
[ 1 ]



Working with Linux – Quick 
Hacks for the Command Line

Shell scripting hacks for Linux developers

Petru Ișfan

Bogdan Vaida

BIRMINGHAM - MUMBAI



Working with Linux – Quick Hacks for the Command 
Line

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the authors, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2017

Production reference: 1260517

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78712-918-4

www.packtpub.com

www.packtpub.com


Credits

Authors

Petru Ișfan

Bogdan Vaida

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Prachi Bisht

Content Development Editor
Prachi Bisht

Trusha Shriyan

Technical Editor
Naveenkumar Jain

Copy Editor
Safis Editing

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing 

Indexer
Aishwarya Gangawane

Graphics
Kirk D'Penha

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa



About the Authors

Petru Ișfan is a full-stack developer, Linux evangelist, open source lover, and 
cloud pioneer. Petru has worked all his engineering life in Linux, and has tried all 
the major distributions out there. He specializes not only in software development, 
but in the whole software engineering stack, focusing on tools and workflows that 
enhance developer productivity and enjoyment.

An early adopter of technology, he uses passion and best practices to deliver 
software products, mainly for the Web and the mobile world, working with clients 
big and small. He is really enthusiastic about finding the most efficient and elegant 
solutions for all problems.

Bogdan Vaida burst onto the training scene in 2009 using extremely old 
Powerpoint presentations. Luckily, two years later, he switched to experiential 
training and learning by using methodologies that he practiced devotedly in all of 
his training. Known for his no-nonsense approach to getting results, Bogdan has 
been told that he helps participants get their own "insanely practical insights."

What does he do? He travels around the world doing experiential training in fields 
ranging from video editing to personality typologies and trainer training. While 
doing this, he also manages his online courses, which have over 10,000 students from 
all over the world.

In 2015, he beat the record for total time spent in airports.



www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all 
Packt books and video courses, as well as industry-leading tools to help you plan 
your personal development and advance your career.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt


Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our 
editorial process. To help us improve, please leave us an honest review on this book's 
Amazon page at https://www.amazon.com/dp/1787129187.

If you'd like to join our team of regular reviewers, you can e-mail us at 
customerreviews@packtpub.com. We award our regular reviewers with free 
eBooks and videos in exchange for their valuable feedback. Help us be relentless in 
improving our products!

https://www.amazon.com/dp/1787129187


[ i ]

Table of Contents
Preface iii
Chapter 1: Introduction 1

Are you ready? 2
Terminator – the ultimate terminal 3

Preferences menu 4
Features 6

Guake – not Quake! 11
ClipIt – copy-paste at its finest 15

Chapter 2: Productive Shells – Reinvent the way you work 21
Oh-my-zsh – your terminal never felt this good before! 26
Basic regular expressions 33
Pipes and subshells – your shell's salt and pepper 39
Shell scripting for fun and profit 46
Shell scripting libraries 56

Chapter 3: Vim kung fu 63
Supercharging Vim 64

Color scheme desert 67
Keyboard kung fu 70
Plugin steroids for Vim 81
Vim password manager 86
Instant configuration restoring 88

Chapter 4: CLI – The Hidden Recipe 91
Sed – one-liner productivity treasure 91

You can run, but you can't hide… from find 97
tmux – virtual consoles, background jobs and the like 110



Table of Contents

[ ii ]

Network – Who's listening? 118
Autoenv – Set a lasting, project-based habitat 127

Don't rm the trash 134
Chapter 5: Developers' Treasure 139

The spot webserver 140
Shrinking spells and other ImageMagick 143
Go with the Git flow 155
Merging Git conflicts with ease 169
From localhost to instant DNS 175
JSON jamming in the new age 181

No more mister nice guy 192
Chapter 6: Terminal Art 197
Index 205



[ iii ]

Preface
Our mission is to save Linux users from their unproductive habits.

In this book, you will learn:

• What's one of the best terminals to use (just a hint: you need that split  
screen functionality).

• How clipboard managers memorize the things you copy, so you don't  
have to.

• How to use the greatest/biggest/most intelligent :)) console editor since 
humankind appeared. Yes, it's Vim. And we'll dive deep into its usefulness.

• Zsh and its awesome oh-my-zsh framework featuring over 200 plugins for 
developers and productivity seekers.

• Extensive lessons on terminal commands: how to find and replace text, parts 
of text, tiny bits of text or even non-text.

• How to use pipes and subshells to create customized commands that 
automate day-to-day tasks.

• And much more. This book is for all the programmers that are new to the 
Linux environment.

But who are we?

Petru: the infamous coder with many years of Linux experience. He types like crazy, 
loves doughnuts and has Linux wired in his brain! After discovering Linux and 
switching through a different distribution every week, annoying his girlfriend with 
tons of geeky stuff, now he annoys everybody with geek talks and the latest news in 
the tech world.

He spends his time coding frontends, backends, databases, Linux servers,  
and clouds.



Preface

[ iv ]

Bogdan: the deserter! He went through more than 20 Linux and Unix distributions 
including Plan 9, HP-UX and all of the BSDs. But after his girlfriend left him because 
he spent way too much time in front of the computer he… switched to Mac.

Now he spends his time teaching over ten thousand students in his 8 online courses.

And we are here to help you double your terminal productivity!

If you don't know how to use sed, if you're not that used to pipeing commands, if 
you use the default terminal and if you are still using BASH then this book is for you.

Read it now and double your terminal productivity!

What this book covers
Chapter 1, Introduction, introduces the most basic tools needed to transform your user 
experience.

Chapter 2, Productive Shells – Reinvent the Way You Work, reinvents the way you work. 
Colors, editors, and custom configurations all tailored to your custom needs.

Chapter 3, Vim kung fu, explains the way of the terminal warrior. This includes 
configuration and advanced usage to cover the majority of needs.

Chapter 4, CLI – The Hidden Recipe, shows different ways of going from good to great 
and boosting the command-line capabilities to new frontiers.

Chapter 5, Developers' Treasure, explains how to maximize productivity with these 
simple hacks. It's the small things that produce the big difference.

Chapter 6, Terminal Art, prepares you to become amazed at what creativity can do 
with limited resources. This is where the fun begins.

What you need for this book
Ideally, you can equip yourself with a fresh Ubuntu operating system and go 
through the samples while reading. Remember there is a git repository available at 
https://github.com/petruisfan/linux-for-developers.

Go ahead and clone this locally so that you can use the project's sample files.

https://github.com/petruisfan/linux-for-developers


Preface

[ v ]

Who this book is for
This book is for Linux users who already have some form of basic knowledge and 
are looking to improve their skills and become more productive in the command-
line environment. It is for users who want to learn tips and tricks that master's use, 
without going through all the trials and errors in the vast open source ocean of tools 
and technologies. It's for the users who want to feel at home at the terminal prompt 
and are eager to do the vast majority of tasks from there.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Open the terminator and type sudo apt install zsh to install zsh, as shown in."

A block of code is set as follows:

case ${CMD} in
    publicip)
        print_public_ip
        ;;
    ip)
        IFACE=$(getarg iface $@)
        print_ip $IFACE
        ;;
    *)
        echo "invalid command"
esac

Any command-line input or output is written as follows:

sh -c "$(curl -fsSL https://raw.githubusercontent.com/robbyrussell/oh-my-
zsh/master/tools/install.sh)"



Preface

[ vi ]

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "Go to 
shell and enable Open new tab in current directory."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata


Preface

[ vii ]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support




[ 1 ]

Introduction
This book is split into multiple parts. In part 1, we'll explore a new terminal 
and show you how to install and configure it. In part 2, we will concentrate on 
configuring your shell, adding plugins, understanding regular expressions, and 
working with pipes and subshells. Everything will then be coagulated into a shell 
scripting lesson. In part 3, we'll work with Vim, our recommended editor. We will 
cover everything from configuring it, to learning keyboard shortcuts, installing 
plugins, and even using it as a password manager. So let's get started.

In the following chapter, we will learn the following topics:

• Understanding the working of Terminator
• Using Guake for your quick commands or long running tasks
• Using ClipIt to copy-paste text

So, we will start with a terminal after which everything will be wild! When it comes 
to working long hours in a terminal, our choice is to use Terminator for its fast and 
easy split screen functionality. Then, we will focus on Guake, a terminal that opens 
really fast and wherever you are. Towards the end, you will understand the working 
of Clipit and use its copy and paste feature effectively.



Introduction

[ 2 ]

Are you ready?
We will dive deep into the Linux environment, giving you tips and tricks to increase 
your productivity, make you more comfortable with the command line, and 
automate your tasks.

The book is based on Ubuntu Linux version 16.04, which is the latest long-term 
support version. We chose Ubuntu because it's the most common Linux distribution 
out there, it's really simple to use, has a lot of graphical tools, and you can find a 
huge online community ready to answer all your questions. Ubuntu is also the 
most supported Linux distribution. This means that companies that create software, 
especially graphics software, and offer them for Linux, usually start with Ubuntu. 

This makes it easier for us to use tools such as Skype, Slack, or Visual Studio Code. 
Although the book is based on Ubuntu, most of the commands are not related to 
Ubuntu, so you can easily use another distribution and apply the same lessons. A 
large part of the book can even be applied applicable to Mac, as we can have the 
same tools installed on Mac — bash, zsh, vim all work the same way across Linux 
and Mac--and with the release of Windows 10, bash support is built in, so tools such 
as zsh and vim can easily be installed and used. Before Windows 10, there were tools 
such as cygwin that let you use the Linux command line in a Windows environment.

We recommend you to read and practice in an open terminal so that you can execute 
the commands and check their results. Before we start, you want to download all 
the source files from our GitHub repository (located here: https://github.com/
petruisfan/linux-for-developers).

https://github.com/petruisfan/linux-for-developers
https://github.com/petruisfan/linux-for-developers


Chapter 1

[ 3 ]

Terminator – the ultimate terminal
The first thing you need to do in order to become productive is to have a good 
terminal. Throughout the book, we will be working mostly with the command line, 
which means that the primary piece of software we will be using is our terminal.  
A great terminal that we recommend is Terminator, which can be installed from  
the software center.

Let's go to our launcher and click on the software center icon. After it opens, click on 
the search input and write terminator, as shown in the following screenshot. It will 
probably be first in the list of results. Click on Install.



Introduction

[ 4 ]

After installing Terminator, it's a good idea to drag its icon to the Launcher. For this, 
you just open the dash by hitting the Windows key, write terminator and drag and 
drop its icon into the Launcher:

Alright, now let's click on the icon to get started. You can maximize the window to 
have more space to play around.

Preferences menu
It's an customizing terminal, where good surprises can be found in form of fonts 
styles and other tools. What you see right now are the default settings. Let's go into 
the preferences menu and see what we can update. First of all, let's hide the title bar 
because it doesn't give us that much information and it's always a good idea to have 
as much free screen space as possible (and as few distractions as possible).

Now let's look at some other preferences:

1. Let's change the font. We will make it a bit larger than usual so that it is easy 
to read. Let's go with Monospace 16, as shown in the following screenshot:



Chapter 1

[ 5 ]

2. We also want to have good contrast so that it's easy to distinguish the letters. 
And for this, we will choose a black on white color theme.



Introduction

[ 6 ]

3. It's also a good idea to enable infinite scroll, because you don't want your 
terminal output to be trimmed after 500 lines. A lot of the time, you just want 
to scroll and see the previous output. Also, while scrolling, if there is a lot of 
text, you probably don't want to be brought back to the bottom of the page, 
so uncheck the Scroll on output option.

And voila! This is our newly configured terminal. And now it's time to check what 
we can do with this new terminal. Here comes the Features section!

Features
Now it's time to look at some of Terminator's useful features and their keyboard 
shortcuts. This is what the normal Terminator interface looks like:



Chapter 1

[ 7 ]

Let's play around with it now:

• Split screen: Ctrl + Shift + O for a horizontal split:



Introduction

[ 8 ]

• Ctrl + Shift + E for a vertical split:

This is probably the coolest feature of Terminator and the one we will be using the 
most as it is really helpful to see multiple panes and easily switch between them. You 
can split the screen any number of times, in any combination you want.

Resize screen: Ctrl + Shift + Arrow or just drag and drop:



Chapter 1

[ 9 ]

• Easily move between Windows with Ctrl + Shift + Arrow.
• Close screen using Ctrl + Shift + W or Ctrl + D.
• Create tabs with Ctrl + Shift + T. This is for when you don't have any more 

space to split the screen:



Introduction

[ 10 ]

• Text zoom: Ctrl + + and Ctrl + - — useful for when you need to present or 
when you have a person with a bad eyesight:

Being able to divide the screen in order to arrange the terminal in a grid, and being able 
to split, switch, and resize panes with keyboard shortcuts are the biggest advantages 
of Terminator. One big productivity killer that a lot of people don't realize is switching 
between using the mouse and using the keyboard. And although most people prefer 
using the mouse, we suggest using the keyboard as much as possible and learning the 
keyboard shortcuts of your most commonly used computer programs.

Being productive ultimately means having more time to focus on the things that are 
really important, instead of wasting time struggling to use the computer.

Hasta la vista terminal! Welcome Terminator!



Chapter 1

[ 11 ]

Guake – not Quake!
Terminator works well for all sorts of tasks, especially when working long sessions 
on multiple items. However, sometimes there are scenarios where you need to 
quickly access a terminal in order to run a command, check a status, or run a task in 
the foreground for a long time--all of these without opening too many tabs. Guake is 
excellent in such situations. It is a handy, easy-to-use terminal that you can open on 
any workspace on top of your existing windows, by pressing F12.

We will install it right now by using a simple command line. As shown below, open 
your terminal and type sudo apt install guake:

apt is the new package manager that Ubuntu launched in version 
16.04 and is meant to be an easier-to-use version of the apt-get 
command, with some added eye candy.



Introduction

[ 12 ]

Now that Guake is installed, we will go to dash and open it. To do this, we just 
press F12. Once it is running, you can see the notification on the top-right side of the 
screen. This is what it should look like:

Just like with Terminator, we will check its preferences. First of all, go to shell and 
enable Open new tab in current directory:



Chapter 1

[ 13 ]

I believe you can guess what this does. Then, go scrolling and insert a really big 
number, like 99,999. Also, make sure Scroll | On output is unchecked:



Introduction

[ 14 ]

Again, we will change the default font to Monospace 16, set the Cursor blink mode 
to off, and hit Close:

We can use Guake in full screen by hitting F11 and we can also resize it by dragging 
the margin. If you want, you can play around with the default settings to see what 
suits you best.

Guake does not start automatically when Ubuntu reboots, so we will have to add 
it to our startup application for that. To do this, open dash again, type startup 
applications and click add. Just type Guake in all three fields, add, and close.

