PowerSnel

Succinctly

by Rui Machado

B Syncfusion | Technology Resource Portal

PowerShell Succinctly

By
Rui Machado

Foreword by Daniel Jebaraj

EE.Sgncfusion‘

Copyright © 2014 by Syncfusion Inc.
2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

I mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.
Please do not use this book if the listed terms are unacceptable.
Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the

registered trademarks of Syncfusion, Inc.

Technical Reviewer: Jeff Boenig

Copy Editor: Ben Ball

Acquisitions Coordinator: Hillary Bowling, marketing coordinator, Syncfusion, Inc.
Proofreader: Morgan Cartier Weston, content producer, Syncfusion, Inc.

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

Table of Contents

The Story behind the Succinctly Series 0f BOOKScviiiiiiiiiiiiiccc e 8
ADOUL TE AUTNOT ..t sr e s e n e e n e snne e e nnneennreas 10
F RSy 01T o = I 1 =]SSR 10

el 8 geTo [¥ Y o3 1T o] o RO TP O PP UOTPPPPPP 11
HOW POWEISHEll IS dIffEIr@NT.......ciiiiieiiie it 11
WHO iS thiS DOOK FOI?ttt st e e s e s e e s e e s nnneees 12
(070 L0 [0S Y=o 1] o] L= PP 12

N O S e e e 12
CNAPTEE 1 BaASICS oiiiiiie i et et e ettt ————————— 13
POWETSNEIT VEISION.ciiiiieiie ettt ettt e e ekt e s ekt e e e bt e e e e e nbe e e e enbe e e e enees 13
PowerShell INteractive Shell..........oo it 13
The Shell and EXIStING TOOISoiiiiiiiiiiiiiiee ettt e e sbb e e e s sbne e e e sbneeeean 13
EXECULION PONICIESceiiiiiiee ettt ettt e e e b e e e e abb e e s e bt e e e e nb e e e e e nees 15
HOW 10 RUN @ PIOQIaIM ... 17

Lo 01TV (TN U = T Y] | 17
HOW t0 RUN COMMENTSeeiitiiiiiiiieie ettt ettt e e e e e s et e s e e e e e e e e e e enes 18

Get Help with EXIiSting COMMAaNAScoooiiii i 18
Read and Write from the Interactive Shell..............cooiiiiiiii e 18
POWEISREII SNAP-INS ..o ——— 19
Add @ SNAP-IN 10 8 SCIIPL. . ..eeieeiiieiee ettt e e st et e e st bt e e e sbbe e e e anbbeeeesnbaeeessnbaeeeean 19
Add a Script Reference to ANOTNEr SCHPL......ooiiiiiiiiiiie e 20
USING INET CIASSES...ceiiittiieiiiiiee ettt ettt e s ettt e e e et e e s e bt e e s eanb e e e s e nbe e e e enbeeeeenees 20

LT 1] T =T PP 21

V=TT 1 o] (=T3P 22

Get Properties from @n IEEIMuuiiiiie e e e e e e s e e e e e s annb e e e e e e s e aanrrrneeeees 23

Format Variable OULPULueiiiiie e e s e e e e e s s s e e e e e e s s sanba e e e e e e e e sannrntneeeeeeeesnns 24
) 11T SRR 25
POWEISNEII HEIE SIIHNGS ...ei ettt ettt et e e bt e e et b et e e e ab e e e e nbe e e e e nees 26
REGUIAT EXPIESSIONStteteeiitteee ettt ettt ettt ettt e skt e sk b et e e e st e e e e aab b et e e aab b et e e ean b e e e e e nbe e e e enbeeeeenees 27
[SR o) 1 1= 1 0 PP O PP PU P PP PPPPPN 28
L =\ TP PO P R PPTPPPPPRPT 28
AN ET LISt ittt ettt ettt e e oo e oottt et e e e e e s ab ettt et e e e e e o nE e Eeeeeaeeeeannbeneeeeeeeaeaanrereeeeaeeeeaann 28
HEASN TADIES ...ttt s et e s ekt e e ek b e e e e e ab e e e e nbe e e e e e 29
FIOW CONIIOL ...t e e s e e s e e s s s e e s e e e e s e s e e e e n e e e e nnes 29
[oTo[[or=1I=Tq [0 I @Xo] g] o F= Tg[STo] g1 @ 0 =T = o] £ 29
CoNditioNal STATEMENTS........ciiiiiiiie e e e e e s e e e e e e 32
[0 o] o1 PRSPPI 33
Y =T =T o TR TN o (01 35
Schedule SCrPt EXECULIONccociiiiiiiiie ettt 35
Extensibility @and COO08 REUSEcoouiiiii ettt et et e e et e e e e 38
Create INStANCES Of ODJECESviiiiiiiee et 38
FUNCHIONS QNG PArGMELEIS eiiieiiieii ettt ettt et e e ekt e e s e bt et e e e bt e e e s nbeeeeeeees 38
Create 8 WINAOWS FOIM ...oii ettt et e e et e e ek b e e e e aab e e e e e sabe e e e e nnbeeeeeaeee 43
Chapter 2 File SY S oM .. ——— 47
(10 =T01 i o Tox= 11 o] o H OSSP RR TP 47
Get FIles from @ DIFECIONYccieieeeeeee et 47
Get the CoNtENt OF @ FIlEoii et 48
Manipulate the CONtENt OF @ FIlEooi et eeaeas 49
Create TEMPOIANY FIlES ... e ittt e ettt e e e e e s e bbbt e e e e e e e s anbbbeeeeeaeeeeannrebeees 50
Y = TaF= (o [l BT =T o] =T TP UUT TSP 50

(O =T L L N LN T A D T =To] (o] (=TT 50

Change DireCtory PEIMISSIONScuiiieiiiiiiiiiieeie e e i eeee e e e e e e s st e e e e e e s st e et e e e s s annntaeeraeeeesesnnnrrnaeeeees 51

R (oY BT = Tod (o] 1= OO U R PTRR PR 52
RENAME DIFECIOTIESuveiieiee ittt ettt ettt e bt e s n et s a e e e s e e m e e s E et e nn e e snne e e nn e e e snre e e nnneennneas 52
MOVE @ FilE OF @ DIFECIOIY ...ttt ettt et e e e e e s e e e e e nbe e e e e nees 53
MENAGING PALNS ...t s et e e s et e s e b e e e e e bt e e e bt e e e e e nbe e e e e e 53
Join Parts into @ SiNGle Path..........cooiiiiii et 53
Split Paths intO MUIIPIE PAITSoeiiiiiiiee e rbe e e 54
TSI PAN EXISTS .ttt et e e e s b bt e e st b e e e e sbn e e e e abreeeeaa 55
RESOIVE PANS ...ttt s et e e e b e e e b e e b e e nene 55

O aFoT o) (=] R o o Yol T YT T TP PO U P PP PPPPP 57
LIST All PrOCESSES.eeeiiiittiee ettt ettt st e s st e e s e e s e e e s e e e e e s e e e e e s e e e e e e e 57
Get @ ProCeSS DY ID ... 58

) (0] = W 0 1o S OSSP 58
SEAI 8 PrOCESS ...oiiiiiiiiiire it e e e e e 58
Chapter 4 Windows Management INSTrumMentationccccooiiiiieiiiiie i 60
USING WIMI CIBSSES ...ceeiiiieiie ettt ettt e ittt e s e ab et e e ekt e e ettt e e e nbe e e e enbbe e e e ennee 60
ACCESS WM CIASSES ...ttt ettt ettt ettt e o bttt e s bbb et e s bttt e e s bbbt e e s bba e e e s bbneeesannneees 61
Exercise: Get Available DISK SPACEcocuuiiiiiiiiiieiiiit ettt 62
Chapter 5 RemMote POWEISREI ... 65
USING REMOLE POWEISIEII ... ittt 65
Identify Remote PowerShell Compatible COMMAaNAS..........cocuiiiiiiiiiiiiiieie e 68
Test @ REMOLE CONNECLIONcciiiiiiiiiitiie ettt et e et e e st e e e st e e st e e e sr e e e e sarr e e e e snreeeeaa 68
Invoke Scripts in RemMOote MACRINESoiiiiii e e e e e 69
Chapter 6 SIIUCTUTEA FIlESoiiiiiiiee ettt e et e e et e e st e e e enees 71
ManIPUIALING XML FIES....ccoi ettt e ettt e e e e e s e st e e e e e e s e e nnbreeeaaaeas 71
IMPOIt XML fTOM FlE ..ottt e e e e e st e e e e e e e e e b bbeeeaeeeeeannns 71

Load XML File frOM SEING ..ottt sttt e s e bt e e e e st e e e e nbee e e e nees 71

L d 0oL 1Y | R o 1= SRS 72

MaNIPUIALING CSV FlES....ciii it e e e e e e st e et e e e s s st ae e e e e e e s e anntrnneeeeeas 74
IMPOIt CSV frOM FlE ... e e e e e e s e e e e e e e s sa st e e e e e e e s e annnrnnaeeeeeeeeanns 74
EXPOIT CSV 10 FlE ..ottt ettt e s ekt e e e e e e e nb e e e e nbe e e e e nees 75
Load CSV and SeNd EMAIl..........oouiiiiiiiii e 76

MaNIPUIALING TXT FIIES ..ttt ekt e s ekt e s e st e s e st e e e anbe e e e enees 77
IMPOIt TXT FIOM B .ttt ettt e bbbt e e s kbt e e s bbb e e e s nbn e e e s annreeas 77
EXPOIT TXT 10 Fl ...ttt et e et e e ek b e e e e b e e e e nbe e e e e nees 78

Using XSL to Transform XIML FlEScoouuiiiiiiiiiie ittt 78

Chapter 7 SQL Server and POWEISNEIloooiiiiiiiie e 81

INSTAIL SQLPSttt bt bt e h bt a bt s bt e bt e b e e e b et e b et e ab e e be e ebe e sheesheesabeenbe e beenbeenbneas 81

AQA SOQL SNAPIN e —————————————————— 82

LN 70T (SIS 1 T I T 1T o 82

Chapter 8 MiCroSOft OffiCE INTEIOP ..couviiieiiiiee e 85

USING PIAS ASSEMDBIIESo 85

Create an Instance of an EXCel APPHCALIONociiiiiiiiiiie e 86

Retrieve Data from EXCEI FIlEooo et 87

Exercise: How Many SQL Server Connections are in That Excel File?cccccccovviiiiee e, 89

LR L (=T Lo 91

The Story behind the Succinctly Series
of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge
As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always

being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever
Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese.”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

About the Author

Rui Machado is a developer and a software engineer, born in Portugal, with a strong .NET
background and a special interest in scripting languages. He holds a graduation in Information
Technologies and a post-graduation in business intelligence (Bl) and is now finishing his
master’'s degree in Information Systems. He works for ALERT Life Sciences, a Portuguese
software house for clinical solutions, as a business intelligence engineer.

