


Table of Contents
Chapter 1: Impact of Cloud On Networking 1

The difference between spanning tree networks and leaf spine
networking 1
Changes that have occurred in networking with the introduction of
public cloud 7
The Amazon Web Services Approach to Networking 10
The OpenStack Approach to Networking 16
Summary 30

Chapter 2: The Emergence of Software Defined Networking 31
Current SDN solutions on the market 31
How The Nuage SDN solution works 32
Integrating OpenStack with the Nuage VSP Platform 35

Nuage or OpenStack Managed Networks 37
The Nuage VSP Software Defined Object Model 39

Object Model Overview: 39
How The Nuage VSP Platform can support Greenfield and Brownfield
Projects 48
The Nuage VSP Multicast Support 53
Summary 55

Chapter 3: Bringing DevOps to Network Operations 56
Initiating a Change in Behaviour 56

Reasons for Implementing DevOps 57
Reasons for Implementing DevOps for Networking 59

Top Down DevOps Initiatives for Networking Teams 61
Analyse Successful Teams 61
Map Out Activity Diagrams 62
Change the Network Teams Operational Model 66
Changing the Network Teams Behaviour 67

Bottom-Up DevOps Initiatives for Networking Teams 69
Evangelise DevOps in the Networking Team 70
Seek Sponsorship from a respected Manager or Engineer 70
Automate a Complex Problem with the Networking team 72

Summary 73



[ ii ]

Chapter 4: Configuring Network Devices Using Ansible 75
Network Vendors Operating Systems 76

Cisco IOS and NXOS operating system 76
Juniper Junos operating system 77
Arista EOS operating system 78

Introduction to Ansible 79
Ansible Directory Structure 80
Ansible Inventory 81
Ansible modules 82
Ansible roles 83
Ansible Playbooks 83
Executing an Ansible Playbook 85
Ansible vars and jinja2 templates 85
Pre-Requisites Using Ansible to Configure Network Devices 87
Ansible Galaxy 87

Ansible Core Modules Available For Network Operations 89
_command module 90
_config module 92
_template module 92

Configuration Management Processes To Manage Network Devices 93
Desired State 94
Change Requests 97
Self-Service Operations 98

Summary 99
Chapter 5: Orchestrating Load Balancers Using Ansible 100

Centralised and Distributed Load Balancers 100
Centralised Load Balancing 101
Distributed Load Balancing 101

Popular Load Balancing Solutions 102
Citrix Netscaler 103
F5 Big IP 105
AVI Networks 106
Nginx 108
HAProxy 110

Load Balancing Immutable and Static Infrastructure 112
Static and Immutable Servers 113
Blue/ Green Deployments 114

Using Ansible to Orchestrate Load Balancers 117



[ iii ]

Delegation 117
Rolling Updates 118
Dynamic Inventories 122
Tagging Meta-data 123
Jinja2 Filters 124
Creating Ansible Networking Modules 125

Summary 126
Chapter 6: Orchestrating SDN Controllers Using Ansible 127

Arguments against Software Defined Networking 128
Added Network Complexity 129
Lack of Software Defined Networking Skills 130
Companies Require Stateful Firewalling To Support Regularity
Requirements 131

Why Would A Company Utilise A Software Defined Networking
Solution? 132

Software Defined Networking Adds Agility and Precision 133
A Good Understanding of Continuous Delivery Is Key 134
Software Defined Networking Helps Companies With Over Complex
Networks 135
Splitting Up Network Operations 135

New Responsibilities in API Driven Networking 136
Overlay Architecture Set-up 137
Self-Service Networking 142

Immutable Networking 145
A/B Immutable Networking 145
Clean-up of Redundant Firewall Rules 147
Application Decommissioning 149

Using Ansible to Orchestrate SDN Controllers 149
Using SDN for Disaster Recovery 151
Storing A/B Subnets and ACL Rules in YAML files 152

Summary 154
Chapter 7: Using Continuous Integration Builds For Network
Configuration 155

Continuous Integration Overview 155
Developer Continuous Integration 157
Database Continuous Integration 159

Tooling Available For Continuous Integration 162
Source Control Management Systems 162

Centralised SCM Systems 163



[ iv ]

Distributed SCM Systems 164
Branching Strategies 165

Continuous Integration Build Servers 167
Network Continuous Integration 169

Network Validation Engines 171
Simple Continuous Integration Builds for Network Devices 172
Configuring a Simple Jenkins Network CI Build 174
Adding Validations to Network Continuous Integration Builds 177

Continuous Integration for Network Devices 177
Continuous Integration Builds for Network Orchestration 178

Summary 180
Index 181



1
Impact of Cloud On Networking

This chapter will look at ways that networking has changed in the private data centre and
evolved in the last few years. It will focus emergence of AWS for public cloud and
OpenStack for private cloud have changed the way developers want to consume
networking. It will look at some of the networking services AWS and OpenStack provide
out the box and look at some of the features they provide. It will show examples of how
these cloud platforms have made networking a commodity much like infrastructure.

In this chapter the following topics will be covered:

The difference between spanning tree networks and leaf spine networking
Changes that have occurred in networking with the introduction of public cloud
The Amazon Web Services Approach to Networking
The OpenStack Approach to Networking

The difference between spanning tree
networks and leaf spine networking
Traditionally companies private data centres have implemented 3 tier Layer 2 networks
based on the spanning tree protocol (SPT). The implementation of SPT provides a number
of options for network architects in terms of implementation, but it also adds a layer of
complexity to the network. Implementation of the SPT gives network architects the
certainty that it will prevent layer 2 loops from occurring in the network.

A typical representation of a 3 tier Layer 2 SPT based network can be shown below:



Impact of Cloud On Networking

[ 2 ]

The core layer provides routing services to other parts of the data centre and
contains the core switches
The aggregation layer provides connectivity to adjacent access layer switches and
the top of the spanning tree core.
The bottom of the tree is the accesslayer, this is where bare metal or virtual
machines connect to the network and is segmented using grouping different
vlans.

The use of Layer 2 networking and SPT mean that at the access layer of the network will use
vlans spread throughout the network. The vlans sit at the access layer, which is where
virtual machines or bare metal servers are connected. Typically these vlans are grouped by
type of application, and firewalls are used to further isolate and secure them.

Traditional networks are normally segregated into some combination of the following:

Front End: typically has web servers that require external access will sit
Business Logic: often contains stateful services
Back End: typically contains database servers

Applications talk to each other by tunnelling between these firewalls, with specific ACL
rules that are serviced by network teams and governed by security teams.

When using spanning tree protocol in a layer 2 network, all switches go through an election
process to determine the root switch, which is granted to the switch with the lowest bridge

http://cdn.ttgtmedia.com/rms/dataCenter-Virtualization/sDC-CoreAggregationAccess-112513.png


Impact of Cloud On Networking

[ 3 ]

id, with a bridge id encompassing the bridge priority and MAC address of the switch. Once
elected the root switch becomes the base of the spanning tree, all other switches in the
spanning tree are deemed non-root will calculate their shortest path to the root and then
block any redundant links so there is one clear path. The calculation process to work out the
shortest path is referred to as network convergence.

Network architects designing the layer 2 network need to be careful about the placement of
the root switch, as all network traffic will need to flow through it, so it should be selected
with care and given an appropriate bridge priority as part of the network reference
architecture design. If at any point, switches have been given the same bridge priority then
the bridge with the lowest MAC address wins.

Network architects should also design the network for redundancy so that if a root switch
fails, there is a nominated backup root switch typically with a priority of one value less that
the nominated root switch, which will take over as when a root switch fails. In the scenario
the root switch fails the election process will begin again and the network will converge
which can take some time.

The use of Spanning Tree protocol is not without its risks, if it does fail due to user
configuration error, data centre equipment failure, software failure on a switch or bad
design then the consequences to a network can be huge. The result can be that loops might
form within the bridged network which can result in a flood of broadcast, multicast,
unknown-unicast storms that can potentially take down the entire network leading to long
network outages. The complexity associated with network architects or engineers
troubleshooting spanning tree protocol issues is non-trivial so it is paramount that the
network design is sound.

In recent years with the emergence of cloud computing we have seen data centres move
away from a spanning tree protocol in favor of a leaf-spine networking architecture.



Impact of Cloud On Networking

[ 4 ]

In a leaf-spine architecture:

Spine switches are connected into a set of core switches
Spine switches are then connected with leaf switches with each leaf switch
deployed top of rack
This means that any leaf switch can connect to a spine switch in one hop

A leaf spine architecture is built on layer 3 routing principles to optimise throughput and
reduce latency, with both leaf and spine switches communicating with each other via
external border gate protocol (eBGP) as the routing protocol for the IP fabric. eBGP
establishes a TCP connection to each of its BGP peers before BGP updates can be exchanged
between the switches. Leaf switches in the implementation will sit at top of rack and can be
configured in multi-chassis link aggregation (MLAG) mode using NIC bonding. MLAG
was originally used with Spanning Tree Protocol (STP) so that two or more switches are
bonded to act like a single switch and could use for redundancy and appear as one switch
to the STP, this provided multiple uplinks for redundancy in the event of a failure as the
switches are peered and it worked around the need to disable redundant paths. Leaf
switches can often have internal border gate protocol (iBGP) configured between the pairs
of switches for resiliency.

In a leaf spine architecture spine switches do not connect to other spine switches and leaf
switches do not connect directly to other leaf switches unless bonded top of rack using
MLAG NIC bonding. All links in a leaf spine architecture are setup to forward with no
looping. Leaf spine architectures are typically configured to implement equal cost multi-
pathing (ECMP) which allows all routes to be configured on the switches so they can access
any spine switch in the layer 3 routing fabric. ECMP means that leaf switches routing table
has the next-hop configured to forward to each spine switch. In an ECMP setup each leaf

http://cdn.ttgtmedia.com/rms/dataCenter-Virtualization/sDC-CoreSpineLeaf-112513.png


Impact of Cloud On Networking

[ 5 ]

node has multiple paths of equal distance to each spine switch, so if a spine or leaf switch
fails, there is no impact as long as there are other active paths to another adjacent spine
switches. ECMP is used to load balance flows and supports the routing of traffic across
multiple paths. This is in contrast to the STP which switches off all but one path to the root
when the network coverages.

Typically leaf spine architectures designed for high performance use 10G access ports at leaf
switches mapping to 40G spine ports. When device port capacity becomes an issue, new
leaf switches can be added by connecting it to every spine on the network while pushing
the new configuration to every switch. This means that network teams can easily scale out
the network horizontally without managing or disrupting the switching protocols or
impacting the network performance.

The benefits of a leaf spine architecture are:

Consistent latency and throughput in the network
Consistent performance for all racks
Network once configured becomes less complex
Simple scaling of new racks by adding new leaf switches at top of rack
Consistent performance, subscription and latency between all racks
East to west traffic performance is optimised (virtual machine to virtual machine
communication) to support micro-service applications
Removes VLAN scaling issues, controls broadcast and fault domains

The one drawback of a leaf spine topology is the amount of cables it consumes in the data
centre.

Modern switches have now moved towards open source standards so they are pluggable,
the open standard for virtual switches is Open vSwitch, which was born out of the necessity
to come up with an open standard that allowed a virtual switch to forward traffic to
different virtual machines on the same physical host and physical network. Open vSwitch
uses Open vSwitch database (OVSDB) that has a standard extensible schema.

Open vSwitch is typically deployed at the hypervisor level with the following hypervisors
now implementing Open vSwitch as the virtual switching technology:

KVM
Xen
Hyper-V

Hyper-V has recently moved to support Open vSwitch using the implementation created by
Cloudbase. Open vSwitch talks OpenFlow from virtual switch to physical switch to



Impact of Cloud On Networking

[ 6 ]

communicate and can be programmatically extended to fit the needs of vendors.

In the diagram below you can see that the Open vSwitch architecture. Open vSwitch is
typically installed on compute that is running KVM, Xen or Hyper-V virtualisation layer:

The ovsdb-server contains the OVSDB schema that holds all switching information for the
virtual switch. The ovs-vswitchd daemon talks OpenFlow to any Control and Management
Cluster which could be any SDN controller that can communicate using the OpenFlow
protocol.

Controllers use OpenFlow to install flow state on the virtual switch and OpenFlow dictates
what action to when packets are received by the virtual switch. When Open vSwitch
receives a packet it has never seen before and has no matching flow entries, it sends this
packet to the controller. The controller then makes a decision on how to handle this packet
based on the flow rules to either block or forward. The ability for Configuration of quality
of service (QoS) and other statistics is possible on Open vSwitch. Open vSwitch is used to
configure security rules and provision ACL rules at the switch level on a hypervisor.

A leaf spine architecture allows overlay networks to be easily built, meaning that cloud and
tenant environments are easily connected to the layer 3 routing fabric. Hardware Vxlan
Tunnel Endpoints (VTEPs) ips are associated with each leaf switch or a pair of leaf switches
in MLAG mode and are connected to each physical compute host via VXLAN to each Open



Impact of Cloud On Networking

[ 7 ]

vSwitch that is installed on a hypervisor.

This allows an SDN controller to build an overlay network that create VXLAN tunnels to
the physical hypervisors utilising Open vSwitch, new VXLAN tunnels are created
automatically if new compute is scaled out, then SDN controllers can create new VXLAN
tunnels on the leaf switch as they are peered with the leaf switches hardware VTEP.

Modern switch vendors such as Arista, Cumulus and many others use OVSDB and this
allows SDN controllers to integrate at the control and management cluster level. As long as
an SDN controller uses OVSDB and OpenFlow protocol, they can seamlessly integrate with
the switches and are not tied into specific vendors. This gives end users a greater depth of
choice when choosing switch vendors and SDN controllers which can be matched up as
they communicate using the same open standard protocol.

Changes that have occurred in networking
with the introduction of public cloud
It is unquestionable that the emergence of the Amazon Web Services (AWS) which was
launched in 2006 changed and shaped the networking landscape forever. Today in 2016 the
AWS VPC secures a set of Amazon EC2 instances (VMs) that can be connected to any
existing network using aVPNconnection. This simple construct has changed the way that
developers want and expect to consume networking.

In 2016 we live in a consumer based society with mobile phones allowing us instant access
to the internet, films, games or an array of different applications to meet our every need,
instant gratification if you will, so it is easy to see the appeal of AWS has to end users.

AWS allows developers to provision instances (VMs) in their own personal network, to
their desired specification by selecting different flavours (CPU, RAM and disk) using a few
button clicks or alternately a simple call to an API.

So now a valid question, why should developers be expected to wait long periods of time
for either infrastructure or networking tickets to be serviced in on premise data centres
when AWS is available? It really isn't a hard question answer when first reflecting, the
solution has to either be move to AWS or create a private cloud solution that enables the
same agility. However, with everything the answer isn't always that straight forward,
arguments against using AWS and public cloud such as:

Not knowing where the data is actually stored and in which data centre
Not being able to hold sensitive data offsite



Impact of Cloud On Networking

[ 8 ]

Not being able to assure the performance
High running costs

All are genuine blockers for some businesses that are highly regulated and need to meet
regularity standards that may be enforced on businesses so as with most solutions it isn't
the case of one size fits all.

In private data centres there is a cultural issue that teams have been set-up to work in silos
and are not setup to succeed in an agile world, so a lot of the time utilising AWS is a quick
fix for broken operational models.

Ticketing systems, a staple of broken internal operational models, are not a concept that
aligns itself to speed, tickets typically take days or weeks to complete so requests are
queued before virtual or physical servers can be provided to developers or access changes
such as a simple modification ACL rules implemented. These options are required for the
developers to do their job be it scaling up servers or prototyping new features so all of these
hinder delivery of products to market.

Put simply AWS has changed the expectations of developers, where they service their needs
as quickly as making an alteration to an application on their mobile phone, free from slow
internal IT operational models associated with companies.

But for start-ups and businesses that can use AWS that aren't deterred by regulatory
requirements, it skips the need to hire teams to rack servers, configure network devices and
pay for the running costs datacentres. It means they can start viable businesses and run
them on AWS by putting in a credit card details the same way as you would purchase a
new book on Amazon or EBay.

The reaction to AWS was met with trepidation from competitors, as it disrupted the cloud
computing industry, from it spawned the idea for a new private cloud In 2010, which was a
joint venture by Rackspace andNASA which launched an open-source cloud-software
initiative known as OpenStack, which came about as Nasa couldn't put their data in a
public cloud.

The OpenStack project intended to help organisations offer cloud-computing services
running on standard hardware and directly set-out to mimic the model provided by AWS
but do it as an open sourced project, that could be used to give AWS like ability for private
cloud.

Since its inception in 2010 OpenStack has grown to have over 500 member companies as
part of the OpenStack Foundation with platinum members and gold members that are
comprised of the biggest IT vendors in the world that are driving the community.



Impact of Cloud On Networking

[ 9 ]

OpenStack as it is open source project, which means its source code is publically available
and its underlying architecture is available for analysis unlike AWS which acts like a magic
box of tricks but it is not really known how it works underneath its shiny exterior.

OpenStack is typically used today to provides an Infrastructure as a Service (IaaS) function
within the private cloud, where it makes commodity x86 compute, centralised storage and
networking features available to end users to self-service their needs be it via the horizon
dashboard or through a set of common API's.

Vendors such as Redhat, HP, Suse, Canonical, Mirantis and many more provide different
distributions of OpenStack to customers, complete with different methods of installing the
platform. Although the source code and features are the same, the business model for these
vendors is that they harden OpenStack for enterprise use and their differentiator to
customers is their professional services.

Typically OpenStack vendors will support build out, on-going maintenance and upgrades
or any customisations a client needs that are fed back to the community. The beauty of
OpenStack is that if vendors customise OpenStack for clients and create a real differentiator
or competitive advantage, they cannot fork OpenStack or uniquely sell this feature and they
have to contribute the source code for feature back to the upstream OpenStack project. This
means that competing vendors all contribute to its success of OpenStack and benefit from
each other's innovative work. The OpenStack project is not just for vendors though and
everyone can contribute code and features to push the project forward.

OpenStack maintains a release cycle where an upstream release is created every six months
and is governed by the OpenStack Foundation. It is important to note that many public
clouds too such as RackSpace and GoDaddy are based on OpenStack too, so it is not
exclusive to private clouds, but it has undeniably become increasingly popular as a private
cloud alternative to AWS.

So how does AWS and OpenStack work in terms of networking? Both AWS and OpenStack



Impact of Cloud On Networking

[ 10 ]

are made up of some mandatory and modular projects that are all integrated to make up its
reference architecture. Some mandatory projects must be used such as compute and
networking, which are the staple of any cloud solution, while others are modular bolt-ons
to enhance or extend capability. This means that end users can cherry pick the projects they
are interested in to make up their own personal portfolio.

The Amazon Web Services Approach to
Networking
First we will look at AWS, a tenant network in AWS is instantiated using a virtual private
cloud (VPC) which post 2013 deprecated AWS classic mode. A VPC is the new default
setting for new customers wishing to access AWS. VPCs can also be connected to customer
networks (private data centres), allowing AWS cloud to extend a private data centre for
agility. The concept of connecting a private data centre to an AWS VPC is using something
AWS refers to as a customer gateway and virtual private gateway. A virtual private
gateway in simple terms is just two redundant VPN tunnels which are instantiated from the
customer's private network.

Customer gateways expose a set of external static addresses from a customer site, which are
typically nat-t to the hide the source address. UDP port 4500 is required to be accessible in
the external firewall in the private datacentre. Multiple VPC's can be supported from one
customer gateway device.



Impact of Cloud On Networking

[ 11 ]

A VPC gives an isolated view of everything an AWS customer has provisioned in AWS
public cloud. Different user accounts can then be set-up against a VPC using the AWS
Access Management (IAM) service, which has customisable permissions.

An example of a VPC is shown below complete with instances (virtual machines) mapped
one or more security groups and connected to different subnets connected to the VPC
router:



Impact of Cloud On Networking

[ 12 ]

A VPC closely simplifies networking greatly by putting the constructs into software and
allows users the freedom to perform the following network functions:

Create instances (VM's) mapped to subnets
DNS entries are applied to instances
Assignment of Public and Private IP addresses
Create or associate subnets
Custom routing
Apply security groups with ACL rules

By default when an instance is instantiated in a VPC it will either be placed on a default
subnet or custom subnet if specified. All VPC's come with a default router when the VPC is
created, the router can have additional custom routes added and routing priority can also
be set to forward traffic to particular subnets.

When the instance is spun up in AWS it will automatically be assigned a mandatory private
ip address by DHCP as well as a public ip and DNS entry too unless dictated otherwise.



Impact of Cloud On Networking

[ 13 ]

Private ips are used in AWS to route east to west traffic between instances when virtual
machine need to talk with adjacent virtual machines on the same subnet, while public ips
are available from the internet.

If a persistent public IP address is required for an instance, AWS offers the feature of elastic
ip addresses, which is limited to five per VPC account, which means a failed instances ip
can be quickly mapped to another instance. It is important to note it can take up to 24 hours
for a public ip addresses DNS TTL to propagate when using AWS.

In terms of throughput, AWS instances can support a maximum transmission unit (MTU) of
1500 that can be passed to an instance in AWS so this needs to be considered when
considering application performance.

Security groups in AWS are a way of grouping permissive ACL rules so don't allow explicit
denies. AWS security groupsact as a virtual firewalls for instances and can be associated with
one or more instances network interfaces In a VPC, you can associate a network interface
with up to five security groups, adding up to 50 rules to a security group, with a maximum
of 500 security groups per VPC. A VPC in AWS account automatically has a default security
group which will be automatically applied if no other security groups are specified.

Default security groups allows all outbound traffic and allow all inbound traffic only from
other instances in a VPC that also have the default security group. The default security
group cannot be deleted. Custom security groups when first created allow no inbound
traffic but all outbound traffic is allowed.

Permissive ACL rules associated with security groups govern inbound traffic are added
using the AWS console (GUI) as shown below or can be programmatically added using
APIs. Inbound ACL rules associated with security groups can be added by specifying type,
protocol, port range and the source address.



Impact of Cloud On Networking

[ 14 ]

A VPC has access to different regions and availability zones of shared compute, which
dictate the data centre that the AWS instances (virtual machines) will be deployed in.
Regions in AWS are geographic areas that are completely isolated by design, where
availability zones are isolated locations in that specific region so an availability zone is a
subset of a region.

AWS gives users the ability to place their resources in different locations for redundancy as
sometimes the health of a specific region or availability zone can suffer issues. Therefore,
AWS users are encouraged to use more than one availability zones when deploying
production workloads on AWS. Users can choose to replicate their instances and data
across regions if they choose to.

Within each isolated AWS region there are child availability zones, each availability zone is
connected to sibling availability zones using low latency links. All communication from one
region to another is across the public internet so utilising different regions that are
geographically far away from each other will acquire latency and delay. Encryption of data
should also be considered when hosting applications that send data across Regions.

An example of available of available AWS regions can be shown below:

Code Name

us-east-1 US East (N. Virginia)

us-west-2 US West (Oregon)



Impact of Cloud On Networking

[ 15 ]

Code Name

us-west-1 US West (N. California)

eu-west-1 EU (Ireland)

eu-central-1 EU (Frankfurt)

ap-southeast-1 Asia Pacific (Singapore)

ap-northeast-1 Asia Pacific (Tokyo)

ap-southeast-2 Asia Pacific (Sydney)

ap-northeast-2 Asia Pacific (Seoul)

sa-east-1 South America (São Paulo)

 

AWS also allows Elastic Load Balancing (ELB) to be configured with a VPC as a bolt-on
service. ELB which can either be internal or external, when an ELB is external it allows the
creation of an internet-facing entry point into your VPC using an associated DNS entry and
balances load between different instances. Security groups are assigned to ELBs to control
the access ports that need to be used.



Impact of Cloud On Networking

[ 16 ]

The OpenStack Approach to Networking
OpenStack is deployed in a data centre on multiple controllers, these controllers are home
to all the OpenStack services, and can be installed on either virtual machines, bare metal
servers or containers. The OpenStack controllers host all the OpenStack services in a highly
available and redundant fashion.

Different OpenStack vendors provide different installers to install OpenStack, some
examples of installers are RedHat Director (based on OpenStack triple O), Mirantis Fuel,
HPs HPE installer (Based On Ansible) which all install OpenStack controllers and be used
to scale out compute nodes on the OpenStack cloud acting as an OpenStack workflow
management tool.

A breakdown of the core OpenStack services that are installed on a controller are as follows:

Keystone is the identity service for OpenStack allowing user access which issues
tokens and can be integrated with LDAP or Active directory
Glance is the image service for Openstack storing all image templates for virtual
machines or bare metal servers
Cinder is the block storage service for Openstack which allows centralised
storage volumes to be provisioned and attached to vms or bare metal servers
which can then be mounted
Nova is the compute service for Openstack used for provisioning vms and
utilises different scheduling algorithms to work out where to place virtual
machines on available compute
Horizon is the Openstack dashboard that users connect to view the status of vms
or bare metal servers that are running in a tenant network
Rabbitmq is the message queue system for Openstack
Galera is the database used to store all Openstack data in the nova (compute) and
neutron (networking) databases holding vm, port and subnet information
Swift is the object storage service for Openstack and can be used as a redundant
storage backend that stores replicated copies of objects on multiple servers. Swift
is not like traditional block or file based storage – objects can be any unstructured
data.
Ironic is the baremetal provisioning service for Openstack. Originally a fork of
part of the Nova codebase, it allows provisioning of images on to bare metal
servers and uses IPMI and ILO or DRAC interfaces to manage physical hardware
Neutron is the networking service for OpenStack and contains ML2 and L3
agents and allows configuration of network subnets and routers



Impact of Cloud On Networking

[ 17 ]

In terms of neutron networking services, neutrons architecture is very similar in constructs
to AWS. Before provisioning any instances, first the OpenStack networking needs to be
configured.

A Project, often referred to in OpenStack as a tenant, gives an isolated view of everything
that a team has provisioned in an OpenStack cloud. Different user accounts can then be set-
up against a Project (tenant) in keystone and integrated with LDAP or Active Directory and
supports customisable permissions.

OpenStack neutron performs the following network functions:

Create instances (VM's) mapped to networks
Assigns ip addresses using it's in built DHCP service
DNS entries are applied to instances from named servers
Assignment of private and Floating IP addresses
Create or associate network subnets
Create routers
Apply security groups

OpenStack is setup into its modular layer 2 (ML2) and layer 3 (L3) agents that are
configured on the OpenStack controllers. OpenStacks ML2 plug-in allows OpenStack to
integrate with switch vendors that utilise either Open vSwitch or Linux Bridge and acts as
an agnostic plug-in to switch vendors that they create plug-ins against to make their
switches OpenStack compatible. The ML2 agent runs on the hypervisor communicating
over RPC to the compute host server.

OpenStack compute hosts are typically deployed using a hypervisor that utilises Open
vSwitch, most OpenStack vendor distributions use the KVM hypervisor by default in their
reference architectures, so this is deployed and configured on each compute host by the
chosen OpenStack installer.

Compute hosts in OpenStack are connected to the access layer of the STP 3 tier model, or in
modern networks connected to the leaf switches, with vlans connected to each individual
OpenStack compute host. Tenant networks then are used to provide isolation between
tenants and utilise vxlan and GRE tunnelling to connect the layer 2 network.

