed and used. Before Windows 10, there were tools
such as cygwin that let you use the Linux command line in a Windows environment.

We recommend you to read and practice in an open terminal so that you can execute
the commands and check their results. Before we start, you want to download all
the source files from our GitHub repository (located here: https://github.com/
petruisfan/linux-for-developers).

4|

https://github.com/petruisfan/linux-for-developers

[2]

https://github.com/petruisfan/linux-for-developers
https://github.com/petruisfan/linux-for-developers

Chapter 1

Terminator — the ultimate terminal

The first thing you need to do in order to become productive is to have a good
terminal. Throughout the book, we will be working mostly with the command line,
which means that the primary piece of software we will be using is our terminal.

A great terminal that we recommend is Terminator, which can be installed from
the software center.

Let's go to our launcher and click on the software center icon. After it opens, click on
the search input and write terminator, as shown in the following screenshot. It will
probably be first in the list of results. Click on Install.

[31]

Introduction

After installing Terminator, it's a good idea to drag its icon to the Launcher. For this,
you just open the dash by hitting the Windows key, write terminator and drag and
drop its icon into the Launcher:

Alright, now let's click on the icon to get started. You can maximize the window to
have more space to play around.

Preferences menu

It's an customizing terminal, where good surprises can be found in form of fonts
styles and other tools. What you see right now are the default settings. Let's go into
the preferences menu and see what we can update. First of all, let's hide the title bar
because it doesn't give us that much information and it's always a good idea to have
as much free screen space as possible (and as few distractions as possible).

Now let's look at some other preferences:

1. Let's change the font. We will make it a bit larger than usual so that it is easy
to read. Let's go with Monospace 16, as shown in the following screenshot:

[4]

Chapter 1

Frofiles | Layouts ugins | About

Profile General hl..;:rrl “olors | Background | Scrol
default
Use the system fixed width font
Font: | Monospace 16
& Allow bold text
& Anti-alias text
Show titlebar

Copy on selection

select-by-word characters: |-A-Za-20-9,./7%&%#:_

Terminal bell
& Titlebar icon

Cursor

Shape: Block
Visual Flash
Color:

& Blink

Audible beep

window list flash

2. We also want to have good contrast so that it's easy to distinguish the letters.
And for this, we will choose a black on white color theme.

Terminatar Preferances
obal | Profiles | L 5 | K wdings Plugins About

Profile 2 lors | Bach nd., Scrolling C

default
Foreground and Background

Use colors from system theme
Built-in schemes: Black on white

Text color: ||

Background color:

Palette

MNote: Terminal app! £ have these eolors a

Built-in schemes: | Ambience

Coler palette: e

[51]

Introduction

3. It's also a good idea to enable infinite scroll, because you don't want your
terminal output to be trimmed after 500 lines. A lot of the time, you just want
to scroll and see the previous output. Also, while scrolling, if there is a lot of
text, you probably don't want to be brought back to the bottom of the page,
so uncheck the Scroll on output option.

= () Terminator Preferences

Global | Profiles | Layouts = Keybindings = Plugins = About

Profile
default

General | Command | Colors | Background | Scrolling | Compatibility

Scrollbaris: | On the right side
scrollback: lines
& Infinite Scrollback
scroll on output
& scroll on keystroke

Use keystrokes to scroll on alternate screen

And voila! This is our newly configured terminal. And now it's time to check what
we can do with this new terminal. Here comes the Features section!

Features

Now it's time to look at some of Terminator's useful features and their keyboard
shortcuts. This is what the normal Terminator interface looks like:

[6]

Chapter 1

hacker@laptop

Let's play around with it now:

* Split screen: Ctrl + Shift + O for a horizontal split:

hacker

hacker

hacker

hacker

e ik - - 23 hacker

drwxrwxr-x 10 hacker

drwxr-xr-x 2 hacker

-rw-r--r-- 1 hacker

druxr-xr-x 2 hacker

drwer-xr-x 2 hacker

-fW-F--r-- 1 hacker
1 root

3 hacker

1 hacker

3 hacker

3 hacker

2 hacker

3 hacker

1 hacker

1 hacker

3 hacker

e rwix - - 4 hacker

drwxr-xr-x 2 hacker

drwxrwxr-x 2 hacker

3 hacker

2 hacker

3 hacker

1 hacker

drwer-xr-x 2 hacker

drwxrwxr-x 5 hacker

-rw-r--r-- 1 hacker

drwxr-xr-x 2 hacker

[drwxr-xr-x 3 hacker

- - - 1 hacker

- - 1 hacker

-rw- 1 hacker

- MW= 1 hacker

- Pw- 1 hacker

-rw-rw-r-- 1 hacker

M- 1 hacker

“PWrmeannn 1 hacker
hacker@laptop:~§ ||

hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
roet

hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
nacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker

676 Jul
39458 Jul
39604 Jul

215 Jul

:35 .bash_logout
135 .bashrc

:85 bin

:54 .cache

:89 .config

:84 course

:37 Desktop

:37 .dmrc

:37 Documents
:18 Downloads

examples.desktop
file.txt

.gconf
.gitcanfig
.gnome

«gnome
.gnome?_private
.gnupg
JICEauthority
lesshst

«local

.mozilla

Music

.nano

142 Videos
.viminfe

g
|
« X5
. X5
B a=
W20
« 25

hacker@laptop:~5 0

.t horizontal means)

[71

Introduction

* Ctrl + Shift + E for a vertical split:

hacker
hacker hacker

5 .bash_logout hacker@laptop:~5 |

hacker hacker bin

hacker hacker .cache
hacker hacker .config
hacker hacker course
hacker hacker Desktop
hacker hacker .dmre
hacker hacker Documents
hacker hacker Downloads
hacker hacker exanples. desktop
roat root file.tut
hacker hacker .geonf
hacker hacker .gitconfig
hacker hacker .gnome
hacker hacker gnomel

2 hacker hacker
hacker hacker

.gneme?_private
.gnupg

hacker hacker .ICEauthority 3

hacker hacker .lesshst

hacker hacker +local

hacker hacker .mozilla hacker@laptop:~5 |
hacker hacker Music

hacker hacker
hacker hacker
hacker hacker
hacker hacker

«nano
7 .nv
Pictures

hat horizontal means)

=W F=aF== hacker hacker
d W -xr-x hacker hacker
A FWEFeXr-X hacker hacker 4096 Jun

drwer-xr-x hacker hacker 4696 Jun
hacker hacker 4696 Jun
hacker hacker 8733 Jul
hacker hacker 182 Jun
hacker hacker 153 Jul
hacker hacker 82 Jul
hacker hacker 676 Jul
hacker hacker 39458 Jul
hacker hacker 39604 Jul
hacker hacker 215 Jul
e §

1
2
5
-rw-r-=r-- 1 hacker hacker 8 Jun
2
3

drwer-xr-x

This is probably the coolest feature of Terminator and the one we will be using the
most as it is really helpful to see multiple panes and easily switch between them. You
can split the screen any number of times, in any combination you want.

Resize screen: Ctrl + Shift + Arrow or just drag and drop:

[8]

Chapter 1

hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
root root
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
hacker hacker
i~%

153

676
39458
396684

215

Jun 14 89
Jun 14 09

Jun 21 11:
Jul 5 18:
Jul 21 @8:
Jun 28 11:
Jun 14 89:
Jun 14 89:
Jun 14 89:
Jun 21 11:
Jun 14 89:
Jul 13 23:
Jul 21 88:
Jun 28 28:
Jun 14 89:
Jun 14 89:
Jun 14 89:
Jul 28 23:
Jul 28 23:
Jun 28 88:
Jun 14 89:
Jun 14 18:
Jun 14 @9:
Jun 28 28:
Jun 14 89:
Jun 14 89:
Jun 14 89:
Jun 14 89:
Jun 14 85:
Jun 14 89:
Jun 14 89:
Jun 14 89:
Jun 14 89:
Jul 5 11:
Jun 28 11:
Jul 28 23:
Jul 28 23:
Jul 28 23:
Jul 28 23:
Jul 28 23:
Jul 28 23:

.bash_logout hacker@laptop:-$
.bashre

bin

.cache
.config
course
Desktop
.dmrc
Documents
Downloads
examples.des
file.txt
.geonf
.gitconfig

. gnome
.gnome2 hacker@laptep:-$ |
.gnome2_priv
.gnupg
.ICEauthorit
.lesshst
.local >
.mozilla
Music

.nang

NV

Pictures
pki
.profile
Public

-1
.sudo_as_adm
Templates
Videos
.viminfo

Easily move between Windows with Ctrl + Shift + Arrow.
Close screen using Ctrl + Shift + W or Ctrl + D.

Create tabs with Ctrl + Shift + T. This is for when you don't have any more
space to split the screen:

hackerilaptap:~$ [l

[

ctrl + shift + t

[o]

Introduction

* Text zoom: Ctrl + + and Ctrl + - — useful for when you need to present or
when you have a person with a bad eyesight:

-rW-T--T-- hacker hacker 25 Jun 14 09:37 .dmrc
drwxr=xr-x hacker hacker 4096 Jun 14 ©9:37 Documents
drwxr-xr-x hacker hacker 4896 Jun 21 11:18 Downloads
-W-r--r-- hacker hacker 8980 Jun 14 09:35 examples.desktop
“rW-r--r root root 85 Jul 13 23:52 file.txt
drwx-=-=---- hacker hacker 4896 Jul 21 ©0:09 .gconf

- MW-TwW-T-- hacker hacker 58 Jun 20 20:00 .gitconfig
drwg------ hacker hacker 4896 Jun 14 09:39 .gnome

d rwx === --- hacker hacker 4096 Jun 14 09:46 .gnome2
drwx------ hacker hacker 4896 Jun 14 ©9:46 .gnome2 private
Jdrwxee=--= 3 hacker hacker 4896 Jul 28 23:59 .gnupg
“FW--==--- hacker hacker 5116 Jul 20 23:59 ,ICEauthority
“TW=====--= hacker hacker 36 Jun 20 @8:05 .lesshst
drwx------ hacker hacker 4896 Jun 14 ©9:37 .local
drwx------ hacker hacker 4896 Jun 14 10:01 .mozilla
drwxr-xr-x hacker hacker 4096 Jun 14 09:37 Music
[drwi===-== hacker hacker 4896 Jun 14 89:37 .nv 1
drwxr-xr-x hacker hacker 4096 Jun 14 09:37 Pictures

hacker hacker 4096 Jun 14 ©9:39 .pki

hacker hacker 675 Jun 14 09:35 .profile

hacker hacker 4096 Jun 14 ©9:37 Public

hacker hacker 4096 Jun 14 09:42 .ssr

hacker hacker 0 Jun 14 09:52 .sudo _as admin_ successful
hacker hacker 4896 Jun 14 09:37 Templates

hacker hacker 4096 Jun 14 09:42 Videos

hacker hacker 8733 Jul 5 11:02 .viminfo

hacker hacker 182 Jun 28 11:04 .wget-hsts

hacker hacker 153 Jul 20 23:59 .Xauthority

hacker hacker 82 Jul H .xsession-errors

hacker hacker 676 Jul
hacker hacker 39458 Jul
hacker hacker 396684 Jul

hacker hacker 215 Jul Ctrl + + / Ctrl + =

hacker@laptop:~$ [

-fW=F==F--
drwxr-xr-x
drwxrwsr-x
-rW-r--r--
d rwxr-xr-x

1
2
2
1
1
3
1
3
3
2
3
1
1
3
4
2
drwxrwxr-x 2 hacker hacker 4096 Jun 20 20:00 .nano

3
2
3
1
2
5
1
2
drwxr-xr-x 3
1

1

1

1

1

1

1

1

Being able to divide the screen in order to arrange the terminal in a grid, and being able
to split, switch, and resize panes with keyboard shortcuts are the biggest advantages

of Terminator. One big productivity killer that a lot of people don't realize is switching
between using the mouse and using the keyboard. And although most people prefer
using the mouse, we suggest using the keyboard as much as possible and learning the
keyboard shortcuts of your most commonly used computer programs.

Being productive ultimately means having more time to focus on the things that are
really important, instead of wasting time struggling to use the computer.

Hasta la vista terminal! Welcome Terminator!

[10]

Chapter 1

Guake — not Quake!

Terminator works well for all sorts of tasks, especially when working long sessions
on multiple items. However, sometimes there are scenarios where you need to
quickly access a terminal in order to run a command, check a status, or run a task in
the foreground for a long time--all of these without opening too many tabs. Guake is
excellent in such situations. It is a handy, easy-to-use terminal that you can open on
any workspace on top of your existing windows, by pressing F12.

We will install it right now by using a simple command line. As shown below, open
your terminal and type sudo apt install guake:

hacker@laptop:~$ sudo apt install guake |

sudo apt install guake

apt is the new package manager that Ubuntu launched in version
% 16.04 and is meant to be an easier-to-use version of the apt -get
o .
command, with some added eye candy.

[11]

Introduction

Now that Guake is installed, we will go to dash and open it. To do this, we just

press F12. Once it is running, you can see the notification on the top-right side of the
screen. This is what it should look like:

o ORI AYYSI S Ul ALV LS T AL LIEING (U S T UMOM L] s
Processing triggers for man-db (2.7.5-1) ...

Setting up guake (8.8.4-1) ...

hacker@laptop:~%

F12

Just like with Terminator, we will check its preferences. First of all, go to shell and
enable Open new tab in current directory:

[12]

Chapter 1

hacker@!aptop:—vs sudo apt insta” guake

Reading package lists... Done
Building dependency tree

Reading state information... Done
The following NEW packages will be installed:
guake

TR A - e
Need to get 229 kB of archives.

After this operation, 1,197 kB of addit Guakeproperties

Get:1 http://ro.archive,ubuntu,com/ubur B8 customize behavior and appearance of Guake
Fetched 229 kB in 85 (8084 kB/s)
ISelecting previously unselected package ocenenal | Shell | scrolling | Appearance | Quick Open | Keyboard shortcuts | Compatibilicy
(Reading database ... 216440 files and | | 4. 3

Preparing to unpack .../guake 8.8.4-1 a
Unpacking guake (0.8.4-1) ...
Processing triggers for gconf2 (3.2.6-3 | Run command as 4 login shell B lopen new tab in current difectan
Processing triggers for bamfdaemon (8.5
Rebuilding fusr!share!applications!bamj
Processing triggers for gnome-menus (3
Processing triggers for desktop-file-ut
Processing triggers for mime-support (3
Processing triggers for hicolor-icon-th
Processing triggers for man-db (2.7.5-1
Setting up guake (0.8.4-1) ...
hacker@laptop:~$ |

Default interpreter: <user shell= H

I believe you can guess what this does. Then, go scrolling and insert a really big
number, like 99,999. Also, make sure Scroll | On output is unchecked:

!a:Een@!anron:~s su!o apt !nstal! guake

Reading package lists... Done
Building dependency tree

Reading state information... Done
IThe following NEW packages will be installed:
guake

e ot e @ o
MNeed to get 229 KB of archives.

Wfter this operation, 1,197 kB of addit Guake properties

Get:1 http://ro.archive.ubuntu.com/ubun Wl customize behavior and appearance of Guake!

Fetched 229 kB in 8s (B84 kB/s)

Gelecting previously unselected package ceneral shell| Scralling P 2 ts | G
(Reading database ... 216440 files and cenerat e

Preparing to unpack .../ /guake_0.8.4-1 28 @ showserolbar

Unpacking guake (8.8.4-1) ...
Processing triggers for gconf2 (3.2.6-3
Processing triggers for bamfdaemon (8.5 !
Rebuilding /usr/share/applications/bamf noupug
Processing triggers for gnome-menus (3. 8 onkeystroke
Processing triggers for desktop-file-ut

Processing triggers for mime-support (3

Processing triggers for hicolor-icon-th

Processing triggers for man-db (2.7.5-1

[Setting up guake (08.8.4-1) ...

hacker@laptop:~% | |

Serollback lines: | 100000 | 2

[13]

Introduction

Again, we will change the default font to Monospace 16, set the Cursor blink mode
to off, and hit Close:

hackeridlaptop:~% sudo apt install guake
eading package lists... Done

Euilding dependency tree

eading state information... Done

he following NEW packages will be installed:

guake

upgraded, 1 newly installed, 0 to remps
leed to get 220 kB of archives.
fter this operation, 1,197 KB of addit Guake properties

et:1 http://ro.archive.ubuntu,com/ubuy e customize behavior and sppearance of Guaket
Fetched 229 KB in 0s (804 KkB/s)

electing previously unselected package General| Shell Scrolling | Appearance | Quick Open | Keyboard shortouts | Compatibility
(Reading database ... 216448 files and | general

Use the system Fixed width font Text calar

Guake Preferences.

Processing triggers for gconf2 (3.2.6-3 ronc Menospace 16 | Background color: |
Processing triggers for bamfdaemon (8.5
ebuilding fusr/share/applications/bamf
Processing triggers for gnome-menus (3. & Allow bold ront.
Processing triggers for desktop-file-ut
Processing triggers for mime-support (3
Processing triggers for hicolor-icon-th
Processing triggers for man-db (2.7.5-1 Gelorpalette: — | — | — | —] — —
etting up guake (8.8.4-1) ...
hacker@laptop:-$ |

cursor shape: Block ©| cursorblinkmode: | Blink off =|

Palette

Builtsin schemes: | Tango

— — | — —
B use fent and backgreund coler from the palette

o _

Effects

Transparency: —

Background image; | (Mone) | ®=

rlq-ls

We can use Guake in full screen by hitting F11 and we can also resize it by dragging
the margin. If you want, you can play around with the default settings to see what
suits you best.

Guake does not start automatically when Ubuntu reboots, so we will have to add
it to our startup application for that. To do this, open dash again, type startup
applications and click add. Just type Guake in all three fields, add, and close.

What makes it so handy is the fact that you can open it on top of your current
windows at any time, quickly type a command, and reopen it again later to check the
status of the command.

What we actually do is to also make it a little bit transparent so
M that when it opens on top of a web page where we have some
Q commands written, we can still read the content on the page and type
the commands as we read, without switching windows. Another
awesome productivity tip!

[14]

Chapter 1

Cliplt — copy-paste at its finest

We believe that one of the greatest inventions of mankind is copy-paste. The ability
to take a piece of text from some random place and insert it to another not-so-
random place is a huge time saver! Mankind would still be ages behind if computers
didn't have this feature! Just imagine having to type every little command, every
URL, every block of code you read! It would be a huge waste of time! And so, being
such an important feature, copy-paste deserves a tool of its own for managing all the
important text you copied. These types of tools are called clipboard managers. There
are a lot of options for every operating system, and one good free one for Ubuntu is
called clip1t. Open the terminal and type sudo apt install clipit to install it.

hacker@laptop:~$% sudo apt install clipit]

sudo apt install clipit

[15]

Introduction

A good scenario for using Guake is to run clipIt init. By default, c1ipIt occupies a
terminal window but, with the help of Guake, we just hide it away!

| iep LU UHPULR s/ AU LU b Gt + £V AUt e 4 b LIS UE .
Unpacking xdoteool (1:3.20150583.1-2) ...

Selecting previously unselected package clipit.

Preparing to unpack .../clipit 1.4.2-lubuntul amd64.deb ...

Unpacking clipit (1.4.2-1lubuntul)

Processing triggers for man-db (2.7.5-1) .

Processing triggers for hicolor-icon-theme (0.15-8ubuntul) g

Processing triggers for bamfdaemon (8.5.3-bzr8+16.04.28160781-0ubuntul) ...
Rebuilding fusr/share/applications/bamf-2.index...

Processing triggers for gnome-menus (3.13.3-6ubuntu3.l)

Processing triggers for desktop-file-utils (0.22-lubuntu5)

Processing triggers for mime-support (3.59ubuntul) ...

Setting up libxdo3:amd64 (1:3.20150563.1-2) ...

Setting up xdotool (1:3.201505683.1-2)

Setting up clipit (1.4.2-lubuntul) q

Processing triggers for libc-bin (2.23-0ubuntu3)

hacker@laptop:~$%

The tool is automatically added to the startup applications, so it will start the next
time you reboot.

In order to invoke clipzt, hit Ctrl + Alt + H or click the clipboard image in the
menu bar.

[16]

Chapter 1

hoe® = B3 =)

*1.3_guake

Offline mode

About

Quit

4 1:3.20150503.1-2 [20.7 kB]
4 1:3.20150503.1-2 [39.1 KkB]
1.4.2-1ubuntul [59.4 kB]

The first times it starts, it warns you that it stores data in plain text, so it might not
be safe to use if other users use your account. Currently, it contains only the latest
clipboard element.

Let's do a quick example of its usage.

We cat the content of the .profile file. And let's say we want to copy some lines of
text and run them in another terminal, which looks like this:

hacker@laptop:~$ cat .profile
~/.profile: executed by the command interpreter for login shells.
This file is not read by bash(l), if ~/.bash profile or ~/.bash login
exists.
see /usr/share/doc/bash/examples/startup-files for examples.
the files are located in the bash-doc package.

the default umask is set in /etc/profile; for setting the umask

for ssh logins, install and configure the libpam-umask package.
umask 022

if running bash
if [-n "$BASH_VERSION"]; then
include .bashrc if it exists
if [-f "$HOME/.bashrc"]; then
. "$HOME/ .bashrc"
fi
fi

set PATH so it includes user's private bin if it exists
if [-d "$HOME/bin"] ; then
PATH="$HOME/bin:$PATH"
fi
hacker@laptop:~$% [J

[17]

Introduction

For example, we might want to update the PATH variable, then source the .bashrc
file and update the PATH variable again. Instead of copying the content again

from our file, we just hit Ctrl + Alt + H and choose what we want to paste from our
clipboard history:

npacking libxdo3:amd&4 (1:3.28150583.1-2) hacker@laptop:~$% PATH="SHOME/bin:$PATH"
lGelecting previously unselected package xdotool. hacker@laptop:~% . "$HOME/.bashrc”
Preparing to unpack .../xdotool_1%3a3.20158503.1-2 amdéd.deb ... hacker@laptop:-%

Unpacking xdotool (1:3.20158583.1-2)

Gelecting previously unselected package clipit.

Preparing to unpack .../ clipit_1.4.2-lubuntul_amd6d.deb ...

Unpacking clipit (1.4.2-lubuntul)

Processing triggers for man-db (2.7.5-1) ...

Processing triggers for hicolor-icon-theme (0.15-8ubuntul) ...

Processing triggers for bamfdaemon (8.5.3~bzr@+16.64,20160701-8ubuntul)

Rebuilding fusr/sharefapplications/bamf-2.index...

Processing triggers for gnome-menus (3.13.3-6ubuntu3.l) ...

Processing triggers for desktop-file-utils (©.22-lubuntu5) ...

Processing triggers for mime-support (3.59ubuntul)

[Setting up libxdo3:amd64 {1:3.28156563.1-2) ...

[Getting up xdotool (1:3.20156503.1-2)

[fetting up clipit (1.4.2-lubuntul) ... PATH= SHOMEbin-SPATH"
Processing triggers for libc-bin {2.23-8ubuntu3) ... 1.3_guake
hacker@laptop:~% cat .profile

~/.profile: executed by the command interpreter for login shells.

This file is not read by bashil), if -~/.bash_profile or -/.bash_login

B exists.

W see fusr/share/doc/bash/examples/startup-files for examples.

W the files are located in the bash-doc package.

L3

the default umask is set in fetc/profile; for setting the umask
for ssh logins, install and configure the libpam-umask package.
Fumask 0822

B if running bash

if [-n "$BASH_VERSION"]; then

include .bashrec if it exists
if [-f "$HOME/.bashrc"]; then

fi
fi

set PATH so it includes user's private bin if it existg Ctrl + alt + 1]-

if [-d "SHOME/bin"] ; then
PATH="$HOME/bin: $PATH"

fi _
hacker@laptop:-% |

[18]

Chapter 1

This is a very basic example. C1ipIt mostly comes in handy when you work long
hours on your computer and need to paste something that you copied from a website
hours earlier. It comes with a default history size of 50 items and it will show you the
last 10 items in your floating window. You can increase these limits in the settings:

libxdo3:amdbd (1:3.20158563.1-2) ...
previously unselected package xdotool.

to unpack
xdotool (1:3.20158563.1-2) ...

previously unselected package clipit.
to unpack
clipit (1.4.2-1lubuntul) ...
Processing triggers for man-db (2.7.5-1) ...
IProcessing
Processing
Rebuilding
Processing
IProcessing
IProcessing
Getting up
[Setting up

Jusr/share/applications/bamf-2.index. ..

triggers for mime-support (3.5%ubuntul) ...
libxdo3:amd64 (1:3.20158563.1-2) ...

xdotool (1:3.20158563.1-2) ...

Getting up clipit (1.4.2-lubuntul) ...

Processing triggers for libc-bin (2.23-8ubuntu3) ...
hacker@laptop:~% cat .profile

W ~/.profile: executed by the command interpreter for log
W This file is not read by bash(l), if -/.bash_profile or
W exists.

¥ see fusr/share/doc/bash/examples/startup-files for exam
the files are located in the bash-doc package.

the default umask is set in fetc/profile; for setting t
for ssh logins, install and configure the libpam-umask
frumask 622

L

.../xdotool_1%3a3.20156503.1-2 amd64.deb ...

hacker@laptop:~3 PATH="$HOME/bin:SPATH"

hacker@laptop:=~% .
hacker@laptop:~% PATH="$HOME/bin:SPATH"

hacker@laptop:~$

Lo felipit_1.4.2-1ubuntul_amd6d.deb ...
triggers for hicolor-icon-theme (8.15-8ubuntul) ...
triggers for bamfdaemon (0.5.3~bzr0+16.04.20160701-0ubuntul) .

triggers for gnome-menus {3.13.3-6ubuntu3.l) ...

triggers for desktop-file-utils {B.?E-lubuntu5m

Settings | History | Actions | Exclude | Hotkeys
History
& save history
Items in history: | 50
items in menu: | 30
& show statc items in meny

‘Static items in menu; [)d =
Items

18 shaw in a single line
Shaw in reverse order
character length of items: |50 |2

Omititems in the: | Middle

“$HOME/ .bashrc"

W if running bash
if [-n "SBASH_VERSION" 1; then
include .bashrc if it exists
if [-f "$HOME/.bashrc"]; then
. "SHOME/.bashrc"

fi
fi

¥ set PATH so it includes user's private bin if it exists
if [-d “SHOME/bin®] ; then
PATH="SHOME/bin:SPATH"
fi
hacker@laptop:-% |

With clipIt, you can copy and paste as many times as you want without losing any
data. It's like a time machine for your clipboard!

[19]

Productive Shells — Reinvent
the way you work

In this chapter, we will start off with a short introduction to Vim and look at the
most basic commands to help you get started with basic CRUD (create, read, update,
delete) operations. We will then upgrade the shell interpreter to zsh and also give it
superpowers with the awesome oh-my-zsh framework. We will look at some basic
regular expressions such as searching some text using grep. Then, we will unleash
the power of Unix pipes and run embedded commands using subshells. The later
part of the chapter will help us understand how we can boost productivity and
automate a lot of our day-to-day work by showing some of the more advanced shell
scripting techniques.

In this chapter, we will cover the following;:

* Working with Vim
* Managing zsh using the oh-my-zsh framework

* Writing and running super powerful one line commands using pipes
and subshells

* Exploring the shell scripting libraries

We will focus on editing files. For that we need to choose a file editor. There are

a bunch of options but considering that the fastest way to edit files is, of course,
without leaving the terminal. We recommend Vim. Vim is an awesome editor! It
has a lot of configuration options with a huge community that has produced lots of
plugins and beautiful themes. It also features advanced text editing, which makes it
ultra-configurable and super-fast.

[21]

Productive shells - Reinvent the way you work

So, let's proceed. Open the terminator and type sudo apt install vimto
install Vim:

hacker@laptop:~% sudo apt install vim]

sudo apt install vim

[22]

Chapter 2

Vim is renowned for its exotic keyboard controls and a lot of people avoid using Vim
because of it. But once you get the basics, it's super easy to use.

Let's start vim with no arguments:

rr ot

VIM - Vi IMproved

version 7.4.1689
by Bram Moolenaar et al.
Modified by pkg-vim-maintainers@lists.alioth.debian.org
Vim is open source and freely distributable

Help poor children in Uganda!
type :help iccf<Enter= for information

Pt r

type :q<Enter=> to exit
type :help<Enter> or <Fl> for on-line help
~ type :help version7<Enter= for version info

[23]

Productive shells - Reinvent the way you work

This is the default screen; you can see the version on the second line.

* To start editing text, press the Insert key; this will take us to the insert mode,

where we can start typing. We can see we are in the insert mode at the

bottom of the screen:

type

type
type
type

rtrrrrrrrlrrrrrrrrrrrrrrrrTrT e Em

O R R TR R B RN R A A

- INSERT --

VIM - Vi IMproved

version 7.4.1689
by Bram Moolenaar et al.

Modified by pkg-vim-maintainers@lists.alioth.debian.org
Vim is open source and freely distributable

Help poor children in Uganda!

:help iccf<Enter>

:q<Enter=
:help<Enter> or <Fl=
:help version7<Enter=

Tfor information

to exit
for on-line help
for version info

INSERT

All

* Press the Insert key again to go to replace the mode and override text.

* Press the Esc key to exit insert or replace.

* Type yy to copy a line.

* Type p to paste the line.

[24]

Chapter 2

* Type dd to cut the line.

* Type :w to save any changes. Optionally, specify a filename:

some basic
lines of
text

LI B B A

[A |

Pyt

L R

LI

:w filename

| B B S T O B e A

wwovim. txtll

* To save the file in editing text, type vim.txt

* Type :gqtoexit Vim
Let's open the file again and do a small change:

e .wq: Write and exit at the same time
e :q!: Exit without saving
Now you are familiar with these commands, we can do basic file editing directly

from the command line. This is the bare minimum that anybody needs to know
when working with Vim, and we will use this knowledge in the chapters to come.

We will also have an entire section about Vim, where we will go into more detail
about being productive in the coolest terminal editor today!

[25]

Productive shells - Reinvent the way you work

Oh-my-zsh — your terminal never felt this
good before!

Bash is probably the most commonly used shell. It has lots of features and powerful
scripting capabilities, but when it comes to user interaction, zsh is better. Most of its
power comes from the awesome framework oh-my-zsh. In this section, we will be
installing zsh.

Let's get started with the oh-my-zsh framework and we will be looking at some basic
configuration options:

* Open the terminator and type sudo apt install zsh toinstall zsh, as
shown in the following image:

hacker@laptop:~/course$ sudo apt install zsh[]

sudo apt install zsh

[26]

Chapter 2

After installing it, go to this link, https://github.com/robbyrussell/oh-my-zsh,
and follow the instructions for installing the oh-my-zsh framework. The installation
process is a one-line command with curl or wget. Let's install it using both the
command one by one:

Via curl:

sh -c "$(curl -£fsSL https://raw.githubusercontent.com/robbyrussell/oh-my-
zsh/master/tools/install.sh)"

Via wget:

sh -c "$(wget https://raw.githubusercontent.com/robbyrussell/oh-my-zsh/
master/tools/install.sh -0 -)"

You will see that the command is giving an error saying that git is not installed, so
we need to install that too. The following command-line is used to install git:

sudo apt install git

hacker@laptop:~/course$ sudo apt install git]l

sudo apt install git

Notice how easy it is to install software in Ubuntu. This is also a big productivity
booster; every common software package we might need is already prepackaged
in the remote software repository and it takes us just one command to add new
software to our computer.

Now that we have git installed, let's run the command again. We can see that this
time it's working successfully and it's bringing us to our new shell. Oh-my-zsh also
changes the default shell to zsh.

[27]

https://github.com/robbyrussell/oh-my-zsh

Productive shells - Reinvent the way you work

After installation, the first thing to do is go pick a theme. To see all available themes,
run this:

ls ~/.oh-my-zsh/themes

Building dependency tree
Reading state information... Done
Suggested packages:
git-daemon-run | git-daemon-sysvinit git-doc git-el git-email git-gui gitk gitweb git-arch git-cvs git-mediawiki git-svn
The following MNEW packages will be installed:
git
@ upgraded, 1 newly installed, 8 to remove and @ not upgraded.
Need to get 3,806 kB of archives.
After this operation, 24.8 MB of additional disk space will be used.
Get:1 http://ro.archive, ubuntu,com/ubunty xenial/main amd64 git amdé4 1:2.7.4-Bubuntul [3,886 kB]
Fetched 3,806 kB in 8s (3,199 kB/s)
Selecting previously unselected package git.
{Reading database ... 219781 files and directories currently installed.)
Preparing to unpack .../ git_1%3a2.7.4-Bubuntul_amdé4.deb ...
Unpacking git (1:2.7.4-8ubuntul) ...
Setting up git (1:2.7.4-8ubuntul) ...
hacker@laptop:~/courses
hacker@laptop:~/courses sh -c "${curl -fsSL https://raw.githubusercontent.com/robbyrussell/oh-my-zsh/master/tools/install.sh)"
Cloning Oh My Zsh...
Cloning into '/home/hacker/.oh-my-zsh'...
remote: Counting objects: 788, done.
remote: Compressing objects: 108% (646/646), done.
remote: Total 788 (delta 21), reused 686 (delta 9), pack-reused 8
Receiving objects: 106% (786/7808), 523.00 KiB | @ bytes/s, done.
Resolving deltas: 188% (21/21), done.
Checking connectivity... done.
Looking for an existing zsh config...
Using the Oh My Zsh template file and adding it to ~/.zshrc

I/ N
! \v4 AT S VAV A AV A Y v | / \
VA S B B B A S A Y Y B B Y A f | A A
b A A R S A A A AN ! ! P
! !is now installed!

Please look over the ~/.zshrc file to sele 1S "'"/.011‘111Y‘ZS]1/tllelneS

p.5. Follow us at https://twitter.com/ohmy

p.p.s. Get stickers and t-shirts at I\rrp:,-'.-’shop.planerargcn.com.

1s ~/.oh-my-zsh/themes/[|

. You can also go to the git repo and check out the themes, together
% with their screenshots. We will be using the candy theme, because it
L has a lot of useful information in the prompt: username, hostname, time,
folder and git branch/ git status.

Time can be very useful, for example if you want to know how long a command
took to execute and you didn't use the time utility to measure your command's total
runtime. Then, you can check out the prompt and see the time when the command
started and the prompt to know when it was finished, and thus you can calculate the
total time.

To change the theme, open ~/.zshrc and modify the zsH_THEME variable. Save the
file and open a new terminal window. Let's initialize an empty git directory so we
can see how the prompt looks. You can see we are on the master branch:

[28]

Chapter 2

hacker@laptop:
-> % mkdir git
R % cd git-de

> % git init

-> %

~/course$ zsh
[16:29:55 AM]
-demo
[10:30:16 AM]
mo

[10:30:19 AM]

[10:30:22 AM]

Initialized empty Git repository in /home/hacker/course/git-demo/.git/

[master]

Let's create a file, say readme.md. The * in the prompt shows that the directory is not
clean. We can verify this with the git status command:

-> % cd git-demo

-=> % git init

-> % git status[]

hacker@laptop:~/course$ zsh
[18:29:55 AM]

-> % mkdir git-demo
[10:30:16 AM]

[10:30:19 AM]

Initialized empty Git repository in /home/hacker/course/git-demo/.git/
[10:30:22 AM]
-> % touch readme.md

[10:30:30 AM] [master *]

git status

[29]

Productive shells - Reinvent the way you work

You can see how it gets verified. After we've cleaned up the directory, the * is gone.
If we change branch, the prompt shows that we are on the new branch.

Let's quickly create a demo. Run the following commands on your terminal:

git branch test
git checkout test

-> % git init
Initialized empty Git repository in /home/hacker/course/git-demo/.git/

[10:30:22 AM] [master]
-> % touch readme.md
¢ [10:30:30 AM] T [master *]

-> % git status
0On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

readme.md

nothing added to commit but untracked files present (use "git add" to track)

[10:30:35 AM] [master *]
-> % git add readme.md
[10:30:39 AM] [master *]

-> % git commit -m "added readme"

[master {root-commit) c5d8885] added readme

1 file changed, @ insertions{+), O deletions(-)
create mode 100644 readme.md

[10:30:46 AM] [master]
-> % vim readme.md
[10:30:58 AM] [master *]

-> % git commit -m "added readme"

On branch master

Changes not staged for commit:
modified: readme.md

no changes added to commit
[10:31:04 AM] [master *]
-> % git commit -a -m "added readme"
[master b2d072a] added readme
1 file changed, 1 insertion(+)

[10:31:11 AM] [master]
-> % git branch test
[10:31:17 AM] [master]

-> % git checkout test
Switched to branch 'test'

[10:31:21 AM] ltest]
. 96D

[30]

Chapter 2

You can now see the branch name in the prompt, and there are some other cool
features that you might like to explore:

* Command completion: Start typing, for example, ip, and press Tab. We can
see all the commands that start with IP and we can hit Tab again to start
navigating through the different options. You can use the arrow keys to
navigate and hit Enter for the desired command:

[10:31:39 AM]
-> % ipf]
ip ipbtables-save
ipbtables ipcmk
ip6tables-apply ipcrm
ip6tables-restore ipes

ipmaddr iptables
ipod-read-sysinfo-extended iptables-apply
ipod-time-sync iptables-restore
ippusbxd iptables-save

iptables-xml
iptunnel
iputil

* Params completion: For example type 1s - and press Tab, and we can see
here all the options and a short description for each. Press Tab again to start
navigating through them and Enter to select.

-> % ls --almost-allll

-1

--all -a
[-almost-all I
--author

--block-size

-C

-C

--classify -F
--dereference -L
--directory -d
--dired -D
--escape -b
-f

--file-type -p
--full-time

-9

--help
--hide-control-chars -q
- -human-readable -h
--ignare -I
--ignore-backups -B
--inode -i
--kilobytes -k
-1

--literal -N
-m

--no-group -G
--numeric-uid-gid -n
-0

--quote-name -Q
--recursive -R
--reverse -r
-5

--si -H
--5ize -5
-t

--tabsize -T
--time

--time-style

-u

-u

-V

-- single column output

- list entries starting with .
-- list all except . and ..

- print the author of each file

- specify block size

- status change time

- list entries in columns sorted vertically
- append file type indicators

- list referenced file for sym link

- list directory entries instead of contents
- generate output designed for Emacs' dired mode
-- print octal escapes for control characters
- unsorted, all, short list
-- append file type indicators except *

- list both full date and full time

- long listing but without owner information
- display help information

- hide control chars

- print sizes in human readable form

- don't list entire matching pattern

- don't list entries ending with -~

- print file inode numbers

- use block size of 1k

- long listing

- print raw characters

-- comma separated

-- inhibit display of group information

- numeric uid, gid

- no group, long

- quote names

- list subdirectories recursively

- reverse sort order

- sort by size

- sizes in human readable form; powers of 1000
-- display size of each file in blocks

-- sort by modification time

- specify tab size

- specify time to show

- show times using specified style

- access time

- unsorted

- sort by version {(filename treated numerically)

[31]

Productive shells - Reinvent the way you work

History navigation: Click on arrow up key to search in history, filtering by
the string that is written before the cursor. For example, if I type vim and
press the arrow up key, I can see all the files opened with Vim in my history.

History search: Press Ctrl + R and start typing, and press Ctrl + R again to
search the same occurrence in history. For example ~, and Ctrl + R to see all
commands that have ~ in the string.

Navigating: Here press Ctrl + arrow left/right to jump one word, Ctrl + W to
delete one word, or Ctrl + U to delete the whole line.

cd completion case insensitive: For example, cd doc will expand into cd
Documents.

cd directory completion: If you are lazy and want to specify only a few key
letters in a path, we can do that too. For example, cd /us/sh/zs + Tab will
expand into cd /usr/share/zsh.

Kill completion: Just type ki1l and Tab and you will see a list of pids to kill.
From there you can choose which process to kill.

chown completion: Type chown and tab to see a list of users to change owner
to. The same applies to groups.

Argument expansion: Type 1s * and hit Tab. You see * expanded to all files
and folders in the current directory. For a subset, type 1s Do* and press Tab.
It will only expand to documents and downloads.

Adds lots of aliases: Just type alias to see a full list. Some very useful
ones are:

- go up one folder
. - go up two folders
- - cd o the last directory
11 - 1s with -1h

[32]

Chapter 2

5395 hacker unity-music-dae
5442 hacker notify-osd
8128 hacker gvfsd-metadata
9225 hacker python2
9238 hacker gnome-pty-helpe
9231 hacker bash
9268 hacker bash
10322 hacker bash
11886 hacker clipit
11185 hacker /usr/bin/termin
11197 hacker gnome-pty-helpe
11891 hacker chrome
12933 hacker firefox
13080 hacker chrome
17156 hacker bash
17179 hacker zsh
17350 hacker zsh
17351 hacker ps
0
[10:33:16 AM]
-= % alias
_=|Cd al
L=,

4="cd -4'

5='cd -5'

6="'cd -6'

J="cd -7

8='cd -8'

9="cd -9'

_=sudo

afind="ack -il' 1-
gﬂg;rs v | head -10 a].aS
ga='git add'

gaa='git add --all’

gapa='git add --patch'

gb='git branch'

To see a list of shortcuts, run the bindkey command. The terminal is one of the
places where you will spend a lot time, so it's really important to master our shell
and use it as efficiently as possible. Knowing good shortcuts and viewing relevant
and condensed information, such as our prompt, can make our job much easier.

Basic regular expressions

You have a problem and you want to solve it with regular expressions? Now you have two
problems! This is just one of the many regular expression jokes on the Internet.

In this section, you will learn how regular expressions work, as we will be using
them in the upcoming chapters. We have prepared a file for our playground and if
you want to try the grep commands on your own, you can take it from the GitHub
repository.

[33]

Productive shells - Reinvent the way you work

Let's start by opening our text file so we can see its contents, and then splitting the
screen so we can see both the file and the command side by side.

First of all, the simplest and probably the most common regular expression is to find
a single word.

For this we will use the grep "joe" file.txt command:

hackenmlaptop: ~/course

wordoftheday [10:41:59 AM]
[one and two) .= % grep "Joe" file.txt |
2445343

a:-b:-b

a2s3cd

ALL CAPS LOCK
Joe, Bill - Alice!

rTr1rrr1rrr1rryrrrirrrrrrriairrrrrororont

joe is the string we are searching for and file. txt is the file where we perform the
search. You can see that grep printed the line that contained our string and the word
is highlighted with another color. This will only match the exact case of the word (so,
if we use lowercase 3, this regex will not work anymore). To do a case insensitive
search, grep has an -1i option. What this means is that grep will print the line that
contains our word even if the word is in a different case, like JoE, JOE, joE, and so on:

grep -i "joe" file.txt

[34]

Chapter 2

hackerglaptop: - feourse

wordoftheday
[one and twol

2445343
a:-b:-b

azs3cd
ALL CAPS LOCK
Joe, Bill - Alice!

rryrrrrrdr o r e

.= %

Joe,

% grep
. Bill -

= grep

grep

Bill -

[10:41:59 AM]
"Joe" file.txt
Alice!

[10:42:08 AM]
"joe" file.txt

[10:42:13 AM]
-1 "joe" file.txt
Alice!

[10:42:16 AM)]

If we don't know exactly what characters are there in our string, we can use . *

to match any number of characters. For example, to find a sentence beginning

with "word" and ending with "day", we'd use the grep "word.*day" file.txt

command:

* . -matches any character

e - matches previous character multiple times

Here you can see that it matched the first line in the file.

A very common scenario is to find empty lines in a file. For this we use the grep "*\

s$" file.txt command:

* Where \s : This stands for space,

» ~:It's for the beginning of the line.

* $:It's for its ending.

We have two empty lines with no space. If we add a space between the lines, it will

match the lines containing one space. These are called anchors.

[35]

Productive shells - Reinvent the way you work

grep can do a neat little trick to count the number of matches. For this, we use
the -c parameter:

hackerpiapto urse

wordoftheday [10:41:59 AM]

[one and two] -= % grep "Joe" file.txt
Joe, Bill - Alice!

2445343 [10:42:08 AM]

a:-b:-b -= % grep "joe" file.txt

[18:42:13 AM]

a2s3cd -= % grep -1 "joe" file.txt

ALL CAPS LOCK Joe, Bill - Alice!