Since his first VB.NET application in 2007, Machado has worked with C#, PowerShell, BizTalk,
Integration Services, and Analysis Services, making him a technology enthusiast with a lot of
love for programming languages. He is now focused on the Oracle Data Integrator and
microstrategy for Bl solutions.

PowerShell entered his professional life while Machado was developing a BizTalk integration
project in which the client had no licenses for use of that technology and didn’t want to pay for a
single integration project. The solution was to use a scripting language to make several systems
connect, apply transformations, and build an efficient data flow using PowerShell. Since that first
PowerShell project he has started a PowerShell blog for the Portuguese community, written in
several forums, and been a speaker in several events.

Although most of his time is spent working for and with technology, Machado also manages to
have time for other activities like skateboarding, surfing, and enjoying life with friends and
family. After all, life won’t give you its best if you don’t give your best to it.

A special thanks

There were several people throughout my career that aided me in becoming the professional
that | am today. Besides allowing me to develop my technology passion, these people gave me
their knowledge because they believed | could use it correctly. PowerShell is one of those
cases; this scripting technology wouldn’t be a part of my career if it wasn’t for my coworker José
Antonio Silva, who spent several hours teaching me how to take my first steps in this
technology, and Sandro Pereira, who taught me that sharing knowledge is not a loss but a gain
for all our community members. Thanks also to everyone that works for the evolution of
technology, and to all my family and friends that continue believing in me and what | work for.

10

http://www.alert-online.com/

11

Introduction

Windows PowerShell might be a well-known scripting language for some system administrators,
who see it as an evolution of the former Windows command-line shell and use it for their daily
systems management activities, but that isn’t the prevailing opinion.

PowerShell brought several new concepts like object-oriented pipelines, which revolutionized
the way users invoke commands and create scripts, but most developers and systems
administrators fear this language and continue to avoid it. Although PowerShell is different for
many developers, you will see in this book that it offers a number of advantages.

How PowerShell is different

PowerShell opens up a new world of opportunities compared to other command-line shell
scripts, starting with the way the shell interprets the commands you use. In traditional
command-line shells, commands are interpreted as plain text and don’t allow any kind of
interaction. PowerShell interprets objects with methods and attributes that have access to much
of the .NET framework, resulting in a more powerful programming model.

One simple example of this feature can be demonstrated with how PowerShell allows you to
retrieve the length of an object, shown in the following code sample:

"Rui".Length

This means that when PowerShell encounters a quoted string, it will automatically build an
object of type system.String, allowing you to invoke any available method, attribute, or property
of this .NET object type. In this case, | used the length property to give me the length of this
string.

As you can see in the previous example, PowerShell uses the .NET Framework, but it's not the
only technology that PowerShell integrates in its shell. It allows you to work with .NET, but also
COM, WMI, XML, and Active Directory, enriching the power of this scripting language.

The last difference | want to note is the type of command used by PowerShell. They are no
longer text based. Instead, they use a new type called cmdlets. These cmdlets have a proper
syntax “verb-noun” and are task based, which means that just by looking at its name you can
guess what task it will perform. For example, if you want to see all your active processes, you
can invoke the following cmdlet.

Who is this book for?

This book is being written primarily for system administrators and .NET developers. Although
PowerShell is mainly used by systems administrators, | want to show .NET developers how they
can use this scripting language for several daily activities, like testing their software.

What developers often do when they want to test something like a WCF web service is build a
console application with their client call code, compile it, and run. With PowerShell, you can
forget about opening Visual Studio, selecting the creation of a new console application, and so
on. Just open your script editor, write your code, and run. You will save a lot of time, | assure
you. So this book is not just for those who use scripting languages to manage machines. | hope
that by the end of this book, everyone who uses a computer every day will realize they can learn
PowerShell and use it to automate some of their activities.

Code Samples

All of the examples in this book were created in PowerGui script editor, but are perfectly
compatible with the integrated Windows editor, PowerShell ISE, and the PowerShell Console.

In this book, the code samples are shown in code blocks such as the following example.

function ($id)
{
$id
}
13108
Notes

There are notes that highlight particularly interesting information about a language feature,
including potential pitfalls you will want to avoid.

Note: An interesting note about PowerShell.

12

13

Chapter 1 Basics

PowerShell Version

PowerShell is now in version 4.0 and this book has been written in version 3.0. This means that
some features will not be available for you if you are using a version under 3.0. To check your
PowerShell version, run the command Get-Host and then look for the version property. If you
have any version under 3.0, please download it in the this link, which will install the Windows
Management Framework 3.0 in which PowerShell is included (click here). Be careful, as it is
only available for Windows 7 or higher, and for Windows Server 2008 or higher.

PowerShell Interactive Shell

The Shell and Existing Tools

To start using the interactive shell of PowerShell, you just need to run PowerShell.exe instead of
the more commonly used shell cmd.exe. If you have a 64-bit system, you will have two versions
of PowerShell to choose from, a 32-bit version and a 64-bit version.

ey Windows PowerShell - d ﬂ

Jindows Powerfhell
opyright <(C> 2012 Microsoft Corporation. All r»ights preserved.

PS GC:islUserssrui.machado

Figure 1: Interactive Shell

Once you open this interactive shell, you can start typing PowerShell commands (cmdlets) and
getting results. A nice feature of this PowerShell command prompt is that it is compatible with
the former DOS commands and UNIX commands. This might be useful if you are accustomed
to navigating between directories and files with this kind of syntax.

http://www.microsoft.com/en-us/download/details.aspx?id=34595

PSS C:sUsers> l1s

Directory: C:slUsers

LastWriteTime Length Name

17842813 H v2.@

17842813 15: .HET »2.8 Classic
17842813 15: .NET w4.5

17842813 15: .NET v4.5% Classic
17-.84-2013 15: Classic .MET AppFool
18-04-2013 14: DefaultAppPool
16-84-2013 15: MsDtsServerlilB
16842813 16: MSOLAPSPRIA1
16842813 16: MSSQLSPRIAL
16842813 16: MSSQLFDLauncher$PRIBL
84042813 11: Public

16-04-2013 16: ReportServerSPRIBL
87862813 21: rui.machado
18852813 18: S$QLAgentSPRIAL

Figure 2: Executing Scripts with UNIX and DOS syntax

This interactive shell is all you need to run simple commands; however, when it comes to
automating tasks and managing scripts, this shell can become insufficient and it is useful to start
using a script editor. You can use Notepad if you like, but there are several tools that provide
syntax highlighting and intelligent editing features along with script debugging and an integrated
shell for compiling. Along with your interactive shell, you also have, out of the box, a nice script
editor from Microsoft, PowerShell ISE, which provides better script management and a full list of
the available PowerShell commands. This tool is integrated with Windows and it’s applied for
PowerShell versions 2.0, 3.0, and 4.0.

To open the PowerShell ISE tool, click Start, select Run, and then execute the following
command: “powershell_ise.exe”. This will open a new PowerShell ISE instance, which looks like
the following figure:

) Windows PowerShell ISE - 8
File Edit View Tools Debug Add-ons Help

L = = % B » [} - 1> ,;__“ 'Q‘E:

Script (% Commands X X

Modules: | All v

MName;

PS C:\Users\rui.machado>

A

Add-ApprPackage
Add-AppxProvisionedPackage
Add-ASAppSglinstanceStore
Add-BCDataCacheExtension
Add-BitLockerKeyProtector
Add-BitsFile
Add-CacheAdmin
Add-CacheHost
Add-CertificateEnrollmentPolicyServer
Add-Computer

Add-Content
Add-DnsClientNrptRule
Add-DtcClusterTMMapping
Add-History
Add-InitiatorldToMaskingSet
Add-JobTrigger

Ln1 Col 26 100%

Figure 3: PowerShell ISE

14

15

Although it’s better that the simple interactive shell, PowerShell ISE might not be enough for
you, as it still uses the command prompt to write scripts. It also doesn’t have different colors for
methods, attributes, and commands, what | call Color Sense, or more often described by many
IDEs as syntax highlighting. To optimize your productivity with PowerShell even more, you
might think about using PowerGui, a free script editor often used for development.

& PowerGUI Script Editor - olEN
File Edit View Go Debug Tools Help
[A | @ &= (= & | Kinodt sonot parameters here -
DEEIS QA% 2@ @, »|s=(= g |[neu scpt parameters here |.i=E 2|88
Start Page,” #0| Call_SCRIPT.ps1 | %] RUN_PROGRAMps1 ~ X || Varisbles T Ex
1 = | T 'C:\Users\ruimachado\Dropl
2. .\RUN_PROGRAM.psl -argmthp "c:\temp\File.txc" § True
. gn
» Sargmts
SLASTEXITCODE o
SPWD C:\Users\ruimachado\Droph
$StackTrace at System.Management.Au
PowerShell Console *aX
A
Directory: C:\
Mode LastWriteTime Length Name
d———— 10/05/2013 16:24 dev
d-——— 09/06/2013 21:28 dev_php
d---— 17/04/2013 15:17 inetpub
d-——— 26/07/2012 08:33 PerfLogs
d-——— 29/04/2013 17:22 PRJ32
d-——— 17/05/2013 12:57 PRJHET
d-r-— 28/06/2013 15:02 Program Files
PS C:\Users\rui...\Scripts> v
Script execution completed. Ln2|Col25|Ch25 http://powergui.org/

Figure 4: PowerGui script editor

This script editor provides you with a list of variables in use and its last value for debugging, a
PowerShell console for you to check the result of your commands, and many more features you
can try later. If you are a daily developer of PowerShell, | recommend you use a script editor like
this one. You can download PowerGui here.

Execution Policies

PowerShell has a very unique security protocol, referred to as the execution policy, which allows
you to define the type of scripts that can run on your machine or workgroup. As | mentioned
previously, choosing one of the five available execution policies will determine if the execution of
all scripts is allowed, only execution of scripts typed in the interactive shell is allowed, or if
permission to execute scripts is based on a rule. If you want to run scripts in an external script
editor like PowerGui, you must change your execution policy or you will receive the error shown
in Figure 5.

http://powergui.org/downloads.jspa

“rui.machado\AppDatailLocal\Temp' 9beTh462-c5f7-4175-h534-2dc42d043a8e.p2l cannot be loaded
ipts is disabled on this svstem. or
ee about_Exrecu t_::_ oliciez at http://g

Figure 5: Error running scripts without permission

By default, PowerShell will only allow you to execute scripts through its interactive shell, which
prevents external script execution. However, by setting the maximum level of security, you can
easily set other levels of security. The full list of execution policies are shown in the following
table.

Table 1: Execution Policies

Execution Policy Level of Security

Restricted Will only allow interactive shell execution.

AllSigned Runs only scripts with a digital signature. Executing a script for
the first time will prompt a trust publisher message.

RemoteSigned All scripts from the Internet must be signed.

Unrestricted Allows any script execution. Scripts from the Internet must be
trusted.