Open vSwitch runs in kernel space on the KVM hypervisor and looks after firewall rules by
using OpenStack security groups that pushes down flow data via OVSDB from the
switches. The neutron L3 agent allows OpenStack to route between tenant networks and
uses neutron routers which are deployed within the tenant network to accomplish this,
without a neutron router networks are isolated from each other and everything else.



Impact of Cloud On Networking

[ 18 ]

Typically when setting up simple networking using neutron in a Project (tenant) network,
two different networks, an internal network and an external network will be configured.
The internal network will be used for east west traffic between instances. This is created as
shown below in the horizon dashboard with an appropriate network name:

The subnet name and subnet range are then specified in the subnet section as shown below:

Finally DHCP is enabled on the network and any named allocation pools (specifies only a



Impact of Cloud On Networking

[ 19 ]

range of addresses that can be used in a subnet) are optionally configured alongside any
named DNS servers as seen in the following screenshot.

An external network will also need to be created to make the internal network accessible
from outside of OpenStack, when external networks are created by an administrative user
the set External Network check box needs to be selected as shown in the next screenshot:



Impact of Cloud On Networking

[ 20 ]

A router is then created in OpenStack to route packets to the network as shown in the
following figure:

The created router will then need to be associated to the networks; this is achieved by
adding an interface on the router for the private network as shown below:



Impact of Cloud On Networking

[ 21 ]

The external network that was created then needs to be set as the routers gateway as seen in
the following figure:

This then completes the network set-up; the final configuration for the internal and external
network can be found below, which shows one router connected to an internal and external
network seen in the following figure:



Impact of Cloud On Networking

[ 22 ]

In OpenStack instances are provisioned onto the internal private network by selecting the
private network as the NIC when deploying instances. OpenStack has the convention of
assigning pools of public ips (floating ip) addresses from an external network for instances
that need to externally routable outside of OpenStack. To set up this set of floating ips an
OpenStack administrator will set up an allocation pool using the external network from an
external network as shown in the following figure:



Impact of Cloud On Networking

[ 23 ]

OpenStack like AWS utilises security groups to setup ACL, firewall rules between
instances. Unlike AWS OpenStack supports both ingress and egress ACL rules, whereas
AWS allows all outbound communication, OpenStack can deal with both ingress and egress
rules. Bespoke security groups are created to group ACL rules as shown below:

Ingress and Rules can then be created against that security group, below an ssh access is
configured as an ACL rule against the parent security group which are pushed down to
Open VSwitch into kernel space on each hypervisor as seen in the next screenshot:



Impact of Cloud On Networking

[ 24 ]

Once the Project (tenant) has two networks, one internal and one external and an
appropriate security group has been configured, instances are ready to be launched on the
private network.

This is done by selecting launch instance in horizon, an Availability Zone, instance name,
flavour (CPU, RAM and disk space) are selected alongside an image (base operating
system) seen in the following figure:



Impact of Cloud On Networking

[ 25 ]

The private network is then selected as the NIC for the instance under the Networking tab
as shown below:



Impact of Cloud On Networking

[ 26 ]

This will mean when the instance is launched it will use OpenStacks internal DHCP service
to pick an available ip address off of the allocated subnet range.

A security group should also be selected to govern the ACL rules of the instance, in this
instance the testsg1 security group is selected shown in the following figure:

Once the instance has been provisioned then a floating ip address can be associated from
the external network:

A floating ip address from the external network floating ip address pool is then selected



Impact of Cloud On Networking

[ 27 ]

and associated with the instance:

The floating ip addresses h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / N e t w o r k _ a d d r e s s _ t r a n s l a t i o n
OpenStack instances that are deployed on the internal public ip address to the external
networks floating ip address, which will allow the instance to be accessible from outside of
OpenStack.

OpenStack like AWS, as seen on instance creation, also utilises regions and availability
zones and compute hosts in Openstack (Hypervisors) can be assigned to different
availability zones.

An availability zone in OpenStack is just a virtual separation of compute resources. In
OpenStack, availability zone can be further segmented into host aggregates, it is important
to note that compute host can be assigned only to one availability zone, but can be a part of
multiple host aggregates in that same availability zone.

Nova uses a concept called nova scheduler rules which dictate the placement of instances
on compute hosts at provisioning time. A simple example of a nova scheduler rule is the
AvailabiltyZoneFilter filter which means that if a user selects an availability zone at
provisioning time, then the instance will land only on any of the compute instances
grouped under that availability zone.

Another example of AggregateInstanceExtraSpecsFilter filter that means that if a custom
flavour (CPU, RAM and Disk) is tagged with a key value pair and a host aggregate is
tagged with the same key value pair then if a user deploys with that flavour the
AggregateInstanceExtraSpecsFilter will place all instances on compute hosts under that host
aggregates.

https://en.wikipedia.org/wiki/Network_address_translation


Impact of Cloud On Networking

[ 28 ]

These host aggregates can be assigned to specific teams, which mean that teams can be
selective about what applications they share their compute with and can prevent noisy
neighbour syndrome. There is a wide array of filters that can be applied in OpenStack in all
sorts of orders to dictate instance scheduling utilising traditional cloud with large groups of
contended compute to more bespoke models where ring fencing and isolation of compute
resources is required.

An example of a host aggregates are shown below which groups. The example shows a host
aggregate called 1-Host-Aggregate, grouped under an Availability Zone called DC1
containing two compute hosts (hypervisors) which could be allocated to a particular team:

When an instance is provisioned in OpenStack the following high level steps are carried
out:

Nova compute service will issue a request for a new instance (virtual machine)
using the image selected from the glance images service
The nova request may then be queued by rabbitmq before being processed
(rabbitmq allows OpenStack to deal with multiple simultaneous provisioning
requests)
Once the request for a new instance is processed the request will write a new row
into the nova Galera database in the nova database
Nova will look at the nova scheduler rules defined on the OpenStack controllers
use those rules to place the instance on an available compute node (KVM
hypervisor)
If an available hypervisor is found that meets the nova scheduler rules then the
provisioning process will begin
Nova will check if image already exists on the matched hypervisor, if it doesn't
the image will be transferred from the hypervisor and booted from local disk
Once nova will issue a neutron request which will create a new vport in
OpenStack and map it to the neutron network
The shared vport will then be written to both the nova and neutron databases in



Impact of Cloud On Networking

[ 29 ]

Galera to correlate the instance with the network
Neutron will issue a DHCP request to assign the instance a private ip address
from an unallocated ip address from the subnet associated the selected network.
A private ip address will then be assigned and the image will start to start up on
the private network
The neutron metadata service will then be contacted to retrieve cloud init
information on boot which will assign a DNS entry to the instance from the
named server, if specified
Once cloud-init has run the instance will be ready to use
Floating ips can then be assigned to the instance to nat to external networks to
make the instances publically accessible

Like AWS OpenStack also offers a Load-Balancer-as-a-Service (LBaaS) option that allows
incoming requests to be evenly among designated instances using a virtual ip (VIP). The
features and functionality supported by LBaaS are dependent on the vendor plug-in that is
utilised.

Popular LBaaS plugins in OpenStack are:

Citrix Netscaler
F5
HaProxy
AVI networks

These load balancers all expose varying degrees of features to the Openstack LBaaS agent.
The main driver between using LBaaS on OpenStack is that it allows users to utilise LBaaS
as a broker to the load balancing solution, allowing users to use the OpenStack API or
configure the load balancer via the horizon GUI.

LBaaS allows load balancing to be set-up within a tenant network in OpenStack. Utilising
LBaaS means that if for any reason a user wishes to utilise a new load balancer vendor as
opposed to their incumbent one, as long as they are using OpenStack LBaaS this is made
much easier. As all calls or administration are being done via the LBaaS APIs or Horizon, no
changes would be required to the orchestration scripting required to provision and
administrate the load balancer and they wouldn't be tied into each vendors custom APIs
and the load balancing solution becomes a commodity.



Impact of Cloud On Networking

[ 30 ]

Summary
In this chapter we have covered some of the basic networking principles that are used in
today's modern data centres, with special focus on the AWS and OpenStack cloud
technologies which are two of the most popular solutions.

Having read this chapter you should now be familiar with the difference between spanning
tree and leaf spine network architectures, it should have demystified AWS networking and
you should now have a basic understanding of how private and public networks could be
configured in OpenStack.

In the forthcoming chapters we will build on these basic networking constructs and look at
how they can be programmatically controlled using configuration management tools and
used to automate network functions. But first we will focus on some of the software defined
networking controllers that can be used to extend the capability of OpenStack even further
than neutron in the private clouds and some of the feature set and benefits they bring to
ease the pain of managing network operations.



2
The Emergence of Software

Defined Networking
This chapter we will detail the emergence of open protocols that have helped aid software
defined networking (SDN) solutions. It will focus specifically on the Nuage VSP SDN
solution and look at some of the scaling benefits and features this provides over and above
the out the box experience from AWS and OpenStack. It will articulate why these
networking solutions have become a necessity for notoriously complex private cloud
networks, by simplifying networking using software constructs while aiding automation of
the network by providing a set of programmable API's and SDK's.

This chapter will focus on the following topics in detail:

Current SDN solutions on the market
How the Nuage SDN solution works
Integrating OpenStack with the Nuage VSP Platform
The Nuage VSP Software Defined Object Model
How the Nuage VSP can support Greenfield and Brownfield Projects
The Nuage VSP Multicast Support

Current SDN solutions on the market
Software Defined Networking (SDN) solutions from vendors are made up of a centralised
controller that is implemented to become the nerve centre of the network. SDN controllers
rely heavily on OVSDB and OpenFlow open protocols, integrating directly with switches to
route packets in the network as well as applying policy. As long as a switch can talk OVSDB
and OpenFlow then it can integrate with common SDN Controllers.



The Emergence of Software Defined Networking

[ 32 ]

There are now a wide variety of software defined networking controllers currently on the
market:

CISCO ACI
Nokia Nuage VSP
Juniper Contrail
VMware NSX
Open Daylight
MidoNet Midokura
Brocade

The aim of SDN controllers is to provide an easy to use solution for network functions, with
the SDN controllers abstracting the network functions from hardware devices and instead
exposing a set of APIs and graphical user interfaces (GUIs) that can be programmatically
altered to control standard network operations.

It is a little doubtful that the emergence of AWS and its easy to use and simplified network
functionalities have influenced network vendors to adapt their solutions. Vendors have
now adopted and implemented open protocols to allow centralised management of
network functions and the ability for end users to be able manage the whole network using
the SDN controller.

One of the main use cases for software defined networking is the private data centre space
and the emergence of OpenStack has meant that SDN solutions are now becoming more
common.

How The Nuage SDN solution works
One of the market leading SDN solutions is the Nuage SDN (VSP) platform which is
Nokia's SDN solution (formerly Alcatel Lucent).

The Nuage VSP platform is made up of three main components the VSD, VSC and VRS

Virtualized Service Directory (VSD): Is the policy engine for the overall
platform and provides a graphical user interface and exposes a restful API for
network engineers to use and interact with network functions.
Virtualized Service Controller (VSC): Is the SDN controller for Nuage and uses
OpenFlow and OVSDB management protocol to distribute switching and routing
information to hypervisors, bare metal servers or containers.
Virtual Routing and Switching (VRS): This is Nuage's customized version of



The Emergence of Software Defined Networking

[ 33 ]

Open vSwitch which is installed on compute nodes (hypervisors)

Nuage VSP can integrate with OpenStack, CloudStack and VMWare cloud platforms. The
Nuage VSP Platform creates an overlay network that has the ability to secure virtual
machines, bare metal servers and containers (Docker and Kubernetes) in an isolated tenant
network, so it is highly flexible. Nuage also supports multicast between tenant networks by
routing multicast traffic via hypervisors on the underlay and flooding it to specific instances
within a tenant network.

The Nuage VSPs SDN Controller (VSC) integrates with switches using OVSDB via
hardware VTEPs exposed by switches at the access layer of the network. VSCs are deployed
redundantly and communicate with each other with Multipath Border Gate Protocol (MP-
BGP) and program VXLAN encapsulation to the switches as they are hardware VTEP
aware.

The VSD component is set-up in an active cluster containing three VSD servers, which are
load balanced using HAProxy or any other viable load balancer solution. The HAProxy
load balancer provides a virtual ip (VIP) which load balances three VSDs servers in round-
robin mode.

The VSDs VIP exposes the graphical user interface (GUI) for the Nuage VSP platform and



The Emergence of Software Defined Networking

[ 34 ]

API entry point to programmatically control the overlay network using REST calls. Any
operation carried out on the Nuage VSD GUI initiates a REST API call to the VSD, so both
the GUI and the REST API are carrying out identical programmatic calls and all operations
are exposed via the REST API.

The Nuage VSD governs layer 3 domains, zones, subnets and ACL policies. The VSD
communicates policy information to the VSC using XMPP and the VSC uses OpenFlow to
push down flow information to a customised version of Open vSwitch (VRS) on the
compute hosts (hypervisor).

Nuage VSP allows bare metal servers to be connected to overlay networks too by pushing
down Open Flow Data to the Virtualised Services Gateway (VSG) and leaking routing
information into the overlay network.

An overview of the VSP platform protocol integration can be found below:



The Emergence of Software Defined Networking

[ 35 ]

Integrating OpenStack with the Nuage VSP
Platform
Traditionally private data centre networks can be very complex, so utilising vanilla
OpenStack neutron to meet all use cases may not provide all the features that are required
yet, although the features in neutron is maturing very quickly with every new OpenStack
release so they are as feature rich as dedicated SDN controllers.

Neutron lends itself to integration with SDN controllers by providing a REST API
extension, so SDN controllers can easily be used to extend the base networking functions
provided by neutron if required to provide a very rich set of features. The use of SDN
solutions have helped OpenStack to scale massively, as it moves the networking aspect of
OpenStack away from the centralised rabbitmq message queuing and instead requests are
moved to the dedicated SDN controllers. This means that one OpenStack cloud can
potentially scale the amount of compute instances that are supported horizontally, without
having to worry about bottlenecks or scaling issues associated with the current neutron
network architecture.

OpenStack is one of the most popular private cloud solutions and the Nuage VSP platform
integrates with OpenStack using the Nuage plug-in. The Nuage plug-in is installed on each
of the Highly Available (HA) OpenStack controllers. The Neutron ML2 and L3 agents are
both switched off on the Controllers in favor of a Nuage plug-in.



The Emergence of Software Defined Networking

[ 36 ]

Nuage integrates with OpenStack by setting up a net partition; one Nuage VSP can be
mapped to multiple instances of OpenStack via the use of net-partitions. Net partitions are a
way of telling the Nuage VSP platform which OpenStack instance to map it's subnets to and
wait for vport commands, which signify that OpenStack nova has provisioned a new
instance which needs to be governed by policy.

When Nuage VSP is integrated with OpenStack, OpenStack vendor installers need to either
support Nuage natively or the installer will need to be customized slightly to install the
Nuage plug-in on OpenStack Controllers. The Nuage OpenvSwitch (VRS) also needs to be
installed on each compute node (hypervisor) that is deployed.

The Nuage Plug-in integrates with the OpenStack Controllers and KVM Compute using the
following workflow:

When a Neutron command is issued to OpenStack, the Nuage plug-in uses REST API calls
to communicate with the Nuage VSD to say that a new network has been created or a new
vport on that network has been created, this is possible due to Neutrons SDN controller
pluggable REST API architecture.

The VSD then communicates with the VSC to push flow data using Extensible Messaging
and Presence Protocol (XMPP). The VSC (SDN Controller) then administers flow data
(OpenFlow) to the Nuage VRS (Open vSwitch) and the Nuage VRS is used to secure
OpenStack instances with firewall policies. Firewall policies can either be Security Groups



The Emergence of Software Defined Networking

[ 37 ]

or Nuage ACL rules depending if OpenStack managed mode or Nuage VSD managed
mode are selected.

Nuage or OpenStack Managed Networks
The Nuage OpenStack plugin can be used in two modes of operation to manage networks
that are provisioned in OpenStack.

VSD managed mode.
OpenStack managed mode

VSD-managed mode, allows Nuage to take control of OpenStack networks, the rich set of
features provided within the Nuage VSP platform are used as the default for all networking
functions. Network functions are provisioned directly via the VSD using the Nuage REST
API by the GUI or direct API calls.

OpenStack-managed mode requires no direct provisioning on the VSD, all commands are
issued via neutron, however, functionality is limited to the commands OpenStack Neutron
supports.

All networks that are created in Nuage are replicated in OpenStack in a one to one mapping
with the Nuage VSD being the master in VSD managed mode, while OpenStack Neutron is
the master of configuration in OpenStack-managed mode.

In OpenStack managed mode all ACL rules are governed by OpenStack Security Groups
while in VSD managed mode ACL rules are held instead in the Nuage VSD with security
groups disabled.

Nuage integrates with OpenStack by setting up a net partition; one Nuage VSP Platform
can be mapped to multiple instances of OpenStack via the use of net-partitions. Net
partitions are a way of mapping a Nuage layer 3 subnet and organization to a neutron
subnet.

A Nuage VSP platform with an organization called Company, whenever a subnet is created
under the organization, it is subsequently assigned a unique nuage_subnet_uuid on creation.
In order to map the organization and Nuage subnet to OpenStack Neutron the following
command is issued:

    neutron subnet-create "Subnet Application1" 10.102.144.0/24 --nuagenet
    nuage_subnet_uuid --net-partition "Company" --name "Subnet Application1"

Once a net partition has been established by the Nuage VSP Platform and OpenStack, the
firewall policies are secured at the compute host (hypervisor) using the Nuage VRS. The



The Emergence of Software Defined Networking

[ 38 ]

following workflow is triggered when a new instance is created on a Nuage managed
subnet:

An instance is added to an OpenStack network and subnet owned by the Nuage1.
VSP.
A placeholder Vport is created (VM id, MAC) on the VSD by the Nuage Plugin,2.
within the requested layer 3 domain.
Nova service creates the VM on the Hypervisor. This is detected by the VRS (VM3.
id, MAC).
The VRS queries the VSC, the VSC then queries the VSD in order to retrieve the4.
associated networking information from the placeholder vport.
The VSD matches the VM id, MAC against the vport it created and associates the5.
VM to the correct network services.
The policy is downloaded from the VSD through the VSC to the VRS using Open6.
Flow and the required flows are dynamically created.



The Emergence of Software Defined Networking

[ 39 ]

The Nuage VSP Software Defined Object Model
As Nuage creates the overlay network in software, it uses a simple object model to do this,
the Nuage VSP software defined object model provides a graphical hierarchy of the
network meaning that the structure of the overlay can be easily viewed and audited.

Object Model Overview:
Organisation: Governs all Layer 3 domains

Layer 3 domain Template: A layer 3 domain template is required before child layer 3
domains are created. The Layer 3 domain template is used to govern overarching default
policies that will be propagated to all child layer 3 domains. If a layer 3 domain template is
updated at template level then the update will be implemented on all Layer 3 domains that
have been created underneath it immediately.

Layer 3 domain: Can be used segment different environments so users cannot hop from
subnets deployed in a under a layer 3 Test domain to a layer 3 Production domain.

Zones: A zone segments firewall policies at application level, so each micros-service
application can have its own zone and associated ingress and egress policy per Layer 3
Domain.



The Emergence of Software Defined Networking

[ 40 ]

Layer 3 Subnet: This is where VMs or bare metal servers that are deployed through

In this example we see Subnet Application1 and Subnet Application2

The hierarchy in Nuage VSD is shown below is as follows:

One organisation has been created called Company.
Two layer 3 domains called Test and Production have been created underneath
the Company.
The Test layer 3 domain has a zone for Application1 and Application2 with 1
child subnet underneath the Application1 and Application2 zones.
The Production layer 3 domain has a zone for Application1 and Application2
with 1 child subnet underneath the Application1 only. Application2 zone does
not have a child subnet yet.



The Emergence of Software Defined Networking

[ 41 ]

For security and compliance purposes demonstrating to auditor's segmentation between
Development and Production environments is very important, traditionally Development
environments do not having the same stringent production controls applied. Isolation of
production applications is done using the convention of least privilege possible is normally
a security requirement to minimise access and reduce the probability of a security breach.

Nuage VSP Platform can set-up segregation between environments using its layer 3 domain
template construct, a domain template can be set-up with a default Deny All policy at
ingress and egress level. This is given the highest priority of all the policies and will
explicitly drop all packets no matter the protocol for inbound and outbound connections,
unless explicitly allowed by the policy for that specific application. The default Deny All is
the bottom policy on the list of ACL rules applied to an application.

The explicit drop on egress security policy domain template is shown below as the bottom
policy:



The Emergence of Software Defined Networking

[ 42 ]

While the contents of the egress security policy are shown below with the highest possible
priority:

Likewise the explicit drop on ingress is applied to the domain template as the bottom
policy:

While the explicit drop on the ingress security policy on the domain template is shown
below:



The Emergence of Software Defined Networking

[ 43 ]

The default ingress and egress polcies aplied to the Company L3 Domain Template are
shown below, which shows the policy applied to all the child layer 3 domains, in this
instance Production and Test.

The domain template Company L3 Domain Template is shown to be linked to the child
layer 3 domains Production and Test showing the inherited egress policy from the
domain template:

Likewise the domain template Company L3 Domain Template is shown to be linked to the
child layer 3 domains Production and Test showing the inherited ingress policy from the
domain template:



The Emergence of Software Defined Networking

[ 44 ]

It is important to note that as policies are pushed down to the VRS using OpenFlow, ACL
rules for ingress and egress in Nuage work on the principle that:

Egress: is a packet flowing from the VRS to the subnet or zone.
Ingress: is a packet flowing from the subnet or zone to the VRS.

As an example an Egress ACL rule will specify that any egress traffic coming from the VRS
from port 80 will be forwarded to the Subnet Application1:

In this example an Ingress ACL rule will specify that any ingress traffic can leave the Subnet Application1 on
port 80 will be forwarded to the VRS:



The Emergence of Software Defined Networking

[ 45 ]

If application owners work on the principle that their layer 3 subnet, where their
application is deployed on, is always specified in an ACL rule as either the source or
destination in their individual application policy then ACL rules for an application will only
exist in that self-contained policy. If this concept is adhered to it allows ACL rules for each
application to be encapsulated in separate policies, within a layer 3 domain, which in turn
means auditing them is much simpler for security teams. It also means that applications
support least privilege, meaning only necessary ports are opened so applications can
communicate with an explicit drop applied to anything outside those rules.

Two policies are shown for two applications Application1 and Application2 are shown
which have separate policies for Ingress and Egress, with the Default Ingress Policy
specifying the explicit drop all for any flows not explicitly allowed.

The ingress security policies are shown here:



The Emergence of Software Defined Networking

[ 46 ]

While the egress security policies are shown here:

Nuage VSP Platform Layer 3 Domain templates allow a second level of segmentation using
zones, so traditionally networks were split into three zones, where applications would be
deployed:

Front End
Business Logic
Backend

As micro-service architectures have grown to prominence, each applications profile doesn't
always fit into these three broad profiles. Sometimes applications can be both a Front End
application and contain Business Logic too, so where the micro-service application would
be placed in the traditional three tiered structure?

Instead of the Front End, Business Logic and Backend segregation policies can be applied at
zone level, meaning micro-segmentation of applications is possible between each subnet in
Nuage. So how does this translate to Nuage?

If an application wishes to talk to another application it will have an ACL rule that specifies
Subnet to Zone communication for east to west communication between applications sitting
on adjacent subnets in a layer 3 domain. Nuage allows this by allowing applications to talk
Subnet to Zone



The Emergence of Software Defined Networking

[ 47 ]

To allow this communication Application1 could have an ACL policy to allow
Application2 zone to allow traffic to flow into the subnet on port 22 allowing east to west
communication, so no matter how many different subnets are used then Application1 will
always be allowed to talk to any applications sitting under the Application2 zone:

In terms of security policies this allows development and security teams to understand
which applications are talking to each other and the ports they are using by reviewing the
application policy:



The Emergence of Software Defined Networking

[ 48 ]

How The Nuage VSP Platform can support
Greenfield and Brownfield Projects
Overlay networks are typically set-up as new network (greenfield) sites but a completely
new network in isolation is not useful, unless there is a planned big bang migration of all
applications from the legacy network to the new network in a single migration.

If instead a staged application migration is chosen, where only a percentage of applications
are migrated to the overlay, then the new overlay network will need to communicate with
the legacy network and require to operate in a brownfield set-up.

A brownfield set-up normally means applications are migrated in stages to the new
platform, as opposed to all in one go, which builds confidence in the new network and new
technology associated with that network. A staged deployment will typically involve
performance testing the migrated applications in the new network, prior to throttling live
traffic away from the incumbent legacy network to the migrated application in the new
overlay network.

A major requirement for a staged migration is connectivity back to the legacy network for
application dependencies that are still deployed on the legacy network, so migrated
applications can operate effectively.

The Nuage VSP Platform uses its Virtualised Service Gateway (VSG) to provide the
connectivity between the new overlay and legacy network. A pair of VSGs is connected
redundantly in virtual chassis mode and connects to interfaces on routers sitting in the
legacy network. The VSG performs a route table lookup based on the destination IP of a
packet coming in on its VLAN from the attached router interface, it then updates the
destination MAC with the next hop address and forward the packet on the corresponding



The Emergence of Software Defined Networking

[ 49 ]

VXLAN segment. All packets are routed from the legacy network to the VSG via an
underlay network. This bridges the new overlay network and the legacy network with
VXLAN is being terminated on the VSG.

The pair of active VSGs is shown below in the Nuage VSD:

The VSG allows communication with the legacy network by leaking routes to the overlay
network. Each VSG will receive and advertise IPv4 routes using a BGP session, this BGP
session will be established between the VSG, the VSC and leaf switch when utilising a leaf
spine topology using iBGP. The VSG must advertise its local system IP to legacy routers in
the legacy network and all routes received from the native network will then be
subsequently leaked from the native network via the underlay network into selected layer 3
domains in the overlay.

The set-up required to leak routes in the Nuage VSP Platform is the creation of a
GRThubDomain layer 3 domain. In this example host interfaces are connected into the
Front End, Business Logic and Back End routers in the legacy network:

The Nuage VSP platform then allows the newly created GRThubDomain to be associated



The Emergence of Software Defined Networking

[ 50 ]

with the Production or Test layer 3 domains by associating a leaking domain against them.

In the below example the GRThubDomain is associated with the Production layer 3
domain.

The leaking domain in the Nuage GUI is displayed using the following icon showing a
leaking Domain called GRThubDomain:

The Production domain with associated leaking domain is shown below in the Nuage GUI:

The association of a leaking domain allows the Nuage VSP Platform to leak routes into from
the legacy network through to the new overlay network, meaning applications in the
overlay network can communicate with applications in the legacy network, so long as they
have appropriate ingress and egress ACL policies specified.

The Test and Production layer 3 domains as explained before, have a Deny All for ingress
and egress as part of the Company L3 Domain Template. So although all routes are leaked
into the overlay they are dropped by the VRS unless explicitly stated otherwise.

The Nuage VSP platform has the ability to apply ACL rules to the routes leaked from the
external legacy network by utilising a concept called network macros. In the Nuage VSP
Platform a network macro is simply a fancy name for an external network range.