What makes it so handy is the fact that you can open it on top of your current 
windows at any time, quickly type a command, and reopen it again later to check the 
status of the command.

What we actually do is to also make it a little bit transparent so 
that when it opens on top of a web page where we have some 
commands written, we can still read the content on the page and type 
the commands as we read, without switching windows. Another 
awesome productivity tip!



Chapter 1

[ 15 ]

ClipIt – copy-paste at its finest
We believe that one of the greatest inventions of mankind is copy-paste. The ability 
to take a piece of text from some random place and insert it to another not-so-
random place is a huge time saver! Mankind would still be ages behind if computers 
didn't have this feature! Just imagine having to type every little command, every 
URL, every block of code you read! It would be a huge waste of time! And so, being 
such an important feature, copy-paste deserves a tool of its own for managing all the 
important text you copied. These types of tools are called clipboard managers. There 
are a lot of options for every operating system, and one good free one for Ubuntu is 
called clipIt. Open the terminal and type sudo apt install clipit to install it.



Introduction

[ 16 ]

A good scenario for using Guake is to run ClipIt in it. By default, ClipIt occupies a 
terminal window but, with the help of Guake, we just hide it away!

The tool is automatically added to the startup applications, so it will start the next 
time you reboot.

In order to invoke ClipIt, hit Ctrl + Alt + H or click the clipboard image in the  
menu bar.



Chapter 1

[ 17 ]

The first times it starts, it warns you that it stores data in plain text, so it might not 
be safe to use if other users use your account. Currently, it contains only the latest 
clipboard element.

Let's do a quick example of its usage.

We cat the content of the .profile file. And let's say we want to copy some lines of 
text and run them in another terminal, which looks like this:



Introduction

[ 18 ]

For example, we might want to update the PATH variable, then source the .bashrc 
file and update the PATH variable again. Instead of copying the content again 
from our file, we just hit Ctrl + Alt + H and choose what we want to paste from our 
clipboard history:



Chapter 1

[ 19 ]

This is a very basic example. ClipIt mostly comes in handy when you work long 
hours on your computer and need to paste something that you copied from a website 
hours earlier. It comes with a default history size of 50 items and it will show you the 
last 10 items in your floating window. You can increase these limits in the settings:

With ClipIt, you can copy and paste as many times as you want without losing any 
data. It's like a time machine for your clipboard!





Chapter 2

[ 21 ]

Productive Shells – Reinvent 
the way you work

In this chapter, we will start off with a short introduction to Vim and look at the 
most basic commands to help you get started with basic CRUD (create, read, update, 
delete) operations. We will then upgrade the shell interpreter to zsh and also give it 
superpowers with the awesome oh-my-zsh framework. We will look at some basic 
regular expressions such as searching some text using grep. Then, we will unleash 
the power of Unix pipes and run embedded commands using subshells. The later 
part of the chapter will help us understand how we can boost productivity and 
automate a lot of our day-to-day work by showing some of the more advanced shell 
scripting techniques. 

In this chapter, we will cover the following:

• Working with Vim
• Managing zsh using the oh-my-zsh framework
• Writing and running super powerful one line commands using pipes  

and subshells
• Exploring the shell scripting libraries

We will focus on editing files. For that we need to choose a file editor. There are 
a bunch of options but considering that the fastest way to edit files is, of course, 
without leaving the terminal. We recommend Vim. Vim is an awesome editor! It 
has a lot of configuration options with a huge community that has produced lots of 
plugins and beautiful themes. It also features advanced text editing, which makes it 
ultra-configurable and super-fast.



Productive shells – Reinvent the way you work

[ 22 ]

So, let's proceed. Open the terminator and type sudo apt install vim to  
install Vim:



Chapter 2

[ 23 ]

Vim is renowned for its exotic keyboard controls and a lot of people avoid using Vim 
because of it. But once you get the basics, it's super easy to use.

Let's start vim with no arguments:



Productive shells – Reinvent the way you work

[ 24 ]

This is the default screen; you can see the version on the second line.

• To start editing text, press the Insert key; this will take us to the insert mode, 
where we can start typing. We can see we are in the insert mode at the 
bottom of the screen:

• Press the Insert key again to go to replace the mode and override text.
• Press the Esc key to exit insert or replace.
• Type yy to copy a line.
• Type p to paste the line.



Chapter 2

[ 25 ]

• Type dd to cut the line.
• Type :w to save any changes. Optionally, specify a filename:

• To save the file in editing text, type vim.txt
• Type :q to exit Vim

Let's open the file again and do a small change:

• :wq: Write and exit at the same time
• :q!: Exit without saving

Now you are familiar with these commands, we can do basic file editing directly 
from the command line. This is the bare minimum that anybody needs to know 
when working with Vim, and we will use this knowledge in the chapters to come.

We will also have an entire section about Vim, where we will go into more detail 
about being productive in the coolest terminal editor today!



Productive shells – Reinvent the way you work

[ 26 ]

Oh-my-zsh – your terminal never felt this 
good before!
Bash is probably the most commonly used shell. It has lots of features and powerful 
scripting capabilities, but when it comes to user interaction, zsh is better. Most of its 
power comes from the awesome framework oh-my-zsh. In this section, we will be 
installing zsh.

Let's get started with the oh-my-zsh framework and we will be looking at some basic 
configuration options:

• Open the terminator and type sudo apt install zsh to install zsh, as 
shown in the following image:



Chapter 2

[ 27 ]

After installing it, go to this link, https://github.com/robbyrussell/oh-my-zsh, 
and follow the instructions for installing the oh-my-zsh framework. The installation 
process is a one-line command with curl or wget. Let's install it using both the 
command one by one:

Via curl:

sh -c "$(curl -fsSL https://raw.githubusercontent.com/robbyrussell/oh-my-
zsh/master/tools/install.sh)"

Via wget:

sh -c "$(wget https://raw.githubusercontent.com/robbyrussell/oh-my-zsh/
master/tools/install.sh -O -)"

You will see that the command is giving an error saying that git is not installed, so 
we need to install that too. The following command-line is used to install git:

sudo apt install git

Notice how easy it is to install software in Ubuntu. This is also a big productivity 
booster; every common software package we might need is already prepackaged 
in the remote software repository and it takes us just one command to add new 
software to our computer.

Now that we have git installed, let's run the command again. We can see that this 
time it's working successfully and it's bringing us to our new shell. Oh-my-zsh also 
changes the default shell to zsh.

https://github.com/robbyrussell/oh-my-zsh


Productive shells – Reinvent the way you work

[ 28 ]

After installation, the first thing to do is go pick a theme. To see all available themes, 
run this:

ls ~/.oh-my-zsh/themes

You can also go to the git repo and check out the themes, together 
with their screenshots. We will be using the candy theme, because it 
has a lot of useful information in the prompt: username, hostname, time, 
folder and git branch/git status.

Time can be very useful, for example if you want to know how long a command 
took to execute and you didn't use the time utility to measure your command's total 
runtime. Then, you can check out the prompt and see the time when the command 
started and the prompt to know when it was finished, and thus you can calculate the 
total time.

To change the theme, open ~/.zshrc and modify the ZSH_THEME variable. Save the 
file and open a new terminal window. Let's initialize an empty git directory so we 
can see how the prompt looks. You can see we are on the master branch:



Chapter 2

[ 29 ]

Let's create a file, say readme.md. The * in the prompt shows that the directory is not 
clean. We can verify this with the git status command:



Productive shells – Reinvent the way you work

[ 30 ]

You can see how it gets verified. After we've cleaned up the directory, the * is gone. 
If we change branch, the prompt shows that we are on the new branch.

Let's quickly create a demo. Run the following commands on your terminal:

git branch test
git checkout test



Chapter 2

[ 31 ]

You can now see the branch name in the prompt, and there are some other cool 
features that you might like to explore:

• Command completion: Start typing, for example, ip, and press Tab. We can 
see all the commands that start with IP and we can hit Tab again to start 
navigating through the different options. You can use the arrow keys to 
navigate and hit Enter for the desired command:

• Params completion: For example type ls - and press Tab, and we can see 
here all the options and a short description for each. Press Tab again to start 
navigating through them and Enter to select.



Productive shells – Reinvent the way you work

[ 32 ]

• History navigation: Click on arrow up key to search in history, filtering by 
the string that is written before the cursor. For example, if I type vim and 
press the arrow up key, I can see all the files opened with Vim in my history.

• History search: Press Ctrl + R and start typing, and press Ctrl + R again to 
search the same occurrence in history. For example ~, and Ctrl + R to see all 
commands that have ~ in the string.

• Navigating: Here press Ctrl + arrow left/right to jump one word, Ctrl + W to 
delete one word, or Ctrl + U to delete the whole line.

• cd completion case insensitive: For example, cd doc will expand into cd 
Documents.

• cd directory completion: If you are lazy and want to specify only a few key 
letters in a path, we can do that too. For example, cd /us/sh/zs + Tab will 
expand into cd /usr/share/zsh.

• Kill completion: Just type kill and Tab and you will see a list of pids to kill. 
From there you can choose which process to kill.

• chown completion: Type chown and tab to see a list of users to change owner 
to. The same applies to groups.

• Argument expansion: Type ls * and hit Tab. You see * expanded to all files 
and folders in the current directory. For a subset, type ls Do* and press Tab. 
It will only expand to documents and downloads.

• Adds lots of aliases: Just type alias to see a full list. Some very useful  
ones are:
.. - go up one folder
… - go up two folders
- - cd o the last directory
ll - ls with -lh



Chapter 2

[ 33 ]

To see a list of shortcuts, run the bindkey command. The terminal is one of the 
places where you will spend a lot time, so it's really important to master our shell 
and use it as efficiently as possible. Knowing good shortcuts and viewing relevant 
and condensed information, such as our prompt, can make our job much easier.

Basic regular expressions
You have a problem and you want to solve it with regular expressions? Now you have two 
problems! This is just one of the many regular expression jokes on the Internet.

In this section, you will learn how regular expressions work, as we will be using 
them in the upcoming chapters. We have prepared a file for our playground and if 
you want to try the grep commands on your own, you can take it from the GitHub 
repository.



Productive shells – Reinvent the way you work

[ 34 ]

Let's start by opening our text file so we can see its contents, and then splitting the 
screen so we can see both the file and the command side by side.

First of all, the simplest and probably the most common regular expression is to find 
a single word.

For this we will use the grep "joe" file.txt command:

joe is the string we are searching for and file.txt is the file where we perform the 
search. You can see that grep printed the line that contained our string and the word 
is highlighted with another color. This will only match the exact case of the word (so, 
if we use lowercase j, this regex will not work anymore). To do a case insensitive 
search, grep has an -i option. What this means is that grep will print the line that 
contains our word even if the word is in a different case, like JoE, JOE, joE, and so on:

grep -i "joe" file.txt



Chapter 2

[ 35 ]

If we don't know exactly what characters are there in our string, we can use .* 
to match any number of characters. For example, to find a sentence beginning 
with "word" and ending with "day", we'd use the grep "word.*day" file.txt 
command:

• . - matches any character
• * - matches previous character multiple times

Here you can see that it matched the first line in the file.

A very common scenario is to find empty lines in a file. For this we use the grep "^\
s$" file.txt command:

• Where \s : This stands for space, 
• ^ : It's for the beginning of the line.
• $ : It's for its ending.

We have two empty lines with no space. If we add a space between the lines, it will 
match the lines containing one space. These are called anchors.



Productive shells – Reinvent the way you work

[ 36 ]

grep can do a neat little trick to count the number of matches. For this, we use  
the -c parameter:

To find all the lines that have only letters and space, use:

• grep

• "": Open quotes
• ^$: From the beginning of the line to the end
• []*: Match these characters any number of times
• A-Za-z: Any upper and lower case letter

If we run the command up to here, we get only the first line. If we add:

•  - 0-9 any number we match another two lines,
• And if we add: - \s any space, we also match the empty lines and the all  

caps line
• If we run the command until here, we get only the first line from the output, 

the rest is not displayed



Chapter 2

[ 37 ]

• Then, if we add 0-9 we match any number (so the first two lines get matched)
• And if we add \s we match any type of space (so the empty lines are 

matched as well)

grep "^[A-Za-z0-9\s]*$" file.txt

Sometimes we need to search for something that's not in the string:

grep "^[^0-9]*$" file.txt

This command will find all the lines that do not have only numeric characters. [^] 
means match all characters that are not inside, in our case, any non-number.

The square brackets are markers in our regular expression. If we want to use them in 
our search string, we have to escape them. So, in order to find lines that have content 
between square brackets, do this:

grep "\[.*\]" file.txt

This is for any line that has characters in square brackets. To find all lines that have 
these character !, type this:

grep "\!" file.txt



Productive shells – Reinvent the way you work

[ 38 ]

Now let's have a look at a basic sed, lets find Joe word and replace with All word:

sed "s/Joe/All/g" file.txt

This will replace every occurrence of the string Joe with the string All. We will deep 
dive into this in the upcoming chapters.

Regular expressions,  such as Vim, are one of the things many people are afraid 
of because they seem complicated to learn in the beginning. Although they might 
seem cryptic, regular expressions are handy companions once mastered: they are 
not limited to our shell because the syntax is very similar in most programming 
languages, databases, editors, and any other place that includes searching for strings. 
We will go into more detail about regular expressions in the upcoming chapters.



Chapter 2

[ 39 ]

Pipes and subshells – your shell's salt 
and pepper
In this section, we will be looking at ways to improve your productivity using your 
shell. The Linux command line is great because it has a variety of tools we can use. 
What makes it even greater is the fact that we can chain these tools together to form 
greater, more powerful tools that will make us even more productive. We will not go 
into basic shell commands; instead we will be looking at some cool pipe and subshell 
combinations that can make our lives easier.

Let's start with a basic pipe; in this example, we are counting the length of the 
current path using the following command:

pwd | wc -c

pwd, as you probably know, stands for print working directory. The | is the 
pipe symbol, and what it does is send the output of the command on the left to the 
command on the right. In our case, pwd is sending its output to wc -c, which counts 
the number of characters. The coolest thing about pipes is that you can create a chain 
of any number of pipes.



Productive shells – Reinvent the way you work

[ 40 ]

Let's see another example where we will see how to find used space on the drive:

df -h | grep /home | tr -s " " | cut -f 2 -d " "

• "df -h": This shows the disk usage in a human-readable format
• "| grep /home": This shows only the home directory
• '| tr -s " "': This substitutes multiple spaces for just one space
• '| cut -f 2 -d " "': This selects the second column using a space as the 

delimiter



Chapter 2

[ 41 ]

As you can see, the command printed out 173G, the size of the /home partition. This 
is a common use case when chaining multiple commands, each command reducing 
the output until we get the desired information and nothing else. In our case, this is 
the used disk space.