ByPass Every script execution must be validated by the user.

To change your execution policy, you must use the interactive shell. To open the interactive
shell, click Start and select Accessories. Run Windows PowerShell and make sure you start
it with elevated privileges (Run as Administrator). Type the command to change it to the one
you want. To do so, right-click the Windows PowerShell icon in the Accessories tab and then
click Run as Administrator.

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned

lindows PowerShell
opyright <C> 2812 Microsoft Corporation. All rights reserwed.

PS C:sWindowsssystem32> Set—ExecutionPolicy —ExecutionPolicy Restricted

[Execution Policy Change

he execution pollcy helpo protect you from scripts that you do not trust. Changlng the execution policy might expose
ow to the security risks described in the about_Execution_Policies help topic at

http://go.microsoft._com fuwlink/7LinkID=135178. Do vyou want to change the execution policy?

[¥]1 Yes [N]1 No [51 Suspend [?] Help {default is "¥">: y

[PS C:xWindows\system32>

Figure 6: Change Execution Policy

To see the execution policy currently activated in your system, you can use the Get-
ExecutionPolicy command. You should now see RemoteSigned as your current execution

policy.

16

17

How to Run a Program

PowerShell allows you to start a program from its own shell, so that you won’t waste all your
existing executables like Perl scripts or a simple batch file. To start that program you want, type
in PowerShell its name followed by any arguments you might need or want. If the program
name has spaces, enclose its name in quotation marks after you type an ampersand and
followed by its arguments. An example of this is shown in the following code sample.

$args = ".\My File.txt"

& 'C:\Windows\System32\notepad.exe' $args

Executing this command on my computer will open a text file | have already created, as you can
see in the following figure.

El My Filetxt - Notepad - &
File Edit Format View Help
Hello!

Figure 7: Run a Program

How to Run a Script

If the execution policy you have set up allows you to execute external scripts, type the name of
your script in the command prompt, just like any cmdlet.

. \RUN_PROGRAM. ps1

If your script has parameters, you can also pass them directly from the command prompt.

.\RUN_PROGRAM.psl -argmts "c:\temp\File.txt"

How to Run Commands

Running commands is as easy as typing them in the interactive shell command prompt or any
other script editor and the result will be shown to the user. An example of this scenario can be
invoking the command to retrieve all script execution history.

Get-History

»Hindows“zystem32> Get-History Clean the She”

CommandLine

Set—ExecutionPolicy —ExecutionPolicy Restricted Whether prograanﬂng in the

Set—ExecutionPolicy —ExecutionPolicy RemoteSigned) .
Set—Jobs Interactive shell orin a

et—Joh . . .
Get—Item Script Editor with the

Get—Host” . .
erre execution option, to clean

your result use the Clear
Figure 8: Run a Command (Cmdlet) or CLS command.

Get Help with Existing Commands

To get information about a specific command, you can use the Get-Help command, followed
by the command name.

Get-Help -Name Get-History

When you run this command for the first time, PowerShell might ask you to download the most
recent help library, as shown in Figure 9, to provide you with the newest information about its
commands.

PS C:sWindows-system32> Get—Help

Do you want to run Update—-Help?

he Update—-Help cmdlet downloads the newest Help files for Windows Powerfhell modules and installs them on your
omputer. For more details., see the help topic at http:/sgo.microsoft.com fulink-?LinkId=218614.
[¥] Yes [H] Ho [S8]1 Suspend [?]1 Help {default iz "¥">: u

Figure 9: Update Help

Read and Write from the Interactive Shell

To write a value to the shell, you can use the Write-Host command. This not only writes a
value to the console, but also allows you to customize its output, such as the color of text by
using the ForegroundColor parameter, or the background color by using the BackgroundColor
parameter.

Write-Host -ForegroundColor White "SyncFusion" -BackgroundColor Black

19

Invoking the previous command will result in the following display in the interactive shell.

SyncFu=sion

Figure 10: Write-Output Customization

Tip: When PowerShell finds a string that is not captured by a context, it will print its
value. If you want to write a variable, just write its name in the console.

PS C:slUserssrui.machado?> Sstring=""SvncFuzion'
PS C:slUserssrui.machado? Sstring
EuyncFusion

Figure 11: Context Printing

To read a value from the interactive shell, you can use the Read-Host, which reads a line of
input from the console.

$value = Read-Host

PowerShell Snap-Ins

A PowerShell snap-in is a way of extending the commands available in the shell with your own
or some downloaded from the Internet. These snap-ins originated from a C# block of code, an
implementation of a PSSnapin class to be more precise, compiled and imported to a script with
its DLL (dynamic-link library). This might be useful if you have a set of methods in an already
finished helper class that you want to reuse to save time developing those methods again. You
can’t use this DLL directly, as you need to add some metadata to your methods so that
PowerShell can identify a cmdlet, but it’'s a huge advantage for developers.

Add a Snap-In to a Script

To add a snap-in to your script, you can invoke the following code:
Add-PSSnapin -Name "MySnap-in"

You will only need to add the snap-in to one of your scripts to use it in your session; while your
PowerShell Scripts are running, that snap-in is available.

Q Note: You can only add to your session registered snap-ins. To check the full list of
registered snap-ins, run "Get-PSSnapin —registered". If you have downloaded or
created a new snap-in, you can register it with the InstallUtil tool included with the
Microsoft .NET Framework.

To register a snap-in, launch the PowerShell interactive shell with elevated privileges and do the
following:

1. Change the directory to C:\Windows\Microsoft. NET\Framework\v4.0.30319.
2. Run InstallUtil.exe “MySnapin.dll”.

xUserssrui.machado> cd C:sMWindows“Microsoft _ NET“Framework-v4.@.38319
sMindowssMicrosof t .NET“Frameworksv4 _HA.30312> InstalllUtil.exe “"MySnapin.dll*

Figure 12: Register a New Snap-In

Add a Script Reference to Another Script

Referencing scripts is a useful task to reuse existent code blocks like your own functions, which
will allow you to save time making the same scripts several times. This way you will only
develop once and can use it several times. To add a script reference to another script, you just
need to use the command Import-Module.

Import-Module "MyOtherScript.ps1l”

»

@ Note: All of these commands have optional parameters to fulfill special needs. This
way you can always use the command Get-Help “Command Name* to see the full
parameter list.

Using .NET classes

To use a .NET class in PowerShell, you just need to identify the namespace between brackets
and then use a double colon to call the method you want. Parameters are passed the same way
in .NET. For example, you can see what today’s date and time are by invoking

[DateTime]: :Now.

20

21

Pipelines

Pipelines are an important and heavily used feature in PowerShell. A
concept borrowed from UNIX, pipelines let you use the result of a
command execution as input to another command. This way you don’t Where and Select
need to save the result in variables, but instead just create a flow of data)

in a logic block of code. In PowerShell, the pipe character is “|” and you \lﬁ\g;irj;ﬁbt’ﬁgtaﬁg;?meﬁg,,
can use it with any command. or the symbol “?”

Select-Object can also be
used with the alias “select”

A key feature about PowerShell pipelines is that they don’t pass the result of a command as
text, but rather as an object, allowing you to invoke other complementary commands on a
particular result set. By using commands like Where-0bject to filter the set or Select-0Object
to select specific properties of an object, pipelines can be an extremely advanced concept to
guery result sets of commands.

In the previous code block, there is a simple example. | used the command Get-Process to
retrieve all active processes and then filtered the result list to get only the processes that have
the name “PowerShell” with the command Where. | then selected only the property ID from the
object with the command Select.

Another important concept surrounding pipelines is the current pipeline element, accessible by
the command $_. This special variable is used to reference the current value in the pipeline. In
this case, $_is a collection of rows produced by the Get-Process command, in which each row
contains a Name property. The where command filters the rows by comparing the Name
property to “PowerShell” and sends the resulting rows to the next stage of the pipeline.

Get-Process | where{$_.Name -like "PowerShell"} | Select Id

While using pipelines, you might need to break lines to make a more readable flow. To do that,
you need to use the PowerShell break line special character (line continuation character) which
is the back quote “” for breaking strings or the pipeline “|” character to break after a pipe
element.

Get-Process |
where{$_.Name -like "powershell"} | °
Select Id

Note: Be careful with the usage of several pipelines, the resulting flow might
become difficult to understand for developers and system administrators.

Variables

Variables are used in every programming language to store information that you wish to
manipulate later in your program or script structure. The same is true in PowerShell; variables
are used to store information about a command result to use it later or to pass it to a different
pipeline level.

In PowerShell, variables start with the character $ (dollar symbol) and are followed by almost
any character. The only restrictions are the PowerShell special characters. PowerShell only
releases the contents of variables when the user session ends, which means that if you don’t
need to use a variable anymore, clean it by assigning the $null variable to it.

$varli=$null

Variable object type is resolved dynamically, which means that if you assign a string type object,
the variable object type will be string, if it is XML then it will be XML. However, you can cast a
variable to a different type using the type between brackets ([]) before the variable name. This
can be useful when you don’t want to create a new instance of a .NET object; instead you can
just cast it to the expected type and PowerShell will resolve it.

$varl "PowerShell™

$var2 = $varl

#Casting to DateTime
[System.DateTime]$var3="2013-06-13"

#Casting to Xml
$vard = [System.Xml.XmlDocument]"<xml><node>HERE</node></xml>"

Variables in PowerShell can be defined with different scopes, so that you can set either a
variable to be accessible only from a specific script, only within a session, or make it accessible
to the entire shell. The variables full scope list possibilities are shown in the following table.

The default scope of a variable differs according to the place in which you define that variable. If
it is defined in the interactive shell it is Global, if outside any function or script block it is Script
and otherwise it is local.

Table 2: Variable Scopes

Scope Name Scope
Script Only available in that script.

Local Available only on a specific scope or sub-scopes, like a loop
and any loops inside.

Private Available only on a specific scope, like a loop inside.

22

Scope Name Scope
Global Available in the entire shell.

Get properties from an Item

Listing the properties of an item is one of the main activities for system administrators so that
they can make decisions based on a particular object property value. PowerShell provides you
with a command to list detailed information about a particular object. To show that list, use the
command Format-List on any object.

Get-Process |
where{$_.Name -like "powershell"} | °
Format-List

This property list can also be stored in variables for any future usage.

$varl = Get-Process |
where{$_.Name -like "powershell"} | °
Format-List

PowerShell allows you not only to save the result of that command, but also to store the
command itself by enclosing them in curve brackets “{}".

$varl = {Get-Process |
where{$_.Name -like "powershell"} | °
Format-List}

The difference between these two calls is shown in the following figure.
#With Curve Brackets
Get-Process |
wnere{i_.Name =like "powershell™} |

Format-Lis=st

$Without Curve Brackets

Id : 311e
Handles : 288
CrU : 0,5
Name 1 powershell

Figure 13: Using Curve Brackets in Commands

23

Format Variable Output

There are three commands to format the output of a variable. You can use Format-List to
format your output as a vertical list, Format-Table to output your result as a table and
Format-Wide to retrieve single-data item and show it as multiple columns.