If an application, Application3 in this instance, resides in the legacy network and its routing
has already been exposed by the GRThubDomain leaking domain and leaked into the Test



The Emergence of Software Defined Networking

[ 51 ]

layer 3 domain, then a network macro can be set-up to describe the range required and
isolate connectivity to it using a Nuage ACL rule.

In this instance the network range 10.58.11.0/24 is where Application3 resides is part of the
Front End range on the GRThubdomain that is leaked into the overlay network. The
network macro for Application3 created and shown below:

An egress ACL policy can then be configured to allow Application1 to communicate with
Application3 by creating a network macro to subnet ACL rule, which allows the
Application3 network macro to connect to Subnet Application1 on port 8080.

The egress security policy to allow communication between the Application3 network
macro and Subnet Application 1 on port 8080 is shown below:

After creation the ACL list is updated to show the new network macro ACL:



The Emergence of Software Defined Networking

[ 52 ]

This allows the Nuage VSP to lock down policy and ACL rules on the legacy network with
the same granularity that is enforced if an application resided within the same layer 3
domain. Network macros can also be used to route between multiple cloud technologies as
well as different data centres so are a very powerful way of connecting networks and
controlling policy between them.

Multiple network macros can be grouped together into a network macro group, which
allows multiple ranges to be controlled by one ACL rule. These are then exploded out at
OpenFlow level on the VRS at the hypervisor. Nuage currently has a limit of 100 ACL rules
per vport, so only 100 ACL rules can currently be applied to a single instance (virtual
machine) so it is important to be careful when grouping network macros.

An example of a network macro group can be shown below and then the Front End
Services network macro group can be used in the egress ACL rule as opposed to specifying
individual policies for Application3 and Application4:

The egress security policy to allow port 8080 connection between the Front End Services
network macro and Subnet Application1:



The Emergence of Software Defined Networking

[ 53 ]

The applied ACL implementing the Front End Services network macro can be found below:

The Nuage VSP Multicast Support
The Nuage VSP Platform also has the ability to route multicast between layer 3 domains,
zones, subnets or vports in the overlay network by configuring dedicated vlans on compute
hosts (hypervisors) on the underlay with dedicated VLANs for multicast.



The Emergence of Software Defined Networking

[ 54 ]

Multicast is the distribution of packets from one or more sources to a receiver destination so
Nuage allows transmission and reception of broadcast and multicast traffic within a subnet
with either no restriction or in a controlled fashion.

In a controlled scenario multicast port channels are used to group multicast ranges, which
are then mapped to specific vports of an instance, this to access managed multicast streams
that are routed from the data center's underlay infrastructure.

The Nuage VSD is used to restrict which multicast groups vports, subnets or zones
multicast traffic can be flooded to. The multicast forwarding from the underlay switch uses
a specific VLAN or group of VLANs to forward on multicast to the Nuage VRS on the
hypervisor. The multicast streams are then replicated to the vports that are attached to
specific virtual machines, to transmit multicast into the overlay in a controlled fashion.

The Nuage VSP Platform uses multicast channel map objects as shown below, which are
associated with an organization, to dictate if multicast is flooded to the domain, zone,
subnets or vports of instances.

In the example below a Multicast Channel map is used to create multicast ranges for
Application2 which broadcasts multicast, this will route multicast from
SubnetApplication2, via the underlay VLAN on the hypervisor, to the Nuage VRS and
then flood it into the Subnet Application1.

The multicast channel map icon is shown below:

While the multicast channel map is applied to the Subnet Application1:



The Emergence of Software Defined Networking

[ 55 ]

Vports attached to instances can be used as either sender or receivers of multicast, if the
application attached to the vport requires multicast traffic to operate.

The Receive and Send Multicast Channel Map option on the vport in the Nuage VSP is
shown below:

Summary
In this chapter we have covered some of the advanced networking features provided by the
Nuage VSP SDN solution and also touched upon some of the other SDN solutions that are
available on the market. Having read this chapter you should now be familiar with the
Nuage SDN controller and understand the rich set of features an SDN controller can bring
to OpenStack and the private cloud.

Given the programmability SDN controllers, AWS and OpenStack solutions bring, we will
now shift focus and look at the cultural changes that are necessary in organisations to make
the most of these fantastic technologies. Implementing new technologies without changing
operational models is not enough, people and process are key to a successful DevOps
model.

The role of the network engineer is undergoing its biggest evolution in years so businesses
cannot simply implement new technology and expect faster delivery without dealing with
people and cultural issues. CTO's have a responsibility to set up their networking teams up
for success by implementing DevOps transformations that include network functions and
network teams also need to learn new skills such as coding to push forward automation
using grass root initiatives.



3
Bringing DevOps to Network

Operations
This chapter will switch the focus from technology to people and process. The DevOps
initiative is about breaking down silos between teams and changing company's operational
models. It will highlight methods to unblock IT staff and allow them to work in a more
productive fashion. It will primarily focus on the evolving role of the network engineer,
which is changing like the operations engineer before them, and the need for network
engineers to learn new skills to survive as the industry moves towards a completely
programmatically controlled data centre.

This chapter will look at two differing roles, that of the CTO / senior manager and engineer,
discussing at length some of the initiatives that can be utilised to facilitate the desired
cultural changes that are required to create a successful DevOps transformation for a whole
organisation or even just allow a single department improve their internal processes by
automating everything they do.

In this chapter the following topics will be covered:

Initiating a Change in Behaviour
Top Down DevOps initiatives for Networking Teams
Bottom Up DevOps Initiatives for Networking Teams

Initiating a Change in Behaviour
The networking OSI model contains 7 layers, but it is widely suggested that the OSI model
has an additional 8th layer called the user layer, which governs how end users integrate and
interact with the network. People are undoubtedly a harder beast to master and manage



Bringing DevOps to Network Operations

[ 57 ]

than technology so there is no one size fits all solution to the vast amount of people issues
that exist.

Initiating cultural change and changes in behaviour is the most difficult task an
organisation will face and that doesn't occur overnight. To change behavior there must first
be reasons and drivers to do so. It is important to first outline the benefits that changes will
bring to an organisation so managers can make business justifications for implementing any
change.

Reasons for Implementing DevOps
When implementing DevOps some myths are often perpetuated, such as DevOps only
works for start-ups, it won't bring any value to a particular team, or that it is simply a buzz
word and a fad.

The quantifiable benefits of DevOps initiatives are undeniable when done correctly. Some
of these benefits include improvements to the following:

Velocity of change
Mean time to resolve
Improved uptime
Increased number of deployments
Cross skilling between teams



Bringing DevOps to Network Operations

[ 58 ]

Removal of the bus factor of one

Any team in the IT industry would benefit from these improvements, so really teams can't
afford to not adopt DevOps, as it will undoubtedly improve their business functions.

By implementing a DevOps initiative it promotes repeatability, measurement and
automation. Implementing automation naturally improves the velocity of change and
increased number of deployments a team can do in any given day. Automation of the
deployment process allows teams to push fixes through to production quickly as well as
allowing an organisation to push new products and features to market.

A bi-product of automation is that the mean time to resolve will also become quicker, if
changes are automated they can be applied much more efficiently than if they were carried
out manually. Manual changes depend on the velocity of the engineer implementing the
change rather than an automated script that can be measured more accurately.

Implementing DevOps also means measuring and monitoring efficiently too, so having
effective monitoring is crucial, as it means the pace in which root-cause analysis can carried
out improves. Having effective monitoring helps to facilitate the process of mean time to
resolve, so when a production issue occurs, the source of the issue can be found quicker
than numerous engineers logging onto consoles and servers trying to debug issues.

Instead a well implemented monitoring system can provide a quick notification to localise
the source of the issue, silencing any resultant alarms that result from the initial root-cause,
allowing the issue to be highlighted and fixed efficiently.

The monitoring then hands over to the repeatable automation which can then push out the
localised fix to production. This process provides a highly accurate feedback loop, where
processes will improve daily. If alerts are missed they will ideally be built into the
monitoring system over time as part of the incident post mortem.

Effective monitoring and automation results in quicker mean time to resolve which makes for
happier customers and results in improved uptime of products. Utilising automation and
effective monitoring also means that all members of a team have access to see how
processes work and how fixes and new features are pushed out.

This will mean less of a reliance on key individuals removing the bus factor of one where a
key engineer needs to do the majority of tasks in the team as he is the most highly skilled
individual and has all of the system knowledge stored in his head.

Using a DevOps model means that the very highly skilled engineer can instead use their
talents to help cross skill other team members and create effective monitoring that can help
any team member carry out the root cause analysis they normally do manually. This builds
the talented engineers deep knowledge into the monitoring system, so the monitoring



Bringing DevOps to Network Operations

[ 59 ]

system as opposed to the talented engineer becomes the go to point of reference when an
issue first occurs, or ideally the monitoring system becomes the source of truth that alerts on
events to prevent customer facing issues. To improve cross skilling the talented engineer
should ideally help write automation too, so they are not the only member of the team that
can carry out specific tasks.

Reasons for Implementing DevOps for
Networking
So how do some of those DevOps benefits apply to traditional networking teams? Some of
the common complaints with silo'd networking teams today are the following:

Reactive
Slow often using ticketing systems to collaborate
Manual processes carried out using admin terminals
Lack of pre-production testing
Manual mistakes leading to network outages
Constantly in firefighting mode
Lack of automation in daily processes

Network teams like infrastructure teams before them are essentially used to working in
silo'd teams, interacting with other teams in large organisations via ticketing systems or
using sub-optimal processes. This is not a streamlined or optimised way of working, which
led to the DevOps initiative that sought to break down barriers between Development and
Operations staff, but its remit has since widened.

Networking does not seem to have been initially included in this DevOps movement yet,
but software delivery can only operate as fast as the slowest component. The slowest
component will eventually become the bottleneck or blocker of the entire delivery process.
That slowest component often becomes the star engineer in a silo'd team that can't process
enough tickets in a day manually to keep up with demand, thus becoming the bus factor of
one. If that engineer goes off sick then work is blocked, the company becomes too reliant
and cannot function efficiently without them.

If a team is not operating in the same way as the rest of the business then all other
departments will be slowed down as the silo'd department is not agile enough. Put simply,
the reason networking teams exist in most companies is to provide a service to
development teams. Development teams require networking to be deployed so they deliver
applications to production so the business can make money from those products.



Bringing DevOps to Network Operations

[ 60 ]

So networking changes to ACL policies, load balancing rules and provisioning of new
subnets for new applications can no longer be deemed acceptable if they take days, months
or even weeks. Networking has a direct impact on the velocity of change, mean time to resolve,
uptime as well as the number of deployments which are four of the key performance indicators
of a successful DevOps initiative. So networking needs to be included in a DevOps model
by companies otherwise all of these quantifiable benefits will become constrained.

Given the rapid way AWS, OpenStack and Software Defined Networking (SDN) can be
used to provision network functions in the private and public cloud, it is no longer
acceptable for network teams to not adapt their operational processes and learn new skills.
But the caveat is that the evolution of networking has been quick and they need the support
and time to do this.

If a cloud solution is implemented and the operational model does not change then no real
quantifiable benefits will be felt by the organisation. Cloud projects traditionally do not fail
because of technology, cloud projects fail because of the incumbent operational models that
hinder them from being a success. There is zero value to be had from building a brand new
OpenStack private cloud, with its open set of extensible APIs to manage compute,
networking and storage if a company doesn't change its operational model and allow end
users to use those APIs to self-service their requests.

If network engineers are still using the GUI to point and click and cut and paste then this
doesn't bring any real business value as the network engineer that cuts and pastes the
slowest is the bottleneck. The company may as well stick with their current processes as
implementing a private cloud solution with manual processes will not result in a speeding
up time to market or mean time to recover from failure.

However, cloud should not be used as an excuse to deride your internal network staff with,
as incumbent operational models in companies are typically not designed or set-up by
current staff, they are normally inherited. Moving to public cloud doesn't solve the problem
of the operational agility of a company's network team, it is a quick fix and bandage that
disguises the deeper rooted cultural challenges that exist.

However, smarter ways of working allied with use of automation, measurement and
monitoring can help network teams refine their internal processes and facilitate the
developers and operations staff that they work with daily. Cultural change can be initiated
in two different ways, grass roots bottom up initiatives coming from engineers or top down
management initiatives.



Bringing DevOps to Network Operations

[ 61 ]

Top Down DevOps Initiatives for Networking
Teams
Top down DevOps initiatives are when a CTO, Directors or Senior Manager have buy in
from the company to make changes to the operational model. These changes are required as
the incumbent operational model is deemed sub-optimal and not setup to deliver software
at the speed of competitors, which inherently delays new products or crucial fixes from
being delivered to market.

When doing DevOps transformations from a top down management level, it is imperative
that some ground work is done with the teams involved, if large changes are going to be
made to the operational model it can often cause unrest or stress to staff on the ground.

When implementing operational changes upper management need have to have the buy in
of the people on the ground as they will operate within that model daily. Having teams buy
in is a very important aspect otherwise the company will end up with an unhappy
workforce, which will mean the best staff will ultimately leave.

It is very important that upper management engage staff when implementing new
operational processes and deal with any concerns transparently from the outset, as opposed
to going for an offsite management meeting and coming back with an enforced plan which
is all too common a theme.

Management should survey the teams to understand how they operate on a daily basis,
what they like about the current processes and where their frustrations lie. The biggest
impediment to changing an operational model is misunderstanding the current operational
model. All initiatives should ideally be led and not enforced. So let's focus on some specific
top down initiatives that could be used to help.

Analyse Successful Teams
One approach would be for the management is to look at other teams within the
organisation that's processes are working well and are delivering in an incremental agile
fashion, if no other team in the organisation is working in this fashion then reach out to
other companies.

Ask if it would be possible to go and look at the way another company operate for a day.
Most companies will be happy enough to agree, as they enjoy showing their achievements,
so this shouldn't be difficult to set-up as long as they aren't a direct competitor. It is good to
attend some DevOps conferences and look at who is speaking, so approach the speakers
and they will undoubtedly be happy to help.



Bringing DevOps to Network Operations

[ 62 ]

Management teams should initially book a meeting with the high performing team and do a
question and answer session focusing on the following points, if it is an external vendor
then an introduction phone call can suffice.

Some important questions to ask in the initial meeting are the following:

Which processes normally work well?
What tools they actually use on a daily basis?
How is work assigned?
How do they track work?
What is the team structure?
How do other teams make requests to the team?
How is work prioritised?
How do they deal with interruptions?
How are meetings structured?

It is important not to re-invent the wheel, if a team in the organisation already has a proven
template that works well, then that team could also be invaluable in helping facilitate
cultural change within the networks team. It will be slightly more challenging if focus is put
on an external team as the evangelist as it opens up excuses such as it being easier for them
because of x, y and z in their company.

A good strategy, when utilising a local team in the organisation as the evangelist, is to
embed a network engineer in that team for a few weeks and task them with watching how
the other teams operate and reporting back their findings. This is imperative so the network
engineers on the ground understand the processes.

Flexibility is also important, as only some of the successful team's processes may be
applicable to a network team so don't expect two teams to work identically. The sum of
parts and personal individuals in the team really do mean that every team is different, so
focus on goals rather than the implementation of strict process. If teams achieve the same
outcomes in slightly different ways, then as long as work can be tracked and is visible to
management it shouldn't be an issue as long as it can be easily reported on.

Make sure pace is prioritised, but make sure teams are comfortable with new processes, so
empower the network team to choose how they want to work by engaging with the team.
However, before selecting any tooling it is important to start with process and agree on the
new operational model to prevent tooling driving processes, this is a common mistake in IT.



Bringing DevOps to Network Operations

[ 63 ]

Map Out Activity Diagrams
A good piece of advice is to use an activity diagram as a visual aid to understand how a
team's interactions work and where they can be improved.

A typical development activity diagram, with manual hand-off to a quality assurance team
is shown below:

Utilizing activity diagrams as a visual aid is important as it highlights sub-optimal business
process flows, in the example we see a development teams activity diagram. This process is
sub-optimal as it doesn't include the quality assurance team in the Test Locally and Peer
Review phases. Instead it has a formalised QA hand off phase, which is very late in the
development cycle, and a sub-optimal way of working as it promotes a development and
QA silo which is a DevOps anti-pattern.

A better approach would be to have QA engineers work on creating test tasks and creating



Bringing DevOps to Network Operations

[ 64 ]

automated tests while the development team works on coding tasks. This would allow the
development Peer Review process to have QA engineers review and test developer code
earlier in the development lifecycle and make sure every piece of code written has
appropriate test coverage before the code is checked-in.

Another short-coming in the process is that it does not cater for software bugs found by the
quality assurance team or in production by customers, so mapping these streams of work
into the activity diagram would also be useful to show all potential feedback loops.

If a feedback loop is missed in the overall activity diagram then it can cause a breakdown in
the process flow, so it is important to capture all permutations in the overarching flow that
could occur before mapping tooling to facilitate the process.

Each team should look at ways of shortening interactions to aid mean time to resolve and
improve the velocity of change at which work can flow through the overall process.

Management should book aside an afternoon with the development, infrastructure,
networking and test teams and map out what they believe the team processes to be in their
individual teams. Keep it high level, this should represent a simple activity swim-lane
utilising the start point where they accept work and the process the team goes through to
deliver that work.

Once each team has mapped out the initial approach, they should focus on optimising it
and removing the parts of the process they dislike and discuss ways the process could be
improved as a team. It may take many iterations before this is mapped out effectively, so
don't rush this process, it should be used as a learning experience for each team. The
finalised activity diagram will normally include management and technical functions
combined in an optimised way to show the overall process flow. Try not to bother using
Business Process Management (BPM) software at this stage a simple white board will
suffice to keep it simple and informal.

It is good practice to utilise two layers of an activity diagram, so the first layer can be a box
that simply says Peer Review which then references a nested activity diagrams outlining
what the teams peer review process is. Both need refined but the nested tier of business
processes should be dictated by the individual teams as these are specific to their needs so
it's important to leave teams the flexibility they need at this level.

It is important to split the two out tiers otherwise the overall top layer of activity diagram
will be too complex to extract any real value from, so try and minimise the complexity at
the top layer, as this will need to be integrated with other teams processes. The activity
doesn't need to contain team specific details such as how an internal team's peer review
process operates as this will always be subjective to that team; this should be included but
will be a nested layer activity that won't be shared.



Bringing DevOps to Network Operations

[ 65 ]

Another team should be able to look at a team's top layer activity diagram and understand
the process without explanation. It can sometimes be useful to first map out a high
performing teams top layer activity diagram to show how an integrated joined up business
process should look.

This will help teams that struggle a bit more with these concepts and allow them to use that
team's activity diagram as a guide. This can be used as a point of reference and show how
these teams have solved their cross team interaction issues and facilitated one or more
teams interacting without friction. The main aim of this exercise is to join up business
processes so they are not silo'd between teams so the planning and execution of work is as
integrated as possible for joined up initiatives.

Once each team has completed their individual activity diagram and optimised it to the
way the team wants, the second phase of the process can begin. This involves layering each
team's top layer of their activity diagrams together to create a joined up process.

Teams should use this layering exercise as an excuse to talk about sub-optimal processes
and how the overall business process should look end to end. Utilise this session to remove
perceived bottlenecks between teams, completely ignoring existing tools and the constraints
of current tools, this whole exercise should be focussing on process not tooling.

A good example of a sub-optimum process flow that is constrained by tooling would be a
stage on a top layer activity diagram that says raise ticket with ticketing system. This should be
broken down so work is people focused, what does the person requesting the change
actually require?

Developers are building features for products, so if that new feature needs a network
change, then networking should be treated as part of that feature change. So the time taken
for the network changes needs to be catered for as part of the planning and estimation for
that feature rather than a ticketed request that will hinder the velocity of change when it is
done reactively as an afterthought.

This is normally a very successful exercise when engagement is good, it is good to utilise a
senior engineer and manager from each team in the combined activity diagram layering
exercise with more junior engineers involved in each team included in the team specific
activity diagram exercise.



Bringing DevOps to Network Operations

[ 66 ]

Change the Network Teams Operational Model
The network team's operational model at the end of the activity diagram exercise should
ideally be fully integrated with the rest of the business. Once the new operational model has
been agreed with all teams, it is time to implement it.

It is important to note that because the teams on the ground created the operational model
and joined up activity diagram it should be signed off by all parties as the new business
process. So this removes the issue of an enforced model from management as those using it
have been involved in creating it. The operational model can be iterated and improved over
time but interactions shouldn't change greatly although new interaction points may be
added that have been initially missed. A master copy of the business process can then be
stored and updated so anyone new joining the company knows exactly how to interact with
other teams.

Short term it may seem the new approach is slowing down development estimates as
automation is not in place for network functions, so estimation for developer features
become higher when they require network changes.

This is often just a truer reflection of reality, as estimations didn't take into account network
changes and then they became blockers as they were tickets, but once reported it can be
optimised and improved over time.

Once the overall activity diagram has been merged together and agreed with all the teams,
it is important to remember if the processes are properly optimised, there should not be
pages and pages of high level operations on the diagram. If the interactions are too verbose
it will take any change hours and hours to traverse each of the steps on the activity
diagram.

The activity diagram below shows a joined up business process, where work is either
defined from a single roadmap producing user stories for all teams. New user stories, which
are units of work, are then estimated out by cross functional teams including developers,
infrastructure, quality assurance and network engineers. Each team will review the user
story and working out which cross functional tasks are involved to deliver the feature.

The user story then becomes part of the sprint with the cross functional teams working on
the user story together making sure it has everything it needs to work prior to check-in.
After peer review the feature or change is then handed off to the automated processes to
deliver the code, infrastructure, network changes to production.

The checked-in feature then flows through unit testing, quality assurance, integration,
performance testing quality gates which will include any new tests that were written by the
quality assurance team prior to check-in. Once every stage is passed the automation is



Bringing DevOps to Network Operations

[ 67 ]

invoked by a button press to push the changes to production. Each environment has the
same network changes applied so network changes are made first on test environments
prior to production. This relies on treating networking as code, meaning automated
network processes need to be created so the network team can be as agile as the developers.

Once the agreed operational model is mapped out only then should the DevOps
transformation begin. This will involve selecting the best of breed tools at every stage to
deliver the desired outcome with the focus on the following benefits:

Velocity of change
Mean time to resolve
Improved uptime
Increased number of deployments
Cross skilling between teams
Removal of the bus factor of one

All business processes will be different for each company so it is important to engage each
department and have the buy in from all managers to make this activity a success.



Bringing DevOps to Network Operations

[ 68 ]

Changing the Network Teams Behaviour
Once a new operational model has been established in the business, it is important to help
prevent the network team from becoming the bottleneck in a DevOps focused continuous
delivery model.

Traditionally network engineers will be used to carrying out command line operations and
logging into admin consoles on network devices to make changes. Infrastructure engineers
adjusted to automation as they already had scripting experience in bash and PowerShell
coupled with a firm grounding in Linux or Windows operating systems, so transitioning to
configuration management tooling was not a huge step.

However, it may be more difficult to persuade network engineers from making that same
transition initially. Moving network engineers towards coding against API's and adopting
configuration management tools may initially appear daunting, as it is a higher barrier to
entry, but having an experienced automation engineer on hand, can help network engineers
make this transition.

It is important to be patient, so try to change this behaviour gradually by setting some
automation initiatives for the network team in their objectives. This will encourage the
correct behaviour and try and incentivise it too. It may be useful to start off automation
initiatives by offering training or purchasing particular coding books for teams.

It may also be useful to hold an initial automation hack day, this will give network
engineers a day away from their day jobs and time to attempt to automate a small process,
that is repeated everyday by network engineers. If possible make this a mandatory exercise,
so that it is adopted and make other teams available to cover for the network team so they
aren't distracted. This is a good way of seeing which members of the network team may be
open to evangelising DevOps and automation. If any particular individual stands out, then
work with them to help push automation initiatives forward to the rest of the team by
making them the champion for automation.

Establishing an internal DevOps meet-up where teams present back their automation
achievements is also a good way of promoting automation in network teams and this
keeping the momentum going. Encourage each team across the business to present back
interesting things they have achieved each quarter and incentivise this too by allowing each
team time off from their day job to attend if they participate. This leads to a sense of
community and illustrates to teams they are part of bigger movement that is bringing real
cost benefits to the business. This also helps to focus teams on the common goal of making
the company better and breaks down barriers between teams in the process.

One approach that should be avoided at all costs is having other teams write all the network
automation for networking teams, ideally it should be the networking team that evolve and



Bringing DevOps to Network Operations

[ 69 ]

adopt automation, so giving the network team a sense of ownership over the network
automation is very important. This though requires full buy in from networking teams and
discipline not to revert back to manual tasks at any point even if issues occur.

To ease the transition offer to put an automation engineer into the network team from
infrastructure or development but this should only be a temporary measure. It is important
to select an automation engineer that is respected by the network team and knowledgeable
in networking, as no one should ever attempt to automate something that they cannot
operate by hand, so having someone well versed in networking to help with network
automation is crucial, as they will be training the network team so have to be respected. If
an automation engineer is assigned to the network team and isn't knowledgeable or
respected, then the initiative will likely fail, so choose wisely.

It is important to accept at an early stage, that this transition towards DevOps and
automation may not be for everyone, so every network engineer will be able to make the
journey. It is all about the network team seizing the opportunity and showing initiative and
willingness to pick up and learn new skills. It is important to stamp out disruptive
behaviour early on which may be a bad influence on the team. It is fine to have for people to
have a cynical skepticism at first, but not attempting to change or build new skills shouldn't
be tolerated, as it will disrupt the team dynamic and this should be monitored so it doesn't
cause automation initiatives to fail or stall, just because individuals are proving to be
blockers or being disruptive.

Bottom-Up DevOps Initiatives for
Networking Teams
Bottom up DevOps initiatives are when an engineer, team leads or lower management
don't necessarily have buy in from the company to make changes to the operational model.
However, they realise that although changes can't be made to the overall incumbent
operational model, they can try and facilitate positive changes using DevOps philosophies
within their team that can help the team perform better and make their productivity more
efficient.

When implementing DevOps initiatives from a bottom up initiative, it is much more
difficult and frustrating at times as some individuals or teams may not be willing to change
the way they work and operate as they don't have to. But it is important not to become
disheartened and do the best possible job for the business.

It is still possible to eventually convince upper management to implement a DevOps
initiative using grass roots initiatives to prove the process brings real business benefits.



Bringing DevOps to Network Operations

[ 70 ]

Evangelise DevOps in the Networking Team
It is important to try and stay positive at all times, working on a bottom up initiative can be
tiring but it is important to roll with the punches and not take things too personally. Always
remain positive and try to focus on evangelizing the benefits associated with DevOps
processes and positive behavior first within your own team. The first challenge is to
convince your own team of the merits of adopting a DevOps approach before prior to even
attempting to convince other teams in the business.

A good way of doing this is by showing the benefits that DevOps approach has made to
other companies such as Google, Facebook and Etsy focusing on what they have done in the
networking space. A pushback from individuals may be the fact that these companies are
unicorns and DevOps has only worked for companies for this reason, so be prepared to be
challenged. Seek out initiatives that have been implemented by these companies that the
networking team could adopt and are actually applicable to your company.