Joe, Bill - Alice! [l0:42:16 AM]

~ -= % grep "word.*day" file.txt
wordoftheday

[10:42:26 AM]
-= % grep ""\sg" file.txt

[10:42:41 AM]
-> % grep ""\ss" file.txt

[10:44:13 AM]
-> % grep -¢ ""\s$" Tile.txt
P

[10:44:20 AM]
R |

grep -¢ ""\s$" file.txt

Ty

<9L, 87C written 6,1 ALl

To find all the lines that have only letters and space, use:

* grep

e " Open quotes

* “$:From the beginning of the line to the end

* [1*:Match these characters any number of times
* A-za-z: Any upper and lower case letter

If we run the command up to here, we get only the first line. If we add:

e - 0-9 any number we match another two lines,

* And if we add: - \ s any space, we also match the empty lines and the all
caps line

* If we run the command until here, we get only the first line from the output,
the rest is not displayed

[36]

Chapter 2

* Then, if we add 0-9 we match any number (so the first two lines get matched)

* And if we add \ s we match any type of space (so the empty lines are
matched as well)

grep " [A-Za-z0-9\s]*$" file.txt

wordoftheday [10:41:59 AM]
[one and two] -= % grep "Joe" file.txt
Joe, Bill - Alice!
2445343 [10:42:08 AM]
a:-b:-b -» % grep "joe" file.txt
[10:42:13 AM]
aZs3cd -> % grep -1 "joe" file.txt
ALL CAPS LOCK Joe, Bill - Alice!
Joe, Bill - Alice! [10:42:16 AM]
I~ -> % grep "word.*day" file.txt
wordoftheday
[19:42:26 AM]
-> % grep ""\s$" file.txt
[10:42:41 AM]

-> % grep ""\s$" file.txt

[16:44:13 AM]
-> % grep -¢ ""\s$" file.txt
2
[16:44:20 AM]
-» % grep "“[A-Za-z0-9\s]*5" file.txt
wordeftheday
2445343
a2s3cd
[10:44:54 AM]
-> % i

grep ""[A-Za-z0-9\s]*$" file.txt

rTrrrr P r e rrr

<8L, 87C written 6,1 AlL

Sometimes we need to search for something that's not in the string;:
grep "“[70-9]*$" file.txt

This command will find all the lines that do not have only numeric characters. [*]
means match all characters that are not inside, in our case, any non-number.

The square brackets are markers in our regular expression. If we want to use them in
our search string, we have to escape them. So, in order to find lines that have content
between square brackets, do this:

grep "\[.*\]" file.txt

This is for any line that has characters in square brackets. To find all lines that have
these character !, type this:

grep "\!" file.txt

[37]

Productive shells - Reinvent the way you work

Now let's have a look at a basic sed, lets find Joe word and replace with A11 word:

sed "s/Joe/All/g" file.txt

hackermlapto

wordoftheday [10:46:01 AM]

[one and two] -= % grep "[\!]" file.txt
Joe, Bill - Alice!
2445343 [10:47:47 AM]
a:-b:-b -= % grep "\!" file.txt
Joe, Bill - Alice!
la2s3cd [10:47:52 AM]
IALL CAPS LOCK -> % sed "s/Joe/All/g" file.txt
Hoe, Bill - Alice! wordoftheday
L [one and two]
2445343
a:-b:-b
a2s3cd

ALL CAPS LOCK

All, Bill - Alice!
[10:48:29 AM]

- % |_|

rr rrtrttrrrrrrrid

T1 T T tTrTiTirrTrirrrirurroct

<9L, 87C written 6,1 All

This will replace every occurrence of the string Joe with the string A11. We will deep
dive into this in the upcoming chapters.

Regular expressions, such as Vim, are one of the things many people are afraid

of because they seem complicated to learn in the beginning. Although they might
seem cryptic, regular expressions are handy companions once mastered: they are

not limited to our shell because the syntax is very similar in most programming
languages, databases, editors, and any other place that includes searching for strings.
We will go into more detail about regular expressions in the upcoming chapters.

[38]

Chapter 2

Pipes and subshells — your shell's salt
and pepper

In this section, we will be looking at ways to improve your productivity using your
shell. The Linux command line is great because it has a variety of tools we can use.
What makes it even greater is the fact that we can chain these tools together to form
greater, more powerful tools that will make us even more productive. We will not go
into basic shell commands; instead we will be looking at some cool pipe and subshell
combinations that can make our lives easier.

Let's start with a basic pipe; in this example, we are counting the length of the
current path using the following command:

pwd | we -c

[08:47:20 AM]
-> %
/fhome/hacker/course
[08:47:37 AM]
-= % pwd | wc -c
28
[08:47:42 AM]
-> 5

pwd, as you probably know, stands for print working directory. The | is the
pipe symbol, and what it does is send the output of the command on the left to the
command on the right. In our case, pwd is sending its output to we -c, which counts
the number of characters. The coolest thing about pipes is that you can create a chain
of any number of pipes.

[39]

Productive shells - Reinvent the way you work

Let's see another example where we will see how to find used space on the drive:

df -h | grep /home | tr -s " " | cut -£ 2 -4 " "

[08:47:20 AM]
- % p
/home/hacker/course
[08:47:37 AM]
-= % pwd | we -C
20
[08:47:42 AM]
-> % df -h
Filesystem Size Used Avail Use% Mounted on
udev 3.9G 8 3.96 0% /dev
topfs 784M 9.6M T75M 2% /run
fdev/sda5 466G 156 296 35% /
tnpfs 3.96 124 3.96 1% /dev/shm
tnpfs 5.8M 4.8K 45.8M 1% /run/lock
tnpfs 3.9G @ 3.96 6% fsys/fs/cgroup
Jdev/sdal 95ZM 3.6M 948M 1% /boot/efi
fdev/sda3 1736 676 98G 41% /home
tnpfs 784M 4.8K TE4M 1% /runfuser/188
tnpfs 784M 60K T84M 1% /runfuser/10881
[08:47:49 AM]
-= % df -h | grep /home
fdev/sda3 1736 676G 98G 41% /home

[08:47:56 AM]
->» % df -h | grep fhome | tr -s
fdev/sda3 1736 676G 98G 41% /home

08:48:07 AM]
-» % df -h | grep fhome | tr -5 * " | cut -f 2 -d " "
1736

[BE:48:19 AM]

sl

grep /home [tr-s"" | cut-f2-d""

e "df -h": This shows the disk usage in a human-readable format

* | grep /home": This shows only the home directory

* '| tr -s " »':This substitutes multiple spaces for just one space
* | cut -f 2 -d " "':This selects the second column using a space as the
delimiter

[40]

Chapter 2

As you can see, the command printed out 173G, the size of the /home partition. This
is a common use case when chaining multiple commands, each command reducing
the output until we get the desired information and nothing else. In our case, this is
the used disk space.

To count all the directories in a folder, use the following command:

ls -p | grep / | we -1

[08:47:20 AM]
.= % pwd
/home/hacker/course

[08:47:37 AM]
-> % pwd | we -C

[08:47:42 AM]

-> % df -h

Filesystem Size Used Avail Use% Mounted on
udev 3.9G 0 3.96 0% /dev

tmpfs 784M 9.6M T75M 2% /run

/dev/sdad 466 156 29G 35% /

tmpfs 3.96 12M 3.9G 1% /dev/shm

tmpfs 5.6M 4.6 5.6M 1% /run/lock
tmpfs 3.96 0 3.96 0% /sys/fs/cgroup
/dev/sdal 952M 3.6M 948M 1% /boot/efi
/dev/sda3 173G 676G 98G 41% /home

tmpfs 784M 4.0K 784M 1% /run/user/108
tmpfs 784M 6OK 784M 1% /run/user/1001

[08:47:49 AM]
-> % df -h | grep /home
/dev/sda3 173G 676G 98G 41% /home
[0B:47:56 AM]
-= % df -h | grep /home | tr -s " "
/dev/sda3 173G 67G 98G 41% /home
[08:48:07 AM]
-> % df -h | grep /home | tr -s * " | cut -T2 -d " "
1736
[08:48:19 AM]
-= % 1s -p
file.txt git-demo/ lorem.txt
[0B:48:32 AM]
> % 1s -p | grep /
git-demo/
[0B:4B:43 AM]
> % 1s -p | grep / | wec -1
1

[08:48:47 AM] Is -P | gl‘ep/ | wc -1

The basic idea is to count all the lines that end with /. Here we can see we have only
one directory.

[41]

Productive shells - Reinvent the way you work

Pipes are a great option to find and kill processes. Say we want to find the process ID
of nautilus, and kill all running instances. For this we use:

ps aux | grep nautilus | grep -v grep | awk '{print $2}' | xargs kill

8.8 6.9 Te98le 74312 7 51 €8:21 6:88 fopt/googlefchrome/chrome --type=renderer --enable-features=UsePasswordSeparatedsi
6.4 2.0 1476368 160865 7 51 88:21 6:87 fopt/google/chromefchrome --type=renderer --enable-features=UsePasswordSeparatedSi
8.3 2.8 1415588 236916 7 §1 88:21 0:14 fopt/googlefchromefchrome --typesrenderer --enable-featuressUsePasswordSeparatedSi
8.6 2.2 2066188 177148 7 51 ©88:21 08:11 fept/google/chrome/chrome --typesrenderer --enable-featuressUsePasswordSeparatedSi
5.8 3.2 1123868 263284 7 51 ©8:21 1:33 fopt/googleschrome/chrome --type=renderer --enable-features=UsePasswordseparatedsi
8.8 6.8 741716 70264 7 S1 88:21 0:88 fept/googleschrome/chrome --typesrenderer --enable-features=UsePasswordSeparatedSi
8.8 6.0 435296 6824 7 51 88:21 0:88 fusr/lib/gvfs/gvfsd-network --spawner :1.8 forgfgtk/gufs/fexec spaw/d4

8.8 0.0 444864 7072 7 51 ©88:21 0:88 fusr/lib/x86_64-1linux-gnu/deja-dup/deja-dup-monitor

8.8 9.0 194548 4460 7 51 ©88:21 09:80 fusr/lib/gvls/gvTsd-metadata

B.8 8.0 370328 6704 ¥ 51 88:21 6:88 fusr/lib/gvfs/gvfsd-dnssd --spawner :1.8 /orgfgtk/gufs/exec spaw/6

21.2 5.1 1551112 489568 7 S1 88:22 5:39 sinplescreenrecorder --logfile

8.2 6.7 784748 56856 7 Rl 88:22 0:82 fusr/bin/python Jusr/bin/terminator

8.8 8.9 14872 1844 7 5 ©8:22 0:80 gnome-ply-helper

B.8 8.0 55348 5860 pts/2 S5 98:22 8:88 fusr/bin/zsh

6.8 8.8] ar :H [kworker/ulf:8]

8.8 6.0 [:] a7 8: [kworker/2:2]

8.8 8.0] ar 8: [kworker/3:1]

6.8 6.0 [} av 0:88 [kworker/6:8]

6.8 6.6] [8:88 [kworker/ulf:2]

o T . '1 o o rk ! = oL! . kjll
ps aux | grep nautilus -V grep | awk {print $2; | xargs

7442 0.8 0.0 [] a7 5 B [kwarker/8:0]
acker 7446 0.8 0.9 1127124 79012 7 51 ©8:46 08:81 fusr/bin/nautilus --gapplication-service
root 7470 8.8 6.8] L 5 88:46 6:88 [kworker/ulf:1]
root 7474 0.1 6.8] azr 5 88:47 0:88 [kworker/6:2]
root 75604 0.8 6.8 [:] a7 S 88:47 0:88 [kworker/5:8]
hacker 7578 0.8 0.0 45968 3276 plss2 R+ ©5:48 0:89 ps aux

[08:48:55 AM)

-» % ps aux | grep nautilus
acker 7446 8.7 0.9 1127124 79012 ¥ 51 88:46 :81 fusr/bin/nautilus --gapplication-service

L]
acker 7584 0.8 0.0 22828 984 pts/2 S+ ©8:49 8:88 grep --colorsaute --exclude-dirs.bzr --exclude-dirsCVS -.exclude-dirs. git --exclud
-dir=_hg --exclude-dir=, svn nautilus

[08:49:02 AM]
-> % ps aux | grep nautilus | grep -v grep
acker 7446 0.7 0.9 1127124 79012 7 51 ©8:46 0:81 fusr/bin/nautilus --gapplication-service

[08:43:09 AM]
-» % ps aux | grep nautilus | grep -v grep | awk “{print $2}'
446

[08:49:27 AM]
grep nautilus

grep -v grep | awk ‘{print $2}° | xargs killf]

* ps aux: This prints all processes with PID

* | grep nautilus: Find the ones matching nautilus

* | grep -v grep:Inverts grep to exclude the grep process

* | awk '{print $2}': Selects the second word in the line, which is the PID

* | xargs kill: Here xargs is used to distribute each PID to a kill command.
It is especially used for commands that do not read arguments from standard
input.

Now we've killed nautilus. This was purely a demonstrative example. There are
other ways of doing this.

Let's open nautilus again and send it to the background by hitting Ctrl + Z followed
by the bg command.

Now let's run the following command:

pgrep nautilus

[42]

Chapter 2

To see all the pids of nautilus and to send the kill signal to all those processes, use
the following command line:

pkill nautilus

Now it's time for some networking! You probably know the ifconfigcommand,
which is used to print information about the network interfaces. To get the IP
address of a specific interface (in our case the wireless interface wlp3so0), run this:

ifconfig wlp3s0 | grep "inet addr:" | awk '{print $2}' | cut -f£ 2 -4 ":"®

collisions:B txqueuelen:1008
RX bytes:8 (8.8 Bl TX bytes:8 (8.8 B)

Lo Link encap:Local Loopback
inet addr:127.8.0.1 Mask:255.8.0.9
inetf addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:B83 errors:8 dropped:8 overruns:® frame:@
TX packets:B83 errors:@ droppad:8 overruns:@ carrier:@
collisions:8 txqueuelen:l
RX bytes:91863 (91.0 KB) TX bytes:91669 (91.8 KB)

Wlp3sa Link encap:Ethernet HWaddr 63:17:29:bf:e2:67
inet addr:192.168.8.159 Bcast:192.168.8.255 Mask:255.255.255.8
inetG addr: fe80::18e9:533a:012f:82de/64 Scope:Link
UP BROADCAST AUMNING MULTICAST MTU:1588 Metric:l
RX packets:37453 errors:® dropped:8 overruns:8 frane:@
TX packets:23870 errors:0 dropped:® overruns:B carrier:8
collisions:@ txqueuelen: 1088

int $2}' | cut -f2 -d ":"

inet addr:192.168.0.159 Bcost:192.168.48.255

inet§ addr: feB@::18e8:533a:d12f:82de/64 Scope:

UP BROADCAST RUNNING MULTICAST MTU:1588 Metric:l

RX packets:37466 errors:@ dropped:@ overruns:@ frane:@
T packets:23874 errors:® dropped:® overruns:8 carrier:@
collisions:d txqueuslen:l008

RX bytes:42488711 (42.4 MB] TX bytes:3736386 (3.7 MB)

[08:50:30 AM]

> % ifconfig wip3sf | grep “inect addr:®
inet addr:192.168.8.159 Bcast:1092_ 168.8.255 Mask:255.255.255.8

[08:50:43 AM]
-» % ifconfig wlp3s® | grep "inet addr:' | awk '{print §2}'
laddr:192.168.6.159

[08:50:56 AM]
-= % ifconfig wlp3s6 | grep "inet addr:' | awk '{print $2}' | cut -f 2 -d ":"
192.168.8.159

[08:51:18 AM]
> %

* ifconfig wlp3s0: Prints networking information for the wlp3so interface
* | grep "inet addr:": Gets the line with the IP address

* | awk '{print %$2}':Selects the second word in the line (we could have
used cut as well)

* | cut -f 2 -d ":": Thisissplitby ":", and only prints the second word
And now, we see your private ip address on the screen.

A common use case that might also arise is counting the word frequency in a file.

[43]

Productive shells - Reinvent the way you work

Here we have a standard lorem ipsum text contained in lorem. txt. In order to get
the word frequency, use this:

A
cat lorem.txt | tr " " "\n" | grep -v "“\s*$" | sed "s/I[,.1//g" | sort |
uniq -c¢ | sort -n

1 est

1let

1eu

1 ex

1 Excepteur
1 exercitation
1 fugiat

1 id

3 in

1 incididunt
1 ipsum

1 irure

1 labore

1 laboris

1 laborum

1 Lorem

1 magna

1 minim

1 mellit
1 nisi

1 non

1 nostrud " " .
1 nulla =~ = = = = = ;
e sed "s/[,.]//g" | sort | uniq -c | sort -n
1 officia &

1 pariatur

1 proident

1 qui

1 quis

1 reprehenderit
1 sed

1 sint

1 sit

1 sunt

1 tempor

1 ullamco

2 ut

1 Ut

1 velit

1 veniam

1 voluptate

cat lorem.txt | tr " " "\n" | grep -v " \s*$" |

[08:53:15 AM)
-= % cat lorem.txt | tr " " "\n" | grep -v "*\s*$" | sed "s/[,.1//9" | sort | uniq -c | sort -nfl

® cat lorem.txt

* | tr " v "\n": Transforms each space into a new line character

* | grep -v ""\s*s$": Eliminates empty lines

* | sed "s/I[,.1//g": Eliminates commas (,) and periods (.) to select only the
words

* | sort:Sort the results alphabetically
* | uniqg -c:Show only unique lines
* | sort -n:Sorts by numerical value

Append grep -w id to find the frequency of the word ID, or grep -w 4 to see all
words that appear four times.

Now let's move on to our first subshell example. Subshells can be written by either
enclosing them in $ (), or using backticks (°). Backticks are usually found under
the Esc key on your keyboard. In all our examples, we will be using the first form
because it's easier to read.

[44]

Chapter 2

Our first example is to list all the folders in our current folder:

1ls $(1ls)

The 1s subshell returns the files and folders in the current directory and the 1s from
outside the subshell will list those individually, showing additional details:
* Counting all files and directories in the current directory

* Given the fact that commas (,) and periods (.) are hard links that mark the
current and parent directory, we need to count all entries minus these two

* This can be done using the expr $(1s -a | we -1) - 2command:

mollit
nisi

nan
nostrud
nulla
occaecat
officia
pariatur
proident
qui

quis
reprehenderit
sed

sint

sit

sunt
tempor
ullamco
Ut

velit
veniam
voluptate
dolor
dolore
ut

in

[P N e e el e el e e e e e e el e e e e e]

[08:53:24 AM]
== % 1s $(1s)
file.txt lorem.txt

lgit-demo:
readme .md
[08:54:29 AM]
-> % s
file.txt git-demo lorem.txt
[68:54:36 AM]
> % 1s -a | we -1

expr $(Is-a | we-1)-2

[08:54:51 AM]
== % expr ${ls -a | wc -1) - 2
E}

[08:55:07 AM]

= % D

Here, the subshell will return the number of entries (five, in this case). The number
we are looking for is the number of entries minus the special folders ("."and ". .").
In order to do arithmetic operations, we use the expr command, as in our example.

Notice that the subshell contains a pipe. The good thing is that we can combine pipes
and subshells in any way in order to obtain the desired result.

[45]

Productive shells - Reinvent the way you work

Imagine pipes and subshells as Lego pieces for your shell. They expand way beyond
its capabilities and give you access to new possibilities with infinite combinations.
In the end, it all depends on your imagination and how well you learn to use them.

Shell scripting for fun and profit

Pipes and subshells are one way of expanding the capabilities of our shell. The
ultimate way is by writing shell scripts. These scenarios must be taken into
consideration when dealing with complex tasks that can't be automated with a one-
line command.

The good news is that almost all the tasks can be automated with the use of shell
scripts. We won't go over an introduction to shell scripts. Instead, we will be looking
at some more advanced use cases for writing them.

Let's start our journey into shell scripting! First thing, let's open a file called script.
sh and split the screen so that we can test while writing. Every shell should start with
#1, followed by the interpreter it uses. This line is called a shebang. We will be using
bash as our default interpreter.

It's a good idea to use bash, because it's a common interpreter that comes with most
Linux distributions and also OS X:

#!/bin/bash

Let's start with a simple use case: reading the arguments passed into the command
line. We will assign the value of the first command line argument, $1, to a variable
called ARG, and then print it back to the screen:

ARG=${1}
echo ${ARG}

[46]

Chapter 2

Let's save our script, assign it execution permissions, and then run it with

one argument:

./script.sh test

#!/bin/bash

ARG=%{1}
echo $HARGH

| I O Y DO N O Y B N N B B N N D N NN DN DN N N SNNY N NN BN ST N NN B ST N R BN B N)

All

[69:42:49 AM]

-> 5% 11

total 16K

-rw-r--r-- 1 hacker hacker &7

drwxrwxr-x 3 hacker hacker 4.06K

-rW-rw-r-- 1 hacker hacker 447

-rw-rw-r-- 1 hacker hacker 34
[09:42:50 AM]

-> % chmod +x script.sh
[09:42:55 AM]

-= % 11

total 16K

-rw-r--r-- 1 hacker hacker 87

drwxrwxr-x 3 hacker hacker 4.0K

-rw-rw-r-- 1 hacker hacker 447

-rwxrwxr-x 1 hacker hacker 34
[69:43:01 AM]

-» % .fscript.sh test

test

_>",|:|

[09:43:06 AM]

Jul
Jul
Jul
Jul

Jul
Jul
Jul
Jul

21
21
27
27

10:
10:
a8
09:

44
30
37
42

file.txt
git-demo
lorem. txt
script.sh

file.txt
git-demo
lorem. txt

As you can see, the value test is printed back to the screen. In some cases, we want
to assign default values to variables. In order to do this, add ":-" to the variable
assignment, followed by the default value:

ARG=${1l:-"default value"}

[47]

Productive shells - Reinvent the way you work

Now if we re-run the script, we can see that passing no arguments will echo
default value. And just like pipes, we can chain multiple default value
assignments together. We can define another variable AUX, assign it the value 123,
and use the same syntax to assign its value to the ARG variable, before using the
"default value" script like so:

AUX="123"
ARG=${1:-${AUX:-"default value"}}

#!/bin/bash [09:42:49 AM]
-> % 11
AUX="123" total 16K
ARG=5[J1: - ${AUX: - "default value"}[| =rw-r--r-- 1 hacker hacker 87 Jul 21 18:44 file.txt
echo ${ARG} drwxrwxr-x 3 hacker hacker 4.8K Jul 21 18:36 git-demo

- ~rw-rw-r-- 1 hacker hacker 447 Jul 27 @8:37 lorem.txt
-rw-rw-r-- 1 hacker hacker 34 Jul 27 89:42 script.sh

[09:42:50 AM]

-= % chmod +x script.sh
[09:42:55 AM]

.= % 11

total 16K

-rw-r--r-- 1 hacker hacker 87 Jul 21 10:44 file.txt
drwxrwxr-x 3 hacker hacker 4.8K Jul 21 18:38 git-demo
-rw-rw-r-- 1 hacker hacker 447 Jul 27 @8:37 lorem.txt
=rwxrwxr-x 1 hacker hacker 34 Jul 27 @9:42

[09:43:01 AM]
-> % .fscript.sh test
test

[09:43:06 AM]

-> % .fscript.sh
default value
[09:43:20 AM]
-> % . /fscript.sh
123

[09:43:41 AM]

L1 |

ARG=${1:-${AUX:-"default value"}}

I T T T S T T O T T O O S N T T T N T N T TN N O T T T A R Y |

script.sh” 5L, 69C written 4,33 All

[48]

Chapter 2

In this case, ARG will always receive 123 as its default value.

Now let's look at string selectors. To select a substring, use ":", plus the starting
position plus ":", plus the number of characters:

LINE="some long line of text"
echo "${LINE:5:4}"

#!/bin/bash [09:42:49 AM]

-= % 11
AUx="123" total 16K
ARG=%{1:-${AUX: -"default value"}} =rw-r--r-- 1 hacker hacker 87 Jul 21 10:44 file.txt
#echo S{ARG} drwxrwxr-x 3 hacker hacker 4.0K Jul 21 18:30 git-demo

-rw-rw-r-- 1 hacker hacker 447 Jul 27 08:37 lorem.txt
LINE="some long line of text" -rw-rw-r-- 1 hacker hacker 34 Jul 27 09:42 script.sh
echo "${LINE " [09:42:50 AM]
~ -> % chmod +x script.sh

[09:42:55 AM]
-> % 11
total 16K

-rw-r--r-- 1 hacker hacker 87 Jul 21 10:44 file.txt
drwxrwxr-x 3 hacker hacker 4.0K Jul 21 18:30 git-demo
-rwW-rw-r-- 1 hacker hacker 447 Jul 27 08:37 lorem.txt
-rwxrwxr-x 1 hacker hacker 34 Jul 27 09:42
[69:43:01 AM]
-» % ,fscript.sh test
test
[09:43:06 AM]
-»> % ,fscript.sh
default value
[69:43:20 AM]
-= % . fscript.sh
123
[69:43:41 AM]
-= % .fscript.sh
long

> [l

[69:44:14 AM]

L e A e)

"script.sh® 8L, 120C written 8,18 All

In our case, we will be selecting four characters, starting from the fifth character.
After running the script, we can see the value long printed on the screen.

[49]

Productive shells - Reinvent the way you work

Most shell scripts are designed to run from the command line and receive a variable
number of arguments. In order to read command line arguments without knowing
the total number of arguments, we'll use a while statement that checks whether the
first argument is not null using the -z (or not equal to 0) conditional expression. In
the while loop, let's echo the variable's value and run shift, which shifts command
line arguments one position to the left:

while [[! -z ${1} 11; do
echo ${1}

shift # shift cli arguments

done
#!/bin/bash [09:42:49 AM]
== % 11
AUX="123" total 16K
ARG=8{1:-${AUX: -"default value"}} -rw-r--r-- 1 hacker hacker 87 Jul 21 10:44 file.txt
#echo S{ARG} drwxrwxr-x 3 hacker hacker 4.0K Jul 21 18:30 git-demo
-rw-rw-r-- 1 hacker hacker 447 Jul 27 088:37 larem.txt
LINE="some long line of text" -rw-rw-r-- 1 hacker hacker 34 Jul 27 09:42 script.sh
#echo "${LINE:5:4}" [69:42:50 AM]
-> % chmod +x script.sh
while [[! -z ${1} 11; do [69:42:55 AM]
echo $1 == % 11
shifjt total 16K
done -rw-r--r-- 1 hacker hacker 87 Jul 21 10:44 file.txt
- drwxrwxr-x 3 hacker hacker 4.0K Jul 21 18:30 git-demo
& -rw-rw-r-- 1 hacker hacker 447 Jul 27 088:37 lorem.txt
- -rwxrwxr-x 1 hacker hacker 34 Jul 27 69:42
= [09:43:01 AM]
~ -» % .f/script.sh test
~ test
- [09:43:06 AM]
-~ -= % ./script.sh
= default value
- [09:43:20 AM]
» - % ./script.sh
- 123
= [09:43:41 AM]
~ -» % ./script.sh
- long
- [69:44:14 AM]
- -= % ./script.sh a b c
~ a
- b
- c
- I [89:45:07 AM]
- - %
"script.sh" 13L, 169C written 12,6-13 All

If we run our script with the arguments a b ¢, we can see that our while looped
through the parameters and printed each one on a separate line. Now let's extend
our CLI arguments parser and add a case statement for interpreting the arguments.

[50]

Chapter 2

Let's assume that our script will have a help option. The Posix standard recommends
doing a long argument version with - -, and a short version with only one -. So both
-hand --help will print the help message. Also, it is recommended to always have a
default case and print a message when the user sends invalid options and then exits
with a non-zero exit value:

while [[! -z ${1} 11; do
case "$1" in
--help|-h)
echo "This is a help message"
shift

1

echo "invalid option"

exit 1
i
esac
done
#!/bin/bash [09:42:49 AM]
-= % 11
AUX="123" total 16K
ARG=5{1:-3{AUX:-"default value"}} -rw-r--r-- 1 hacker hacker 87 Jul 21 19:44 file.txt
#echo ${ARG} drwxrwxr-x 3 hacker hacker 4.8K Jul 21 10:30 git-demo
-rw-rw-r-- 1 hacker hacker 447 Jul 27 08:37 lorem.txt
LINE="some long line of text” -rw-rw-r-- 1 hacker hacker 34 Jul 27 09:42 script.sh
#echo "S{LINE:5:4}" [09:42:50 AM]
-= % chmod +x script.sh
while [[! -z ${1}]]; do [69:42:55 AM]
case "§1" in -> % 11
--help|-h) total 16K
echo "This is a help message” -rw-r--r-- 1 hacker hacker 87 Jul 21 19:44 file.txt
shift drwxrwxr-x 3 hacker hacker 4.08K Jul 21 10:30 git-demo
H -rw-rw-r-- 1 hacker hacker 447 Jul 27 08:37 lorem.txt
ol -rwxrwxr-x 1 hacker hacker 34 Jul 27 09:42
echo "Invalid option" [09:43:01 AM]
exit 1 -» % ./script.sh test
HH test
~esac [09:43:06 AM]
done -= % . fscript.sh
- default value
- [69:43:20 AM]
- -> % ./script.sh
- 123
- [09:43:41 AM]
- -= % fscript.sh
- long
= [09:44:14 AM]
- -=> % ./script.sh a b c
- a
- b
== c
- [69:45:07 AM]
- -» % ,fscript.sh -h
- This is a help message
- [09:46:26 AM]
- -= % .fscript.sh --help
- This is a help message
- [09:46:30 AM]
- o= o” -
"script.sh” 21L, 304C written 21,1 All

[51]

Productive shells - Reinvent the way you work

If we run our script with -h, we can see the help message printed, the same as if we
had used - -help. If we run the script with any other option, the invalid option text
is printed and the script exits with the exit code 1. To get the exit code of the last
command, use "$?".

Now let's look at basic functions in shell. The syntax is pretty similar to other
programming languages. Let's write a function called print_ip that will print the IP
of the interface specified as the first argument. We will use a subshell and assign the
value to a variable called IP. We already have the full command inside our clipboard;
it's the same one we saw in the lesson about pipes:

function print ip() {

IP=3(
ifconfig ${1} | \
grep "inet addr:" | \
awk '{print $2}' | \
cut -£ 2 -4 ":"
echo ${1IP}
#!/bin/bash [09:46:51 AM]
-> % ifconfig
AUX="123" docker@ Link encap:Ethernet HWaddr 02:42:3f:08:78:c0
ARG=3{1:-${AUX: -"default value"}} inet addr:172.17.0.1 Bcast:0.0.0.0 Mask:255.255.9.9
#echo ${ARG} UP BROADCAST MULTICAST MTU:15088 Metric:1l
RX packets:® errors:® dropped:@ overruns:@ frame:8
LINE="some long line of text" TX packets:® errors:8® dropped:8 overruns:8 carrier:@
#echo "${LINE:5:4}" collisions:® txqueuvelen:@

RX bytes:® (6.0 B) TX bytes:0 (6.8 B)
function print_ip{) {

IP=${ifconfig ${1} |\ enp2sd Link encap:Ethernet HwWaddr 26:89:84:74:50:97
grep ‘inet addr:' |\ UP BROADCAST MULTICAST MTU:1506 Metric:l
awk '{print $2}' | \ RX packets:® errors:® dropped:@ overruns:8 frame:8
cut -f 2 -d ":") TX packets:® errors:® dropped:8 overruns:8 carrier:@
echo ${IP} collisions:8 txqueuelen:1806
RX bytes:0 (0.6 B) TX bytes:0 (0.9 B)
while [[! -z ${1} 1]; do 1o Link encap:Local Loopback
case "$1" in inet addr:127.08.8.1 Mask:255.8.6.8
--1ip|-1) ineté addr: ::1/128 Scope:Host
print_ip ${2} UP LOOPBACK RUNNING MTU:65536 Metric:1
shift RX packets:1315 errors:0 dropped:@ overruns:8 fTrame:8
shift TX packets:1315 errors:8 dropped:@ overruns:@ carrier:8
HH collisions:® txqueuelen:l
--help|-h) RX bytes:151317 (151.3 KB) TX bytes:151317 (151.3 KB)
echn "This is a help message”
shift wlp3s@ Link encap:Ethernet Hwaddr 68:17:29:bf:e2:67
H inet addr:192.168.0.159 Bcast:192.168.0.255 Mask:255.255.255.0
=l | inet6 addr: feB88::18e9:533a:d12f:82de/64 Scope:Link
echo "Invalid option” UP BROADCAST RUNNING MULTICAST MTU:1588 Metric:l
exit 1 RX packets:1087221 errors:8 dropped:@ overruns:@ frame:8
a0 TX packets:78867 errors:@ dropped:® overruns:® carrier:@
esac collisions:® txqueuelen:1888
done RX bytes:133203550 (133.2 MB) TX bytes:9574542 (9.5 MB)
[09:49:06 AM]

-> % .fscript.sh --ip wlp3s@
192.168.9.159
L [09:49:16 AM]

N > % |

script.sh" 34L, 583C written 24,8 AlL

[52]

Chapter 2

Now let's add another case to our switch statement, for the -1 or --ip option. The
option will be followed by the name of the interface, which we will then pass to the
print_ip function. Having two arguments for one option means we need to call the
shift command twice:

--ip|-1)
print_ip s${2}
shift
shift

1

Let's do an ifconfig to get the name of our wireless interface. We can see it's
wlp3s0.

Now let's run:
./script.sh --ip wlp3s0

We can see the IP address. This is a very basic use case, where we can see how
command line arguments can be passed. We can add unlimited options to our case
statement, define functions for handling the arguments, and even chain multiple
options together to form complex scripts that receive well-structured information as
command line arguments.

Being effective means running tasks faster-- really fast! And when it comes to speed,
bash is not the first choice in terms of script interpreters. Luckily, we still have some
tricks up our sleeves! If a shell script needs to run multiple independent tasks, we
can use the & symbol to send the process to the background and move forward to
the next command.

Let's create two functions, long_running task 1 and 2, and add a sleep command
inside, to simulate a 1ong_running task:

function long running task 1() {
sleep 1

}

function long running task 2() {
sleep 2

}

[53]

Productive shells - Reinvent the way you work

The first long running task function will sleep for one second, and the next will sleep
for two seconds.

Then, for testing purposes, let's add another case to our switch statement,
called -p / --parallel, and run the two long running tasks:

--parallel|-p)
long_running task 1
long_running task 2

Now, if we run this:
./script.sh -p

It will take a total of three seconds for the script to finish. We can measure this with
the time utility:

#! /bin/bash [09:49:16 AM]
-» % time ./script.sh -p
ALX="123 .fscript.sh -p 0@.88s user 0.688s system 8% cpu 3.805 total
ARG=${1: -${AUX: -"default value"}} i [09:51:13 AM
Facho S{ARG} =>4l

LINE="s0ome Llong line of text"
#echo “S{LINE:5:4}"

function print_ip(} {
IP=${ifconTig ${1} |\
grep 'inet addr:® |\
awk “{print $2}' | \
cut -f 2 .d ":"]
echo S{IP}

function long_running_task_1() {
sleep 1

function long_running_task_2() { 1
sleep

while [[! -7 ${1} 1]; do
case "§$1° in

--ip]-i}
print_ip $(2}
shift
shift

--parallel|-p)
long_running_task_1
long running task 2
shift

--help|-h)
echo "This is a help message”
shift

*)

“script.sh” 47L, GB7C written 33,18 Top

[54]

Chapter 2

If we run both functions in the background, we can reduce the running time to the
longest running time of both functions (because of the wait). When running long
running tasks, we probably want the script to wait for the longest-running task to
finish, in our case task 2. We can achieve this by grabbing the pid of the second task.
Here $! is used to grab the pid of the last run command. Then we use the wait shell
built in to wait for the execution to finish:

--parallel|-p)
long_running task_ 1 &
long_running task 2 &
PID=S!
wait ${PID}

After running the script again with the time utility, we can see it takes us a total of
two seconds to complete the task.

Who would've thought we can do parallel processing in a shell?

If the executions take a longer time, we can add a notification when the script
finishes:

notify-send script.sh "execution finished"

[09:51:13 AM]
AlX="123" == % time ./script.sh -p
JARG=5{1: -${AUK: - "default value®}} .fseript.sh -p 0.00s user €.88s system 6% cpu 2.885 total
secho S{ARG) [09;52:05 AH] _
-= % time ./script.sh -p
LINE="some long line of text® fscript.sh -p 0.008s user 8.88s system &% cpu 2.063 total
decho “S{LINE:5:4}" 09:

L
->» % time ./script.sh

function print_ip{} { ./seript.sh -p 8,005 user €.96s system 6% cpu 2.838 total
IP=s{ifconfig §{1} |\ [09:54:26 AM
grep ‘inet addr:® |\ -= %]
awk '{print §2} \
cut -1 2 -d ":°]

echo ${IP}
t

function long_running_task_1{) {
sleep 1

function long_running_task_2{)

sleep 2
+
while [1 ! -z §{1} 11; do
case "$1" in
--ip|-i)
print_ip ${2}
shift
shift
--parallel]-p)

long_running_task_1 &

long_running_task_2 &

PID=5!

walt ${PID}

notify-send script.sh “execution finished®

shifit

--help|-h)

echo “This is a help message”

39,11

[55]

Productive shells - Reinvent the way you work

This way we can start the script, work on some other tasks, and receive a notification
when the script finishes. You can let your imagination go wild on the things you can
achieve with parallel processing and notifications.

In this chapter, we have seen some common predefined shell variables. They were:

* $1: First argument
e $7: Return code of the last command

e ¢1:The pid of the last command run
Other commonly used predefined shell variables include:

* $#: Number of parameters

* ¢ List of parameters

* se: All the parameters

* $0: Name of the shell/script

* $%: PID of current running shell

Bash has a lot of features and we recommend going through its man page to get
more information about them.

Shell scripts are amazing when used the right way. They can fine-tune system
commands, as we saw in our example when we got only the IP address, without the
whole ifconfig output and much more. You, as a pragmatic terminal user, should
identify what tasks you most commonly do in the command line and what can be
automated using shell scripts. You should create your own collection of shell scripts
and add them your path, so that they are easily accessible from any directory.

Shell scripting libraries

To really take advantage of automating tasks using shell scripts, it's important to
organize all common tasks into reusable commands and have them available in the
path. To do this, it's a good idea to create a bin folder inside the home directory

for the scripts, and a bin/11ib directory for storing common pieces of code. When
working with lots of shell scripts, it's important to reuse large pieces of functionality.
This can be achieved by writing library functions for your shell scripts, functions that
you can call from multiple places.

[56]

Chapter 2

Here we will create a library script called util. sh, which will be sourced in other
scripts. By sourcing the script, we get access to functions and variables from inside
the library script.

We will start by adding the print_ip function from a previous script.

Now we will add another function called getarg, which will be used by other scripts
for reading command line arguments and values. We will simply paste it from our
clipboard history, using Cliplt to select it.

You can learn more about Cliplt by checking out our Cliplt section!

Function to read cli argument:
function getarg()

NAME=${1}
while [[! -z ${2} 1]; do
if [["--${NAME}" == "${2}" 1]; then
echo "${3}"
break
fi
shift
done
}
#! /bin/bash
s tanets S0
TP, v a1

cut -F 2 -d ":")

function getarg() {
IAME=S (1}

shile [[! -z ${2} 11; do
if [=«${NAME}" == "§{2}"]); then
"${3}

-- INSERT -- 21,1 All

[57]

Productive shells - Reinvent the way you work

This is just a simple function that will receive a parameter name as the first
argument, the list of CLI arguments as the second parameter, and it will search
inside the list of CLI arguments to find the parameter name. We will see it in action
later on.

The last function we're going to create is called get_public_ip. It is similar in terms
of functionality to the print_ip function, except that it will be used to print the
computer's public IP. That means that, if you are connected to a wireless router and
you access the Internet, you will get the IP of the router, which is the IP that other
sites see. The print_ip function just shows the IP address from the private subnet.

The command is already copied in the clipboard. It's called dig and we're using it
to access https://www.opendns.com/ in order to read the public ip. You can find
more information about it in its man page or by Googling it:

function get public ip() {
dig +short myip.opendns.com @resolverl.opendns.com

}

Now that we have our library functions in place, let's go and create our productivity
booster scripts. Let's create a script called iputils where we will add some common
tasks for reading IP addresses.

We'll start by adding the shebang, followed by a neat little trick for making sure
we are always in the same folder as the executed script. We will be using the BASH
SOURCE variable to determine the value of the current working directory (or CWD)
variable. You see here that we are using nested subshells in order to achieve this:

CWD=$(cd "$(dirname "${BASH SOURCE[0]}")/" && pwd)
cd ${cwp}

Next, we will source the util script, so that the library functions are exported into
memory. Then, we can access them from the current script:

source ${CwWD}/lib/util.sh

Let's add a simple call to our getarg function using a subshell, and search for the
cmd argument. Also, let's echo what we've found, so that we can test our script:

CMD=$ (getarg cmd $@)
echo ${cMD}

[58]

https://www.opendns.com/

Chapter 2

The next thing we need to do is to give the script execution rights using the chmod
command. Also, in order to run the script from anywhere, the bin folder must be in
the PATH variable. Echo the variable and check that the bin folder is there and, if
not, update the variable in ~/ . zshrec.

Let's test the script by reading a command line parameter with the getarg function
and echoing it.

If you are searching for the iputils command in the terminal using tab for
autocomplete and the command doesn't seem to exist, that is probably because
you need to tell zsh to reload its path commands. To do this, issue the "rehash"
command.

Now run:
iputil --cmd ip
This should work from within any folder, and it should print ip on the screen.

Now that we've verified everything is alright, let's write some code for our command
line arguments. If we run the script with the --cmd ip flags, the script should print
that on the screen. This can be done with the already-familiar case statement. Here
we also want to pass in another argument, --iface, to get the interface that's
needed for printing the IP. It's also a good practice to add a default case and echo a
message saying invalid argument:

case ${CMD} in
ip)
IFACE=S (getarg iface $@)
print_ip ${IFACE}
publicip)
get public_ip
*)
echo "Invalid argument"
esac

Save the script, and let's test it.

[59]

Productive shells - Reinvent the way you work

First, let's get the interface name from the ifconfig command, and then let's go and

test the script by running this command:

iputil --cmd ip --iface wlp3s0

E/binsbash

[function print ip{) {
IP=s(ifcanfig ${1} |\
grep 'inet addr:" |\
awk ‘{print $2} | \
cut o 2 .d ")
echo S{IP}

function getarg{) {
NAME=${1}
while [[z ${2} 11; do
if [["--${MAME}" == "§{2}"]11; then
echo “§{3}"
break
fi
shift
dane
i

function get_public_ip() {
dig =short myip.opendns.com @resolverl.opendns.com

TT T T T T T T FT T 11

#!/bin/bash

CWD=S{ cd "${ dirname "S{BASH SOURCE[8]}")/* && pwd
cd S{CMD}

source ${CWD}/libjutil.sh

CMD=5{getarg cnd 53)
decho ${CHMD}

case ${CMD} in
ip)

IFACE=S(getarg 1face 53@)
print_ip S{IFACE}

")
echo "Invalid command”
esac

"iputils® 18L, 277C written 17,38

inetG addr: ::1/128 Scope:Host

UP LOOPBACK RUMNING MTU:65536 Metric:l

RX packets:17434 errors:@ dropped:® overruns:@ frame:d
T¥ packets:17434 errors:8 dropped:8 overruns:@ carrier:@
collisions:8 txgueuelen:1l

RX bytes:1872674 (1.8 MB) TX bytes:1872674 (1.8 HB)

wip3s@ Link encap:Ethernet HWaddr 68:17:29:bf:e2:67
inet addr:192.168.8.159 Bcost:192.168.8.255 Mesk:255.255.255.9
inet6 addr: fe88::18e9:533a:d12f:82de/64 Scope:Link
UP BROADCAST RUNNING MULTICAST HMTU:1588 Metric:1
RX packets:626337 errors:0 dropped:€ overruns:B frame:8
TX packets:309964 errors:0 dropped:8 overruns:B carrier:@
collisions:@ txgueuelen:1008
RX bytes:875811764 (6875.8 MB) TX bytes:35967052 (35.9 MB]

[11:33:87 PN]
-= % iputils --cnd ip --iface wlp3s@
192.168.8.159

ERY |

[11:33:31 PN]

148

We can see it's printing our private ip on the screen.

Now let's add our last cmd to the script: publicip.

For this we just call the get_public_ip function from our 1ib utility. Save it and

run this:

iputil --cmd publicip

[60]

Chapter 2

We see that the command worked; our public ip is printed on the screen. Here is the
complete script:

#!/bin/bash

CWD=$(cd "$(dirname "${BASH SOURCE[0]}")/" && pwd)
cd ${cwD}

source ${CwD}/lib.sh
CMD=S$ (getarg cmd $@)

case ${CMD} in
publicip)
print public_ip
ip)
IFACE=S (getarg iface $@)
print ip $IFACE
*)
echo "invalid command"
esac

To give you an example, a while ago there were a bunch of articles on the Internet
about a man who used to automate everything that took him more than 90 seconds
to do. The scripts he wrote included instructing the coffee machine to start making

a latte, so that by the time he got to the machine, the latte was finished and he didn't
need to wait. He also wrote a script that sent a text message "late at work" to his wife
and automatically picked a reason from a preset list whenever there was activity
with his login on the company's servers after 9 p.m.

Of course, this example is a little bit complex, but in the end it's all about your
imagination. Well-written automation scripts can take care of your routine work
and leave you to explore your creative potential.