Get-Process | Format-List
Get-Process | Format-Table
Get-Process | Format-Wide

#Choose how many columns you want
Get-Process | Format-Wide -Column 3

Handles HNPM(EK) PM (K) WS (K) VM(M) CEU(=) Id ProcessHame Id : 10256
—————————————————— - —— Handle= : 158
348 37 130064 146500 325 44,64 11456 RAcroRd32 CEBU
244 17 7708 15344 96 0,36 12504 RAcroRd3z2 ~
75 7 1124 3856 44 1960 armsve Hame WinVnC
2673 222 336544 TT760 716 4764 avp
1210 48 10480 14180 128 5,02 10232 avp Id « 978
55 11 1120 3908 29 6492 BTHSAmpPalService)
228 26 3712 8380 46 872 BTHSSecurityMor Handles : 334
105 10 1620 5652 63 1336 BtwRSupportService CPUJ 1 5,984375
152 21 21392 23748 172 0,38 956 chrome Hame : WINWORD
174 40 52888 62608 219 8,09 1268 chrome)
158 35 36396 45564 191 7,03 48992 chrome
156 33 33132 40500 191 1,84 5344 chrome Id : 7688
156 32 31600 385396 180 2,25 6944 chrome Handles : 1150
159 35 42356 52132 185 &,30 7024 chrome) =
157 30 31340 40932 191 1,81 7892 chrome CFU i 2015,68735
170 28 58912 ET364 215 5,61 8244 chrome Hame : WIMWORD
2348 o4 147772 185992 4432 181,83 8568 chrome
Figure 14: Format-Table Figure 15: Format-List
BocroRd3:2 LoroRd3:2
armsvec avp
avp BTHSAmpPalService
BTHSSecurityMgr BtwRSupportService
chrome chrome
chrome chrome
chrome chrome
chrome chrome
chrome chrome
chrome chrome
chrome chrome
chrome chrome
chrome chrome

Figure 16: Format-Wide with two columns

25

Strings

Strings are one of the most commonly used variable types in programming languages and
PowerShell is no exception. Strings are used to compare usernames, to evaluate an OS
version, and even to compare XML nodes. By default, strings in PowerShell are .NET
System.String objects, which means that when you initialize a variable with a string, PowerShell
will instantiate a System.String object with all its properties and methods.

$myVar = "PowerShell"
($myVar -is [System.String])

PS C:slUserssrui.machado? $string = "Rui"

PS C:sUsersspui.machado?> $string —is [System.Stringl
True

Figure 17: Evaluate System.String type

Although using strings is simple in PowerShell, it introduces a new concept that usually
confuses developers, which is literal and expanding strings. In literal strings, enclosure between
single quotes (‘) and all text between commas are part of the string. When you enclose text with
double quotes (), PowerShell replaces all variable names and special characters with their
values.

$a="SyncFusion"

#lLiteral strings
$literal = '$a'n and PowerShell'

#Expanding strings
$expanding = "$a'n and PowerShell"

The result of the previous code block is shown in Figure 18.

PS C:slUserssrui.machado?> Sa="SyncFusion"

PS C:sUserssrui.machado?> $literal = '$a’'n and PowerShell’
PSS C:sUserssrpui.machado> Sexpanding = "$a'n and PowerShell"
PS C:slUserssrui.machado> $literal

%a'n and PowerShell

PSS C:sUserssrui.machado?> Sexpanding
SyncFusion

and PowerShell

Figure 18: Literal vs Expanding Strings

PowerShell Here Strings

PowerShell introduces a nice feature that simplifies the way you manage large text strings. This
allows you to define multi-line strings without having to concatenate several string parts. To use
a here string, you start by typing the special character “@” followed by a new line, and end your
string with a new “@” character.

#simple string
$simpleString="Example String"

#Empty here string
@II

‘e

#PowerShell here string
$largeString= @"
Hello, this
is a PowerShell here string. You can define
multiple string lines into one single text block.
You can even use special characters like "n or expand it with another
string
$simpleString
‘@

If you run this script in the interactive shell, you will see that PowerShell interprets this here
string as an expanding multiline string. This allows you not only to simplify the way you initialize
a multi-line string, but also the way you build the expanding stringNote that here strings can be
either expanding or literal strings.

C:xlUzerssrui.machado~Documents > H#Powerfhell here string
C:slzerssrui.machadosDocuments?> $largeString= @

Hello. this

iz a Powerfhell here string. You can define

multiple string lines into one single text block.

You can even use speacial characters like "n or expand it with another string
SzimpleString

LI

@

C:slUserssrui.machado~Documents> $largeString
ello. this
iz a PowerShell here string. You can define
ultiple string lines into one single text bhlock.
ou can even use speacial characters like
or expand it with another string
[Example String

Figure 19: PowerShell Here Strings

26

27

Regular Expressions

Regular expressions are an easy and very efficient way of searching for patterns of characters
in strings. While developing PowerShell scripts, you will need to use regular expressions in
several contexts, which may include replacing text inside strings, retrieving all elements inside
an XML document that contain a certain text or grouping blocks of text depending on a certain
pattern. To use regular expressions in PowerShell, you can use the —match operator if you just
want to evaluate a pattern inside a string or the —replace operator if you want to replace
characters inside a string based on a given pattern. The following code block shows you how to
use the —match operator.

#Text to evaluate.
$text = @"
This is a PowerShell string!
We will use it to test regular expressions

‘e

#Evaluate a pattern. Returns:True
$text -match "\w"

#Evaluate a pattern. Returns:False
$text -match "!\w+"

Although evaluating a pattern in a string is a common task in PowerShell, replacing text is also
important to make replacements based on a pattern’s occurrence. The following code block
shows you how to use the —replace operator. If you don’t understand regular expressions and
don’t understand the meaning of “\w” or “\w+!”, you can learn more on this in the MSDN
webpage Regular Expression Language - Quick Reference. You will find a full list of characters
you can use inside regular expressions and their purpose.

#Text to evaluate.
$text = @"
This is a PowerShell string!
We will use it to test regular expressions

'@

#Replace every character with the A character.
$text -replace "\w","A"

#Replace every string followed by !, with the B character.
$text -replace "\w+!","B"

Invoking the previous code block will result in the following string.

http://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx

PS C:wUserssrui.machadosDocuments? HReplace every character with the A characters
PS C:slUserssrui.machado~Documents?> Stext —replace "u"."A"

ARAA AR A ARAAAARAAA ARAAAA?

AR AAAA AAA AR AA AAAA AAAAAAA AAAAAAAAAAA

PE C:wUsershrui.machado~Documents>

Pt C:-sUszerssrui.machado“~DDocumentz> #HReplace every string followed by ?*. with the B character
PS C:sUserssrui.machadosDocuments? Stext —replace "wu+t"_"B"

Thiz iz a PowerShell B

e will use it to test regular expressions

Figure 20: Using -replace operator

Lists of Items

Arrays

To create an array in PowerShell, you can use one of two options: declare it explicitly by
enclosing all your values inside @() and separated by commas, or implicitly by just separating
them with commas as you can see in the following code block:

#Explicitly

$arrayl = @(1,2,3,4,5,6,7,8,9,10)
#Implicitly

$array2 = 1,2,3,4,5,6,7,8,9,10
#Accessing with a literal index
$arrayl[2]

#Accessing with a variable index
$index=4

$array2[$index]

To access a value of the array, just invoke the variable and the index you want in square
brackets i.e. $arrayl[$index].

.NET Lists

Since you can use .NET classes and objects, you are able to use any kind of list from

Collections.Generic collections. An example of using a list of strings is shown in the code block
below.

$myList = New-Object Collections.Generic.List[string]
$myList.Add("Rui")

$myList.Item(O)

28

29

Hash Tables

Hash Tables in PowerShell are declared using the @ character and your Key=Value items
enclosure in curly braces and separated by semicolons.

$values= @{
"KEY1" = "VAL1"
; "KEY2" = "VAL2"
; "KEY3" = “VAL3"
}

To access a value of your hash table, just invoke the variable with the key of the entry in square
brackets i.e. $values["KEY1"].

Tip: Separate your values with semicolons at the start of each entry; it is easier to exclude
one by commenting it at the start of its declaration.

Flow Control

Logical and Comparison Operators

To make decisions along your PowerShell scripts, you need to use conditional statements like in
any other programming language. These conditional statements allow you to interact with data
flowing in your script to define behaviors by its values.

All PowerShell operators start with a hyphen (“-*) followed by the desired operator name.

Note: PowerShell default operators are case insensitive; to use case sensitive
operators, you need to prefix the operator with the “c*“ parameter.

In the following table, you can check all available PowerShell operators.

Table 3: Comparison Operators

Operator Definition
-eq Equals. Allows you to compare two values and returns true if
there is a match and false if not. When using lists, PowerShell
will return all elements in left value that match the right value.

-ne Not Equals. Allows you to compare two values and returns true
if there is not a match and false if there is. When using lists,
PowerShell will return all elements in left value that don’t match

Operator

Definition

the right value.

_ge

Greater Than Or Equal. Allows you to compare two values and
returns true if the left value is greater than or equal to the right.
When using lists, PowerShell will return all elements in left
value that are greater than or equal to the right value.

_gt

Greater Than. Allows you to compare two values and returns
true if the left value is greater than the right. When using lists,
PowerShell will return all elements in left value that are greater
than the right value.

Less Than. Allows you to compare two values and returns true
if the left value is less than the right. When using lists,
PowerShell will return all elements in left value that are less
than the right value.

Less Than Or Equal. Allows you to compare two values and
returns true if the left value is less than or equal to the right.
When using lists, PowerShell will return all elements in left
value that are less than or equal to the right value.

-like

Like. Evaluates a pattern against the right value and returns
true if there is a match or false if there isn’t. This operator
supports wildcards, such as:

e ? Any single unspecified character.
e * Zero or more unspecified characters.
¢ [a-b] Any character in a range.

¢ [ab] The characters a or b.

-notlike

Not Like. Evaluates a pattern against the right value and returns
true if there is not a match or false if there is. This operator also
supports wildcards, the same as the Like operator.

-match

Match. Evaluates a regular expression against the right value
and returns true if there is a match or false if there is not.

-notmatch

Not Match. Evaluates a regular expression against the right
value and returns true if there is not a match or false if there is.

-contains

Contains. Returns true if a specified list has a particular value.

-notcontains

Contains. Returns true if a specified list doesn’t have a
particular value.

Is. Compares a value to a .NET type and return true if they
match, false if they don’t.

30

31

Operator

Definition

-isnot

Is Not. Compares a value to a .NET type and return true if they
don’t match, false if they do.