In order to facilitate an environment of change, work out your colleagues drivers are, what
motivates them? Try tailor the sell to individuals motivations, the sell to an engineer or
manager may be completely different, an engineer on the ground may be motivated by the
following:

Doing more interesting work
Help automate menial daily tasks
Build new skills and a better CV
Learn sought after configuration management skills
Learn how to code

A manager on the other hand will probably be more motivated by offering to measure KPI's
that make his team look better such as:

Time taken to implement changes
Mean time to resolve failures
Improved uptime of the network

Another way to promote engagement is to invite your networking team to DevOps meet-
ups arranged by forward thinking networking vendors. They may be amazed that most
networking and load balancing vendors are now actively promoting automation and
DevOps and not yet be aware of this. Some of the new innovations in this space may be
enough to change their opinions and make them interested in picking up some of the new
approaches so they can keep pace with the industry.



Bringing DevOps to Network Operations

[ 71 ]

Seek Sponsorship from a respected Manager or
Engineer
After making the network team aware of the DevOps initiatives it is important to take this
to the next stage. Seek out a respected manager or senior engineer in the networking team
that may be open to trying out DevOps and automation. It is important to sell this person
the dream, state how you are passionate about implementing some changes to help the
team, and that you are keen to utilize some proven best practices that have worked well for
other successful companies.

It is important to be humble, try not preach from the alter of DevOps which can be very off
putting, make reasonable arguments and justify them avoiding sweeping statements. Try
not to appear to be trying to undermine the manager or senior engineer, instead ask for
their help to achieve the goal by seeking their approval to back the initiative or idea. A
charm offensive may be necessary at this stage to convince the manager or engineer that it's
a good idea but gradually building up to the request can help otherwise it may appear
insincere if it comes out the blue. Potentially test the water over lunch or drinks and gauge
if it is something they would be interested in, there is little point trying to convince people
that are stubborn as they probably will not budge unless the initiative comes from above.

Once you have found the courage to broach the subject it is now time to put forward
numerous suggestions on how the team could work differently. Ask for the opportunity to
try this out on a small scale and offer to lead the initiative and ask for their support and
backing. It is likely that the manager or senior engineer will be impressed at your initiative
and allow you to run with the idea but they may choose the initiative you implement so
never suggest anything you can't achieve you may only get one opportunity at this so it is
important to make a good impression.

Try and focus on a small task to start with that's typically a pain point and attempt to
automate it. Anyone can write an automation script but try and make the automation
process easy to use, find what the team likes in the current process and try and incorporate
aspects of it. For example if they often see the output from a command line displayed in a
particular way, write the automation script so that it still displays the same output, so the
process is not completely alien to them.

Try not to hardcode values into scripts and extract them into a configuration files to make
the automation more flexible so it could potentially be used again in different ways. By
showing engineers the flexibility of automation it will encourage them to use it more, show
other in the teams how you wrote the automation and ways they could adapt it to apply it
to other activities. If this is done wisely then automation will be adopted by enthusiastic
members of the team and you will gain enough momentum to impress the sponsor enough
to take it forward onto more complex tasks.



Bringing DevOps to Network Operations

[ 72 ]

Automate a Complex Problem with the
Networking team
The next stage of the process after building confidence by automating small repeatable
tasks, is to take on a more complex problem, this can be used to cement the use of
automation within the networking team going forward.

This part of the process is about empowering others to take charge, and lead automation
initiatives themselves in the future, so will be more time consuming. It is imperative that the
more difficult to work with engineers that may have been deliberately avoided while
building out the initial automation is involved this time.

These engineers more than likely have not been involved in automation at all at this stage.
This probably means the most certified person in the team and alpha of the team, nobody
said it was going to be easy, but it will be worth it in the long run convincing the biggest
skeptics of the merits of DevOps and automation. At this stage automation within the
network team should have enough credibility and momentum to broach the subject citing
successful use cases.

It's easier to involve all difficult individuals in the process rather than presenting ideas back
to them at the end of the process. Difficult senior engineers or managers are less likely to
shoot down your ideas in front of your peers if they are involved in the creation of the
process and have contributed in some way.

Try and be respectful, even if you do not agree with their viewpoints, but don't back down
if you believe you are correct or give up. Make arguments fact based and non-emotive,
write down pros and cons and document any concerns without ignoring them, you have to
be willing to compromise but not to the point of devaluing the solution.

There may actually be genuine risks involved that need addressed so valid points should
not be glossed over or ignored. Where possible seek backup from your sponsor if you are
not sure on some of the points or feel individuals are being unreasonable.

When implementing the complex automation task work as a team, not as an individual, this
is a learning experience for others as well as yourself. Try and teach the network team a
configuration management tool, they may just be scared try out new things, so go with a
gentle approach. Potentially stopping at times to try out some online tutorials to familiarize
everyone with the tool and try out various approaches to solve problems in the easiest way
possible.

Try and show the network engineers how easy it is to use configuration management tools
and the benefits. Don't use complicated configuration management tools as it may put them



Bringing DevOps to Network Operations

[ 73 ]

off. The majority of network engineers can't currently code, something that will potentially
change in the coming years, as stated before infrastructure engineers at least had a
grounding in bash or PowerShell to help get started, so pick tooling that they like and give
them options, try not to enforce tools they are not comfortable with on them. When utilizing
automation one of the key concerns for network engineers, is peer review as they have a
natural distrust that the automation has worked. Try and build in gated processes to
address these concerns, automation doesn't mean any peer review so create a light-weight
process to assist. Make the automation easy to review by utilizing source control to show
diffs and educate the network engineers on how to do this.

Coding can be a scary prospect initially, so propose to do some team exercises each week on
a coding or configuration management task. Work on it as a team, this makes it less
threatening and it is important to listen to feedback. If the consensus is that something isn't
working well or isn't of benefit then look at alternate ways to achieve the same goal that
works for the whole team. Before releasing any new automated process test it in pre-
production environment, alongside an experienced engineer and have them peer review it
and try to make it fail against numerous test cases. There is only one opportunity to make a
first impression, with a new process, so make sure it is a successful one.

Try and setup knowledge sharing session between the team to discuss the automation and
make sure everyone knows how to do operations manually too, so they can easily debug
any future issues or extend or amend the automation. Make sure output and logging is clear
to all users as they will all need to support the automation when it is used in production.

Summary
In this chapter we have covered practical initiatives, that when combined, will allow IT staff
to implement successful DevOps models in their organisation. Rather than just focussing on
departmental issues, it has promoted the using a set of practical strategies to change the day
to day operational models that constrain teams. It also focuses on the need for network
engineers to learn new skills and techniques in order to make the most of a new operational
model and not become the bottleneck for delivery.

This chapter has provided practical real world examples that could help senior managers
and engineers to improve their own companies, emphasising collaboration between teams
and showing that networking departments now required to automate all network
operations to deliver at the pace expected by businesses.

In the coming chapters we will look at ways of applying automation to networking and
concentrate on configuration management tools such as Ansible. These configuration
management tools can be used to increase the pace that network engineers can implement



Bringing DevOps to Network Operations

[ 74 ]

changes as well as making sure all network changes that are made are done in the same
way and are less error prone.



4
Configuring Network Devices

Using Ansible
This chapter will focus on some of the most popular networking vendors in the market
today namely Cisco, Juniper and Arista and look at how each of these market leading
vendors have developed their own proprietary operating system to control network
operations. The aim of this book is not to discuss which network vendors solution is better,
but instead look at ways network operators can utilise configuration management tooling
today to manage network devices, now that network vendors have created API's and SDKs
to programmatically control the network.

Once the basics of each operating system have been established we will then shift focus to
the hugely popular open source configuration management tool from RedHat called
Ansible. It will look at ways it can be used to configure network devices programmatically
and assist with network operations. This chapter will show practical configuration
management processes that can be used to manage network devices.

In this chapter the following topics will be covered:

Network Vendors Operating Systems
Introduction to Ansible
Ansible Modules Currently Available For Network Automation
Configuration Management Processes To Manage Network Devices



Configuring Network Devices Using Ansible

[ 76 ]

Network Vendors Operating Systems
Market leading networking vendors such as Cisco, Juniper and Arista have all developed
their own operating systems that allow network operators to issue a series of commands to
network devices via a command line interface CLI.

Each vendor's CLI is run from their bespoke operating systems:

Cisco IOS and NXOS
Juniper Junos
Arista EOS

All of these operating systems have meant that it has become easier to programmatically
control switches, routers and security devices provided by these vendors, as they seek to
simplify operating network devices.

The rise of DevOps in industry has also meant that it is no longer acceptable to not provide
programmatic APIs or an SDK to aid automation, with networking vendors now
integrating with configuration management tooling such as Puppet, Chef and Ansible to
plug into DevOps tool chains.

Cisco IOS and NXOS operating system
The Cisco IOS operating system when released, was the first of its kind, providing a set of
command lines that network operators could use to mutate the state of the network.
However it still had its challenges, it had a monotholic architecture which meant that all
processes shared the same memory space, with no protection between parallel processes, so
it didn't align itself well to parallel updates but at the time it was the clear market leader.
This changed network operations and meant that network engineers would each
individually log onto network switches and routers to make updates using its fully featured
command line interface CLI.

At the time this greatly reduced the complexity of network operations and Cisco
standardised the way the networking industry carried out network operations in a data
center. Network operators would log onto appliances and run an industry standard series
of command lines to make changes to routers or switches and Cisco ran certification
programmes to teach administrators how to operate the equipment and learn all the
commands.

Today with efficiency and cost reductions key to company's businesses surviving, and a
shift towards more agile processes, this model in the modern data centres has an obvious



Configuring Network Devices Using Ansible

[ 77 ]

scaling issue with x amount of network engineers required per network device. The
emergence of private clouds has meant that the number of network devices each network
engineer needs to manage has grown dramatically so automation has become a key to
managing the growing amount of devices in a consistent way.

Cisco as the networking market has evolved in recent years have since developed a new
operating system called NXOS which has allowed itself to integrate with open source
technologies lend itself to automation. The NXOS operating system is deployed with all
new Nexus switches and routers and this operating system has shifted Cisco towards open
and modular standards by integrating with open protocols such as BGP, EVNP and
VXLAN and the appliances can even run LXC containers.

Cisco have also provided a set of REST API's that allows network operators to run native
Linux and bash shells to carry out regular administration commands server side. In a world
where AWS and OpenStack programmatic APIs are available to mutate network
infrastructure, networking vendors needed to adapt to survive or they risked being left
behind so Cisco have made their own switches and routers as easy to configure and operate
as the virtual appliances.

The NXOS operating system allows the use the RedHat enterprise Linux rpm package
manager to control software updates. This means that software updates can be done on the
NXOS in an industry standard way, the same as patching a Linux guest operating system
would be carried out by an infrastructure systems administrator. Consequently, Cisco
network devices no longer feel like alien appliances to Linux systems administrator and
more like native Linux to end users which has undoubtedly made them simpler to
administrate.

The Cisco NXOS operating system means that the speed that network changes can be
pushed increases, as operations staff can use their own tool chains and configuration
management tools to automate updates. The NXOS operating system has become less
vendor specific therefore lowering the barrier to entry to use networking products and
automation of its product suits have become easier.

Juniper Junos operating system
The Juniper Junos operating systems driver is programmatically controlled network
operations, Junipers Junos operating system was created to provide a command line
interface CLI that users can execute to retrieve facts about the running system. The Junos
operating system is based on a clearly defined hierarchical model as opposed to using a
series of unrelated configuration files. The hierarchical model also comes complete with
operational and configuration modes of operation.



Configuring Network Devices Using Ansible

[ 78 ]

Intuitively operational mode is used to upgrade the operating system, monitor the system
and also check the status of juniper devices. Configuration mode on the other hands allows
network operators to configure user access and security, interfaces, hardware and set the
protocols should be used on the device which gives a clear separation of roles between
those installing the system and those operating it. The Junos operating system supports all
open protocols such as BGP, VXLAN and EVPN as well as in built roll forward and roll
back capability.

Juniper provide a Python library called PyEZ for the Junos operating system as well as a
PowerShell option for Windows administrators that utilises wrapped PowerShell wrapped
in Python. The Python library PyEZ can retrieve any configuration information using tables
and views that allow network operators to script against run time information provided by
the Junos operating system. Once a table items have been extracted by utilising a python
script using a get() method, tables can subsequently be treated as a Python dictionary and
iterated, which allows users to carry out complex scripting if required to automate all
network operations. The Junos PYEZ library is also fully extensible and network operators
can add functionality they deem appropriate using its widget system.

Arista EOS operating system
The Arista EOS operating system is based on open standards to promote automation of
network functions. It relies upon a centralised CloudVision eXchange (CVX) and the CVX
servers hold the centralised state of the network. The EOS operating system separates the
functional control on every switch using Sysdb, which is the Arista EOS operating systems
database. The Arista Sysdb is an in-memory database running in user space and contains
the complete state of the Arista switch. Sysdb is maintained in memory on the device so if
an Arista switch is either restarted or powered down all information for that switch is lost.

The CVX server acts as an aggregator all states from every switch's Sysdb into a network-
wide database depending on what services are enabled on the cluster of CVX servers. When
state changes in Sysdb on a switch then the change is pushed to the CVX centralised
database, which then updates its configuration and notifies agents running on CVX of the
change.

The Arista EOS operating system supports modern open protocols such as MLAG, ECMP,
BGP and VXLAN. It utilises overlay technologies such as VXLAN allowing applications to
be deployed and remain portable in the modern data center. Arista heavily promotes the
use of the leaf spine architecture with ECMP, which allows a scale out model to be
implemented; this aligns itself to modern cloud solutions such as OpenStack and makes it
agnostic to SDN controller solutions.



Configuring Network Devices Using Ansible

[ 79 ]

The Arista EOS operating system is a Linux based operating system designed to be
programmatically controlled. The main driver for the EOS operating system is to allow
network operators to carry out network operations well-structured set of APIs including the
eAPI, CLI command as well as Python, Ruby and GO libraries available as part of its SDK
portfolio.

The EOS operating system also allows smart system upgrade (SSU) to allow scale out of
Arista appliances with live patching and upgrades also made less difficult, this helps to
support businesses 99.99% uptime targets. Switches can now be racked and cabled in the
data center by data center operations teams then handed over to Arista's zero touch
provisioning (ZTP) process that automates the initialisation of switches and zero touch
replacement (ZTR) allows switches to be replaced in the data center.

The Arista EOS solution is also packaged with its CloudVision product which can be used
to automate networking workflow tasks through the portal if users require a visual view of
switches and routers and CloudVision allows integration with SDN controllers using
OVSDB, eAPI or OpenFlow. Like Cisco and Juniper the EOS API lends due to it having
multiple SDK options this Arista products can be easily managed by configuration
management tools such as Puppet, Chef and Ansible so that no network operation is done
manually.

Introduction to Ansible
Ansible is primarily a push based configuration management tool that uses a single
Ansible Control Host and can connect to multiple Linux guest operating systems via SSH
to configure them and recently added WINRM support so it can now also configure
Windows guests in the same way as Linux based operating systems. As Ansible can connect
to multiple servers simultaneously it aids operators by allowing them to carry out uniform
operations across multiple Linux or Windows servers at the same time. This allows Ansible
to help simplify the automation of repeatable tasks by defining them in Ansible so they can
be consistently executed against target servers. Ansible can also be used as a centralised
orchestration tool that can connect to API endpoints and sequence API operations.

Below we can see an example of the way an Ansible Control Host connects to servers or acts
as a centralised orchestration tool:



Configuring Network Devices Using Ansible

[ 80 ]

Every operation Ansible carries out should be idempotent as a standard, meaning that if the
desired state is already configured on a server, then Ansible will check the intended state
from a playbook or role and not take any action if a server is already in the correct state,
only if the state is different from what is specified in a playbook or role will the operation be
executed to mutate the state of the server.

Ansible is a Python based configuration management tool that controls servers from a
Linux based Control Host, using YAML files to define and describe desired state. Ansible is
packaged with a rich set of extensible modules which are primarily written in Python, but
can also be written in any language that a user wishes. Ansible modules allow Python
SDK's or REST API's to be wrapped in Ansible's plug-in boilerplate and then utilised from
Ansible roles or playbooks in an easy to use architecture multiple times. Before going into
more detailed examples it is important to understand some of the Ansible terminology.

Ansible Directory Structure
Ansible is made up of a series of YAML files that are laid out in a customisable directory
structure.

In this customised structure the Ansible Controller Node has the following directory
structure:

Inventories folder to hold the Ansible inventory
Library folder to hold any custom python plug-ins
Playbooks folder to hold all playbooks
Roles folder to hold all the Ansible roles



Configuring Network Devices Using Ansible

[ 81 ]

This directory structure is shown below:

This provides logical groupings of all Ansible components, which will be useful as the
amount of playbooks or roles grow in size. It is best practice to version the Ansible folder
structure in a source control management system such as GIT.

Ansible Inventory
An Ansible inventory file is simply a set of DNS hostnames or IP addresses defined in a
YAML file. This allows Ansible to connect to those target hosts and execute specific
commands on servers.

Ansible allows users to use inventory files to group servers into particular types or use
cases. For example in networking terms, when utilising Ansible to set-up a leaf spine
architecture, a network operator could have a group for leaf switches and another for the
spine switches. This is because a different set of run-book commands would be required to
configure each, so limits can be applied upon execution to only execute a command against
a small subset of servers limited to one particular group.

An example of an inventory file defining leaf and spine switches can be found below
showing the definition of two groups in the inventory file, one for leaf switches called leaf
and one for spine switches called spine containing all the DNS entries for the switches:



Configuring Network Devices Using Ansible

[ 82 ]

The same inventory can be described in an abbreviated format:

Ansible modules
An Ansible module is typically written in Python or can be written in any other
programming language. An Ansible modules code defines a set of operations to add or
remove functionality from a guest operating system or alternately execute a command
against an API if it is being used for orchestration. Ansible modules can be used to wrap
either a simple command line, API call or any other operation a user desires that can be
coded programmatically. Modules are set-up so they can be re-used in multiple playbooks
or roles so they promote code re-use and standardization of operations.

Code specified in an Ansible module is wrapped in Ansibles module boilerplate, which
structures the layout of the module. The boilerplate promotes a set of standards, so each
module is idempotent by design, meaning that the code will first detect the state of the
system and then determine if a change in state is required or not before executing the
operation.

When a state change is executed in Ansible it is donated by a yellow output on the console.
If no action has been taken it will display a green colour to state that the operation ran
successfully but no state change was made, while red console output indicates a failure on
the module.

Ansible modules expose a set of command line arguments for the module that can either be
mandatory or optional and can have default values. Modules that adhere to the Ansible
standard are created with a state variable that contains present or absent, as one of the
command line variables. A module when set to present will add the feature that has been
specified by the playbook and when set to absent will remove the specified feature. All
modules will typically have code to deal with both of these use cases.

Once an Ansible module has been written it is placed in the library folder, which means it is
available as a library to the Python interpreter and the code can then be utilised by defining
it in an Ansible playbook or role. Ansible comes with a set of pre-packaged core and extras
modules that can all be accessed by writing some YAML to describe the operation that is



Configuring Network Devices Using Ansible

[ 83 ]

required, all modules are packaged with documentation that are part of the boilerplate and
available on the Ansible website.

Core modules are maintained by the Ansible core team in joint initiatives with software
vendors and are generally of the high quality. Extras modules can also be of a good quality
but are not maintained by vendors and sometimes maintained by users that have
committed back the modules to Ansible to help out the open source community.

A simple core yum module donated by yum: can be seen below, that takes two command
line variables name of the rpm to install and the state which determines whether to install or
remove it from the target server:

Ansible roles
Roles are a further level of abstraction in Ansible and also defined using YAML files. Roles
can be called from playbooks, this aims to simplify playbooks as much as possible. As
increased sets of functionality are added to playbooks, they can become cluttered and
difficult to maintain from a single file. So roles allow operators to create minimal playbooks
that then pull all the information from the Ansible directory structure which then
determines the configuration steps that need to execute on servers or be run locally.

Ansible roles attempt to strip out repeatable parts of playbooks and group them into roles
so they can be used by multiple playbooks if required. Roles are groupings to determine
what the server profile should actually be, rather than just focusing on multiple ad-hoc
instructions, so a playbook could be called spine.yml and the playbook could contain a set of
modular roles used to define the particular spine switches run-list to build the spine switch
on each target server specified in the Ansible inventory. Some of these roles should be
modular enough that they can be reused when creating leaf switches.

Ansible Playbooks
An Ansible playbook is a YAML file that dictates the run-list to carry out on a particular set
of hosts that are defined in an inventory file. A playbook specifies an ordered set of
instructions to execute commands locally from Ansible Controller Node or on a target set
of hosts specified in the Ansible inventory file.



Configuring Network Devices Using Ansible

[ 84 ]

An Ansible playbook can be used to create a run-list that call out to modules or specific
roles which dictate the operations that should be executed against a server.

In this example we see a playbook targeting the spine hosts in the inventory file and
executing multiple roles to set-up the spine servers:

An alternate playbook could not use roles at all, and call Ansible yum core module directly
to install the apache httpd-2.2.29 yum package on the inventory group called server:

Playbooks can also specify while conditions to dictate if an action in the playbook should be
executed or not based on the output of a proceeding operation and the register command is
used to store JSON output from a command that can then be utilised in playbooks or roles
by subsequent tasks.

Ansible playbooks from version 2.x onwards can now utilize block recue functionality too.
So if an operation is nested in a block command fails then the rescue section of the playbook
is invoked. This can be useful for doing cleanup of failed actions to make playbooks more
robust.

The usefulness of a block rescue operation shouldn't be underestimated, when requiring to



Configuring Network Devices Using Ansible

[ 85 ]

copy a large database dmp file to a back-up location this operation could sometimes be error
prone due to the volume of data being copied. So if the disk space is too low on the target
directory, then that operation could fail half way through leaving only part of the file
copied and the server in an unusable state and the server could run out of disk space. So a
recue command could be used to clean-up the copied file immediately so the server isn't left
in a bad state if the copy operation fails. After the rescue command has completed the
playbook will exit with an error but remain in its original state.

In the below example we can see a playbook using the copy: module to copy the source file
/var/files/db.dmp to /backups/db.dmp and the file:module being used to delete the file if the
original command fails:

Executing an Ansible Playbook
After a playbook and inventory has been created utilising the specified folder structure it
can now be executed by specifying the ansible-playbook command

In the below example the

ansible-playbook tells ansible that a yaml playbook file should be specified.
-i flag is used to specify the inventory file
-l limits the execution only to the servers under the inventory group (servers)
-e passes additional variables to the playbook in this example production
-v sets the verbosity of the output



Configuring Network Devices Using Ansible

[ 86 ]

Ansible vars and jinja2 templates
Ansible var files are just another YAML file that specify a set of variables that will be
substituted into a playbook at run-time using the Ansible include_vars statement.

Var files are just a way of breaking out variables that are required by playbooks or roles at
runtime. This means that different var files can be passed at runtime without having to
hardcode variables into playbooks or roles.

An example of a var file syntax is shown below, this shows the contents of a common.yml var
file containing one defined variable called cert_name:

The example below shows this example the common.yml above and other environment.yml
variables both being loaded into the playbook. The {{ environment }} is useful as it means that
different values could be passed from the ansible-playbook command line to control the
variables that are imported into the playbook using the -e "environment=production" option at
runtime:

The common.yml var files variables value cert1 can then be used by specifying {{ cert_name }}
variable in the playbook:

Ansible also has the ability to utilise Python jinja2 templates that can be transformed at
runtime, to populate the configuration files information utilising a set of var files, for
example the {{ environment }} variable in the example above can be specified at run-time to



Configuring Network Devices Using Ansible

[ 87 ]

load variables that populate unique environment information. The jinja2 template then once
transformed using the template module will be parameterised to use the variables specified
in the environment.yml file.

In the below example we can see the Ansible template: module being executed as part of a
role copying a jinja2 template network_template.j2 copied transformed to /etc/network.conf:

Pre-Requisites Using Ansible to Configure
Network Devices
The base constructs covered in the Introduction to Ansible section in this chapter are all
relevant to the Ansible networking modules, a networking team wishing to utilise Ansible
for configuration management. Before starting it is important to check with the networking
vendors that the version of the networking operating system can be used with Ansible. The
next step is to configure a small provisioning server to utilise as the Ansible Control Host,
this is typically created on the Management Network so it has access appropriate to all
switches.

The server can be relatively small in size as it will just be required to connect over SSH to
the Linux based networking operating systems. Ensure that the API command line is
enabled on the network device, it is also a good idea to creating a temporary user account
on each of the networking devices, which will allow you to setup a public key on the
Ansible Control Host and scp the created id_rsa.pub to the authorized_keys folder on the
network devices using the temporary account. This will allow Ansible to use that private
key to connect to all of the hosts without the need for dealing with passwords. The
temporary password can then be deleted from each of the network devices once this setup
activity has been completed, you could even use Ansible to do this as a first activity.

All being well the next step would be to create the Ansible folder structure on the
provisioning server and fill out the Ansible inventory file with all the DNS names of all the
network devices and installing Ansible on a Linux provisioning server. Ansible is now
packaged by RedHat in rpm format so this should just be a simple yum install as long as the
Ansible Control Host has outbound internet access to the RedHat repositories when using
a centos image or RedHat Enterprise Linux, it will of course work on any Linux based
operating system as is still available as a PyPi package that can be installed on Ubuntu.



Configuring Network Devices Using Ansible

[ 88 ]

Ansible Galaxy
If the network engineer was looking for a start point and not versed in coding they could
look for examples on Ansible Galaxy which hosts open source community roles that carry
out many complex commands utilising pre-existing roles.

The network engineer can navigate to the Ansible Galaxy repository at
https://galaxy.ansible.com/

Ansible Galaxy houses thousands of Ansible roles that have been developed by the Open
Source community. Users can browse roles and search for a particular networking vendor.
In this example a search for Arista has returned the eos role as shown below:

Each role returned has a link to their corresponding GitHub repository:

https://galaxy.ansible.com/


Configuring Network Devices Using Ansible

[ 89 ]

Ansible Galaxy is a very useful tool, where users can take roles as a start point and
customize them to meet their needs. Rather than just taking from the community any new
roles that may be of use to others should be contributed back to Ansible community.

Ansible Core Modules Available For Network
Operations
Since the release of Ansible 2.0, the Ansible configuration management tool been packaged
with some of the core networking modules from Arista, Citrix, Cumulus and Juniper.
Ansible can be used to edit configuration for any network device, it isn't restricted to just
these modules. Ansible Galaxy has a wide range of roles that have been developed by the
open source community.

A subnet of the Ansible 2.x networking modules can be shown below focusing upon the
Juniper Junos, Arista EOS, Cisco NXOS and IOS:



Configuring Network Devices Using Ansible

[ 90 ]

Ansible 2.x has sought to simplify networking modules by giving them a standard set of
operations across all modules to make it feel more intuitive to network engineers. As many
network engineers are not familiar with configuration management tooling, having a set of
standards across modules simplifies the initial barrier to entry, as network engineers are
able to see commands that they would utilise everyday being used as part of a playbook or
a role, so Ansible can initially be utilised as a scheduling tool, before network operators
delve into more complex modules.