[61]

Vim kung fu

Vim's default configuration is usually pretty average. In order to better use Vim's
powers, we will unleash its full potential through the help of its config files. Then,
we will learn to explore some keyboard shortcuts that will help us speed up our
workflow. We will also look at some commonly used plugins that make Vim even
better. We will see how Vim can come in handy with its option of encrypting files
for storing your passwords. The chapters will end by showing how we can automate
Vim and configure a work environment easily.

In this chapter, we will be covering the following;:

* Working with Vim
* Exploring Plugin steroids for Vim
* Using the Vim password manager to store passwords
* Automating Vim configuration
When it comes to being productive in the terminal, one important aspect is to never

leave the terminal! And when getting stuff done, a lot of the time we find ourselves
having to edit files and opening an external (GUI) editor.

Bad move!

To double our productivity, we need to leave those days behind and get the job done
right there, in the terminal, without opening full-fledged IDEs just to edit one simple
line of text. Now, there is a lot of debate going on about which is the best text editor
for your terminal, and each one has its pros and cons. We recommend Vim, an editor
which is ultra-configurable and, once mastered, can even outmatch an IDE.

The first thing we need to do in order to kickstart our Vim productivity is to have a
well configured vimrec file.

[63]

Vim kung fu

Supercharging Vim
Let's start by opening a new hidden file called .vimrc in our home folder and pasting
a few lines:

set nocompatible
filetype off

" Settings to replace tab. Use :retab for replacing tab in existing
files.

set tabstop=4
set shiftwidth=4
set expandtab

" Have Vim jump to the last position when reopening a file
if has("autocmd")

au BufReadPost * if line("'\"") > 1 && line("'\"") <= line("s$") |
exe "normal! g'\"" | endif

" Other general vim options:
syntax on

set showmatch " Show matching brackets.
set ignorecase " Do case insensitive matching
set incsearch " show partial matches for a search phrase

set nopaste
set number
set undolevels=1000

[64]

Chapter 3

| set nocompatible
2 filetype off

tabstop=4
L shiftwidth=4
expandtab

(has("autocmd")
11 iU BufReadPost *

ax on
't showmatch
ignorecase
incsearch
nopaste

@ set number

21 sel undolevels=1000

155 1110 et Sk e 0 B P B 1,1

" Other general vim options:

' Show matching brackets.

' Do case insensitive matching
' show partial matches for a search phrase

show line number

" Settings to replace tab. Use :retab for replacing

' Have Vim jump to the last position when reopening

Ve

tab in existing files.

a file

) <= line("$") | exe "normal! g'\"" | endif

Now let's close and reopen the file, so that we can see the configuration take effect.
Let's go into a little more detail regarding some of the options.

First of all, as you've probably guessed, the lines starting with " are comments, so
they can be ignored. Lines 5, 6, and 7 tell vim to always use spaces instead of tabs
and to set the tab size to 4 spaces. Lines 10 to 12 tell vim to always open a file and set
the cursor in the same position as the last time the file was open:

* syntax on: This enables syntax highlighting, so it is easier to read code

* set nopaste: This sets nopaste mode, which means you can paste code
without having Vim try to guess how to format it

* set number: This tells Vim to always show the line numbers

* set undolevels=1000: This tells Vim to remember the last 1000 changes we
made to the file, so that we can easily undo and redo

[65]

Vim kung fu

Now, most of these features can be easily turned on or off. Say, for example, we
want to copy, paste some lines from a file opened in Vim to another file. With this
configuration, we are also going to paste the line number. What can be done is to
quickly switch off the line number by typing :set nonumber, or, if the syntax is
annoying, we can easily switch it off by running syntax off.

Another common feature is the status line, which can be configured by pasting these
options:

" Always show the status line
set laststatus=2

" Format the status line
set statusline=\ %{HasPaste() }$Fsm%r%h\ %w\ \ CWD:\ $r%{getcwd() }%h\ \
\ Line:\ %1\ \ Column:\ $%c

" Returns true if paste mode is enabled
function! Has Paste ()
if &paste
return 'PASTE MODE '
en
return ''
end function

Close the file and open it again. Now we can see at the bottom of the page a status
bar with extra information. This is also ultra-configurable, so we can put a lot of
different stuff inside. This particular status bar contains the name of the file, the
current directory, the line and column numbers and also the paste mode (on or off).
To set it to on, we use :set paste and the changes will be showed in the status bar.

[66]

Chapter 3

Vim also has the option of changing the color scheme. To do this, go to /usr/share/

vim/vim74/colors and choose a color scheme from there:

[67:13:83 AM]
-= % pwd
/home/hacker

[67:15:03 AM]
> % vim .vimre

[67:15:14 AM]
-> % vim .vimrc

[07:17:25 AM]
-= % vim .vimrc

[67:18:42 AM]

-= % 11 fusr/share/vim/vim74/colors
total 76K

-rw-r--r-- 1 root root 2.5K Jun 17
=fw-r--r-- 1 root root 3.6K Jun 17
«rW-r--r-- 1 root root 548 Jun 17
=rw-r--r-- 1 root root 2.5K Jun 17
-rw-r--r-- 1 root root 2.8K Jun 17
=rw-r--r-- 1 root root 1.7K Jun 17
-fW-r--r-- 1 root root 2.5K Jun 17
-rw-r--r-- 1 root root 2.8K Jun 17
=rW-r--r-- 1 root root 3.4K Jun 17
«rW-r--r-- 1 root root 2.5K Jun 17
-rw-r--r-- 1 root root 2.6K Jun 17
-rw-r--r-- 1 root root 1.1K Jun 17
-rw-r--r-- 1 root root 2.7K Jun 17
-rw-r--r-- 1 root root 2.6K Jun 17
-rw-r--r-- 1 root root 1.4K Jun 17
«fW-r--r-- 1 root root 2.7K Jun 17
srw=r--r=- 1 root root 2.4K Jun 17
-rw-r--r-- 1 root root 1.6K Jun 17
-rw-r--r-- 1 root 1 Jun 17

root 1.8K
[07:18:56 AM]

v
]

09:47
09:47
09:47
09:47
09:47
09:47
09:47
89:47
09:47
09:47
09:47

09:47
09:47
09:47
089:47
09:47
09:47
09:47

/usr/share/vim/vim74/colors

blue.vim
darkblue.vim
default.vim
delek.vim
desert.vim
elflord.vim
evening.vim
industry.vim
koehler.vim
morning.vim
murphy.vim
pablo.vim
peachpuff.vim
README. txt
ron.vim
shine.vim
slate.vim
torte.vim
zellner.vim

Let's choose desert!

Color scheme desert

Close and reopen the file; you will see it's not that different from the previous color
theme. If we want a more radical one, we can set the color scheme to blue, which will
drastically change the way Vim looks. But during the rest of this course, we will stick

to desert.

[67]

Vim kung fu

Vim can also be supercharged with the help of external tools. In the world of
programming, we often find ourselves editing JSON files and that can be a very
difficult task if the JSON is not indented. There is a Python module that we can use
to automatically indent JSON files and Vim can be configured to use it internally.
All we need to do is to open the configuration file and paste the following line:

map j !python -m json.tool<CR>

Essentially this is telling Vim that, when in visual mode, if we press J, it should call
Python with the selected text. Let's manually write a json string, go to visual mode
by pressing V, select the text using our arrows, and hit J.

And, with no extra packages, we added a JSON formatting shortcut:

3 [67:20:14 AM]
4 " Settings to replace tab. Use :retab for replacing tab in existing f -» % cd course
iles. [07:20:43 AM]
5 set tabstop=4 -= % vim file.json
6 set shiftwidth=4 [67:23:52 AM]
7 set expandtab -> % sudo apt install libxml2-utilsf]
g8
9 " Have Vim jump to the last position when reopening a file
10 if has("autocmd")
11 au BufReadPost * if line{"'\"") = 1 && line("'\"") == line("3%")
exe “normal! g'\"" | endif
12 endif
13

14 " Other general vim options:
15 syntax on

16 set showmatch " Show matching brackets.

17 set ignorecase " Do case insensitive matching

18 set incsearch " show partial matches for a search phrase
19 set nopaste

20 set number " show line n
21 set undolevels=1008

DNNaNR 11 do apt install libxml2-utils

24 set laststatus=2

26 " Format the status line
27 set statusline=\ %{HasPaste()}%F%m%rshy %wh\ \ CWD:\ %r%{getcwd()}%h\
%\ Line:\ %1% \ Column:\ %c

29 " Returns true if paste mode is enabled
30 function! HasPaste()

31 if &paste

32 return 'PASTE MODE

33 en

34 return "'

35 endfunction

36

37 colorscheme desert

38

39 map j !python -m json.tool<CR= " format JSON

-/ vimre CWD: /home/hacker Line: 40 Column:

[68]

Chapter 3

We can do the same thing for xm1 files, but first we need to install a tool for working
with them:

sudo apt install libxml2-utils

38
39
48

[07:20:14 AM]
" Settings to replace tab. Use :retab for replacing tab in existing f -> % cd course
iles. [07:20:43 AM]
set tabstop=4 -= % vim file.json
set shiftwidth=4 [67:23:52 AM]
sel expandtab -> % sudo apt install libxml2-utilsf]
" Have Vim jump to the last position when reopening a file
if has{"autocmd")
au BufReadPost * if line("’"\"") = 1 && line{"'\"") <= line("$") |
exe "normal! g'\"" | endif
endif
" Other general vim options:
h}'llld). an
set showmatch " Show matching brackets.
set ignorecase " Do case insensitive matching
set incsearch " show partial matches for a search phrase
set nopaste
set number " show line nu
set undolevels=1000

" Always show the status Lline SUdO apt install 1ibXIlll2-utils

sel laststatus=2

* Format the status line
set statusline=\ %{HasPaste()}%Fam%rehy %W\ \ CWD:\ %ri{getcwd()}%h\
% % Line:y %1% \ Column:y %c

" Returns true if paste mode is enabled
function! HasPaste()
if &Gpaste
return 'PASTE MODE
en
return *'
endfunction

7 colorscheme desert

map j !python -m json.tool<CR= " format JSON

/.vimrc CWD: /home/hacker Line: 48 Column: @

To install the XML utility package, we must add the following line to our
configuration file:

map 1

Ixmllint --format --recover -<CR>

This maps the L key when in visual mode to xm11int. Let's write a HTML snippet,
which is actually a valid xm1 file, hit v for visual mode, select the text, and press L.

This type of extension (and also spell checkers, linters, dictionaries, and much more)
can be brought to Vim and be instantly available to use.

A well configured vim file can spare you a lot of time in the command line.
Although it might take some time in the beginning to get things set up and to find
the configuration that is right for you, this investment can pay off bigtime in the
future, as time passes and we spend more and more time in Vim. A lot of times we
don't even have the luxury of opening a GUI editor, like when working remotely
through an ssh session. Believe it or not, command line editors are life savers and
productivity is hard to achieve without them.

[69]

Vim kung fu

Keyboard kung fu

Now that we have Vim all set up, it's time to learn some more command line
shortcuts. The first thing we will be looking at is indentation.

Indentation can be done in Vim by going into visual mode and typing V for selecting
portions of text or V for selecting full lines, followed by > or < to indent right or left.
Afterwards press . to repeat the last operation:

#1/bin/bash

1
5
3 CWD=%{ cd "$(dirname "${BASH_SOURCE([®]}")/" && pwd)
4 cd ${CWD}

O €0~

some long 1i
#echo "${LINE:5:4}"

[
[T

(T

function print ip() {
IP=$({ifconfig ${1} |\
grep 'inet addr:' |\
awk '{print $2}' |
cut -f 2 -d ":")
echo ${IP}

[E
o~ O o

=

=

function longRunningTaskl() {
sleep 1

}

function longRunningTask2() {
sleep 2

}

while [[! -z ${1} 1]; do
case "$1" in
--ip|-1)
32 print_ip %{2}
33 shift
34 shift

L Ly P B B R R B P D B B b
[R T = N R T I Y N

36 --parallel|-p)

3 longRunningTaskl &

38 longRunningTask2 & -v
39 PID=%!

40 wait ${PID}
41 notify-send script.sh "execution finished"

~/course/script.sh CWD: /home/hacker/course Line: 8 Column: 1
- VISUAL LINE --

Any operation can be undone by hitting u and can then be redone by hitting Ctrl + R
(as in undo and redo). This is the equivalent of Ctrl + Z and Ctrl + Shift + Z in most
popular editors.

[70]

Chapter 3

When in visual mode, we have the option of changing the case of letters by hitting U

to make all text upper case, u for lower case and ~ to reverse current case:

1 #!/bin/bash
2
3 CWD=${ cd "$(dirname "${BASH_SOURCE[O]}" }/" && pwd)
4 cd ${CwWD}
5
6 AUX¥="123"
7 ARG=5{1: -${AUX: -"default value"}}
8 #echo ${ARG}
9
1@ LINE=”UDHE LONG LINE OF TEXT"
11 #echo "${LINE:5:4}"
12
13 function print ip() {
14 IP=s({ifconfig ${1} |\
15 grep 'inet addr:' |\
16 awk '{print R
17 cut -f 2 -d)
echo ${IP}

3 Ped B
R = @ WO
i

function longRunningTaskl() {
sleep 1
¥

25 function longRunningTask2() {
26 sleep 2

w

B B P
=

27 }

28

29 while [[! -z {1} 1]; do
30 case "$1" in

31 --ip|-i)

32 print_ip ${2}

33 shift

34 shift

35 HH

36 --parallel|-p)

37 longRunningTaskl &
38 longRunningTask2 &
39 PID=%!

40 ! ${PID}

41 notify-send script.sh "execution finished

~/course/script.sh[+] CWD: /home/hacker/course Line: 10

Other handy shortcuts are:

e G:Gotoend of file

* gg: Go to start of file

* Select all: This is not really a shortcut, but a combination of commands:

gg V G, asin go to start of file, select full line, and move to the end.

[71]

Vim kung fu

Vim also has a handy shortcut for opening man pages for the word under the cursor.
Just hit K and a man page will show up for that specific word (if there is one, that is):

[l unction print ipl@) i
i ${1%

ggV G

: /home/hacker/course Line: 53 Column: 1

-- VISUAL LINE -

Finding text in Vim is as easy as hitting /. Just type / + the text to find, and hit Enter
to start searching. Vim will go to the first occurrence of that text. Hit n for next
occurrence, N for previous occurrence.

[72]

Chapter 3

Our favorite editor has a powerful find and replace feature, similar to the sed

command. Let's say we want to replace all occurrences of the string cwp with the

string DIR. For this, just type:

:1,$s/CWD/DIR/g

:1,$ - start from line one, till the end of the file
s - substitute

/CWD/DIR/ - replace CWD with DIR

g - global, replace all occurrences.

1 #!/bin/bash

2

3 DIR=$(cd "$({ dirname "${BASH_SOURCE[O]}")/" && pwd)
4 [ld ${DIR}

5

6 AUX="123"

7 ARG=8{1: -${AUX: - "default value"}}

8 #echo ${ARG}

9

16 LINE="some long line of text"
11 #echo "${LINE:5:4}"

13 function print_ip() {
14 IP=§(ifconfig ${1} |\

15 grep ‘inet addr:' |\

16 awk ‘{print $2}' | \

17 cut -f 2 -d ":")

18 echo ${IP}

19 }

20

21 function longRunningTaskl{) {
22 sleep 1

24

25 function longRunningTaskZ{) {
26 sleep 2

27 }

28

29 while [[! -z ${1}]]; do
30 case "$1" in

31 --ip|-1)

32 print_ip {2}

33 shift

34 shift

35 e

36 --parallel|-p)

37 longRunningTaskl & . 1 $S/ CWD/DIR/
38 longRunningTask? & .) g
39 PID=§!

40 wait ${PID}

41 notify-send script.sh "execution finished"

~/course/script.sh[+] CWD: /home/hacker/course Line: 4 Column: 1
:1,%s/CWD/DIR/g

[73]

Vim kung fu

Let's do another common example that often comes up in programming;:
commenting lines of code. Let's say that we want to comment out lines 10 to 20
in a shell script. To do this, type:

:10,20s/"/#\ /g

#!/bin/bash

DIR=$(cd "${ dirname "${BASH SOURCE[0]}")/" && pwd)
cd ${DIR}

AUX="123"
ARG=S{1: - ${AUX: - "default value"}}
#echo ${ARG}

LINE="some long line of text"
#echo "${LINE:5:4}"

el
P = W0 00 = O L e LB

13 function print_ip() {
14 IP=$(ifconfig ${1} |\

15 grep 'inet addr:' |\

16 awk ‘{print $2}' | \

17 cut -f 2 -d ":")

18 echo ${IP}

19 }

20

21 function longRunningTaskl() {
22 sleep 1

23 }

24

25 function longRunningTask2() {
26 Sleep 2

27 }
28
29 while [[! -z ${1} 1]; do
30 case "$1" in
31 --ip|-1)
32 print_ip ${2}
3 shift
34 shift
35 H
36 --parallel|-p] N
37 longRunningTaskl & .
21 vetiores e 110,208/ /#\ /g
39 PID=%!
40 wait ${PID}
41 notify-send script.sh "execution finished"

~/course/script.sh[+] CWD: /home/hacker/course Line: 4 Column: 1
116,205/~ /#\ /g|

[74]

Chapter 3

1 #!/bin/bash

2

3 DIR=$(cd "$(dirname "${BASH_SOURCE[O]}")/" && pwd)
4 cd ${DIR}

5

6 AUX="123"

7 ARG=${1: -${AUX: -"default value"}}
8 #echo ${ARG}
Q

10 # LINE="some long line of text"
11 # #echo "${LINE:5:4}"
12 #
13 # function print_ip() {
14 # IP=%(ifconfig ${1} |\
15 # grep 'inet addr:' |\
16 # awk '{print $2}' | \
17 # cut -f 2 -d ":")
18 # echo ${IP}
19 # }
20 B
21 function longRunningTaskl() {
22 sleep 1

23 }

24
25 function longRunningTask2() {
26 sleep 2

27 }

28
29 while [[! -z %${1} 1]; do
30 case "§1" in

31 --ip|-1)

32 print_ip ${2}

33 shift
34 shift

35 H

36 --parallel|-p)

37 longRunningTaskl &

38 longRunningTask2 &

39 PID=5!
40 wait ${PID}
41 notify-send script.sh "execution finished"

~/course/script.sh[+] CWD: /home/hacker/course
11 substitutions on 11 lines

Line:

20

Column:

1

This means substitute the beginning of the line with # and space. For deleting lines

of text, type:

:30,%d4

This will delete everything from line 30 till the end.

[75]

Vim kung fu

More information about regular expressions can be found in the chapters. Also check
out the parts on sed for more text manipulation examples. These commands are
some of the longest in Vim and often we get them wrong. To edit the command we
just wrote and run it again, we can open the command history by hitting 4:, navigate
to the line containing the command to edit, press Insert, update the line, and press
Esc and Enter to run the command. It's as simple as that!

3 DIR=$(cd "${ dirname "${BASH SOURCE[@]}")/" && pwd)
4 cd ${DIR}

AUX="123"
ARG=${1: -${AUX: - "¢
#echo ${ARG}

rfault value"}}

0~ O

fa]

10 LINE="some long line of text"
11 #echo "${LINE:5:4}"

12

13 function print_ip() {

14 IP=${ifconfig ${1} |\

15 grep "inet addr:' |\
16 awk '{print $2}' | \
cut -f 2
echo ${IP}
20
21 function longRunningTaskl () {
22 sleep 1
23 }
25 function longRunningTaskZ() {
26 sleep 2
27 }
z ${1} 11; do
in
31 --ip|-1i)
32 print_ip ${2}

33 shift

34 -

CWD: /home/hacker/course Line: 18 Column: 1

CWD: /home/hacker/course Line: 49 Column: 6

Another operation that is often useful is sorting. Let's create a file with unsorted lines
of text from the classic lorem ipsum text:

cat lorem.txt | tr " " "\n" | grep -v ""\s*$" | sed "s/[,.1//g" > sort.
txt

[76]

Chapter 3

[e7: AH]

Rt)

file.html file.json file.txt git-demo lorem.txt
[07:36:46 AM]

-» % vim script.sh
[No write since last change]

Press ENTER or type cosmand to continue
[No write since last change]

Press ENTER or type command to continue

[07:42:44 AH)
file.html fTile.json file.txt git-demo lorem,TxT

[07:42:45 AM])
-> % cat lorem.txt
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam
. quis nostrud exercitation ullamco laboris nisi ut aliguip ex ea comnodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse
cillun dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est labo
rum.

[07:42:49 AM]
> % cat lorem.txt | tr " " "\n" | grep -v ""\s*5" | sed "s/[,.]1//9" > sort.txtf]

Open sort.txt and run :sort. We see that the lines are all sorted alphabetically.

Lorem
ipsum
dolor
sit
amet
) consectetur
adipiscing
elit
sed
do
eiusmod
tempor
incididunt
14 vt
15 labore
16 et
17 dolore
18 magna
19 aliqua
20 Ut
21 enim
22 ad
’3 minim
24 veniam
25 quis
26 nostrud
27 exercitation
3 ullamco
29 laboris
30 nisi
31 ut
32 aliquip
33 ex
34 ea
35 commodo
36 consequat
37 Duis
36 aute
) irure
dolor
in

e
WA DD 00~ Y LA L R

home/hacker/course Line: 1 Column: 1

"sort.txt" 69L, 438C

[77]

Vim kung fu

Now let's move forward to window management. Vim has the option to split the
screen for editing files in parallel. Just write : split for horizontal split, and :vsplit
for vertical split:

50 nostrud

51 nulla

52 occaecat

53 officia

54 pariatur

55 proident

56 qui

57 quis

58 reprehenderit
59 sed

60 sint

61 sit

62 sunt

63 tempor

64 ullamco

65 ut

66 ut

7 velit

8 veniam

9 Moluptate

CWD: /home/hacker/course Line: 69 Column: 1

58 nostrud
51 nulla

52 occaecat
53 officia
54 pariatur
55 proident
56 qui

57 quis

58 reprehenderit
59 sed

60 sint

bl sit

62 sunt

63 tempor
64 ullamco

68 veniam
69 voluptate

~/course/sort.txt[+] CWD: /home/hacker/course Line: 89 Column: 1
:split

[78]

Chapter 3

0 nostrud

56 qui
37 quis
38 reprehenderit

56 nostrud

51 nulla 51 nulla

52 occaecat 52 occaecat
51 officia 1 officia
54 pariatur 54 pariatur
55 proident 55 proident

56 qui
57 quis

58 reprehenderit

59 sed 59 se

60 sint sint

51 sit 1 si

62 sunt 2 sunt
tempor i tempor
ullamce ullameo
ut 5 ut
ut 66 ut
velit 57 welit
veniam G8 venlam

G2 voluptate

~/course/sort.txt[+] CWD: /home/hacker/course Line: 56 Column:

50 nostrud

5

51 nulla

52 occaecat

53 officia

54 pariatur

55 proident

56 qui

57 quis

reprehenderit

When Vim splits the screen, it opens the same file in the other pane; to open another
file just hit : e. The good thing here is that we have autocomplete, so we can just hit
Tab and Vim will start writing filenames for us. If we don't know what files we want
to choose, we can just run any arbitrary shell command directly from Vim and come
back once we've finished. For example, when we type : ! 1s, the shell opens, shows
us the output of the command, and waits until we hit Enter to come back to the file.

When in split mode, press Ctrl + W to switch between windows. To close a window,
press :q. If you want to save a file under a different name (think of the save as
command from other editors), just hit : w followed by the new file name, say mycopy .
txt.

Vim also has the option of opening multiple files at once; just specify a list of files
after the vim command:

vim filel file2 file3

After the files are open, use :bn to move to the next file. To close all the files, hit : qa.

[79]

Vim kung fu

Vim also has an built in explorer. Just open Vim and hit : Explore. After this, we can
navigate through the directory layout and we can open new files:

" Netrw Directory Listing {netrw v155)
" /home/hacker/course
Sorted by name
Sort sequence: [\/]5.\< ARV W) RS LS L epps s S F o 0%, oobf s N infos, L swps, L baks \~%

..\'.
-:go up dir D:delete R:rename s:sort-by x:special

Quick Help: cFl::he{ﬁ

]

[N
v
git-demo/
script.sh®
file.html
file.json
file.txt
lorem.txt
mycopy . txt
sort.txt

:Explore

{0 T O T N T Y T T T TN T R T T O I |

~/course[-][RO] CWD: [RO]/home/hacker/course Line: 8 Column: 1

It also has a different option. Let's open a file, delete one of the lines, and save it
under a new name. Exit and open the two files with vimdiff. Now we can see the
differences between them visually. This applies to all sorts of changes and is way
better than the plain old diff command output.

[80]

Chapter 3

Keyboard shortcuts really make a difference and open a whole new world of
possibilities when using Vim. It's kind of hard to remember in the beginning, but
once you start using them, it will be as simple as clicking a button.

Plugin steroids for Vim

In this section, we will be looking at how we can add external plugins to Vim. Vim
has its own programming language for writing plugins, which we saw a glimpse

of when writing the vimrc file. Luckily, we won't have to learn all of that because
most of the stuff we can think of already has a plugin out there. To manage plugins,
let's install the plugin manager pathogen. Open: https://github.com/tpope/vim-
pathogen.

Follow the installation instructions. As you can see, it's a one-line command:

mkdir -p ~/.vim/autoload ~/.vim/bundle && \curl -LSso ~/.vim/autoload/
pathogen.vim https://tpo.pe/pathogen.vim

And after it finishes, add pathogen to your .vimrc:
execute pathogen#tinfect ()

Most IDEs show a tree layout of the folder structure, in parallel with the open files.
Vim can do this also, and the simplest way to achieve this is by installing the plugin
called NERDtree.

Open: https://github.com/scrooloose/nerdtree, and follow the instructions for
installing it:

cd ~/.vim/bundle git clone https://github.com/scrooloose/nerdtree.git

[81]

https://github.com/tpope/vim-pathogen
https://github.com/tpope/vim-pathogen
https://github.com/scrooloose/nerdtree

Vim kung fu

Now we should be all set. Let's open a file and type :NERDtree. We see the tree-like
structure of our current folder here, where we can browse and open new files. If we
want Vim to replace our IDE, this is certainly a mandatory plugin!

LI L L]

VIM - Vi IMproved

version 7.4.1689
by Bram Moolenaar et al.
Modified by pkg-vim-maintainers@lists.alioth.debian.org
Vim is open source and freely distributable

| L B B

- Sponsor Vim development!

type :help sponsor<Enter= for information
type :g<Enter> to exit

type :help<Enter> or <=Fl> for on-line help
type :help version7<Enter= for version info

1L L L

:NERDtree

L B L

[No Name] CWD: /home/hacker/.vim/bundle Line: © Column: @
:NERDT ree|

Another awesome plugin that comes in really handy is called Snipmate and is used
for writing code snippets. To install it, go to this link and follow the instructions:
https://github.com/garbas/vim-snipmate.

[82]

https://github.com/garbas/vim-snipmate

Chapter 3

" Press ? for help

r/.vim/bundle/

v nerdtree/

* autoload/
- nerdtree/

nerdtree.vim
doc/
lib/
nerdtree_plugin/
plugin/
syntax/
CHANGELOG
LICENCE
README . markdown

T roToYow

[O B B A A B I I O e D D B D B D B R S N B |

/home/hacker/.vim/bundle [No Name] CWD: /home/hacker/.vim/bundle Line: 8 Column: 0
:NERDTree

As we can see, before installing snipmate, there is another set of plugins that needs
to be installed:
® git clone https://github.com/tomtom/tlib vim.git
® git clone https://github.com/MarcWeber/vim-addon-mw-utils.git
® git clone https://github.com/garbas/vim-snipmate.git
® git clone https://github.com/honza/vim-snippets.git
If we take a look at the readme, we can see an example for C files, which has auto

completion for the for keyword. Let's open a file with a . ¢ extension, type for and
hit Tab. We can see the autocomplete working.

[83]

Vim kung fu

We have also installed the vim-snipmate package, which comes with lots of snippets
for different languages. If we take a look at ~/.vim/bundle/vim-snippets/
snippets/, we can see lots of snippet files:

-> % vin file.c

-> % 1s

ada.snippets
apache.snippets
arduine.snippets
autoit.snippets
awk.snippets
chef.snippets
clojure.snippets
cmake.snippets

coffee/
cpp.snippets
c.snippets
cs.snippets
css.snippets
dart.snippets
diff.snippets
django.snippets

[68:00:15 AM]

vim-addon-mw-utils
[68:09:23 AM]

-= % 15 vim-snippets/snippets/[]

actionscript.snippets

nerdtree tlib_vim

codeigniter.snippets

Resolving deltas: 106% (48/48), done.

Checking connectivity... done.
[68:93:57 AM]

-> % git clone https://github.com/garbas/vim-snipmate.git

Cloning into 'vim-snipmate'...

remote: Counting objects: 2644, done.

remote: Total 2644 (delta 8],

done.

done.

dosini.snippets
d.snippets
eelixir.snippets
elixir.snippets
elm.snippets
erlang.snippets
eruby.snippets
falcon.snippets
fartran.snippets
go.snippets
haml.snippets
haskell.snippets
htmldjango.snippets
html.snippets

htmltornado.snippets

jade.snippets
javascript/

vim-snipmate

reused 8 (delta 8), pack-reused 2643
Receiving objects: 188% (2644/2644), 765.30 KiB | 725.06 KiB/s, done.
Resolving deltas: 106% (1158/1158), done.
Checking connectivity...
[6B:04:06 AM]
-> % git clone https://github.com/honza/vim-snippets.git
Cloning into 'vim-snippets'...
remote: Counting objects: 5884, done.
remote: Total 5884 (delta @), reused @ {delta @), pack-reused 5884
Receiving objects: 166% (5884/5884), 1.21 MiB | 1.22 MiB/s, done.
Resolving deltas: 1086% {3753/3753), done.
Checking connectivity...
[08:04:10 AM]

vim-snippets

java.snippets
jinja.snippets
jsp.snippets
julia.snippets
laravel.snippets
ledger.snippets
1s.snippets
lua.snippets
make.snippets
mako.snippets
markdown.snippets
mustache.snippets
objc.snippets
openfoam.snippets
perl6.snippets
perl.snippets
php.snippets

javascript-mocha.snippets plsql.snippets

po.snippets

progress.snippets
puppet.snippets
python.snippets
rails.snippets
r.snippets
rst.snippets
ruby.snippets
rust.snippets
s5as5.s5nippets
scala.snippets
scheme. snippets
scss.snippets
sh.snippets
simplemvef . snippets
slim.snippets
_-.snippets

snippets.snippets
sql.snippets
stylus.snippets
supercollider.snippets
systemverilog.snippets
tcl.snippets
tex.snippets
textile.snippets
twig.snippets
verileg.snippets
vhdl.snippets
vim.snippets
xml.snippets
xslt.snippets
yii-chtnl.snippets
yii.snippets
zsh.snippets

Let's check the javascript one:

vim ~/.vim/bundle/vim-snippets/snippets/javascript/javascript.snippets

[84]

Chapter 3

1 # Functions
2 k-
3 # prototype
4 snippet proto -

5 ${l:class_name}.prototype.${2:method_name} = function(${3}) {

6 ${8}

7 ¥ -
§ # Function _
9 snippet fun o

18 function ${1:function_name}{5{2}) {

1 {8}

12

13 & Anonymous Function
14 snippet f "" w

15 functioni${1}) { =
16 ${0}

17 ¥

& # Anonynous Function assigned to variable

19 snippet vaf -
20

1

22

var ${1:function_name} = function(${2}) {
${8}

2 -
2 FIJ'E'.'_O' assigned to variable =
2 ippet wi -
25 var ${1:function name} = function $1(${2}} { K

}
28 # Immediate funciion
29 snippet (f
k- (function{3{1}) {
${0}

34 snippet ;fe -

35 i{function{s{1}) { £
36 ${8} N
37 Hs{2h

38 # self-defi -

39 snippet 3
48 var ${1:function L

<vim/bundle/file. s CWD: Jhome/ hacker/.vim/bundle Line: 8 Colusn: O
“file.js® [New File]

er/ . vim/bundl

Here we can see all the snippets available. Type fun and hit Tab for the function
autocomplete. The snippets are preconfigured with variables so that you can write a
function name and hit Tab to go to the next variable to complete. There is a snippet
for writing if-else blocks, one for writing console.log, and lots of others for
common code blocks. The best way to learn them is to go through the file and start
using the snippets.

There are lots of plugins out there. People have made all sorts of plugin packs that
are guaranteed to put your Vim on steroids. One cool projectis http://vim.sp£f13.
com/

It's nicknamed the ultimate Vim plugin pack and it basically has plugins and
keyboard shortcuts for everything. This is for more advanced users, so be sure to
understand the basic concepts before jumping to plugin packs. Remember, the best
way to learn is to install plugins manually and play with them one by one.

[85]

http://vim.spf13.com/
http://vim.spf13.com/

Vim kung fu

Vim password manager

Vim can also be used to safely store information, by encrypting text files with
different cryp methods. To see the cryp method that Vim is currently using, type:

:set cryptmethod?

We can see in our case it is zip, which is not actually a crypto method and does
not offer much in terms of security. To see what different alternatives we have,

we can type:

:h 'cryptmethod'

T1 17111 f¢t10

L

"up‘{iuns.xt"

‘cryptmethod’ ‘cm'

Method used for

zip

blowfish

blowfish2

options.txt[-][RO][Help]

[read

fhame/
only] 8647L, 366873C

B cryptmethod'* *'cm'*
string (default "zip")
global or local to buffer |global-local]
{not in Vi}
encryption when the buffer is written to a file:
nk7ip

Pkiip compatible method. A weak kind of encryption.
Backwards compatible with Vim 7.2 and older.
*hlowfish®
Blowfish method. Medium strong encryption but it has
an implementation flaw. Requires Vim 7.3 or later,
files can NOT be read by Vim 7.2 and older. This adds
a "seed” to the file, every time you write the file
the encrypted bytes will be different.
blowfish2®
Blowfish method. Medium strong encryption. Requires
Vim 7.4.401 or later, files can NOT be read by Vim 7.3
and older. This adds a "seed" to the file, every time

you write the file the encrypted bytes will be
different.
[RO] /home/hacker/course[Help]

The whole undo file is encrypted, not just

CWD : Line: 2273

Column:

7

A page describing the different encryption methods comes up. We can choose from
zip, blowfish, and blowfish2.The most secure and recommended one is, of course,

blowfish2. To change the encryption method, type:

:set cryptmethod=blowfish2

This can be also added to vimrc so that it becomes the default encryption. Now we

can safely encrypt files using Vim.

A common scenario would be storing a passwords file.

[86]

Chapter 3

Let's open up a new file named passwords. txt, add some dummy passwords
inside, and save it. The next step is to encrypt the file with a password, and for this
we type :X.

Vim will prompt you for a password twice. If you exit without saving the file, the
encryption will not be applied. Now, encrypt it again, save, and exit the file.

When we reopen it, Vim will ask for the same password. If we get this wrong, Vim
will show some random characters that come from the failed decryption. Only if we
type the correct password will we get the actual file content:

1 email: passwordlu
2 laptop: password2)|

e r e e rrr

r+r oyl

| ~/course/passwords . txt[+] CWD: /home/hacker/course Line: 2 Column: 18
INSERT --

Saving encrypted files with Vim, combined with backing up the file in places like a
private git repository or a private Dropbox folder, can be an effective way of storing
your passwords:

Need encryption key for "passwords.txt"
Enter encryption key:

[87]

Vim kung fu

It also has the benefit that it's sort of a unique method of storing passwords,
compared to using online services that are pretty standard and might get
compromised. This can also be referred to as security through obscurity.

Instant configuration restoring

The configuration we have seen in this chapter might take some time to set up
manually, but, once everything is configured, we can create a script that will restore
the Vim configuration instantly.

For this, we paste all the commands issued up to now into a bash script that can be
run to bring Vim to the exact same configuration. All that is missing from this script
is the vimrc file from the home folder, which we can also restore through a technique
called heredocs. Just type cat, redirect the output to vimrc, and use heredoc as input,
delimited by eof:

#!/bin/bash

mkdir -p ~/.vim/autoload ~/.vim/bundle &&
curl -LSso ~/.vim/autoload/pathogen.vim https://tpo.pe/pathogen.vim

cd ~/.vim/bundle
nerdtree
git clone https://github.com/scrooloose/nerdtree.git

[f= . I T R TN

10 # snipmate

11 git clone https://github.com/tomtom/tlib_vim.git

12 git clone https://github.com/MarcWeber/vim-addon-mw-utils.git
13 git clone https://github.com/garbas/vim-snipmate.git

14 git clone https://github.com/honza/vim-snippets.git

15

16 # xmllint

17 sudo apt install libxml2-utils

18

19 cat > ~/.vimre << EOF[]

cat > ~/.vimrc << EOF

T rfri1r1rt¢rfFfrrer1re1rrrr7ird

~/course/configure vim.sh[+] CWD: /home/hacker/course Line: 19 Column: 22
-- INSERT --

[88]

Chapter 3

cat > ~/.vimrc << EOF
<vimrc content>

EOF

Using heredocs is a common technique for manipulating large chunks of text inside
bash scripts. Basically it treats a section of code like a separate file (in our case
everything after the cat and until the EOF). With this script, we can restore all the
Vim configurations we have done and we can also run it on any computer we work
on, so that we get our Vim set up in no time!

We hope you have enjoyed this material and see you in the chapter!

[89]

CLI — The Hidden Recipe

This chapter will start by focusing on sed, one of the tools that can scare a lot of
Linux users. We will look at some basic sed commands that could make hours of
refractor turn into a few minutes. We will see how you can locate any file by using
Linux puter. Furthermore, we will see just how remote work will get a whole lot
better when Tmux enters our skill set. You can run long lasting commands, split
screens, and never lose your work with the help of the best terminal multiplexor.
Then, you will learn how to discover and interact with your network with the help
of commands like netstat and nmap. Lastly, we will see how Autoenv helps switch
environments automatically and how to use rm command to interact with trash from
command line using the trash utility.

In this chapter, we will cover the following:

* Understanding the working of sed
* Working with tmux, a terminal multiplexer
* Automatically switching environments using Autoenv

* Using rm command line to remove (delete) files or directories

Sed - one-liner productivity treasure

If a picture is worth 1000 words, then sed one liners are definitely worth a thousand
lines of code! One of the most feared commands in the Linux CLI is, you guessed

it, sed! It's been feared by programmers and sysadmins everywhere, because of

it's cryptic usage, but it can serve as a very powerful tool for quickly editing large
amounts of data.

We have created five files to help demonstrate the power of this awesome tool.
The first one is a simple file containing the humble line of text: Orange is the new black.
Let's start by creating a simple sed command to replace the word black with white.

[91]

CLI - The Hidden Recipe

The first argument of sed is the replace command. It's divided into 3 parts by 3 /.
The first part is s for substitute, the second part is the word to be replaced, black,
in our case, and the third part is the replacement word, white.

The second argument is the input, in our case, a file:

sed "s/black/white/" 1l.txt

-> % 1s
l.txt 2.txt 3.txt 4.xml 5.txt

-> % cat 1.txt
Orage is the new black

> % sed "s/black/white/" 1.txt
Orage is the new white

-

Now, the result will be printed on the screen, and you can see the word black has
been replaced by white.

Our second example contains yet another line of text, this time with the word black
in both upper and lower case. If we run the same command using this new file, we
will see that it replaces only the word that matches the case. If we want to do a case
insensitive replace, we will add two more characters to the end of our sed command;
gand 1.

* g: It means global replace, used for replacing all the occurrences in the file.
Without this, it will only replace the first argument.

* 1: means case insensitive search.

sed "s/black/white/gI" 2.txt

AM
-> % 1s
l.txt 2.txt 3.txt 4.xml 5.txt

49 AM]

'I'II__
cat 1.txt
Orage is the new black
-> % sed "s!blaéifﬁhiié!h i.txt
Orage is the new white

> % cat 2.txt
lower case black

a

upper case Black

-> % sed "s/black/white/" 2.txt
lower case white. upper case Black

1L 8:22 AM]
-= % sed "s/black/white/gI" 2.txt
lower case white, upper case white

[11:18:31 AM]

[92]

Chapter 4

And as you can see, both words have been replaced. If we want to save the results in
our file instead of printing to the screen, we use the -1i argument, which stands for
inline replace.

In some scenarios, we might also want to save our initial files, just in case we have an
error in the sed command. To do this, we specify a suffix after -i which will create a
backup file. In our case, we use the .bak suffix:

sed -i.bak "s/black/white/g" 2.txt

[11:18:22 AM]

-> % sed "s/black/white/gI" 2.txt

lower case white, upper case white
[11:18:31 AM]

-> % sed -1 "s/black/white/" 1.txt
[11:18:55 AM]

-> % cat 1.txt

Orage is the new white
[11:18:58 AM]

-> % sed -i.bak "s/black/white/gI" 2.txt
[11:19:08 AM]

-> % 1s

l.txt 2.txt 2.txt.bak 3.txt 4.xml 5.txt
[11:19:09 AM]

=> %

If we check the content of the files, we can see that the initial file contains the
updated text, and the backup file contains the original text.

Now, let's look at a more practical example. Let's say we have a shell script that
contains multiple variables and we want to surround our variables with curly brackets:

[11:19:19 AM]

-> % cat 3.txt

CWD=%1

echo $CWD

In order to do this we will write:

e s:It's for substitute.
* g:It's for global; meaning replace all occurrences found.

* \$: This matches all strings starting with the dollar sign. Here dollar needs to
be escaped, so that it's not confused with the start of the row anchor.

* We will enclose the string following $ in (), so that we can reference it in the
replace part of our command.

[93]

CLI - The Hidden Recipe

[1:This is for specifying a range of characters
A-z: It matches all uppercase characters

0-9: It matches all numbers

_: It matches

\+: Any character in the [] must appear one or multiple times

In the replace part, we will use:

\$: The dollar sign
{ }: The curly brackets we want to add.
\1: The string that was previously matched in the ()

sed 's/\$\([A-20-9_1\+\)/\${\1}/g' 3.txt

[11:20:24 AM]

> % sed "s/\$\([A-Z0-9 J\+\)/\${\1}/g" 3.txt
CWD=${1}

echo ${CWD}

Other common scenarios are replacing content in xml or htm1 files.

Here we have a basic html file with a text inside. Now, we know that the
 text has more semantic value for search engine optimizations, so maybe
we want to make our strong tags be a simple (bold), and manually decide the
 words in the page. For this we say:

s: This is for substitute.
<strong: The actual text we are searching for.

\ (\): This will be used again for selecting a piece of text, that will be
added back.

.*: This means any character, found any number of times. We want to select
everything between "<strong" and "strong>".

</: This is the closing of the tag. This, we want to keep intact.

[94]

Chapter 4

* <b\1b>:Justadd <b b>, and the text that you previously found in the ().

sed "s/<strong\ (.*</\)strong>/<b\1lb>/g" 4.xml

[11:20:35 AM]
-> % cat 4.xml
<html>
<body>
<p>Some <strong class="red">text</p>
</body>
</html>

As you can see, the text was updated correctly, the red class still applies to the new
tag, and the old text is still contained between our tags, which is exactly what we

wanted:

[11:21:38 AM]
-> % sed "s/<strong\(.*<\/\)strong>/<b\1lb>/g" 4.xml
<html>
<body>
<p>Some <b class="red">text</p>
</body>
</html>

Besides replacing, sed can also be used for deleting lines of text. Our 5. txt file
contains all the words from the lorem ipsum text. If we wanted to delete the third

line of text, we would issue the command:
sed -i 3d 5.txt

Hit :e, to reload the file in vim, and we see the word dolor is no longer there.
If, for example, we wanted to delete the first 10 lines of the file, we'd simply run:

sed -i 1,10d 5.txt

[95]

CLI - The Hidden Recipe

Hit :e, and you see the lines are no longer there. For our last example, if we scroll
down, we can see multiple empty lines of text. These can be deleted with:

sed -i "/*§/d" 5.txt

el. "kerglaptop [11:22:05 AM]
21 Ne % sed -1 3d 5.txt
! paulo L [11:22:33 AM]
i intellegebat % sed -1 1,18d 5.txt
s, laptop [11:23:01 AM]
25 cu % sed -1 "/*§/d" 5.txt
i pri i] [11:23:31 AM]
mundi]
28 dicunt
9 nostrum,
<u
1 pri
32 idque
33 diceret,
4 Cu
15 magna
36 tation
7 comprehensam

nam,
39 ius
adiplscl
vituperata
reprehendunt
3 cu.
Unum
» rebun
» molestiae
! eam
1 ea.
Eros
dicam
1 vis
! te.
3 In
est
55 quaeque
56 appareat,
ea

i owim

39 soleat

0 adipiscin

~/course/sed/5. txt : /hocker/course/sed Line: 40 Column: 1
"5.txt" 221L, 1487C

Which stands for:

* “:Beginning of line anchor
* $:End of line anchor
* d: Delete

Reload the file, and you see that the lines are no longer there.