#Strings to evaluate

$a="Hello"

$b="Hi"

#EQUALS Returns False

($a -eq $b)

#NOT EQUALS Returns True
($a -ne $b)

#GREATER THAN OR EQUAL Returns True
(10 -ge 10)

#GREATER THAN Returns False
(10 -gt 10)

#LESS THAN Returns True

(3 -1t 7)

#GREATER THAN Returns True

(3 -1le 7)

#LIKE Returns true

($a -like "H*")

#LIKE Returns false

($a -like "H?")

#MATCH Returns true
($a -match "(.*)")

#CONTAINS Returns true
(1,2,3,4,5 -contains 5)

#CONTAINS Returns False
(1,2,3,4,5 -contains 15)

#IS Returns true
($a -is [System.String])

Table 4: Logical Operators

Operator Definition

-and Returns true if all evaluations in a conditional statement are
true. Otherwise returns false.

-or Returns false if all evaluations in a conditional statement are
false. Otherwise returns true.

-Xor Returns false if either one of the evaluations in a conditional
statement is true but not if both are. Otherwise returns false.

-not Inverts the logical evaluation in a conditional statement.

#AND Return False

($a -ne $b) -and (1 -eq 1) -and ($a -eq "PowerShell")
#OR Return True

($a -ne $b) -or (1 -eq 1) -or ($a -eq "PowerShell")
#XOR Returns True

($a -eq $b) -xor ($a -like "H*")

#NOT Returns False

-not ($a -ne $b)

#Combining multiple operators - Returns False

(($a -eq $b) -xor ($a -1like "H*") -and (1,2,3,4 -contains 1)) -xor ("A" -ne
"B")

Conditional Statements

Conditional statements are similar to any other language; you have the traditional if, then, else,
and the switch statement.

#Example
$myVar=1
if($myvar -1t 2){
“small”
}else{
ﬂ'lar\ge.‘)
}

Although the traditional declaration is available, there is another form of this statement that
plays with a hash table to create what can be declared in a single line and to exactly the same
as the traditional. | like to use this in simple conditions, like a value of a variable. The hash table
keys need to be $true and $false because they present the two possibilities of a Boolean
evaluation.

32

#@{$true=TRUE VALUE;$false=FALSE VALUE}[CONDITION]

#Example

$vari=2

$var2=2

$value = @{$true=12345;%$false=67890}[$varl -eq $var2]
#The result should be 12345

Switch

The switch statement is a simpler way, when compared with the if-then-else, to test multiple
input cases.

$int = 15
switch($int)
{

{“You need to sum 15”; break}
{“You need to sum 14”; break}
{“You need to sum 13”; break}
{“You need to sum 12”; break}
{“You need to sum 11”; break}
{“You need to sum 10”; break}
{“You need to sum 9”; break}
7 {“You need to sum 8”; break}
15 {“GooD!!”; break}

default {“You are close”;break}

auvVThWNEO

Loops

In PowerShell, you have several ways to loop (iterate) an object. However, the possibilities you
have depend on your logic, code organization goals, and your object type. The simplest of them
is the while loop. Using a while in PowerShell is the same as in any other C-based language.

#EXAMPLE

$array = 1,2,3,4,5,6

$var=e

while($var -1t 6){

write $array[$var]

$var++

Another looping structure you can use is the “for loop”, which again is similar to any C based
language.

H#EXAMPLE
$array = 1,2,3,4,5,6

for($i=0;%$i -1t $array.Count;$i++){
write $array[$i]

}

The last is one of the most used in PowerShell, the for each loop structure, because of its
appliance to pipeline objects. However, there are two different kinds of for each structures, one
to iterate in collections of objects that implement IEnumerable and another for input object
collections, often used to iterate pipeline objects.

As you will see in the following code block, by using the PowerShell foreach input object, code
becomes simpler and cleaner. The results are exactly the same.

#BASE
$array = 1,2,3,4,5,6

#Traditional way - classic foreach
foreach($var in $array){
write $var

}

<# Using the most common way to
iterate objects in PowerShell
- input object foreach

#>
$array | %{
write $_
}
? Tip: The foreach object has commonly used aliases, the character % (Percent) and

foreach. The first in most script editors assume a green color and the second a blue one.

34

35

Managing the Flow

PowerShell lets you manage delays, pauses, and breaks in your scipts. To do that, you have a
set of commands to help you. The Read-Host command pauses your scipt until the user
presses the Enter key. The Start-Sleep command pauses your scipt for a given amount of
time.

#Sleeps for 15 seconds.
Start-Sleep -Seconds 5

#Pause until user presses the Enter key.
Read-Host

Schedule Script Execution

Scheduling a script execution is a basic operation to automate a specific task in PowerShell. It
could be to store a log, either for an integration task or even creating a backup for an SQL
database table. There are plenty of situations in which you might think about letting PowerShell
automate things for you.

Although you might be thinking about coding a Windows Communication Foundation (WCF) or
something else, there is an easy strategy to schedule a script execution using Windows Task
Scheduler. This allows you to separate the script development from its execution management.
To use it, start by opening it in Windows (Start > All Programs > Accessories > System
Tools and select Task Scheduler). Once it opens, select Create Basic Task.

() Task Scheduler = =
File Action View Help
&= ||E BE
[(5) Task Scheduler (Local) Actions
» [Task Scheduler Library e Task Scheduler (Local) "
erview of Task Scheduler .
‘ | Connect to Another Computer...
] You can use Task Schedulerto) Create Basic Task
A=
T/ create and manage common
tasks that your computer will & Create Task...
carry out automatically at the I it Task
times you specify. To begin, mpert fask..
click a command in the Action & Display All Running Tasks
o & Disable All Tasks History
Task Status .
| AT Service Account Configuration
Status of tasks ... | Last 24 hours v View »

Summary: 66 total - 0 running, 85 succeede...

Task Name Rur *
Badge Update (last run succeed...
BindingWorkltemQueueHandle...
CacheTask (running)
ConfigNetification (last run suc..,

Last refreshed at 11/07/2013 10:02:45 Refresh

[d] Refresh

H Hep

Figure 21: Open Task Scheduler

@ Create a Basic Task

Create a Basic Task Use this wizard to quickly schedule a common task. For mere advanced options or settings
Trigger such as multiple task actions or triggers, use the Create Task command in the Actions pane.
Action MName: SaveProcessesToFile

Finish

Description: | This task will run @ PowerShell Script that saves to a CSV file all running
processes in this machlne.l

Figure 22: Create Basic Task

Now select when you want to run this task. This is just the first schedule configuration, as you
need to specify later more details about this execution. For example, if you choose Daily, you
can define the hours at which this script will run.

Task Trigger

Create a Basic Task When do you want the task to start?
® Daily
Action e
Finish @
) Monthly
(") Onetime

(") When the computer starts
() When | log on

() When a specific event is logged

| = Back || Mext > || Cancel

Figure 23: Scheduling Selection

37

Create Basic Task Wizard

:] Daily

Create a Basic Task
T’.Eﬂ €3 basic |as Start: |11/07/2013 @~ | 10:08:27 = |:|Syn(hmnizea(rosstimezune;
rigger

Recurevery: [1 | days
Action
Finish

< Back Mext = Cancel

Figure 24: Second level Scheduling

After you define the execution schedule you choose the action, which in this case you must
select Start a Program. On the program/script selection, type PowerShell.exe in the program
textbox and as an argument type —file and after the path to the script you want to run. After that
you are done. The script will execute at the selected time with a plus, you can change the script
whenever you want and the changes are automatically available.

Edit Action

You must specify what action this task will perform.

Action: | Start a program v
Settings

Program/script:

powershell.exe Browse...

Add arguments (optional): -file "C:\Users\rui.mache

Start in (optional):

Figure 25: Finish Schedule Task

Extensibility and Code Reuse

Create instances of objects

Creating instances of objects in PowerShell is easy thanks to the new New-0bject cmdlet. You
can invoke New-0b7ject indicating which object you want to instantiate, whether it's a .NET or
COM object.

#example using New-Object and ArgumentlList to pass parameter to the object
constructor

$eventLog = New-Object System.Diagnostics.EventLog -ArgumentlList "Application™
#0bject is available.

$eventLog.Entries | Out-GridView

Functions and Parameters

Let’s start by taking a look at functions. Functions are named code blocks, preferably with
simple and single tasks, built to reuse code within your scripts. Parameters, on the other hand,
are a simple mechanism of communication to send external values to a function. In the following
code sample, you can find several application scenarios for functions and parameters.

#Using a simple Function
function GetAllProcess{
Get-Process

}

#Using a simple Function two parameters.

function MyFunction($paraml,$param2){
Write "This is param 1 : $paraml"
write "This is param 2 : $param2"

}

#You can also use the param block to define your parameters.
function MyFunction{
param(
$paraml
» $param2
)
#Even declare where you process your logic.
process{
Write "This is param 1 : $paraml"
write "This is param 2 : $param2"

}

#Calling GetAllProcess

38

39

GetAllProcess

#Calling MyFunction
MyFunction -paraml 65 -param2 3

? Tip: As you can see in the previous code block, you can declare parameters inside the
param block as well as declare your logic inside of a process block. This will make your
code more readable and better organized.

When calling functions, there are two ways to pass parameters into them, either by including
them in the function signature or simply displaying the value in front of the function call.

#Included in method signature.
[string]::Equals("Rui", "Machado")

#Using PowerShell front function parameters.
MyFunction -paraml 65 -param2 3

@_ Tip: You should be careful with this parameter passing. The use of parentheses in

) function calls or cmdlets is interpreted as a sub-expression of PowerShell and not as a
parameter. In this situation, the parameters must be passed by specifying the parameter
in question. We can only use parameter passing in methods within the method signature
(between parentheses). In the following code sample, you can see the differences
between these situations

function SumTwoValues($a,$b)
{

return $a + $b

}

<#CASE 1

Calling a function with its parameters inside its signature

doesn’t give you the expected result (evaluating the parameters as

a sub expression), which in this case is an array. In PowerShell you can
declare an array as 1,2,3,4,5,...,n, so it prints the values of the array
#>

"CASE 1"
SumTwoValues(1,4)

<#CASE 2
Correct calling: Using this method you will get the expected result
#>

"CASE 2"
SumTwoValues -a 1 -b 5

Figure 26 shows the results produced when calling the SumTwoValues method using both
syntactical options. CASE 1 displays the array (1,4) and CASE 2 displays the sum of 1 and 5.

PowerShell Console
CASE 1

1

4

CASE 2

]

Figure 26: Passing Parameters in Functions

Parameters can be used not only in functions but in scripts as well. PowerShell allows you to
use script parameters, making the entire script reusable just by calling it as a function, which is
very useful when you want to create a data flow based on scripts instead of functions. To add
parameters to your scripts, you need to use the block param at the beginning of your script,
which will only work if it is the first line of code in your script.

Param(
$paraml,
$param2

)

#Start your script definition.

As you can see, parameters are defined inside that param block, but there is much more to tell
about these parameters and their special attributes. In this param block, as in any function, you
can add the following attributes.