One of the main fears network engineers have when first using configuration management
tooling is not trusting the system or understanding what is going on under the covers. So
being able to easily read playbooks or roles and see the operations that are being executed
builds confidence in the tooling and makes adoption easier.

It is fully expected more complex networking modules will be built out over time by the
open source community some of which are already available with roles from Arista, Juniper
and Cisco available in Ansible Galaxy. However, the following Ansible core modules have
been standardised to allow configuration of Arista, Cisco and Juniper network devices in
the same way. These modules can be used in any playbook or role.

_command module
The main module packaged with a vendors networking modules in Ansible 2.x is the
_command module. This is a conscious choice by Ansible as it is more intuitive to network
engineers initially to use native network commands initially when switching to



Configuring Network Devices Using Ansible

[ 91 ]

configuration management tooling.

This module allows Ansible to connect to hosts using SSH as network devices operating
system are primarily Linux based operating systems.

The _command module allows network operators to and applies configuration changes to
switches by connecting from the Ansible Control Host. The syntax used by Ansible on this
command is identical to what network operators would execute on network devices using
the CLI.

In the below example the EOS command show ip bgp summary command is executed by
the eos_command and it connects to every specified {{ inventory_hostname }} which is a
special Ansible variable that substitutes the DNS name of every node listed in the host
group specified in inventory file. It then registers the output of the command in the
eos_command_output variable.

Junos syntax is identical. In the below example a similar network command executed on
Junos to show interfaces with the json output captures in the junos_command_output variable.

The Cisco example shows the NXOS but the configuration is also the same in IOS, the
nxos_command issues a show version command and places the result in the



Configuring Network Devices Using Ansible

[ 92 ]

nxos_command_output variable:

_config module
The _config module is used to configure updates in a deterministic way that could be used
for implementing change requests, by batching up a number of commands.

This module allows operators to updating of selected lines or blocks of running
configuration programmatically on the network device. The module will connect to the
device, extracting the running configuration before pushing batch updates in a completely
deterministic way.

In the example below the Arista switches configuration will loaded by the module, the no
spanning-tree vlan 4094 command will be executed on the EOS operating system if the
running configuration doesn't match the existing state so the desired end state will be
implemented on the switch.



Configuring Network Devices Using Ansible

[ 93 ]

_template module
The _template  module is used to update configuration utilising a jinja2 template file. This
can be extracted from the running configuration of a network device, updated and then
pushed back to the device.

Another use case for the _template module would be allowing network administrators to
extract the running config into a jinja2 template from one network device and apply it to
others switches to propagate the same changes.

The _template module will only push incremental changes unless the force command is
specified as a command line variable, which will carry out overwrite.

In the example below the eos_config jinja2 template is pushed to the Arista device and will
do an incremental change to the configuration if the jinja2 template has configuration
changes.

Configuration Management Processes To
Manage Network Devices
DevOps is all about people and process not tooling, so just focussing on some examples of
playbooks or roles in isolation against a switch or firewall wouldn't help network engineer's
deal with the real world networking challenges that they encounter every day.

A network engineer could easily type in those commands into a network operating system
as they could type commands into an Ansible playbook, so it is important to look at where
the use of a configuration management tool such as Ansible adds real business value.

Implementing a new tool in isolation doesn't really help the network teams improve or
improve efficiency as a standalone activity, but the modules that have been created in
Ansible to manage Arista, Juniper and Cisco are facilitators of process that help simplify



Configuring Network Devices Using Ansible

[ 94 ]

and standardise processes and approaches, but it really is the process that wraps them that
utilises these modules that is the key differentiator.

Ansible can be used to help with network operations in many ways but it is good to try and
categorise tasks into the following categories:

Desired State
Change Requests
Self-Service Operations

Desired State
A day one set of playbooks are initially used to set the desired state of the network, utilising
a set of roles and modules to build out brand new network devices and are used to set up
the networks intended state. An example of a day one playbook could be the first time a
network engineer needs to configure a leaf spine architecture utilising Arista leaf and spine
switches, which can seem a pretty daunting activity at first. But the beauty is that the state
of the whole underlay network could be described in Ansible, but the same can be said for a
firewall or any other device.

In the case of the leaf spine network activities will include configuring multiple leaf and
spine switches, so creating a set of roles to abstract the common operations and calling them
from a playbook is desirable, as the same configuration will need to be carried out on
multiple servers.

A network engineer will begin by setting up the Ansible Control Host as covered in the
Ansible Pre-requisites section. They will then create their inventory file for the leaf spine
architecture to configure the network devices.

The network engineer should define the inventory for all the network devices they plan to
configure, in the below example we see two host groups containing two spine switches and
four leaf switches:



Configuring Network Devices Using Ansible

[ 95 ]

The network operator will also need to specify the playbook containing the roles that they
wish to execute in the spine.yml playbook as shown below to first build out the spine
switches with the desired configuration.

In the example playbook below we see the playbook targets the spine host group and
executes common, interfaces, bridging, ipv4 and bgp roles against the servers:

The executed roles carry out the following configuration:

Common role: is used to configure the ip routing table on the spine
Interfaces role: is used to configure interfaces on the spine
Bridging role: is used to configure all necessary vlans and switch ports on the
spine
Ipv4 role: is used to configure the spines ip interfaces
Bgp: is used to configure BGP protocol to allow the switches to be meshed
together

All these re-usable roles combined will be used to configure the Arista spine switches and
utilise the eos_command module heavily.

Similarly a lot of the same modules can be utilised to configure the leaf switches in the
leaf.yml playbook which targets the leaf host group in the inventory and executes common,
interfaces, bridging, ipv4, bgp, ecmp and mlag roles as shown below:



Configuring Network Devices Using Ansible

[ 96 ]

The executed roles are used to carry out the following configuration:

Common role: used to configure the ip routing table on the spine
Interfaces role: used to configure interfaces on the spine
Bridging role: used to configure all necessary vlans and switch ports on the spine
Ipv4 role: used to configure the spines ip interfaces
Bgp: used to configure BGP protocol to allow the switches to be meshed together
Ecmp: used to ensure equal cost multi-pathing is configured in the leaf spine
topology
Mlag: used to configure the switches redundantly at top of rack using mlag

This shows that roles can be reused if they are kept granular enough, with var files
providing the necessary configuration changes to the roles so it is important to avoid any
hardcoded values.

So the leaf spine build out is a day one playbook but why should a network engineer be
interesting in taking all this time to set this up? This of course is a common misconception
these playbooks and roles have described the whole desired state of the network and once
the initial roles are written it can be used to mutate the desired state of the network at any
point in the future.

The Ansible playbooks and roles could also be used to build second data center in the same
way, used as a disaster recovery solution, help to mutate the state if a data center re-ip is
required or even scale out more spine and leaf switches in the data center.

Taking the last example, in terms of scaling out a data center, this would be as simple as
adding more spine or leaf switches to the Ansible inventory, once the additional Arista
switches have been zero touch provisioned after being racked and cabled by a data center
operations team.

The network operator would then only need to make a small update to the var files to



Configuring Network Devices Using Ansible

[ 97 ]

specify the vlans that need to be used and update the inventory.

In the example shown below the infrastructure is scaled to fifteen spine switches and fourty
four leaf switches by modifying the inventory file:

A pretty extreme scale out example, but this should highlight the point and benefits of
investing in automation, as such a scale out would take a network engineer weeks, while
Ansible can carry out the same operations in minutes once the initial roles have been built
out.

So it really is worth the investment, this also means that the switches are built out
consistently the same way as all the other switches, which alleviates manual error and
makes the delivery of network changes more precise. Some people believe that automation
is all about pace but in networking it should really be about consistency.

The same spine.yml and leaf.yml playbooks could also be executed against existing switches
during the scale out, as Ansible is idempotent by nature, meaning only state changes will be
pushed to the switches if the configuration has changed. If roles are not idempotent then the
modules being called are at fault.

This idempotency means the same day one playbook forming a site.yml that calls both
spine.yml and leaf.yml could be run over existing switches and not change any configuration
and be re-used without having to target just the changed switches. It is important to note
that all Ansible changes should be tested against a test environment before being run in
production.

Change Requests
So network engineers now need a separate process for change requests right? They could
do if they wish to break the desired state that has been described in the day one playbooks.
All network changes going forward should be pushed through the same configuration
mechanism; there should be no such thing as a separate stream of work or an ad-hoc
command.

Making changes outside the process will only serve to break the Ansible playbooks and



Configuring Network Devices Using Ansible

[ 98 ]

roles that were used to maintain the desired state outdated and break the automation. It is
important to note that utilising network automation is an all or nothing approach that needs
to be adopted by all team members and no changes should be done outside of the process
or it breaks the model of repeatability and reliable changes. If features are lacking the day
one playbooks should be extended to incorporate the changes.

Self-Service Operations
With the use of Ansible for network operations, one of the typical bottle necks is the
reluctance for network engineers to give development teams access to carry out network
changes themselves, so this places a bottle neck on networking teams as typically a
company will have more developers than network engineers.

This reluctance is because network changes are traditionally complex and a developer's
forte is to develop code and create applications, not log onto networking devices to make
firewall changes for their application.

However, if network engineers created a self-service playbook that defined a safe set of
workflow actions, then developers could use to interface with network devices in a safe
way, this opens up a whole world of opportunity to remove that bottleneck.

This puts network engineers in the position in a subject matter expert (SME) role to help
architect and use their network experience to create network automation that embodies
networking best practices, to serve the needs of development teams.

This is instead of network engineers carrying out manual actions such as opening firewall
ports manually when a developer raises a ticket, it is of course a change in role, but an
automated approach is the way the industry is evolving.

Take the example of a firewall request, a development team have created a new application
and need a test environment to deploy it in. When configuring the test environment it needs
networking and a network engineer will ask the developer the ports they need opened in
the firewall.

The developer doesn't know how to answer this question yet as they haven't finalised the
application and want to start incrementally developing it in the test environment.
Therefore, each time a new port needs to be opened; it means a new network ticket is
required to open the incremental port the development team discovers. This is not the
optimum use of the network engineer or the developer's time as it causes frustration on
both sides. A network engineer's time is better spent optimising the network or adding
improved alerting, not processing tickets to open firewall ports.



Configuring Network Devices Using Ansible

[ 99 ]

Instead Ansible could be used to create a self-service file. A developer could create a jinja2
template that could be checked into source control that lists the configuration file used to
make firewall changes using the template: module. This shows the existing firewall line
items and is available to developers to add new line items and submit a pull request to open
a port on the firewall.

The network engineer then reviews the change and approves or rejects it. Ansible upon
approval can be automatically triggered to push the change to a test environment; this
makes sure the config is valid.

In the example below we see the playbook which replaces the firewall.config file with the
updated jinja2 firewall.j2 template and then reloads the firewall configuration from the new
template:

This allows network teams to enable self-service model. This speeds up the pace of network
changes. It also removes the networking team as the bottleneck and pushes them to create
appropriate tests and controls for network changes.

Self-service doesn't mean network engineers are no longer required, far from it, it means
that they become the gate keepers of the process instead of constantly rushing to keep up
with the never ending chain of ad-hoc requests they receive on a daily basis.

Summary
In this chapter we have looked at how Ansible can be used for server side configuration
management of network devices and looked at some of the industry leaders network
vendors such as Arista, Cisco and Juniper have all changed their operational models to use
open standards and protocols that are well suited to automation.

However, one of Ansibles main strengths is its ability to orchestrate API's and help
schedule software releases. Load balancing applications is a fundamental piece of the
software development release process, so in the the following chapter we will look at
configuration management principles that can help orchestrate load balancers and help
networking teams easily maintain complex load balancing solutions.



5
Orchestrating Load Balancers

Using Ansible
This chapter will focus on some of the popular load balancing solutions that are available
today and the approaches that they take to load balancing applications.

With the emergence of cloud solutions such as AWS and OpenStack we will look at the
impact this has had on load balancing at distributed load balancing approaches as well as
the traditional centralised load balancing strategy. This chapter will show practical
configuration management processes that can be used to orchestrate load balancers using
Ansible to help automate the load balancing needs for applications.

In this chapter the following topics will be covered:

Centralised and Distributed Load Balancers
Popular Load Balancing Solutions
Load Balancing Immutable and Static Servers
Using Ansible to Orchestrate Load Balancers

Centralised and Distributed Load Balancers
With the introduction of micro-service architectures allowing development teams to make
changes to production applications more frequently as they do not need to release the full
application each time. Developers have moved away from building monolith applications,
as implementing a micro-service architecture breaks an application into smaller manageable
chunks, allowing application features to be released to customers on a more frequent basis,
as the business does not have to re-deploy the whole product each time they release. This
means only a small micro-service needs to be re-deployed when a new feature is released



Orchestrating Load Balancers Using Ansible

[ 101 ]

and that different teams can own different micro-services if they work in different locations
or time zones this can be useful.

This of course means development teams need a good way of testing dependencies and the
onus is put on adequate testing and the development mock services so micro-service
applications can be effectively tested against multiple software versions, so it is a huge shift
in mind-set for a business but a necessary one to compete. This has meant that being able to
utilise the same load balancing in test environments as production has become even more
important, so the control of some of the load balancing should ideally sit with development
teams as opposed to being a request to the network team due to how dynamic changes need
to be.

As a result of the shift towards micro-services architectures, the networking and load
balancing landscape has needed to evolve too to support those needs. Both micro-service
and monolith applications still need to be supported in the data center today though, as a
lot of legacy monolith applications still exist. So although the end goal for a business is a
micro-service architecture, the reality for most companies is having to adopt a hybrid
approach catering to centralised and distributed load balancing methods.

Centralised Load Balancing
Traditionally load balancers were installed as external physical appliances that had routing
set-up to serve web-sites, terminate SSL requests on the physical appliances, then route
requests by context switching or serving requests directly to the appropriate backend
servers based on the packet headers before serving content or carrying out a transaction and
displaying the result to the end user.

This was optimal for monolith configurations as applications typically were self-contained
or followed a 3 tier model with a front end web-server, utilising stateful firewalls, with a
business logic and database layer part of the network. This didn't require a lot of east to
west traffic within the network as the traffic was north to south and networks were
designed to minimise the amount of time taken to process the request and serve it back to
the end user and it was always served by the core network each time.

Distributed Load Balancing
With the evolution towards micro-service applications, the way that applications operate
has changed somewhat. Applications are less self-contained and need to talk to dependant
micro-services applications that exist within the same tenant network, or even across
multiple tenants.



Orchestrating Load Balancers Using Ansible

[ 102 ]

This means that east-west traffic within the data center is much higher and that traffic in the
data center doesn't always go through the core network like it once did. Clusters of micro-
services applications are instead instantiated and then load balanced within the tenant
network using x86 software load balancing solutions with the end-point of the micro-
services clusters VIP exposed to adjacent micro-services that need to utilise it.

With the growing popularity of virtual machines, containers and overlay networks, this
means that software load balancing solutions are now used to load balance applications
within the tenant network, as opposed to having to pin back to a centralised load balancing
solution.

The traditional load balancing vendors have had to adapt and produce virtualised or
containerised versions of their physical appliances to stay competitive with open source
software load balancing solutions, which are typically used with micro-services.

Popular Load Balancing Solutions
As applications have moved from monoliths to micro-services, load balancing requirements
have undoubtedly changed. Today we have seen a move towards open source load
balancing solutions, which are tightly integrated with virtual machines and containers to
serve east to west traffic between a VPC in AWS or a tenant network in OpenStack as
opposed to pinning out to centralised physical appliances.

Open source load balancing solutions are now available from Nginx and HAProxy to help
developers load balance their applications or AWS elastic load balancing feature. Just a few
years ago Citrix Netscalers and F5 Big IP solutions had the monopoly in the enterprise load
balancing space but the load balancing landscape has changed significantly with a
multitude of new solutions available.

New load balancing start-ups such as AVI networks focus on x86 compute and software
solutions to deliver load balancing solutions, which have been created to assist with both
modern micros-service applications and monolith applications to support both distributed
and centralised load balancing strategies.

The aim of this book is not about which load balancing vendor solution is the best, there is
no one size fits all solution and the load balancing solution chosen will depend on traffic
patterns, performance and portability that is required by a business.

This book will not delve into performance metrics, its goal is to look at the different load
balancing strategies that are available today from each vendor and the configuration
management methods that could be utilised to fully automate and orchestrate load
balancers and help network teams automate load balancing network operations.



Orchestrating Load Balancers Using Ansible

[ 103 ]

Citrix Netscaler
The Citrix Netscaler provides a portfolio of products to deal with load balancing
requirements. The Netscaler has various different products available to end users such as
the MPX, SDX, VPX and more recently the CVX appliances, with flexible license costs
available for each product based on the throughput they are requirements.

All of the Citrix Netscaler family of products share the same common set of API's. The
Citrix Netscaler has a REST API and a Python, Java and C# Nitro SDK which exposes all the
Netscaler operations that are available in the GUI to the end user. They can
programmatically control the objects and entities that need to be set-up to programmatically
control load balancing.

The Netscaler MPX appliance is a centralised physical load balancing appliance that is used
to deal with a high number of transactions per second (TPS), the MPX has numerous
security features and complies with Restriction of hazardous substances (RoHS) and
Federal Information Processing Standard (FIPS)so the solution can be used by heavily
regulated industries that require businesses to comply with certain regulatory standards.

The MPX is typically used to do SSL offloading, as it allows a massive amount of SSL
throughput which can be very useful for very highly performant applications so the
offloading can be done on the hardware. The MPX can be used to direct traffic to different
tenant networks using layer 4 load balancing and layer 7 context switching or alternately
direct traffic to a second load balancing tier.

The Netscaler SDX appliance is also a centralised physical appliance that is used to deal
with a high number of TPS,although it is not as powerful as the MPX, the SDX allows
multiple VPX appliances to be set-up as HA pairs and deployed on the SDX to allow
increased throughput and resiliency.

The Netscaler also supports global server load balancing (GSLB) which allows load to be
distributed across multiple VPX HA pairs in a scale out model utilising a CNAME that
directs traffic across multiple HA pairs.



Orchestrating Load Balancers Using Ansible

[ 104 ]

The VPX can be installed on any x86 hypervisor and be utilised as a VM appliance and a
new CVX is now available that puts the Netscaler inside a Docker container so they can be
deployed within a tenant network as opposed to being set-up in a centralised model. All
appliances allow SSL certificates to be assigned and used.

Every Netscaler appliances be it the MPX, SDX, VPX or CVX utilise the same object model
and code which has the following prominent entities defined in software to carry out
application load balancing:

server: a server entity on a Netscaler binds a virtual machine or bare metal
servers ip address to a the server entity, this means the ip address is a candidate
for load balancing once it is bound to other Netscaler entities.
monitor: The monitor entity on the Netscaler are attached to services or service
groups and provide health checks that are used to monitor the health of attached
server entities. If the health check, which could be as simple as a web-ping are not
positive the service or service group will be marked as down and the Netscaler
will not direct traffic to it.



Orchestrating Load Balancers Using Ansible

[ 105 ]

service group: A service group is a Netscaler entity used to bind a group one or
more servers to a lbvserver entity, a service group can have one or more monitors
associated with it to health check the associated servers.
service: The service entity is used to bind one server entity and one or more
monitor health checks to an lbvserver entity which specifies the protocol and port
to check the server on.
lbvserver: An lbvserver entity determines the load balancing policy such as
round robin or least connection and is connected to a service group entity or
multiple service entities and will expose a virtual ip address that can be served to
end users to access web applications or a web service endpoints.
gslbvserver: When DNS load balancing between Netscaler appliances is required
a gslbvserver entity is used to specify the gslb domain name and TTL.
csvserver: The csvserver is used to provide layer 7 context switching from a
gslbvserver domain or lbvserver ip address to other lbvservers. This is used to
route traffic using the Netscaler appliance.
gslbservice: The gslbvservice binds the gslbvserver domain to one or more
gslbservers to distribute traffic across Netscaler appliances
gslbserver: The gslbserver entities are is the gslb enabled ip addresses of the
Netscaler appliances.

Simple load balancing can be done utilising the server, monitor, service group/service and
lbvserver combination. With the gslbvserver and csvserver context switching allowing more
complex requirements for complex routing and resiliency.

F5 Big IP
The F5 Big IP suite is based upon F5s very own custom TMOS real time operating system
that is self-contained and runs on Linux. TMOS is at the heart of every F5 appliance and
allows inspection of traffic, it makes forwarding decisions based on the type of traffic acting
much in the same way as a firewall would, only allowing pre-defined protocols to flow
through the F5 system.

TMOS also features iRules which are programmatic scripts written using F5s very own Tool
Command Language (TCL) that enables users to create unique functions triggered by
specific events, this could be used to content switch traffic or red-order http cookies, the
TCL is fully extensible and programmable and can carry out numerous operations.

The F5 Big IP solution is primarily a hardware load balancing solution, which provides
multiple sets of physical hardware boxes that customers can purchase based on their
throughput requirements and hardware boxes can be clustered together for redundancy. It



Orchestrating Load Balancers Using Ansible

[ 106 ]

supports

The F5 Big IP suite provides a multitude of products that provide services catering for load
balancing and traffic management and even firewalling.

The main load balancing services provided by the F5 Big IP Suite are as follows:

Big IP DNS: F5s global load balancing solution
Local Traffic Manager: the main load balancing product of the F5 Big IP suite

The F5 Big IP solution like Citrix Netscaler implements an object model to allow load
balancing to be programmatically defined and virtualised and allows SSL certificates to be
associated with entities.

The following local traffic manager object entities allow F5 Big IP to load balance
applications:

pool members: The pool member entity is mapped a virtual server or physical
servers ip address and can be bound to one or more pools. A pool member can
have health monitors associated
monitor: The monitor entity returns the status on specific pool members and acts
as a health check
pool: The pool entity is a logical grouping of a cluster of pool members that are
associated, a pool can have health monitors associated with it as well as quality
of service (QoS)
virtual severs: The virtual server entity is associated with a pool or multiple
pools, the virtual server determines the load balancing policy such as round robin
or least connections. The F5 solution also will offer load balancing solutions
based on capacity or fastest connection. Layer 7 profiles utilising iRules can be
configured against a virtual server and is used to expose an ip address to access
pool members.
iRules: iRules utilise the programmatic TCL so users can author particular load
balancing rules based on events such as context switching to different pools.
rate classes: rate classes implement rate shaping and are used to control
bandwidth consumption on particular load balancing operations to cap
throughput.
traffic classes: traffic class entities are used to regulate traffic flow based on
particular events



Orchestrating Load Balancers Using Ansible

[ 107 ]

AVI Networks
AVI networks are a relatively new start-up but have a very interesting load balancing
product which truly embraces the software defined mandate. It is an enterprise x86
software load balancing solution comprised of the AVI controller that can be deployed on
x86 compute. Hence it is a pure software solution that deploys distributed AVI service
engines into tenant networks it integrates with an AWS VPC and an OpenStack tenant.

The AVI Networks solution offers automated provisioning of load balancing services on x86
hypervisors and can automatically scale out to meet load balancing needs elastically based
on utilisation rules that users can configure.

The AVI Networks solution supports multiple or isolated tenants and has a real-time
application monitoring and analytics engine that can work out where latency is occurring
on the network and the locations packets are being routed from. It also supports a display
that shows load balancing entities so users have a visual view of load balancing and it
additionally supports anti-DDoS support.

All commands that are issued via the GUI or API utilise the same REST API calls. The AVI
Networks solution supports a Python and REST API. The AVI Networks object model has
numerous entities that are used to define load balancing in much the same way as
Netscalers and F5:

health monitor profile: The health monitor pool profile entity specifies health
checks for a pool of servers using health attributes.
pool: The pool entityspecifies the ip addresses of virtual or physical servers in the
form of a server list and has associated health monitor profiles, it also allows an
event to be specified using a datascript if a pool goes down. One or more pools
are bound to the virtual service entity.
custom policy: The custom policy allows users to programmatically specify
policies against a virtual service



Orchestrating Load Balancers Using Ansible

[ 108 ]

app profile: The app profile entity allows each application to be modeled with
associated http attributes, security, DDoS, caching, compression and PKI
attributes specified as part of the app profile associated with a virtual service.
analytics profile: Theanalytics profile makes use of the AVI analytics engine and
captures threat, metrics, health score as well as latency thresholds and failure
codes that are mapped to the virtual service entity.
TCP/UDP profile: The TCP/UDP profile governs if TCP or UDP is used and any
DDoS L3/L4 profiles are set.
SSL profile: The SSL entity governs SSL ciphers that will be used by a virtual
service entity.
PKI profile: The PKI profile entity is bound to the virtual service entity and
specifies CA authority for the virtual service.
policy set: The policy set entity allows users to set security teams to set policies
against each virtual service governing request and response polices.
virtual service: The virtual service entity is the entry point ip address to the load
balanced pool of servers and is associated with all profiles to define the
application pools load balancing and is bound to the TCP/UDP, app, SSL, SSL
cert, policy and analytics profiles.

Nginx
Nginx supports both commercial and open source versions it is an x86 software load
balancing solution. Nginx can be used as both an http and TCP load balancer supporting
http, TCP and even UDP and can also support SSL/TLS termination.

Nginx can be set-up for redundancy in a highly available fashion using keepalived so if there
is an outage on one Nginx load balancer it will seamlessly fail over to a backup with zero
downtime. Nginx Plus the commercial offering, is more fully featured than the open source
version, supporting features such as active health checks, session persistence and caching.

Load balancing on Nginx is set-up by declaring syntax in the nginx.conf file it works on the
principle of wanting to simplify load balancing. Unlike Netscalers, F5s and AVI Networks it
does not utilise an object model to define load balancing rules, instead Nginx describes load
balanced virtual or physical machines as backend servers using declarative syntax.

In the following simple example we see three servers 10.20.1.2, 10.20.1.3 and 10.20.1.4 all
load balanced on port 80 using Nginx declarative syntax and it is served on
www.devopsfornetworking.com/devops_for_networking:



Orchestrating Load Balancers Using Ansible

[ 109 ]

By default Nginx will load balance servers using round robin load balancing method, but it
also supports other load balancing methods.

The Nginx least_conn load balancing method forwards to backend servers with the least
connections at any particular time, while the Nginx ip_hash method of load balancing
means that users can tie the same source address to the same target backend server for the
entirety of a request. This is useful as some applications require that all requests are tied to
the same server using sticky sessions while transactions are processed.

While the proprietary Nginx Plus version supports an additional load balancing method
called least_time, which calculates the lowest latency of backend servers based on number of
active connections and subsequently forwards requests appropriately based on those
calculations.

The Nginx load balancer uses a weighting system at all times when load balancing; all
servers by default have a weight of 1. If a weight other than 1 is placed on a server it will
not receive requests unless the other servers on a backend are not available to process
requests. This can be useful when throttling specific amounts of traffic to backend servers.

In the example below we see that the backend servers have load balancing method least
connection configured. Server 10.20.1.3 has a weight of 5 meaning only when 10.20.1.2 and
10.20.1.4 are maxed out will requests is sent to 10.20.1.3 backend server:



Orchestrating Load Balancers Using Ansible

[ 110 ]

By default using round-robin load balancing in Nginx won't stop forwarding requests to
servers that are not responding so it utilises max_fails and fail_timeouts for this.