To count all the directories in a folder, use the following command:

ls -p | grep / | wc -l

The basic idea is to count all the lines that end with /. Here we can see we have only 
one directory.



Productive shells – Reinvent the way you work

[ 42 ]

Pipes are a great option to find and kill processes. Say we want to find the process ID 
of nautilus, and kill all running instances. For this we use:

ps aux | grep nautilus | grep -v grep | awk '{print $2}' | xargs kill

• ps aux: This prints all processes with PID
• | grep nautilus: Find the ones matching nautilus
• | grep -v grep: Inverts grep to exclude the grep process
• | awk '{print $2}': Selects the second word in the line, which is the PID
• | xargs kill: Here xargs is used to distribute each PID to a kill command. 

It is especially used for commands that do not read arguments from standard 
input.

Now we've killed nautilus. This was purely a demonstrative example. There are 
other ways of doing this.

Let's open nautilus again and send it to the background by hitting Ctrl + Z followed 
by the bg command.

Now let's run the following command:

pgrep nautilus



Chapter 2

[ 43 ]

To see all the pids of nautilus and to send the kill signal to all those processes, use 
the following command line:

pkill nautilus

Now it's time for some networking! You probably know the ifconfig command, 
which is used to print information about the network interfaces. To get the IP 
address of a specific interface (in our case the wireless interface wlp3s0), run this:

ifconfig wlp3s0 | grep "inet addr:" | awk '{print $2}' | cut -f 2 -d ":"

• ifconfig wlp3s0: Prints networking information for the wlp3s0 interface
• | grep "inet addr:": Gets the line with the IP address
• | awk '{print $2}': Selects the second word in the line (we could have 

used cut as well)
• | cut -f 2 -d ":": This is split by ":", and only prints the second word

And now, we see your private ip address on the screen.

A common use case that might also arise is counting the word frequency in a file.



Productive shells – Reinvent the way you work

[ 44 ]

Here we have a standard lorem ipsum text contained in lorem.txt. In order to get 
the word frequency, use this:

cat lorem.txt | tr " " "\n" | grep -v "^\s*$" | sed "s/[,.]//g" | sort | 
uniq -c | sort -n

• cat lorem.txt

• | tr " " "\n": Transforms each space into a new line character
• | grep -v "^\s*$": Eliminates empty lines
• | sed "s/[,.]//g": Eliminates commas (,) and periods (.) to select only the 

words
• | sort: Sort the results alphabetically
• | uniq -c: Show only unique lines
• | sort -n: Sorts by numerical value

Append grep -w id to find the frequency of the word ID, or grep -w 4 to see all 
words that appear four times.

Now let's move on to our first subshell example. Subshells can be written by either 
enclosing them in $(), or using backticks (`). Backticks are usually found under 
the Esc key on your keyboard. In all our examples, we will be using the first form 
because it's easier to read.



Chapter 2

[ 45 ]

Our first example is to list all the folders in our current folder:

ls $(ls)

The ls subshell returns the files and folders in the current directory and the ls from 
outside the subshell will list those individually, showing additional details:

• Counting all files and directories in the current directory
• Given the fact that commas (,) and periods (.) are hard links that mark the 

current and parent directory, we need to count all entries minus these two
• This can be done using the expr $(ls -a | wc -l ) - 2 command:

Here, the subshell will return the number of entries (five, in this case). The number 
we are looking for is the number of entries minus the special folders ("." and "..").  
In order to do arithmetic operations, we use the expr command, as in our example.

Notice that the subshell contains a pipe. The good thing is that we can combine pipes 
and subshells in any way in order to obtain the desired result.



Productive shells – Reinvent the way you work

[ 46 ]

Imagine pipes and subshells as Lego pieces for your shell. They expand way beyond 
its capabilities and give you access to new possibilities with infinite combinations.  
In the end, it all depends on your imagination and how well you learn to use them.

Shell scripting for fun and profit
Pipes and subshells are one way of expanding the capabilities of our shell. The 
ultimate way is by writing shell scripts. These scenarios must be taken into 
consideration when dealing with complex tasks that can't be automated with a one-
line command.

The good news is that almost all the tasks can be automated with the use of shell 
scripts. We won't go over an introduction to shell scripts. Instead, we will be looking 
at some more advanced use cases for writing them.

Let's start our journey into shell scripting! First thing, let's open a file called script.
sh and split the screen so that we can test while writing. Every shell should start with 
#!, followed by the interpreter it uses. This line is called a shebang. We will be using 
bash as our default interpreter.

It's a good idea to use bash, because it's a common interpreter that comes with most 
Linux distributions and also OS X:

#!/bin/bash

Let's start with a simple use case: reading the arguments passed into the command 
line. We will assign the value of the first command line argument, $1, to a variable 
called ARG, and then print it back to the screen:

ARG=${1}
echo ${ARG}



Chapter 2

[ 47 ]

Let's save our script, assign it execution permissions, and then run it with  
one argument:

./script.sh test

As you can see, the value test is printed back to the screen. In some cases, we want 
to assign default values to variables. In order to do this, add ":-" to the variable 
assignment, followed by the default value:

ARG=${1:-"default value"}



Productive shells – Reinvent the way you work

[ 48 ]

Now if we re-run the script, we can see that passing no arguments will echo 
default value. And just like pipes, we can chain multiple default value 
assignments together. We can define another variable AUX, assign it the value 123, 
and use the same syntax to assign its value to the ARG variable, before using the 
"default value" script like so:

AUX="123"

ARG=${1:-${AUX:-"default value"}}



Chapter 2

[ 49 ]

In this case, ARG will always receive 123 as its default value.

Now let's look at string selectors. To select a substring, use ":", plus the starting 
position plus ":", plus the number of characters:

LINE="some long line of text" 
echo "${LINE:5:4}"  

In our case, we will be selecting four characters, starting from the fifth character. 
After running the script, we can see the value long printed on the screen.



Productive shells – Reinvent the way you work

[ 50 ]

Most shell scripts are designed to run from the command line and receive a variable 
number of arguments. In order to read command line arguments without knowing 
the total number of arguments, we'll use a while statement that checks whether the 
first argument is not null using the -z (or not equal to 0) conditional expression. In 
the while loop, let's echo the variable's value and run shift, which shifts command 
line arguments one position to the left:

while [[ ! -z ${1} ]]; do

echo ${1}

shift  # shift cli arguments

done

If we run our script with the arguments a b c, we can see that our while looped 
through the parameters and printed each one on a separate line. Now let's extend 
our CLI arguments parser and add a case statement for interpreting the arguments.



Chapter 2

[ 51 ]

Let's assume that our script will have a help option. The Posix standard recommends 
doing a long argument version with --, and a short version with only one -. So both 
-h and --help will print the help message. Also, it is recommended to always have a 
default case and print a message when the user sends invalid options and then exits 
with a non-zero exit value:

while [[ ! -z ${1} ]]; do
    case "$1" in
        --help|-h)
            echo "This is a help message"
            shift
            ;;
        *)
            echo "invalid option"
            exit 1
            ;;
    esac
done



Productive shells – Reinvent the way you work

[ 52 ]

If we run our script with -h, we can see the help message printed, the same as if we 
had used --help. If we run the script with any other option, the invalid option text 
is printed and the script exits with the exit code 1. To get the exit code of the last 
command, use "$?".

Now let's look at basic functions in shell. The syntax is pretty similar to other 
programming languages. Let's write a function called print_ip that will print the IP 
of the interface specified as the first argument. We will use a subshell and assign the 
value to a variable called IP. We already have the full command inside our clipboard; 
it's the same one we saw in the lesson about pipes:

function print_ip() {
    IP=$(
        ifconfig ${1} | \
        grep "inet addr:" | \
        awk '{print $2}' | \
        cut -f 2 -d ":"
    )   
    echo ${IP}
}



Chapter 2

[ 53 ]

Now let's add another case to our switch statement, for the -i or --ip option. The 
option will be followed by the name of the interface, which we will then pass to the 
print_ip function. Having two arguments for one option means we need to call the 
shift command twice:

--ip|-i)
    print_ip ${2}
    shift
    shift
    ;;

Let's do an ifconfig to get the name of our wireless interface. We can see it's 
wlp3s0.

Now let's run:

./script.sh --ip wlp3s0

We can see the IP address. This is a very basic use case, where we can see how 
command line arguments can be passed. We can add unlimited options to our case 
statement, define functions for handling the arguments, and even chain multiple 
options together to form complex scripts that receive well-structured information as 
command line arguments.

Being effective means running tasks faster-- really fast! And when it comes to speed, 
bash is not the first choice in terms of script interpreters. Luckily, we still have some 
tricks up our sleeves! If a shell script needs to run multiple independent tasks, we 
can use the & symbol to send the process to the background and move forward to 
the next command.

Let's create two functions, long_running_task 1 and 2, and add a sleep command 
inside, to simulate a long_running task:

function long_running_task_1() {
    sleep 1
}

function long_running_task_2() {
    sleep 2
}



Productive shells – Reinvent the way you work

[ 54 ]

The first long running task function will sleep for one second, and the next will sleep 
for two seconds.

Then, for testing purposes, let's add another case to our switch statement,  
called -p / --parallel, and run the two long running tasks:

--parallel|-p)
    long_running_task_1 
    long_running_task_2

Now, if we run this:

./script.sh -p

It will take a total of three seconds for the script to finish. We can measure this with 
the time utility:



Chapter 2

[ 55 ]

If we run both functions in the background, we can reduce the running time to the 
longest running time of both functions (because of the wait). When running long 
running tasks, we probably want the script to wait for the longest-running task to 
finish, in our case task 2. We can achieve this by grabbing the pid of the second task. 
Here $! is used to grab the pid of the last run command. Then we use the wait shell 
built in to wait for the execution to finish:

--parallel|-p)
    long_running_task_1 &
    long_running_task_2 &
    PID=$!
    wait ${PID}

After running the script again with the time utility, we can see it takes us a total of 
two seconds to complete the task.

Who would've thought we can do parallel processing in a shell?

If the executions take a longer time, we can add a notification when the script 
finishes:

notify-send script.sh "execution finished"



Productive shells – Reinvent the way you work

[ 56 ]

This way we can start the script, work on some other tasks, and receive a notification 
when the script finishes. You can let your imagination go wild on the things you can 
achieve with parallel processing and notifications.

In this chapter, we have seen some common predefined shell variables. They were:

• $1: First argument
• $?: Return code of the last command
• $!: The pid of the last command run

Other commonly used predefined shell variables include:

• $#: Number of parameters
• $*: List of parameters
• $@: All the parameters
• $0: Name of the shell/script
• $$: PID of current running shell

Bash has a lot of features and we recommend going through its man page to get 
more information about them.

Shell scripts are amazing when used the right way. They can fine-tune system 
commands, as we saw in our example when we got only the IP address, without the 
whole ifconfig output and much more. You, as a pragmatic terminal user, should 
identify what tasks you most commonly do in the command line and what can be 
automated using shell scripts. You should create your own collection of shell scripts 
and add them your path, so that they are easily accessible from any directory.

Shell scripting libraries
To really take advantage of automating tasks using shell scripts, it's important to 
organize all common tasks into reusable commands and have them available in the 
path. To do this, it's a good idea to create a bin folder inside the home directory 
for the scripts, and a bin/lib directory for storing common pieces of code. When 
working with lots of shell scripts, it's important to reuse large pieces of functionality. 
This can be achieved by writing library functions for your shell scripts, functions that 
you can call from multiple places.



Chapter 2

[ 57 ]

Here we will create a library script called util.sh, which will be sourced in other 
scripts. By sourcing the script, we get access to functions and variables from inside 
the library script.

We will start by adding the print_ip function from a previous script.

Now we will add another function called getarg, which will be used by other scripts 
for reading command line arguments and values. We will simply paste it from our 
clipboard history, using ClipIt to select it.

You can learn more about ClipIt by checking out our ClipIt section!

Function to read cli argument:
function getarg() {
    NAME=${1}
    while [[ ! -z ${2} ]]; do
        if [[ "--${NAME}" == "${2}" ]]; then
            echo "${3}"
            break
        fi
        shift
    done
}   



Productive shells – Reinvent the way you work

[ 58 ]

This is just a simple function that will receive a parameter name as the first 
argument, the list of CLI arguments as the second parameter, and it will search 
inside the list of CLI arguments to find the parameter name. We will see it in action 
later on.

The last function we're going to create is called get_public_ip. It is similar in terms 
of functionality to the print_ip function, except that it will be used to print the 
computer's public IP. That means that, if you are connected to a wireless router and 
you access the Internet, you will get the IP of the router, which is the IP that other 
sites see. The print_ip function just shows the IP address from the private subnet.

The command is already copied in the clipboard. It's called dig and we're using it 
to access https://www.opendns.com/ in order to read the public ip. You can find 
more information about it in its man page or by Googling it:

function get_public_ip() {
    dig +short myip.opendns.com @resolver1.opendns.com
}

Now that we have our library functions in place, let's go and create our productivity 
booster scripts. Let's create a script called iputils where we will add some common 
tasks for reading IP addresses.

We'll start by adding the shebang, followed by a neat little trick for making sure 
we are always in the same folder as the executed script. We will be using the BASH_
SOURCE variable to determine the value of the current working directory (or CWD) 
variable. You see here that we are using nested subshells in order to achieve this:

CWD=$( cd "$(dirname "${BASH_SOURCE[0]}" )/" && pwd )

cd ${CWD}

Next, we will source the util script, so that the library functions are exported into 
memory. Then, we can access them from the current script:

source ${CWD}/lib/util.sh

Let's add a simple call to our getarg function using a subshell, and search for the 
cmd argument. Also, let's echo what we've found, so that we can test our script:

CMD=$(getarg cmd $@)

echo ${CMD}

https://www.opendns.com/


Chapter 2

[ 59 ]

The next thing we need to do is to give the script execution rights using the chmod 
command. Also, in order to run the script from anywhere, the bin folder must be in 
the PATH variable. Echo the variable and check that the bin folder is there and, if 
not, update the variable in ~/.zshrc.

Let's test the script by reading a command line parameter with the getarg function 
and echoing it.

If you are searching for the iputils command in the terminal using tab for 
autocomplete and the command doesn't seem to exist, that is probably because 
you need to tell zsh to reload its path commands. To do this, issue the "rehash" 
command.

Now run:

iputil --cmd ip

This should work from within any folder, and it should print ip on the screen.