Now, as you can imagine, these have only been some basic examples. The power of
sed is much greater than this, and there are many more possibilities of using it than
what we have seen today. We recommend that you gain a good understanding of
the features presented here today, as these are the features you will probably use the
most. It's not as complicated as it might seem at first, and it really comes in handy in
lots of scenarios.

[96]

Chapter 4

You can run, but you can't hide... from

find

Tens of projects, hundreds of folders and thousands of file; does this scenario
sound familiar? If the answer is yes, then you probably found yourself more than

once in a situation where you couldn't find a specific file. The £ind command will
help us locate any file in our project and much more. But first, for creating a quick
playground, let's download the electron open source project from GitHub:

Git clone https://github.com/electron/electron

And cd into it:

cd electron

We see here lots of different files and folders, just like in any normal sized software
project. In order to find a particular file, let's say package . json, we will use:

find . -name package.json

[69:86:31 AM]
-> % git clone https://github.com/electron/electron
Cloning into 'electron'...
remote: Counting objects: 63612, done.
remote: Compressing objects: 100% (74/74), done
remote: Total 63612 (delta 36), reused € (delta 0), pack-reused 63538
Receiving objects: 100% (63612/63612), 17.35 MiB | 3.51 MiB/s, done
Resolving deltas: 100% (46247/46247), done.
Checking connectivity... done.
[09:07:03 AM]
-> % 1s
electron
[69:07:05 AM]
-> % cd electron

[09:07:07 AM] [master]
-> & s
appveyor.yml CODE OF CONDUCT.md CONTRIBUTING.md docs-translations ISSUE TEMPLATE.md
atom common.gypi default_app electron.gyp 1ib
chromium_src CONTRIBUTING-ko.md docs filenames.gypi LICENSE
[09:07:08 AM] [master]

-> % find . -name package.json
./package.json
./spec/package.json
./spec/fixtures/api/relaunch/package.json
./spec/fixtures/api/electron-module-app/node modules/electron/package.json
./spec/fixtures/api/electron-madule-app/node_modules/fao/package.json
./spec/fixtures/api/quit-app/package.json
./default_app/package.json

[09:07:20 AM] [master]
> %l

package.json
README - ko . md
README .md

script
spec
toolchain.gypi

find . -name package.json

tools
vendor

.: This starts the search in the current folder

-name: This helps to search the file name

[97]

CLI - The Hidden Recipe

If we were to look for all readme files in the project, the previous command format is
not helpful. We need to issue a case insensitive find. For demonstration purposes, we
will also create a readme . md file:

touch lib/readme.md
We will also use the -iname argument for case insensitive search:

find . -iname readme.md

./spec/package. json

./spec/fixtures/api/relaunch/package.json
./spec/fixtures/api/electron-module-app/node_modules/electron/package.json
./spec/fixtures/api/electron-module-app/node modules/foo/package.json
./spec/fixtures/api/quit-app/package.json

./default_app/package.json

[69:07:20 AM] [master]
-> % find . -name readme.md

[69:07:35 AM] [master]
-> % find . -iname readme.md

./docs-translations/zh-CN/README .md
./docs-translations/th-TH/README .md
./docs-translations/es/README .md
.fdocs-translations/zh-TW/README .md
.fdocs-translations/fr-FR/README .md
.fdocs-translations/pt-BR/README .md
.fdocs-translations/ru-RU/README .md
./docs-translations/jp/README .md
./docs-translations/Kko-KR/README .md
./docs-translations/uk-UA/README .md
.fdocs-translations/tr-TR/README.md
./dacs/README . md

. /README . md

[69:07:39 AM] [master]
-> % touch lib/readme.md

[09:07:51 AM] [master *]
-> % find . -iname readme.md

Slib/ readme . md
./docs-translations/zh-CN/README .md
./docs-translations/th-TH/README .md
./docs-translations/es/README .md
./docs-translations/zh-TW/README .md
./docs-translations/fr-FR/README.md
./docs-translations/pt-BR/README.md
./docs-translations/ru-RU/README .md
./docs-translations/jp/README.md
./docs-translations/ko-KR/README.md
./docs-translations/uk-UA/README .md
./docs-translations/tr-TR/README .md
./docs/README . md
. /README . md

[09:07:53 AM] [master *]

> ?o-]

[98]

Chapter 4

You see here that both readme .md and README . md have been found. Now, if we were
to search for all JavaScript files we would use:

find . -name "*.js"

.fdocs /README . md
. /README .md

[09:07:53 AM] [master *]
-= % find . -name "*.js"
./1lib/common/asar init.js
./1ib/common/reset-search-paths.js
./1lib/common/api/crash-reporter.js
./1ib/common/api/callbacks-registry.js
./1ib/common/api/native-image.js
./1ib/common/api/deprecations.js
./1ib/common/api/deprecate.js
./lib/common/api/shell.js
./1ib/common/api/clipboard.js
./lib/comman/api/is-promise.js
./1lib/common/api/exports/electron.js
./1ib/common/asar.js
./1ib/common/init.js
.flib/renderer/web-view/web-view-attributes.js
./lib/renderer/web-view/web-view.js
flib/renderer/web-view/web-view-constants.js
./lib/renderer/web-view/guest-view-internal.js
./lib/renderer/extensions/web-navigation.js
./lib/renderer/extensions/event.js
/lib/renderer/extensions/storage.js
./lib/renderer/extensions/118n. j%
.flib/renderer/inspector.js
/lib/renderer/api/web-frame.js
./lib/renderer/api/screen.js
/lib/renderer/api/desktop-capturer.js
./lib/renderer/api/ipc-renderer.js
./lib/renderer/api/remote.js
/lib/renderer/api/exports/electron.js
./lib/renderer/override.js
./lib/renderer/content-scripts-injector.js
./lib/renderer/chrome-api.js
./lib/renderer/init. js
./lib/browser/rpc-server.js
./lib/browser/api/menu.js
./lib/browser/api/power-monitor.js
./lib/browser/fapi/dialog.js
./lib/browser/api/session.js
./lib/browser/api/web-contents.js
./lib/browser/api/system-preferences.js

%t n

find . -name "*.js

[99]

CLI - The Hidden Recipe

And as you can see, there are quite a few results. For narrowing down our results,
let's limit the find to the default app folder:

find default app -name "*.js"

./spec/fixtures/module/preload-webview. js
./spec/fixtures/module/class.js
./spec/fixtures/module/preload-ipc.js
./spec/fixtures/module/fork ping.js
./spec/fixtures/module/preload-node-off.js
./spec/fixtures/module/create socket.js
./spec/fixtures/module/process_args.js
./spec/fixtures/module/set-global.js
./spec/fixtures/module/ping.js
./spec/fixtures/module/function.js
./spec/fixtures/module/set-immediate. js
./spec/fixtures/module/no-prototype.js
./spec/fixtures/module/process-stdout.js
./spec/fixtures/module/runas.js
./spec/fixtures/module/print_name.js
./spec/fixtures/module/original-fs.js
./spec/fixtures/module/send-later.js
.fspec/fixtures/module/rejected-promise.js
./spec/fixtures/module/answer.js
fspec/fixtures/module/call.js
/spec/fixtures/module/id.js
J/spec/fixtures/module/unhandled-rejection.js
./spec/Tixtures/module/asar.js
./spec/fixtures/module/property.js
./spec/fixtures/module/locale-compare.js
./spec/fixtures/module/preload.js
./spec/Tixtures/module/promise.js
./spec/fixtures/workers/shared worker.js
./spec/fixtures/workers/worker.js
./spec/fixtures/api/relaunch/main.js
./spec/fixtures/api/electron-maodule-app/node modules/electron/index.js
./spec/fixtures/api/electron-module-app/node modules/foo/index.js
./spec/fixtures/api/quit-app/main.js
./spec/fixtures/pages/service-worker/service-worker.js
./spec/fixtures/pages/save page/test.js
./default_app/default_app.js
./default_app/main.js

[69:08:16 AM] [master *]
-> % find default app -name "*.js"
default app/default app.js
default_app/main.js

[69:08:28 AM] [master *]

9,

-= %

[100]

Chapter 4

As you can see, there are only two js files in this folder. And if we were to find all

files that are not JavaScript, just add a ! mark before the name argument:

find default app ! -name "*.js"

./spec/fixtures/module/create socket.js
./spec/fixtures/module/process_args.js
./spec/fixtures/module/set-global.js
./spec/fixtures/module/ping.js
./spec/fixtures/module/function.js
./spec/fixtures/module/set-immediate.js
./spec/fixtures/module/no-prototype.js
./spec/fixtures/module/process-stdout.js
./spec/fixtures/module/runas.js
./spec/fixtures/module/print_name.js
./spec/fixtures/module/original-fs.js
./spec/fixtures/module/send-later.js
./spec/fixtures/module/rejected-promise.js
.fspec/fixtures/module/answer.js
./spec/fixtures/module/call. js
./spec/fixtures/module/id.js
./spec/fixtures/module/unhandled-rejection.js
./spec/fixtures/module/asar.js
./spec/Tixtures/module/property.js
./spec/fixtures/module/locale-compare.js
./spec/fixtures/module/preload. js
./spec/Tixtures/module/promise.js
./fspec/fixtures/workers/shared worker.js
./spec/fixtures/workers/worker.js
./spec/Tixtures/api/relaunch/main.js
J/spec/Tixtures/api/electron-module-app/node_modules/electron/index.js
./spec/fixtures/api/electron-module-app/node modules/foo/index.js
./spec/fixtures/api/quit-app/main.js
./spec/fixtures/pages/service-worker/service-worker.js
./spec/fixtures/pages/save_page/test.js
./default_app/default app.js
./default_app/main.js
2@ [69:08:16 AM] [master *]

-= % find default_app -name "*.js"
default app/default app.js
default app/main.js

[09:08:28 AM] [master *]
-> % find default_app ! -name "*.js"
default app
default app/package.json
default_app/index.html

[09:08:34 AM] [master *]
.;qo-_l

[101]

CLI - The Hidden Recipe

You can see here all files that don't end their name with js. If we were to look for all
inodes in the directory, which are of type file, we would use the -type f argument:

find 1ib -type £

./default app/default app.js
./default_app/main.js

[09:08:16 AM] [master *]
-= % find default app -name "*.js"
default app/default app.js
default_app/main.js

- [69:08:28 AM] [master *]

-= % find default app ! -name "*.js"
default app
default_app/package.json
default_app/index.html

[09:08:34 AM] [master *]
-= % find 1ib -type f
lib/common/asar_init.js
lib/common/reset-search-paths.js
lib/common/api/crash-reporter.js
lib/common/api/callbacks-registry.js
lib/common/api/native-image.js
lib/common/api/deprecations.js
lib/common/api/deprecate.js
lib/common/api/shell.js
lib/common/api/clipboard.js B
lib/common/api/is-promise.js !
lib/common/api/exports/electron.js
lib/common/asar.js
lib/common/init.js
lib/renderer/web-view/web-view-attributes.js
lib/renderer/web-view/web-view.js
lib/renderer/web-view/web-view-constants.js
lib/renderer/web-view/guest-view-internal.js
lib/renderer/extensions/web-navigation.js
lib/renderer/extensions/event.js
lib/renderer/extensions/storage.js
lib/renderer/extensions/il8n.js
lib/renderer/inspector.js
lib/renderer/api/web-frame.js
lib/renderer/api/screen.js
lib/renderer/api/desktop-capturer.js
lib/renderer/api/ipc-renderer.js
lib/renderer/api/remote.js
lib/renderer/api/exports/electron.js
lib/renderer/override.js
lib/renderer/content-scripts-injector.js

[102]

Chapter 4

In the same way, we'd use -type d to find all directories in a specific location:

find 1ib -type d

lib/browser/api/session.js
lib/browser/api/web-contents.js
lib/browser/api/system-preferences.js
lib/browser/api/browser-window.js
lib/browser/api/auto-updater.js
lib/browser/api/menu-item-roles.js
lib/browser/api/content-tracing.js
lib/browser/api/ipc-main.js
lib/browser/api/screen.js
lib/brovser/api/navigation-controller.js
lib/brovser/api/tray.js
lib/brovser/api/menu-iten.js
lib/browser/api/protocol.js
lib/brovser/api/app.js
lib/broviser/api/power-save-blocker.js
lib/browser/api/auto-updater/auto-updater-win.js
lib/browser/api/auto-updater/auto-updater-native.js
lib/browser/apifauto-updater/squirrel-update-win.js
lib/browser/api/exports/electron.js
lib/browser/api/global-shortcut.js
lib/brovser/objects-registry.js
lib/browser/desktop-capturer.is
lib/browser/guest-window-manager.js
lib/browser/guest-view-manager.js
lib/browser/init.js
lib/browser/chrome-extension.js

G [09:08:51 AM] [master *
-= % find 1ib -type d
lib
lib/common
lib/common/api
lib/common/api/exports
lib/renderer

lib/renderer/web-view
lib/renderer/extensions
lib/renderer/api

lib/renderer/api/exports f' d lib d
lib/browser _t
lib/browser/api ln]')fpe
lib/browser/api/auto-updater
lib/browser/api/exports

[09:09:01 AM] [master *]
.>9ﬂ-f_|

[103]

CLI - The Hidden Recipe

Find can also locate files based on time identifiers. For example, in order to find all
files in the /usr/share directory that were modified in the last 24 hours, issue the
following command:

find /usr/share -mtime -1

lib/browser/chrome-extension.js
[09:08:51 AM] [master *]
-> % find lib -type d
lib
1ib/common
lib/common/api
lib/common/api/exports
lib/renderer
lib/renderer/web-view
lib/renderer/extensions
lib/renderer/api
lib/renderer/api/exports
lib/browser
lib/browser/api
lib/browser/api/auto-updater
lib/browser/api/exports
[09:09:01 AM] [master *]
-= % find fusr/share -mtime -1
fusr/share/applications
Jusr/share/applications/mimeinfo.cache
Jusr/share/applications/bamf-2.index I
fusr/share/man/manl
/usr/share/man/man8
Jusr/share/libnm-gtk
Jusr/share/gdb/python/gdb
Jusr/share/gdb/python/gdb/function
Jusr/share/gdb/python/gdb/command
Jusr/share/gdb/python/gdb/printer
/usr/share/gdb/system-gdbinit
Jusr/share/gdb/syscalls
Jusr/share/bash-completion/completions
Jusr/share/GConf
Jusr/share/GConf/gsettings
/usr/share/GConf/gsettings.dpkg-cache
Jusr/share/dbus-1/services
Jusr/share/doc
/usr/share/doc/libnm-gtk- common
Jusr/share/doc/gdb
Jusr/share/doc/gdb/contrib
fusr/share/doc/gdb/contrib/ari
/usr/share/doc/1libnm-gtk®
Jusr/share/doc/mysql-client-5.7
Jusr/share/doc/linux-firmware

[104]

Chapter 4

I have quite a big list. You can see the -mtime -3 broadens the list even more.

If we were to find, for example, all the files modified in the last hour, we can use
-mmin -60:

find ~/.local/share -mmin -60

Jusr/share/help/hu/file-roller
Jusr/share/help/hu/file-roller/figures
Jusr/share/help/sl/file-roller
Jusr/share/help/sl/file-roller/figures
fusr/share/help/el/file-roller
fusr/share/help/el/file-roller/figures
fusr/share/help/cs/file-roller
Jusr/share/help/cs/file-roller/figures
/usr/share/help/fi/file-roller
J/usr/share/help/fi/file-roller/figures
fusr/share/help/ja/file-roller
fusr/share/help/ja/file-roller/figures
J/usr/share/help/id/file-roller
fusr/share/help/id/file-roller/figures
/usr/share/help/da/file-roller
J/usr/share/help/da/file-roller/figures
fusr/share/help/es/Tile-roller
/usr/share/help/es/file-roller/figures
Jusr/share/help/te/file-roller
J/usr/share/help/te/file-roller/|
f/usr/share/help/de/file-roller
fusr/share/help/de/file-roller/|
fusr/share/help/pt_BR/file-roll]
fusr/share/help/pt_BR/file-roll
Jusr/share/menu
/usr/share/file-roller

3 p [89:09:35 AM] [master *
-> % find ~/.local/share -mmin -60
/home/hacker/.local/share
Jhome/hacker/.local/share/clipit/history
/home/hacker/.local/share/zeitgeist/activity.sqlite-shm
/home/hacker/.local/share/zeitgeist/fts.index
/home/hacker/.local/share/zeitgeist/fts.index/position.DB
/home/hacker/.local/share/zeitgeist/fts.index/termlist.baseA
/home/hacker/.local/share/zeitgeist/fts.index/position.baseB
/home/hacker/.local/share/zeitgeist/fts.index/termlist.DB
/home/hacker/.local/share/zeitgeist/fts.index/postlist.DB
/home/hacker/.local/share/zeitgeist/fts.index/record.DB
/home/hacker/.local/share/zeitgeist/fts.index/postlist.baseA
/home/hacker/.local/share/zeitgeist/fts.index/record.baseA
/home/hacker/.local/share/zeitgeist/activity.sqlite-wal

3 t [69:10:12 AM] [master *]
.>9°-L']

find ~/.local/share -mmin -60

[105]

CLI - The Hidden Recipe

A good folder to search is ~/.1local/share, If we use -mmin -90, the list broadens
again.

Find can also show us the list of files accessed in the last 24 hours by using the
-atime -1 argument like so:

find ~/.local/share -atime -1

home/hacker/.local/share/Trash/info/a. js.trashinfo
home/hacker/ . localsshare/Trash/info/a. htal. trashinfo
home/hacker/.local/share/Trash/info/script.sh.trashinfo
home/hacker/ . local/share/Trash/info/1ib.sh.trashinfo
home/hacker/ . local/share/evolution
home/hacker/ . local/share/evelut ion/memos
hama/hacker/.local/shara/evolution/memas/trash
home /hacker/ . local/share/evolution/addressbook
home/hacker/ local/sharefevolutionsaddressbookssystem
home/hacker/ . local/share/evolution/addressbook/systen/contacts.db
home/hacker/.local/share/evolution/addresshook/system/photos
home/hacker/ local/share/evolution/addressbook/trash
home/hacker/ . local/share/evolulion/Lasks
home/hacker/.local/share/evolution/tasks/system
hame/hacker/ . local/share/evolution/tasks/systen/tasks. ics
home/hacker/ . local/share/evolution/tasks/trash
home/hacker/. local/share/evolution/mail
home/hacker/.local/share/evolution/mail/trash
home/hacker/ . local/share/evolution/calendar
home/hacker/ . Local/share/evelution/calendar/system
home/hacker/.local/share/evolution/calendar/system/calendar._ics
home/hacker/ . local/share/evolution/calendar/trash
home/hacker/.locals/share/ recently-used. xbel
home/hacker/ . local/share/gsettings-data-convert
homa/hacker/.local/share/gvfs-netadata
home/hacker/ . local/share/gvfs-netadata/home - 68634769, Log
home/hacker/ . local/share/gvfs-netadata/home
home/hacker/ . local/share/nautilus
home/hacker/.local/share/nautilus/scripts
home/hacker/.local/share/icons
home/hacker/. local/share/icons/hicalor
home/hacker/ . local/share/icons/hicolor/48x48
home/hacker/ local/share/icons/hicolor/48x48/apps
home/hacker/. local/share/icons/hicolor/32x32
home/hacker/ .
home/hacker/ .
home/hacker/.locals/share/icons/hi S ik B
home/hacker/ . Local/share/dcons/ni t ‘1 = 1 ‘ 1 / “h ‘e -atime -
home/hacker/. local/share/icons/hil 11']'(/ Oca‘ b al e a lllle 1
home/hacker/ . local/share/icons/hi
home/hacker/ local/share/unity-settings-daenon

[09:18:48 AM]
= % [

[106]

Chapter 4

While working with lots of project files, if sometimes the case in some projects
remain empty, and we forget to delete them. In order to locate all empty files just
do a:

find . -empty

homa/hacker/ local/sharefevolution/calendar/system/calendar._ics

home/hacker/ . local/share/evolution/calendar/trash

home/hacker/ . local/share/recent ly-used. xbal

home/hacker/ . local/share/gsettings-data-convert

home/hacker/ local/share/gvfs-netadata

home/hacker/ . local/share/gvls-netadata/home -6B63d769. log

homa/hacker/ local/share/gvfs-natadata/home

home/hacker/ . local/share/nautilus

home/hacker/ . local/sharefnautilus/scripts

home/hacker/ . local/share/icons

home/hacker/.local/share/icons/hicalor

homehacker/ . Local/shares/icons/hicolor/48xd8

home/hacker/. local/shareficons/hicolor/48x48/apps

home/hacker/.local/share/icons/hicolor/32x32

hame/hacker/.lecal/share/icons/hicalar/32x32/apps

home/hacker/ . local/share/icons/hicolor/16x16

home/hacker/ . local/share/icons/hicolor/16x16/apps

hame/hacker/.local/share/icons/hicolar/128x128

home/hacker/ local/share/icons/hicalor/128x128/apps

home/hacker/ . local/share/icons/hicolor/128x128/apps/chrome- Thbjgbifling bdggehcddcbnedddomop-Default. png

home/hacker/ . local/share/unity-settings-daemon
[09:10:48 AN] master *|

-= &% find . -empty

. /1ib/ readme. md

./.git/refs/tags

/.git/branches

./.git/objects/info

. /vendor/boto

. /vendar/requasts

. /vendor/brightray

. /vendor/depot tools

. fvendor/crashpad

. fvendar/breakpad

. /vendar/node

. fvendor/native mate

- /chromium_src/chrome/browser/profiles/profile.h

. /chromium_src/chrome/browser/profiles/profile_io_d ﬁ d

. /chromium src/chrome/browser/ui/simple message box 11 . -el-l].p

. fchromium src/grit/generated resources.h

. fscript/lib/ init .

. /spac/fixtures/api/electron-nodule-app/node_nodules/alectron/index. s
(09:11:07 AM] (master *]

Sl |

As we can see, electron has a few empty files. Find will also show us empty
directories, or links.

Removing empty files will keep our project clean, but when it comes to reducing
size, we sometimes want to know which files are taking up most of the space. Find
can also do searches based on file size. For example, let's find all the files larger than
1 mega:

find . -size +1M

use -1M for smaller.

[107]

CLI - The Hidden Recipe

As we said in the beginning, find can do much more than locating files in your
project. Using the -exec argument, it can be combined with almost any other
command, which gives it almost infinite capabilities. For example, if we want to find
all javascript files that contain the text manager, we can combine find with grep,
command as follows:

find . -name "*.js" -exec grep -li 'manager' {} \;
[09:12:16 AM] [master *]
-» % find . -iname "*.js" -exec grep -li "manager" {} \;

./lib/renderer/web-view/guest-view-internal.js
./lib/renderer/override.js
./lib/browser/rpc-server.js
./lib/browser/api/browser-window.js
./lib/browser/guest-window-manager.js
./lib/browser/guest-view-manager.js
./lib/browser/init.js

This will execute the grep command on all the files returned by find. Let's also search
inside the file using vim, so that we verify the result is correct. As you can see, the
text "manager" appears in this file. You don't have to worry about {} \;,it's just
standard -exec syntax.

Moving on with the practical examples, let's say you have a folder where you want
to remove all the files modified in the last 100 days. We can see our default_app
folder contains such files. If we combine find with rm like so:

find default app -mtime -100 -exec rm -rf {} \;

We can do a quick cleanup. Find can be used for smart backups. For example, if we
were to backup all json files in the project we would combine find with the cpio
backup utility using a pipe and a standard output redirection:

find . -name "*.json" | cpio -o > backup.cpio
-> % find . -iname "*.json" | cpio -0 > backup.cpio
5 blocks
[09:14:11 AM] [master *]

-> % 1s backup.cpio
backup.cpio
[09:14:17 AM] [master *]
-= % file backup.cpio
backup.cpio: cpio archive

We can see that this command has created a backup. cpio file, of type cpio archive.

Now this could probably have been written with -exec also, but it's critical you
understand that pipes can also be used in this type of scenario, together with
redirects.

[108]

Chapter 4

When doing reports, you may have to count the number of lines written:

¢ In order to do this, we combine find with we -1:

find . -iname "*.js" -exec wc -1 {} \;

* This will give us all js files and the number of lines. We can pipe this to cut:
find . -iname "*.js" -exec wc -1 {} \; | cut -£1 -4 '

* To only output the number of lines, and then pipe to the paste command, we
do this:

find . -iname "*.js" -exec wc -1 {} \; | cut -£ 1 -d ' ' | paste
-sd+

* The above will merge all our lines with the + sign as a delimiter. This, of
course, can translate to an arithmetic operation, which we can calculate using
the binary calculator (bc):

find . -iname "*.js" -exec wc -1 {} \; | cut -£ 1 -4 ' ' | paste
-sd+ bec

find . -iname ** -exec we -1 {} \; | cut -f 1 -d° ' | paste -sd+
[28+37+B8+66+1+11+187+1+6+14+53+616+08+294471+20+187+21+24+59+84+81+13+1+47+37+308+ 38+ 250+61+184+133+3724307+6+197+44+ 248+6+150+5+147+1+3+6+178+6+4
F+23+72¢1+07¢0+110+116+1+97+77+137+233+183+303+0+12+80+3+22+4098+ 941+ 1100+45+51+21+101+930+37+103+0+134+839+310+2T+240+87+92+313+420+202+450+19+0+29
rdt 16 T+8+8+ 144+ Lo 11444 106+ T+ 34405084 T 1o 3044 Lo T4 1454 T+ 342548+ Lo 124941

> % tind . -iname "*.1s" -exec we -1 {} \; | cut -f 1 o i paste -sd+ | bc
14128

[89:15:13 AM]

This last command will tell us how many lines our javascript files contain.
Of course, these are not actual lines of code, as they can be empty lines or
comments. For a precise calculation of lines of code, you can use the sloc utility.

In order to mass rename files, like changing the file extension name to node for all js
files we can use this command:

find . -type f -iname "*.js" -exec rename "s/js$/node/g" {} \;

You can see the rename syntax is quite similar to sed. In addition, there are no more
.js files left, as all have been renamed to .node:

[09:15:25 AM] [master *]
-> % find . -iname "*.js" -exec rename "s/js$/node/g" {} \;

[09:15:59 AM] [master *]
-> % find . -iname "*.js"

[09:16:01 AM] [master *]

[109]

CLI - The Hidden Recipe

Some software projects require all source code files to have a copyright header.
As this is not required in the beginning, often times we can find ourselves in the
situation that we have to add copyright information at the beginning of all our files.

In order to do this, we can combine find with sed like this:

find . -name "*.node" -exec sed -i "ls/*/\/** Copyright 2016 all rights
reserved *\/\n/" {} \;

What this is basically doing is telling the computer to find all .node files, and add the
copyright notice in the beginning of each file, followed by a new line.

We can check one random file and, yes, the copyright notice is there:

= Copyright all rights reserved */J
this.onmessage = function (msg) {
this.postMessage(msg.data)

SN =

I

Update version numbers in all files:

find . -name pom.xml -exec sed -i "s/<version>4.02/<version>4.03/g" {} \;

As you can imagine, find has lots of use cases. The examples I've shown you are only
the first piece of the pie. Learning find, along with sed and the git c1i can set you
free from your IDE when it comes to finding, refactoring or working with git, which
means you can more easily switch from one IDE to the other, because you don't have
to learn all the features. You just use your friendly CLI tools.

tmux — virtual consoles, background jobs
and the like

In this section, we will be looking at another great tool called tmux. Tmux comes in
particularly handy when working in remote ssh sessions, because it gives you the
ability to continue your work from where you left off. It can also replace some of the
features in terminator, if you are working, for example, on Mac, and you can't install
terminator.

To get started with tmux on Ubuntu, we first need to install it:

sudo apt install tmux

[110]

Chapter 4

[99:32:19 AM]
-> % sudo apt install tmus)]

sudo apt install tmux

Then just run the command:

tmux

[99:32:19 AM]
-> % sudo apt install tmux
[sudo] password for hacker:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
tmux
B upgraded, 1 newly installed, 8 to remove and 6 not upgraded.
Meed to get 223 kB of archives.
Bfter this operation, 681 kB of additional disk space will be used.
Get:1l http://ro.archive. ubuntu. con/ubuntu xenial/main amd6d tmux amdGd4 2.1-3buildl [223 KB)
Fetched 223 kB in 85 (644 kB/s)
Felecting previously unselected package tmux.
(Reading database ... 215883 files and directories currently installed.)
Preparing to unpack .../ /teux_2.1-3buildl_amd6d.deb ...
Mnpecking tmux (2.1-3buildl) ...
Processing triggers for man-db (2.7.5-1) ...
etting wp tmux (2.1-3buildl)
(09:32:39 AM]
-= % tmuxf]

tmux

[111]

CLI - The Hidden Recipe
And you will find yourself inside a brand new virtual console:

[89:32:43 AM]

For demonstration purposes, we will open up a new tab that you can see the list of

open sessions with tmux 1s:

Fackerlaplop -fusuise

s
[08:46143 AN]
-» % tmux 15
Tue Jun 28 09:32:43 2016) [147x41] (attached)
£ AM]

B: 1 windows {created
[069:45:4.
> %

tmux ls

[112]

Chapter 4

Let's start a new tmux named session:

tmux new -s mysession

s [hacker@lagtow: -feaurie X
[09:46:43 AM]
-> % tmux 1s
B: 1 windows (created Tue Jun 28 09:32:43 2016) [147x41] (attached)
[00:46:48 AM]

-= % tmux new -5 mysession

[detached (from session mysession)]
[09:47:30 AN)

-> & tmux 1s

B: 1 windows {created Tue Jun 28 89:32:42 2816) [147x41] (attached)

pysession: 1 windows (created Tue Jun 28 69:46:59 2016) [147x41]
[09:47:33 AN)

> 4

Here we can see that opening a tmux session maintains the current directory. To list
and switch tmux sessions inside tmux, hit Ctrl + B S.

We can see that we can switch to another tmux session, execute commands inside,
and switch back to our initial session if we want to. To detach (leave a session
running and go back to the normal terminal) hit Ctrl + b d;

Now we can see we have two opened sessions.

To attach to a session:

tmux a -t mysession

e [hackerlaptop: -fcourie M
[09:46:43 AM]

-> % tmux s

B: 1 windows (created Tue Jun 28 09:32:43 2016) [147x41] (attachad)
[09:46:48 AM]

-= % tmux new -5 mysession

idetached (from session mysession))
[0D:47:30 AN]

-> % tmux 15

B: 1 windows (created Tue Jun 28 89:32:42 2816) [147x41] (attached)

pysession: 1 windows (created Tue Jun 28 09:46:59 2016) [147x41]
[69:47:33 AN]

> % tmux a mysession

sage: attach-session [-dEr] [-¢ working-directory] [-t target-sassion]
[09:47:43 AN]

% tmux a -t fysession

tmux a -t mysession

[113]

CLI - The Hidden Recipe

This scenario comes in handy when you login to a remote server and want to execute
a long running task, then leave and come back when it ends. We will replicate this
scenario with a quick script called infinity.sh. We will execute it. It's writing to the
standard output. Now let's detach from tmux.

If we look at the script, it's just a simple while loop that goes on forever, printing text
each second.

Now when we come back to our session, we can see the script was running while
we were detached from the session and it's still outputting data to the console. I will
manually stop it by hitting Ctrl + c.

Alright, let's go to our first tmux session and close it. In order to manually kill a
running tmux session, use:

tmux kill-session -t mysession

hackerdtapacg: -fuvase] Packerelgtog: -/uune x

[09:32:19 AN]

> % sudo apt install tmux

[sudo] password for hacker:

Reading package lists... Done

Building dependency Lree

Reading state information,... Done

fhe following NEW packages will be installed:

tnux

B upgraded, 1 newly installed, © to remove and & not upgraded.

Meed to get 223 kB of archives.

pfter this operation, 601 kB of additional disk space will be used

Get:1 http://ro.archive. ubuntu.com/ubuntu xénial/main amd8d tmux amdﬁd 2.1-3buildl [223 kB)

Fetched 223 kB in @s (644 kB/s)

Lelecting previously unselected package tmux.

(Reading database ... 215883 files and directories currently installed.)

Preparing te wnpack .../ tmux_2.1-3buildl amd64.deb ...

Mnpacking tmux (2.1- JDHLGI] .

Processing triggers for man-db [2 g T L

[Fetting up tmux (2.1-3buildl) .
[09:32:39 AN]

= % tmux

[exited)
[09:48:43 AN]

-> % tmux ls

pysession: 1 windows (created Tue Jun 28 89:46:59 2016) [147x41) (attached)
[09:48:46 AN]

-= % tmux kill-session -t mysession
[99:48:59 AM]

-> %

tmux kill-session -t mysession

This will kill the running session. If we switch over to our second tab, we can see that
we have been logged off tmux. Let's also close this terminator tab, and open a brand
new tmux session:

[114]

Chapter 4

[09:49:26 AM]

[09:49:26 AM]

Tmux gives you the possibility to split the screen, just like terminator, horizontally
with Ctrl + b + ", and vertically with Ctrl + b + %. After that, use Ctrl + b + arrows to

navigate between the panes:

[89:49:26 AN]

[69:48:31 AM]

[69:49:31 AN]

[115]

CLI - The Hidden Recipe

You also have the possibility to create windows (tabs):

e Ctrl + b c: create:

[09:49:54 AM]

[116]

Chapter 4

o Ctrl+bw:list:

isr B: ~/course- "laﬁﬁ'

ctrl+b, w

o Ctrl +b &: delete

aptop [09:49:54 AM]

[117]

CLI - The Hidden Recipe

These last functionalities are very similar to what terminator offers.

You can use tmux in situations where you want to have two or more panes or

even tabs in your remote ssh connection, but you don't want to open multiple ssh
sessions. You could also use it locally, as a terminator replacement, but the keyboard
shortcuts are much harder to use. Although they can be changed, you will lose

the option to use tmux remotely, because opening a tmux session in another tmux
session is discouraged. In addition, configuring new tmux keyboard shortcuts might
make tmux a burden when working on lots of servers due to the shortcut differences.

Network — Who's listening?

When working with network applications, it comes in handy to be able to see open
ports and connections and to be able to interact with ports on different hosts for
testing purposes. In this section, we will be looking at some basic commands for
networking and in what situations they might come in handy.

The first command is netstat:

netstat -plnt

[11:00:41 AM]

-> % petstat -plnt

{Not all processes could be identified, non-owned process info
will not be shown, you would have to be root to see it all.)
lActive Internet connections {only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
ltep] 6 127.6.1.1:53 0.0.0.6:* LISTEN -

[11:01:05 AM]
> %l

netstat -plnt

[118]

Chapter 4

This will show all open ports on our host. You can see here that we only have one
open port on a default Ubuntu desktop installation, which is port 53. We can look
this up in the special file /etc/services. This file contains all basic port numbers for
programs and protocols. We see here port 53 is the DNS server:

1 # Network services, Internet style
2 #
3 # Note that it is presently the policy of IANA to assign a single well-known
4 # port number for both TCP and UDP; hence, officially ports have two entries
5 # even if the protocol doesn't support UDP operations.
6 #
7 # Updated from http://www.iana.org/assignments/port-numbers and other
8 # sources like http://www.freebsd.org/cgi/cvsweb.cgi/src/etc/services .
9 # New ports will be added on request if they have been officially assigned
10 # by IANA and used in the real-world or are needed by a debian package.
11 # If you need a huge list of used numbers please install the nmap package
12
13 tcpmux 1/tcp # TCP port service multiplexer
14 echo 7/tcp
15 echo 7/udp
16 discard 9/tcp sink null
7 discard 9/udp sink null
systat 11/tcp users
9 daytime 13/tcp
8 daytime 13/udp
netstat 15/tcp
2 gotd 17/tcp quate
23 msp 18/tcp # message send protocol
24 msp 18/udp
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp-data 20/tecp
ftp 21/tcp
9 fsp 21/udp fspd
0 ssh 22/tcp # SSH Remote Login Protocol
ssh 22/udp
telnet 23/tcp
smtp 25/tcp mail
34 time 37/tcp timserver
time 37/udp timserver
rip 39/udp resource # resource location
7 nameserver 42/tcp name # IEN 116
whois 43/tcp nicname
tacacs 49/tcp # Login Host Protocol (TACACS)
9 tacacs 49/udp
11 re-mail-ck 50/tcp # Remote Mail Checking Protocol
/etc/services[R0O] CWD: [RO]/home/hacker/course Line: 1 Column: 1
"/etc/services" [readonly] 612L, 19605C

Just by analyzing the output, we cannot determine which program is listening on
this port, because this process is not owned by our current user. That's why the PID/
Program Name column is empty. If we run the same command again with sudo, we
see that this process is named dnsmasqg and, if we want more information, we can
look it up in the man page. It's a lightweight DHCP and caching DNS server:

[11:00:41 AM]
-= % netstat -plnt
{Not all processes could be identified, non-owned process info
will not be shown, you would have to be root to see it all.)
Active Internet connections {only servers)
Proto Recv-Q Send-Q Local Address
tcp 0 08 127.6.1.1:53

[11:01:05 AM]
-> % vim /etc/services

[11:01:29 AM]
-> % sudo netstat -plnt
Active Internet connections {only servers)
Proto Recv-Q Send-Q Local Address
tcp 8 6 127.6.1.1:53

[11:01:35 AM]
=%

State
LISTEN

Foreign Address

PID/Program name
0.0.0.0:* -

State
LISTEN

Foreign Address
0.0.0.0:%

PID/Program name
1528/dnsmasq

[119]

CLI - The Hidden Recipe

Other useful information we get from this command:

* The program protocol, in this case dhcp.
* Total bytes not copied.
* Total bytes not acknowledged.

* Local and foreign address and port. Getting the port is the main reason we
are using this command. This is also important for determining if the port
is open just on localhost or if it's listening for incoming connections on the
network.

* The state of the port. Usually this is LISTEN.
e The PID and program name, which helps us identify which program is
listening on what port.

Now, if we run a program that is supposed to be listening on a certain port and we
don't know if it's working, we can find out with netstat. Let's open the most basic
HTTP server by running the command:

python -m SimpleHTTPServer

[11:00:41 AM]
-> % netstat -plnt
{Not all processes could be identified, non-owned process info
will not be shown, you would have to be root to see it all.)
Active Internet connections {only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tep 3] 0 127.6.1.1:53 9.0.0.0:% LISTEN -
[11:01:05 AM]
-> % vim /etc/services
[11:01:29 AM]
-> % sudo netstat -plnt
Active Internet connections {only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp] 0 127.6.1.1:53 0.0.0.08:% LISTEN 1529/dnsmasq
[11:01:35 AM]
-= % man dnsmasg
I [11:01:49 AM]
-> % python -m SimpleHTTPServer
Eerving HTTP on ©.0.0.0 port 30600 ...

python -m SimpleHTTPServer

[120]

Chapter 4

As you can see from the output, it's listening on port 8000 on interface 0.0.0.0. If
we open a new pane and run the netstat command, we will see the open the port,
and the PID / name.

You probably already know this but, just to be on the safe side, we will look at
adding different hostnames as static dns entries on our machine. This is helpful
when developing applications that need to connect to servers and the servers change
their IP address, or when you want to emulate a remote server on a local machine.
For this we type:

sudo vim /etc/hosts

hacker@laptop [11:00:41 AM] [~/course] 1 127 8.8 1 localhost
-> % netstat -plnt 2 127.8.1.1 laptop
{Not all processes could be identified, non-o 3

will not be shown, you would have to be root 4 @ The following lines are desirable for IPv6 capable hosts
Active Internet connections {only servers) G, ip6-localhost ip6-loopback

Proto Recv-Q Send-0 Local Address F 6 feB0::0 ip6-localnet

tcp 0 0 127.0.1.1:53 [¢] 7

hacker@laptop [11:01:05 AM] [~/course]

-> % vim /etc/services

hacker@laptop [11:01:29 AM] [-/course]

-> % sudo netstat -plnt

Active Internet connections {only servers)
Proto Recv-Q Send-0 Local Address F
tcp 0 B127.9, 1. 153 L¢]
ha laptop [11:01:35 AM] [~/course

ff02::1 ip6-allnodes

0
ff00::0 ip6-mcastprefix
1
ff02::2 ip6-allrouters

[T=N

hacker@laptop [11:01:49 AM] [~/course]
-> % python -m SimpleHTTPServer
Serving HTTP on 0.8.0.0 port 8600 ...

ettty

/etc/hosts CWD: /home/hacker/course Line: 4 Column: 1
- INSERT --

You can quickly understand the format of the file from the existing content. Let's add
an alias for our localhost, so that we can access it under a different name. Add the
following line:

127.0.0.1 myhostname.local

[121]

CLI - The Hidden Recipe

We recommend using non existing top level domain names for localhost, such as
Jocal or .dev. This is to avoid overriding any existing address, because /etc/hosts
takes precedence in dns resolution. Now, if we open the address in the browser on
port 8000, we will see our local Python server running and serving content.

The next command is nmap. As you can see, it is not installed by default on Ubuntu,
so let's go ahead and install it by typing;:

sudo apt install nmap

Active Internet connections {only servers)
Proto Recv-Q Send-0 Local Address Foreign Address State PID/Program name
tep] 0 127.0,1.1:53 0.0.0.0:* LISTEN -
< [11:01:05 AM]
-> % vim fetc/services
: [11:01:29 AM]
->» % sudo netstat -plnt
Active Internet connections {only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.9.1.1:53 0.0.08.0:* LISTEN 1529/dnsmasqg
; [11:01:35 AM]
-= % man dnsmasq
hack [11:01:49 AM]
-= % python -m SimpleHTTPServer
Serving HTTP on ©.0.0.0 port 8600 ...

127.0.0.1 - - [05/Jul/2016 11:03:00] "GET / H
TTP/1.1" 200 -

127.0.0.1 - - [85/Jul/2016 11:03:00] code 404
, message File not found

127.0.0.1 - - [05/Jul/2016 11:03:00] "GET /fa

vicon.ico HTTP/1.1" 404 -
127.0.0.1 - - [85/Jul/2016 11:03:00] code 484
, message File not found
127.6.0.1 - - [05/Jul/2016 11:03:00] "GET /fa
vicon.ico HTTP/1.1" 404 -
~CTraceback (most recent call last):
File "“/usr/lib/python2.7/runpy.py", line 174, in _run_module_as_main
" _main__", fname, loader, pkg_name)
File "/usr/lib/python2.7/runpy.py", line 72, in _run_code
exec code in run_globals
File "/usr/lib/python2.7/SimpleHTTPServer.py", line 235, in <module>
test()
File "/usr/lib/python2.7/SimpleHTTPServer.py", line 231, in test
BaseHTTPServer.test(HandlerClass, ServerClass)
File "/usr/lib/python2.7/BaseHTTPServer.py" ine 599
httpd.serve_forever()
File "/usr/lib/python2.7/SocketServer.py", °
poll_interval) d t 't ll
File "/usr/lib/python2.7/SocketServer.py”, Su O ap lns a lllna
return func{*args)
KeyboardInterrupt
[11:03:11 AM]
-= % sudo apt install nmapl|

[122]

Chapter 4

Nmap is a command used for checking all open ports on a remote host, also known
as a port scanner. If we run nmap on our network gateway, which, in our case, is
192.68.0.1, we'll get all of the open ports on the gateway:

Type: nmap 192.168.0.1

File "/usr/lib/python2.7/SimpleHTTPServer.py", line 231, in test
BaseHTTPServer.test{Handler(lass, ServerClass)
File "/fusr/lib/python2.7/BaseHTTPServer.py", line 599, in test
httpd.serve forever()
File "/fusr/lib/python2.7/SocketServer.py", line 231, in serve forever
poll_interval)
File "/fusr/lib/python2.7/SocketServer.py", line 150, in _eintr_retry
return func(*args)
KeyboardInterrupt
[11:63:11 AM]
-= % sudo apt install nmap
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
nmap
0 upgraded, 1 newly installed, 0 to remove and 24 not upgraded.
Need to get 4,638 KB of archives.
After this operation, 21.3 MB of additional disk space will be used.
Get:1 http://ro.archive.ubuntu.com/ubuntu xenial/main amd64 nmap amd6d 7.01-2ubuntu2 [4,638 kB]
Fetched 4,638 kB in 7s (635 kB/s)
Selecting previously unselected package nmap.
{Reading database ... 215547 fTiles and directories currently installed.)
Preparing to unpack .../nmap 7.01-2ubuntu2 amd64.deb ...
Unpacking nmap (7.01-2ubuntu2)
Processing triggers for man-db (2.7.5-1)
Setting up nmap (7.01-2ubuntu2)
[11:03:28 AM]
-> % nmap 192.168.0.1

Starting Nmap 7.01 (https://nmap.org) at 2816-87-05 11:03 EEST
Nmap scan report for dlinkrouter (192.168.0.1)

Host is up (0.065s latency).