In the example below we can see server 10.20.1.2 and 10.20.1.4 have the max_fail count of 2
and a fail_timeout of 1 second, if this is exceeded then Nginx will stop directing traffic to
these servers:

HAProxy
HAProxy is an open source x86 software load balancer that is session aware and can
provide layer 4 load balancing and also carry out layer 7 context switching based on the
content of the request as well as SSL/TLS termination. HaProxy is primarily used for http
load balancing and can be set-up in a redundant fashion using keepalived configuration,
using two apache configurations, so if the master fails then the slave will become the master
to make sure there is no interruption in service or end users.



Orchestrating Load Balancers Using Ansible

[ 111 ]

HAProxy uses declarative configuration files to support load balancing as opposed to an
object model that proprietary load balancing solutions such as Netscaler, F5 and AVI
Networks have adopted.

The HAProxy configuration file has the following declarative configuration sections to
allow load balancing to be set-up:

backend: A backend declaration can contain one or more servers in it, backend
servers are added in the format of a DNS record or an ip address. Multiple
backend declarations can be set-up on a HAProxy server. The load balancing
algorithm can also be selected such as round robin or least connection.

In the example below we see two backend servers 10.11.0.1 and 10.11.0.2
load balanced using the round-robin algorithm on port 80.

check: Checks avoid users having to manually remove a server from the backend
if for any reason it becomes unavailable and mitigates outages. HAProxys default
health always attempts to establish a TCP connection to the server using the
default port and ip. HAProxy will automatically disable servers that are unable to
serve requests to avoid outages. Servers will only be re-enabled when it passes its
check. HAProxy will report whole backends as unavailable if all servers on a
backend have failed their health checks.

A number of different health checks can be put against backend servers by
utilising the option {health-check} line item, for example tcp-check in the
example below is shown which can check on port 8080s health even though
port 443 is being balanced



Orchestrating Load Balancers Using Ansible

[ 112 ]

access control list (acl) : access control list declarations are used to inspect
headers and forward to specific backend servers based on the headers. An acl in
HAProxy will try to find conditions and trigger actions based on this.
frontend: The frontend declaration allows traffic different kinds of traffic to be
supported by the HAProxy load balancer.

In the example below HAProxy will accept http traffic on port 80, with an acl matching
requests only if the request starts with /network and forwarding it to the high-perf-backend if
the acl /web-network is matched

Load Balancing Immutable and Static
Infrastructure
With the introduction of public and private cloud solutions such as AWS and OpenStack
there has been a shift towards utilising immutable infrastructure from the traditional static
servers. This has raised a point of contention with the pets versus cattle or as Gartner defines
it bi-modal.

Gartner has said that two different strategies need to be adopted one for new micro-
services cattle and one for legacy infrastructure pets. Cattle are servers that are killed off once
they have served their purpose or have an issue, typically lasting one release iteration,
while pets are servers that will have months or years of uptime and will be patched and



Orchestrating Load Balancers Using Ansible

[ 113 ]

cared for by operations staff.

It is said that a cattle approach favours the stateless micro-service, where a pet on the other
hand is any application that is a monolith or potentially a single appliance or something
that contains data such as a database.

Immutable infrastructure and solutions such as OpenStack and AWS are said by many to
favour only the cattle, with monoliths and databases remaining pets needing a platform that
caters for long lived servers.

Personally, I find the pets versus cattle debate to be a very lazy argument and somewhat
tiresome. Instead it should be treated as a software delivery problem and a question of
stateless read applications, stateful applications and data. Cloud ready applications still
need data and state so I am puzzled by the distinction.

However, what is undisputed is that the load balancer is key to immutable infrastructure, as
at least one version of the application always needs to be exposed to a customer or other
micro-services to maintain that applications incur zero downtime and remain operational at
all times.

Static and Immutable Servers
Traditionally an environment management team was used by companies to rack, cable,
boot, install an operating system and patch servers, before making the physical server
available to developers.

Static infrastructure can still exist within a cloud environment, for example databases are
still typically deployed as static servers, given the volume of data that is held. Static servers
therefore mean a set of long lived servers that typically will contain state.

Immutable servers on the other hand mean that virtual machines are always deployed fresh
with a new operating system and software release on them. So this moves away from the
pain of doing in place upgrades and makes sure that snowflake server configuration doesn't
exist. How many times when doing release management has a release work on four out of
five machines and hours or days were wasted debugging why a particular software
upgrade wasn't working on a particular server. Immutable infrastructure builds servers
from a known state promoting the same configuration from quality assurance, integration,
performance testing and production.

Parts of cloud infrastructure that can be made completely immutable to reap these benefits.
The operating system is one such candidate, rather than doing in place patching, a single
golden image can be patched and updated using automation such as Packer or OpenStacks



Orchestrating Load Balancers Using Ansible

[ 114 ]

Disk Image Builder. Then it will can be used to deploy virtual machines or containers using
that base operating system.

Applications that are required to maintain a caching layer are more stateful by nature as
that cache needs to be available at all times to serve other applications. These caching
applications should be deployed as clusters, which are load balanced, and rolling updates
will be done to make sure one version of the cache data is always available and a new
software release of that caching layer synchronises to the new release before the pervious
release is destroyed.

Data on the other hand is always persistent, so can be stored on persistent storage and then
mounted by the operating system when doing an immutable rolling update, mounting
either the data on persistent or shared storage in the process. It is possible to separate the
operating system and the data to make all virtual machines stateless, for instance
OpenStack Cinder can be utilised to store persistent data on volumes that can be attached to
virtual machines.

While with all that considered most applications can be designed to be deployed immutably
through proper configuration management, even monoliths, as long as they are not a single
point of failure. If any applications are they should be re-architected as releasing software
should never result in downtime. Although applications are stateful each state can be
updated in stages so that an overall immutable infrastructure can be maintained.

Blue/ Green Deployments
The blue green deployment process is not a new concept, before cloud solutions came to
prominence, production servers would typically have a dark and love set of servers that
would be utilised for carrying out deployments. These are typically known as blue and
green servers, which alternated per release. The blue green model in simple terms, means
requests that when an upgrade was done, a load balancer by moving over one box at a time
or simply DNS load balancing would route traffic to the newly upgraded set of servers and
once the TTL had propagated to end users requests would be served by the new boxes. This
meant that if there was an issue with the release rollback was not an issue.

A typical blue green deployment process is described below:

Release 1.1 would be deployed on servers 1,2 and 3 and served on a load1.
balancer to customers and made Green (live).



Orchestrating Load Balancers Using Ansible

[ 115 ]

Release 1.2 would be deployed on servers 4, 5 and 6 and then be patched to the2.
latest patch version, upgraded to the latest release and tested. When ready, the
operations team would toggle the load balancer to serve boxes 4, 5 and 6 as the
new production release as shown below and the previously Green (live)
deployment would become Blue and vice-versa:

When the operations team came to do the next release servers1, 2 and 3 would be3.
patched to the latest version, upgraded to release 1.3 from release 1.1, tested and
when ready the operations team would direct traffic to the new release utilising
the load balancer making release 1.2 Blue and Release 1.3 Green as shown in the
following figure.



Orchestrating Load Balancers Using Ansible

[ 116 ]

This was typically the procedure of running a blue green deployment using static servers.

However, when using an immutable model, instead of utilising long lived static servers
such as Servers 1,2,3,4,5 and 6, after a release was successful the servers would be destroyed
as shown below as they have served their purpose:

The next time servers 4, 5 and 6 were required, instead of doing an in place upgrade, three
new virtual machines would be created from the golden base image in a cloud
environment. These golden images would already be patched up to the latest version, so



Orchestrating Load Balancers Using Ansible

[ 117 ]

brand new servers 7,8 and 9 with the old servers destroyed and the new release 1.4 would
be deployed on them as shown below, once server 7,8 and 9 were live servers 1,2 and 3
would be destroyed as they have served their purpose:

Using Ansible to Orchestrate Load
Balancers
In Chapter 4 we covered the basics of Ansible and how to use an Ansible Control host,
playbooks, and roles for configuration management of network devices. Ansible though has
multiple different core operations that can help with orchestrating load balancers which we
will look at in this chapter.

Delegation
Ansible delegation is a powerful mechanism that means from a playbook or role Ansible
can carry out actions on the target servers specified in the inventory file by connecting to
them using SSH or WINRM or alternately execute commands from the Ansible Control
Host.

The diagram below shows these two alternative connection methods with the Ansible
Control host either logging into boxes using SSH or WINRM to configure them or running
an API call from the Ansible Control Host directly:



Orchestrating Load Balancers Using Ansible

[ 118 ]

Both of these options can be carried out from the same role or playbook using delegate_to
which makes playbooks and roles extremely flexible as they can combine API calls and
server side configuration management tasks.

An example of delegation can be found below where the Ansible extras HAProxy modules
are used, with the delegate_to used to trigger an orchestration action that disables all
backend services in the inventory file:

Rolling Updates
In order to release software without interruptions to service, a zero downtime approach is
preferable, as it doesn't require a maintenance window to schedule a change or release.
Ansible supports a serial option which passes a percentage value to a playbook.

The serialoption allows Ansible to iterate over the inventory and only carry out the action
against a percentage of the boxes, completing the necessary playbook, before moving onto
the next portion of the inventory. It is important to note that Ansible passes inventory as an
unordered dictionary so the percentage of the inventory that is processed will not be in a
specific order.

Using the serial option that a blue/green strategy could be employed in Ansible where boxes
will need to be taken out of the load balancer, upgraded, before being put back into service.
Rather than doubling up on the number of boxes three boxes are required as shown below



Orchestrating Load Balancers Using Ansible

[ 119 ]

which all serve release 1.4:

Utilising the Ansible playbook below, using a combination of the delegate_to and serial each
of the servers can be upgraded using a rolling update:



Orchestrating Load Balancers Using Ansible

[ 120 ]

The playbook will execute the following steps:

The serial 30% will mean that only one server at a time is upgraded. So Server 71.
will be taken out of the HAProxy backend_nodes pool by disabling the service
calling the HAProxy using a local delegate_to action on the Ansible Control Host.
A yum update will then be executed to upgrade server version new application1
release version 1.5 on server 7 as shown below:



Orchestrating Load Balancers Using Ansible

[ 121 ]

Server 7 will then be enabled again and put into service on the load balancer2.
using a local delegate_to action. The serial command will iterate onto server 8 and
disable it on HAProxy, before doing a yum update to upgrade server version new
application1 release version 1.5 as shown below:

The rolling update will then enable server 8 on the load balancer and the serial3.
command will iterate onto server 9, disabling it on HAProxy before doing a yum
update which will upgrade the server with the new application1 release version
1.5 alternating when necessary between execution on the local server and the
server as shown below:



Orchestrating Load Balancers Using Ansible

[ 122 ]

Finally the playbook will finish by enabling server 9 on the load balancer and all4.
servers will be upgraded to Release 1.5 using Ansible as shown below:



Orchestrating Load Balancers Using Ansible

[ 123 ]

Dynamic Inventories
When dealing with cloud platforms using just static inventories is sometimes not enough. It
is useful to understand the inventory of servers that are already deployed within the estate
and target sub-sets of them based on characteristics or profiles.

Ansible has an enhanced feature called the dynamic inventory, allows users to query a
cloud platform of their choosing with a python script, this will act as an auto-discovery tool
that can be connected to AWS or OpenStack, returning the server inventory in JSON format.

This allows Ansible to load this JSON file into a playbook or role so can be iterated over, in
the same way a static inventory file can be via variables.

The dynamic inventory fits into the same command line constructs, although instead of
passing the following static inventory:

Then a dynamic inventory script openstack.py for the OpenStack cloud provider could be
passed instead:

The dynamic inventory script can be set-up to allow specific limits, in the above case the
only server inventory that has been returned is the quality assurance servers which is
controlled using the -l qa limit.

Typically when using Ansible with immutable servers the static inventory file can be
utilised to spin up new virtual machines, while the static inventory can be used to query the
estate and do supplementary actions when they have already been created.

Tagging Meta-data
When using dynamic inventory in Ansible, meta-data becomes very important component,
as servers deployed in a cloud environment can be sorted and filtered using meta-data that
is tagged against virtual or physical machines.

When provisioning AWS or OpenStack instances in a public or private cloud, meta-data can
be tagged against servers to group them.



Orchestrating Load Balancers Using Ansible

[ 124 ]

In the example below we can see a playbook creating new OpenStack servers using the
os_server OpenStack module, it will iterate over the static inventory, tagging each newly
created group and release meta-data on the machine:

The dynamic inventory can then be filtered using the -l argument to just specify boxes with
the group qa. This will return a consolidated list of servers.

Jinja2 Filters
Jinja2 filters allow Ansible are also very useful, as they control conditions in which to
execute a particular command from a playbook or role. There are a wide variety of different
jinja2 filters available out the box with Ansible or custom filters can be written.

An example of a playbook using a jinja2 filter would be only add the server to the Netscaler
if its meta-data openstack.metadata.build value is equal to the current build version:

So executing the ansible-playbook add_hosts_to_netscaler.ymlwith a limit -l on qa would
only return boxes in the qa metadata group as the inventory. Then the boxes can be further
filtered at playbook or role using the when jinja2 filter to only execute the add into load
balancer pool command if the openstack.metadata.build number of the box matches the



Orchestrating Load Balancers Using Ansible

[ 125 ]

current_build variable of 9:

The result of this would be that only the new boxes would be added to the Netscaler
lbvserver VIP.

Removal of boxes could be done in a similar way in the same playbook with a not equal to
condition:

This could all be combined along with the serial percentage to roll percentages of the new
release into service on the load balancer and decommission the old release utilising
dynamic inventory, delegation, jinja2 filters and the serial rolling update features of Ansible
together for simple orchestration of load balancers.

Creating Ansible Networking Modules
As Ansible can be used to schedule API commands against a load balancer, it can be easily
utilised to build out a load balancer object model that popular networking solutions such
Citrix Netscaler, F5 Big IP or AVI Networks utilise.

With the move to micro-service architectures load balancing configuration needs to be
broken out to remain manageable, so it is application centric, as opposed to living in a
centralised monolith configuration file.

This means that there are operational concerns when doing load balancing changes, so
Ansible can be utilised by network operators to build out the complex load balancing rules,
apply SSL certificates and set-up more complex layer 7 context switching or public ip
addresses and provide this as a service to developers.

Utilising the Python API's provided by load balancing vendors, each operation could then
be created as a module with a set of YAML var files describing the intended state of the
load balancer.



Orchestrating Load Balancers Using Ansible

[ 126 ]

In the below example we look at how Ansible var files could be utilised by developers to
create a service and health monitor for every new virtual server. These services are then
bound to the lbvserver which was created by the Network team, with a roll percentage of
10% which can be loaded into the playbooks serial command. The playbook or role is
utilised to control out the bindings and actions, while the var file describes the desired state
of the objects:

Summary
In this chapter we have looked at the varied load balancing solutions are available from
proprietary vendors to open source solutions and have discussed the impact that micro-
services has had on load balancing, moving it from a centralised to distributed model to
help serve east west traffic.

We then looked at blue/green deployment models and the merits of immutable and static
servers and how software releases can be orchestrated using Ansible in either model. In the
process illustrating how useful Ansible is at orchestrating load balancers by utilising
dynamic inventory, rolling updates, delegation and jinja2 filters which can all be used to
help fulfil load balancing requirements.

In the next chapter we will look at applying these same automation principles to SDN
Controllers, primarily focusing on the Nuage solution. It will cover configuring firewall
rules and other SDN commands, so the whole network can be programmatically controlled
and automated.



6
Orchestrating SDN Controllers

Using Ansible
This chapter will focus on SDN controllers and the ways they can enable network teams to
simplify their daily tasks.

We will look at why SDN Controllers have been adopted and highlight some of the
immediate business benefits they will bring if utilised correctly. It will focus on ways in
which network operations need to be divided so network operations can scale, by utilizing
automation.

This chapter will discuss the benefits of utilsing software defined networking and look at
practical configuration management processes that can be used to orchestrate SDN
Controllers API's and object models. Finally we will look at how Ansible can be used to
execute and wrap some of these configuration management processes, using Nuage VSP as
a practical example.

In this chapter the following topics will be covered:

Arguments against Software Defined Networking
Why Would A Company Utilise Software Defined Networking
Splitting Up Network Operations
Immutable Networking
Using Ansible to Orchestrate SDN Controllers



Orchestrating SDN Controllers Using Ansible

[ 128 ]

Arguments against Software Defined
Networking
With the emergence of AWS public cloud, networking is now being treated more like a
commodity and has moved from silicon to software. This has allowed developers the ability
to mutate the network to best serve the applications, rather than retro fit applications into
an aging network, which is likely not optimised for modern micro-service applications.

It would therefore seem nonsensical that any business would want to treat their internal
data center networking any differently. However, like all new ideas, before acceptance and
adoption comes fear and uncertainty, inherently co-related with the new or different ways
of working.

Common arguments against using a clos leaf spine architecture and SDN controllers center
around one common theme, that it requires change and change is hard. We then harp back
to the mythical 8th layer of the OSI model and that is the user layer:

The network operators have to feel comfortable with any solution that is implemented. This
is very important, but by the same token the user layer is equally the end-user of the
networking service that is provided by the network team. So ease of use is important on two
levels, both network operations and the self-service operations provided to developers.

Before a company considers putting in software defined networking, they need to be doing
it for the correct reasons, make it requirements based, simply implementing a new tool, in
this case an SDN Controller, will not solve operational issues alone.



Orchestrating SDN Controllers Using Ansible

[ 129 ]

Work out with the business what the new operational model should be and utilise software
defined networking as a facilitator for that new business process, focusing on speed of
operations and the aim to remove networking as the bottleneck for application delivery. In
short network operations needs to be DevOps friendly or it will inhibit software delivery
and slow down the software delivery.

Added Network Complexity
Typically some of the arguments used against using overlay networks are that they are
more complex than traditional layer 2 networks, with much more moving parts and could
cause a bigger variety of failures.

Although the constructs of an overlay and underlay network may be different, it is still
relatively new concept and a lot of people fear change. As long as base requirements in
terms of network availability, redundancy, performance and speed of change are met then
any there should be no reason not to implement software defined networking.

The fear of overlay networks, can be likened to operations staff, that initially argued against
the introduction of hypervisors and virtualisation, which was initially viewed as an added
layer of complexity or magic box that couldn't be trusted.

However, the portability and opportunities introduced by running a hypervisor, greatly
outweighed any performance implications for the vast majority of applications. The benefits
included increased portability, flexibility and speed of operations. There are of course edge
cases and some applications that don't fit into the virtualised model but the benefits that
virtualisation bring for 99% of the data center, meaning, as a business solution it can't really
be ignored.

Overlay networks give the same benefits to networking as hypervisors did to servers. Of
course when implementing an overlay network, the underlay should be built for
redundancy, so that if a failure occurs it occurs on the underlay and does not impact the
overlay. A scale out model should be possible on the underlay, with a leaf spine
architecture the introduction of more racks paired with leaf switches or even a new spine to
prevent over-subscription of links should be possible.

On the theme of added complexity of an overlay network, tells a systems reliability
engineer or network engineer that is debugging an ill performing link in a layer 2 spanning
tree network that a spanning tree network isn't complex and they will show you the
debugging diagram they mapped out to try and solve the issue as evidence of the
complexity.

So networks are complex beasts at the best of times, however, by utilising underlay and



Orchestrating SDN Controllers Using Ansible

[ 130 ]

overlay networks the focus is that the underlay is scalable and can be easily scaled out by
the network operators, while the overlay is what the end users integrate with as part of the
self-service so it should have easy to understand software constructs.

If implemented correctly an overlay network ticks both boxes and focuses on
componentising the network into two pieces. The overlay is the user friendly, described in
software piece, much like AWS or OpenStack and the underlay is the gritty hard-core
networking piece that still needs to be well designed by a network architect and built for
scale.

Lack of Software Defined Networking Skills
Another argument against not implementing software defined network is lack of skills.
There is a viewpoint companies will have to hire completely new staff to implement
software defined networking.

However, this can be offset by partnering with an SDN vendor or utilising provided
training programmes for staff. It is a business transformation putting in software defined
networking, as such network staff will need to skill up over a period of time.

But networking staff like all IT staff will need to evolve and build new skills like other
teams in IT. It is a big change at first but good networking staff will be excited and embrace
change and benefits that come from implementing software defined networking.

However, change can be daunting and can seem like a monumental cultural shift or effort at
times. To initiate successful change in large or even small companies then it usually has to
come with top down sponsorship or backing.

Adopting software defined networking will mean changing the businesses operational
model and automation will need to be embraced at every level, network tasks in the overlay
simply can't be manual when using an SDN controller. The business also needs to look at
ways of automating the underlay, in this book we have already looked at the API's can be
utilised to configure network devices so really both the underlay and overlay need to be
automated.

The term software defined data center is somewhat overused by vendors, but the principles
behind it shouldn't really be ignored if a network team wants to provide a great user
experience to all sister teams. If any company puts in a software defined networking
solution then it will add no true value if automation isn't written to speed up network
operations utilising the rich set of API's, if companies are going to put in a software defined
network and have network engineers manually enter commands on network devices or use
a GUI, the company may as well not bother as they can do that with any out the box switch



Orchestrating SDN Controllers Using Ansible

[ 131 ]

or router, they are wasting the opportunity a software defined overlay network offers.

Just putting in the software defined networking solution and still having developers raise
network tickets will give a business zero business value, it will not increase efficiency, time
to market or reliability of changes. To get the business benefits out of software defined
networking it is all or nothing, it is either completely automated or it will over time become
fragmented and broken over time. If any network engineer does manual updates then it has
the opportunity to break the whole operational model, it changes the desired state of the
network and it could break the automation completely.

When putting in software defined networking, automate all the common operations first
and allow developers to self-serve themselves and make it immutable. In Chapter 3 we
already looked at ways of initiating cultural change, humans are creatures of habit, they
tend to stick with what they know, network engineers have spent years gathering
networking certifications on how to configure spanning tree algorithm and layer 2 networks
so this is a huge cultural shift.

Companies Require Stateful Firewalling To
Support Regularity Requirements
One of the main issues highlighted with software defined networking has been the lack of
stateful firewalling, due to Open vSwitch being based on flow data and being traditionally
stateless. Until recently reflexive rules were utilised to emulate stateful firewalling at the
kernel user space level.

However, recent developments with Open vSwitch has allowed stateful firewalling to be
implemented. So this is no longer an issue with Open vSwitch as connection
tracking(conntrack) previously only available as part of iptables, has now been decoupled
from iptables, meaning that, it is now possible to match on connections as well as flow data.

The Nuage VSP platform has also introduced stateful firewalling as part of its 4.x release,
with reflexive rules being replaced for stateful rules for all ICMP and TCP ACL rules on the
Nuage VRS, which is a customised version of Open vSwitch:



Orchestrating SDN Controllers Using Ansible

[ 132 ]

Why Would A Company Utilise A Software
Defined Networking Solution?
Traditionally all good enterprise networks should be built with the following goals in mind:

Performance
Scalability
Redundancy

The network's first and foremost needs to be performant to meet customer needs. Customers
can be end users in the data center or end users of the application in the public domain.
With continuous delivery and deployment, if networking blocks a developer in a test
environment, it is hampering a potential feature or bug fix reaching production, so it is not
acceptable to have sub-standard pre-production networks and they should be designed as
scaled down functional replicas of production.

Scalability focuses on the ability to scale out the network to support company growth and
demand, as more applications are added, how does the network horizontally scale? Is it cost
effective? Can it easily be adapted to cater for new services such as 3rd party VPN access or
point to point network integration? All these points need to be given proper consideration
when creating a flexible and robust network design.



Orchestrating SDN Controllers Using Ansible

[ 133 ]

Redundancy, is having a network with no single points of failures. This is so that the
network can recover from a switch failure or an issue with a core router and not cause
outages to customers. Every part of the network should be set-up to maximise uptime.

These three points seem to have been the staple on which good networks were designed
and built in the past. However, as applications have moved from monoliths to micro-
services, monolith applications have tended to have one time set-up operations and then
remained fairly static, while micro-service applications on the other hand have required
more dynamic networks that are subject to greater variance of change.

The needs of the modern network have evolved and networks need to be updated rapidly
to deal with the requirements of micro-service architectures, without having to wait on a
network engineer to process a ticket. With continuous delivery forming feedback loops, it is
imperative that the process is quick and lean and issues can be fixed quickly otherwise the
whole process will break down and grind to a stand-still.

Software Defined Networking Adds Agility and
Precision
Software defined networking or in particular overlay networking, still focuses on
performance, scalability and redundancy; they should never be compromised, but also
introduces the following benefits:

Agility
Mean time to recover
Precision and Repeatability.

Software defined networking puts the network into a software overlay network with
associated object model, which allows the network to be programmable by exposing a rich
set of API's. This means that workflows can be used to set-up network functions, the same
way infrastructure can be controlled in a cloud or virtualisation environment.

As the network is programmable, requesting a new subnet or making an ACL change can
be done as quickly as spinning up a virtual machine on a hypervisor. It removes the
traditional blockers or operational inhibitors such as requiring to raise a ticket to a networks
operation change to mutate the network for a developer and allows the network to be
controlled via the administration of an API call.

Mean time to recover is also improved because network changes are programmable, so
network inventory can be source controlled. This versions the network so any change is
delivered via source control management and allows network changes to be modular and



Orchestrating SDN Controllers Using Ansible

[ 134 ]

easy to track.

If a breaking change has occurred to the overlay network, a version tree in the source
control management system can be used to see what has changed since the network was
last working release. The same programmable script can then be used to quickly roll back
the network change back to the previous version and remove the issue. This is of course the
beauty of implementing an immutable network rather than static networks, where the state
is always as clean as the day one network and can be rolled forward or back on demand.

Repeatability is catered for by software defined networking using programmatic operational
workflows. So that all network changes that carry out the same operation are done in the
same way by all users and this can be done using the API workflows approved by the
network team.

This means that network changes in a continuous delivery model will be checked into
source control, pushed to a test environment using automated workflow actions for the
desired operation such as creating a new ACL rule, tested and verified then will be
promoted onto the next test environment, applied identically using automation before
being applied to production. This repeatability of using an overlay network means all the
constructs of a quality assurance environment can be the same as a production
environment.

A Good Understanding of Continuous Delivery Is
Key
Companies looking to utilise software defined networking should already have a well-
established continuous delivery model for code and infrastructure or be locked into
building a continuous delivery model for their company before considering software
defined networking.

If companies have a mandate of automating everything, which is inclusive of networking
functions they would greatly benefit from using an SDN controller to facilitate network
automation. This will mean that the company is already set-up to knowledge share and
culturally be utilising a DevOps model.

To emphasise the point, if overlay networks are modified by network engineers by hand
rather than programmatically, it will bring no business value and the company will have
missed the point.

Operational models need to change when implementing software defined networking and
if an issue occurs it needs to be built back into the automation to provide the fix.



Orchestrating SDN Controllers Using Ansible

[ 135 ]

Automation is built by humans so automated processes need to be continually iterated and
improved to become more and more robust over time.