Table 4: Parameter Attributes

Attribute Definition

Mandatory (Boolean) Specifies if the parameter is mandatory; True
for yes, False for no.

ParameterSetName (String) Specifies the parameter set that the command
parameter belongs to.

Position (Integer) Specifies the position in which the parameter is
in that command signature.

ValueFromPipeline (Boolean) Specifies if the parameter comes from a
pipeline object. Default value is False.

ValueFromPipelineByPropertyName Specifies if the parameter cames from a

(Boolean) property of a pipeline object. Default value is
False.

ValueFromRemainingArguments Specifies that the parameter accepts any value

(Boolean) from remaining command parameters.

40

Attribute Definition

HelpMessage Set a description for the parameter.

HelpMessageBaseName Specifies an external reference for the Help
message description.

HelpMessageResourceld Specifies the resource identifier for a Help
message.

To use any of these parameters, you need to declare them between square brackets right

before or on top of the parameter declaration. The following code block shows an example of
this attributes usage.

function TestParameters{
param(

#You need to write the attributes inside Parameter()

#That parameter is Mandatory
[Parameter(Mandatory=$true)] $name,

#That parameter is Mandatory and Add a Help Message
[Parameter(Mandatory=$true,HelpMessage="You must enter an

Age!")]
$age,
#This parameter comes from a pipeline object.
[Parameter(ValueFromPipeline =$true)] $address
)
}

As you can see in Figure 27, by using a help message, the user can see more information about
a specific parameter when trying to invoke the function.

i -address
iy m -age < System.Object=
“ip -name Function parameter. You must enter an Age!

Required: True. Position: 2. Accept pipeline input: False. Accept wildcard characters: False

Figure 27: Help Message

If you don’t provide a value from a mandatory parameter, PowerShell will raise an input box
telling you that mandatory parameters are missing and asking you to provide them.

41

cmdlet TestParameters at command pipeline position 1

Supply values for the following parameters:

Parameters

Resources

Yalue

name

QK Cancel

Figure 28: Missing Parameters

Another nice feature about parameters is that you can add validators to evaluate if your
parameters match a validation rule set by you.

ﬂ‘ Note: There are several validators for PowerShell and it’s important that you know about
them, as they will save you time with validations on values for particular parameters. The
following table defines every possible validator.

Validator

Definition

Definition

ValidateCount

Validates the minimum and
maximum parameters
allowed for a command.

[ValidateCount($min, $max)]

ValidateLength

Validates the minimum and
maximum number of
characters for a parameter

[ValidateLength($min, $max)]

ValidatePattern

Validates a string parameter
with a regular expression.

[ValidatePattern($regexString)]

ValidateSet

Validates a parameter

[ValidateSet($arrayValidValues)]

42

43

Validator Definition Definition

according to a set of possible
values.

ValidateRange Validates a parameter [ValidateRange($min, $max)]
according to a range of
possible values.

The following example uses the validateSet attribute to enforce a constraint on the $type
parameter, which limits the values that can be passed to that parameter to three distinct values.
The changeUserType function then uses that parameter to change the user type.

function ChangeUserType{

param(
$userID,
[ValidateSet("Admin", "User","SuperAdmin")]
$type

)

ChangeType -User $userID -Type $type

If you try to call that function with a type that is not specified in the validation set, you will get an
error indicating that a particular value is not defined for that parameter.

ChangeUserType -userID 1 -type "Regular"

ChangeUserType : Cannot wvalidate argument on parameter "type'. The argument "Regular™ does
not belong to the =set "Admin,U=ser,Superfhdmin™ specified by the ValidateSet attribute.
Supply an
argument that is in the set and then try the command again.
Lt C:“\Usersz‘\rui.machado'\Dropbox'Power3Hell Book\Scripts\param=.p=sl:16 char:32
+ ChangeUserTyvpe -userID 1 -type "Regular™
+ CategoryInfo InwvalidbData: (:!) [ChangeUserIype],
ParameterBind alidationException
+ FullyfualifiedErrorId : ParameterArgumentValidationError,ChangeUserType

Figure 29: Error with Attribute outside ValidationSet

Create a Windows Form

Creating Windows Forms in PowerShell is as simple as in C#. By having the ability to interact
with .NET classes, we just need to reference the class in which our Windows Form Item is
defined and then instantiate it using the method shown in the previous topic, Create instances of
objects. To show you how simple it is, | am going to build an example in which | create a form
with a header label and a data grid to list items from our Get-Process command. Next | will
add a button that will invoke a save file dialog so that we can export our data grid data source
as a CSV file. The expected result is shown in Figure 30.

Demo Ul using Powershell - Rui Machado 2013 for SyncFusion

Id | Name | Path | Description | WM | WS |crPU | Company
12504 AcroRd32 C/\Program F Adobe Reade 111890432 19480096 2625 Adaobe Syste
11456 AcroRd32 C/\Program F Adobe Reade 338395136 135041024 107453125 Adobe Syste
1960 armsvc 46551040 3957696

b 10232 avp Kaspersky En 138153984 16588800 21,359375 Kaspersky La
4764 avp 895586304 95305824
6482 ETHSAmpPal 30375936 4026368
a7z BTHSSecurit 48336896 8597504
1338 BtwR Support BBEETTTE 5828608
12704 chrome C\Program F Google Chro 183734912 35520512 08125 Google Inc.
12104 chrome C:\Program F Google Chro 414633984 122114048 45078125 Google Inc.
10612 chrome Ci\Program F Google Chro 218722304 45391872 3421875 Google Inc.
15676 chrome C/\Program F Google Chro 203624448 42049536 1609375 Google Inc.
15232 chrome C:\Program F Google Chro 190599168 40054734 1421875 Google Inc.
12760 chrome CA\Program F Google Chro 208003072 54300672 2953125 Google Inc.
10144 chrome C\Program F Google Chro 192655360 39874560 6.625 Google Inc.
6564 chrome C:\Program F Google Chro 467573820 186277388 201.7187% Google Inc.
4540 chrome C\Program F Google Chro 211222528 52047872 271875 Google Inc.
4232 chrome C:\Program F Google Chro 205733828 53161984 365625 Google Inc.
9924 chrome C:\Program F Google Chro 213786624 56307712 8296875 Google Inc.
2912 chrome C\Program F Google Chro 241357760 917593552 3796875 Google Inc.
8684 chrome C:\Program F Google Chro 185520128 25329664 0.515625 Google Inc.
7256 conhost 23666688 2539520
12726 conhost C:\Windows's Console Win 46559232 3227648 0 Micresoft Cor
G520 conhost 23RERRER 2494464
5940 conhost 23670784 2629632
Bit | | SaveasCSV

Figure 30: Windows Form Get-Process

#Create a new .NET array list.
$processList = New-Object System.Collections.ArrayList

#Get all processes.
$allProcesses = Get-Process | Select
1d,Name,Path,Description,VM,WS,CPU,Company | sort -Property Name

#Add all processes to an array list which is easier to manipulate.
$processList.AddRange($allProcesses)

#Instantiate a new Windows Form
$form = New-Object Windows.Forms.Form

#Sets the Windows Form size and start position.
$form.Size=New-0Object Drawing.Size @(800,600)

$form.StartPosition = [System.Windows.Forms.FormStartPosition]::CenterScreen

#This will create panels to display our items.
$panellLabel = New-Object Windows.Forms.Panel
$panelMain = New-Object Windows.Forms.Panel
$panelButton = New-Object Windows.Forms.Panel

44

45

#Creates the save file dialog so that we can export it as CSV.
$saveDialog = new-object System.Windows.Forms.SaveFileDialog
$saveDialog.DefaultExt = ".csv"

$saveDialog.AddExtension = $true

#Create the save to CSV button.

$buttonSave = New-Object Windows.Forms.Button
$buttonSave.Text = "Save as CSV"
$buttonSave.Left = 100

$buttonSave.Width =100

#Add the OnClick save button event.
$buttonSave.add Click(

{
$resultSave=$saveDialog.ShowDialog()
#If the user clicks ok to save.
if($resultSave -eq "OK"){
#Save as CSV
$allProcesses | Export-Csv -Path $saveDialog.FileName
MessageBox("Guardado com sucesso")
}
})

#Create the exit application button.
$button = New-Object Windows.Forms.Button
$button.Text = "Exit"

$button.Left = 10

#Add the OnClick exit button event.
$button.add_Click(

{
})

$form.Close()

#Create datagrid

$dataGrid=New-0Object Windows.Forms.DataGrid
$dataGrid.Dock = "Fill"
$dataGrid.DataSource = $processlList

#Create a new label to show on the header.

$label = New-Object System.Windows.Forms.Label

$label.Text= "Demo UI using Powershell - Rui Machado 2013 for SyncFusion"
$label.Font = "Segoe UI Light"

$label.Width= 300

#Add the header label to its panel.
$panellLabel.Controls.Add($1label)
$panellabel .Height =35
$panellLabel.Dock = "Top"

$panellLabel.BackColor = "White"

#Add datagrid to its panel.
$panelMain.Controls.Add($dataGrid)
$panelMain.Height =470
$panelMain.Dock = "Top"

#Adds buttons to its panel.
$panelButton.Controls.Add($button)
$panelButton.Controls.Add($buttonSave)
$panelButton.Height=50
$panelButton.Dock = "Bottom"

#Add all panels to the form.
$form.Controls.Add($panelMain)
$form.Controls.Add($panelButton)
$form.Controls.Add($panelLabel)

$form.Refresh()

#Show the form.
$result = $form.ShowDialog() | Out-Null

if($result -eq "Cancel")
{

MessageBox("Program is closing...")
$form.Close()

}

#OPTIONAL: Function to create new MessageBoxes
function MessageBox([string]$msgToShow)

{
}

[System.Windows.Forms.MessageBox]: :Show($msgToShow)

Clicking on the Save CSV button will save the file to a destination in your file system.

46

a7

Chapter 2 File System

This chapter is specifically for system administrators who dedicate several hours in their daily
routine to working with files and directories. PowerShell won’t free you from doing it, but it might
help you automate your manual tasks by writing reusable functions.

Current Location

An important topic when dealing with files and directories is setting your paths. Current location
is one of those important paths for you to create relative paths between files and even scripts.
To get your current location, you use the Get-Location command, which retrieves an object
that represents the current directory, much like the pwd (print working directory) command. In
this object you have the current path and drive.

#Returns full path for the current location.
Get-Location | %{$_.Path}

#Return drive info.
Get-Location | %{$_.Drive}

g C:sUWindowsssystemn32> Get—Location #i&__Path}
SWWindowss tem32
g C:sUWindowsssystem32> Get—Location #if_.Drivel

Used <GBX> Free <GB Provider Root

FileSysten (RN

Figure 31: Get-Location Execution

Get Files from a Directory

To retrieve information about all files in a directory, you can use the Get-ChildItem command,
or if you just want to list information about a single item, use the Get-Item command. This
command has several important parameters; three of them are highlighted in Table 5.