Now that we've verified everything is alright, let's write some code for our command 
line arguments. If we run the script with the --cmd ip flags, the script should print 
that on the screen. This can be done with the already-familiar case statement. Here 
we also want to pass in another argument, --iface, to get the interface that's 
needed for printing the IP. It's also a good practice to add a default case and echo a 
message saying invalid argument:

case ${CMD} in
    ip)
        IFACE=$(getarg iface $@)
        print_ip ${IFACE}
        ;;
    publicip)
        get_public_ip
        ;;
    *)
        echo "Invalid argument"
esac

Save the script, and let's test it.



Productive shells – Reinvent the way you work

[ 60 ]

First, let's get the interface name from the ifconfig command, and then let's go and 
test the script by running this command:

iputil --cmd ip --iface wlp3s0

We can see it's printing our private ip on the screen.

Now let's add our last cmd to the script: publicip.

For this we just call the get_public_ip function from our lib utility. Save it and  
run this:

iputil --cmd publicip



Chapter 2

[ 61 ]

We see that the command worked; our public ip is printed on the screen. Here is the 
complete script:

#!/bin/bash 

CWD=$( cd "$( dirname "${BASH_SOURCE[0]}" )/" && pwd )
cd ${CWD}

source ${CWD}/lib.sh

CMD=$(getarg cmd $@)

case ${CMD} in
    publicip)
        print_public_ip
        ;;
    ip)
        IFACE=$(getarg iface $@)
        print_ip $IFACE
        ;;
    *)
        echo "invalid command"
esac

To give you an example, a while ago there were a bunch of articles on the Internet 
about a man who used to automate everything that took him more than 90 seconds 
to do. The scripts he wrote included instructing the coffee machine to start making 
a latte, so that by the time he got to the machine, the latte was finished and he didn't 
need to wait. He also wrote a script that sent a text message "late at work" to his wife 
and automatically picked a reason from a preset list whenever there was activity 
with his login on the company's servers after 9 p.m.

Of course, this example is a little bit complex, but in the end it's all about your 
imagination. Well-written automation scripts can take care of your routine work  
and leave you to explore your creative potential. 





[ 63 ]

Vim kung fu
Vim's default configuration is usually pretty average. In order to better use Vim's 
powers, we will unleash its full potential through the help of its config files. Then, 
we will learn to explore some keyboard shortcuts that will help us speed up our 
workflow. We will also look at some commonly used plugins that make Vim even 
better. We will see how Vim can come in handy with its option of encrypting files 
for storing your passwords. The chapters will end by showing how we can automate 
Vim and configure a work environment easily. 

In this chapter, we will be covering the following:

• Working with Vim
• Exploring Plugin steroids for Vim
• Using the Vim password manager to store passwords
• Automating Vim configuration

When it comes to being productive in the terminal, one important aspect is to never 
leave the terminal! And when getting stuff done, a lot of the time we find ourselves 
having to edit files and opening an external (GUI) editor.

Bad move!

To double our productivity, we need to leave those days behind and get the job done 
right there, in the terminal, without opening full-fledged IDEs just to edit one simple 
line of text. Now, there is a lot of debate going on about which is the best text editor 
for your terminal, and each one has its pros and cons. We recommend Vim, an editor 
which is ultra-configurable and, once mastered, can even outmatch an IDE.

The first thing we need to do in order to kickstart our Vim productivity is to have a 
well configured vimrc file.



Vim kung fu

[ 64 ]

Supercharging Vim
Let's start by opening a new hidden file called .vimrc in our home folder and pasting 
a few lines:

set nocompatible
filetype off

" Settings to replace tab. Use :retab for replacing tab in existing 
files.
set tabstop=4
set shiftwidth=4
set expandtab

" Have Vim jump to the last position when reopening a file
if has("autocmd")
   au BufReadPost * if line("'\"") > 1 && line("'\"") <= line("$") | 
exe "normal! g'\"" | endif

" Other general vim options:
syntax on
set showmatch      " Show matching brackets.
set ignorecase     " Do case insensitive matching
set incsearch      " show partial matches for a search phrase
set nopaste
set number           
set undolevels=1000



Chapter 3

[ 65 ]

Now let's close and reopen the file, so that we can see the configuration take effect. 
Let's go into a little more detail regarding some of the options.

First of all, as you've probably guessed, the lines starting with " are comments, so 
they can be ignored. Lines 5, 6, and 7 tell vim to always use spaces instead of tabs 
and to set the tab size to 4 spaces. Lines 10 to 12 tell vim to always open a file and set 
the cursor in the same position as the last time the file was open:

• syntax on: This enables syntax highlighting, so it is easier to read code
• set nopaste: This sets nopaste mode, which means you can paste code 

without having Vim try to guess how to format it
• set number: This tells Vim to always show the line numbers
• set undolevels=1000: This tells Vim to remember the last 1000 changes we 

made to the file, so that we can easily undo and redo



Vim kung fu

[ 66 ]

Now, most of these features can be easily turned on or off. Say, for example, we 
want to copy, paste some lines from a file opened in Vim to another file. With this 
configuration, we are also going to paste the line number. What can be done is to 
quickly switch off the line number by typing :set nonumber, or, if the syntax is 
annoying, we can easily switch it off by running syntax off.

Another common feature is the status line, which can be configured by pasting these 
options:

" Always show the status line
set laststatus=2

" Format the status line
set statusline=\ %{HasPaste()}%F%m%r%h\ %w\ \ CWD:\ %r%{getcwd()}%h\ \ 
\ Line:\ %l\ \ Column:\ %c

" Returns true if paste mode is enabled
function! Has Paste()
    if &paste
        return 'PASTE MODE  '
    en  
    return ''
end function

Close the file and open it again. Now we can see at the bottom of the page a status 
bar with extra information. This is also ultra-configurable, so we can put a lot of 
different stuff inside. This particular status bar contains the name of the file, the 
current directory, the line and column numbers and also the paste mode (on or off). 
To set it to on, we use :set paste and the changes will be showed in the status bar.



Chapter 3

[ 67 ]

Vim also has the option of changing the color scheme. To do this, go to /usr/share/
vim/vim74/colors and choose a color scheme from there:

Let's choose desert!

Color scheme desert
Close and reopen the file; you will see it's not that different from the previous color 
theme. If we want a more radical one, we can set the color scheme to blue, which will 
drastically change the way Vim looks. But during the rest of this course, we will stick 
to desert.



Vim kung fu

[ 68 ]

Vim can also be supercharged with the help of external tools. In the world of 
programming, we often find ourselves editing JSON files and that can be a very 
difficult task if the JSON is not indented. There is a Python module that we can use 
to automatically indent JSON files and Vim can be configured to use it internally.  
All we need to do is to open the configuration file and paste the following line:

map j !python -m json.tool<CR>

Essentially this is telling Vim that, when in visual mode, if we press J, it should call 
Python with the selected text. Let's manually write a json string, go to visual mode 
by pressing V, select the text using our arrows, and hit J.

And, with no extra packages, we added a JSON formatting shortcut:



Chapter 3

[ 69 ]

We can do the same thing for xml files, but first we need to install a tool for working 
with them:

sudo apt install libxml2-utils

To install the XML utility package, we must add the following line to our 
configuration file:

map l !xmllint --format --recover -<CR>

This maps the L key when in visual mode to xmllint. Let's write a HTML snippet, 
which is actually a valid xml file, hit V for visual mode, select the text, and press L.

This type of extension (and also spell checkers, linters, dictionaries, and much more) 
can be brought to Vim and be instantly available to use.

A well configured vim file can spare you a lot of time in the command line. 
Although it might take some time in the beginning to get things set up and to find 
the configuration that is right for you, this investment can pay off bigtime in the 
future, as time passes and we spend more and more time in Vim. A lot of times we 
don't even have the luxury of opening a GUI editor, like when working remotely 
through an ssh session. Believe it or not, command line editors are life savers and 
productivity is hard to achieve without them.



Vim kung fu

[ 70 ]

Keyboard kung fu
Now that we have Vim all set up, it's time to learn some more command line 
shortcuts. The first thing we will be looking at is indentation.

Indentation can be done in Vim by going into visual mode and typing V for selecting 
portions of text or V for selecting full lines, followed by > or < to indent right or left. 
Afterwards press . to repeat the last operation:

Any operation can be undone by hitting u and can then be redone by hitting Ctrl + R 
(as in undo and redo). This is the equivalent of Ctrl + Z and Ctrl + Shift + Z in most 
popular editors.



Chapter 3

[ 71 ]

When in visual mode, we have the option of changing the case of letters by hitting U 
to make all text upper case, u for lower case and ~ to reverse current case:

Other handy shortcuts are:

• G: Go to end of file
• gg: Go to start of file
• Select all: This is not really a shortcut, but a combination of commands:  

gg V G, as in go to start of file, select full line, and move to the end.



Vim kung fu

[ 72 ]

Vim also has a handy shortcut for opening man pages for the word under the cursor. 
Just hit K and a man page will show up for that specific word (if there is one, that is):

Finding text in Vim is as easy as hitting /. Just type / + the text to find, and hit Enter 
to start searching. Vim will go to the first occurrence of that text. Hit n for next 
occurrence, N for previous occurrence.



Chapter 3

[ 73 ]

Our favorite editor has a powerful find and replace feature, similar to the sed 
command. Let's say we want to replace all occurrences of the string CWD with the 
string DIR. For this, just type:

:1,$s/CWD/DIR/g

:1,$ - start from line one, till the end of the file

s - substitute 

/CWD/DIR/ - replace CWD with DIR

g - global, replace all occurrences.



Vim kung fu

[ 74 ]

Let's do another common example that often comes up in programming: 
commenting lines of code. Let's say that we want to comment out lines 10 to 20  
in a shell script. To do this, type:

:10,20s/^/#\ /g



Chapter 3

[ 75 ]

This means substitute the beginning of the line with # and space. For deleting lines 
of text, type:

:30,$d

This will delete everything from line 30 till the end.



Vim kung fu

[ 76 ]

More information about regular expressions can be found in the chapters. Also check 
out the parts on sed for more text manipulation examples. These commands are 
some of the longest in Vim and often we get them wrong. To edit the command we 
just wrote and run it again, we can open the command history by hitting q:, navigate 
to the line containing the command to edit, press Insert, update the line, and press 
Esc and Enter to run the command. It's as simple as that!

Another operation that is often useful is sorting. Let's create a file with unsorted lines 
of text from the classic lorem ipsum text:

cat lorem.txt | tr " " "\n" | grep -v "^\s*$" | sed "s/[,.]//g" > sort.
txt



Chapter 3

[ 77 ]

Open sort.txt and run :sort. We see that the lines are all sorted alphabetically.



Vim kung fu

[ 78 ]

Now let's move forward to window management. Vim has the option to split the 
screen for editing files in parallel. Just write :split for horizontal split, and :vsplit 
for vertical split:



Chapter 3

[ 79 ]

When Vim splits the screen, it opens the same file in the other pane; to open another 
file just hit :e. The good thing here is that we have autocomplete, so we can just hit 
Tab and Vim will start writing filenames for us. If we don't know what files we want 
to choose, we can just run any arbitrary shell command directly from Vim and come 
back once we've finished. For example, when we type :!ls, the shell opens, shows 
us the output of the command, and waits until we hit Enter to come back to the file.

When in split mode, press Ctrl + W to switch between windows. To close a window, 
press :q. If you want to save a file under a different name (think of the save as 
command from other editors), just hit :w followed by the new file name, say mycopy.
txt.

Vim also has the option of opening multiple files at once; just specify a list of files 
after the vim command:

vim file1 file2 file3

After the files are open, use :bn to move to the next file. To close all the files, hit :qa.



Vim kung fu

[ 80 ]

Vim also has an built in explorer. Just open Vim and hit :Explore. After this, we can 
navigate through the directory layout and we can open new files:

It also has a different option. Let's open a file, delete one of the lines, and save it 
under a new name. Exit and open the two files with vimdiff. Now we can see the 
differences between them visually. This applies to all sorts of changes and is way 
better than the plain old diff command output.



Chapter 3

[ 81 ]

Keyboard shortcuts really make a difference and open a whole new world of 
possibilities when using Vim. It's kind of hard to remember in the beginning, but 
once you start using them, it will be as simple as clicking a button.

Plugin steroids for Vim
In this section, we will be looking at how we can add external plugins to Vim. Vim 
has its own programming language for writing plugins, which we saw a glimpse 
of when writing the vimrc file. Luckily, we won't have to learn all of that because 
most of the stuff we can think of already has a plugin out there. To manage plugins, 
let's install the plugin manager pathogen. Open: https://github.com/tpope/vim-
pathogen.

Follow the installation instructions. As you can see, it's a one-line command:

mkdir -p ~/.vim/autoload ~/.vim/bundle && \curl -LSso ~/.vim/autoload/
pathogen.vim https://tpo.pe/pathogen.vim

And after it finishes, add pathogen to your .vimrc:

execute pathogen#infect()

Most IDEs show a tree layout of the folder structure, in parallel with the open files. 
Vim can do this also, and the simplest way to achieve this is by installing the plugin 
called NERDtree.

Open: https://github.com/scrooloose/nerdtree, and follow the instructions for 
installing it:

cd ~/.vim/bundle git clone https://github.com/scrooloose/nerdtree.git

https://github.com/tpope/vim-pathogen
https://github.com/tpope/vim-pathogen
https://github.com/scrooloose/nerdtree


Vim kung fu

[ 82 ]

Now we should be all set. Let's open a file and type :NERDtree. We see the tree-like 
structure of our current folder here, where we can browse and open new files. If we 
want Vim to replace our IDE, this is certainly a mandatory plugin!

Another awesome plugin that comes in really handy is called Snipmate and is used 
for writing code snippets. To install it, go to this link and follow the instructions: 
https://github.com/garbas/vim-snipmate.

https://github.com/garbas/vim-snipmate


Chapter 3

[ 83 ]

As we can see, before installing snipmate, there is another set of plugins that needs 
to be installed:

• git clone https://github.com/tomtom/tlib_vim.git

• git clone https://github.com/MarcWeber/vim-addon-mw-utils.git

• git clone https://github.com/garbas/vim-snipmate.git

• git clone https://github.com/honza/vim-snippets.git

If we take a look at the readme, we can see an example for C files, which has auto 
completion for the for keyword. Let's open a file with a .c extension, type for and 
hit Tab. We can see the autocomplete working.