It is important to appreciate that edge cases will occur when using automation and
sometimes cause issues. But my implementing continuous improvement processes on the
automation, it means the reliance on single network engineers to make network changes is
removed.

The highly skilled network engineer can instead build all their knowledge into the
automation. This means that every automated network change is done with the same care
and precision as the best network engineer in the company.

Those pre-approved and well defined changes can be made by anyone in the company if
they are automated, not just the best engineer, so the bottleneck is removed from the
network team freeing them up to work on more interesting tasks than the mundane
repeatable tasks that are more accurately done using automation.

Software Defined Networking Helps Companies
With Over Complex Networks
Companies that have very complex legacy networks would also be a prime candidate to
benefit from software defined network, instead of fixing the existing network, which may
not be possible due to having to adhere to 99% uptime targets. Instead a new green-field
network could be created with an overlay network in parallel to the existing network.

This will teams will migrate their applications to the new network and simplify the
complexity of the network in the process, while utilising all the benefits brought by SDN
overlay network, routing back to the legacy network for application dependencies.

Likewise, if networks are running more than one hundred hypervisors, this is a scale at
which an SDN solution would be of benefit, be it extending OpenStack Neutron capabilities
to allow companies to run OpenStack at scale, as opposed to deploying multiple smaller
OpenStack clouds to cope with bottlenecks.

Splitting Up Network Operations
With the introduction of software defined networking in a company or business has to be a
shift in operational responsibilities. If a company runs multiple micro-service applications, a
fairly typical situation is that a company has 100 developers that develop around 200 micro-
services, which combined are utilised to deploy the company's customer facing web-site.



Orchestrating SDN Controllers Using Ansible

[ 136 ]

Each of the 100 developers are split into a set of delivery teams that contain 10 or so
developers, each forming a scrum teams, and each team look after a set amount of micro-
services relative to their complexity. The company has 10 network engineers that are
required to serve the networking needs of the 100 developers as well as maintaining uptime
of the network.

However, in this model if all network operations are done manually then the network
engineers will not be able to keep up with the change requests, so they will either have to
work late nights and subsequently become burned out or the productivity of those
developers will be impacted as the network engineers will become the bottleneck for
throughput.

This model will simply not scale, so operational change is required as one network engineer
will be required for every 10 developers and in future as the company expands it will want
to invest in development staff to create products, it will not expect to have to scale up
network staff to support those operations, so automation becomes a must as developer to
network engineer ratio may increase:

The business may then look at software defined networking as the solution to solve their
scaling problems, with the mind-set of simplifying the network. This means that developers
can carry out network changes more quickly to support developer demand.

But simply putting in a software defined networking solution such as CISCO ACI, Juniper
Contrail, VMware NSX or Nuage Networks will not help the situation unless processes are
automated and the inefficient business processes are addressed.

New Responsibilities in API Driven Networking
The role of a network engineer in a software defined network therefore has to evolve, they
have to devolve some power to the developers like operations staff were required to for



Orchestrating SDN Controllers Using Ansible

[ 137 ]

creation of infrastructure. But software defined networking shouldn't mean giving complete
open access of the API to developers, this is also a recipe for disaster, efficient controls need
to be put in place that act as a quality gate not as an inhibitor for productivity.

Some operational workflows in an overlay network should still be controlled by a qualified
network engineer and governed by security, but not to the detriment of developer's daily
requirements. It wouldn't be fair to expect a developer, to be well versed enough in
networking, to log onto a router and set up their routing requirements for their application
unaided so there has to be some middle-ground.

Allowing a developer access to network devices in an uncontrolled manner poses the risk of
a network outage which goes against one of the three main networking principles and
compromises redundancy and network engineers have a responsibility for uptime of the
system.

Overlay Architecture Set-up
When setting up an overlay network it will typically be built in a green-field environment
as part of an application migration programme and target environment for a legacy
network. The application migration could either be done in a piecemeal format or done in
one step, where everything is migrated, then switched on as part of a migration big bang go
live activity.

Regardless of the application migration approach, it is very important that the overlay
network is set-up to achieve the following goals:

Agility
Minimise mean time to recover
Repeatability
Scalability

The performance of the network will be determined by the underlay components and
silicon used, but the definition of the overlay network in terms of constructs and workflow
of the SDN object model need to be correct to make sure that any operation can easily be
carried out quickly, repeatability and that the design scales and can support roll-back. The
SDN before implementation should be performance tested to make sure the virtualisation
overhead does not impact performance.

So to quickly recap on the Nuage VSP object model that was covered in Chapter 2:

Organisation: Governs all Layer 3 domains



Orchestrating SDN Controllers Using Ansible

[ 138 ]

Layer 3 domain Template: A layer 3 domain template is required before child layer 3
domains are created. The Layer 3 domain template is used to govern overarching default
policies that will be propagated to all child layer 3 domains. If a layer 3 domain template is
updated at template level then the update will be implemented on all Layer 3 domains that
have been created underneath it immediately.

Layer 3 domain: Can be used segment different environments so users cannot hop from
subnets deployed in a under a layer 3 Test domain to a layer 3 Production domain.

Zones: A zone segments firewall policies at application level, so each micros-service
application can have its own zone and associated ingress and egress policy per Layer 3
Domain.

Layer 3 Subnet: This is where VMs or bare metal servers that are deployed. In this example
we see Subnet Application1 and Subnet Application2



Orchestrating SDN Controllers Using Ansible

[ 139 ]

Application Specific Egress Policy: Unique application policies for egress rules that can be
used to view each individual applications connectivity rules

Application Specific Ingress Policy: Unique application policies for ingress rules that can
be used to view each individual applications connectivity rules

Leaking Domain: This is used to leak routes into the overlay network via a layer 3 subnet,
to bridge connectivity between the green-field network and a legacy network



Orchestrating SDN Controllers Using Ansible

[ 140 ]

So utilising Nuage VSP as an example we had an organisation, two layer 3 domains
dictating Test and Production, with a zone for each micro-service application encapsulating
its unique micro-subnets and virtual machines:

In terms of network set-up automation could be used by network team would be in control
of the following constructs in the overlay network:

Organisation:

Layer 3 domain Template:



Orchestrating SDN Controllers Using Ansible

[ 141 ]

Layer 3 domain:

Leaking Domain:

The organization is most likely a day-one set-up activity, while the domain template policies
can be defined and dictated by the network and security team. Any security policies applied
across all networks, regardless of the domain they are deployed are governed by the
domain template. So test environments will have identical template policies to production
and meet all security, governance and regularity requirements.

While development teams can create unique test environments under the Test layer 3
domain with the same subsequent policies, without the need to audit each and every one.
The application security rules that developers use can then be agreed between security and
development teams.

The other day-one set-up activity will likely be setting up access to legacy network, that
teams will be migrating applications from as for a time, so they will still have dependent
applications residing in that network.

The Nuage VSG and associated leaking domain can be used to do this, which leaks routes
into the overlay network and into specific layer 3 domains. The Nuage VSP Platform allows
network teams to define the GRThubDomain leaking domain in software. In this example
a leaking domain is set-ip host interfaces are connected into the Front End, Business Logic
and Back End routers in the legacy network:



Orchestrating SDN Controllers Using Ansible

[ 142 ]

The Nuage VSP platform then allows the newly created GRThubDomain to be associated
with the Production or Test layer 3 domains by associating a leaking domain against them.

In the below example the GRThubDomain leaking domain is associated with the
Production layer 3 domain to allow legacy network routes to be accessible from zones and
subnets residing under the Production layer 3 domain:

The network team will also be responsible for monitoring the network and making sure that
it is scaled out appropriately as more compute is introduced, so leaf switches will be
introduced and ordered as and when new racks are scaled out. While new spine switches
are introduced to avoid saturation of links.



Orchestrating SDN Controllers Using Ansible

[ 143 ]

Self-Service Networking
It is important to focus on the network operations that developers typically require network
tickets for as a start point. These are the common pain points for developers that prove to be
blockers for productivity. Network operations can be effectively separated by looking at the
common themes on network ticketing systems that have been raised by development teams.

These are typically the mundane operations that network operators should make self-
service:

Opening firewall ports
Creation of new development environments
Connectivity to other applications

These operations should be set up as self-service operations in a software defined network.

In terms of the Nuage VSP object model, network operators should allow developers the
ability to control the following object model entities:

Zones:

Layer 3 Subnet:



Orchestrating SDN Controllers Using Ansible

[ 144 ]

Application Specific Egress Policy:

Application Specific Ingress Policy:

This will allow the network operations team to provide development teams with the
organisation, layer 3 domains and the layer 3 domain template.

Underneath either the Test or Production layer 3 domains teams can have the flexibility to
create new zones unique to each micro-service application, then any associated subnets and
virtual machines that they need to provision.

The subnets will be micro subnets so something akin to a /26, /27 or /28 may be acceptable.
The network team will provide the subnet schema and a booking system where teams if
they are on-boarding an application or creating a new application can reserve the address
space in an IPAM solution to prevent clashes with other teams.

As long as each delivery team follows those constructs the networking team does not need
to be involved in the provisioning of new applications or onboarding, it will become self-
service like AWS.

However, in order to properly facilitate development teams the network team should



Orchestrating SDN Controllers Using Ansible

[ 145 ]

ideally along with the operations team create the self-service automation that the
development teams can use to carry out the following in Nuage VSP:

Creation of Zones
Deletion of Zones
Creation of Subnets
Deletion of Subnets
Creation of Ingress Rules
Deletion of Ingress Rules
Creation of Egress Rules
Deletion of Egress Rules
Creation Of Network Macros (External Subnets)
Deletion Of Network Macros (External Subnets)

No matter the SDN solution implemented, the self-service constructs required will be
similar, in order to scale network operations a lot of the operations have to be automated
and made self-service.

Ideally these self-service workflow applications could be added to Ansible playbooks or
roles and included in the deployment pipelines to provision the networking along with the
infrastructure.

Immutable Networking
To fully take advantage of the benefits of software defined networking, utilising immutable
networking brings multiple benefits over static networking. Like infrastructure as code
before it, networking as code and the utilisation of immutable networking means that every
time an application is deployed its networking is freshly deployed from the source control
management system.

If application connectivity is wrong in test environments then the application connectivity
will be wrong in production environments, so wrong connectivity changes should never
reach production.

A/B Immutable Networking
Networking should be integrated and become part of the application release cycle, with
networks being built from scratch every single release and loaded from the source control
management system. Networks can be deployed using immutable A/B Networking.



Orchestrating SDN Controllers Using Ansible

[ 146 ]

Utilising Nuage VSP integrated with OpenStack as an example:

A network will reside under a layer 3 domain.
Each zone will be unique to a particular application.
Underneath the zone a subnet will be created in both Nuage and OpenStack.
Virtual machines for each release will be created in OpenStack and associated
with the Nuage Subnet

The first release of Application1version 1.1 is deployed to the Test layer 3 domain,
deploying two virtual machines on Subnet A Application1, sitting under
theApplication1zone:

The second release of the application version 1.2 is deployed to the Test layer 3 domain,
scaling down the release and deploying one virtual machine on Subnet B Application1,
sitting under the Application1 zone:

Once the release 1.2 has been put into service on the load balancer, doing a rolling
deployment, the new virtual machine on Subnet B Application1 will be in service, Subnet
A Application1 can then be destroyed along with its virtual machines as part of the
deployment clean-up phase:



Orchestrating SDN Controllers Using Ansible

[ 147 ]

The next release of Application 1, release 1.3 will then be deployed into Subnet A
Application1, and scaled up again to two virtual machines

Once the release 1.2 has been put into service on the load balancer, doing a rolling
deployment, the new virtual machines on Subnet A Application1 will be in service, Subnet
B Application1 can then be destroyed along with its associated virtual machine as part of
the deployment clean-up phase:

Releases will alternate between Subnet A Application1 and Subnet B Application1 for
every release, building the network from source control each time and cleaning up the
previous release each time.

Clean-up of Redundant Firewall Rules
One of the major tech debt issues with firewalls is that over time they accumulate lots of out
of date ACL rules as applications are retired or network connectivity changes. It is often a
risk to do clean-up as network engineers are scared that they will potentially cause an
outage. As a result manual clean-up of firewall rules is required by the network team.

When utilising A/B immutable network deployments, egress and ingress policies are



Orchestrating SDN Controllers Using Ansible

[ 148 ]

associated with subnets, meaning in Nuage VSP when a subnet is deleted all ACL policies
associated with that subnet will be automatically cleaned up too as part of the release
process.

In the below example, Subnet A Application1 has the following connectivity, so when the
subnet is deleted as part of the release process all these subnet specific ACL rules will be
cleaned up:

It is important to note that as ACL rules exist subnet to zone for application dependencies, if
an A subnet deployment is in service, then the B deployment will be brought up in parallel
with its associated ACL ingress and egress rules to replace the A deployment.

All applications dependant on that application will have an ACL rule pointing at the zone,
this means they will not lose connectivity to the application as their rules will be current
subnet either A or B to the dependant applications Zone.

To illustrate this in the below example currently deployed Subnet Application1 has a
subnet to zone ACL rule to connect to Application2. So despite Application2 egress and
ingress policies alternating between A and B deployments each time it is released:



Orchestrating SDN Controllers Using Ansible

[ 149 ]

The required ACL rules are always available for Application1 as a dependency as it
subscribes to connectivity at the zone level as opposed to the subnet level:

Application Decommissioning
The use of immutable subnets makes the decommissioning of applications easy, when they
are no longer required. As the clean-up logic already exists for subnets and associated ACL
rules, that logic can be re-used to do a full clean-up of the application has to be retired. So a
clean-up pipeline can easily be provided by the operations and networking team for
development teams to clean-up applications that are no longer required. There allocated
subnet ranges can then be released by the IPAM solution so they are available to new
micro-service applications.

Using Ansible to Orchestrate SDN Controllers
Ansible as discussed in Chapter 5, can be used to issue configure servers as well as issuing
commands directly to an SDK or REST API:



Orchestrating SDN Controllers Using Ansible

[ 150 ]

This is very useful when orchestrating SDN Controllers which provide Restful API end-
points and an array of SDKs to control software defined object models that allow network
operators to automate all network operations.

In terms of the Nuage VSP platform the VSD which builds the overlay network, is all REST
API calls behind the scenes, so all operations can be orchestrated using the Nuage Java or
Python SDK which wrap REST API calls. The Nuage VSPK would simply need to be
installed on the Ansible Control Host and then it can be used to orchestrate Nuage.

As Ansible is written in Python, modules can be easily created to orchestrate each object
model in Nuage entity tree. Using the Nuage VSPK modules could alternately be written in
any programming language that is available such as Java, but Ansibles boilerplate for
Python is probably the simplest way of creating modules.

The Nuage VSPK object model has parent and child relationships between entities, so
lookups need to be done on parent objects to return the child entities using the unique
identifier associated with the entity.

The example below highlights the list of operations required to build the Nuage VSPK
object tree.

A new Nuage session is started1.
A user is used to create a child enterprise2.
A domain template is created as a child of the enterprise3.
A domain is an instantiated child of the domain template4.
A child zones is created against the domain5.
A child subnet is created against the zone6.



Orchestrating SDN Controllers Using Ansible

[ 151 ]

Using SDN for Disaster Recovery
One of the main benefits of using Ansible for orchestration is it can be used to create a set of
day one playbooks to build out the initial network prior to it being used for self-service by
developers. So the initial set-up of the Nuage organisation, layer 3 domain template and
layer 3 domains can be created among any other necessary operations as a day one
playbook or role.

The Nuage Python VSPK can be utilised to easily create the organisation called Company,
layer 3 domain template called L3 Domain Template and two layer 3 domains called Test
and Prod as per the Nuage VSPK object model as shown below:

Each of these Python commands can easily wrapped in Ansible to create a set of modules to



Orchestrating SDN Controllers Using Ansible

[ 152 ]

create a day one playbook utilising delegate_to localhost which will execute each module on
the Ansible Control Host and then connect to the Nuage VSPK.

Each module by default should be written so it is idempotent and detects if the entity exists,
before issuing a create command, if the entity already exists then it shouldn't issue a create
command if the overlay network is already in the desired state.

The day one playbook can be used to build the whole network from scratch in the event of a
disaster if the whole network needs to be restored. The day one playbook should be stored
in source control. While each deployment pipeline will build the applications zones and
subnets and virtual machines under the initially defined structure. A leaking domain
governing legacy network connectivity and leaking domain association can also be added
to the day one playbook if required.

Storing A/B Subnets and ACL Rules in YAML files
Ansible can also be utilised to store self-service subnet and ACL rule information in var files
that will be called from a set of self-service playbooks as part of each development team's
delivery pipelines. Each application environment can be stored in a set of var files defining
each of the A/B subnets.

A playbook to create A or B subnets would be used to run delegate_to local host to carry out
the creation actions against the Nuage VSD API.

The playbook would be set-up to:

Create the Zone if not already created1.
Create the Subnet in Nuage mapped to OpenStack using subnet YAML file2.
Apply ACL policies for ingress and egress rules to the policies applying them3.
directly to the subnet

As with the day one playbook, unique modules can be written for each of the VSPK
commands; in this example the Python VSPK creates a zone called Application1 and a
subnet called Subnet A Application1

So these commands can also be wrapped in Ansible modules should be completely



Orchestrating SDN Controllers Using Ansible

[ 153 ]

idempotent and the state is determined by the var files that are stored in source control.

The logic in the playbook would load the var files by pulling them from source control at
deployment time. The playbook would then use the jinja2 filter conditions to detect if either
the A or B subnet or neither was present using the when conditions.

If neither subnet was present subnet A would be created, or if subnet A was present then
subnet B would be created.

The playbook could read this information from the environment specific var file that is
specified below, as it is idempotent it will run over the zone, creating it if it doesn't already
exist and using the playbook jinja2 when conditions to either create subnet A or B:

A unique set of A and B subnets would be checked into source control as a pre-requisite for
every required environment, with one or more environments per layer 3 domain.

ACL rules should ideally be consistent across all environments encapsulated in a layer 3
domain, so an explicit set of ACL rules would be created and assigned to the applications
unique policy for ingress and egress rules that would span all environments.

Each environment could have its own unique policy for egress and ingress per layer 3
subnet. The Ansible playbook could then append a unique identifier for environment to the
policy name if multiple environments existed under the Test layer 3 domain to server
integration, UAT or other test environments.

The unique ACL rules for an application can be filled in by development teams as part of
the on-boarding to the new platform based on the minimum connectivity required to make
the application function, with a deny all applied at layer 3 domain template.

The ACL rules should always be subnet to zone for inter-dependencies and each ACL rule
will be created with the subnet as the source, so that when subnets are destroyed the ACL
rules will automatically be cleaned up.

An example of how the self-service ACL rules file would look is displayed below which
would create 2 ingress and 1 egress rule against the Application1 policy:



Orchestrating SDN Controllers Using Ansible

[ 154 ]

The self-service playbook could be provided to development teams so that they always
have a standard way to create zones and subnets. The YAML structure of the var files will
also provide templates of what the desired state of the network should be. This means that
pointing the automated pipelines at another Nuage endpoint would mean the whole
network could be built out programmatically from source control.

Summary
In this chapter we have looked at different networking operations that SDN controllers can
help automate and sought to debunk some of the common misconceptions associated with
software defined networking.

We then looked at ways which companies can benefit from using software defined
networking and looked at ways in which SDN solutions can help solve some of the
challenges associated with network operations.

We then looked at how network operations needs to adapt and embrace automation so
development teams can self-serve a subset of different networking tasks and ways in which
networking can be divided and responsibilities shared. We then focused on the benefits of
immutable A/B networking and how it can help simplify the network and build consistent
programmatically controlled networks while keeping firewall rules clean.

In the next chapter we will look at continuous integration and how network operations can
be take some of the best practices from development teams and apply them to networking
operations, so that networking is versioned properly and can be used to roll forward and
roll-back changes.



7
Using Continuous Integration

Builds For Network
Configuration

This chapter will focus on continuous integration, what the process entails, and why it is
applicable to network operations. We will look at why continuous integration processes are
vitally important when automating network operations.

This chapter will discuss the benefits of configuration management tooling and look at
practical configuration management processes that can be used to set-up continuous
integration processes and tooling that is available to support continuous integration
processes.

In this chapter the following topics will be covered:

Continuous Integration Overview
Continuous Integration Tooling Available
Network Continuous Integration

Continuous Integration Overview
Continuous integration is a process used to improve the quality of development changes. A
continuous integration process, when applied to developers, takes new code changes and
integrates it with the rest of the code base. This is done early in the development lifecycle,
creating an instant feedback loop and associated pass or failure against the change.



Using Continuous Integration Builds For Network Configuration

[ 156 ]

Prior to continuous integration developers would sometimes only find out that code
changes did not work when a release needed to be packaged. At this point all developer
changes were combined by a release management or operations team. By the time the
release was ready to be packaged a developer would have moved on to new tasks and not
have been currently working on that piece of work anymore meaning fixing the issue
incurred more time delaying the release schedule.

A good continuous integration process should be triggered every time a developer commits
a change, meaning that they have a prompt feedback cycle to tell them if their change is
good, rather than finding out weeks or months later that their commit had an issue which
will slow down the release process.

Continuous integration works on the premise of fixing as far left as possible meaning at
development time, with the furthest right being production. What this phrase really means
is that if an issue is found earlier in the development cycle then it will cost less to fix and
have less of an impact to the business as it will ideally never reach production.

A continuous integration process follows the following steps, commit change to source
control management (SCM), the repository change is validated and a pass or failure is
issued back to the user:

The output of the continuous integration process should be what is shipped to test
environments and production servers. It is important to make sure it is the same binary



Using Continuous Integration Builds For Network Configuration

[ 157 ]

artifacts that have went through the CI and relative testing are the same ones that will
eventually be deployed onto the production servers.

Processes such as continuous integration are used to create feedback loops that show issues
as soon as they occur which saves cost. This means the change is fresh in the implementers
mind and they will be able to fix it or revert the change quickly, with developers currently
iterating the code collaboratively and fixing issues as soon as they occur.

Although all IT staff may not follow identical deployment strategies, feedback loops and
validation should not unique to just developers. Sure a compilation process may not be
required when making network changes, but other validations can be done against a
network device or a change on a SDN controller or load balancer to validate the changes are
correct.

Developer Continuous Integration
A continuous integration process in its purest form takes a developer code change,
integrates it with other developers latest changes and makes sure it compiles correctly. The
continuous integration process can then optionally runs a set of unit or integration tests on
the code base, packages the compiled binaries and then upload the build package to an
artifact repository, tagging the code repository and package with a unique version number.

So a simple continuous integration process can be summarised as the following feedback
loop:

Developer commits code change to SCM system and integrated with the code1.
base
The code base is pulled down to a CI Build Server2.
The code is compiled checking the new commit is valid and non-breaking and3.
repository is tagged with the version number
Return Pass or Fail exit condition and feedback to users4.
Repeat steps 1-5 for next code change5.



Using Continuous Integration Builds For Network Configuration

[ 158 ]

Steps 1 and 2 of the process are processes taken care of by source control management
systems. Some of the popular source control management systems over the past ten years
have been Subversion, ClearCase, Team Foundation Server, Perforce and CM Synergy.
While distributed source control management systems have moved from centralised to
distributed source control management systems such as GIT and Mercurial and in recent
years.

Step 3, 4 and 5 are wrapped in a continuous integration build servers, which act as the
scheduler for validation using tools such as Cruise Control, Hudson or more recently
Jenkins, Travis and Thoughtworks Go.

Step 4 can is be carried out using compilation tools such as Maven, Ant, MsBuild, Rake or
even a simple make file which is the main validation step in the process.

The process is carried out polling for every new commit and repeating the process
providing a continuous feedback loop.

Additional steps such as unit or integration tests can be subsequently bolted on to the
process after the compilation is successful for increased validation of the change. Just
because code compiles doesn't mean it is always functional. When all compilation and tests
are packaged a 6th step may be introduced to package the software and deploy it to an
artifact repository.

All good continuous integration processes should work on the premise of compile, test and
package. So a code release should be packaged once and the same package should be
distributed to all servers at deployment time.



Using Continuous Integration Builds For Network Configuration

[ 159 ]

Database Continuous Integration
After continuous integration was set up to help improve the quality of code releases,
developers that controlled database changes generally thought about doing similar
processes for database changes. As database changes are always a big part of any enterprise
release process having broken database releases can prevent software release being
deployed and released to customers.

As a result, database schema changes or database programmatic stored procedures would
equally benefit from being integrated earlier on in the continuous integration process and
tested in a similar way using quick validation and feedback loops.

In a way developers have an easy ride when it comes to continuous integration as most
code is compiled and either works or it doesn't returning a binary pass or fail in terms of
compilation. Scripting languages are of course the exception to this rule, but these can be
supplemented using unit tests to provide the code validation on various code operations
and both code are improved by good test coverage.

When doing database schema changes a number of test criteria needs to be met prior to
pushing the code to production. Good Database developers will provide roll forward and
roll-back scripts when making SQL changes which will be applied to production databases
and normally test these on their development machines prior to checking them into a source
control management system.

Database developers typically do this using a roll-forward and roll-back release script and
store them in source control management systems. The roll-back is only performed in the
case of an emergency when it is being applied to production if the roll-forward for any
reason fails.

So a typical database release process will have the two following steps:

Apply SQL Table or Column Creation, Update or Deletion or stored procedure1.
using release script
If apply fails toll-back SQL Table or Column Creation, Update or Deletion or2.
stored procedure using rollback release script

So prior to any production release, a database developers roll-forward and roll-back scripts
should be tested. As multiple database developers are part of the same release these
database release scripts should be applied in the same sequenced order as they would be
applied to production as one developers change could break another developers changes.

Before setting up a database continuous integration a few pre-requisites are required:



Using Continuous Integration Builds For Network Configuration

[ 160 ]

A database schema matching production with a relative data set and all the same
characteristics such as indexing so we are testing against a like live version.
The continuous integration process should also utilise the same deployment
runner script that is used to sequence the database release scripts and provide
rollback in case of failure.

Testing roll-back scripts is as integral to testing roll-forward scripts so the database
Continuous Integration (CI) process will need valid tests to encompass rollback.

A common database deployment workflow applied by a database developer on their local
workstation would look like this:

Apply roll-forward database script using deployment runner script to CI test1.
database
Apply roll-back database script using deployment runner script to CI test2.
database
Apply roll-forward database script using deployment runner script to CI test3.
database
Apply roll-back database script using deployment runner script to CI test4.
database

If the above set of steps are successful then the roll-forward and roll-back database scripts
are sound in terms of syntax and won't fail when applied to the production database.

The above steps also check the validity of the sequencing using the deployment runner and
check that the integrated database deployment scripts work together and do not conflict on
roll-back either.

Already using continuous integration, we have ruled out multiple possible scenario that
could cause a failure in production. However, the above continuous integration process
alone is not enough, as with a code compilation, just because SQL not returning an error
doesn't mean the database roll-forward and roll-back scripts are technically valid, so
database changes still need to be supplemented with functional tests.

Continuous integration is about putting quality checks earlier in the delivery lifecycle and
creating feedback loops. Continuous integration is not about proving that a release is 100%
valid, it should instead be looked at as a way of proving that a checking process has been
followed which prove that a release is not broken.