Table 5: Get-ltem parameters

Parameter Definition

-Name Gets only the names of the
items in the locations.

-Recurse Gets the items in the
specified locations and in all

Parameter Definition
child items of the locations.

-Path Specifies a path to one or
more locations.

#Simple Get-ChildItem
Get-ChildItem -Path (Get-Location).Path

#Get-ChildItem using -Recurse parameter.
Get-ChildItem -Path (Get-Location).Path -Recurse

#Get-ChildItem using -Recurse parameter and a filter for file name (-Name)
Get-ChildItem -Path (Get-Location).Path -Name "*Rui*"

#Get-ChildItem filter by extension.
Get-ChildItem -Path (Get-Location).Path | ?{$_.Extension -like "*txt"}

Get the Content of a File

#Get the content of a single file without restrictions.
Get-Content -Path "c:\temp\File.txt"

Getting the content of a file is an easy task thanks to the Get-Content command, which will
read the content one line at a time and return a collection of objects, each of which represents a
line of its content. You can either invoke this command alone or combine it with the Get-
ChildItem command to dynamically read the content of multiple files, according to its
attributes such as last change date.

The previous code block shows you a simple example on how to retrieve the content of a single
file. This will result in an object array with all lines red, which you can save into a variable and
manipulate later. Figure 32 reproduces the result of this calling. To test this code block, create a
file named File.txt in C:\temp.

PSS C:-“Userssrui.machado> #Get the content of a zingle file without restrictions
PS C=xlUserssrui.machado? Get—Content —Path “c-~tempsFile.txt"
ello PFowerShell Fans

hiz iz a Get—Content example
ade for SyncFuzion Succinctly Series
y RBui Machado

Figure 32: Calling Get-Content

Your requirements might involve more elaborate callings. In the following code block there are
several examples on how to use this command.

#Get the first three lines of your file using the -TotalCount parameter.
Get-Content -Path "c:\temp\File.txt" -TotalCount 3

49

#Get the last line of your file using the -Tail parameter (Available since
Powershell v3.0)
Get-Content -Path "c:\temp\File.txt" -Tail 1

<#

In this example combining this command with Get-ChildItem

will allow you to retrieve the content of all files in c:\temp
directory
#>

#Get the files

Get-ChildItem -Path "c:\temp" -Filter "*.txt" | %{
#Get Content
Get-Content -Path $_.FullName

Manipulate the Content of a File

Once you have the content of a file, it is likely that you will want to change its content, either by
cleaning it, replacing strings, or even adding text to it. The Set-Content command provides
this ability by allowing you to write or replace the content of a specified item, such as afile. If
you use this command alone and invoke it with only a path and value, then it will replace the
entire content with the new one specified in the value parameter. To replace text in a file, you
need to combine it with the Get-Content command.

In the following example, we will get the content of a file and replace every instance of the string
“ (TOCHANGE)” with the string “PowerShell”. The original text inside the file is the following:

“ (TOCHANGE) Hello _(TOCHANGE) Fans. This is a Get-Content example made for
Syncfusion Succinctly Series by Rui Machado”

Now we will run the following script to change the file content to the correct sentence. Note that
what will change the content of the file is the string replace made after reading the content of the
file. The Set-Content command will just take the path of the file and the new value for its content
passed through the pipeline.

#File path.
$path = "c:\temp\File.txt"

#Get the file content.
Get-Content -Path $path | %{

#Replace the token in memory, this won’t change the file content.
$new = $.Replace(" (TOCHANGE)", "PowerShell")

}

#Set the file content.

Set-Content -Path $path -Value $new

This will result in a content reset for our file as you can see in the following figure.

PS C:“Userssrui.machado> Get—Content —Path $path
TOCHANGE> Hello _<TOCHANGE)> Fans. This iz a Get—Content example made for SyncFusion Succinctly Series by RBui Machado
3 machado?> #file path
.machado?> $path = "c:stemp\File.txt"
i.machado>
i.machado> #Get the file content
machado? Get—Content —Path Spath ! 2{

#Replace the token in memory,. this wont change the file content
$new = $__Replace("_(TOCHANGE>", "PouwerShell">

>
#%et the file content
Set—Content —Path $path —Value $neuw

[PS C:“\Userssrui.machado? Get—Content —Path $path
PowverShell Hello PowerShell Fans. This iz a Get—Content example made for SyncFusion Succinctly Series by Rui Machado
8 C:sUserssrui.machado’

Figure 33: Reset file content

Create Temporary Files

Using temporary files is a useful strategy for manipulating files across several script invocations.
For instance, you can create a temporary XML file and manipulate it using several function and
method calls and then save it only at the end of your script execution.

To create a temporary file, you can use the .NET namespace that handles paths,
[System.I0.Path] which among other things includes a method called
GetTempFileName ()for creating temporary files.

#This gives you a temp url file to work with.
$url = [System.IO.Path]::GetTempFileName()

#After getting the temp url, you can work with the file.
"Rui" | Out-File $url

#You can retrieve the content of the temp file.
Get-Content $url

Manage Directories

Create New Directories

Managing directories includes tasks such as creating new directories, deleting directories,
changing permissions, and renaming directories. PowerShell allows you to use the common
MS-DOS commands to manage directories, but it adds new commands so that managing
directories becomes easier, faster, and more efficient.

To create a new directory in the old Windows shell you use mkdir. PowerShell redefines the
mkdir command by offering you the New-Item command. The New-Item command is not only
used to create directories, but can also be used to create files, registry keys, and entries. New-
Item takes a —type parameter that determines the type of item to create.

50

51

To create a new directory, you just need to invoke the command New-Item, providing as
parameters its destination path and the type directory parameters.

New-Item -Path "c:\temp\newFolder" -ItemType Directory

PSS C:slserssrui.machado?* Mew—Item —Path "c:stempnewFolder'" —-ItemType Directorwy

Directory: C:-“temp

LastWriteT ime Length Mame
a7.-8%7-2813 28:51 newFolder

Figure 34: Create a new directory

Change Directory Permissions

Although the directory is already created, you might want to change its permissions. To do so,
you must be aware of the access control list (ACL) concept, which is a list of access control
entries (ACE) that identifies a trustee and specifies the access rights allowed, denied, or audited
for that trustee. In another words, it specifies the permissions that users and user groups have
to access a specific resource.

PowerShell allows you to get and set the ACL for a file or directory, and to do so you can use
the Get-Acl command to retrieve objects that represent the security descriptor of a file or
resource and the Set-Acl command to change the security descriptor of a specified item. The
following code block shows how you can change the “newFolder” created previously to deny
access to the users group.

$pathToFolder = "c:\temp\newFolder"

#Get the ACL of the folder.
$acl = Get-Acl -Path $pathToFolder

#set the new permission settings.
$perSettings = "BUILTIN\Users","FullControl", "Deny"

#create the access rule.
$newRule = New-Object System.Security.AccessControl.FileSystemAccessRule

$perSettings

#change the acl access rule.
$acl.SetAccessRule($newRule)

#Set the new rules in the folder ACL.
$acl | Set-Acl $pathToFolder

This will add a new entry in the permissions for this folder as you shown in Figure 35.

,'! $acl.Access | O

AdVie I
Filter - @

4 Add criteria ¥ |

FileSystemRlights AccessControlType | IdentityReference Isinherited | InhentanceFlags

FullControl Deny BUILTINWUsers False Nene

FullControl Allow BUILTINVAdministrators True None

268435455 Allow BUILTINVAdministrators True Containerlnherit, Objectnherit
FullControl Allow NT AUTHORITY\SYSTEM True None

268435455 Allow NT AUTHORITYSYSTEM True Containerlnherit, Objectinherit
ReadAndExecute, Synchronize Allow BUILTINVUsers True Containerlnherit, Objectinherit
Madify, Synchronize Allow NT AUTHCRITY\Authenticated Users True None

-33680337 Allow NT AUTHORITY\Authenticated Users True Containerlnherit, ObjectInherit

Figure 35: Change directory permissions
To get the output displayed in the previous figure, run the following code:

$acl = Get-Acl -Path $pathToFolder
$acl.Access | Out-GridView

Remove Directories

To remove a directory, you can use the command Remove-Item which is similar in behavior
and calling structure to the New-Item command. In this case you just need to provide the item
path without providing the item type.

Remove-Item -Path "c:\temp\newFolder"

Combining the Get-ChildItem with Remove-Item command will allow you to create
mechanisms of batch deletion of files inside directories according to a filter or file attribute.

The last manipulation task | want to talk about is renaming your files and directories. PowerShell
also offers you a command to rename your files, which can be combined with the Get -
ChildItem command, if you are working with sets of files in order, to rename several at once
according to a given filter or file attribute.

Rename Directories

The Rename-Item command changes the name of a specified item. This command does not
affect the content of the item being renamed. To use it, you just need to provide as a parameter
the path to the destination directory or file and the new name to set.

#directory path
$path = "c:\temp\"

52

53

#This example will invoke the rename command to a set of files.
Get-ChildItem -Path $path -Name "File.txt" | %{

#Rename the file.
Rename-Item -Path "$path\$_" -NewName "FileRenamed.txt"

}

#Simple use of rename item command.
Rename-Item -Path "$path\FileRenamed.txt" -NewName "File.txt"

Move a File or a Directory

To move a file or a directory, you can use the Move-Item command, which moves an item,
including its properties, contents, and child items, from one location to another location. An
important note to retain is that when you move an item, it is added to the new location and
deleted from its original location.

#original file location. Where we want to move from.
$original = "c:\temp\File.txt"

#file target location. Where we want to move to.
$destination = "c:\temp\newFolder\File.txt"

#Invoke the move item command.
Move-Item -Path $original -Destination $destination

<#Path and destination are positional parameters 1 and 2 so you can ignore
parameter referencing.

Move-Item $original $destination
#>

#Move the entire directory.
Move-Item "c:\temp\newFolder" "c:\"

Managing Paths

Join Parts into a Single Path

PowerShell comes out of the box with great mechanisms to manage paths in your scripts, using
operations like creating full paths by joining its relative parts, testing if a path exists, completing
a relative path, or even splitting a path into its multiple parts.

For the task of joining multiple path parts, you can use the Join-Path command, which
combines a path and child path into a single path. The provider supplies the path delimiters.

#This will return c:\temp\File.txt
Join-Path -Path "c:\temp" -ChildPath "File.txt"

#Because path and childpath are positional parameters (Path is 1 and
ChildPath is 2) ignore the parameter reference.

Join-Path "c:\temp" "File.txt"

#Join multiple parts.
Join-Path (Join-Path "c:" "temp") "File.txt"

Split Paths into multiple parts

But what about the opposite task, splitting a path into multiple parts? To do that, you need to
use the Split-Path command. This will return the specified part of a path that you defined in
your command call, either the leaf (the last part of the part) or the head (the default behavior).
$path = "c:\temp\File.txt"

#Return the head of the path: c:\
Split-Path -Path $path

#Return the leaf of the path: File.txt
Split-Path -Path $path -Lleaf

#Split multiple times: temp
Split-Path (Split-Path -Path $path) -leaf

To enrich your split path command, you can use some .NET methods to get a file name or
extension, a behavior that Split-Path won’t support.