Not shown: 996 closed ports

PORT STATE SERVICE

53/tcp open domain

80/tcp open http

443/tcp open https

49152/tcp open unknown

Nmap done: 1 IP address (1 host up) scanned in 6.77 seconds
[11:03:36 AM]

‘>?o'|

As you can see, there is again the dns port open, the http and https servers, which are
used as a web page for configuring the router, and port 49152, which, at this time, is
not specific to any common protocol-and that's why it is marked as unknown. Nmap
does not know for sure that those specific programs are actually running on the
host; all it does is verify what ports are open and write the default application that
usually runs on that port.

[123]

CLI - The Hidden Recipe

If we are not sure what server we need to, connect to or if we want to know how
many servers are in our current network, we can run nmap on the local network
address, specifying the network mask as the destination network. We get this
information from ifconfig;if our IP addressis 192.168.0.159, and our network

mask is 255.255.255. 0, that means the command will look like this:

nmap -sP 192.168.0.0/24

lo

-> %

Nmap
Host
Nmap
Host
Nmap

o %

inet addr:172.17.8.1 Bcast:0.0.0.0 Mask:255.255.0.8
UP BROADCAST MULTICAST MTU:1508 Metric:1

RX packets:® errors:0 dropped:® overruns:0 frame:@

TX packets:0 errors:0 dropped:@ overruns:@ carrier:0
collisions:@ txqueuelen:@

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

enp2sf Link encap:Ethernet HWaddr 20:89:84:14:50:97

UP BROADCAST MULTICAST MTU:1500 Metric:1

RX packets:® errors:0 dropped:0 overruns:0 frame:0
TX packets:® errors:8 dropped:@ overruns:8 carrier:0
collisions:® txgueuelen:1060

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inetb addr: ::1/128 Scope:Host

UP LOOPBACK RUNNIMG MTU:65536 Metric:1

RX packets:679 errors:@ dropped:@ overruns:® frame:0
TX packets:679 errors:@ dropped:@ overruns:® carrier:0
collisions:@ txgueuelen:l

RX bytes:73014 (73.0 KB) TX bytes:73014 (73.0 KB)

wlp3s0 Link encap:Ethernet HWaddr 68:17:29:bf:e2:67

inet addr:192.168.0.159 Bcast:192.168.0.255 Mask:255.255.255.0
inetb addr: TeB0::18e9:533a:d127:82de/64 Scope:Link

UP BROADCAST RUNMING MULTICAST MTU:1500 Metric:1

RX packets:23231 errors:0 dropped:® overruns:@ frame:0@

TX packets:15862 errors:@ dropped:@ overruns:@ carrier:@
collisions:® txqueuelen:1008

RX bytes:23244583 (23.2 MB) TX bytes:2348670 (2.3 MB)

[11:03:46 AM]
nmap -sP 192.168.0.0/24

Starting Nmap 7.61 { https://nmap.org) at 2016-07-85 11:04 EEST

scan report for dlinkrouter (192.168.0.1)

is up (0.0047s latency).

scan report for 192-168-0-159.rdsnet.ro {192.168.08.159)

is up (0.000857s latency).

done: 256 IP addresses (2 hosts up) scanned in 3.83 seconds
‘ [11:04:08 AM]

In /24 = 255.255.255.0, basically the network will have ips ranging from
192.168.0.01t0192.168.0.255. We see here that we have three active hosts,

and it even gives us the latency, so we can determine which host is closer.

[124]

Chapter 4

Nmap is helpful when developing client-server applications, for example, when
you want to see what ports are accessible on the server. However, nmap might miss
application-specific ports, which are non-standard. To actually connect to a given
port, we will be using telnet, which comes preinstalled on Ubuntu desktop. To see if
a particular port accepts connections, just type the hostname, followed by the port:

telnet 192.168.0.1 80

collisions:0 txqueuelen:@
RX bytes:@ (0.6 B) TX bytes:0 (0.6 B)

enp2s0 Link encap:Ethernet HWaddr 20:89:84:f4:50:97
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:® dropped:0 overruns:® frame:@
TX packets:0 errors:0 dropped:0 overruns:@ carrier:0
collisions:0 txqueuelen:1008
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.08.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:678 errors:0 dropped:® overruns:0 frame:0
TX packets:679 errors:0 dropped:® overruns:0 carrier:@
collisions:0 txgueuelen:l
RX bytes:73014 (73.0 KB) TX bytes:73814 (73.0 KB)

wlp3s@ Link encap:Ethernet HWaddr 68:17:29:bf:e2:67
inet addr:192.168.0.159 Bcast:192.168.0.255 Mask:255.255.255.0
ineté addr: feB80::18e9:533a:d12f:82de/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1568 Metric:1
RX packets:23231 errors:0 dropped:0 overruns:0 frame:0
TX packets:15862 errors:@ dropped:0 overruns:0 carrier:@
collisions:@ txqueuelen:100@
RX bytes:23244583 (23.2 MB) TX bytes:2348670 (2.3 MB)

[11:03:46 AM]
-= % nmap -sP 192.168.0.0/24

Starting Nmap 7.01 { https://nmap.org) at 2016-87-05 11:04 EEST

Nmap scan report for dlinkrouter (192.168.0.1)

Host is up (0.0€47s latency).

Nmap scan report for 192-168-0-159.rdsnet.ro (19

Host is up {0.080057s latency).

Nmap done: 256 IP addresses (2 hosts up) scann
< [11:04:08 AM]

-> % telnet 192.168.0.1 53

Trying 192.168.6.1...

Connected to 192.168.0.1.

Escape character is '"]'.

telnet 192.168.0.1 80

o

If the port is listening and accepts connections, telnet will output a message like this:

* Trying 192.168.0.1...
e Connected to 192.168.0.1

* Escape character is *]

This means that you can also connect from your application. So if you are having
difficulties connecting, it's usually a client problem; the server is working fine.

To get out of telnet, hit: Ctrl +], followed by Ctrl + d.

[125]

CLI - The Hidden Recipe

Also, in some cases we need to get the ip address of a particular hostname. The
simplest way to do this is to use the host command:

host ubuntu.com

RX bytes:0 (8.8 B) TX bytes:0 (0.0 B)

lo Link encap:lLocal Loopback
inet addr:127.0.08.1 Mask:255.0.0.0
inetd addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:679 errors:0 dropped:0 overruns:0 frame:0
TX packets:679 errors:0 dropped:@ overruns:@ carrier:@
collisions:® txgueuelen:1l
RX bytes:73014 (73.0 KB) TX bytes:73014 (73.0 KB)

wlp3s0 Link encap:Ethernet HWaddr 68:17:29:bf:e2:67
inet addr:192.168.6.159 Bcast:192.168.0.255 Mask:255.255.255.@
inet6 addr: feB0::18e9:533a:d12f:82de/64 Scope:lLink
UP BROADCAST RUNNING MULTICAST MTU:158@ Metric:1
RX packets:23231 errors:0 dropped:@ overruns:@ frame:@
TX packets:15862 errors:0 dropped:0 overruns:@ carrier:0
collisions:0 txqueuelen:1000
RX bytes:23244583 (23.2 MB) TX bytes:2348670 (2.3 MB)

[11:03:46 AM]
-> % nmap -sP 192.168.0.08/24

Starting Nmap 7.01 (https://nmap.org) at 2016-07-05 11:04 EEST

Nmap scan report for dlinkrouter (192.168.0.1)

Host is up (0.8047s latency).

Nmap scan report for 192-1658-0-159.rdsnet.ro (192.168.8.159)

Host is up (0.000057s latency).

Nmap done: 256 IP addresses {2 hosts up) scanned in 3.03 seconds
[11:04:08 AM]

-> % telnet 192.168.0.1 53

Trying 192.168.0.1...

Connected to 192.168.0.1.

Escape character is '~]'.

SN

telnet> Connection closed.
[11:04:58 AM]

-> % host ubuntu.com

ubuntu.com has address 91.189.94.40

ubuntu.com mail is handled by 10 mx.canonical.com.
[11:05:02 AM]

- % J

[126]

Chapter 4

We've learned only the basics, the minimum elements you need, in order to start
working with hostnames and ports. For a deeper understanding of networks and
package traffic, we recommend checking out courses on penetration testing or
network traffic analyzing tools such as Wireshark. Here's one such course:
https://www.packtpub.com/networking-and-servers/mastering-wireshark.

Autoenv — Set a lasting, project-based
habitat

Projects are different from one another and so are environments. We might be
developing an application on our local machine with certain environment variables
like debug level, API keys, or memory size. Then we want to deploy the application
to a staging or production server, which has other values for the same environment
variables. A tool that comes in handy for loading environments on the fly is autoenv.

To install it we go to the official GitHub page and follow the instructions:
https://github.com/kennethreitz/autoenv

First we will clone the project in our home directory, and then we add the following
line to our .zshrc config file, so that every time zsh starts, autoenv is loaded by
default:

source ~/.autoenv/activate.sh

Now let's create an example workplace with two imaginary projects, project 1 and
project 2.

We open an environment file for project 1:

vim projectl/.env

[127]

https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://github.com/kennethreitz/autoenv

CLI - The Hidden Recipe

Let's now imagine that project 1 uses an environment variable called Exv, which we
will set to dev:

export ENV=dev

1 export ENV=dev]]

~/course/viork/projectl/.env[+] CWD: /home/hacker/course/work Line: 1 Column: 15
INSERT --

[128]

Chapter 4

Now let's do the same thing for project 2, but with a different value for ENV; ga:

export ENV=ga

1 export ENV=q@

T Errt¢tti¢t¢tiltitetettiriilieriltlet

T 1T 117 1111111

~/course/work/project2/.env[+] CWD: /home/hacker/course/work Line: 1 Column: 14

Save and close both files. Now when we cd in the project 1 folder, we see the
following message:

autoenv:

autoenv: WARNING:

autoenv: This is the first time you are about to source /home/hacker/
course/work/projectl/.env:

autoenv:

autoenv: --- (begin contents) ------------"--"-"-"-"-"-"—~-"—~-~"—~—~—~—~—~—~—~—~—~—-~—-
autoenv: export ENV=dev$

autoenv:

autoenv: --- (end contents) ------------------m -
autoenv:

autoenv: Are you sure you want to allow this? (y/N)

[129]

CLI - The Hidden Recipe

Hit y to load the file. This happens every time a new environment file is sourced.
Now if we grep the environment for the ENV variable, we can see it present and
with a value of dev:

-» % source ~/.zshrc
[10:03:53 AM]
-> % mkdir work
G [10:04:01 AM]
-> % cd work
[10:04:02 AM]
-> % mkdir projectl project 2
[10:04:08 AM]
-> % mkdir projectl project2
mkdir: cannot create directory ‘projectl’: File exists
3 [10:04:18 AM]
-> % 1s
2 project projectl project2
[10:04:14 AM]
-» % rmdir 2 project
[10:04:19 AM]
-> % ks
zsh: command not found: ks
[10:04:20 AM]
-= % 1s
projectl project2
[10:04:21 AM]
-= % vim projectl/.env
[10:04:45 AM]
-> % wim project2/.env
[10:04:58 AM]
-> % cd projectl
autoenv:
autoenv: WARNING:
autoenv: This is the first time you are about to source /home/hacker/course/work/projectl/.env:

autoenv:

autoenv: --- (begin contents) --------ccmiimii e
autoenv: export ENV=dev$

autoenv:

autoenv: --- {end contents) ------eemiii o an
autoenv:

autoenv: Are you sure you want to allow this? (y/N) vy
- [10:05:14 AM]
-> % env | grep -i env
ENV=dev
_=/usr/bin/env
[10:05:20 AM]

=> % ..

Now let's change the directory to project 2:

[130]

Chapter 4

-= % rmdir 2 project
[10:04:19 AM]

-> % Ks

zsh: command not found: ks
[10:04:20 AM]

-> % 1s

projectl project2
[10:04:21 AM]

-> % vim projectl/.env
[10:04:45 AM]

-> % vim project2/.env
[10:84:58 AM]

-= % cd projectl

autoenv:

autoenv: WARNING:

autoenv: This is the first time you are about to source /home/hacker/course/work/projectl/.env:

autoenv:
autaenv: --- {begin contents) ----------mim oo n
autoenv: export ENV=dev$
autoenv:
autoenv: --- {end contents) ----------emmmi oo
autoenv:
autoenv: Are you sure you want to allow this? (y/N) vy
[16:05:14 AM]
-> % env | grep -i env
ENV=dev

_=/usr/binfenv
[10:85:20 AM]
=% ..
[10:85:25 AM]
-»> % cd project2
autoenv:
autoenv: WARNING:
autoenv: This is the first time you are about to source /home/hacker/course/work/project2/.env:

autoenv:

autoenv: st HIDEGET COTVUETTESIT | <ot == wim i mimimi v i) i
autoenv: export ENV=qa$

autoenv:

autoenv: --- {end contents) ------mmemm e e
autoenv:

autoenv: Are you sure you want to allow this? (y/N) vy
[10:085:33 AM]

-> %

We can see that the same warning message is issued. And when we grep for the ENV
variable, we now see that its value is ga. If we leave this folder, the environment
variable is still defined, and will be defined until some other script overrides it

or when the current session is closed. The .env file is sourced, even if we cd to a
directory deeper inside projectl.

Now let's look at a more complex example for projectl.

Let's say we want to get the version from package . json, and we also want to use a
variable called COMPOSE_FILE that will specify a different file for docker compose.
Docker users know what it's all about, but if you don't.. Google time!

Here is an example:

export environment=dev
export version="cat package.json | grep version | cut -f 4 -4 "\""®
export COMPOSE FILE=docker-compose.yml

[131]

CLI - The Hidden Recipe

For this to take effect, we need to first copy a package . json file, and test that the cat
command works:

autoenv: --- {end contents) -------smam i
autoenv:
autoenv: Are you sure you want to allow this? (y/N) y

[16:05:14 AM]
-= % env | grep -i env
ENV=dev
_=/usr/bin/env

[18:05:20 AM]
== % L.
I [18:05:25 AM]
-> % cd project2
autoenv:
autoenv: WARNING:
autoenv: This is the first time you are about to source /home/hacker/course/work/project2/.env:

autoenv:

autoenv: --- (begin contents) =--csscccccmiamiinriii i
autoenv: export ENV=ga$

autoenv:

autoenv: ~-- {end CONTERtS) -----reomrom e
autoenv:

autoenv: Are you sure you want to allow this? (y/N) y
[10:05:33 AM]
-> % env | grep -i env
ENV=ga
_=fusr/bin/env
[10:05:40 AM]
> % cd ..
[10:05:43 AM]
-> % env | grep -i env
ENV=ga
_=/usr/bin/env
[10:05:44 AM]
-> % yim projectl/.env
[10:06:58 AM]
-= % cp ../find/electron/package.json projectl
ha d [10:07:17 AM]
-> % cat projectl/package.json | grep version | cut -f 4 -d ""
“version": "1.2.5",
[10:07:25 AM]
-> % cat projectl/package.json | grep version | cut -f 4 -d "\""
1.2.5
[10:07:45 AM]

R |

Everything seems fine, so let's cd into our folder:

[132]

Chapter 4

auteenv:

autoenv: --- {begin contents) -------r-mmiaimi i
autoenv: export ENV=ga$

auteenv:

autoenv: === {end contents) ---s-s-emmimm
autoenv:

autoenv: Are you sure you want to allow this? (y/N) y
@ [16:85:33 AM]
-> % env | grep -i env
ENV=ga
_=/usr/bin/env
[10:05:40 AM]
-> % cd ..
[10:05:43 AM]
-> % env | grep -i env
ENV=qa
_=/usr/bin/env
[10:05:44 AM]
-> % vim projectl/.env
e [10:06:58 AM]
-> % cp ../find/electron/package.json projectl
[10:07:17 AM]
-> % cat projectl/package.json | grep version | cut -f 4 -d "
"version": "1.2.5",
[10:07:25 AM]
-> % cat projectl/package.json | grep version | cut -f 4 -d "\""
152525

[10:07:45 AM]
-> % vim projectl/.env
[10:07:57 AM]
-> % cd projectl
auteenv:
autoenv: WARNING:
autoenv: This is the first time you are about to source /home/hacker/course/work/projectl/.env:
auteenv:

autoenv: --- {begin contents) -------rimmiaai
autoenv: export ENV=dev$

autoenv: export VERSION="cat package.json | grep version | cut -f 4 -d "'"°§
autoenv: export COMPOSE FILE=docker-compose.yml$

autoenv:

autoenv: == {end CONtENTS) =rrecremm e
autoenv:

autoenv: Are you sure you want to allow this? (y/N) [

And as you can see, the environment variables have been set:

LC_MONETARYmen US_UTF-8

UPSTART_INSTANCE=

HOME=/home/hacker

QT_ACCESSIBILITY=1
ORBIT_SOCKETDIR=/tmp/arbit-hacker
XDG_SEAT_PATH=/org/freedesktop/DisplayManager/Seat@
X0DG_DATA_DIRS=/usr/share/ubuntu:fusr/share/gnome: fusr/lacal/share/: fusr/share/: fvar/lib/snapd/desktop
LANGUAGE=en LS

COMPIZ BIN PATH=/usr/bin/

COMPIZ CONFIG PROFILE=ubuntu

DG _GREETER DATA DIR=/var/lib/lightdm-data/hacker
LANG=en US.UTF-8

LC MAME=en US.UTF-8

GTK2 MODULES=overlay-scrollbar
GPG_AGENT_INFO=/home/hacker/.gnupg/S.gpg-agent:@:1
SHLVL=1

WINDOWID=57168668

XDG_VTHR=T

GOM_LANG=en_US

SESSIONTYPE=gnome-session
DBUS_SESSLON_BUS_ADDRESS=unix:abstract=/tmp/dbus-hVrgUuedlv
XDG_CURRENT_DESKTOP=Unity

XDG_SESSION_TYPE=x11

GNOME_KEYRING_PID=

LC_TELEPHONE=en_US.UTF-8
OT_LINUX_ACCESSIBILITY_ALWAYS_ON=1
OLDP¥D=/home/hacker/course/work/projectl

Z5H=/home /hacker/ .oh-my-2sh

PAGER=1ess

LESS=-R

LE_CTYPE=en_US.UTF-8

LSCOLORS=Gx fxexdxbregedabagacad

ENV=dav

dafIFS=

answarsy I
VERSION=1.2.5

COMPOSE FILE=docker-compose.yml

IFs=

_=fusr/binfenv
[10:88:35 AM]
=l

[133]

CLI - The Hidden Recipe

Autoenv can really come in handy, and is not limited to just exporting environment
variables. You can do stuff like issuing a reminder when entering a certain project or
running a git pull or updating the look and feel of the terminal so that a distinct
feel is given for each project.

Don't rm the trash

Commands can be categorized as harmless or harmful. Most commands fall within
the first category, but there is one that is very common and that has been known

to produce a lot of damage in the world of computers. The dreaded command is

rm, which has wiped out numerous hard drives, making precious volumes of data
inaccessible. The Linux desktop has borrowed the concept of trash from other
desktops and the default action when deleting a file is sending it to the Trash.
Sending files there is a good practice, so that no unintentional removing is done. But
this trash is no magic location; it's just a hidden folder, usually located in ~/.local.

In this part, we will be looking at a utility tool designed to work with trash. We will
install it with:

sudo apt install trash-cli

[10:18:53 AM]
-> % sudo apt install trash-clil

sudo apt install trash-cli

[134]

Chapter 4

This will install multiple commands. Let's look at our current directory that contains
quite a few files. Let's assume we don't need the files starting with file.*

In order to remove files we will use:

trash filename

-> %= sudo apt install trash-cli

Reading package lists... Done

Building dependency tree

Roading state information... Done

[The follewing NEW packages will be installed:

trash-cli

B upgraded, 1 newly installed, 8 to remove and 6 not upgraded.

Meed to get 22.2 kB of archives.

Bfter this operation, 123 KB of additional disk space will be used.
Get:1 http://ro.archive.ubuntu.com/ubuntu xenial/universe amdé4 trash-cli all 8.12.9.14-2 [22.2 kB)
Fetched 22.2 KB 1in 85 (48.5 KB/s)

Felecting previously unselected package trash-cli.

(Reading database ... 216874 files and directories currently installed.)
Preparing to unpack .../trash-cli 9.12.9.14-2_all.deb ...

Unpacking trash-cli (8.12.9.14-2) ...

Processing triggers for man-db {2.7.5-1) ...

Fetting up trash-cli (9.12.9.14-2) ...

[10:11:33 AN]

> % 18

filel.html file.html file.json file.txt find git loren.txt secret_passwords.txt sed words.txt work
[10:11:37 AN]

-= % trash Tile.html file.json Tile.txt
[10:11:53 AN]

-> % 1s

filel.html find git lorem.txt secret_passwords.txt sed words.txt work
[10:11:55 AM]

> %

trash file.txt

[135]

CLI - The Hidden Recipe

(There is a separate command for working with the trash. We will rehash to
reload our path.) We list all the trash commands. The command for listing the
trash content is:

trash-list

-> % sudo apt install trash-cli
Reading package lists... Done
Building dependency tree
Reading state information... Dane
The following NEW packages will be installed:
trash-cli
0 upgraded, 1 newly installed, @ to remove and 6 not upgraded.
Need to get 22.2 kB of archives.
After this operation, 123 kB of additional disk space will be used.
Get:1 http://ro.archive.ubuntu.com/ubuntu xenial/universe amd64 trash-cli all 0.12.9.14-2 [22.2 kB]
Fetched 22.2 kB in Os (48.5 kB/s)
Selecting previously unselected package trash-cli.
{Reading database ... 216874 files and directories currently installed.)
Preparing to unpack .../trash-cli 0.12.9.14-2 all.deb ...
Unpacking trash-c1i (9.12.9.14-2) ...
Processing triggers for man-db (2.7.5-1) ...
Setting up trash-cli {0.12.9.14-2) ...
[10:11:33 AM]
-> % 1s
filel.html file.html file.json file.txt find git lorem.txt secret passwords.txt sed words.txt work
[10:11:37 AM]
-> % trash Tile.html file.json file.txt
[10:11:53 AM]
-> % 1s
filel.html find git lorem.txt secret passwords.txt sed words.txt work
[10:11:55 AM]
-> % rehash
[10:12:09 AM]
-> % trash-list
2016-06-28 10:11:53 /home/hacker/course/file.txt
2016-06-21 16:46:15 /home/hacker/a.js
2016-06-21 16:46:15 /home/hacker/a.html
2016-06-21 18:46:15 /home/hacker/script.sh
2016-06-21 10:46:16 /home/hacker/lib.sh
2016-06-28 10:11:53 /home/hacker/course/file.json
2016-06-28 18:11:53 /home/hacker/course/file.html
[10:12:13 AM]

>l

Here we see the files that are in our trash. It is only showing the files that were put
there with the trash command. We can see the date when they were deleted, the
hour, and the exact location. If we'd have had multiple files with the same name and
path, they would have been listed here, and we could have identified them by the
deletion date.

[136]

Chapter 4

In order to restore a file from trash we will use the command:

restore-trash

-> % sudo apt install trash-cli
Reading package lists... Done
Building dependency tree
Reading state information... Daone
The following NEW packages will be installed:
trash-cli
© upgraded, 1 newly installed, @ to remove and € not upgraded.
Need to get 22.2 kB of archives.
After this operation, 123 kB of additional disk space will be used.
Get:1 http://ro.archive.ubuntu.com/ubuntu xenial/universe amd64 trash-cli all 0.12.9.14-2 [22.2 kB]
Fetched 22.2 kB in @s (48.5 kB/s)
Selecting previously unselected package trash-cli
(Reading database ... 216874 files and directories currently installed.)
Preparing to unpack .../trash-cli_6.12.9.14-2 all.deb ...
Unpacking trash-cli {0.12.9.14-2) ...
Processing triggers for man-db {2.7.5-1)
Setting up trash-cli (0.12.9.14-2)
[10:11:33 AM]
-> % 15
filel.html file.html file.json file.txt find git lorem.txt secret passwords.txt sed words.txt work
[10:11:37 AM]
-> % trash file.html file.json file.txt
[108:11:53 AM]

-= % s

filel.html Find git lorem.txt secret passwords.txt sed words.txt work
[10:11:55 AM]

-> % rehash
[10:12:09 AM]

-> % trash-list
2016-06-28 1@:
2016-06-21 18:
2016-06-21 10:
2016-06-21 10:

/home/hacker/course/file.txt
/home/hacker/a.js
/home/hacker/a.html
/home/hacker/script.sh
2016-06-21 10: /home/hacker/lib.sh
2016-06-28 10: /home/hacker/course/file.json
2016-06-28 10:11:53 /home/hacker/course/file.html
[10:12:13 AM]
-> % restore-trash
0 2016-06-28 10:11:53 /home/hacker/course/file.txt
1 2016-66-28 10:11:53 /home/hacker/course/file.json
2 2016-06-28 10:11:53 /home/hacker/course/file. html
What file to restore [0..2]: []

It will show us a list of options and ask for a number corresponding to the file we
want restored. In this case we will select 1, meaning we want to restore the json file.

We open the file and we can see that the content was not altered in the process.

[137]

CLI - The Hidden Recipe

In order to remove all the files in the trash, we use:

trash-empty

Fetched 22.2 kB in 8s (48.5 kB/s)
Selecting previously unselected package trash-cli.
{Reading database ... 216874 files and directories currently installed.)
Preparing to unpack .../trash-cli 6.12.9.14-2 all.deb ...
Unpacking trash-cli (08.12.9.14-2) ...
Processing triggers for man-db (2.7.5-1) ...
Setting up trash-cli (0.12.9.14-2) ...
[10:11:33 AM]

-> % 1s
filel.html file.html file.json file.txt find git lorem.txt secret passwords.txt sed words.txt work
[10:11:37 AM]
-> % trash file.html file.json file.txt
[10:11:53 AM]
-> % 1s
filel.html find git lorem.txt secret_passwords.txt sed words.txt work
[10:11:55 AM]
-> % rehash
[10:12:09 AM]
-> % trash-list
2016-06-28 10:11:53 /home/hacker/course/file, txt
2016-06-21 10:46:15 /home/hacker/a.js
2016-06-21 10:46:15 /home/hacker/a.html
2016-06-21 10:46:15 /home/hacker/script.sh
2016-06-21 10:46:16 /home/hacker/lib.sh
2016-06-28 10:11:53 /home/hacker/course/file,jsan
2016-06-28 10:11:53 /home/hacker/course/file. html
[10:12:13 AM]
% restore-trash
0 2016-06-28 10:11:53 /home/hacker/course/file.txt
1 2016-86-28 18:11:53 /home/hacker/course/file.json
2 2016-06-28 16:11:53 /home/hacker/course/file.html
t

What file to restore [0..2]: 1
[10:12:59 AM]
-> % s
filel.html file.json find git lorem.txt words.txt work

gL [16:13:01 AM] t h
hackeralaptop [18:13:12 AN] ras -empty

-> % vim file.json
[16:13:19 AM]
-> % trash-empty
[10:13:32 AM]

-5]

This is the equivalent of doing rm in the first place. Now if we list the trash again,
we see it doesn't have any content.

Although the internet is full of rm -rf / jokes, this is actually a serious issue that
can cause headaches and wasted time trying to restore the damage caused. If you've
been using rm for a long time and can't get into the habit of using trash, we suggest
adding an alias for rm to actually run the trash command instead. In this case, it's a
good idea to pile up stacks of files in trash than to risk removing a file that might be
needed, before committing, or even removing the whole root partition!

[138]

Developers' Treasure

In this very chapter, we will kick start by building a web server using Python. We
will then see how to process all our images automatically using ImageMagick. Then,
we will look at the git flow branching model and how it will help you. Furthermore,
we will see how meld command line can help merge our git conflicts. We will

then focus on the working of ngrok tool and see how it saves the day by proxying
requests coming from the internet to our laptop. We will also explore the versatile
query capabilities of jq, the Swiss army knife of JSON! Towards the end, we will
explore ways in which one can manage and kill Linux processes.

In this chapter, we will cover the following:

* Shrinking spells and other ImageMagick
* Understanding the work of git flow branching models
* Using ngrok to secure tunnels to localhost

* Getting yourself acquainted with jq

[139]

Developers' Treasure

The spot webserver

We have prepared a basic demo html file that contains a button, a div, a jquery
function (for helping us do some ajax calls), and a script that will try to load static
content from our server and put the content inside the div tag. The script is trying to
load a simple text file on the disk, /file:

[19:37:40 AM]
-> % pwd
/home/hacker/course/web
[10:38:10 AM]
-> % 1s
file index.html
[19:38:15 AM]
-> % cat index.html
html>
|<body>

<button onclick="getFile()">Click me!</button>
<div id="out">

</div>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.4/jquery.min.js"></script>
<script type="text/javascript" charset="utf-8">
var getFile = function{) {
S.ajax{{
url: "/file",
success: function(result) {
$("#out").html{ "" + result + "")

1
13N
</script>
I</body=>
[</html>
[10:38:19 AM]
1 |

If we open this file inside our browser, we can see the page content:

eV

[140]

Chapter 5

Clicking on the button generates a javascript error. It is telling us that we want
to do a cross-origin request, which is not allowed by default by the browser. This
is to prevent cross-site scripting attacks. What we need to do in order to test our
javascript code is to serve this file in an HTTP server.

In order to start an HTTP server in the same folder as the file, we type the following
command:

python -m SimpleHTTPServer

[18:37:48 AM]
= % pwd
home/hacker/course/web

[10:38:10 AM]
> % 15
file index.html

[10:38:15 AM)
-> % cat index.htmi
[=html=
[bady:=

<button onclick="getFile{)">Click me!</buttons
<div id="out">

=/div>
<gcript sre="https://ajax.googleapis.con/ajax/libs/jquary/1.12.4/jquary.min, s =</scripts

=script type="text/javascript® charset="utf-8%>
var getFile = function{) {

s.ajaxi{
url: "/file”,
success: function{ result) {
&("#out").html{ "" + result + "" };
}
M
=fscript>
[/ body:=
[/ html=
[10:38:19 AM]

-= % cat file
fome file content

[18:38:45 AM]
-» % python -m SimpleHTTPServer
Ferving HTTP on 6.0.0.8 port 8006 ...
I

python -m SimpleHTTPServer

[141]

Developers' Treasure

This is a basic Python module that opens port 8000 on localhost, serving only static
content (so, no, you can't use it for php). Let's open the address in the browser:

Click on the Click me! button. We see that our file content was loaded in the div
beneath the button, which means the browser is no longer blocking us, because we
are issuing requests to the same host using the same protocol. Looking at the output
from our Python server, we can see all the requests that the browser has made to the
server. We can see it's requesting by default a favicon.ico file that doesn't exist and
it's giving back a 404 status code:

e % @t w G

Same file content

You can find the files used in this project on the GitHub project page.

Also, if we stop the server and go one level up and fire it up again, we can use it as
a webdav server, with the possibility of navigating through the files in the current
directory. We could, for example, give access to a folder on our local machine to a
remote user and allow them to access it through a page in the browser, eliminating
the need to install a file server.

[142]

Chapter 5

Shrinking spells and other ImageMagick

In this chapter, we will learn how to process images from the command line. We
will start with the most complex and widely used image command line interface
processing toolkit called ImageMagick. To install it, run the following;:

sudo apt install imagemagick

[18:48125 AM]
-= % sude apt install imagemagick §

sudo apt install imagemagick

As you can see, we have already installed it.

Now, let's find some images to process. Let's use the default Ubuntu backgrounds
that can be found in /usr/share/backgrounds. Let's copy the backgrounds to
another location so that we don't alter our default ones.

[143]

Developers' Treasure

We'll take a look at the first image in our list: we can see from 1s that it is a JPEG
image of 1.6 MB. To open it and see how it looks, let's use the eog (eye of gnome)

image viewer:

[10:48:25 AN]
-> % sudo apt install imagemagick
[sudo] password for hacker:
Reading package lists... Done
Building dependency tree
Reading state information... Dane
inagemagick is already the newest version (8:6.8.9.9-7ubuntu5.1).
linagemagick set to manually installed.

upgraded, @ newly installed, 8 to remove and 6 not upgraded,

[16:48:41 AM]

-> % 1s fusr/share/backgrounds
160218-deux-two_by Plerre Cante,.ipg
[Black hole by Marek Koteluk.jpg
KCielo_estrellade_by_Eduardo_Diez_Vifuela.jpg
lclock by Bernhard Hanakam.jpg
contest

Dans_ma_bulle_by_Christaphe_Weibel.jipg
Flora by Marek Koteluk.jpg

Icy Grass_by_Raymond_Lavole.]pg
Night_lights_by Alberto_Salvia Novella.jpg
passion_flower_by_Irene_Gr.jpg

Spring_by Peter_Apas.]pg

TCP118vl by Tiziane Cansonni.jpg
The_Land_of_Edonlas_by_Mupyeq Apyuponoudoc. jpa
warty-final-ubuntu,png
Xerus_Wallpaper_Grey_4896x2304.png

[18:48:57 AM]
-> % €p /fusrfshare/backgrounds .
[cp: omitting directory 'Jusr/share/backgrounds’
[1le:49:03 AM]
> % ¢p -r fusr/share/backgrounds .
[10:42:06 AM]
-> % cd backgrounds
[10:49:08 AM]
-> % 11
[rotal 28M
- rwere-r

hacker
hacker
hacker
nacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker

hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker
hacker hacker
hacker hacker
[10:49:10 AM]

:49 168218-deux-two by Pierre Cante.jpg

3M Jun 28 18:49 Black_hale_by Marek Koteluk.jpg

3M Jun 28 16:49 Cielo_estrellado_by Edusrde Diez Vifwela.jpg
6M Jun 78 168:49 cleck_by Bernhard Hanakam.jpg

8K Jun 28 18:49 contest

2M Jun 28 18:49 Dans_ma_bulle_by Christophe Weibel.jpg

4M Jun 28 18:49 Flora_by_Marek_Koteluk.jpg

6M Jun 28 18:49 Icy Grass_by Raymond Lavoie.jpg

1M Jun 28 18:49 Night_lights by Alberto_Salvia_Movella.ipg
B34K Jun 28 168:49 passion_flower_by [rene_Gr.jpg

1.5M Jun 28 1@:49 Spring_by_Peter_Apas.ipg

1.7M Jun 28 16:49 TCP118vl by Tiziano Consanni.jpg

1.6M Jun 28 16:49 The_Land_of_Edonias_by_ lMwwpyog_Apyuponouhog.jpg
2.6M Jun 28 168:49 warty-final-ubuntu.png

783K Jun 28 18:49 Xerus Wallpaper_Grey 4B56x2384.png

1
1
1.
1.
4.
1.
» I
1.
1

e b it B et B b e b

The first and most important part of knowing how to process an image is knowing
what that image actually is. To find this out, ImageMagick comes with a tool called
identify. In its simplest form, you have to feed it an image name and it will output
information like the following:

identify image name

160218-deux-two by Pierre Cante.jpg JPEG 3840x2400 3840x2400+0+0 8-bit
sRGB 1.596MB 0.240u 0:00.230

[144]

Chapter 5

We can see that the file is a JPEG image of 1.6 MB and most importantly, its size is
3,840x2,400 pixels.

If we look at the warty-final-ubuntu.png we see that the output format is similar:
the size and resolution are higher and the image format is PNG. Let's see what it
looks like:

eog warty-final-ubuntu.png

e/backgrounds

168218-deux-two by Pierre Cante.jpg Dans ma bulle by Christophe Weibel.jpg Spring by Peter Apas.jpg
Black hole by |8 B

Cielo_astrella

klock_by Berni
fcontest

ackerdlaptop
-» % ep fusr/g
[£p: amitting d

1ach top
-» % cd backg
racker@loptop
> & 11

[fotal 28M
- W reeres

hacker@laptop
-> % eog warty™t

[145]

Developers' Treasure

PNG images usually take more space than JPEG images. If you don't have
transparency, it is recommended to use .jpg. In order to convert from one type to
the other, we use the imagemagick convert command with two parameters: input
filename and output filename:

convert file.png file.jpg

= % 15 Jusr/share/backgrounds

168218 deux-two_by_Pierre_Cante.jpg Dans_ma_bulle_by_Christophe_Weibel.jpg Spring_by Peter_Apas.jpg
Black hole by Marek Koteluk.jpg Flora_by Marek Keteluk.jpg TCP118vl by Tiziano Consonni.jpg
Lielo estrellado by Eduardo Diez Vifiuela.jpg Icy Grass by Raymond Lavoie. jpg The Land of Edonias by Muwpyog Apyuponoudog.jpg
[-lack by Barnhard Hanakam.jpg Night_lights by Alberto Salvia Novella.jpg warty-final-ubuntu.png
antest passion_flower by Irene Gr.jpg Xerus_Wallpaper_Grey 4696x2384.png
[10:48:57 AM]

-> % cp fusrfshare/backgrounds .

Ep: omitting directery 'fusr/share/backgrounds’
[10:49:03 AN]

-+ % cp -T Iu-:r,.faﬁare.-’barquounﬂ\ o

106 AM]

> % ¢d Dackground

[1 8 AM]
-> % 11
[cotal 28M
-rw-r--r-- 1 hacker hacker 1.6M Jun 28 18:49 168218-deux-two by Fierre Cante.jpg
- rw-r-«r-- 1 hacker hacker 1.3M Jun 28 108:49 Black_hole_by Marek Koteluk.jpg
- rw-r-«r-- 1 hacker hacker 1.3M Jun 28 108:49 Cielo_estrellado_by Eduardo _Diez Vifuela.jpg
-rw-r--r-- 1 hacker hacker 1.6M Jun 28 18:49 clock by Bernhard Hanakam.jpg
drwxr-xr-x 2 hacker hacker 4.0K Jun 28 10:49 contest
-rw-r--r-- 1 hacker hacker 1.2M Jun 28 10:49 Dans ma bulle by Christophe Weibel.ipg
-rw-r--r-- 1 hacker hacker 1.4M Jun 28 108:49 Flora_by_Marek Koteluk.jpg
crw-r--r-- 1 hacker hacker 1.6M Jun 28 19:49 Icy Grass _by_Raymond_Laveie.jpg
-rw-r--r-- 1 hacker hacker 1.1M Jun 28 10:49 Night lights by Alberto Salvia Novella.jpg
-rw-r--r-- 1 hacker hacker B34K Jun 28 10:49 passion flower by Irene Gr.jpg
- rw-r-2r-- 1 hacker hacker 1.5M Jun 28 10:49 Spring by Peter Apas.jpg
-rw-r--r-- 1 hacker hacker 1.7M Jun 28 10:49 TCP118vl by Tiziano_Consonni.ipg
-rw-r--r-- 1 hacker hacker 1.6M Jun 28 18:40 The_Land_of_Edonias_by_Muwpyos_Apyuponauhos.ipg
-rw-r--r-- 1 hacker hacker 2.6M Jun 28 18:49 warly-final-ubuntu.png
-rw-r--r-- 1 hacker hacker 783K Jun 28 10:49 Xerus Wallpaper Grey 4896x2384.png
[10:49:10 AN]
-> % eog 160218-deux-two_by Pilerre Cante.jpg
[18:49:39 AM]

= % identity 16213-deux-two by Pierre Cante. fpg

168218 - deux- two_by_Plerre_Cante.jpy JPEG 384gx2488
[10 49:46 AN]

-> % identify warty-final.ubuntu.png

Warty-final-ubuntu.png PHG 4696x2384 48%96x2! Ty f] g f.l]
convert iile.png 1ile.Jpg
-» % eog warty-final-ubuntu.png
[10:50:27 AM]
-» % convert warty-final-ubuntu.png warty-final-ubuntu.jpoll

The format of the output image will be deduced by convert from the filename
extension. As you can see, the output is a JPEG image with the same resolution, but
with a much smaller size than the PNG version: 180 KB compared to 2.6 MB. If we
open the image, we can't see any noticeable differences. This is a big thing when it
comes to web development, because if we were to use this picture on a web page, it
would load as much as 15 times faster than the PNG version.

[146]

Chapter 5

If we want to crop a region of the image, we can do that with convert. For example,
if we want to cut a 500x500 piece of the image, starting at coordinates 100,100, we
would use the following;:

convert -crop "500x500+100+100" warty-final-ubuntu.png warty.jpg

> % e0g 168218-deux-two_by Pierre_Cante.jpg
[16:49:39 AM]

-» % fdentify 168218-deux-two_by Pierre Cante._jpg

[168218-deux-two by Pierre Cante.jpg JPEG 3B40x2400 3B40x2400+0+8 B-bit sRGE 1.596MB 8.140u 0:80.150
[1a:49:46 AN

-» % identify warty-final-ubuntu.png

party-final-ubuntu.png PNG 4696x2384 4096x2304+8+8 8-bit SRGB 2.644MB 0,060y 0:00.600
[1ie 6 AM]

.png warty-final-ubuntu.jpg

[18:50:39 AM]
> % 11
total 28M
= fw=r==r-= 1 hacker hacker 1.6M Jun 28 10:49 160218-deux-two by Plerre Cante.jpg
-rw-r--r-- 1 hackar hacker 1.3M Jun 28 10:40 Black hols by Marsk Koteluk.jipg
-rw-r--r-- 1 hacker hacker 1.3M Jun 28 18:49 Cielo estrellado by Eduardo Diez Vifuela.jpg
-rw-r--r-- 1 hacker hacker 1.8
drwxr-xr-x 2 hacker hacker 4 " "
-rw-r--r-- 1 hacker hacker 1 > B & B o
-rw-r--r-- 1 hacker hacker 1 COI]VGIt wf Op 500)&500+100+100
-rw-r--r-- 1 hacker hacker 1 =
-rw-r--r-- 1 hacker hacker 1 ANae f" i 1 b e
Iamastoaemg: Warty-1inal-ubuntu.png warty.jpg
-rw-r--r-- 1 hacker hacker 1 o o o L=
-rw-r--r-- 1 hacker hacker 1.
- Mw-r-=r-- 1 hacker hacker 1.6M Jun 28 108:49 The Land of Edonias by Mupyog Apyupomouhag. jpg
- rw-rw-r-- 1 hacker hacker 188K Jun 28 10:58 warty-final-ubuntu.jpg
-rw-r--r-+ 1 hacker hacker 2.6M Jun 28 10:49 warty-final-ubuntu.png
-rw-r--r-- 1 hacker hacker 783K Jun 28 10:49 Xerus Wallpaper Grey 4896x2384.png

[10:50:41 AM]

-= % ldentify warty-final-ubuntu.ipg

arty-final-ubuntu. jpg JPEG 4096x2364 4696x2384+6+0 B-bit sRGE 184KB 0.066u 0:00.089
[18:58:57 AM]

-> % eog warty-final-ubuntu.png
[18:51:21 AM]

> % convert -crop "500x500+100+108" warty-final-ubuntu.jpg warty.jpgll

As we can see, the output image is at the resolution we requested, but it has a much
lower size of only 2.5 KB. Visually analyzing the two images we can see that the
cropped one is a section of the big picture. Normally you wouldn't want to guess
pixels in the command line, but would use an image processing software, such as
GIMP, to do the work for you, so that you can visually select and crop portions of
the images. However, when developing software applications, it is often the case
that you have to programmatically crop images, in which case this comes in handy.