A simple continuous integration database process would provide the following feedback
loop for database developers:



Using Continuous Integration Builds For Network Configuration

[ 161 ]

Developer commits roll-forward and roll-back change to SCM system and it is1.
integrated with the code base
The code base is pulled down to a CI Build Server2.
Apply roll-forward database script using deployment runner script to CI test3.
database
Apply roll-back database script using deployment runner script to CI test4.
database
Apply roll-forward database script using deployment runner script to CI test5.
database
Apply roll-back database script using deployment runner script to CI test6.
database
Return Pass or Fail exit condition and feedback to users7.
Repeat steps 1-7 for next database change8.

Once the release is ready to go-live the database CI will have the final changes applied
preparing it for the next release and iteration of database changes and next batch of
database scripts that will be applied by the next release. Alternately the CI database schema
can be refreshed from production.

A good concept is to always create a baseline of the database so that if a database developer
unwittingly commits a bad roll-forward and roll-back database then the CI database can be
easily restored to the desired state and not prove a bottle-neck for development.

Of course this is one way of dealing with validation of database changes and others are
possible. Microsoft offers database projects for this very purpose but the validation engine
is not important, having validation in the process early in the release life-cycle is the



Using Continuous Integration Builds For Network Configuration

[ 162 ]

important takeaway.

It is important to make sure that nothing goes to production unless it goes through the CI
process, there is no point setting up a great process and then skipping it as it makes the CI
database schema invalid and could have massive consequences.

Tooling Available For Continuous
Integration
Many different flavours of configuration management tooling are available to help build
continuous integration processes, so there is a rich variety of different options of options to
choose from which can seem daunting at first.

Tools should be used picked to facilitate processes and will be selected by teams or users.
As described in Chapter 3 it is important to first map out requirements that need to be
solved and the desired process before selecting any tooling.

By the same token it is important to avoid tools sprawl, which is all too common in large
companies and have only one best fit tool for every operation rather than multiple tools
doing the same thing as there is an operational overhead for the business. So if
configuration management tooling already exists in a company for continuous integration
then it will more than likely it will be able to meet the needs.

When considering the tooling for carrying out continuous integration processes the
following tools are required:

Source Control Management (SCM) System
Validation Engine

The source control management system is primarily used for storing code or configuration
management configuration in a source control repository.

The validation engine is used to schedule the compilation of code or validate configuration.
So continuous integration build servers are used for the scheduling and numerous
compilation or test tools can be used to provide the validation.

Source Control Management Systems
Source control management systems provide the center of a continuous integration process,
but no matter the Source Control Management (SCM) system that is chosen, at a base level



Using Continuous Integration Builds For Network Configuration

[ 163 ]

should have the followings essential features:

Be accessible to all users that need to push changes
Store the latest version of files
Have a centralised URL that can be browsed by users to see available repositories
Have a role based access permission model
Support roll-back of versions and version trees on files
Show which user committed a change along with the date and time of the change
Support tagging of repositories, this can be used to check-out a tag to show all the
files that contributed to a release
Support multiple repository branches for parallel development
Have the ability to merge files and deal with merge conflicts
Have a command line
Plugs into Continuous Integration Build servers

Most SCM systems will also support additional features such as:

Have a programmable API or SDK
Easily integrated with developer IDEs
Integrate with Active directory or LDAP for role based access
Support integration with change management tools, where a SCM commit can be
associated with a change ticket
Support integration with peer review tools

SCM systems can either be centralised or distributed, in recent years distributed source
control management systems have increased in popularity.

Centralised SCM Systems
When source control management systems were originally created to facilitate development
teams, a centralised architecture was used to build these systems. A centralised source
control management system would be used to store code and developers would access the
repository they were required to make code changes against and make edits against a live
centarlised system.

For developers to remain productive the centralised SCM system would always need to be
available and online.

Developers would access the repository where they wish to make code changes



Using Continuous Integration Builds For Network Configuration

[ 164 ]

Check-out the file they wished to edit
Make changes
Then check the file back into the code central branch.

The source control management system will have a locking mechanisms to avoid collisions
where only one file can be edited by one user at a time. If two developers accessed the file at
the same time the online source control management system would say it was locked by
another developer and they would have to wait until the other developer made their
change prior to being allowed to check out the code and make the subsequent change.

Developers when making changes would make a direct connection to repositories hosted in
the centralised SCM system to make code updates. When a developer made a change, this
in turn would write the changes in state to a centralised database updating the state of the
overall repository.

The state change would then be synchronised to other developer's views automatically. One
of the criticisms of centralised SCM systems was the fact that developers sometimes wanted
to work offline, so some centralised source control management systems introduced the
concept of snapshot views, which was an alternative to the permanently live and updated
repository view and also introduced offline update features.

A snapshot view in a centralised SCM system was a snapped copy of the live repository at a
given point in time. Best practice would dictate that before committing any development
changes to the centralised server, the snapshot view should be updated, any merge conflicts
dealt with locally before checking-in any changes that were made in the snapshot view.

Developers would integrate with the centralised SCM system using the command line
interface or GUI that was integrated with a developers IDE for ease of use so they didn't
need to jump between the command line and the IDE.

Examples of good centralised source control management systems are:

ClearCase
CM Synergy
Team Concert
Team Foundation Server
Subversion
Perforce



Using Continuous Integration Builds For Network Configuration

[ 165 ]

Distributed SCM Systems
Distributed SCM systems do not have a central master and instead replicate changes to
multiple places. Users will create replicas of a repository and then can pull or push using
their own local copy sitting on their local development machine. Each repository in a
distributed system will have an owner or maintainer and users will submit changes in the
form of pull requests. Developers will create a pull request which is like a merge request,
but instead the repository maintainer can then approve if they accept the pull request or
not. Once accepted the commit will be pulled into the branch.

One of the main benefits of a distributed SCM system is the ability to work on the
repository offline. Changes can be committed to the local repository and then once back
online pushed to the master branch when developers are ready.

Distributed SCM systems are more merge friendly and efficient, so work better with agile
development which often means multiple small repositories for each micro-service rather
than large centralised code basis for monolith applications.

Examples of distributed SCM systems are:

GIT
Mercurial
Veracity

Branching Strategies
Branching strategies are used to meet the needs of modern software development, with
multiple branches serving different use-cases and supporting multiple versions of the code.

SCM systems traditionally relied on a mainline branch, often referred to as the trunk or
master branch. A mainline branching strategy meant that the mainline/trunk branch is
always the clean and working version of the code and the files on this branch are
representative of the code in production.

Development branches were then created for active development on the latest releases
while release branches were used for maintenance releases if bugs were identified on the
production system.

There are many different branching strategies that can be implemented, in the below
example the mainline branching strategy is illustrated.

The Mainline/Trunk/Master branch is kept clean and all releases are done by merging
changes to it and this branch is tagged every time a release is done. This allows a diff to be



Using Continuous Integration Builds For Network Configuration

[ 166 ]

done between tags to see what has changed.

The development branch is used for active development and creates version 1.0, then
merges to the Release Branch 1.0, which in turn immediacy merges back to
Mainline/Trunk/Master.

The development branch then starts active development on version 2.0, while the Release
Branch 1.0 is used for 1.x maintenance releases if a bug fix is required:

The mainline branching strategy typically meant a lot of merging and coordination and
release managers were required to coordinate merges and releases of versions on release
days.

Centralised configuration management systems were set-up to favour a mainline approach
to software development and this was good when supporting waterfall development,
which was sufficient when teams were producing only one release per quarter so the
laborious merge process was not happening daily.

However, with the transition to agile software development meant that implementing the
mainline strategy became more difficult as teams release more frequently and move
towards continuous deployment and delivery models.

An alternate branching strategy better suited to agile development is using feature
branches, as development is done on a per sprint basis every two weeks. So the master or
mainline branch is still used but very short-lived feature branches are created by developers
during a sprint. Distributed SCM systems put the developer in charge of the merging as
opposed to using a centralised release management team for these operations.

In the below example we can see an example of feature branching, where three different
feature branches Feature A, Feature B and Feature C are created during a two week sprint.
When developers have finished development their features merged back into the
Trunk/Master branch.



Using Continuous Integration Builds For Network Configuration

[ 167 ]

Every time a commit is done from a merged feature branch or directly to Trunk/Master a
continuous integration process will be started which will validate the changes, every
successful check-in then becomes a potential release candidate. After it is packaged by the
continuous integration process the release is ready for deployment as shown in the
following figure:

Some purists will argue against the merits of feature branching at all but it is down to the
individual teams to govern which approach works best for them and is subjective. Some
will also argue that it adds an additional level of control until adequate testing is created on
the Trunk/Master.

With all branches when a commit is done it should trigger a CI build and associated
validation of whatever has been committed. This creates feedback loops at every stage.
Anything that goes into any branch should be governed by a CI build to gate-keep good
changes and highlight breaking changes as soon as they happen so they can be fixed.

Continuous Integration Build Servers
Various continuous integration build servers are available to help schedule validation steps
or tests. One of the first continuous integration build servers was Cruise Control from
Thoughtworks that has since evolved into Thoughtworks Go.

Cruise Control allowed users to configure an XML file, which set up different continuous
integration build jobs. Each build job ran a set of command line options, normally a
compilation process, against a code repository and returned a green build if it was
successful and a red build if the build was broken. Cruise Control would highlight the
errors in the form of build logs providing feedback to users via the Cruise Control
dashboard or by email.

The market leading build server at the moment is Cloudbees Jenkins which is an open
source project and a fork of the original Hudson project. Jenkins really took away the need



Using Continuous Integration Builds For Network Configuration

[ 168 ]

to configure XML files and moved all set-up operations into the graphical user interface or
API. It comes with a plethora of plug-ins that can pretty much carry out any continuous
integration operation possible. It also has recently delved into continuous delivery as of
Jenkins 2.x.

The next evolution of CI systems has moved towards cloud based solutions with Travis
being a popular choice. This allows users to check-in a Travis YAML file which creates the
build configuration from source control and can be versioned along with the code. This is
something Jenkins 2.0 is doing now using the jenkinsfile and that the Jenkins job builder
project had been doing for the OpenStack project.

There are many different options when looking for continuous integration build servers
consider the following, no matter the continuous integration build system that is chosen, at
a base level it should have the followings essential features:

Dashboard for feedback
Notion of Green and Red builds
Scheduling capability for generic command lines
Pass or Fail builds based on exit conditions 0 being a pass
Plug-in to well-known compilation tools
Ability to poll source control management systems
Ability to integrate with unit testing framework solutions such as Junit, Nunit
and more
Role based access control
Ability to display change lists of the latest commits to a repository that have been
built

Most SCM systems will also support additional features such as:

Have a programmable API or SDK
Provide email or messaging integration
Integrate with Active directory or LDAP for role based access
Support integration with change management tools, where a SCM commit can be
associated with a change ticket
Support integration with peer review tools



Using Continuous Integration Builds For Network Configuration

[ 169 ]

Network Continuous Integration
So why should network engineers be interested in continuous integration? A network team
should be interested in continuous integration if they want to improve the following points
which were focused on in Chapter 3:

Velocity of change
Mean time to resolve
Improved uptime
Increased number of deployments
Cross skilling between teams
Removal of the bus factor of one

The ability to easily trace changes that network changes and see which engineer made a
change is something that continuous integration brings to the table. This information will be
available by looking at the latest commit on a continuous integration build system. Roll-
back will be as simple as deploying the last tagged release configuration as opposed to
trawling through device logs to see what changes were applied to a network device if an
error occurs.

Every network engineer can look at the job configuration on the continuous integration
build system and see how it operates so every network engineer knows how the process
works so it helps with cross skilling.

Having continual feedback loops will allows network teams to continuously improve
processes, if a network process is sub-optimal then the network team can easily highlight
the pain points in the process and fix them as the change process is evident to all engineers
and done in a consistent manner.

When network teams use continuous integration processes it moves network teams out of
fire-fighting mode and into tactical continuous improvement and optimisation mode.
Continuous integration means that the quality of network changes will improve as every
network change has associated validation steps that are no longer manual and error prone.

Instead these checks and validations are built in and carried out every time a network
operator commits a network change to the source control management system. These
changes can be built up over time to make network changes less error prone and give
network engineers the same capabilities as developers and infrastructure teams.

Utilsing network continuous integration also takes the fear out of making production
changes, as they are already validated and verified as part of the continuous integration
process, so production changes can be viewed as just a business as usual activity. Not



Using Continuous Integration Builds For Network Configuration

[ 170 ]

something that needs to be planned weeks in advance or worried about. The view is if an
activity is problematic then do it more often, continually iterate it, improve it and make
people less afraid of doing it.

Having covered the topics such as different SCM branching strategies, continuous
integration build servers and shown how continuous integration can be used for code and
database changes. It should now be clear what continuous integration is and that it is not
just about compilation of code. Instead continuous integration is instead about validating
parallel changes, making sure they all work together and providing feedback loops to users.

The DevOps movement is about interacting with others and removing bottlenecks so
continuous integration can be equally applied to networking. Automation of processes and
collaboration between teams using similar concepts is very important so continuous
integration really is the glue that holds infrastructure and networking as code together.

To a network engineer concepts such as continuous integration may seem alien at first, but
instead of talking about deep dive compilation processes it should be focusing on process. If
any network engineer was asked if they could have a quick and easy to use process that
validated all their network changes before production, providing quick feedback loops,
then the answer will be yes. Continuous integration can therefore be a useful tool which
would mean less broken production changes.

In this book in Chapters 4, 5 and 6 we looked at way that network changes could be treated
as code, using configuration management tooling such as Ansible to configure network
devices, load balancers and SDN controllers.

So when considering the diagram below, the question regarding continuous integration of
network changes is not asking if continuous integration possible for network changes. It
should instead be questioning which validation engines can be used for network changes
after a SCM commit has taken place to give a quick feedback loop of Pass or Fail to network
operators:



Using Continuous Integration Builds For Network Configuration

[ 171 ]

Network Validation Engines
The challenge when creating continuous integration builds for network changes is what to
use for the validation engine. Network changes when using Ansible rely heavily on YAML
configuration files, so the first validation that can be done is checking if the YAML var files.

The var files are used to describe the desired state of the network so checking that these
YAML files are valid in terms of syntax is one valid check. So to do this a tool such as
YAMLlint can be used to check if the syntax of the files that are committed into source
control management are valid.

Once the YAML var files are checked into source control the continuous integration build
should create a tag to state a new release has happened, all source control management
systems should have a tagging or base-lining feature. Tagging versions means that the
current network release version can be diffed against the previous to see what file changes
have occurred on the YAML var files if an issue is detected at any stage making all network
changes transparent.

So what other validation is possible? When focusing on configuration of network devices,
we are pushing configuration changes to a networking operating system such as Juniper
Junos or Arista EOS. So being able to run the newly committed changes and make sure the
syntax is programmatically correct against those operating systems as part of the
continuous integration process is highly desirable. Most network device operating systems



Using Continuous Integration Builds For Network Configuration

[ 172 ]

as discussed in Chapter 4 are Linux based, so having a network operating system to issue
commands to as part of the CI process doesn't seem too absurd.

The same can be said when checking the configuration used to orchestrate load balancers or
SDN controllers, having a test environment attached to the CI process is also highly
desirable in theory. By utilising a software version of the load balancer or emulated version
of the SDN controller would be highly beneficial so network engineers can pre-flight their
network changes to make sure the API calls and syntax is correct.

However, there are challenges simulating an SDN controller or creating or simulating a
production environment depending on the vendor, there may have a huge overhead in
terms of setting up a continuous integration environment due to cost. Network devices,
load balancers and SDN vendors are evolving to support automation and DevOps friendly
processes such as continuous integration. Therefore, networking vendors are starting to
appreciate the validity of giving small test environments, this is where virtualised or
containerised versions of load balancers or SDN controllers would be useful as an API
endpoint to validate the desired state that has been set-up in YAML files.

Alternately the vendors could provide a vagrant box to test if the desired configuration
specified in YAML var files that is checked into source control management systems is valid
before it is propagated to the first test environment. Any enhancements that can be done to
processes to make it fail as fast as possible and shift issues as far left as possible in the
development lifecycle should be implemented where possible.

So with all of these validators, let's look at how these processes can be applied to network
devices or alternately orchestration. The number of validators used may depend on the
network vendors that are being used, so we will look at the start point for a continuous
integration build for network devices regardless of vendor and then look at more advanced
options that could be used if the vendor provides a software load balancer or SDN
emulation.

Simple Continuous Integration Builds for Network
Devices
As network changes are always required daily by large organisations that are implementing
micro-service applications. To meet those demands then networking should be as self-
service as possible. To keep up with demand, network teams will likely need to use a
feature branch source control management strategy or allow self-service YAML files to be
committed direct to master as shown below:



Using Continuous Integration Builds For Network Configuration

[ 173 ]

Each commit should be peer reviewed before it is merged. Ideally the self-service process
should allow development teams to package network changes alongside their code changes
and follow a self-service approach.

The first continuous integration build that should be set-up for network devices or
orchestration should focus on version controlling the Ansible YAML files and running a
simple YAML validation on the desired state.

Each continuous integration build that runs will also tag the repository. Tagging the source
control management repository means that release versions can be compared or easily
rolled back. It will also act as an audit log to show which user made changes and what
exactly has changed in the environment. No changes should be made to a production
system that have not went through the continuous integration process.

So a simple network continuous integration build will follow these simple validation steps:

YAML files are checked for syntax1.
Repository is tagged in source control management system if successful2.

Therefore, a simple network continuous integration build would follow these steps. The
network operator would commit the YAML files to the SCM system to change the desired
state of the network, the continuous integration build server would tag the build if the
YAML Lint operation finds that all the YAML files in the repository have valid syntax and
return a positive result:



Using Continuous Integration Builds For Network Configuration

[ 174 ]

Configuring a Simple Jenkins Network CI Build
This simple continuous integration build for network devices can be set-up in the Jenkins CI
build server. Rake and the yamllint gem should be configured on the Jenkins slave that the
build will be executed.

Once this has been completed a new Jenkins CI build can be created in a matter of minutes.

First select a new Jenkins freestyle job:

Then configure source control management system to use, in this instance GIT, specifying
git@gitlab:devops/sdn.git as the repository and the */master branch of the project along
with the SSH key required to provide access to the repository:



Using Continuous Integration Builds For Network Configuration

[ 175 ]

Now for the validation step a shell command build step is selected, which will to run rake
yamllint on the repository after configuring a rakefile in the git@gitlab:devops/sdn.git
repository so the YAML files can be parsed:

Finally configure the build job to tag the Jenkins build version against the devops/sdn.git
gitlab repository and save the build:



Using Continuous Integration Builds For Network Configuration

[ 176 ]

This has configured a very simple Jenkins CI build process that will poll the GIT repository
for new changes, run yamllint against the repository and then tag the GIT repository if the
build is successful.

The build health will be shown in Jenkins, the green ball means the build is in a healthy
state so the YAML files are currently in a good state, the duration of the check shows it took
6.2 seconds to execute the build as shown in the following screenshot:



Using Continuous Integration Builds For Network Configuration

[ 177 ]

Adding Validations to Network Continuous
Integration Builds
After highlighting the need for more robust validation when pre-flight configuration of
network devices as far left in the development lifecycle as possible to reduce the cost to fix.
Having the ability to push mission critical configuration changes to a networking operating
system such as Cisco NXOS, Juniper Junos or Arista EOS would be a good continuous
integration validation.

So like databases verify SQL syntax is correct, being able to run the newly committed
changes and make sure the networking commands or orchestration commands applied to
network devices syntax is programmatically correct should be part of the continuous
integration build.

Continuous integration can then help the quality of network changes as an incorrect change
would never be pushed to a network device, load balancer or SDN controller. Of course the
functionality of the configuration pushed may not be what is required but there should
never be a situation where the configuration has a syntax error at deployment time.

As network devices, load balancer and SDN controller changes are mission critical this
brings an added layer of validation checks to any network changes and checks in a quick
and automated way providing quick feedback if a network change is not what is required.

Continuous Integration for Network Devices
Before setting up a network device continuous integration a few pre-requisites are required:

A network operating system will be required with production configuration
pushed to it and all live settings which can be hosted on a virtual appliance.
The continuous integration build tool such as Jenkins will need to have an
Ansible Control Host set-up on the agent so it can execute Ansible playbooks.
All playbooks should be written with a block rescue so subsequent cleanup is
built in if the execution of the playbook fails.

A typical network device release process will have the two following steps:

Apply network change self-service playbook1.
As the playbook is idempotent only changes will be shown if a change has2.
occurred

The Ansible playbook should provide resilience for roll-forward and roll-back in terms of



Using Continuous Integration Builds For Network Configuration

[ 178 ]

state change. The above steps also check the validity of the sequencing using the Ansible
playbook and check that the calls being made to the network device are valid.

A simple continuous integration network build process would provide the following
feedback loop for network operators:

Network operator commits Ansible playbook or YAML var file change to SCM1.
system and it is integrated with the code base
The code base is pulled down to a CI Build Server2.
YAML files are checked using yamllint3.
Ansible Playbook is applied to push network changes to the device4.
Return Pass or Fail exit condition and feedback to users5.
Repeat steps 1-5 for next network device change6.

Continuous Integration Builds for Network
Orchestration
Before setting up a network orchestration for load balancers or SDN controllers a few pre-
requisites are required:

A software load balancer or an emulated SDN controller will be required with
production configuration pushed to it and all live settings.
The continuous integration build tool such as Jenkins will need to have an
Ansible controller set-up on the agent so it can execute Ansible playbooks as well
as the SDK that will allow the network orchestration modules to be executed.



Using Continuous Integration Builds For Network Configuration

[ 179 ]

All playbooks should be written with a block rescue so subsequent cleanup is
built in if the execution of the playbook fails.

A typical network device release process will have the two following steps:

Apply network change self-service playbook1.
As the playbook is idempotent only changes will be shown if a change has2.
occurred

The Ansible playbook, like with the network device changes should provide resilience for
roll-forward and roll-back in terms of state change. Some test servers may be needed on a
virtulisation platform to simulate the load balancing so health checks can be tested too.

A simple continuous integration network orchestration CI process would provide the
following feedback loop for network operators:

Network operator commits Ansible playbook or YAML var file change to SCM1.
system and it is integrated with the code base
The code base is pulled down to a CI Build Server2.
YAML files are checked using yamllint3.
Ansible Playbook is applied to orchestrate the API and create the necessary load4.
balancer or SDN changes
Return Pass or Fail exit condition and feedback to users5.

Repeat steps 1-5 for next network orchestration change



Using Continuous Integration Builds For Network Configuration

[ 180 ]

Summary
In this chapter we have looked at what continuous integration is and how continuous
integration processes can be applied to code and databases. The chapter then looked at
ways that continuous integration can be applied to assist with network operations to
provide feedback loops.

We also explored different source control management methodologies, the difference
between centralised and distributed source control management systems and how
branching strategies are used with waterfall and agile processes.

We then looked into the vast array of tools available for creating continuous integration
processes focusing on some examples using Jenkins to set up a simple network continuous
integration build.

In the next chapter we will look at various test tools and how they can be applied to
continuous integration processes for added validation, this will allow unit tests to be
created for network operations to make sure the desired state is actually implemented on
devices.


	Table of Contents
	Impact of Cloud On Networking
	The difference between spanning tree networks and leaf spine networking
	Changes that have occurred in networking with the introduction of public cloud
	The Amazon Web Services Approach to Networking
	The OpenStack Approach to Networking
	Summary

	The Emergence of Software Defined Networking
	Current SDN solutions on the market
	How The Nuage SDN solution works
	Integrating OpenStack with the Nuage VSP Platform
	Nuage or OpenStack Managed Networks
	The Nuage VSP Software Defined Object Model
	Object Model Overview:


	How The Nuage VSP Platform can support Greenfield and Brownfield Projects
	The Nuage VSP Multicast Support
	Summary

	Bringing DevOps to Network Operations
	Initiating a Change in Behaviour
	Reasons for Implementing DevOps
	Reasons for Implementing DevOps for Networking

	Top Down DevOps Initiatives for Networking Teams
	Analyse Successful Teams
	Map Out Activity Diagrams
	Change the Network Teams Operational Model
	Changing the Network Teams Behaviour

	Bottom-Up DevOps Initiatives for Networking Teams
	Evangelise DevOps in the Networking Team
	Seek Sponsorship from a respected Manager or Engineer
	Automate a Complex Problem with the Networking team

	Summary

	Configuring Network Devices Using Ansible
	Network Vendors Operating Systems
	Cisco IOS and NXOS operating system
	Juniper Junos operating system
	Arista EOS operating system

	Introduction to Ansible
	Ansible Directory Structure
	Ansible Inventory
	Ansible modules
	Ansible roles
	Ansible Playbooks
	Executing an Ansible Playbook
	Ansible vars and jinja2 templates
	Pre-Requisites Using Ansible to Configure Network Devices
	Ansible Galaxy

	Ansible Core Modules Available For Network Operations
	_command module
	_config module
	_template module

	Configuration Management Processes To Manage Network Devices
	Desired State
	Change Requests
	Self-Service Operations

	Summary

	Orchestrating Load Balancers Using Ansible
	Centralised and Distributed Load Balancers
	Centralised Load Balancing
	Distributed Load Balancing

	Popular Load Balancing Solutions
	Citrix Netscaler
	F5 Big IP
	AVI Networks
	Nginx
	HAProxy

	Load Balancing Immutable and Static Infrastructure
	Static and Immutable Servers
	Blue/ Green Deployments

	Using Ansible to Orchestrate Load Balancers
	Delegation
	Rolling Updates
	Dynamic Inventories
	Tagging Meta-data
	Jinja2 Filters
	Creating Ansible Networking Modules

	Summary

	Orchestrating SDN Controllers Using Ansible
	Arguments against Software Defined Networking
	Added Network Complexity
	Lack of Software Defined Networking Skills
	Companies Require Stateful Firewalling To Support Regularity Requirements

	Why Would A Company Utilise A Software Defined Networking Solution?
	Software Defined Networking Adds Agility and Precision
	A Good Understanding of Continuous Delivery Is Key
	Software Defined Networking Helps Companies With Over Complex Networks
	Splitting Up Network Operations
	New Responsibilities in API Driven Networking
	Overlay Architecture Set-up
	Self-Service Networking

	Immutable Networking
	A/B Immutable Networking
	Clean-up of Redundant Firewall Rules
	Application Decommissioning

	Using Ansible to Orchestrate SDN Controllers
	Using SDN for Disaster Recovery
	Storing A/B Subnets and ACL Rules in YAML files


	Summary

	Using Continuous Integration Builds For Network Configuration
	Continuous Integration Overview
	Developer Continuous Integration
	Database Continuous Integration

	Tooling Available For Continuous Integration
	Source Control Management Systems
	Centralised SCM Systems
	Distributed SCM Systems
	Branching Strategies

	Continuous Integration Build Servers

	Network Continuous Integration
	Network Validation Engines
	Simple Continuous Integration Builds for Network Devices
	Configuring a Simple Jenkins Network CI Build
	Adding Validations to Network Continuous Integration Builds
	Continuous Integration for Network Devices

	Continuous Integration Builds for Network Orchestration

	Summary

	Index