Vim kung fu

[ 84 ]

We have also installed the vim-snipmate package, which comes with lots of snippets 
for different languages. If we take a look at ~/.vim/bundle/vim-snippets/
snippets/, we can see lots of snippet files:

Let's check the javascript one:

vim ~/.vim/bundle/vim-snippets/snippets/javascript/javascript.snippets



Chapter 3

[ 85 ]

Here we can see all the snippets available. Type fun and hit Tab for the function 
autocomplete. The snippets are preconfigured with variables so that you can write a 
function name and hit Tab to go to the next variable to complete. There is a snippet 
for writing if-else blocks, one for writing console.log, and lots of others for 
common code blocks. The best way to learn them is to go through the file and start 
using the snippets.

There are lots of plugins out there. People have made all sorts of plugin packs that 
are guaranteed to put your Vim on steroids. One cool project is http://vim.spf13.
com/

It's nicknamed the ultimate Vim plugin pack and it basically has plugins and 
keyboard shortcuts for everything. This is for more advanced users, so be sure to 
understand the basic concepts before jumping to plugin packs. Remember, the best 
way to learn is to install plugins manually and play with them one by one.

http://vim.spf13.com/
http://vim.spf13.com/


Vim kung fu

[ 86 ]

Vim password manager
Vim can also be used to safely store information, by encrypting text files with 
different cryp methods. To see the cryp method that Vim is currently using, type:

:set cryptmethod?

We can see in our case it is zip, which is not actually a crypto method and does  
not offer much in terms of security. To see what different alternatives we have,  
we can type:

:h 'cryptmethod'

A page describing the different encryption methods comes up. We can choose from 
zip, blowfish, and blowfish2.The most secure and recommended one is, of course, 
blowfish2. To change the encryption method, type:

:set cryptmethod=blowfish2

This can be also added to vimrc so that it becomes the default encryption. Now we 
can safely encrypt files using Vim.

A common scenario would be storing a passwords file.



Chapter 3

[ 87 ]

Let's open up a new file named passwords.txt, add some dummy passwords 
inside, and save it. The next step is to encrypt the file with a password, and for this 
we type :X.

Vim will prompt you for a password twice. If you exit without saving the file, the 
encryption will not be applied. Now, encrypt it again, save, and exit the file.

When we reopen it, Vim will ask for the same password. If we get this wrong, Vim 
will show some random characters that come from the failed decryption. Only if we 
type the correct password will we get the actual file content:

Saving encrypted files with Vim, combined with backing up the file in places like a 
private git repository or a private Dropbox folder, can be an effective way of storing 
your passwords:



Vim kung fu

[ 88 ]

It also has the benefit that it's sort of a unique method of storing passwords, 
compared to using online services that are pretty standard and might get 
compromised. This can also be referred to as security through obscurity.

Instant configuration restoring
The configuration we have seen in this chapter might take some time to set up 
manually, but, once everything is configured, we can create a script that will restore 
the Vim configuration instantly.

For this, we paste all the commands issued up to now into a bash script that can be 
run to bring Vim to the exact same configuration. All that is missing from this script 
is the vimrc file from the home folder, which we can also restore through a technique 
called heredocs. Just type cat, redirect the output to vimrc, and use heredoc as input, 
delimited by eof:



Chapter 3

[ 89 ]

cat > ~/.vimrc << EOF

...

<vimrc content>

...

EOF

Using heredocs is a common technique for manipulating large chunks of text inside 
bash scripts. Basically it treats a section of code like a separate file (in our case 
everything after the cat and until the EOF). With this script, we can restore all the 
Vim configurations we have done and we can also run it on any computer we work 
on, so that we get our Vim set up in no time!

We hope you have enjoyed this material and see you in the chapter!





[ 91 ]

CLI – The Hidden Recipe
This chapter will start by focusing on sed, one of the tools that can scare a lot of 
Linux users. We will look at some basic sed commands that could make hours of 
refractor turn into a few minutes. We will see how you can locate any file by using 
Linux puter. Furthermore, we will see just how remote work will get a whole lot 
better when Tmux enters our skill set. You can run long lasting commands, split 
screens, and never lose your work with the help of the best terminal multiplexor. 
Then, you will learn how to discover and interact with your network with the help 
of commands like netstat and nmap. Lastly, we will see how Autoenv helps switch 
environments automatically and how to use rm command to interact with trash from 
command line using the trash utility.

In this chapter, we will cover the following:

• Understanding the working of sed
• Working with tmux, a terminal multiplexer
• Automatically switching environments using Autoenv 
• Using rm command line to remove (delete) files or directories

Sed – one-liner productivity treasure
If a picture is worth 1000 words, then sed one liners are definitely worth a thousand 
lines of code! One of the most feared commands in the Linux CLI is, you guessed 
it, sed! It's been feared by programmers and sysadmins everywhere, because of 
it's cryptic usage, but it can serve as a very powerful tool for quickly editing large 
amounts of data.

We have created five files to help demonstrate the power of this awesome tool.  
The first one is a simple file containing the humble line of text: Orange is the new black. 
Let's start by creating a simple sed command to replace the word black with white.



CLI – The Hidden Recipe

[ 92 ]

The first argument of sed is the replace command. It's divided into 3 parts by 3 /.  
The first part is s for substitute, the second part is the word to be replaced, black,  
in our case, and the third part is the replacement word, white.

The second argument is the input, in our case, a file:

sed "s/black/white/" 1.txt

Now, the result will be printed on the screen, and you can see the word black has 
been replaced by white.

Our second example contains yet another line of text, this time with the word black 
in both upper and lower case. If we run the same command using this new file, we 
will see that it replaces only the word that matches the case. If we want to do a case 
insensitive replace, we will add two more characters to the end of our sed command; 
g and l.

• g: It means global replace, used for replacing all the occurrences in the file. 
Without this, it will only replace the first argument.

• l: means case insensitive search.

sed "s/black/white/gI" 2.txt



Chapter 4

[ 93 ]

And as you can see, both words have been replaced. If we want to save the results in 
our file instead of printing to the screen, we use the -i argument, which stands for 
inline replace.

In some scenarios, we might also want to save our initial files, just in case we have an 
error in the sed command. To do this, we specify a suffix after -i which will create a 
backup file. In our case, we use the .bak suffix:

sed -i.bak "s/black/white/g" 2.txt

If we check the content of the files, we can see that the initial file contains the 
updated text, and the backup file contains the original text.

Now, let's look at a more practical example. Let's say we have a shell script that 
contains multiple variables and we want to surround our variables with curly brackets:

In order to do this we will write:

• s: It's for substitute.
• g: It's for global; meaning replace all occurrences found.
• \$: This matches all strings starting with the dollar sign. Here dollar needs to 

be escaped, so that it's not confused with the start of the row anchor.
• We will enclose the string following $ in ( ), so that we can reference it in the 

replace part of our command.



CLI – The Hidden Recipe

[ 94 ]

• [ ]: This is for specifying a range of characters
• A-Z: It matches all uppercase characters
• 0-9: It matches all numbers
• _: It matches _
• \+: Any character in the [ ] must appear one or multiple times

In the replace part, we will use:

• \$: The dollar sign
• { }: The curly brackets we want to add.
• \1: The string that was previously matched in the ( )

sed 's/\$\([A-Z0-9_]\+\)/\${\1}/g' 3.txt

Other common scenarios are replacing content in xml or html files.

Here we have a basic html file with a <strong> text inside. Now, we know that the 
<strong> text has more semantic value for search engine optimizations, so maybe 
we want to make our strong tags be a simple <b> (bold), and manually decide the 
<strong> words in the page. For this we say:

• s: This is for substitute.
• <strong: The actual text we are searching for.
• \( \): This will be used again for selecting a piece of text, that will be  

added back.
• .*: This means any character, found any number of times. We want to select 

everything between "<strong" and "strong>".
• </: This is the closing of the tag. This, we want to keep intact.



Chapter 4

[ 95 ]

• <b\1b>: Just add <b b>, and the text that you previously found in the ( ).

sed "s/<strong\(.*</\)strong>/<b\1b>/g" 4.xml

As you can see, the text was updated correctly, the red class still applies to the new 
tag, and the old text is still contained between our tags, which is exactly what we 
wanted:

Besides replacing, sed can also be used for deleting lines of text. Our 5.txt file 
contains all the words from the lorem ipsum text. If we wanted to delete the third 
line of text, we would issue the command:

sed -i 3d 5.txt

Hit :e, to reload the file in vim, and we see the word dolor is no longer there.  
If, for example, we wanted to delete the first 10 lines of the file, we'd simply run:

sed -i 1,10d 5.txt



CLI – The Hidden Recipe

[ 96 ]

Hit :e, and you see the lines are no longer there. For our last example, if we scroll 
down, we can see multiple empty lines of text. These can be deleted with:

sed -i "/^$/d" 5.txt

Which stands for:

• ^: Beginning of line anchor
• $: End of line anchor
• d: Delete

Reload the file, and you see that the lines are no longer there.

Now, as you can imagine, these have only been some basic examples. The power of 
sed is much greater than this, and there are many more possibilities of using it than 
what we have seen today. We recommend that you gain a good understanding of 
the features presented here today, as these are the features you will probably use the 
most. It's not as complicated as it might seem at first, and it really comes in handy in 
lots of scenarios.



Chapter 4

[ 97 ]

You can run, but you can't hide… from 
find
Tens of projects, hundreds of folders and thousands of file; does this scenario 
sound familiar? If the answer is yes, then you probably found yourself more than 
once in a situation where you couldn't find a specific file. The find command will 
help us locate any file in our project and much more. But first, for creating a quick 
playground, let's download the electron open source project from GitHub:

Git clone https://github.com/electron/electron

And cd into it:

cd electron

We see here lots of different files and folders, just like in any normal sized software 
project. In order to find a particular file, let's say package.json, we will use:

find . -name package.json

.: This starts the search in the current folder

-name: This helps to search the file name



CLI – The Hidden Recipe

[ 98 ]

If we were to look for all readme files in the project, the previous command format is 
not helpful. We need to issue a case insensitive find. For demonstration purposes, we 
will also create a readme.md file:

touch lib/readme.md

We will also use the -iname argument for case insensitive search:

find . -iname readme.md



Chapter 4

[ 99 ]

You see here that both readme.md and README.md have been found. Now, if we were 
to search for all JavaScript files we would use:

find . -name "*.js"



CLI – The Hidden Recipe

[ 100 ]

And as you can see, there are quite a few results. For narrowing down our results, 
let's limit the find to the default_app folder:

find default_app -name "*.js"



Chapter 4

[ 101 ]

As you can see, there are only two js files in this folder. And if we were to find all 
files that are not JavaScript, just add a ! mark before the name argument:

find default_app ! -name "*.js"



CLI – The Hidden Recipe

[ 102 ]

You can see here all files that don't end their name with js. If we were to look for all 
inodes in the directory, which are of type file, we would use the -type f argument:

find lib -type f



Chapter 4

[ 103 ]

In the same way, we'd use -type d to find all directories in a specific location:

find lib -type d



CLI – The Hidden Recipe

[ 104 ]

Find can also locate files based on time identifiers. For example, in order to find all 
files in the /usr/share directory that were modified in the last 24 hours, issue the 
following command:

find /usr/share -mtime -1



Chapter 4

[ 105 ]

I have quite a big list. You can see the -mtime -3 broadens the list even more.

If we were to find, for example, all the files modified in the last hour, we can use 
-mmin -60:

find ~/.local/share -mmin -60



CLI – The Hidden Recipe

[ 106 ]

A good folder to search is ~/.local/share, If we use -mmin -90, the list broadens 
again.

Find can also show us the list of files accessed in the last 24 hours by using the 
-atime -1 argument like so:

find ~/.local/share -atime -1



Chapter 4

[ 107 ]

While working with lots of project files, if sometimes the case in some projects 
remain empty, and we forget to delete them. In order to locate all empty files just  
do a:

find . -empty

As we can see, electron has a few empty files. Find will also show us empty 
directories, or links.

Removing empty files will keep our project clean, but when it comes to reducing 
size, we sometimes want to know which files are taking up most of the space. Find 
can also do searches based on file size. For example, let's find all the files larger than 
1 mega:

find . -size +1M

use -1M for smaller.



CLI – The Hidden Recipe

[ 108 ]

As we said in the beginning, find can do much more than locating files in your 
project. Using the -exec argument, it can be combined with almost any other 
command, which gives it almost infinite capabilities. For example, if we want to find 
all javascript files that contain the text manager, we can combine find with grep, 
command as follows:

find . -name "*.js" -exec grep -li 'manager' {} \;

This will execute the grep command on all the files returned by find. Let's also search 
inside the file using vim, so that we verify the result is correct. As you can see, the 
text "manager" appears in this file. You don't have to worry about {} \;, it's just 
standard -exec syntax.

Moving on with the practical examples, let's say you have a folder where you want 
to remove all the files modified in the last 100 days. We can see our default_app 
folder contains such files. If we combine find with rm like so:

find default_app -mtime -100 -exec rm -rf {} \;

We can do a quick cleanup. Find can be used for smart backups. For example, if we 
were to backup all json files in the project we would combine find with the cpio 
backup utility using a pipe and a standard output redirection:

find . -name "*.json" | cpio -o > backup.cpio

We can see that this command has created a backup.cpio file, of type cpio archive.

Now this could probably have been written with -exec also, but it's critical you 
understand that pipes can also be used in this type of scenario, together with 
redirects.



Chapter 4

[ 109 ]

When doing reports, you may have to count the number of lines written:

• In order to do this, we combine find with wc -l:
find . -iname "*.js" -exec wc -l {} \; 

• This will give us all js files and the number of lines. We can pipe this to cut:
find . -iname "*.js" -exec wc -l {} \; | cut -f 1 -d ' ' 

• To only output the number of lines, and then pipe to the paste command, we 
do this:
find . -iname "*.js" -exec wc -l {} \; | cut -f 1 -d ' ' | paste 
-sd+ 

• The above will merge all our lines with the + sign as a delimiter. This, of 
course, can translate to an arithmetic operation, which we can calculate using 
the binary calculator (bc):

find . -iname "*.js" -exec wc -l {} \; | cut -f 1 -d ' ' | paste 
-sd+ | bc

This last command will tell us how many lines our javascript files contain.  
Of course, these are not actual lines of code, as they can be empty lines or  
comments. For a precise calculation of lines of code, you can use the sloc utility.

In order to mass rename files, like changing the file extension name to node for all js 
files we can use this command:

find . -type f -iname "*.js" -exec rename "s/js$/node/g" {} \;

You can see the rename syntax is quite similar to sed. In addition, there are no more 
.js files left, as all have been renamed to .node:



CLI – The Hidden Recipe

[ 110 ]

Some software projects require all source code files to have a copyright header. 
As this is not required in the beginning, often times we can find ourselves in the 
situation that we have to add copyright information at the beginning of all our files.