[147]

Developers' Treasure

The convert command is also good at creating images. If we want to create an image
from a text string, we could use the following;:

convert -size x80 label:123 nr.jpg

168218 -deux-twa_by_Pierre_Cante.jpg JPEG 3846x7488 3848x2486+8+8 B-bit SRGE 1.596ME 6.148u B:88.158
[10:49:46 AN]

-» % identify warty-final.ubuntu.png

prarty-final-ubuntu.png PNG 4696x2384 4896x2304+0+8 B-bit sRGB 2.644MB 0.08808u 0:00.0088
[18:50:06 AM]

-» % eog warty-final-ubuntu.png

[19:50:27 AM]
-> % convert warty-final-ubuntu.png warty-final-ubuntu.jpg
[10:50:39 AH]
-> % 1l
[toral 26M
-rwer--r-- 1 hacker hacker 1.6M Jun 28 18:49 168218-deux-two by Pierre Cante.jpg
-rw-r--r-- 1 hacker hacker 1.3M Jun 28 108:49 Black_hole_by Marek Koteluk.jpg
- rW-r--r 1 hacker hacker 1.3M Jun 28 18:49 Cielo_estrellado by Eduardo Diez Vifiuela.jpg
-rw-r--r-- 1 hacker hacker 1.6M Jun 28 10:49 clock by Bernhard Hanakeam.)pg
Prwer-xr-x 2 hacker hacker 4.8K Jun 28 10:49 contest
-rw-r--r-- 1 hacker hacker 1.2M Jun 28 18:49 Dans ma bulle by Christophe Weibel.jpg
-Fw-r--r-- 1 hacker hacker 1.4M Jun 28 108:49 Flora_by Marek Koteluk.jpg
-rw-r--r-- 1 hacker hacker 1.6M Jun 28 10:49 Icy_ Grass _by_ H.a\mond Lavoie. jpg
-rw-r--r-- 1 hacker hacker 1.1M Jun 28 10:49 Night 'I.lths by Alberto_Salvia Novella.jpg
-rW-r--r-- 1 hacker hacker 834K Jun 28 10:49 passion flower by Irene Gr.jpg
-rw-r--r-- 1 hacker hacker 1.5M Jun 28 10:49 Spring by Peter Apas.jpg
-rw-r--r-- 1 hacker hacker 1.7M Jun 28 18:49 TCP118vl _by Tiziano_Consonni.jpg
<rw-r--r-- 1 hacker hacker 1.6M Jun 28 108:49 The_Land_of_Edonias_by_Muwpyoes_Apyvponouhos.ipg
- rw-rw-r-- 1 hacker hacker 188K Jun 28 18:58 warty-final-ubuntu. }pq
»rw=r==r== 1 hacker hacker 2.6M Jun 28 10:49 warty-final-ubuntu
-rw-r--r-- 1 hacker hacker 783K Jun 28 10:49 Xerus Wallpaper Gu\r 4595!?30-1 png

[18:58:41 AM]

= % identify warty-final-ubuntu.ipg

prarty-final-ubuntu, jpg JPEG 4896x2384 4096x2384+8+8 B-bit sSRGB 184KB 0.866u 8:00.669
[18:50:57 AH]

-> % #0Q warty-final-ubuntu.png
[18:51:21 AM]

-= % convert -crop "580x586+186+1868" warty-final-ubuntu.jpg warty.jpg
[1e:52:03 AH]

> % identify warty.jpg

Warty.jpg JPEG 586x500 500x500+0+0 8-bit sRGE 2.5KB 0.860u 0:00.800
[10:52:11 AM]

-> % eog warty.jpg

[18:52:32 AM]

-> % convert -size x88 label:123 nr.jpp
[10:52:56 AN]

> %]

[148]

Chapter 5

This will create a JPEG image with a height of 80 pixels, containing the text specified,
in this case the string 123. We can see the output, it is a 3.4 KB image and, if we look
at it visually, we see the text 123:

cker hacker 783K Jun 28 18:49 Xerus Wallpaper G

b [18:50:41 AM]

= % identify warty-final-ubuntu.

H)rty final-ubuntu. jpg JPEG 4806:25‘4 4096x2304+0+0 £-bit sRGB 184KB ©.806u 0:00,009
r s [16:50:57 AM) cot

-» R eug war.y 1-ubuntu.png

1 [.'lU 51:21 AM]

"> % convert -crop *508x588+108+188" warty-Tinal-ubuntu.jpg warty.jpg

k laptop [10:52:03 AH] L

“4896x2384 . png

- % lnen'lry warty.jpg
dar y- 199 JPEG 508x500 508x500+0+ ﬂ @-bit sRGE 2.5KB ©.0868u 0:00.868
r top [10:52:11 AM] ¢
-> % eng warty. ipg
s (10152132 AM]
-> % mruorr -5ize x86 label: 123 nr.jpg
nacker@laptop [10:52:56 AM]
> % 11
[cotal 26M

celas

J6M Jun 28 19:49 166218-deux
-3M Jun 28 10:49 Black_hole o
-3M Jun 28 18:49 Cielo estre
hacker hacker 1.6M Jun 28 18:49 clock_by Be
hacker hacker 4.8K Jun 28 10:49 contest

hacker hacker 1
1
1
1
4
hacker hacker 1.2ZM Jun 28 10:48
1
1
1
3

hacker hacker
hacker hacker
x
hacker hacker 1.4M Jun 28 10:49
hacker hacker 1.G6M Jun 28 10:49
hacker hacker 1.1M Jun 28 10:49
hacker hacker 3.4K Jun 28 10:52
hacker hacker 834K Jun 28 18:49 > =
hacker hacker 1.5M Jun 28 18:49 Spring by Peter Apas.|pg
hacker hacker 1.7M Jun 28 16:49 TCP118v1_by_Tiziano_Cansonni.jpg
hacker hacker 1.GM Jun 28 10:49 The_Land_of_Edonias_by_liwpyos_Apyupomouhog.ipg
hacker hacker 186K Jun 28 18:58 warty-final-ubuntu,
hacker hacker 2.6M Jun 28 18:49 warty-final-ubuntu,
hacker hacker 2.5K Jun 28 18:52 warty.pg
hacker hacker 783K Jun 28 18:49 Xerus_Wallpaper Grey_4096x2384.png
L [18:52:59 AM] L
=% uhnul'y nr.jpg
1" JDU JPEG 126x80 120xB0+8+8 §-bit Gray 256c 3.44KB ©.000u 0:00.900

p [19:53:14 AM]
-> % eag nr.ipg

PW-T--
MwW-r-

- MW= -
o PWereFen

-r-
r-
r
r
=
r
S Pae
it
r
r
r
"
r
r
r

B it et 1 et e et e et e B e e

This can also come in handy in different scenarios where you need to
programmatically generate readable images, such as using CAPTCHA software
or generating default profile images with the user's initials.

[149]

Developers' Treasure

Now let's look at some image shrinking tools outside of imagemagick. The first one
is a png shrinking tool called pngquant. We will install it by typing the following:

sudo apt install pngquant

-rw-r--r-- 1 hacker hacker 783K Jun 28 16:49 Xerus_Wallpaper_ Grey 48%6x2364.png
[18:50:41 AM]

-» % identify warty-final-ubuntu.jpg

arty-final-ubuntu. jpg JPEG 4896x2364 4606x2384+8+0 8-bit SRGB 184KE 6.066u 0:960,889
[18:50:57 AM]

-» % e0g warty-final-ubuntu,.png
[18:51:21 AM]

-» % convert -crop "S5808x588+188+188° warty-final-ubuntu.jpg warty.jpg
[18:52:03 AM]

> % identify warty.jpg

prarty.jpg JPEG 506x500 500x380+0+8 B-bit sRGE 2.5KB ©.080u 0:00.868
[10:52:11 AM]

-> % sog warty.ipg

[16:52:32 AM]

-> % convert -size x8@ label:123 nr.jpg
[10:52:56 AM]

Jun 28 10:52 nr.ipg
Jun 28 10:49 passion_flower by Irene Gr.ipg
hacker hacker Jun 28 16:49 Spring by Peter Apas.jpg
hacker hacker Jun 28 18:49 TCP118v1 by Tiziano Consonni.ipg

hacker hacker 1.G6M Jun 28 10:49 The_Land_of_Edonias_by_liwpyoc_Apyuponouhos.]pg
hacker hacker 186K Jun 28 10:56 warty-final-ubuntu.jpg

hacker hacker 2.6M Jun 28 10:49 warty-final-ubuntu.png

hacker hacker 2.5K Jun 28 16:52 warty.jpg

hacker hacker
hacker hacker

-> % 11
[total 26H
-rw-r--r-- 1 hacker hacker 1.6M Jun 28 10:49 166218-deux-two_by Plerre_Cante.jpg
-rw-r--r-- 1 hacker hacker 1.3M Jun 28 Black_hole by Marek _Kotelik.jpg
-rw-r--r-- 1 hacker hacker 1.3M Jun 28 Cielo estrellado_by Eduardo Diez Vifuela.jpg
-rw-r--r-- 1 hacker hacker 1.6M Jun 28 clock by Bernhard Hanakam,jpg
drwxr-xr-x 2 hacker hacker 4.8K Jun 28 contest
e hacker hacker 1.2IM Jun 28 Dans_ma_bulle_by Christophe Weibel.jpg

- hacker hacker 1.4M Jun 28 Flora by Marek Koteluk.jpg

== 1 hacker hacker 1.6M Jun 28 Icy Grass by Raymond Lavoie.)pg

- Jun 28 Hight lights by Alberto Salvia Novella.ipg

e
T
S b
ZEEERZ

1
1
1
1
2
1
1
1
1 hacker hacker
1
1
1
1
1
1
1
1
1

229727223783¢
PRI

hacker hacker 783K Jun 28 2n04
[18:52:59 AM]
% identify nr.jpg

.Jpg JPEG 126x88 126x88+8+8 B-bit Gray S'u(0 apt illstall pl‘lgqllant

[10:53:14 ANM]
% eog nr.}

- B
S

v

]
[10:53:28 AM]

% sudo apt install t

[

[150]

Chapter 5

Let's try to shrink the large PNG image that we were looking at earlier. If the image
contains transparency and it is necessary to keep it in the PNG format, we would just
call pngguant with the following image name:

pngquant warty-£final-ubuntu.png

W r--r--
[rwxr-xr-x
W Fearen

hacker hacker
hacker hacker
hacker hacker

1.6M Jun 28 18:49 clock_by_Bernhard_Hanakam.]pg

4.6K Jun 28 10:49 contest

1.2M Jun 28 18:49 Dans _ma_bulle by Christophe Weibel.jpg
hacker hacker 1.4M Jun 28 10:48 Flora by Marek Koteluk.jpg

1.

1.

3.

22

aefen
aafen
Safaa

1
2
1
F 1
r 1 hacker hacker 1.6M Jun 28 10:48 Icy Grass by Raymond Lavoie.jpg
r 1 hacker hacker 1.1M Jun 28 18:49 Night lights_by Alberto_Salvia Novella.jpg
mw-r-- 1 hacker hacker 3.4K Jun 28 10:52 nr.jpg
r--r-- 1 hacker hacker 834K Jun 28 10:49 passion flower by Irene Gr.ipg
r- 1 hacker hacker 1.5M Jun 28 18:49 Spring by Peter_Apas.jpg
r- 1 hacker hacker 1.7M Jun 28 10:49 TCP118vl by Tiziano_Consonnl.ipg
r- 1 hacker hacker 1.6M Jun 28 10:49 The Land of Edonias by Mwpyog Apyuponmoviog.]pg
™ 1 hacker hacker 188K Jun 28 18:58 warty-final-ubuntu
L hacker nacker 2.64 Jun 26 10-40 MRS VRTFVEEITENN
. 1 hacker hacker 2.5K Jun 28 18:52 warty.jpg
r- 1 hacker hacker 783K Jun 28 10:49 Xerus Wellpaper Grey 4096x2384.png
[18:52:59 AM]
-> % identify nr.jpg
pr.jpg JPEG 126x88 126x88+8+8 8-bit Gray 256¢ 3.44KB ©.800u 0:00.860
[18:53:14 AM]
-> % @og nr.jpg
[10:53:28 AM]
-> % sudo apt install pngguant
Reading package lists... Done
Building dependency tree
Reading state informationm... Done
The following NEW packages will be installed:
pngquant
B upgraded, 1 newly installed, & to remove and § not upgraded.
feed to get 35.4 kB of archives.
Kfter this operation. 113 kB of additional disk space will be used,
Get:1l http://ro.archive.ubuntu.com/ubunty xenial/universe amd64 pngquant amdb4 2.5.8-1 [35.4 kB)
Fetched 35.4 kB in ©s (178 KB/s)
Felecting previously unselected package pnggquant,
(Reading database ... 216898 files and directories currently installed.)
Preparing to unpack .../pngquant_2.5.8-1 amdG4.deb ...
npacking pngguant (2.5.8-1) ...
Processing triggers for man-db (2.7.5-1) ..
Eetting up pngquant (2.5.8-1) ...
[18:53:48 AN]

L

2232333232233

gquant image_name

-» % rehash
[18:53:55 AM]
I.], % pngquant warty-final-ubuntu.png

[151]

Developers' Treasure

By default, it outputs a file with the same name and an added £s8 extension. We can
see that the difference in size is also noticeable (it's smaller by 1 MB, which is almost
half the original size). If we visually compare the images, we won't be able to spot
any differences:

W packages will be installed

ing
pngquant

B upgraded, 1 SN
feed to get 35
pfter this opd

Processing tr
Fatting up png
iackerSlaptop
-> % rehash
ackerglaptop
-> % pngquant
i adey rtop
> % 11

ptal 22M
Pov-re-r--
- MW reere-

r

r

"

r

=

r

r

r
-r--

r

r

r

r

r

r

r

r

S 8 e 0 B S S R

he following NEW packages will be installed:
pngquant

B upgraded, 1 @

lsad to gat 35

Biter this opeg
fiet:1 http://
Fetched 35.4 H

Preparing to
npacking pnog
Processing tr

h glaptop
-> % pngquant
ackerglaptop
> & 1L

[cotal 22M
- re-r--r--

222

™
=
»

2
R PRARTIIRIR IR
e e

oo

22322223

--..,
ffxe

2227 3:

> % @0 warty=

[152]

Chapter 5

Alright, now let's try and do the same thing for JPEG images.

For this, we'll install the equivalent of pngquant, which is jpegoptim:

sudo apt install jpegoptim

[fhe Tollowing NEW packages will be installed:
pngquant
B upgraded, 1 newly installed, 8 to remove and 6 not upgraded.
fleed to get 35.4 kB of archives.
Wfter this aparation, 113 kB of additional disk space will be used,
Get:1 http://ro.archive.ubuntu.com/ubuntu xenial/universe amdfid pngquant amdfd 2.5.8-1 [35.4 kB]
Fetched 35.4 kB in 85 (178 KB/s)
[Felecting previously unselected package pnggquant,
(Reading database ... 216898 files and directories currently installed.)
preparing ta unpack .../pngquant_2.5.0-1 amdG4.deb ...
Unpacking pngquant (2.5.8-1) ...
Processing triggers for man-db (2.7.5-1) ...
petting up pngquant (2.5.8-1) ...
[10:53:48 AM]
-> % rehash
[10:53:55 AM]
-> % pngquant warty-final-ubuntu.png
H

[1e:54:16 AM]

-> % 11

[total 22M

=r= - 1 hacker hacker 1.6M Jun 28 10:49 160218-deux-two by Plerre Cante.jpg

- - - - 1 hacker hacker 1.3M Jun 28 10:49 Black hole by Marek Koteluk.jpg

- rw-r- 1 hacker hacker 1.3M Jun 28 18:49 Cielo_estrellado_by Eduardo_Diez Viduela.jpg

-rW-r--r-- 1 hacker hacker 1.6M Jun 28 10:49 clock_by_Bernhard_Hanakam.jpg

drwxr- 2 hacker hacker 4.8K Jun 28 18:49 contest

*rw=r==r== 1 hacker hacker 1.2M Jun 28 10:49 Dans ma bulle by Christophe Weibel.jpg

-rW-r--r-- 1 hacker hacker 1.4M Jun 28 10:49 Flora by Marek Koteluk.jpg

-rw-r--r-- 1 hacker hacker 1.6M Jun 28 10:49 Icy Grass_by Raymond Lavoie.jpg

-rw-r--r-- 1 hacker hacker 1.1M Jun 28 10:49 Night_lights_by_Alberto_Salvia_Novella.jpg

- rw-rw-r-- 1 hacker hacker 3.4K Jun 28 10:52 nr.ipg

-rw-r--r-- 1 hacker hacker B34K Jun 28 10:49 passion_flower by Irane_Gr.jpg

-rw-r--r-- 1 hacker hacker 1.5M Jun 28 Spring_by Peter_Apas.ipg

-rw-r--r-- 1 hacker hacker 1.7M Jun 28 TCP118vl by Tiziano Consonni.ipg

-re-r--r-- 1 hacker hacker 1.6M Jun 28 The_Land_of_Edonias_by wpyoc_Apyuponouhod.jpg

- rw-rw-r-- 1 hacker hacker 1.6M Jun 28 warty-final-ubuntu-Ts8.png

-rw-rw-r-- 1 hacker hacker 188K Jun 28 { i L ”

-rw-r-=r-- 1 hacker hacker 2.6M Jun 2§

-rW-rw-r-- 1 hacker hacker 2.5K Jun 28 1 -] 'l‘l * o *

-rw-r--r-- 1 hacker hacker 783K Jun 28 t t
scker nacker sudo apt install jpegoptim

-> % eog warty-final-ubuntu.png
[10:54:51 AM]
-> % sudo apt Install jpegaptim [

[153]

Developers' Treasure

We will call it the same way and we're just going to give it a command-line
argument, which is the file to shrink. Let's pick some random images to try
and see if we can reduce their size:

Get:1 http://ro.archive. ubuntu, comfubunty xenial/universe amd64 jpegoptim amd6d 1.4.3-1 [18.4 KE]
Fetched 18.4 kB in 6s (88.8 kB/s)

Belecting previously unselected package jpegoptim.

{Reading database ... 216984 files and dll’et(ol’]'.‘ﬁ currcnl'ly installed.)

Preparing to unpack .../jpegoptim 1.4.3-1 andfd.d

Inpacking jpegoptim \‘ 4.3-1)

Processing triggers for man-db 12 1.5:1) ...

Fetiing up JPCQ“D tim (1 4-' ¥ e

-> rehash
[16: 18 AN

-» % jpegoptim T(P1 an ‘w Il?‘-.anﬂ Consonni. jpg

TCP118v1 by Tiziano_Consonni.jpg 3840x2460 24bit N IPTC Exif ICC ICC ICC ICC XMP JFIF |OK) 1773026 --= 1773026 bytes (0.00%). skipped.
[0 AM]

-> % 11

[Eotal 22M

- rwWer--r-- hacker hacker 1.6M Jun 28 18:49 [EEESCEGETE]

W Feefe- hacker hacker 1.3M Jun 28 10:49 Black _hole Dy Marek Kote\u‘&]D;l

- W Feefe- hacker hacker 1.3 Jun 28 10:49 Cielo_estrellado_by Eduardo Diez Vifiuela.jipg
- rW-F--r-- hacker hacker 1.6M Jun 28 10:49 clock by Bernhard Hanakam.jpg

Mraxr-xr-x

- P - - -r- - hacker hacker 1.2M Jun 28 10:49 Danz ma bulle by Christophe Weibal.jpg
hacker hacker 1.4M Jun 28 10:49 Flora_by Marek Koteluk.jpg
hacker hacker 1.6M Jun 28 108:49 Icy Grass_by_Raynond_Lavoie.jpg
hacker hacker 1.1M Jun 28 10:49 Night lights by Alberto Salvia Novella.jpg
hacker hacker 3.4K Jun 28 10:52 nr.jpg
hackar hacker B34K Jun 28 10:49 passion flower by Irene Gr.jpg
hacker hacker 1.5M Jun 28 10:48 Spring by Peter Apas.jpg
hacker hacker 1.7M Jun 28 10:49 T(P118v1_by Tiziano_Consonni. jpg
hacker hacker 1.6M Jun 28 10:49 The Land of Edonias by Mwpyog Apyuponouheg.ipg
hacker hacker 1.6M Jun 28 10:54 warty-final-ubuntu-fs8.png
hacker hacker 180K Jun 28 10:50 warty-final-ubuntu.jpg
hacker hacker 2.6M Jun 28 18:49 warty-final-ubuntu.png
hacker hacker 2.5K Jun 28 10:52 warty.jpg
ki hnl:kcr T83K Jun 28 10:49 Xerus Wallpaper Grey 4096x2264.png

1
1
1
1
hacker hacker 4.0K Jun 28 10:49 contest
1
1
1
1

e P e Sy T =

7272377713

jpegoptim 166 18- deu: :twu by Pierre_Cante.jpg
160215 -dov- two by Plerre Cante.]pg 33402486 3ibit P IFIF [OK] 1595515 -.> 1595515 bytes (6.80%), skipped.
[18:55:58 AM)
> % jpegoptim nr.jpg
1r.jpg 126x88 B JFIF [0K] 3442 --> 3442 bytes (6.88%), skipped.
[03 AM]

- %

As you can see from the output, it is saying Skipped. That means the image had
already been shrunk (the guys at Ubuntu probably used the same tool before
submitting the image). If we try it again on the JPEG produced by imagemagick,
you can see that it is also skipped: imagemagick already uses the minimum
necessary format.

The image processing tools come in especially handy when it comes to web
development, where lots of images need to be used and their size needs to be as
small as possible. Command-line tools are really useful because they can be used to
automate tasks. Image shrinking is usually added to build tasks, where production
versions of websites are prepared. The imagemagick toolkit comes with a lot

more tools than the ones we have seen today, so feel free to explore other handy
commands from the toolkit. Also, when it comes to graphically processing the
images, there are some great open source tools like GIMP and Inkscape that can
really help you get your job done, and also save you a lot of money.

[154]

Chapter 5

Go with the Git flow

Git is by far the most popular version control system out there. In this chapter, we
will be looking at a plugin for Git, called GitFlow, which proposes a branching
model for software projects. This branching model doesn't offer much help when

it comes to small projects, but it's a great benefit to medium sized and large
projects. We will be looking at a variation of the git-flow plugin, called gitflow-
avh, which adds extra functionality, such as Git hooks, https://github.com/
petervanderdoes/gitflow-avh.

To install it, we'll follow the instructions on the GitHub page. We are on Ubuntu,
so we will follow the installation instructions for Linux.

We can see that it can be directly installed with the apt command, but apt doesn't
usually contain the latest version of the software, so today we will do a manual
installation. We want to pick the stable version, and use the one line command.

Once this is done, let's create a dummy project. We'll create an empty directory
and initialize it as a Git repository:

git init

"gitflow/hooks/post- flow-bugfix-start' -» 'fusr/local/share/doc/gitflow/hooks/post-flow-bugfix-start’
‘gitflow/hooks/post-flow-bugfix-track' -» '/fusr/local/share/doc/gitflow/hooks/post-flow-bugfix-track’
"gitflow/hooks/post-flow- feature-delete’ -> 'Jusr/local/sharesdoc/gitflow/hooks/post-flow- feature-delete”
"gitflow/hooks/post-Tlow- feature-finish' .= 'Jusr/local/share/doc/gitflow/hooks/post-flow- feature-finish®
"gitflow/hooks/post-Tlow- feature-publish’' -» “Jusr/local/share/doc/gitflow/hooks/post- flow- feature-publish’
"gitflow/hooks/post-Tlow- feature-pull’ -» 'fusrflocals/share/doc/gitTlow/hooks/post-Tlow- feature-pull’
"gitflow/hooks/post-flow-feature-start” “fusr/local/share/doc/gitflow/hooks/post-flow- feature-start”
"gitflow/hooks/post- flow- feature-track’ *fusr/local/share/doc/gitflow/hooks/post-flow- feature-track’
"gitflow/hooks/post- flow-hotfix-delete’ *fusr/local/share/doc/gitflow/hooks/post - flow-hotfix-delete”
"gitflow/hooks/post-flow-hotfix-finish® *fusr/local/share/doc/gitflow/hooks/post-flow-hotTix-finish"
"gitflow/hooks/post-Tlow-hotfix-publish” -> 'fusr/local/shares/doc/gitflow/hoaks/post-Tlow-hotfix-publish”
'gitflow/haoks/post-flow-hotfix-start' -» 'fusr/local/share/doc/gitflow/hooks/post-1tlow-hotfix-start’
"gitflow/hooks/post-1flow-releasa-branch' .= 'Jusr/local/share/doc/gitflow/hooks/post-flow- release-branch’
"gitflow/hooks/post-flow-release-delete’ -> 'fusr/local/share/doc/gitflow/hooks/post-flow-release-delete’
‘gitflow/hooks/post-flow- release-finish' -> 'fusr/local/share/doc/gitflow/hooks/post-flow-release-finish'
"gitflow/hooks/post-Tlow- release-publish’ -> ‘Jusr/local/share/doc/gitflow/hooks/post-flow- release-publish’
"gitflow/hooks/post-flow- release-start’ -» *Jfusr/localsshare/doc/gitflow/hooks/post-flow- release-start’
"gitflow/hooks/post-flow- release-track' -» °fusr/local/share/doc/gitflow/hooks/post-flow- release-track’
"gitflow/hooks/pre-flow-feature-delete’ -> 'fusr/local/share/doc/gitflow/hooks/pre-flow-feature-delete’
"gitflow/hooks/pre-flow- feature-finish' -= "fusr/local/share/doc/gitflow/hooks/pre-flow-feature-finish'
"gitflow/hooks/pre-1low- feature-publish’ -= ‘fusr/locals/share/doc/gitflow/hooks/pre-flow-feature-publish®
"gitflow/hooks/pre-flow-feature-pull’ -> "fusr/locals/share/doc/gitflow/hooks/pre-flow- feature-pull’
"gitflow/hooks/pre-flow-feature.-start' -» 'fusr/local/share/doc/git?low/hooks/pre-flow-feature-start’
"gitflow/hooks/pre-Tlow- feature-track' -» ‘fusr/local/share/doc/gitflow/hooks/pre-flow-feature-track’
"gitflow/hooks/pre-flow-hotfix-delete’ -= 'fusr/local/share/doc/gitflow/hooks/pre-flow-hotfix-delete’
"gitflow/hooks/pre-flow-hotfix-finisn' ‘fusrflocal/share/doc/gitflow/hooks/pre-flow-hotfix-1Tinish’
"gitflow/hooks/pre-flow-hotfix-publish’ "fusr/local/share/doc/gitflow/hooks/pre- flow-hotfix-publish’
"gitflow/hooks/pre-flow-hotfix-start’' .» 'fusr/local/share/doc/git{low/hooks/pre-flow-hotfix.start’
"gitflow/hooks/pre-flow-release-branch' -» 'fusr/local/share/doc/gitflow/hooks/pre-flow-release-branch'
"gitflow/hooks/pre-flow- release-delete’ -> 'fusr/local/share/doc/gitflow/hooks/pre-flow- release-delete’
"gitflow/hooks/pre- flow-release-finish® -> *fusr/local/share/doc/gitflow/hooks/pre- flow- release- finish'
"gitflow/hooks/pre-flow- release-publish' -= 'fusr/local/share/doc/gitflow/hooks/pre-flow- release-publish’
‘gitflow/hooks/pre-flow-release-start' -> 'fusr/local/share/doc/gitflow/hooks/pre-flow- release-start’
‘gitflow/hooks/pre-flow-release-track' -» 'fusr/local/share/doc/gitflow/hooks/pre-flow- release-track'

[11:04:12 AM]
-» % mkdir Tlow

[11:84:37 AH]

elacgipedy {rijovaan o git init

Initialized enpty Git repository in /home/hacker/course/flow/.gll
r [11:04:41 AH] [master]

-
>
>
-

-» % cd Tlow

> %

[155]

https://github.com/petervanderdoes/gitflow-avh
https://github.com/petervanderdoes/gitflow-avh

Developers' Treasure

Basic Git usage is not part of this course, and we are assuming that you understand
the basics.

All right. A good way to get started with git-flow is to read the excellent cheatsheet
created by Daniel Kummer:

http://danielkummer.github.io/git-flow-cheatsheet/

This provides the basic tips and tricks to get you started quickly with git-flow.
So the first thing the cheatsheet suggests is to run the following;:

git flow init

"gitflow/hooks/post-Tlow- release-finish' -> "fusr/locals/sharefdoc/gitflow/hooks/post- Tlow- release-Tinish
"gitflow/hooks/post-flow. release.publish’ -» 'Jfusrflocal/share/doc/gitflow/hooks/post-flow- release.publish’
"gitflow/hooks/post-flow-release-start”® -> ' fusr/local/share/doc/gitflow/hooks/post-flow- release-start’
gitflow/hooks/post-flow- release-track’ -> '/usr/local/share/doc/gitflow/hooks/post-flow- release-track
‘gitflow/hooks/pre-flow-feature-delete’ -> ‘fusr/local/share/doc/gitflow/hooks/pre- flow- feature-delete’
"gitflow/hooks/pre-Tlow-feature-finish® -» *fusr/local/share/doc/gitflow/hooks/pre-flow- feature- finish’
"gitflow/hooks/pre-Tlow-feature-publish’' -> ‘fusr/local/share/doc/gitflow/hooks/pre-flow- featura-publish’
"gitflow/hooks/pre- flow-feature-pull’ -> '/usr/locals/share/doc/gitflow/hooks/pre-flow- feature-pull’
"gitflow/hooks/pre-flow-feature-start’' -» "fusr/local/share/doc/gitflow/hooks/pre-flow- feature-start’
"gitflow/hooks/pre-flow- feature-track' -> "fusr/local/share/doc/gitflow/hooks/pre-flow- feature-track’
"gitflow/hooks/pre-flow-hotfix-delete' -» ‘fusr/local/share/doc/git?low/hooks/pre-flow-hotfix-delete
"gitflow/hooks/pre-flow-hotfix-finish' -= "fusr/local/share/doc/gitflow/hooks/pre-flow-hotfix-finish
"gitflow/hooks/pre- flow-hotfix-publish® -> ‘fusr/local/share/doc/gitflow/hooks/pre-flow-hotfix-publish'
"gitflow/hooks/pre-Tlow-nottix-start” -= "fusr/local/share/doc/gitflow/hooks/pre-flow-hotTix-start
"gitflow/hooks/pre-flow- release-branch® -> *fusr/local/share/doc/gitflow/hooks/pre-flow- release-branch’
"gitflow/hooks/pre-Tlow- release-delete’ -> ‘Jusr/local/share/doc/gittlow/nooks/pre-flow- release-delete’
"gitflow/haooks/pre-flow-release-finish® -> 'fusr/local/share/doc/gitflow/hooks/pre-flow- release-finish'
"gitflow/hooks/pre-flow-release-publish' .= 'fusr/local/share/doc/gitflow/hooks/pre-flow. relasse-publish’
‘gitflaw/hooks/pre-flow-release-start' -> 'fusr/local/share/doc/gitflow/hooks/pre-flow- release-start
"gitflow/hooks/pre-flow- release-track’' -» “fusr/locals/share/doc/gitflow/hooks/pre-flow- release-track’

[11:04:12 AN]
mkdir flow

[11:04:37 AM]
-> % cd Tlow

[11:04:33 AM]
-> % git init
[[nitialized empty Git repository in fhomefhacker/course/flow/.git/
[11:04:41 ANH] [master]

-> & git flow init
Mo branches exist yet. Base branches must be created now.
Branch name for production releases: [master]
Branch name for “next release” development: [develop]

-

How to mame your supporting branch prefixes?

Feature branches? [Teature/]

Bugfix branches? [bugfix/]

Release branches? [release/]

Hotfix branches? [hotfix/)

Fupport branches? [support/]

Nersion tag prefix? []

Hooks and filters directory? [/home/hacker/course/flow/.git/hooks
[11:85:33 AM] [develop]

> 5 [

[156]

http://danielkummer.github.io/git-flow-cheatsheet/

Chapter 5

To configure it, we need to answer a bunch of questions about what names the
branches should have in each flow and what the version tag prefix and hooks
directory are. Let's just leave the defaults. Now, let's run the following:

git branch

Fpitflow/hooks/pre- flow- feature-delete’ -> 'Jusr/local/share/doc/gitflow/hooks/pre-flow- feature-delete
‘gitflow/hooks/pre- flow-feature-finish® -= ‘fusr/local/share/doc/gitflow/hooks/pre-flow-feature-finish
"gitflow/hooks/pre-flow- feature-publish' -» *fusr/local/share/doc/gitflow/hooks/pre.flow- feature-publish’
"gitflow/hooks/pre-flow-feature-pull’ -= '/fusr/local/share/doc/gitflow/hooks/pre-Tlow- feature-pull’
"gitflow/hooks/pre-flow- feature-start' -> 'fusr/local/share/doc/gitflow/hooks/pre-flow-featura-start
"gitflow/hooks/pre-flow- feature-track' -> 'fusr/local/share/doc/git{low/hooks/pre-flow- feature-track’
‘gitflow/hooks/pre-flow-hotfix-delete’ .= ‘fusr/locals/share/doc/gitflow/hooks/pre-flow-hotfix-delete’
"gitflow/hooks/pre-flow-hotfix-finish' -> °/fusr/local/share/doc/gitflow/hooks/pre-flow-hotfix-finish
"gitflow/hooks/pre- flow-hotfix-publish® -» 'fusr/local/share/doc/gitflow/hooks/pre- flow-hotfix-publish’
"gitflow/hooks/pre-Tlow-hotfix-start’ -> '/usr/local/share/doc/gitflow/hooks/pre-Tlow-hotfix-start’
"gitflow/hooks/pre-flow-release-branch' -»> 'Jusr/local/share/doc/gitflow/hooks/pre-flow-release-branch’
"gitflow/hooks/pre-flow- release-delete’ -> 'fusr/local/share/doc/gitflow/hooks/pre-flow: rélease-delete
"gitflow/hooks/pre-flow-release-finish® -> ‘fusr/locals/share/doc/gitflow/hooks/pre-flow-release-finish
"gitflow/hooks/pre-flow-release-publish’ -» *fusr/local/share/doc/gitflow/hooks/pre-flow- release-publish’
"gitflow/hooks/pre-Tlow-release-start' -> °fusr/local/share/doc/gitflow/hooks/pre-flow- release-start”
"gitflow/hooks/pre-flow- releasa-track' -> 'fusr/local/share/doc/gitflow/hooks/pre-1low-release-track’

[11:64:12 AM)
-= % mkdir flow

[11:04:37 AM]
-> % cd flow

[11:04:39 AM]
-> & git init
Initialized empty Git repasitory in /home/hacker/course/flow/.git/

[11:04:41 AM] [master]
> % git flow init
o branches exist yet. Base branches must be created now.
Branch name for production releasss: [master]
Branch name for “"next release™ development: [develop]

How to name your supporting branch prefixes?

Feature branches? [feature/]

Bugfix branches? [bugfix/]

Release branches? [releass/]

Hotfix branches? [hotfix/]

[upport branches? [support/]

lersion tag prefix? []

Hooks and filters directory? [/homeshacker/course/flow/.git/hooks]
avelop]

[11:05:39 AM] [d
-= % git branch
* develop
master
[11:05:44 AN]
= |

We can see that we are now on the develop branch, so no more developing on the
master branch. This helps us have a stable master, while not so stable features are
kept on the develop branch.

[157]

Developers' Treasure

If we go back to the cheatsheet, we can look at the first item, which is a feature
branch. Feature branches are useful when developing a specific part of functionality
or doing refactoring, but you don't want to break the existing functionality on the
develop branch. To create a feature branch, just run the following;:

git flow feature start featurel

"pitflow/hooks/pre- flow- release-finish® -> *fusr/local/share/doc/gitflow/hooks/pré- flow- release-finish®

"gitflow/hooks/pre-flow-release-publish' -= *fusr/local/sharesdoc/gitflow/hooks/pre-flow- release-publish’

‘gitflow/hooks/pre-flow- release-start' -» "fusr/local/sharefdoc/gitflow/heoks/pre-flow- release-start’

"gitflow/hooks/pre-flow- release-track' -> *fusr/local/share/doc/gitflow/hooks/pre-flow- release-track’
[11:04:12 AM]

> % mkdir flow
[11:

4:37 M)

- % cd flow

[11:04:39 AN]

= % git init

Tnitialized empty Git
1116

repositary in /homefhackerfcourse/flow/ . git/
1141 AM] [saster

|

> % git flow init

plo branches exist yet. Base branches must be created now.
Branch name for production releases: [master)

Branch nams for “next releass® development: [develop]

How T0 name your supporting branch prefixes?

Feature branches? [featurd/]

Bugfix branches? [bugfix/]

Release branches? [release/]

fotfix branches? [hotfix/]

Fupport branches? [support/]

jersion tag prefix? (]

Hooks and filters directory? [/home/hacker/course/flow/.git/hooks]

[11:05:32 AM] |develop]

-= % git branch

* develop

master
[11:05:44 AM] developl

-= % git flow feature start featurel

Ewitched to a neéw branch 'featuresfeaturel’

Fumnary of actions:

- A new branch ‘feature/featurel' was created, based on 'develop'
- You are now on branch °feature/featurel’

Pow, start comnitting on your feature. When done, use:

git flow feature finish featurel

[11:06:10 AM] [feature/featurel]

This is not the most intuitive description of the feature, but it's good for
demonstration purposes. GitFlow will also show us a summary of actions once

the feature branch has finished. This has created a new branch called feature/
featurel, based on the develop branch and has switched us to that branch. We can
also see this from our handy zsh prompt.

[158]

Chapter 5

Let's open up a file, edit, and save it:

git status

How to name your supparting branch prefixes?

Feature branches? [feature/)

Bugfix branches? [bugfix/]

Release branches? [release/]

Hotfix branches? [hotfix/]

Bupport branches? [support/]

'arsion tag prefix? []

Hooks and filters directory? [/home/hacker/course/flow/.git/hooks]
[11:05:39 AM] [develop)

-> % git branch

* develop

master

[11:05:44 AM] [develap]

-» % git flow feature start featurel

[Fwitched to a new branch *feature/featurel'

[fummary of actions:
- A new branch °feature/featurel' was created, based on ‘develop’
- You are now on branch 'feature/featurel’

flow, start committing on your feature. When done, use:

git flow feature finish featurel

[11:06:10 AM] [feature/featural]
-> % git branch
develop
= feature/featurel
master

[11:86:22 AM]
-» % vim featurel.txt
[11:06:42 AM]
-> % git status
n branch Teature/featurel
pntracked files:
{use "git add <file=,..” to include in what will be commity

git status

pothing added to commit but untracked files present (use "gi
] [11: L) [feature/featurel *
> % |

6:49

This command will tell us that we have an uncommitted file. Let's go ahead and
commit it.

Now git commit is using the nano editor for editing the commit message. Since we
prefer vim, let's go ahead and change the default editor to vim. All we need to do is
add this line in our zshrc and reload it:

export EDITOR=vim

Now when we doa git commit Vim opens up, shows us a summary of the commit,
and closes.

[159]

Developers' Treasure

Now let's assume that we've finished adding a new feature. It's time to merge the
feature branch back to develop with the following;:

git flow feature finish featurel

master

[11:
-» % vim featurel
[11:06:4
.= % git status
in branch feature/featurel
Untracked files:
{use “git add <file>...” to include in what will be committed)

featurel.txt

nothing added to commit but untracked files présent (use "git add™ to Track)
[11 M} 1 T

feat turel =|

% git add fe

.= & git commit
Mborting commit due to empty commit message.
(11 M
vim ~/.zshre

=> % source "1",‘15
[

-> % git commit
[feature/featurel alb83fe] Added feature 1
1 file changed, 1 insertion(+)
create mode 108644 featurel.txt
[11:87

-= % git flow feature h featurel
witched to branch 'develop®

Mpdating 628ec35. . alb83fe

Fast-Torward

featurel.txt | 1 +

1 file changed, 1 insertion{+)

create mode 188644 featurel.txt

Peleted branch feature/featurel (was alb83fe).

fummary of actions:
- The featura branch 'feature/featursl® was merged into "develop’
- Feature branch 'feature/featurel' has been locally deleted

You are now on branch ‘develop’

[11:07:54 AM] fevelop

Again, to get a summary of actions:

* The feature branch was merged back to develop
* The feature branch has been deleted
* The current branch was switched back to develop

If we do an 1s, we see the file from our branch present on the develop branch.
Looking at the cheatsheet we see a graphical representation of this process.

Next up is starting a release. Release branches are good for stopping the incoming
features and bug fixes from the develop branch, testing the current version,
submitting bug fixes on it, and releasing it to the general public.

[160]

Chapter 5

As we can see, the syntax is similar, the process is similar, the develop is branched to a
release branch, but when it comes to finishing the branch, the features are also merged
to the master branch, and a tag is cut from this branch. Time to see it in action:

git flow release start 1.0.0

> % vim </, z5hrc
[11:67:23 AM]

-> % source =/_rshre
[11:07:26 AM]

-> % git commit
[feature/featurel albB3fe] Added feature 1
1 file changed, 1 insertion(+)
create mode 106644 featurel.txt
[11:07:39 AH] [feature/fe
-> % gQit flow Teature finish featurel
Fwitched to branch 'develop'
pdating 628ec35. alb83fe
Fast-forward
featurel.txt | 1
1 file changed, 1 insertion{+)
creats moda 188644 featurel.txt
Peleted branch feature/featurel [was albBife).

Fummary of actions:

- The feature branch 'feature/featurel® was merged into "develop’
- Feature branch 'feature/featurel' has been locally deleted

- You are now on branch ‘develop’

[11:07:54 AM] [develop]
-> % 1s
featurel.txt

[11:08:00 AM] [develop]
-> % git flow release start 1.6.8
Fwitched to a new branch ‘release/1.0.9'

Fummary of actions:
- A neéw branch ‘release/l1.0.0° was created, based on 'develop’
- You are now on branch 'release/1.6.8'

Follow-up actions:
- Bump the version number now!
- Start committing last-minute fixes in preparing your release
- When dona, rum:
git flow release finish '1.6.6'

[11:08:57 AM] release/

This switches us over to our release/1.0.0 branch. Let's add a releasenotes. txt
file to show what has changed in this release. Added more bugs...Hopefully not!

Let's commit the file.

[161]

Developers' Treasure

This is usually the case when you start to run your integration and stress testing, to
see if all is well and to check that there are no bugs.

After the testing is finished, we go ahead and finish our release branch:

git flow release finish 1.0.0

- You are now on branch ‘release/1.6.8'

Follow-up actions:

- Bump the version number now!

- Start committing last-minute fixes in preparing your release
- When done, run:

it flow release finish "1.6.4°

[11:08:57 AM]
-+ % vin releasenotes.txt
[11:09:27 AM] [release
-=> % git add releasenotes.txt
[11:09:33 AM] [release/
-> % git commit
Ireleass/1.0.8 28380c4] Updated release notes
1 file changed, 3 insertionsi+)
create mode 108644 releasenotes.txt
[11:09:42 AH] {release/1.6.8]
-> % git flow release finish 1.8.9
pwitched to branch 'master’
Merge made by the 'recursive’ strategy.
featurel.tat |11+
releasenotes. tut | 3 +v
2 files changed, 4 insertions(+)
create mode 108644 featurel.txt
create mode 108644 relsasenctes.txt
[Ewitched to branch 'develop*
Merge made by the ‘recursive' strategy.
releasenotes.tut | 3 +++
1 file changed, 3 insertions(+)
creatg mode 106644 releasenctes.txt
Deleted branch release/1.8.8 (was 26389¢d).

[fumnary of actions:

- Release branch ‘release/1.8.8° has been merged into 'master’
- The release was tagged '1.8.0"

- Release tag '1.8.8' has been back-merged into 'develop'

- Release branch 'release/1.6.8" has been locally deleted

- You are now on branch ‘develop’

[11:10:06 AM] [develop]

It will prompt us for a series of release messages: we will leave all the defaults.

[162]

Chapter 5

Checking out the summary, we can see that:

* The release branch was merged into master

* A tag was cut from master with the release version
* The tag has also been merged into develop

* The release branch has been deleted

* And we are back on the develop branch

Now, we run the following:

git branch

- Start committing last-minute fixes in preparing your release
- When done, run:

git flow release finish '1.0.8"

[11:88:57 AM] [re

-= % vim releasenotes.txt
[11:09:27 AH]

-= % git add releasenotes.txt
[11:09:33 AN] [release/1.0.0 *]

-» % git commit

Irelease/1.8.8 28389c¢4] Updated rélease notes

1 file changed, 3 insertionsi+)

create mode 188644 releasenotes. txt
[11:09:42 AN] [release/1.0.0

-= &% git flow releass finish 1.0.0

Fwitched to branch ‘master’

Merge made by the ‘récursive' strategy.

featurel . txt 11+

releasenctes.txt | 3 +

2 files changed, 4 insertions{+)

create made 108644 featurel.txt

create mode 188644 releasenotes.txt

Fwitched to branch 'develop

Merge made by the ‘recursive' strategy.

releasenctes.txt | 3 ++=

1 file changad, 3 insertions(+)

create mode 166644 releasensctes.txt

Peleted branch release/1.8.8 (was 26389c4).