In order to do this, we can combine find with sed like this:

find . -name "*.node" -exec sed -i "1s/^/\/** Copyright 2016 all rights 
reserved *\/\n/" {} \;

What this is basically doing is telling the computer to find all .node files, and add the 
copyright notice in the beginning of each file, followed by a new line.

We can check one random file and, yes, the copyright notice is there:

Update version numbers in all files:

find . -name pom.xml -exec sed -i "s/<version>4.02/<version>4.03/g" {} \;

As you can imagine, find has lots of use cases. The examples I've shown you are only 
the first piece of the pie. Learning find, along with sed and the git cli can set you 
free from your IDE when it comes to finding, refactoring or working with git, which 
means you can more easily switch from one IDE to the other, because you don't have 
to learn all the features. You just use your friendly CLI tools.

tmux – virtual consoles, background jobs 
and the like
In this section, we will be looking at another great tool called tmux. Tmux comes in 
particularly handy when working in remote ssh sessions, because it gives you the 
ability to continue your work from where you left off. It can also replace some of the 
features in terminator, if you are working, for example, on Mac, and you can't install 
terminator.

To get started with tmux on Ubuntu, we first need to install it:

sudo apt install tmux



Chapter 4

[ 111 ]

Then just run the command:

tmux



CLI – The Hidden Recipe

[ 112 ]

And you will find yourself inside a brand new virtual console:

For demonstration purposes, we will open up a new tab that you can see the list of 
open sessions with tmux ls:



Chapter 4

[ 113 ]

Let's start a new tmux named session:

tmux new -s mysession

Here we can see that opening a tmux session maintains the current directory. To list 
and switch tmux sessions inside tmux, hit Ctrl + B S.

We can see that we can switch to another tmux session, execute commands inside, 
and switch back to our initial session if we want to. To detach (leave a session 
running and go back to the normal terminal) hit Ctrl + b d;

Now we can see we have two opened sessions.

To attach to a session:

tmux a -t mysession



CLI – The Hidden Recipe

[ 114 ]

This scenario comes in handy when you login to a remote server and want to execute 
a long running task, then leave and come back when it ends. We will replicate this 
scenario with a quick script called infinity.sh. We will execute it. It's writing to the 
standard output. Now let's detach from tmux.

If we look at the script, it's just a simple while loop that goes on forever, printing text 
each second. 

Now when we come back to our session, we can see the script was running while 
we were detached from the session and it's still outputting data to the console. I will 
manually stop it by hitting Ctrl + c.

Alright, let's go to our first tmux session and close it. In order to manually kill a 
running tmux session, use:

tmux kill-session -t mysession

This will kill the running session. If we switch over to our second tab, we can see that 
we have been logged off tmux. Let's also close this terminator tab, and open a brand 
new tmux session:



Chapter 4

[ 115 ]

Tmux gives you the possibility to split the screen, just like terminator, horizontally 
with Ctrl + b + ", and vertically with Ctrl + b + %. After that, use Ctrl + b + arrows to 
navigate between the panes:



CLI – The Hidden Recipe

[ 116 ]

You also have the possibility to create windows (tabs):

• Ctrl + b c: create:



Chapter 4

[ 117 ]

• Ctrl + b w: list:

• Ctrl + b &: delete



CLI – The Hidden Recipe

[ 118 ]

These last functionalities are very similar to what terminator offers.

You can use tmux in situations where you want to have two or more panes or 
even tabs in your remote ssh connection, but you don't want to open multiple ssh 
sessions. You could also use it locally, as a terminator replacement, but the keyboard 
shortcuts are much harder to use. Although they can be changed, you will lose 
the option to use tmux remotely, because opening a tmux session in another tmux 
session is discouraged. In addition, configuring new tmux keyboard shortcuts might 
make tmux a burden when working on lots of servers due to the shortcut differences.

Network – Who's listening?
When working with network applications, it comes in handy to be able to see open 
ports and connections and to be able to interact with ports on different hosts for 
testing purposes. In this section, we will be looking at some basic commands for 
networking and in what situations they might come in handy.

The first command is netstat:

netstat -plnt



Chapter 4

[ 119 ]

This will show all open ports on our host. You can see here that we only have one 
open port on a default Ubuntu desktop installation, which is port 53. We can look 
this up in the special file /etc/services. This file contains all basic port numbers for 
programs and protocols. We see here port 53 is the DNS server:

Just by analyzing the output, we cannot determine which program is listening on 
this port, because this process is not owned by our current user. That's why the PID/
Program Name column is empty. If we run the same command again with sudo, we 
see that this process is named dnsmasq and, if we want more information, we can 
look it up in the man page. It's a lightweight DHCP and caching DNS server:



CLI – The Hidden Recipe

[ 120 ]

Other useful information we get from this command:

• The program protocol, in this case dhcp.
• Total bytes not copied.
• Total bytes not acknowledged.
• Local and foreign address and port. Getting the port is the main reason we 

are using this command. This is also important for determining if the port 
is open just on localhost or if it's listening for incoming connections on the 
network.

• The state of the port. Usually this is LISTEN.
• The PID and program name, which helps us identify which program is 

listening on what port.

Now, if we run a program that is supposed to be listening on a certain port and we 
don't know if it's working, we can find out with netstat. Let's open the most basic 
HTTP server by running the command: 

python -m SimpleHTTPServer



Chapter 4

[ 121 ]

As you can see from the output, it's listening on port 8000 on interface 0.0.0.0. If 
we open a new pane and run the netstat command, we will see the open the port, 
and the PID / name.

You probably already know this but, just to be on the safe side, we will look at 
adding different hostnames as static dns entries on our machine. This is helpful 
when developing applications that need to connect to servers and the servers change 
their IP address, or when you want to emulate a remote server on a local machine. 
For this we type:

sudo vim /etc/hosts

You can quickly understand the format of the file from the existing content. Let's add 
an alias for our localhost, so that we can access it under a different name. Add the 
following line:

127.0.0.1     myhostname.local



CLI – The Hidden Recipe

[ 122 ]

We recommend using non existing top level domain names for localhost, such as 
.local or .dev. This is to avoid  overriding any existing address, because /etc/hosts 
takes precedence in dns resolution. Now, if we open the address in the browser on 
port 8000, we will see our local Python server running and serving content.

The next command is nmap. As you can see, it is not installed by default on Ubuntu, 
so let's go ahead and install it by typing:

sudo apt install nmap 



Chapter 4

[ 123 ]

Nmap is a command used for checking all open ports on a remote host, also known 
as a port scanner. If we run nmap on our network gateway, which, in our case, is 
192.68.0.1, we'll get all of the open  ports on the gateway:

Type: nmap 192.168.0.1

As you can see, there is again the dns port open, the http and https servers, which are 
used as a web page for configuring the router, and port 49152, which, at this time, is 
not specific to any common protocol-and that's why it is marked as unknown. Nmap 
does not know for sure that those  specific programs are actually running on the 
host; all it does is verify what ports are open and write the default application that 
usually runs on that port.



CLI – The Hidden Recipe

[ 124 ]

If we are not sure what server we need to, connect to or if we want to know how 
many servers are in our current network, we can run nmap on the local network 
address, specifying the network mask as the destination network. We get this 
information from ifconfig; if our IP address is 192.168.0.159, and our network 
mask is 255.255.255.0, that means the command will look like this:

nmap -sP 192.168.0.0/24

In /24 = 255.255.255.0, basically the network will have ips ranging from 
192.168.0.0 to 192.168.0.255. We see here that we have three active hosts,  
and it even gives us the latency, so we can determine which host is closer.



Chapter 4

[ 125 ]

Nmap is helpful when developing client-server applications, for example, when 
you want to see what ports are  accessible on the server. However, nmap might miss 
application-specific ports, which are non-standard. To actually connect to a given 
port, we will be using telnet, which comes preinstalled on Ubuntu desktop. To see if 
a particular port accepts connections, just type the hostname, followed by the port:

telnet 192.168.0.1 80

If the port is listening and accepts connections, telnet will output a message like this:

• Trying 192.168.0.1...
• Connected to 192.168.0.1
• Escape character is ^]

This means  that you can also connect from your application. So if you are having 
difficulties connecting, it's usually a client problem; the server is working fine.

To get out of telnet, hit: Ctrl +], followed by Ctrl + d.



CLI – The Hidden Recipe

[ 126 ]

Also, in some cases we need to get the ip address of a particular hostname. The 
simplest way to do this is to use the host command:

host ubuntu.com



Chapter 4

[ 127 ]

We've learned  only the basics, the minimum elements you need, in order to start 
working with hostnames and ports. For a deeper understanding of networks and 
package traffic, we recommend checking out courses on penetration testing or 
network traffic analyzing tools such as Wireshark. Here's one such course:  
https://www.packtpub.com/networking-and-servers/mastering-wireshark.

Autoenv – Set a lasting, project-based 
habitat
Projects are different from one another and so are environments. We might be 
developing an application on our local machine with certain environment variables 
like debug level, API keys, or memory size. Then we want to deploy the application 
to a staging or production server, which has other values for the same environment 
variables. A tool that comes in handy for loading environments on the fly is autoenv.

To install it we go to the official GitHub page and follow the instructions:

https://github.com/kennethreitz/autoenv

First we will clone the project in our home directory, and then we add the following 
line to our .zshrc config file, so that every time zsh starts, autoenv is loaded by 
default:

source ~/.autoenv/activate.sh

Now let's create an example workplace with two imaginary projects, project 1 and 
project 2.

We open an environment file for project 1:

vim project1/.env

https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://github.com/kennethreitz/autoenv


CLI – The Hidden Recipe

[ 128 ]

Let's now imagine that project 1 uses an environment variable called ENV, which we 
will set to dev:

export ENV=dev



Chapter 4

[ 129 ]

Now let's do the same thing for project 2, but with a different value for ENV; qa:

export ENV=qa

Save and close both files. Now when we cd in the project 1 folder, we see the 
following message:

autoenv:
autoenv: WARNING:
autoenv: This is the first time you are about to source /home/hacker/
course/work/project1/.env:
autoenv:
autoenv:     --- (begin contents) -----------------------------------
----
autoenv:     export ENV=dev$
autoenv:
autoenv:     --- (end contents) -------------------------------------
----
autoenv:
autoenv: Are you sure you want to allow this? (y/N)



CLI – The Hidden Recipe

[ 130 ]

Hit y to load the file. This happens every time a new environment file is sourced. 
Now if we grep the environment for the ENV variable, we can see it present and 
with a value of dev:

Now let's change the directory to project 2:



Chapter 4

[ 131 ]

We can see that the same warning message is issued. And when we grep for the ENV 
variable, we now see that its value is qa. If we leave this folder, the environment 
variable is still defined, and will be defined until some other script overrides it 
or when the current session is closed. The .env file is sourced, even if we cd to a 
directory deeper inside project1.

Now let's look at a more complex example for project1.

Let's say we want to get the version from package.json, and we also want to use a 
variable called COMPOSE_FILE that will specify a different file for docker compose. 
Docker users know what it's all about, but if you don't.. Google time!

Here is an example:

export environment=dev
export version=`cat package.json | grep version | cut -f 4 -d "\""`
export COMPOSE_FILE=docker-compose.yml



CLI – The Hidden Recipe

[ 132 ]

For this to take effect, we need to first copy a package.json file, and test that the cat 
command works:

Everything seems fine, so let's cd into our folder:



Chapter 4

[ 133 ]

And as you can see, the environment variables have been set:



CLI – The Hidden Recipe

[ 134 ]

Autoenv can really come in handy, and is not limited to just exporting environment 
variables. You can do stuff like issuing a reminder when entering a certain project or 
running a git pull or updating the look and feel of the terminal so that a distinct 
feel is given for each project.

Don't rm the trash
Commands can be categorized as harmless or harmful. Most commands fall within 
the first category, but there is one that is very common and that has been known 
to produce a lot of damage in the world of computers. The dreaded command is 
rm, which has wiped out numerous hard drives, making precious volumes of data 
inaccessible. The Linux desktop has borrowed the concept of trash from other 
desktops and the default action when deleting a file is sending it to the Trash. 
Sending files there is a good practice, so that no unintentional removing is done. But 
this trash is no magic location; it's just a hidden folder, usually located in ~/.local.

In this part, we will be looking at a utility tool designed to work with trash. We will 
install it with:

sudo apt install trash-cli



Chapter 4

[ 135 ]

This will install multiple commands. Let's look at our current directory that contains 
quite a few files. Let's assume we don't need the files starting with file.*

In order to remove files we will use:

trash filename



CLI – The Hidden Recipe

[ 136 ]

(There is a separate command for working with the trash. We will rehash to  
reload our path.) We list all the trash commands. The command for listing the  
trash content is:

trash-list

Here we see the files that are in our trash. It is only showing the files that were put 
there with the trash command. We can see the date when they were deleted, the 
hour, and the exact location. If we'd have had multiple files with the same name and 
path, they would have been listed here, and we could have identified them by the 
deletion date.



Chapter 4

[ 137 ]

In order to restore a file from trash we will use the command:

restore-trash

It will show us a list of options and ask for a number corresponding to the file we 
want restored. In this case we will select 1, meaning we want to restore the json file.

We open the file and we can see that the content was not altered in the process.



CLI – The Hidden Recipe

[ 138 ]

In order to remove all the files in the trash, we use:

trash-empty

This is the equivalent of doing rm in the first place. Now if we list the trash again,  
we see it doesn't have any content.

Although the internet is full of rm -rf / jokes, this is actually a serious issue that 
can cause headaches and wasted time trying to restore the damage caused. If you've 
been using rm for a long time and can't get into the habit of using trash, we suggest 
adding an alias for rm to actually run the trash command instead. In this case, it's a 
good idea to pile up stacks of files in trash than to risk removing a file that might be 
needed, before committing, or even removing the whole root partition!



[ 139 ]

Developers' Treasure
In this very chapter, we will kick start by building a web server using Python. We 
will then see how to process all our images automatically using ImageMagick. Then, 
we will look at the git flow branching model and how it will help you. Furthermore, 
we will see how meld command line can help merge our git conflicts. We will 
then focus on the working of ngrok tool and see how it saves the day by proxying 
requests coming from the internet to our laptop. We will also explore the versatile 
query capabilities of jq, the Swiss army knife of JSON! Towards the end, we will 
explore ways in which one can manage and kill Linux processes.