Fummary of actions:

- Release branch ‘release/1.6.9' has been merged into ‘master’
- The release was tagged '1.98.8°

- Release tag "1.8.8' has beéen back-merged into 'develop'

- Release branch 'release/1.8.68' has been locally deleted

- You are now on branch °develop

[11:10:06 AM]
-= % git branch
* develop

master

> o

[11:10:35 AM] [develop]

[163]

Developers' Treasure

We see that the only two available branches are master and develop:

git tag

git flow release finish °1.6.8°

[11:88:57 AH] [release/s1.8.8]
->= % vin releasenctes.txt
11:00:27 AN]
> % git add releasenotes.txt
[11:09:33 AM]
-> % gil commit
lrelease/1.8.0 2038%9c4] Updated release notes
1 Tile changed, 3 insertions(+)
create mode 106644 releasenotes.txt
[11:09:42 AM] [release/1.8.8)]
-= % git flow release finish 1.0.90
Ewitched to branch 'master’
Merge made by the "recursive' strategy.
featural.txt 11+
releasenotes.txt | 3 ++=+
2 files changed, 4 insertions(+)
create mode 108644 featurel.txt
create mode 108644 releasenctes.txt
Ewitched to branch ‘develop”
Merge made by the 'recursive' strategy
releasenotes. tut | 3 ++=
1 file changed, 3 insertions(+]
create mode 108644 releasenotes. txt
Peleted branch release/1.0.0 (was 28389c4).

fumnary of actions:

- Release branch 'release/1.8.8' has been merged into 'master’
- The release was tagged '1.8.8°

- Release tag '1.8.8° has been back-merged inte 'develop’

- Release branch 'release/1.9.0° has been locally deleted

- You are now on branch ‘develop

[11:10:06 AM] [developl
-> % git branch
* develop
master
[11:18:35 AN] [develop]
> % git tag
1.8.8
s [11:10:38 AM] [develop]
> %

This tells us that there is a 1.0.0 tag cut. We can see that the branch now contains two
files from the merge of the feature and release branch; and if we also switch to the
master branch, we can see that, at this point, master is an exact replica of develop:

[164]

Chapter 5

1 file changed, 3 insertions(+)
create mode 168664 easenotes. txt

[11: AM]
> % git flow releas ish 1.8.8
fwitched to branch 'master’
Merge made by the ‘recursive® strategy.
featurel.txt 11+
releasenotes_txt | 3 «
2 files changed, 4 insertlons(+]
create mode 100644 featurel.txt
create node 108644 releasenotes.txt
Fwitched to branch 'develep’
Merge made by the ‘recursive’ strategy.
releazenotas. txt | 3 +++
1 file changed, 3 insertions{+)
create mode 188644 releasenotes.ixt
peleted branch release/1.8.8 (was 28389cd).

[release/1.8.8]

[Fummary of actions:

- Release branch 'release/1.0.0' has been merged into 'master
. The release was tagged '1.8.8°

- Release tag '1.8.8' has been back-merged into “develop”

- Release branch 'release/1.8.8° has been locally deleted

- You are now on branch ‘develep’

[11:10:06 AM] [develop)
-> branch
- d p

% git
master

[11:

-» % git tag
1.0.0

featurel.txt rele

= % git th_'tkll:lul-.l'\nlﬁLl.‘[5
Fwitched to branch
[11:10:47 AH]

s
featurel.txt releasenotes.txt
[11:10:48 AM]

-> 4

GitFlow also comes with an enhanced hooks functionality. If we read the
documentation, we can see all the possible hooks in the hooks folder. Let's add a
git hook that will be executed before every hotfix branch. For this we just open the
template, copy the content, and paste it to a file with the name pre-flow-hotfix-
start in our .git/hooks directory.

GitFlow has more workflows than the ones presented. We won't go through all of
them, but you can find additional information by visiting the cheatsheet page or by
reading the instructions on the GitHub page.

Let's just simply echo a message with the version and origin.

If we look at the hot £ix flow, we can see that they are created from the master
branch and merged back to master and develop, with a tag on master.

[165]

Developers' Treasure

Let's see if it works:

git flow hotfix start 1.0.1

fumnary of actions:

- The release was tagged "1.8.8°

- You are now on branch ‘develop

[11:10:06 AN]
->= % git branch
* develop
master
[11:10:35 AM)

> % git tag
h.o.e

[11:10:38 AM]

-> % 15

[featurel.txt releasenotes.txt
[11:10:42 AH]

-> % git checkout master

Ewitched to branch 'master’
[11:10:47 AM]

-> % 18

[featurel txt releasenotes.txt
[11:10:48 AH]

-> % vim .git/hooks/pre-flow-hotfix-start
[11:12:

-> % git flow hotfix start 1.8.1
Ewitched to a new branch 'hotfix/1.6.1"

Fummary of actions:

- You are now on branch ‘hotfix/1.8.1'
Follow-up actions:

- Start committing your hot fixes

- Bump the version number now!

- When done, run:

git flow hotfix finish '1.8.1'

[11:13:17 AH]
e |

- Release branch 'release/1.8.8° has been merged into 'master’

- Releasa tag '1.8.0' has been back.-merged into 'develop’
- Release branch ‘release/1.8.8' has been locally deleted

[develop]

[develop]

[develap]

[develop]

[master]

[master]

[master]

- A néw branch ‘hotfix/1.0.1' was created, based on 'master’

[hotfix/1.8.1)

[166]

Chapter 5

Apparently not. Something went wrong, our script was not executed and we need to

delete our branch:

git flow hotfix delete 1.0.1

> % git branch
* develop

master
[11:10:35 AM] |develop]
-> % git tag
1.6.6
[11:10:38 AM] elopl
-> % s
featurel.txt releasenctes.txt

[11:10:42 AN] [develop]
-» % git checkout master
Fwitched to branch '‘master’

[11:10:47 AM] [master]
-> % 1s
fenturel.txt releasenotes.txt

[11:10:48 AN} [master]
-> % vim ,git/hooks/pre-flow-hotfix-start

[11:12:49 AM] [master]

-» % git flow hotfix start 1.8.1
Fwitched te a new branch "hotfix/1.8.1°

Fummary of actions:
- A new branch "hotfix/1.8.1' was created, based on 'master’
- You are now on branch ‘hotfix/1.6.1'

Follow-up actions:

- Start committing your hot fixes
- Bump the version number now!

- When done, run:

git flow hotfix finish 'l.8.1'

[11:13:17 AM] [hotfix/1.8.1]
-» % git flow hotfix delete 1.6.1

Fwitched to branch '‘master’

Peleted branch hotfix/1.8.1 (was edd8d51).

Eummary of actions:

- Hotfix branch "hotfix/1.6.1' has been deleted.

- You are now on branch ‘master’

[11:13:52 AHM] |master]

e |

[167]

Developers' Treasure

Analyzing the git hooks directory, we see that our hook does not have execution
permissions. After adding execution permissions, and running the git hook
command again, we can see our message on the top of the hotfix output. Let's finish
this hotfix with the following:

git flow hotfix finish 1.0.1

> % 11 .git/hooks
[total 44K

-rwxrwxr-x 1 hacker hacker 478 Jun

-rwxrwxr-x 1 hacker hacker 836 Jun

-rwirwxr-x 1 hacker hacker 189 Jun

rwxrwir-x 1 hacker hacker 424 Jun

-rwxrwxr-x 1 hacker hacker 1.7K Jun

-rw-rW-r-- 1 hacker hacker 632 Jun pre-Tlow-hotfix-start
-rwxrwxr-x 1 hacker hacker 1.3K Jun a4

- rwxrwxr-x 1 hacker hacker 1.4K Jun 1l:

-rwxrwxr-x 1 hacker hacker 4.8K Jun 28 11:04

S e S

hacker hacker 3.6K Jun 28 11:04

> % chmod +x . e-Tlow-hotfix-start

.= % git flow hotfix start 1.8.1
This is a hotfix for 1.8.1 from origin
switched to a new branch ‘hotfin/l.6.1°

Fummary of actions:
- A new branch "hotfix/1.0.1' was created, based on 'master’
- You are now on branch ‘hotfix/1.8.1'

Follow-up actions:

- Start committing your hot fixes
- Bump the version number now!

- When dene, run:

git flow hotfix finish ‘1.8.1'

[11:14:28 AM]
-= % git flow hotfix finish 1.9.1
Ewitched to branch 'develop'
Peleted branch hotfix/1.8.1 {was edd@8d51).

Kummary of actions:
- Hotfix branch "hotfix/1.8.1° has been merged into 'master’
. The hotfix was tagged '1.8.1'
- Hotfix branch "hotfix/1.8.1° has been locally deleted
You are now on branch ‘develop’

[11:14:53 AH] develop]

As you can see, the commands are quite straightforward. There is also an oh-my-zsh
plugin that you can activate to have command line completion.

As we said earlier, this is a plugin suitable for teams of developers working on
multiple features, fixing bugs, and releasing hotfixes all at the same time. GitFlow
is simple to learn, and helps teams have a correct workflow where they can

easily prepare patches for production code, without worrying about the extra
functionalities developed on the master branch.

[168]

Chapter 5

You can tweak the config as you like: some people prefer to place the hooks folder
in a different place so that it is committed on the git repo and they don't have to
worry about copying the files over; others continue to develop on the master branch
and use a separate branch such as customer for the production code.

Merging Git conflicts with ease

Now let's look at another improvement that we can bring to git. Most tasks are
easy to execute from the command line, but some tasks, such as merging, require a
specialist's eye for understanding the different format.

Let's open the feature file from our previous chapter, edit it, add a new line, and
save it:

git diff

= 1s
featurel.txt releasenotes.txt

git diff]

[169]

Developers' Treasure

The git diff command will show us colored text explaining the differences

between the git file and the modified file, but some people find this format
hard to understand:

diff --git a/featurel.txt b/featurel.txt
lindex 8l4c83c..b9d3702 100644

-- affeaturel.txt

e+ b/featurel.txt

a1 +1,2 @@

File created In feature 1

+«File created in feature 2

And new Line

Luckily, we can tell git to use external tools when it comes to merge and one
external tool that we can use is called Meld. Let's install it using the following;:

sudo apt install meld

[170]

Chapter 5

[11:17:15 AM] [developl
-> % 15
featurel.txt releasenotes.txt
[11:17:30 AM] |develop]
-> % vin featurel.txt
2 [11:17:43 AM] [develop *]
-= % git diff
¥ [11:17:55 AM [develop *|

-> % sudo apt install meld|

After this, we can run the following command:

git difftool

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

python-gi-caire

The following WEW packages will be installed:

meld python-gi-caire

P upgraded, 2 newly installed. & to remove and & not upgraded.

Meed to get 462 kB of archives.

Bfter this oparation, 3,007 kB of additional disk space will be used.

fo you want ta continue? [¥/n]

Get:1 http://ro,archive, ubuntu.com/ubuntu xenial/universe amd64 python-gi-cairo andb4 3.20.8-8ubuntul (6,246 B]
et 2 http://ro.archive. ubuntu.com/ubuntu xenial/universe amdbd meld all 3.14.2-1 (457 kB)

Fetched 463 kB in Bs [917 kB/s)

Felecting previously unselected package python-gi-caliro.

(Reading database ... 216811 files and directories currently installed.)

Preparing to unpack .../python-gi-cairo 3,28.8-8ubuntul amdGd.deb ...

Unpacking python-gi-caire (3.20.0-8ubuntul)

Belecting previously unselected package meld,

Preparing to unpack ...farchives/meld 3.14.2-1 all.deb ...

Mnpacking meld (3.14.2-1) .

Processing triggers for hicolar-icon-theme (8.15-OGubuntul) ...

Processing triggers for shared-mime-info (1.5-2ubuntud.l) ...

Processing triggers for man-db (2.7.5-1) ...

Processing triggers for libglib2.8-8:amd6d4 (2.48.1-1-ubuntul6.84.1) ...

Processing triggers for bamfdaemon (8.5.3-bizr0+16.04.20160523-0ubuntul) ...

Rebuilding /usr/share/applications/bamf.2. index...

Processing triggers for gnome-menus (3.13.3-Gubuntuld) ...

Processing triggers for desktop-file-utils (8.22-lubuntus) ...

Processing triggers for mime-support (3.5%ubuntul)

Eetting up python-gi-cairo (3.20.8-8ubuntul) ...

Fetting up meld (3.14.2-1) ..
packerdlaptap [11:18:08 AM]
> % git difftool

aw] [develop *]

[This message is displayed because ‘diff.tool’ is not configured.

Fee "git difftocl --tool-help® or 'git help conflg' for more details.

"git difftool’ will now attempt to use one of the following tools:

peld opendiff kdiff3 tkdiff xxdiff kompare gvimdiff diffuse diffmerge ecmerge pdmerge araxls bc codecompare vimdiff emerge

Viewlng (1/1): 'featurel.txt’
Launch ‘meld’ [Y/n]:

[171]

Developers' Treasure

It will ask us if we want to launch Meld as an external program for viewing the file.
It's also giving us a list of tools that it can use for displaying the difference. Hit y to
open Meld:

Now we can easily see the two files side by side and the differences between them.
We can see that 1 has been changed to 2 and a new line has been added. Based on
this output we can easily decide if we want to add it or not. Let's commit the file
as it is.

Next, we will look at merge conflicts. Let's manually create a branch called test
and edit the same file, commit it, and then switch back to the develop branch. Let's
update the same file, commit it, and then try to merge the test branch: and, of
course, there is a merge conflict.

[172]

Chapter 5

For resolving the conflict, we will be using the following command:

git mergetool

[11:19:34 AM]
-> % git checkout master
Ewitched to branch 'master’
[11:19:42 AM] [master]
-> % vin featurel.txt
[11:19:56 AM]
-= % git checkout develop
[fwitched to branch ‘develop’
[11:20:00 AN]
-> % vim featurel.txt
[11:20:12 AM] [develop *]
-+ % git sTatus
On branch develop
Changes not staged for commit:
{use "git add <file>..." to update what will be committed)
{use "git checkout -- <file>..." to discard changes in working directary)

ster]

modified: featurel.txt
po changes added to commit (use "git add™ and/o commit -a"}
[11:20:17 AM] [devel: 1

-> &% git commit featurel.txt

idevelop BbbB2c9] Updated feature

1 file changed, 1 insertion{+). 1 deletion(-)
[11:20:27 AH] [de

> % git merge test

Puto-merging featurel. txt

[CONFLICT {content}: Merge conflict in featurel.txt

-= % git mergetool

This message is displayed because 'merge.tool' is not cenfigured.
Fee 'git mergetool --tool-help' or 'git help config' for more details.
"git mergetool' will now attempt to use one of the following
peld opendiff kdiff3 tkdiff xxdiff tortoisemerge gvimdiff df
Marging:

featurel. txt

is be codecompare vimdiff emerge

pormal merge conflict for *featurel.txt':

{local}: modified file

{remote}: medified file

Hit return to start merge resolution tool (meld):]

&5 3 feay 8 | B8 Deseeren o | L2 bewrure1_REMOTE_j00e8 ik o
File Created \h 4 - Srile Created 1 - ®File created 10 feetule
4o nem Line Ard new Vine and nrw Vine sf fest

i, coll s

[173]

Developers' Treasure

Again, it offers to open Meld. In Meld we can see the three files:

* On the left is the file from our current branch
* On theright is the file from the remote branch
* In the middle is the resulting file that will be created

Let's say that we decide the correct version for the feature is 4 and that we also want
toadd of text:

git commit -a

[11:20:17 AM] [develop *]
-> % git commit featurel.txt
ldevelop 8bbB2c9] Updated feature
1 file changed, 1 insertion{+), 1 deletion(-)
[11:20:27 AM] [develop]
> % git merge test
fwto-merging featurel.txt
[CONFLICT (content): Merge conflict in featurel.txt
Putomatic merge failed; fix conflicts and then commit the result.
[11:20:34 AN] [develop *]
-» % git mergetool

This message is displayed because ‘merge.tool’ is not configured.

Fee ‘git mergetool --tool-help' or ‘git help config® for more details.

"git mergetool’ will now attempt to use one of the following tools:

mold opendiff kdiffd thdiff xxdiff tortolsenerge gvimdiff diffuse diffmerge scmerge pdmerge araxis bc codecompars vimdiff emerge
Merging:

[featurel. . txt

pormal merge conflict for "featurel.txt':

{local}: modified file

{remote}: modified file

Hit return to start merge resolution tool (meld):

imeld:28118): Gtk-CRITICAL **: gtk container foreach: assertion 'GTK_IS CONTAINER (container)' failed

{meld:268118): Gtk-CRITICAL **: gtk container foreach: assertion 'GTK IS CONTAINER (container)' failed

=

(meld:20118): Gtk-CRITICAL *=*: gtk_container_foreach: assertion 'GTK_IS_CONTAINER (container)' failed

x

(meld:28118) : Gtk-CRITICAL **: gtk container_fereach: assertion 'GTE_IS CONTAINER (centainer)' failed
(meld:28118): Gtk-CRITICAL **: gtk_container_foreach: assertion 'GTK_IS CONTAINER (container)' failed

imeld:26118): Gt

o

~CRITICAL *=*: gtk_container_foreach: V' failed

(meld:20118): Gtk-CRITICAL **: gtk_container_foreach: Dit c IllIIlit =)) failed
imeld:28118) : Gtk-CRITICAL **: gtk_container fareach: a b 0)' failed
[11:21:17 AM] [develop
-» % vim featurel.txt
[11:21:25 AM] [develop *]

-> % git commit -afl

You can see the predefined commit message. Don't forget to remove the temporary
file that was created at the merge:

[174]

Chapter 5

Changes To be ¢

Untracked files:
2 1]

~/course/flow/.git/COMMIT EDITHSG
"~/course/flow/.glt/COMMIT EDITMSG" 221, 586C

In general, most modern IDEs offer plugins for working with git, including merging
and diffs. We recommend that you get more acquainted with the command-line
tools, because then you don't need to learn a new git plugin when switching from
one IDE to another.

The git command works the same way across Linux, Mac, and Windows. It is a tool
that developers use a lot and being fluent in it will boost your productivity.

From localhost to instant DNS

Often, especially when working with other people or when developing integrations
with online services, we have to make our computer accessible from the Internet.
This information could be obtained from our trusty router, but wouldn't it be easier
if we just had a tool that makes our computer port publicly accessible?

Luckily for us there is such a tool!

Meet ngrok, the versatile one line command that makes you forget about router
configuration and continuous redeploys. Ngrok is a simple tool that exposes a port
from our computer to a unique domain name publicly available on the Internet.

How does it do it?

Well, let's see it in action!

[175]

Developers' Treasure

Go to the website, click on the Download button, and choose your destiny. In our
case, our destiny is the Linux package in 64-bit. Next, go to the terminal, unzip the
file, and copy its contents to the bin folder:

* cddownloads

® unzip ngrok.zip

* mv ngrok ~/bin

>% 15
penerate.vim ngrok-stable-Llinux-amd6d.zip
[07:14:37 AN]

= % unzip ngrok-stable-linux-amdéd.zip
Brchive: ngrok-stable-linux-amdGd.zip
inflating: ngrok

[07:14:43 AN]

-» % 1s

penerate.vim ngrok-stable-linux-amd64.zip
[07:14:45 AM]

* % ov ngrok -/bin
[87:14:51 AM]

[176]

Chapter 5

Now do a rehash and type the following:

ngrok http 80

inconshreveable

United States

rtl 5 ps8 pa8
0.60 ©.80 0.68 0.6

We can see that port forwarding for ports 80 and 443 is running on our local 80 port,
at a custom ngrok subdomain name. We can also see the region of the server, which
by default is located in the US. If we are in a different region we can set this with the
following;:

ngrok http 80 --region eu

[177]

Developers' Treasure

The ngrok server is located in Europe. In order to test our ngrok server, let's use our
trusty Python server to show a simple HTML page:

python -m SimpleHTTPServer

python m“)_rlullj-H'H”‘:‘(‘l\"I."
Serving HTTP on 6.9.8.0 port 3606 ...

python -m SimpleHTTPServer

Then restart ngrok with the HTTP traffic forwarded from port 8000, the default
Python web server port:

ngrok http 8000 --region eu

[178]

Chapter 5

ngrak KEEp 46 =region a4
ngrok by @inconshreveable

opn rel
8 8.00

Click on the link provided by ngrok, and we will see our web page accessible
to the Internet.

That's it. No configuration, no account, no headaches. Just a simple one line
command that we can run from anywhere. The subdomain provided by ngrok is
a generated one and will change every time we restart ngrok. We have the option
of using our custom domain name like Linux https://ngrok.com/, but only after
acquiring a paid account.

The ngrok also has a web interface at http://127.0.0.1:4040 where we can see
statistics and logs.

[179]

https://ngrok.com/

Developers' Treasure

Power comes from ease of use and ngrok provides us with that power:

B ks i pou

command_line (htitp) Connection Durations
Py tsnnel
— command_ing
e command line (nig)
- an
Glabal
oz HTTP Requests
= e
I command ling

HTTP Request Durations

bava e Lo
P command fine
command_ine (hits]

&

eyt s aet el P in il o ward £ slean B o Fu o Frosbe i s e peionic o Aol U g, wekiene k)

0%
000
ox

0o

L e
068
L]

002

Here are some specific scenarios for using this powerful tool:

When testing integrations with online services that require a callback ur1l,

such as oAuth login and online payments

When developing mobile applications that connect to a local service

When we want to expose an ssh port

When we want to give our clients access to a webpage on our laptop, to show

them some code, maybe

[180]

Chapter 5

JSON jamming in the new age

Nowadays, JSON is everywhere, in web apis, in configuration files, even in logs.
JSON is the default format used to structure data. Because it is used so much, there
will be times when we will need to process JSON from the command line. Could you
imagine doing this with grep, sed, or other conventional tools? That would be quite
a challenge.

Luckily for us, there is a simple Command-line tool called jg that we can use to
query JSON files. It comes with its own language syntax, as we will see in just a
few minutes.

First let's install jq with the following command:

sudo apt install jq

[87123:56 AM]
= % sudo apt install jqf

sudo apt install jq

[181]

Developers' Treasure

Now let's use an example file, a dummy access log in JSON format: access. log,
which we can also find in the course GitHub repository.

Let's start with some simple queries:

jg . access.log

1 [requestMethod™ : "GET™, “requestUrl™:"/banks™, “apiVersion®: "v1®, "re [87:24:36 AN]
questHeaders™: {"host": "myservice.com”, "apikey*®:*79d188cf242¢392714df9 -> % jg . access.logl
35355!:!9\:','1-lorwarded-fur‘:'lSS.113.9?.?5‘}.'rellueslﬂudy }, " reque

stDate":"5un, 89 Oct 2016 23:45:81 GMT", respun:eStnlus {:]
{‘rsquaxtﬂe(hoﬂ"-'ﬂﬂ&T" "requestlUrl”:"/pay", "apiVersion®: "v2", "req
vestHeaders": {"host":"otherservice.com®, "apike\r" ‘ngla&:f?d?e:gah‘w
1933385b19¢", "x-forwarded-for®:*185.113.97.76"}, " requestBody " : {*amoun
t°: 122, “clientld®: 12123244}, requestDate™:"Mon, 18 Oct 2016 12:45:
89 GMT","responseStatus”:200}

{"requestMethed” :"GET", "requestUrl”:"/banks™, "apiversion®: "v1®, "re
questHeaders®: {"host": "myservice.com", "apikey": ‘1211Bnef242939n7fld!9
3a3850112°, "x-forwarded-for®:"122.113.97.76"}, " requestBody™: {}, " reque
stDate":"Tue, 11 Oct 2016 23:45:01 GMT", “responseStatus”:484}
{"requestMethod” : "DELETE" , " requestUrl”:"/transaction™, “apiVersion®:
Wi, mqutstHndura) hcﬂ':'ny“r\rl:e.:um','Hnlkey':'?wlﬂﬂcfz-ﬂc
30a7144103n385019¢", *x-forunrded-for®: "185,111,.22.76°}, " requestBody” :
{}."requestDate”:"Tue, 11 Oct 2616 69:45:81 GMT", “responseStatus":208

=

s

{"requestMetheod” : "GET", “requestUrl™:"/banks®, “apiVersion®: “v1®, “re
questHeaders®: {"host”:"sysarvice.com”, "apikey”:"123188c1242e30a714d10
3238501127, "x-forwarded-for":"185.113.97.767}, "requestBody”:{}, " reque
stDate”:"Wed, 12 Oct 2016 22:48:81 GHT','rupnnseStams':295}
{"requestMethod” : "PUT", “requestUrl®:"/bank", "apiVersion®: "wl", “"req
uestHeaders®: {“host*: *nyservice, con*, ‘opikey”:'?Qalsﬁcf242939a?f¢df93
a385b19c", " furwardcd for":"185.111.97.76"}, " requestBody"” : {"update"®:
1, "datalds": [188, 122, 187, 176, 102]}, questDate”:"Wed, 12 Oct 2
816 13:25:81 GHT' "responseStatus”:200}

{"requestMeth d"‘?ﬁs‘l" “requestUrl”:"/pay”, “apiVersion®: "vi", “reqg
uestHeaders®:{“host*: “otherservice.con", ”aoikey‘ *79d188cf242¢307744
193a385b19c", "x-forwarded- for®:"185.113. 6°}. “requestBody”: {“amoun
t":23, "clientld™: 1234332}.° ququlD:li"'Ihu. 13 Oct 2016 13:45:01
GMT",“responseStatus”:266}

w

o

jq . access.log

We will print the JSON objects back to the screen, in a pretty format:

[182]

Chapter 5

1 [requestMethod™ : "GET™, “requestUrl™:"/banks™, “apiVersion®: "v1®, "re

~

w

=

w

o

-

questHeaders™: {"host":"myservice.com”, "apikey":*79d188¢f242e39a714dfd
3a385b19¢”, "x-forwarded- for™:"185.113.97.76"}, "requestBody " :{} . " reque
stDate”:"Sun, 89 Oct 2016 23:45:81 GMT", "responseStatus”
{" requestMethod” : "POST", "requestUrl”:"/pay", “apiVersion®: "v2", "req
vestHeaders®: {"host":"otherservice.com”, "apikey®:"79d188cf242e309a714d
193a385b19¢", "x-forwarded-for®:"185.113.97.76"}. "requestBody " : {"amoun
t%: 122, “clientId®: 12123244}, requestDate™:"Mon, 18 Oct 2616 12:45:
69 GMT","responseStatus”:200}
(" requestMethod”:"GET", “requesturl”:"/banks™, "apiversion": "v1-, °re
questHeaders”:{"host":"myservice.com”, "apikey": 'usmcmnzeanmq
3a3850112°, "x-forwarded-for®:"122.113.97.76%}, " requestBody ™ : {}, " reque
stDate”:"Tue, 11 Oct 2616 23:45:81 GMT™,"responseStatus” 464}
(" requestMethod" : "DELETE", " requestlrl”:*/transaction”, "apiVersion®:
“requesteaders”: {*host": "nyservice.con”, "apikey";"79d188c1242¢
30n71441930305019c " . "x-forwarded-for®:"185.111.22. 1'6‘1. requastiody”:
{},"requesthate”:"Tue, 11 Oct 2616 69:45:81 GMT", “responseStatus”:288

ra

{"requestMethod” : "GET", “requestUrl™:"/banks™, "apiVersion®: “v1®, “re
questHeaders®: {"host”: "syservice.com”, "apikey”:"123188c1242e30a714d10
3230501127, "x-forwarded-for":"185.113.97.767}, "requestBody”:{}, " reque
stDate":"Wed, 12 Oct 2016 22:48:81 GMT", "responseStatus”:288]
{*requestMethod” : "PUT*, “requestlUrl®:"/bank", "apiVersion®: "v1", "req
uestHeaders®: {“host*: “myservice.con®, “apikey”: *79d180¢1242¢3%a7 14193
a385b19¢", "x- forwarded-for®:"185.111.97.76"}, " requestBody" : { "update”:
1, "datalds®: [188, 122, 187, 176, 102]},"requestDate”:"Wed, 12 Oct 2
816 13:25:81 GMT" ‘rupunnstatu; 1200}

{"requestMethod": "POST", "requestUrl”:"fpay”, “apiVersion®: *vi", "reqg
vestheaders®:{“host® ‘o:herservice com®, "apikey": “794188cf242e30a714d
193a365b19¢", "x- forwarded- for":"185.113.97.76" }, “ requestBody” : {*amoun
t":23, “clientld™: 1234332}.'r¢ﬂuﬂ.tﬂala':'Illu. 13 Oct 2016 13:45:81
GMT", “responseStatus”:266}

"requestDate”: "Wed, 12 Oct 2816 22:48:81 GHT",

“responseStatus”: 200

"raquestMathod": "PUT",

"rnquﬁ.‘-RLIr'l"l “/bank",

“apiVersion™: “v1°,

requestHeaaar's R |
"host" 'n)uch ce.com”
"apikey": 790153(1’?IZE]‘?J?NGIBJHDSIIE(.
*x-forvarded-for": *185,111 a1

!requestBu y*s {
"update”: 1,
“datalds”: [

188,

122,

187,

176,

182
1

'
"requestDate”:
“responseStatu:

“Wed. 17 Oct 2016 13:25:081 GMT",

——

"requastMathod”:
“requestUrl
“apiVersion":

“requestHeaders”
“hest": “etherservice.com”,
"!D kay '!‘BUIBSCT €39a714d193a305019c",

"x-forwarded-for"s *185.113.97.76
"reque:lBody": {
“amount*: 2
"clientId":

1234332

"I"v.'ﬂlli!stnate"t "Thu, 13 Oct 2016 13:45:81 GMT",
"responseStatus”: 200

i [07:24:46 AN)
e |

If we want to grab the request method from each request, run the following:

jaq

' .requestMethod' access.log

1

-

w

" requestMethod” : "GET*, *requestUrl®:*/banks®, "apiVersion®: "v1*, *re
questHeaders™: {"host":"msyservice.com”, “apikey":*79d188¢f242e3927 14018
3a385b19¢c", "x- Torwar -fur':'185.113.9?.75‘}.'requesl&udy" }, " reque
stDate":"5un, B9 Oct 2016 23:45:81 Gm'.'re:pnnustatu:
{"requestMathod” : "POST", "requestlrl™:"/ “apiVersion®: “v2", “req
vestHeaders®: {"host":"otherservice.com®, "apikey 'T9d183c\‘2d2e393?ﬂd
103a385b19¢", "x-forwarded-for®:"185,113.97.76"}. "requestBody " : {"amoun
t%: 122, “clientId®: 12123244}, " requestDate”:"Mon, 18 Oct 2616 12:45:
89 GMT","responseStatus”:200}
{*requestietnEERENSI" . " requestUrl”:"/banks™, "apiversion®: "v1®, “re
questHeaders”:{"host":"myservice.com”, ‘epikey' ‘l!!\as:f:l?ei%'.'udﬂ
3a385b112", "x-forwarded-for®:"122,113.97,76%}, " requestBody": (}, " reque
sthate”:"Tue, 11 Oct 2616 23:45:81 GMT™,"responseStatus” 464}
(" requestMethod” : "DELETE", " requestUrl”:"/transaction”, "apiVersion®:
=, "requestHeaders”:{*host": "nyservice.con”, "apikey™:~79d186c1242e
39a7144193n3850109¢", “x-forwarded-for*: "185.111. 2?.76‘},‘nquut3¢dy':
{}_'requesrnate':'rue. 11 Oct 2616 69:45:81 GMT®, “responseStatus”:288

{"requestMethod” : *GET", * requestirl”: “apiversion*: “v1*, “re
questHeaders® host”™: "sysarvice.com "123188c1242e39a7 14410
3830501127, "x-forwarded-for":"185.113.97.767}, "requestBody”:{}, " reque
stDate":"Wed, 12 Oct 2016 22:48:81 GMT", "responseStatus”:288}]
{*requestMethod” : "PUT*, "requestlUrl®:*/bank”, "apiVersion®: "v1", "req
uestHeaders®:{“host":*myservice.com”, “apikey":"79d180cf242e39a7 144793
28385b19¢", "x- forwarded-for™:"185.111.97.76" }, " requestBody" : { "update”:
1, "datalds®: IIEB. 122, 187, 176, 102]},"requestDate”:"Wed, 12 Oct 2
816 13:25:01 GMT®,"responseStatus”:200}
{'requestﬂethod'"Ns‘l"."reques:LIr'l."-‘.fuay . “apiVersion®: *vi", "req
vestheaders® {‘nost' “otherservice.com®, “apikey": “794188¢f242e30a714d
1932305019, “x- forwarded- for":*185.113.97.76"}, " requestBody " : { “amoun

t":23, "clientId™: 1234332}, "requestDate”:"Thu, 13 Oct 2016 13:45:01
GMT",“responseStatus”:266}

“apikey": “79d188cT242¢303774d193a385019¢",
“x=forwarded-for: *185.111.97.76"

L |

1,

p
"datalds”: [
la8,
122,

1

I
“requestDate™:
“responseStatu:

‘Wed, 12 Oct 2016 13:25:81 GMT",
: 200

“requestMethod”: “POST*,
“requesturl”: “/pay®,
“apiVersion": "v2", 1
"requestieaders”: {
"host": “etherservice.com”,
"apikey": “79d188cf242e39a7f4df03a385019¢",
“x-forwarded-for"; “185.113.97.76"

h

“requestBody™: {
"amount": 23,
“clientId": 1234332

I
“requestDate”: “Thu, 13 Oct 20816 13:453:01 GHT",
“responseStatus”: 280
1
hacker@laptop [07:24:46 AM] [-/cou
-> % jq ".requestMethod’ access.log
"GET*

"POST*

hacker@leptop [07:25:06 AM] [-/course]
- Y

[183]

Developers' Treasure

This will print the request method from each json object. Notice the double quotes

around each method:

1 [requestMethod™ : "GET™, "requestUrl™:"/banks™, "apiVersion®: "v1®, "re
questHeaders": {"host":"myservice.com", "apikey” :"79d188c 1242239714410
3a385b19¢”, "x-forwarded- for®:"185.113.97.76"}, "requestBody":{}, " reque
stDate”:"Sun, 89 Oct 2016 23:45:81 GMT", "responseStatus” ;26
{"requestMathod"”: "POST", "requestUrl”:"/pay", “apiVersion®: "v1", "reqg
vestHeaders®:{“host®:"otherservice.com”®, "apikey®: "79d188cf242e39a7f4d
1033385b19¢", "x-forwarded-for":"185.113.97.76"}, "requestBody" : {"amoun
t%: 122, “clientId®: 12123244}, " requestDate”:"Mon, 18 Oct 2616 12:45:
69 GMT","responseStatus”:200}
{"requestMethed”:"GET","requestUrl”:"/banks™, "apiVersion®: "v1®, "re
questHeaders”: {"host": "myservice.com®, "apikey”:"123188cf242e30a714d19
3a385b112", "x-forwarded-for®:"122,113.97.76%}, " requestBody": (}, " reque
sthate”:"Tue, 11 Oct 2016 23:45:81 GMT","responseStatus”:484}
{"requestMethod” : "DELETE" , " requestUrl”:"/transaction™, “apiVersion®:
“v1l®, "requestHeaders”:{"host":"myservice.com”, “apikey”:"79d1B8cT242e
30a7144103n305010¢", "x-forwarded-for®: "185.111.22.76"}, "requastBody”:
{}."requestDate”:"Tue, 11 Oct 2616 69:45:81 GMT", “responseStatus”:208
S

=

w

{"requestMethed” :"GET", “requestUrl™:"/banks®, “apiVersion®: “v1*, “re
questHeaders®: {"host”: "syservice.com”, "apikey”:"123188c 1242302714410
3838501127, "x-forwarded-for":"185.113.97.767}, "requestBody”:{}, " reque
sthate”:"Wed, 12 Oct 2016 22:48:81 GMT", "responseStatus”:268}
{"requestMethod” : "PUT", “requestUrl®:"/bank", "apiVersion®: "wl", “"req
uestHeaders®: {“host" :"myservice.comn", "apikey":"79d188c1242e3%9a74d193
2385b19¢" , "x- forwarded-for®:"185.111.97_76"}, " requestBody" : {"update”:
1, "datalds®: [188, 122, 187, 176, 102]},"requestDate”:"Wed, 12 Oct 2
816 13:25:81 GMT","responsaStatus":200}
{"requestMethod": "POST", "requestUrl”:"/pay”, “apiVersion®: *vi", "req
1{"host®:“otherservice.con®, “apikey": "79d188¢f242e39a714d
x-forwarded-for®:"185,113.97.76% }. “ requestBody " : {*amoun
. "clientld™: 1234332},"requestDate”:"Thu, 13 Oct 2016 13:45:01
GMT",“responseStatus”:266}

o

-

———

"requestDate™: "Wed, 12 Oct 2016 22:46:81 GHT",

“responseStatus”: 200

“roquastMathod”:
“requestlrl "/bank"®,
“apiVersion": "v1°,
“requestHeaders”: {
"host”: “myservice.com”,
"apikey": *79d188cf242839a714d1930305019¢",
"x-forwarded-for": "185,111.97.76"

PUT",

}e
“requestBody”: {
o "1,

182
h

“requestDate”: "Wed,
"responseStatus”; 200

12 Oct 2916 13:25:81 GMT",

"requastMethod”:
“requestlrl
“apiVersion }
“requestieaders”: {
"hest”: “otherservice.com”,
"apikey": "79d188cf242e39a714d193a305019C",
"x%-forwarded-for"; "185.113.97.76
}e

[07:24:46 AN)
.requestMethod’ access.log

If we want to use the output as input to other scripts we probably don't want the
double quotes and that is where the -r (raw output) comes in handy:

jg '.requestMethod' -r access.log

[184]

Chapter 5

1 [requestMethod™ : "GET™, "requestUrl™:"/banks™, “apiVersion®: "v1®, "re “apikey": *79d188cT242e30a7f4dT093a385019¢c",
questHeaders":{"host":"myservice.com", "apikey” : "79d188c 124239714410 “x=forwarded-for*: *185,111.97.76"
3a385b19¢c", "x-forwarded- for”:"185.113.97.76%}, " requestBody”: {}, " reque
stDate”:"Sun, 89 Oct 2016 23:45:81 GMT", "responseStatus” ;26

2 {"requestMathod"”:"POST", " requestUrl”:"/pay", “apiVersion®: "v1", "raqg
uestHeaders®: {("host":"etherservice.com”, "apikey": "79d188cf242e39a7f4d “datalds™: [
1932305b19¢", “x- forwarded-for":*185.113.97.76"}, “requestBody " : { “amoun 188,

t%: 122, “clientId®: 12123244}, requestDate”:"Mon, 18 Oct 2616 12:45: 12z,
89 GMT", " responseStatus”™:200} 187,

3 {"requestMethod”:"GET","requestUrl”:"/banks”, "apiVersion: "v1®, "re 176,
questHeaders”:{"host":"myservice.com”, "apikey": 'mmcmzeaaamm 182
3a3850112", "x-forwarded-for®:"122,113.97,76%}, " requestBody": (}, " reque 1
sthate”:"Tue, 11 Oct 2616 23:45:81 GMT™,"responseStatus” 464} e

4 {'requestﬂelhod'-'DELETE' “requestUrl®:"/transaction™, “apiVersion®: "requestDate™: "Wed, 12 Oct 2016 13:25:81 GMT",
*vl®, “requestHeaders:{"host":"myservice.con", apike y":"79d186c1242¢ "responseStatus”: 200
39a7444793n305619¢" ,"x-forwarded-for®:"185.111.22.76"}, " requestBody" :

{}."requesthate”:"Tue, 11 Oct 2616 69:45:81 GMT", “responseStatus”:288 {
“requestMethod”: “POST*,

5 {"requestMethod”:"GET","requestUrl™:"/banks", “apiVersion*: *v1*, “re “requestUrl": “/pay",
questHeaders®™:{"host”:"syservice.com®,“apikey”:"123188cf242e30a714d10 "apiVersion 2T,
3830501127, "x-forwarded-for":"185.113.97.767}, "requestBody”:{}, " reque questieaders”: {
stDate":"Wed, 12 Oct 2016 22:48:81 GMT", "responseStatus”:288}] *otherservice.con”

6 {"requestMethod":"PUT", “requestUrl™:"/bank", “apiVersion®™: "v1", "req By ?9n133cf?l??}gaﬂidlg]e]BJthL '
uestHeaders®: {“host®: “myservice.con®, "apikey":"79d188c1242e39a7 144193 “x-forwarded-for"; *185.113,97.76"
2385b19¢" , "x- forwarded-for®:"185.111.97_76"}, " requestBody" : {"update”:

1, "datalds®: [188, 122, 187, 176, 102]},"requestDate”:"Wed, 12 Oct 2 "requestBody™: {
816 13:25:01 GMT", "responsaStatus”:200} amount”: 23,
7 {"requestMethod":"POST", " requestlUrl®:"/pay", “apiVersion*: *v2", “req “elientId": 1234332

uestheaders®: (“host*: “otherservice.con", "apikey®:*70d188cf242e30a714d },

l'93a385b19l:'.“x-(orwarue¢ for®:"185.113.97.76"}. “requestBody " : {“amoun "requestDate™: “Thu, 13 Oct 2016 13:45:01 GMT",
t":23, “clientld™: 1234332},'raﬂutitDala':'IhU. 13 Oct 2016 13:45:61 "responseStatus”: 200

GMT", “responseStatus”:206} }

- [07:24:46 AM]

- -» % §q '.requestMethod’ access.log

s.log

TTTT

“POST*

[07:25:06 AM]
-> % jq '.requestMethod” -r Bccess.log

The jq is often used for big data queries at a much smaller scale:

1 WFrequestMethod” :"GET, “requestUrl™:“/banks®™, "apiVersion®: "v1*, “re 176,
questHeaders™: {"host":“myservice.com”, "apikey 182

33355h19:' “x-forwarded- for”:"185.113.97.76"}, " requestBod: 1

stDate":"5un, B9 Oct 2016 23:45:81 GMT", rupnnustalu: 2 1.