In this chapter, we will cover the following:

• Shrinking spells and other ImageMagick
• Understanding the work of git flow branching models 
• Using ngrok to secure tunnels to localhost
• Getting yourself acquainted with jq



Developers' Treasure

[ 140 ]

The spot webserver
We have prepared a basic demo html file that contains a button, a div, a jquery 
function (for helping us do some ajax calls), and a script that will try to load static 
content from our server and put the content inside the div tag. The script is trying to 
load a simple text file on the disk, /file:

If we open this file inside our browser, we can see the page content:



Chapter 5

[ 141 ]

Clicking on the button generates a javascript error. It is telling us that we want 
to do a cross-origin request, which is not allowed by default by the browser. This 
is to prevent cross-site scripting attacks. What we need to do in order to test our 
javascript code is to serve this file in an HTTP server.

In order to start an HTTP server in the same folder as the file, we type the following 
command:

python -m SimpleHTTPServer



Developers' Treasure

[ 142 ]

This is a basic Python module that opens port 8000 on localhost, serving only static 
content (so, no, you can't use it for php). Let's open the address in the browser:

Click on the Click me! button. We see that our file content was loaded in the div 
beneath the button, which means the browser is no longer blocking us, because we 
are issuing requests to the same host using the same protocol. Looking at the output 
from our Python server, we can see all the requests that the browser has made to the 
server. We can see it's requesting by default a favicon.ico file that doesn't exist and 
it's giving back a 404 status code:

You can find the files used in this project on the GitHub project page.

Also, if we stop the server and go one level up and fire it up again, we can use it as 
a webdav server, with the possibility of navigating through the files in the current 
directory. We could, for example, give access to a folder on our local machine to a 
remote user and allow them to access it through a page in the browser, eliminating 
the need to install a file server.



Chapter 5

[ 143 ]

Shrinking spells and other ImageMagick
In this chapter, we will learn how to process images from the command line. We 
will start with the most complex and widely used image command line interface 
processing toolkit called ImageMagick. To install it, run the following:

sudo apt install imagemagick

As you can see, we have already installed it.

Now, let's find some images to process. Let's use the default Ubuntu backgrounds 
that can be found in /usr/share/backgrounds. Let's copy the backgrounds to 
another location so that we don't alter our default ones.



Developers' Treasure

[ 144 ]

We'll take a look at the first image in our list: we can see from ls that it is a JPEG 
image of 1.6 MB. To open it and see how it looks, let's use the eog (eye of gnome) 
image viewer:

The first and most important part of knowing how to process an image is knowing 
what that image actually is. To find this out, ImageMagick comes with a tool called 
identify. In its simplest form, you have to feed it an image name and it will output 
information like the following:

identify image_name

160218-deux-two_by_Pierre_Cante.jpg JPEG 3840x2400 3840x2400+0+0 8-bit 
sRGB 1.596MB 0.240u 0:00.230



Chapter 5

[ 145 ]

We can see that the file is a JPEG image of 1.6 MB and most importantly, its size is 
3,840x2,400 pixels.

If we look at the warty-final-ubuntu.png we see that the output format is similar: 
the size and resolution are higher and the image format is PNG. Let's see what it 
looks like:

eog warty-final-ubuntu.png



Developers' Treasure

[ 146 ]

PNG images usually take more space than JPEG images. If you don't have 
transparency, it is recommended to use .jpg. In order to convert from one type to 
the other, we use the imagemagick convert command with two parameters: input 
filename and output filename:

convert file.png file.jpg

The format of the output image will be deduced by convert from the filename 
extension. As you can see, the output is a JPEG image with the same resolution, but 
with a much smaller size than the PNG version: 180 KB compared to 2.6 MB. If we 
open the image, we can't see any noticeable differences. This is a big thing when it 
comes to web development, because if we were to use this picture on a web page, it 
would load as much as 15 times faster than the PNG version.



Chapter 5

[ 147 ]

If we want to crop a region of the image, we can do that with convert. For example, 
if we want to cut a 500x500 piece of the image, starting at coordinates 100,100, we 
would use the following:

convert -crop "500x500+100+100" warty-final-ubuntu.png warty.jpg

As we can see, the output image is at the resolution we requested, but it has a much 
lower size of only 2.5 KB. Visually analyzing the two images we can see that the 
cropped one is a section of the big picture. Normally you wouldn't want to guess 
pixels in the command line, but would use an image processing software, such as 
GIMP, to do the work for you, so that you can visually select and crop portions of  
the images. However, when developing software applications, it is often the case  
that you have to programmatically crop images, in which case this comes in handy.



Developers' Treasure

[ 148 ]

The convert command is also good at creating images. If we want to create an image 
from a text string, we could use the following:

convert -size x80 label:123 nr.jpg



Chapter 5

[ 149 ]

This will create a JPEG image with a height of 80 pixels, containing the text specified, 
in this case the string 123. We can see the output, it is a 3.4 KB image and, if we look 
at it visually, we see the text 123:

This can also come in handy in different scenarios where you need to 
programmatically generate readable images, such as using CAPTCHA software  
or generating default profile images with the user's initials.



Developers' Treasure

[ 150 ]

Now let's look at some image shrinking tools outside of imagemagick. The first one 
is a png shrinking tool called pngquant. We will install it by typing the following:

sudo apt install pngquant



Chapter 5

[ 151 ]

Let's try to shrink the large PNG image that we were looking at earlier. If the image 
contains transparency and it is necessary to keep it in the PNG format, we would just 
call pngquant with the following image name:

pngquant warty-final-ubuntu.png



Developers' Treasure

[ 152 ]

By default, it outputs a file with the same name and an added fs8 extension. We can 
see that the difference in size is also noticeable (it's smaller by 1 MB, which is almost 
half the original size). If we visually compare the images, we won't be able to spot 
any differences:



Chapter 5

[ 153 ]

Alright, now let's try and do the same thing for JPEG images.

For this, we'll install the equivalent of pngquant, which is jpegoptim:

sudo apt install jpegoptim



Developers' Treasure

[ 154 ]

We will call it the same way and we're just going to give it a command-line 
argument, which is the file to shrink. Let's pick some random images to try  
and see if we can reduce their size:

As you can see from the output, it is saying Skipped. That means the image had 
already been shrunk (the guys at Ubuntu probably used the same tool before 
submitting the image). If we try it again on the JPEG produced by imagemagick,  
you can see that it is also skipped: imagemagick already uses the minimum  
necessary format.

The image processing tools come in especially handy when it comes to web 
development, where lots of images need to be used and their size needs to be as 
small as possible. Command-line tools are really useful because they can be used to 
automate tasks. Image shrinking is usually added to build tasks, where production 
versions of websites are prepared. The imagemagick toolkit comes with a lot 
more tools than the ones we have seen today, so feel free to explore other handy 
commands from the toolkit. Also, when it comes to graphically processing the 
images, there are some great open source tools like GIMP and Inkscape that can 
really help you get your job done, and also save you a lot of money.



Chapter 5

[ 155 ]

Go with the Git flow
Git is by far the most popular version control system out there. In this chapter, we 
will be looking at a plugin for Git, called GitFlow, which proposes a branching 
model for software projects. This branching model doesn't offer much help when 
it comes to small projects, but it's a great benefit to medium sized and large 
projects. We will be looking at a variation of the git-flow plugin, called gitflow-
avh, which adds extra functionality, such as Git hooks, https://github.com/
petervanderdoes/gitflow-avh.

To install it, we'll follow the instructions on the GitHub page. We are on Ubuntu,  
so we will follow the installation instructions for Linux.

We can see that it can be directly installed with the apt command, but apt doesn't 
usually contain the latest version of the software, so today we will do a manual 
installation. We want to pick the stable version, and use the one line command.

Once this is done, let's create a dummy project. We'll create an empty directory  
and initialize it as a Git repository:

git init

https://github.com/petervanderdoes/gitflow-avh
https://github.com/petervanderdoes/gitflow-avh


Developers' Treasure

[ 156 ]

Basic Git usage is not part of this course, and we are assuming that you understand 
the basics.

All right. A good way to get started with git-flow is to read the excellent cheatsheet 
created by Daniel Kummer:

http://danielkummer.github.io/git-flow-cheatsheet/

This provides the basic tips and tricks to get you started quickly with git-flow.  
So the first thing the cheatsheet suggests is to run the following:

git flow init

http://danielkummer.github.io/git-flow-cheatsheet/


Chapter 5

[ 157 ]

To configure it, we need to answer a bunch of questions about what names the 
branches should have in each flow and what the version tag prefix and hooks 
directory are. Let's just leave the defaults. Now, let's run the following:

git branch

We can see that we are now on the develop branch, so no more developing on the 
master branch. This helps us have a stable master, while not so stable features are 
kept on the develop branch.



Developers' Treasure

[ 158 ]

If we go back to the cheatsheet, we can look at the first item, which is a feature 
branch. Feature branches are useful when developing a specific part of functionality 
or doing refactoring, but you don't want to break the existing functionality on the 
develop branch. To create a feature branch, just run the following:

git flow feature start feature1

This is not the most intuitive description of the feature, but it's good for 
demonstration purposes. GitFlow will also show us a summary of actions once 
the feature branch has finished. This has created a new branch called feature/
feature1, based on the develop branch and has switched us to that branch. We can 
also see this from our handy zsh prompt. 



Chapter 5

[ 159 ]

Let's open up a file, edit, and save it:

git status

This command will tell us that we have an uncommitted file. Let's go ahead and 
commit it.

Now git commit is using the nano editor for editing the commit message. Since we 
prefer vim, let's go ahead and change the default editor to vim. All we need to do is 
add this line in our zshrc and reload it:

export EDITOR=vim

Now when we do a git commit Vim opens up, shows us a summary of the commit, 
and closes.



Developers' Treasure

[ 160 ]

Now let's assume that we've finished adding a new feature. It's time to merge the 
feature branch back to develop with the following:

git flow feature finish feature1

Again, to get a summary of actions:

• The feature branch was merged back to develop
• The feature branch has been deleted
• The current branch was switched back to develop

If we do an ls, we see the file from our branch present on the develop branch. 
Looking at the cheatsheet we see a graphical representation of this process.

Next up is starting a release. Release branches are good for stopping the incoming 
features and bug fixes from the develop branch, testing the current version, 
submitting bug fixes on it, and releasing it to the general public. 



Chapter 5

[ 161 ]

As we can see, the syntax is similar, the process is similar, the develop is branched to a 
release branch, but when it comes to finishing the branch, the features are also merged 
to the master branch, and a tag is cut from this branch. Time to see it in action:

git flow release start 1.0.0

This switches us over to our release/1.0.0 branch. Let's add a releasenotes.txt 
file to show what has changed in this release. Added more bugs…Hopefully not!

Let's commit the file.



Developers' Treasure

[ 162 ]

This is usually the case when you start to run your integration and stress testing, to 
see if all is well and to check that there are no bugs.

After the testing is finished, we go ahead and finish our release branch:

git flow release finish 1.0.0

It will prompt us for a series of release messages: we will leave all the defaults.



Chapter 5

[ 163 ]

Checking out the summary, we can see that:

• The release branch was merged into master
• A tag was cut from master with the release version
• The tag has also been merged into develop
• The release branch has been deleted
• And we are back on the develop branch

Now, we run the following:

git branch



Developers' Treasure

[ 164 ]

We see that the only two available branches are master and develop:

git tag

This tells us that there is a 1.0.0 tag cut. We can see that the branch now contains two 
files from the merge of the feature and release branch; and if we also switch to the 
master branch, we can see that, at this point, master is an exact replica of develop:



Chapter 5

[ 165 ]

GitFlow also comes with an enhanced hooks functionality. If we read the 
documentation, we can see all the possible hooks in the hooks folder. Let's add a 
git hook that will be executed before every hotfix branch. For this we just open the 
template, copy the content, and paste it to a file with the name pre-flow-hotfix-
start in our .git/hooks directory.

GitFlow has more workflows than the ones presented. We won't go through all of 
them, but you can find additional information by visiting the cheatsheet page or by 
reading the instructions on the GitHub page.

Let's just simply echo a message with the version and origin.

If we look at the hotfix flow, we can see that they are created from the master 
branch and merged back to master and develop, with a tag on master.



Developers' Treasure

[ 166 ]

Let's see if it works:

git flow hotfix start 1.0.1



Chapter 5

[ 167 ]

Apparently not. Something went wrong, our script was not executed and we need to 
delete our branch:

git flow hotfix delete 1.0.1



Developers' Treasure

[ 168 ]

Analyzing the git hooks directory, we see that our hook does not have execution 
permissions. After adding execution permissions, and running the git hook 
command again, we can see our message on the top of the hotfix output. Let's finish 
this hotfix with the following:

git flow hotfix finish 1.0.1

As you can see, the commands are quite straightforward. There is also an oh-my-zsh 
plugin that you can activate to have command line completion.

As we said earlier, this is a plugin suitable for teams of developers working on 
multiple features, fixing bugs, and releasing hotfixes all at the same time. GitFlow 
is simple to learn, and helps teams have a correct workflow where they can 
easily prepare patches for production code, without worrying about the extra 
functionalities developed on the master branch.



Chapter 5

[ 169 ]

You can tweak the config as you like: some people prefer to place the hooks folder 
in a different place so that it is committed on the git repo and they don't have to 
worry about copying the files over; others continue to develop on the master branch 
and use a separate branch such as customer for the production code.

Merging Git conflicts with ease
Now let's look at another improvement that we can bring to git. Most tasks are 
easy to execute from the command line, but some tasks, such as merging, require a 
specialist's eye for understanding the different format.

Let's open the feature file from our previous chapter, edit it, add a new line, and 
save it:

git diff



Developers' Treasure

[ 170 ]

The git diff command will show us colored text explaining the differences 
between the git file and the modified file, but some people find this format  
hard to understand:

Luckily, we can tell git to use external tools when it comes to merge and one 
external tool that we can use is called Meld. Let's install it using the following:

sudo apt install meld



Chapter 5

[ 171 ]

After this, we can run the following command:

git difftool



Developers' Treasure

[ 172 ]

It will ask us if we want to launch Meld as an external program for viewing the file. 
It's also giving us a list of tools that it can use for displaying the difference. Hit y to 
open Meld:

Now we can easily see the two files side by side and the differences between them. 
We can see that 1 has been changed to 2 and a new line has been added. Based on 
this output we can easily decide if we want to add it or not. Let's commit the file  
as it is.

Next, we will look at merge conflicts. Let's manually create a branch called test 
and edit the same file, commit it, and then switch back to the develop branch. Let's 
update the same file, commit it, and then try to merge the test branch: and, of 
course, there is a merge conflict.



Chapter 5

[ 173 ]

For resolving the conflict, we will be using the following command:

git mergetool



Developers' Treasure

[ 174 ]

Again, it offers to open Meld. In Meld we can see the three files:

• On the left is the file from our current branch
• On the right is the file from the remote branch
• In the middle is the resulting file that will be created

Let's say that we decide the correct version for the feature is 4 and that we also want 
to add of text:

git commit -a

You can see the predefined commit message. Don't forget to remove the temporary 
file that was created at the merge:



Chapter 5

[ 175 ]

In general, most modern IDEs offer plugins for working with git, including merging 
and diffs. We recommend that you get more acquainted with the command-line 
tools, because then you don't need to learn a new git plugin when switching from 
one IDE to another.