{‘renu@stﬂethnd" “POST", "raquestUrl®:"/pay", *apiVarsion®: *v2", “"req ‘“requestDate”: “Wed, 12 Oct 2016 13:25:01 GMT",

2
uestHeaders®: {host*: “otherservice. com”, 'anikey' *79d188ct 24203927 14d “responseStatus”: 260
793a385b19¢", "x-forwarded-for®:"185.113.97.76"}. "requestBody": {“amoun }

t': 122, “clientld®: 12123244}.‘reuueswale':‘mn. 16 Oct 2016 12:45: {
89 GMT", " responseStatus”™:2008} "requestMethod”: “POST",

3 {"requestMethod”:"GET","requestUrl™:"/banks”, "apiVersion': "v1", "re “requesturl": “/pay”,
questHeaders”:{"host":"myservice.com”, ‘apikey' 'us\as:rzueaea;'um "apiVersion": “v2*,
3a3850112°, “x-forwarded-for®:"122.113.97.76%}, "requestBody":{},"reque “requestHeaders”s {
sthate":"Tue, 11 Oct 2616 23:45:81 GMT","responseStatus”:484} “hos “otherservice.com”

4

{ requestMethod” : "DELETE", " requestUrl™: " /transaction®, “apiVersien®: "apikey" 'I’EldlBSLI'EA'lELJDJTI df93a385019c",
~, "requestHeaders”:{" nast'-'wurn:c com” , apl!\ay 79d188c1242e “%=forwarded-for": “1685.113.97.76"

Jﬁaﬁlﬂﬂhla."blﬁc‘ "x-forwarded-for®:"185.111.22.76"}, "requastBody”:
{}_'requesrnzre':'rue, 11 Oct 2616 69:45:81 GMT®, “responseStatus”:288 'requsuuony ({
3 “amount"
5 {"requestMethod”:"GET", “requestUrl”:"/banks", “apiVersion®: "v1*, “re “clientld": 123‘332

questHeaders”: {"host™: "syservice.con”, "apikey”:"123188c1242e30a714d19 },
3a3850112", "x-forwarded-for”:"185.113.97.76°}, "requestBody”: {},"reque “"requestDate”: "Thu, 13 Oct 2016 13:45:01 GMT",

stDate”:"Wed, 12 Oct 2016 22:40:81 GMT*®,"responseStatus® :268}1 “responseStatus”: 200
6 {*requestMethod” :"PUT", “requestUrl®:*/bank", "apiVersion®: "v1", "req }
uestHeaders®: (“host":“myservice.com”, “apikey":*79d1808c1242e39a714d193 [07:24:46 AM)

a385b19¢”, “"x- forwarded-for®:"185.111.97.76"}, "requestBody" : {"update®: -.» % jq ' .requestMethod” access.log
1, "datalds”: [188, 122, 187, 176, 102]},"requestDate”:"Wed, 12 Oct 2 "GET

816 13:25:01 GMT*,"responseStatus”:200} “pPOST*
{"requestMethod": "POST", "requestUrl”: " /pay”, “apiVersion®: *v2", "req "GET"

uestheaders®: (“host': “otherservice.con", "apikey” :*794188¢f242e39a774d “DELETE

193a365b19¢", "x- forwarded- for®:"185,113.97.76"}, “requestBody " : {*amoun "GET"

t":23, "clientld™: 1234332}, "requestDate”:"Thu, 13 Oct 2016 13:45:81 °"PUT"

GHMT",“responseStatus”:266} "POST"

-

- [07:25106 AM]
- - % jq '.requestMethod’ -r access.log
T

o

TTTT
=
m

=
m
i}
m

[07:25:26 AN)

[185]

Developers' Treasure

Say, for example, if we want to calculate a statistic of request methods on the log file,
we could run the following:

jq '.requestMethod' -r access.log | sort | uniq -c

1 [requestMethed” : "GET™, “requestlUrl™ " /banks™, “apiVersion®: "v1*, “re }
questHeaders™: {"host": "myservice.com”, "apikey": "79d168< 1242392714019
3a385b19c", "x-Torwarded-for":"185.113.97.76"}, "requestBody":{},"reque "requestMethod”
stDate”:"Sun, 89 Oct 2016 23:45:81 GMT", "responseStatus” ;26 "requestUrl

{"requestMethod” : "POST", "requastUrl”:"fpay”, "apiVersion®: "v2", "req ‘“apiVersion":

uvestHeaders®: (“host® :*otherservice.com®, "apikey®:*79d188cf242e39a7f4d “requestHeader
1033385b19¢", "%-forwarded-for®:"185.113.97.76"}, "requestBody" : {"amoun “hosty *
t°: 122, “clientld®: 12123244}, "requestDate™:"Mon, 18 Oct 2016 12:45: “apikey": d 3@Sblac”,
89 GMT", "responseStatus”:2008} *x-Torwarded-for":
3 {"requastMethod":"GET","requestUrl”:"/banks", "apiversion®: "v1*, "re 1},

questHeaders”:{"host":"myservice.com”, "apikey”:"123188cf242e39a714df98 "requestBedy”: {

3a385b112", "x-forwarded-for®:"122.113,97,76%}, " requestBody": {}, “reque “amount“s 23

sthate”:"Tue, 11 Oct 2616 23:45:081 GMT", "responseStatus” :464} “clientld”: 1234332
{"requestMethoed” : "DELETE", " requestUrl™:"/transaction™, “apiVersion®: h

“v1l®, "requestHeaders”:{"host":"nyservice.com”, “apikey”:"79d1B8cT242e "requestDate”: “Thu, 13 Oct 2016 13:45:01 GHT",
30a7144193n385010¢" , *x-forwuarded-for®: "185,.111,.22.76°}, " requestBody”: "res; Status": 200

{}."requestDate”:"Tue, 11 Oct 2616 69:45:81 GMT", “responseStatus”:208
s

=

[87:24:46 AM)
ja '.requestMethod” access.log

w

{"requestMethod” :"GET", “requestUrl™:"/banks", “"apiVersion®: “v1®, “re -» %
quastHeaders®: {"host":"syservice.com”, "apikey”:"123188c1242e39a714d19 "G
3a3650112", "x-forwarded-for”:"185.113.97.767}, " requestBody”: {}, " reque
stDate”:"Wed, 12 Oct 2016 22:48:81 GMT", "responseStatus®:208}
{"requestMethoed” : "PUT", “requestUrl®:"/bank", "apiVersion®: "vl1", “req
uestHeaders®: {“host®: “myservice.com®, "apikey":"79d188c1242e3%9a7 144793
2385b19¢" , "x- forwarded-for®:"185.111.97_76"}, " requestBody" : {"update”:
1, "datalds®: [188, 122, 187, 176, 102]},"requestDate”:"Wed, 12 Oct 2
0816 13:25:81 GMT","responseStatus":200} [07:25:06 AM]
{"requestMethod”: "POST", "requestUrl”:"/pay”, “apiVersion®: "v2", "req -> % g '.requestMethod® -r access.log
“host":"otherservice.com”, "apikey":"79d188¢1242¢39a714d GET

o

-

uestheaders®:
193a385b19c", “x- forwarded- for":"185,113.97,76" }. " requestBody” : {“amoun POST
t°:23, "clientld®: 1234332}, °requestDate”:"Thu, 13 Oct 2016 13:45:81 GET
GHMT",“responseStatus”:286} DELETE
- GET
o PUT
- POST
[07:25:26 AM]
- -> % Jq '.requestMethod’ -r access.log | sort | unig -c
- 1 DELETE
o 3 GET
B 2 POST
1 PUT
1 Column: 1 | [07:25:54 ANM)
e |

Now we can see a count of get, put, post, and delete requests. If we want the
same type of calculation for another field, say apikey, we can run the following;:

jqg '.requestHeaders.apikey' -r access.log | sort | uniqg -c

[186]

Chapter 5

1 W requestMethed” : "GET®
questHeaders™: {"host®:“myservice.com”, "apikey
3a385b19¢", "x-forwarded-for™:"185.113.97.76"},"
stDate":"5un, B9 Oct 2016 23:45:81 GMT", respun:e‘italu:
{"requestMathod”: "POST", "requestlrl” Inay *apiVersion®: "v2",
uestHeaders®: {“host™: ‘ornersprvtce com", apiksy' ‘79dlas(f2d?e3937fdd

*requestlrl® ;" /banks®

"apiVersion®

*79d188c f242¢3907 14010
requestBody . " reque
]

i Jq .requestHeaders.apikey’
3398

tDate":"Tue, 11 Oct 2016 23:45:61 GHT-
4 {"raquestMethod" :"DELETE" "requestlrl®:"/transaction”, "apiVersion":
¥ *requestHeaders”:{*host": “nyservice.com" , "apikey”: " 79d18Bc242e
30n7444£93n208019¢ " *x-forunrded- for+: *185. 111,22 76°7, * requastBody” :

respanseStatu 3y]

- %
ET

{}, “requesthate”:"Tue, 11 Oct 2616 69:45:81 GMT", “responseStatus”:208

5 {"requestMethod"”:"GET", “requestUrl™:"/banks", “apiVersion": “"v1®, “re
questHeaders”:{"host”:"syservice.com”, | "123188c1242e39a7 14410
3a3850112", "x-forwarded-for”:"185.113.97.76"}, " requestBody”: {}, " reque
stDate”:"Wed, 12 Oct 2016 22:48:81 GMT", "responseStatus®:268}

GO {*requestMethod”:"PUT", “requestUrl™:*/bank", “apiVersion®: "v1", "reg [07:25:06 AM]
uestHeaders®: (“host®:“myservice.com®, "apikey":"79d180cf242e3%a714d193 -> % jq '.requestMethod’ -r access.log
a385b19¢” , "x- forwarded-for™:"185.111.97.76" }, " requestBody" : {"update”: GET
1, "datalds®: [188, 122, 187, 176, 102]},"requestDate”:"Wed, 12 Oct 2 POST
0816 13:25:81 GMT","responsaStatus":200} GET

I{requesrﬂethod'-'ms‘l‘ "requestLIrl":‘fpay" “apiVersion®: "v2", “req DELETE
uestHeaders®: {“host":"otherservice.com®, "apikey®: '79d133<f2-12939a?\'dd GET
f93a3085b19c", x-forwaruw-I’or':‘185.113 §97.76%}. “requestBody” : {“amoun PUT
t":23, "clientld®: 1234332}, °requestDate”:"Thu, 13 Oct 2016 13:45:81 POST
GHMT",“responseStatus”:286} [07:25:26 AN]

- -> % {q '.requestMethod’ -r access.log | sert | unig -c
I 1 DELETE
- 3 GET

2 POST
- 1 PUT
- [07:25:54 AN]
I > % Jq '.requestHeaders.apikey' -r access.log | sort | wnig -c
- 2 123188cf242e3927 1441932305112

5 79d188c 12423927 144193a365019¢

[07:26:24 AN)
el |

“apikey
"x-forwardad-for"

Ja

rvice_com”,
B Ll213L]DJT| !J"Zlm;ﬂﬁ-l.ll“' .
*185.113.97.7

[07:24:456 AM)
.requestMethod’ access.log

Since that the syntax for accessing nested fields is to just use the dot as a delimiter
between them. Also notice that we are using single quotes instead of double quotes
to mark our query as a string. As you probably know, the difference between single
and double quotes in shell scripting is that double-quoted strings will try to expand
variables, while single quoted strings will be treated as a fixed string.

[187]

Developers' Treasure

To query for the request bodies, we will be using the following command:

jg '.requestBody' access.log

1 W requestMethod” :"GET™, “requestUrl™:“/banks™, "apiVersion®; "v1*, “re
questHeaders®: {"host®: "myservice_com”, "apikey": "79d188cf242e392714d10
3a385b19c", "x- forwarde, -fur‘:'185.113.9?.?5'}.'requeslﬂudy" }, " reque
stDate”:"5un, B9 Oct 2016 23:45:81 GMT'.'re:pnnseStalus
{"requestMathod”: "POST", "requestlrl”:"/pay", “apiVersion®: "v2", "req
uvestHeaders®: {"host" :"otherservice.com”, "apikey® '79d158cfzd2939a7f4d
193a385b19¢", "x-forwarded- for®:"185.113.97.76"}, “requestBody " : {*amoun
t*: 122, “clientId®: 12123244}, requestDate™:"Mon, 18 Oct 2616 12:45:
89 GMT","responseStatus”:200}
{"requestMethod” :"GET", " requestUrl”:"/banks™, "apiversion®: "v1®, "re
questHeaders”:{"host":"myservice.com”, ap!key' ‘I?S\aacf242939n7fldf9
3a3850112°, "x-forwarded-for®:"122.113.97.76"}, " requestBody™: {}, " reque
sthate”:"Tue, 11 Oct 2016 23:45:81 GMT","responseStatus”:484}
{"requestMathod” : "DELETE" , " requestUrl” ':‘transa(tlnn “apiVersion®:
"v1®, "requestHeaders:{"host":"myservice.con”, apikey”:"79d18Bc1242e
30a7144193a385019¢", *x-foruarded-for®: "185,111,22.76}, " requestBody” :
{}."requestDate”:"Tue, 11 Oct 2816 69:45:81 GMT", "responseStatus"”

~

w

=

S
{"requestMethod”: “requestlri®:” “apiVersion®: “v1®, "re
questHeaders”:{"host":"syservice.com” , " FEFEINE"123188c 1242¢30a7 14419
3838501127, "x-forwarded-for":"185.113.97.767}, "requestBody”:{}, " reque
stDate”:"Wed, 12 Oct 2016 22:40:81 GHT',‘rupunseStatus‘:Zon}
{"requestMethod” : "PUT", "requestUrl™:"/bank", "apiVersion®: "vl", “req
uestHeaders®":{"host":"myservice.com", "apikey": '790188:!242939a?!4df93
a385b19¢”, "x- forwarded- for®:"185.111.97.76"}, " requestBody" : { "update”:
1, "datalds®: [188, 122, 187, 176, 102]},"requestDate”:"Wed, 12 Oct 2
016 13:25:681 GHT','rugnnnStatm":!Bﬁ}
{" requestMethod" : "POST", "requestUrl”:"/pay”, “apiVersion®: "v2", "req
{"host®:"otherservice.con®, "apikey":"79d188c1242e39a714d
n-forwarded-for®:"185.113.97.76% }, " requestBody " : {“amoun
"clientId”: 1234332},"requestDate”:"Thu, 13 Oct 20816 13:45:01
“responsestatus” 208}

w

o

-

1208

“apiVersion":
quueslthd’erﬁ B {
"host": “otherservice.com”
"apikey": !‘JdlBic[Z i‘LJQd’HJ"}].\]OShWL .
"x-forwarded-for": "185.113.97.76

h

|cqul.slBody"t {
“amount” 3
cllnnlld 1234332

"reun:Daro"t "Thu,

“responseStatus”: 260

}
= % 1
GET"

13 Oct 2016 13:45:01 GNT",

[67:24:46 AM]
*.requestMethod” access.log

PUT"
"POST*

[07:25:06 AM)
-» % jq '.requestMethod® -r access.log

GET

POST

GET

DELETE

GET

PT

POST

[07:25:26 AM]
-> % |q '.requestMethod’ -r access.log | sert | unigq -c
1 DELETE

: Jq ".requestBody' access.log

access.log | sort | wnig -c
12

5 794188¢1242e397 44193238519
[07:26:24 AN]
.requestBody’ access.logl]

-=> 4% ig

As we can see from the output, even empty request bodies are logged and will be

printed by jq:

[188]

Chapter 5

1 W requestMethod” : "GET™, “requestUrl™:*/banks™, "apiVersion®: "v1®, “"re GET
questHeaders™: {"host": "myservice.com” “apikey":*79d188¢f242e39a714df9 POST
3a385b19¢”, "x-forwarded- for®:"185.113.97.76"}, "requestBody": {}, " reque GET
stDate”:"Sun, B9 Oct 2016 23:45:81 GMT", "responseStatus” :20* DELETE

2 {"requestMathod":"POST", "requestUrl”:"/pay", “apiVersion®: "v2", "req GET
uestHeaders”: (“host":"otherservice.com®, "apikey”: "79d188cf242e39a714d PUT
193a305b19¢", "x-forwarded-for®:*185.113.97.76"}, “requestBody": (*amoun POST
t%: 122, “clientId®: 12123244}, °requestDate™:"Mon, 18 Oct 2616 12:45: [07:25:26 AM]

89 GMT", " responseStatus”:200} -» % jg '.requestMethod® -r access.log | sert | unig -c

3 {"requestMethod”:"GET", " requesturl” '!b!l\kl » "@piversion®: "v1®, "re 1 DELETE
questHeaders®: {"host": "myservice.com", "apikey": 'lz:'.an:rzueaaamurq 3 GET
3a3850112", "x-forwarded-for®:"122.113.97.76"}, " requestBody™: {}, " reque 2 POST
sthate”:"Tue, 11 Oct 2616 23:45:81 GMT*,"responseStatus” 464} 1 PUT

4 {'reﬂueslﬂe(hod".'DELETE' “requestUrl™:"/transaction™, "apiVersion®: [87:25:54 AM]

"vl®, "requestHeaders”:{"host":"myservice.com”, "opikey”:"79d188c1242e -> % jq '.requestHeaders.apikey' -r access.log | sort | unig -c
JQaT!IG!OJBJBSHIOE'.‘x forwarded-for®:*185.111.22.76"}, "requestBody" 2 123188cf242039a714d1938305b112
{}."requestDate”:"Tue, 11 Oct 26816 69:45:81 GMT", "responseStatus”:208 5 Tad1B88cf242e39a7f4d793a305019C

[07:26:24 AM)

5 {"requestMethod”:"GET", “requestUrl™:"/banks”, “apiVersion®: “v1®, “re -= % jq '.requestBody’ access.log
questheaders”: ("host” lyswrvl.:o.:um m 123188c 1242392714419 {}

3230501127, "x-forwarded-for”:"185.113.97.767 }, " requestBody”:{}," reque {
stDate”:"Wed, 12 Oct 2016 22: -lﬂ 81 GMT*, "responseStatus”:2688] "amount": 122,

b {‘r!auesl‘ﬂethod""PﬂT‘ “requestlirl®: '.l‘nank" "apiVersion®: "v1", "req “elientId": 12123244
uestHeaders®: {“host":“myservice, com®, avikey""?901881:!24203%?!4&93 }
9305!119:'.')t-funﬂlrde:l-lor':'155.111.97.76"}.'rNuEstBudy':{"undate': {}

1, "datalds”: Ilﬂ«B, 122, 187, 176, 102]}, questDate”:"Wed, 12 Oct 2 {}
816 13:25:81 GMT","responsaStatus":200} {}

7 {"requestMethod"”:"POST", "requestUrl”:"/pay”, “apiVersion®: *vi", "req {
uestHeaders®: {"host": otherservlce com®, "apikey® '?9dlﬂ$cf2ﬂ2e393?fdd “update's 1,
193a385019c" -!orwaruea for®:"185.113.97.76"}, "requestBody”: ("amoun “datalds": [

t*:23, "clientld®: 1234332}, °requestDate”:"Thu, 13 Oct 2016 13:45:81 188,
GMT","responseStatus”:266} 12z,
- 187,
e 176,
= 182
1
u }
- {
- “amount": 23,
- “clientId": 1234332
[07:26:47 AN]
>4 1

To skip printing empty bodies, we can use jq's query language to select all
documents without an empty body:

jq 'select(.requestBody != {}) | .requestBody' access.log

1 W requestMethod™ : "GET™, “requestlrl™ " /banks™, “apiVersion®: "v1®, “re {
questHeaders™: {“host®:“myservice.com®, “apikey®:“79d188cf242¢392714d10 “amount": 122,
3a385b19c”, "x-forwarded- for®:"185.113.97.76"}, "requestBody”":{}."reque “clientId": 12123244
stDate":"5un, 89 Oct 2016 23:45:081 GMT respnn:!Stalua 28

{"requestMathod” : "POST", "requestlrl”: fpay “apiVersion®: “v2", “req

uestHeaders®: {"host": “atherservice,con" ' apikey" *79d188c 124203937 14d

P

~

il o
{ cess.log
N C
sthate”: '!ue 11 Qct 2016 23:45:81 GMT® respunse‘itaws'
{"requestMethod” : "DELETE", " requesturl": transactlnn
"v1®, "requestHeaders”:{"host”:"nyservice.com”,"ap
3974447938305619¢" , *x-forwarded- far®: *185.111.22. 1'6 }
{}."requestDate”:"Tue, 11 Oct 2816 & 81 GMT*, “responseStatus”:288
s

=

w

{"requestMethod” : "GET", “requestUrl™:"/banks™, “apiVersion®: “v1®, “re “amount™: 23,

questHeaders”: {"host®:"syservice.com”, "apikey”:"1231B8c1242e30a7 14410 “elientId": 1234332

3836501127, "x-forwarded-for~:"185.113.97.767}, "requestBody™:{}," reque }

stDate":"Wed, 12 Oct 2016 22:48:81 GMT","responseStatus”:268] [07:26:47 AM]
{"requestMethod” : "PUT", "requestUrl®:"/bank", "apiVersion®: "v1", "req -> % jq 'select(.requestBody != {}) | .requestBody' access.log
uestHeaders®:{“host™:*myservice.com”, “apikey":“79d188cf242e39a714df93 {
2385b19¢", "x- forwarded-for®:"185.111.97.76"}, " requestBody” : {"update”: “amount™: 122,

1, "datalds": [1B88, 122, 187, 176, lDZJ} “requestDate”:"Wed, 12 Oct 2 "clientld": 12123244
816 13:25:01 GMT*,"responsaStatus” }

{ requestﬂethod"-'ms‘l" “requestun‘:',.fpay . “apiVersion®: "vi", "reqg {
uestheaders®: (“host': “otherservice.con’, "apikey”:*70d188¢f242e39a71dd "update’s 1,
193a385019c", x-!omrued for®:"185.113.97.76%}, "requestBody”: ("amoun “datalds": [
t":23, "clientId™: 1234332}, "reguestDate”:"Thu, 13 Oct 2016 13:45:61 18g,

GHT", “responsestatus”:286} 1zz,

- 187,

o

-

i
o
4]

.

"amount”: 23,
"clientId": 1234332

[07:27:14 AN]

>4]

[189]

Developers' Treasure

If we want to refine our search even more and only print the first element in the
dataIds object of the request body, use the following;:

jq 'select(.requestBody.dataIds[0]

access.log

!= null) | .requestBody.dataIds[0]"

-

o

questHeaders®: {"host®:"myservice.com®, "apikey” . "79d188cf242e392714010
3a385b19c”, "x-forwarded- for”®:"185.113.97.76"}, "requestBody" : {} . " reque
stDate”:"Sun, B9 Oct 2816 23:45:81 GMT", "responseStatus”:2
hed" : "POST", "raquestUrl”:"/pay”, "apiVersion®: "v2", "req
“host*:"otherservice.com®, “apikey®:"79d188cf242e309a74d
®-forwarded-for®:“185.113.97.76"}. " requestBody " : { “amoun
th: 122, “clientld™: 12123244}, "requestDate™:"Mon, 10 Oct 2016 12:45:
69 GMT", " responseStatus”:200}
{"requestMethed” :"GET", “requestUrl”:"/banks”, "apiversion”: "v1®, "re
questHeaders”: {"host": "myservice.com®, "apikey*:"123188cf242e3%a714d19
3a385b112", "x-forwarded-for®:"122,113.97.76%}, " requestBody": (}, “reque
sthate”:*Tue, 11 Oct 2016 23:45:81 GMT®,“responsestatus”:484}
{"requestMathod” : "DELETE" , " requestUrl™:"/transaction™, “apiVersion®:
“vl", "requestHeaders”:{"host":"nyservice.com”, "apikey”:"79d188cT242e
30a71441938385019¢", *x-forunrded-for®: "185,111.22.76°}, " requestBody” :
{}, “requestDate”:"Tue, 11 Oct 2816 69:45:81 GMT", “responseStatus®:2868
}

{"requestMethod” : "GET", “requestUrl™:"/banks™, “apiVersion®: “v1*, “re
questHeaders”:{"host": "syservice.com”, "apikey”:"123188c1242e30a7 14410
3a3650172", "x-forwarded-for®:"185.113.97.76}, " requestBody”: {}, " reque
stDate":"Wed, 12 Oct 2016 22:48:81 GMT", "responseStatus”:288}
{"requestMethod" : "PUT", "requestUrl®:"/bank", "apiVersion®: "wl", “"req
uvestHeaders": {“host™:"myservice com®, "apikey":"79d180c1242e39a714df93
2385b19¢" , “x- forwarded-for®:"185.111.97.76"}, " requestBody” : {"update”:
1, "datalds®: [188, 122, 187, 176, 102]},"requestDate”:"Wed, 12 Oct 2
0816 13:25:81 GMT®, "responsaStatus":208}
{"requestMethod" : "POST", "requestUrl”: " fpay”, “apiVersion®: “vi", "req
uestHeaders”™: (“host”:"otherservice.con®, "apikey": "79d188cf242e39a714d
7933385019c", "x-forwarded- for”:*185.113.97.76"}, " requestBody” : { “amoun
*:23, "clientId™: 1234332}, " raquestDate
", responseStatus”:200}

:"Thu, 13 Qct 2816 13:45:81

1 [requestMethod” : "GET™, “requestlUrl™ " /banks™, “"apiVersion®: "v1®, “re {}

{}
{}
{
“updata”: 1,
“datalds": [
lag,
12z,
187,
176,
102
1
)
{
"amount®: 23,
"eliantld": 1234332
; [07:26:47 AM]
-» % jq ‘select(.requestBody != {}) | .requestBody’
{

"amount": 122,
“elisntId": 12123244

"update”: 1,

s =
d*: 1234332

[07:27:14 AN]
->» % jg 'select{.requestBody.datalds[8] != null) |
1" access.log
188

I [07:27:39 AM)
>4l

access.log

.requestBody . datalds[@

We can even perform arithmetic operations with the returned value, such as
incrementing it:

jg 'select(.requestBody.dataIds[0]

1l

access.log

!= null) | .requestBody.dataIds[0] +

[190]

Chapter 5

1 [requestMethod™ : "GET™, “requestlrl™ "update™: 1,
questHeaders™: {"host": “myservice.com”, "apikey *
3a385b19c", "x-forwarded- for®:"185.113.97.76%} . " requestBody

stDate":"5un, 89 Oct 2016 23:45:81 GMT responseStatus” ;20

{"requestMathode SROST s conug PACY R T an
uestHeaders”
19323385b19¢" 2 1 l 13.8] B d d Id 11
ot 1 select(.requestBody.datalds[o] != null)
{"requesthet

'

estHeaders” o a ¥) ol
questieaders | .requestBody.datalds[0] + 1' access.log
sthate”:“Tue af
4 {"requestMethod” : - requestUrl™: , 3 L

"v1*, "requestHeaders”:{"host":"myservice.con”, "apikey”:"79d18BcT242e -> % jq "select(.

30a7144193a3085018¢", “x- forwarded- for®:*185.111.22.76"}, "requestBody": {
{}."requestDate”:"Tue, 11 Oct 2816 89:45:81 GMT", "responseStatus”:208
s

~

tioal AM)
requestBody != {}) | .requestBody’ access.log

“amount”: 122,
“elientId": 12123244

5 {"requestMethod":"GET", “requestUrl”™:"/bonks™, “"apiVersion®: "v1®, “re }
questHeaders®: {"host":"syservice.com™, "apikey”:"123188c1242e30a714d19 {
383650112, "x-forwarded-for":"185.113.97.76"}, "requestBody": {}, " reque "update’: 1,
stDate":"Wed, 12 Oct 2016 22:48:81 GMT", "responseStatus®:268} “datalds": [
b {"requestMethod":"PUT", "requestUrl”™:"/bank", “"apiVersion®": "v1", "reg 188,
uestHeaders®: {"host®:"myservice com”, "apikey":"79d180c1242¢39a7F4df93 122,
8385b19¢", "x- forwarded-for®:"185.111.97.76" }, " requestBody” : {"update™: 187,
1, "datalds®: [188, 122, 187, 176, 102]}, “requestDate”:"Wed, 12 Oct 2 176,
816 13:25:8]1 GMT®,"responsaStatus":208} 182
7 {"requestMethod":"POST", "requestUrl”:"/pay", "apiVersion®: "vi", "req]
vestHeaders®:{"host":“otherservice.com®, "apikey":"79d198¢f242e39a7f4d)
193a385019¢", "x-forwarded- for®:"185.113.97.76%}, “requestBody” : {“amoun {
t*:23, "clientld®: 1234332}, "requestDate”:"Thu, 13 Oct 2016 13:45:01 “amount”: 23,
GMT", “responsestatus”:286} "clientId": 1234332
B 1
P [87:27:14 AM]
- <> % jq 'select(.requestBody.datalds[e] != null) | .requestBody.datalds[e
1" access.log
o 188
- [07:27:59 AN]
l- -= % iq 'select{.requestBody.datalds[8] != null) | .requestBody.datalds[8
B 1 + 1" access.log
189
[07:28:09 AM)
el |

There are many more examples and use cases for jq: just go to the official g page
and visit the tutorial there:

https://stedolan.github.io/jg/tutorial/

0@ hirps//uiedstn github)

jg is a lightweight and flexible
command-line JSON processor.

J b e 860 for [SON dsts

i I o whice aned 11
o dat
W 3ed, owh. grep and

5 hat Yol [y With bt

https://stedolan.github.io/jq/tutorial/

Tranatervie data from stedotan gihub ..
@ # logks e g havert wtarbed Fireds

Aicl by thm ey, weke e bkt fighreh firefa | =

il O s wand

[191]

https://stedolan.github.io/jq/tutorial/

Developers' Treasure

There we can see an example of consuming a rest API that returns json and pipes
it to jq. To print a j son with the commit messages from a github repository, run
the following:

curl 'https://api.github.com/repos/stedolan/jqg/commits?per page=5' | jq
-r '[.[] | {message: .commit.message}]’

As we said, there are many more examples in the documentation, and many more
use cases. jq is a pretty powerful tool, and a must when interacting with json from
the command line.

No more mister nice guy

The kernel and command line in Linux are stable and powerful. Their reliability

has been proven throughout the years, with modern legends about Linux servers
running for multiple years in a row without restarting. However, graphical interfaces
are not the same, and they sometimes fail or become unresponsive. This can become
annoying and it's always good to have a quick way of killing unresponsive windows.
Prepare to meet xkill.

First, let's replicate an unresponsive window. Go to the terminal and start gedit:
and then hit Ctrl + z. This will send gedit to the background, while the window is
still visible. Trying to click inside the window a couple of times will tell Ubuntu that
there is no process handling this window anymore and Ubuntu will make it gray:

hacker@laptep [07:32:26 AM] |-/co

-> % gedit

[192]

Chapter 5

Hit Ctrl + z:

[07:32:26 AM]
> % gedit

[1] + 5665 suspended gedit
[07:32:56 AM]
R |

This will send gedit to the background, while the window is still visible. Trying to
click inside the window a couple of times will tell Ubuntu that there is no process
handling this window anymore and Ubuntu will make it grey:

7 hackenghaptop - fcvarse
[67:32:26 AM]
== % gedit
i
[1] =+ 5665 suspended gedit
[07:32:56 AM]

SRl |

[193]

Developers' Treasure

To avoid the process of grepping for the pid of the window and then killing that
process we use a little trick. Go to the terminal and run the following;:

xkill

> % gedit

[1] + 5665 suspended gedit
[87:32:56 AN]

2:56 AM
== % xkill
Select the window whose client you wish to kill with butten 1....

Now we see that the mouse pointer has changed to an x.

Be careful not to click on anything. Hit Alt + Tab to bring back the gedit window,
and then click it. The xkill command will find and kill the process of the window
we just clicked on.

This trick can be used on any type of window; it's like shooting your windows!

OK, but what happens if the whole system becomes unresponsive and you can't type
anything in the command line? That might happen, especially on older systems. You
can hit the on/off button on your laptop or server, but in some circumstances, this is
not possible.

What we are going to show you now is an old trick kept secret by Linux gurus for

a very long time; nobody really talks about it because it's so powerful that it can do
damage in the hands of the wrong people. Please make sure you save all your work
and close all programs before trying the fatal keyboard shortcut that will force a
restart of your Linux system. Hold down Alt + PrtScrn and at the same time type
the following:

reisub

[194]

Chapter 5

If you've tried it, it means that your computer restarted and you had to come back to
this course and continue where you left off.

Practice this command with great caution and please don't use it to restart your
computer on a regular basis. Use it only when the graphical user interface (GUI)
is not responding.

Another trick: if the GUI is not responding and you have unsaved work, you can
recover some of it from the command line, by accessing one of Linux's virtual
terminals. Ubuntu starts, by default, seven virtual terminals and the graphical user
interface starts on terminal 7. To access any of the seven terminals use Ctrl + Alt + F1
to F7. A prompt will appear asking you to log in and, after logging in, you can run
some commands to close processes and save work before exiting. To get back to the
user interface, hit Ctrl + Alt + F1.

[195]

Terminal Art

All work and no play makes Jack a dull boy. Even though the command line

seems boring to a lot of people, it can become great fun. It all comes down to your
imagination. Terminals can be stylish and can give a good impression, especially the
ones we see in the movies. Colors, ASCII art, and animations can make our terminal
come alive. So, here comes some terminal art!

In this chapter, we will cover the following;:
* Working with some Linux commands to have fun with

Ever heard of fortune cookies? Do you want to have them without getting fat? Just
run the following apt command to install the utilities that we will be using in this
chapter:

sudo apt install fortune cowsay cmatrix

[08:04;
% sudo apt Lnstall

sudo apt install fortune cowsay cmatrix

[197]

Terminal Art

Then run this command:

fortune

[08:84:22 AM]
-> % sudo apt install fortune cowsay cmatrix
Isuda) password for hacker:
Reading package lists... Done
Building dependency tree
Reading state infermation... Done
Mote, selecting 'fortune-mod' instead of 'fortune’
fortune-mod is already the newest version (1:1.99.1-7).
Fuggested packages:
cmatrix-xfont filters
[The fallewing NEW packages will be installed:
cmatrix cowsay cowsay-off
B upgraded, 3 newly installed. 8 to remove and § not upgraded.
peed to get 37.5 kB of archives.
pfter this operation, 162 kB of additional disk space will be used.
Get:1 http://ro.archive. ubuntu.com/ubunty xenisl/universe amdé4 cmatrix amdfd 1 2a-Sbuild2 [15.8 kB]
Get:2 http://ro.archive. ubuntu.com/ubuntu xenial/universe amd6d cowsay all 3.83«dfsgl-15 [18.8 kB)
et:3 http://ro.archive. ubuntu.com/ubunty xenial/universe amd6d cowsay-off all 3.83+dfsgl-15 [3,640 B]
Fetched 37.5 kB in 15 (28.8 kB/s)
Felecting previously unselected package cmatrix.
(Reading database ... 236548 files and directories currently installed.
Preparing to unpack ... fematrix 1.2a-Sbuild2 amdéd.deb ...
Unpacking cmatrix (1.2a-5build2) ...
[Felecting previously unselected package cowsay.
Preparing to unpack .../fcowsay 3.83+dfsgl-15 all.deb ...
Mnpacking cowsay {3.03+dfsgl-13]
Falecting previously unselected package cowsay.off.
Preparing to wnpack ... cowsay-off 3.63+dfsgl-15_all.deb ...
Unpacking cowsay-off (3.83+dfsgl-15) ...
Processing triggers for man-db (2.7.5-1) ...
Betting up cmatrix (1.2a-5build2) ...
Fetting up cowsay (3.03+dfsgl-15) ...
Getting up cowsay-off (3.83+dfsgl-15) ...
[08:04:42 AM]
-> % fortune
He was part of my dream, of course -- but then I was part of his dream too.
- Lewls Carroll
[08:04:48 AM]
-> % fortune
Mo violence, gentlemen -- no violence, I beg of you! Consider the furniture!
-« Sherlock Holmes
[08:04:52 AM]

e |

When running this command, you get fortunes, quotes, and jokes, in a random order.
If we combine the command with cowsay, we will get the same fortunes, delivered
with an image of a cow:

fortune | cowsay

[198]

Chapter 6

et:3 http://ro.archive.ubuntu.comfubuntu xenial/universe amdBd cowsay-off all 3.63+dfsgl-15 [3,648 B]
Fetched 37.5 KB in 1s (28.8 kB/s)
Felecting previously unselected package cmatrix,
(Reading database ... 236548 files and directories currently installed.)
Preparing to unpack .../cmatrix_1.2a-5buildz_omdSd.deb ...
Mnpacking cmatrix (1.2a-5build2) ...
Felecting previously unselected package cowsay.
Preparing to unpack .../ cowsay 3.83+dfsgl-15 all.deb ...
Mnpacking cowsay (3.83+dfsgl-15) ...
pelecting previously unselected package cowsay-off.
Preparing to unpack .../cowsay-off 3.63+dfsgl-15 all.deb ...
Unpacking cowsay-off (3.03+afsgl-15) ...
Processing triggers for man-db (2.7.5-1) ...
Getting up cmatrix {1.2a-Sbuild2) ...
GFetting up cowsay (3.83:+df=gl-15) ...
etting up cowsay-off (3.83+dfsgl-15) ...
[0B:04:42 AM]
-> % fartune
He was part of my dream, of course -- but then I was part of his dream too.
-- Lewis Carroll
[08:04:48 AM]
-> % fortune
po violence, gentlemen -- no violence, I beg of you! Consider the furniture!
-- Sharlock Holmes
[0B:04:52 AM]
> % fortune
‘ou’'ll never be the man your mother was!
[0B:04:56 AM]
-> % fortune | cowsay

It is a wise father that knows his own
| child.
|

| -- William Shakespeare, “The Merchant
of Venice®

(P,

fortune | cowsay

I |
[08:05:06 AN]
B |

To make this recurrent, we can include it as the last line in our zshrec file. Then,
every time we open a new terminal window, a cow will deliver a fortune to us.

Now this may not be useful (even though it's kinda fun) so, let's do some productive

wizardry.

Let's predict the weather!

[199]

Terminal Art

All you need is a curl command:
curl -4 http://wttr.in/London

pelecting previously unselected package cmatrix.
(Reading database ... 236548 files and directories currently installed.
Preparing to wnpack .. .fcmatrix 1.2a-5build? amd6d.deb ...
Unpacking cmatrix (1.2a-5build2) ...
Falecting previously unselected package cowsay.
Preparing to unpack .../cowsay 3.83+dfsgl-15 all.deb ...
Unpacking cowsay (3.83+dfsgl-15) ...
Felecting previously unselected package cowsay-off.
Preparing to unpack .../fcowsay-off 3.83+dfsgl-15 all.deb ...
pnpacking cowsay-off (3.83+dfsgl-15) ...
Processing triggers fer man-db (2.7.5-1) ...
Fetting up cmatrix (1.2a-5build2) ...
[Fetting up cowsay (3.83+dfsgl-15) ...
Getting up cowsay-off (3.83+dfsgl-15) ...
[0B:04:42 AN]
-> % fartune
He was part of my dream, of course --
-- Lewis Carroll
[08:04:48 AM]

but then T was part of his dream too.

-= % fertune

po violence, gentlamen -- no violence, I beg of you!
-- Sherlack Holmes

[0B:B4:52 AM]

Consider the furniture!

-= % fortune

‘ou’ll never be the man your mother was!
[08:04:56 AR]

-= & fortune | cowsay

It is a wise father that knows his own
child.

== William Shakespeare, "Tha Merchant
of Venice”

————

Yoo leo)h,
(1Y JEVAY

[l=-e-w |
11 I

[08:05:06 AM]

> % vim ~/.2shre

[08:05:40 AN]

-> % curl -4 http://wttr.in/Londonf]

curl -4 http://wttr.in/London

This will show, in a nice format, a three-day weather forecast for the specified city, in
this case, London:

<> % curl -4 http://wttr.in/London
Weather for City: London, United Kingdom
Overcast
= "
. . LY km/h
(.)_) 18 km
6.1 mm
]
Tue 25. Oct
Morning | Noon L= Evening Night
Partly cloudy Partly cloudy Cloudy Cloudy
- € - b b = T
¢ 1= h Ad - km/h Al - kn/h
18 km 18 km 18 km
6.8 am | 8% 6.0 mn | 6% 0.8 ma | 6%
(v 26 et |
6. Oct
Morning | ~ | Eventng Night
Partly cloudy Clear Mist
= oL = L] =,
» - ke/h . km/h - - 24 km/h - - km/h
18 km km 10 km 2 km
8.8 mm | BY 6.8 mn | 8% 8.0 mn | 8% 8.8 ma | 8%
[27, oce |
Thu 27. Oct
Morning | Noon Bunderl i) Evening Night
Sunny Sunny Clear Clear
ke/h km/h » - 24 kmfh ” 28 km/h
18 km km 18 km 18 km
8.6 mn | 0% 8.0 ;o | 8% 0.0 mn | 0% 0.6 ma | 6%
Kheck new Feature: ar to see the phase of the Maon
Follow for wttr.in updates
[08:05:58 AH]
> %]

[200]

Now, with our newly learned skills, let's put together a shell script that gives us the

weather forecast:

Open ~/bin/wttr and type the following:

#!/bin/bash
CITY=${1:-London}

curl -4 http://wttr.in/${CITY}

Give it execution rights and assign a default city, let's say London. Now, run this:

wttr
)1 18 km
6.1 mm
[Tue 5. oet |
Tua 25. Oct
Morning | Noan l-—-—-l Evaning Night
Partly clouwdy Partly cloudy Cloudy Cloudy
i M R M H “c
w 1 - kn/h - ka/h LS km/h kn/h
18 km 10 km 10 km 18 km
6.0 mm | 8% 6.0 rn | 6% 0.0 ma | 6% 0.6 ma | 6%
[“wed 26 ack
Wed 26. Oct
Marning | Noon l—-—J Evening Night
Partly cloudy Sunny Clear Mist
*L e 2
» - km/h - km/h - = 24 km/h - = 20 km/h
18 km 18 km 18 km 2 km
6.0 mm | B% 0.0 mn | B% B.0 ma | B% g.ema | 0%
[he 27, oce |}
Thu 27. Oct
Morning | Noon l——J_ Evening Hight
Sunny Sunny Clear Clear
2 ke/h - kn/h 2 24 km/h - 28 km/h
18 km 18 km 18 km 18 km
8.6 mm | 8% 6.8 m | 8% 6.0 ma | 8% 0.0 ma | 8%

Check new Feature:

[0B:05:58 AM]
-> % vim -/bin/wttr

[08:06:48 AM]
->= % chmod +x ~/binfwttr

[08:06:52 AM]
-> % rehash

[08:06:55 AM]
-> % wttr]

ar
Follow EINOENEHUEER for witr.in updates

to see the phase of the Maon

wittr

[201]

Terminal Art

<> % wiitr
Weather for City: London, United Kingdom
Overcast
see =/
ool ¥, ~ 4 km/h
(. J_) 18 knm
6.1 mm
Morning | Noon Evening Night
Partly cloudy Partly cloudy Cloudy Cloudy
- € - b b = il
¢ 1 =0 kafh = | =4 kafh g] a = km/h - kn/h
18 km 118 km { 18 km 18 km
8.8 mm | 8% 8.8 mn | &% 8.0 mn | 6% 6.8 ma | 6%
||
Wed 26. Oct
Morning | Noon L——— Eventng
Partly cloudy Sunny Clear
o e =4 - »
» - ka/h - km/h - — 24 km/h
18 km 10 km 10 km
8.8 mm | BN 8.0 mn | 8%
Morning Evaning Night
Sunny Clear Clear
o T
- ke/h » - 28 km/h
18 km 18 km
8.6 mm | 0% 0.6 ma | 6%
Check new Feature: or
Follow EINGENEHUENS for witr.in updates
[08:06:58 AH]
e |
We get the weather forecast for London. Now, run this:
wttr paris
-> % wttr paris
peather for City: Paris, France
Fog
ac
= & km/h
1 ka
6.9 mm
Marning Noon Evening Hight
Fog Overcast Overcast Overcast
- 12 % - 15 *f - 14 *r —13®
= 1 =0 kafh o= ¥ # 3 =0 kafh o 1. # 3 = ka/h o1). L4 =1 kmfh
7 km (_-_)_) 18 km (_-_)_) 10 km (_-_3_) 18 km
8.8 mn | 1% 8.1 m | &% 8.0 m | 8% 6.1 ma | 6%
| e ra——|
T Wed 26. Oct
Marning | Noon | S| Evening Hight
Partly cloudy Partly cloudy Partly cloudy Clear
- i - B, “C -
) - km/h a1 =5 kmfh) w - km/h w f - kn/h
18 km 10 km 10 km 10 km
6.8 mm | BY% 8.0 mn | 8% 8.0 ma | 8% 8.8 ma | 8%
Morning Noan Evaning Hight
Hist Sunny Sunny Clear
oC oc C =
w3 - kn/h - - 1 kna/h - = 1 km/h
7 km 18 km 18 km
8.6 mn | 0% 8.0 mn | B% 0.6 ma | 6%
Check new Feature: or to see
Follow for wttr.in updates
[08:07:02 AH]
e |

[202]

Chapter 6

[08:07:02 AH]

% coatrifix

>

e
—
—
—
(o]

cm

time may seem like entering the Matrix and, if that's the case, why not create that

We get the weather forecast for Paris. Working in the command line for the first
environment?

Run this command:

cmatrix

Let your friends be amazed by the complicated stuff you are doing in that cryptic

terminal. Terminals are not boring!

[203]

Terminal Art

They have beautiful colors, easy-to-read output, and they display compact
information that puts users in control of their own system.

Terminals can be customized and interacted with and they increase your
productivity while leaving your mouse to sleep the endless sleep of inefficiency.

Of course, all these skills don't come to you overnight, and they require careful
tweaking from each user in order to be tailored to their own taste and way of
thinking and working. However, after that, they'll fit like a tailored suit, and become
an extension of your way of work and sometimes even your job.

We hope you've enjoyed all the tips and tricks we've provided, and had fun learning
them. Remember that education is a continuous process, so don't stop here! Stay
hungry and surf the Internet to keep track of the latest tools and techniques that will
transform you into a productivity beast!

[204]

A

autoenv
about 127-134
URL 127

C

ClipIt 15-19
current working directory (or CWD) 58

D

desert 67
dig 58

E

electron open source project
URL 97
eye of gnome (eog) 144

F

find command
using 97, 98, 100, 101, 102, 103, 104, 105,
106, 107,108, 109, 110

G

git
conflicts, merging 169-175
GitFlow
about 155
branching model, for
software projects 155-168
reference link 156

Index

gitflow-avh
URL 155
Git hooks
about 155
analyzing 168
graphical user interface (GUI) 195
Guake 11-14

identify 144
ImageMagick
images, processing from
command line 143-154
image shrinking tools
exploring 150-153
indentation 70-81
iputils 58

J

ja page
URL 191

JSON
processing, from command line 181-192
xkill command, using 192-195

L

Linux
URL, for developers 2
LISTEN 120

M
Meld 170

[205]

N S

NERDtree sed
about 81 one-liner productivity 91-96
URL 82 shell scripting
networking commands about 46-56
working with 118-127 libraries 56-61
ngrok Snipmate
about 175 about 82
working with 176-180 URL 82
subshells 39, 44, 45

(0

oh-my-zsh framework

T

about 26-32 Terminator
URL 27 about 3,4
OpenDNS features 6-10
URL 58 preferences menu 4, 5, 6
tmux
P about 110, 118
installing 110-116
pathogen trash
URL 81 working with 134-138
pipes 39-43
plugins 81-85 VvV
R Vim
about 21-25
regular expressions 33-38 color scheme desert 67, 69
rehash 177 configuration, restoring 88, 89
request bodies password manager 86, 87
querying 188 plugin steroids 81, 84, 85
rm command reference 85
avoiding 134 supercharging 63, 65, 66

X

xkill command
using 192-195

[206]

	Cover
	Copyright
	Credits
	About the Authors
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Introduction
	Are you ready?
	Terminator – the ultimate terminal
	Preferences menu
	Features

	Guake – not Quake!
	ClipIt – copy-paste at its finest

	Chapter 2: Productive Shells – Reinvent the Way You Work
	Oh-my-zsh – your terminal never felt this good before!
	Basic regular expressions
	Pipes and subshells – your shell's salt and pepper
	Shell scripting for fun and profit
	Shell scripting libraries

	Chapter 3: Vim kung fu
	Supercharging Vim
	Color scheme desert

	Keyboard kung fu
	Plugin steroids for Vim
	Vim password manager
	Instant configuration restoring

	Chapter 4: CLI – The Hidden Recipe
	Sed – one-liner productivity treasure
	You can run, but you can't hide… from find
	tmux – virtual consoles, background jobs and the like
	Network – Who's listening?
	Autoenv – Set a lasting, project-based habitat
	Don't rm the trash

	Chapter 5: Developers' Treasure
	The spot webserver
	Shrinking spells and other ImageMagick
	Go with the Git flow
	Merging Git conflicts with ease
	From localhost to instant DNS
	JSON jamming in the new age
	No more mister nice guy

	Chapter 6: Terminal Art
	Index