The git command works the same way across Linux, Mac, and Windows. It is a tool 
that developers use a lot and being fluent in it will boost your productivity.

From localhost to instant DNS
Often, especially when working with other people or when developing integrations 
with online services, we have to make our computer accessible from the Internet. 
This information could be obtained from our trusty router, but wouldn't it be easier 
if we just had a tool that makes our computer port publicly accessible?

Luckily for us there is such a tool!

Meet ngrok, the versatile one line command that makes you forget about router 
configuration and continuous redeploys. Ngrok is a simple tool that exposes a port 
from our computer to a unique domain name publicly available on the Internet.

How does it do it?

Well, let's see it in action!



Developers' Treasure

[ 176 ]

Go to the website, click on the Download button, and choose your destiny. In our 
case, our destiny is the Linux package in 64-bit. Next, go to the terminal, unzip the 
file, and copy its contents to the bin folder:

• cd downloads
• unzip ngrok.zip

• mv ngrok ~/bin



Chapter 5

[ 177 ]

Now do a rehash and type the following:

ngrok http 80

We can see that port forwarding for ports 80 and 443 is running on our local 80 port, 
at a custom ngrok subdomain name. We can also see the region of the server, which 
by default is located in the US. If we are in a different region we can set this with the 
following:

ngrok http 80 --region eu



Developers' Treasure

[ 178 ]

The ngrok server is located in Europe. In order to test our ngrok server, let's use our 
trusty Python server to show a simple HTML page:

python -m SimpleHTTPServer

Then restart ngrok with the HTTP traffic forwarded from port 8000, the default 
Python web server port:

ngrok http 8000 --region eu



Chapter 5

[ 179 ]

Click on the link provided by ngrok, and we will see our web page accessible  
to the Internet.

That's it. No configuration, no account, no headaches. Just a simple one line 
command that we can run from anywhere. The subdomain provided by ngrok is 
a generated one and will change every time we restart ngrok. We have the option 
of using our custom domain name like Linux https://ngrok.com/, but only after 
acquiring a paid account.

The ngrok also has a web interface at http://127.0.0.1:4040 where we can see 
statistics and logs.

https://ngrok.com/


Developers' Treasure

[ 180 ]

Power comes from ease of use and ngrok provides us with that power:

Here are some specific scenarios for using this powerful tool:

• When testing integrations with online services that require a callback url, 
such as oAuth login and online payments

• When developing mobile applications that connect to a local service
• When we want to expose an ssh port
• When we want to give our clients access to a webpage on our laptop, to show 

them some code, maybe



Chapter 5

[ 181 ]

JSON jamming in the new age
Nowadays, JSON is everywhere, in web apis, in configuration files, even in logs. 
JSON is the default format used to structure data. Because it is used so much, there 
will be times when we will need to process JSON from the command line. Could you 
imagine doing this with grep, sed, or other conventional tools? That would be quite 
a challenge.

Luckily for us, there is a simple Command-line tool called jq that we can use to 
query JSON files. It comes with its own language syntax, as we will see in just a  
few minutes. 

First let's install jq with the following command:

sudo apt install jq



Developers' Treasure

[ 182 ]

Now let's use an example file, a dummy access log in JSON format: access.log, 
which we can also find in the course GitHub repository.

Let's start with some simple queries:

jq . access.log

We will print the JSON objects back to the screen, in a pretty format:



Chapter 5

[ 183 ]

If we want to grab the request method from each request, run the following:

jq '.requestMethod' access.log



Developers' Treasure

[ 184 ]

This will print the request method from each json object. Notice the double quotes 
around each method:

If we want to use the output as input to other scripts we probably don't want the 
double quotes and that is where the -r (raw output) comes in handy:

jq '.requestMethod' -r access.log



Chapter 5

[ 185 ]

The jq is often used for big data queries at a much smaller scale:



Developers' Treasure

[ 186 ]

Say, for example, if we want to calculate a statistic of request methods on the log file, 
we could run the following:

jq '.requestMethod' -r access.log | sort | uniq -c

Now we can see a count of get, put, post, and delete requests. If we want the 
same type of calculation for another field, say apikey, we can run the following:

jq '.requestHeaders.apikey' -r access.log | sort | uniq -c



Chapter 5

[ 187 ]

Since that the syntax for accessing nested fields is to just use the dot as a delimiter 
between them. Also notice that we are using single quotes instead of double quotes 
to mark our query as a string. As you probably know, the difference between single 
and double quotes in shell scripting is that double-quoted strings will try to expand 
variables, while single quoted strings will be treated as a fixed string.



Developers' Treasure

[ 188 ]

To query for the request bodies, we will be using the following command:

jq '.requestBody' access.log

As we can see from the output, even empty request bodies are logged and will be 
printed by jq:



Chapter 5

[ 189 ]

To skip printing empty bodies, we can use jq's query language to select all 
documents without an empty body:

jq 'select(.requestBody != {}) | .requestBody' access.log



Developers' Treasure

[ 190 ]

If we want to refine our search even more and only print the first element in the 
dataIds object of the request body, use the following:

jq 'select(.requestBody.dataIds[0] != null) | .requestBody.dataIds[0]' 
access.log

We can even perform arithmetic operations with the returned value, such as 
incrementing it:

jq 'select(.requestBody.dataIds[0] != null) | .requestBody.dataIds[0] + 
1' access.log



Chapter 5

[ 191 ]

There are many more examples and use cases for jq: just go to the official jq page 
and visit the tutorial there:

https://stedolan.github.io/jq/tutorial/

https://stedolan.github.io/jq/tutorial/


Developers' Treasure

[ 192 ]

There we can see an example of consuming a rest API that returns json and pipes  
it to jq. To print a json with the commit messages from a github repository, run  
the following:

curl 'https://api.github.com/repos/stedolan/jq/commits?per_page=5' | jq 
-r '[.[] | {message: .commit.message}]'

As we said, there are many more examples in the documentation, and many more 
use cases. jq is a pretty powerful tool, and a must when interacting with json from 
the command line. 

No more mister nice guy
The kernel and command line in Linux are stable and powerful. Their reliability 
has been proven throughout the years, with modern legends about Linux servers 
running for multiple years in a row without restarting. However, graphical interfaces 
are not the same, and they sometimes fail or become unresponsive. This can become 
annoying and it's always good to have a quick way of killing unresponsive windows. 
Prepare to meet xkill.

First, let's replicate an unresponsive window. Go to the terminal and start gedit: 
and then hit Ctrl + z. This will send gedit to the background, while the window is 
still visible. Trying to click inside the window a couple of times will tell Ubuntu that 
there is no process handling this window anymore and Ubuntu will make it gray:



Chapter 5

[ 193 ]

Hit Ctrl + z:

This will send gedit to the background, while the window is still visible. Trying to 
click inside the window a couple of times will tell Ubuntu that there is no process 
handling this window anymore and Ubuntu will make it grey:



Developers' Treasure

[ 194 ]

To avoid the process of grepping for the pid of the window and then killing that 
process we use a little trick. Go to the terminal and run the following:

xkill

Now we see that the mouse pointer has changed to an x.

Be careful not to click on anything. Hit Alt + Tab to bring back the gedit window, 
and then click it. The xkill command will find and kill the process of the window 
we just clicked on.

This trick can be used on any type of window; it's like shooting your windows!

OK, but what happens if the whole system becomes unresponsive and you can't type 
anything in the command line? That might happen, especially on older systems. You 
can hit the on/off button on your laptop or server, but in some circumstances, this is 
not possible.

What we are going to show you now is an old trick kept secret by Linux gurus for 
a very long time; nobody really talks about it because it's so powerful that it can do 
damage in the hands of the wrong people. Please make sure you save all your work 
and close all programs before trying the fatal keyboard shortcut that will force a 
restart of your Linux system. Hold down Alt + PrtScrn and at the same time type  
the following:

reisub



Chapter 5

[ 195 ]

If you've tried it, it means that your computer restarted and you had to come back to 
this course and continue where you left off.

Practice this command with great caution and please don't use it to restart your 
computer on a regular basis. Use it only when the graphical user interface (GUI)  
is not responding.

Another trick: if the GUI is not responding and you have unsaved work, you can 
recover some of it from the command line, by accessing one of Linux's virtual 
terminals. Ubuntu starts, by default, seven virtual terminals and the graphical user 
interface starts on terminal 7. To access any of the seven terminals use Ctrl + Alt + F1 
to F7. A prompt will appear asking you to log in and, after logging in, you can run 
some commands to close processes and save work before exiting. To get back to the 
user interface, hit Ctrl + Alt + F1.





[ 197 ]

Terminal Art
All work and no play makes Jack a dull boy. Even though the command line 
seems boring to a lot of people, it can become great fun. It all comes down to your 
imagination. Terminals can be stylish and can give a good impression, especially the 
ones we see in the movies. Colors, ASCII art, and animations can make our terminal 
come alive. So, here comes some terminal art!

In this chapter, we will cover the following: 

• Working with some Linux commands to have fun with

Ever heard of fortune cookies? Do you want to have them without getting fat? Just 
run the following apt command to install the utilities that we will be using in this 
chapter:

sudo apt install fortune cowsay cmatrix



Terminal Art

[ 198 ]

Then run this command:

fortune

When running this command, you get fortunes, quotes, and jokes, in a random order. 
If we combine the command with cowsay, we will get the same fortunes, delivered 
with an image of a cow:

fortune | cowsay



Chapter 6

[ 199 ]

To make this recurrent, we can include it as the last line in our zshrc file. Then, 
every time we open a new terminal window, a cow will deliver a fortune to us.

Now this may not be useful (even though it's kinda fun) so, let's do some productive 
wizardry.

Let's predict the weather!



Terminal Art

[ 200 ]

All you need is a curl command:
curl -4 http://wttr.in/London

This will show, in a nice format, a three-day weather forecast for the specified city, in 
this case, London:



Chapter 6

[ 201 ]

Now, with our newly learned skills, let's put together a shell script that gives us the 
weather forecast:

Open ~/bin/wttr and type the following:

#!/bin/bash

CITY=${1:-London}

curl -4 http://wttr.in/${CITY}

Give it execution rights and assign a default city, let's say London. Now, run this:

wttr



Terminal Art

[ 202 ]

We get the weather forecast for London. Now, run this:

wttr paris



Chapter 6

[ 203 ]

We get the weather forecast for Paris. Working in the command line for the first 
time may seem like entering the Matrix and, if that's the case, why not create that 
environment?

Run this command:

cmatrix

Let your friends be amazed by the complicated stuff you are doing in that cryptic 
terminal. Terminals are not boring!



Terminal Art

[ 204 ]

They have beautiful colors, easy-to-read output, and they display compact 
information that puts users in control of their own system.

Terminals can be customized and interacted with and they increase your 
productivity while leaving your mouse to sleep the endless sleep of inefficiency.

Of course, all these skills don't come to you overnight, and they require careful 
tweaking from each user in order to be tailored to their own taste and way of 
thinking and working. However, after that, they'll fit like a tailored suit, and become 
an extension of your way of work and sometimes even your job.

We hope you've enjoyed all the tips and tricks we've provided, and had fun learning 
them. Remember that education is a continuous process, so don't stop here! Stay 
hungry and surf the Internet to keep track of the latest tools and techniques that will 
transform you into a productivity beast!



[ 205 ]

Index
A
autoenv

about  127-134
URL  127

C
ClipIt  15-19
current working directory (or CWD) 58

D
desert  67
dig 58

E
electron open source project

URL  97
eye of gnome (eog)  144

F
find command

using  97, 98, 100, 101, 102, 103, 104, 105, 
106, 107, 108, 109, 110

G
git

conflicts, merging  169-175
GitFlow

about  155
branching model, for  

software projects  155-168
reference link  156

gitflow-avh
URL  155

Git hooks 
about 155
analyzing  168

graphical user interface (GUI)  195
Guake 11-14

I
identify  144
ImageMagick

images, processing from 
 command line  143-154

image shrinking tools
exploring  150-153

indentation  70-81
iputils  58

J
jq page

URL  191
JSON

processing, from command line  181-192
xkill command, using  192-195

L
Linux

URL, for developers  2
LISTEN  120

M
Meld  170



[ 206 ]

N
NERDtree

about  81
URL  82

networking commands
working with  118-127

ngrok
about  175
working with  176-180

O
oh-my-zsh framework

about  26-32
URL  27

OpenDNS
URL  58

P
pathogen

URL  81
pipes  39-43
plugins 81-85

R
regular expressions 33-38
rehash  177
request bodies

querying  188
rm command

avoiding  134

S
sed

one-liner productivity  91-96
shell scripting

about  46-56
libraries  56-61

Snipmate
about  82
URL  82

subshells 39, 44, 45

T
Terminator

about  3, 4
features  6-10
preferences menu  4, 5, 6

tmux
about  110, 118
installing  110-116

trash
working with  134-138

V
Vim

about  21-25
color scheme desert  67, 69
configuration, restoring  88, 89
password manager  86, 87
plugin steroids  81, 84, 85
reference  85
supercharging  63, 65, 66

X
xkill command

using  192-195


	Cover
	Copyright
	Credits
	About the Authors
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Introduction
	Are you ready?
	Terminator – the ultimate terminal
	Preferences menu
	Features

	Guake – not Quake!
	ClipIt – copy-paste at its finest

	Chapter 2: Productive Shells – Reinvent the Way You Work
	Oh-my-zsh – your terminal never felt this good before!
	Basic regular expressions
	Pipes and subshells – your shell's salt and pepper
	Shell scripting for fun and profit
	Shell scripting libraries

	Chapter 3: Vim kung fu
	Supercharging Vim
	Color scheme desert

	Keyboard kung fu
	Plugin steroids for Vim
	Vim password manager
	Instant configuration restoring

	Chapter 4: CLI – The Hidden Recipe
	Sed – one-liner productivity treasure
	You can run, but you can't hide… from find
	tmux – virtual consoles, background jobs and the like
	Network – Who's listening?
	Autoenv – Set a lasting, project-based habitat
	Don't rm the trash


	Chapter 5: Developers' Treasure
	The spot webserver
	Shrinking spells and other ImageMagick
	Go with the Git flow
	Merging Git conflicts with ease
	From localhost to instant DNS
	JSON jamming in the new age
	No more mister nice guy


	Chapter 6: Terminal Art
	Index