$path = "c:\temp\File.txt"

#Return the file name: File.txt
[System.I0.Path]::GetFileName($path)

#Return the file extension: .txt
[System.I0.Path]::GetExtension($path)

#Return the file name without extension: File
[System.IO.Path]::GetFileNameWithoutExtension($path)

#Return the full file name: c:\temp\File.txt
[System.I0.Path]::GetFullPath($path)

#Return the directory name: c:\temp
[System.I0.Path]::GetDirectoryName($path)

54

55

Test if Path Exists

While accessing a particular file, you may want to change or get its content. It is a good idea to
check and see if the file or directory exists. To accomplish this, PowerShell has the Test-Path
command, which determines whether or not all elements of the path exist. It returns true ($true)
if all elements exist and false ($false) if any are missing. It can also tell whether the path syntax
is valid and whether the path leads to a container or a terminal (leaf) element.

This command is often used in combination with other commands as you see in the following
code block.

$path = "c:\temp\File.txt"

#Simple path test, returns: True
Test-Path -Path $path

#You can evaluate the path forcing it to check if it is a file: True
Test-Path -Path $path -PathType Leaf

#You can evaluate the path forcing it to check if it is a directory: False
Test-Path -Path $path -PathType Container

#tcombine it with the Get-Content commands.
$found=(Test-Path -Path $path -PathType Leaf)
#if it is found, retrieve the content of the file.
if($found){

Get-Content $path
¥

Resolve Paths

The last task | want to mention in this managing path section is the ability to resolve paths
dynamically in PowerShell. Resolving paths means interpreting wildcard characters in a path
and displaying the path contents. To do this, you need to use the Resolve-Path command,
which interprets the wildcard characters given and displays the items and containers at the
location specified by the path, such as the files and folders or registry keys and sub keys.

#Target Directory
$path = "c:\temp*"

#Get all files inside that directory.
Resolve-Path -Path $path

#0nce again path is a positional parameter in position 1, so ignore
parameter reference.
Resolve-Path $path

By calling the previous script, PowerShell will list, according to the wildcard defined, all files
inside the given path.

PS8 C:xllzepsrui_-machado> #Target Directory

PS C:sUserssrui.machado? Spath = "c:istemph="

P8 C:xllzeprsrui_machado

PS8 C:sllsepssrui.machado> #Get all files inside that directory
PS C:sUserssrui.machado? Resolwve—Path —Path %Spath

Path

G:\temp\nquulder

C:stempsListallsers.csv
C:stempstest.xlsx
Cistempstestes.xml
C:stempstests oxml

Figure 36: Result of Resolve-Path calling

56

Chapter 3 Processes

List All Processes

To list every process, as shown in previous examples, use the Get-Process command. Just by
invoking the command in the shell, it will internally call a foreach loop to show you every active
process in your computer with some properties and show it as a formatted table.

Get-Process

Handles HNPM(E) PM (E) W5 (K) VM (M) CPU (=) Id ProcessHame

406 43 109220 131808 323 106,39 11456 AcroRd3Z2

38 24 9540 18504 107 2,28 12504 AcroRd32
75 7 1124 3856 44 1960 armsvc

394 18 10668 14864 T8 468,02 1512 audiodg

2980 2386 386608 85408 823 4764 avp

1211 45 10872 15740 128 15,72 10232 avp
55 11 1120 3908 29 6492 BTHSAmpPalService
228 26 3712 8380 46 872 BTHSSecurityMgr
105 10 1696 5672 63 1336 BtwRSupportiervice
156 26 27212 33208 18 0,59 2688 chrome

2475 84 179700 196576 467 132,48 6564 chrome

156 28 29664 36288 180 0,72 7656 chrome

159 31 304592 3T7T6TE 182 9,94 7712 chrome

Figure 37: Get Process Result

There are some parameters and options you might want to use to list all active processes
according to requirements you may have. In the following example, you should replace the
MyMachineName string value with a valid machine name. You can check your machine name by
running the hostname command in your shell or command-line tool.

#Execute Get-Process on a remote computer.
Get-Process -ComputerName "MyMachineName"

#Get specific attributes.
Get-Process | select Id,Name

#Condition the process you want to list (Chrome processes only).
Get-Process | ?{$_.Name -like "*chrome"}

Another thing you can do after retrieving all running processes is to process them to extract
information. An example of that is evaluating CPU usage for all Google Chrome processes on
your machine.

#How much CPU do all chrome processes consume?
$sumCpuUsage=90
write "All Chrome Processes:"
Get-Process -ComputerName "MyMachineName”
?{$_.Name -like "*chrome"} | %{
$id=%_.Id
$cpu = $_.CPU
"Process:$id CPU: $cpu”
$sumCpuUsage+=$_.CPU

}
write "Total CPU: $sumCpuUsage"

Get a Process by ID

After listing all your processes, you might identify a process that you wish to analyze in
particular; to do so, you must get its ID and then call it using the attribute —Id of the Get-
Process command.

Get-Process -Id 11372

Stop a Process

To stop a process, you heed to use the command Stop-Process followed by the attribute 1D,
which is mandatory in this situation. To optimize your command, you might get that process by
ID and then pipe it to the stop command. In the following example, you find all instances of
Internet Explorer running in your machine and then stop them.

#Using the get by Id concept
Get-Process -ProcessName “iexplore” | Stop-Process

Start a Process

Launching a process in PowerShell is easy thanks to the Start-Process command. This
command not only starts the process but also returns the process object itself, which can then
be examined or manipulated. This command starts one or more processes on the local
computer, either if you set as a parameter the path to the executable file, or if you set as a path,
one to a file. In this case, PowerShell will launch the default program to open the file’s
extension.

58

<# EXAMPLE 1: Start a program #>

#Path from file.
$path = "C:\temp\Paint.NET.1lnk"

#Start new process.
$process = Start-Process $path

#Get process id started.
$process.Id

<# EXAMPLE 2: Start a file
with the default program to open it #>

#Path from file.
$path = "C:\temp\ListaUsers.csv"

#Start new process.
$process = Start-Process $path

#Get process id started.
$process.Id

59

Chapter 4 Windows Management
Instrumentation

Using WMI classes

One of the most striking features of PowerShell is its ability to interact with almost all settings of
a machine. These settings are accessible through the WMI class. In these WMI examples, | will
only use Win32 classes. However, in order to access my machine configurations, there is an
endless list of them. A list of all of the classes is available here.

The WMI is an infrastructure management data and operations for Windows operating systems.
It not only works with PowerShell, but also other languages such as C/C++, VB, and most other
scripting languages built for Windows systems.

As | previously mentioned, | will only use Win32 classes in my example. These classes provide
a large number of machine interactions such as getting the disk space available or getting our
RAM memory usage. In the following table, you can see the main Win32 classes groups.

Table 6: Win32 Classes Groups

Class Group Definition

Computer System Hardware Hardware-related objects.
Classes

Installed Applications Classes | Software-related objects.

Operating System Classes Operating system-related objects.

Performance Counter Classes | Raw and calculated performance data from performance

counters.
Security Descriptor Helper Class that provides methods to convert security descriptors
Class between different formats.
WMI Service Management Management for WMI.

Classes

60

http://msdn.microsoft.com/en-us/library/windows/desktop/aa394554(v=vs.85).aspx

61

Access WMI Classes

To use the WMI class in PowerShell, you need to use the command Get-WmioObject followed
by the class name. The following code block shows an example of a WMI class invocation.

Get-WmiObject Win32_DiskDrive

Calling this command will result in a set of information regarding your installed disks and its
partitions.

PE Cislzerssruil-machadosDocuments> Get—UWmilbject Win3d2_DiszskDrive

5
“SPHYSTCALDRIVEA
MIFDDAKZ256MAM-1K12
256052966484
MIFDDAKZ256MAM-1K12

i

. SPHYSICALDRIVEL
ST2328423A%5
328070328644
ST?328423A%

Partitions
DevicelD

Figure 38: Calling Get-WmiObject Win32_DiskDrive

WMI has an additional feature that is usually not explored by users called WMI's WQL
language, which allows you to query any WMI class. To use it, you must reference the
WmiSearcher object. The following code block shows you how you can use it in your
PowerShell scripts:

#Instantiate a WmiSearcher object with the query you wish to run.
$query = [WmiSearcher]"select * from Win32_DiskDrive where
Size>300000000000"

#Run the query to retrieve the result.
$query.Get()

The previous script retrieves all disks in your machine that have a size greater than a predefined
size. If you run it in the interactive shell, the result will resemble Figure 39.

SUserssrui.machadoSDocuments> #Instantiate a WmiSearcher ohject with the query you wish to run

ERN | i.machado“Documents?> Squery = [WmiSearcher1select * from Win32_DiskDrive where Size>300000000000"
i.machado~Documents>

g pui.machadoxDocuments> #Run the guery to retrieve the result

:\U..m..\1ul.machado\])ocuments) Squery.Get (>

g = 1
= “N\LNPHYSIGALDRIVEL
= 8T?32842308
= 328870320648
: 8T9320423R8

Figure 39: Run WQL queries

Exercise: Get Available Disk Space

For this challenge, we will setup a system administration scenario. One of the tasks of a
professional in this area is to monitor the disk space of the various servers and make decisions
and actions to avoid disk space allocation problems.

Performing this task manually is mundane and requires constant monitoring in order to avoid

problems, so it is an ideal task to automate. In this first tutorial, we will create a simple script that

lets you monitor available disk space. What | always try to encourage is establishing a
scheduled task that runs every day, so that you won’t need to execute the script manually.
Setting up a scheduled task that runs every day at 8am and saves the result to a log file, or
even send you an alert email when disk space is running low, will give you free time to think
about real problems instead of wasting time with monitoring and other routine tasks.

First create the basic routine, the function that will provide the information about a single
machine. The following code block shows you how to create a function to retrieve this machine
information.

function GetDiskInfo($serverName){

Get-WMIObject -ComputerName $serverName Win32 LogicalDisk |
?{($_.DriveType -eq 3)}|
#Select which attribute to show.
select @{n="'Computer' ;e={"{0:n0}" -f ($serverName)}},
@{n="Drive"' ;e={"{0@:n0}" -f ($_.name)}},
@{n="Capacity (Gb)' ;e={"{@:n2}" -f ($_.size/1gb)}},
@{n="Free Space (Gb)';e={"{0:n2}" -f
($_.freespace/1gb)}},
@{n="'Percentage Free';e={"{0:n2}%" -f
($_.freespace/$.size*100)}}

}

Now that we have the main function, we just need to create a list of all of the servers in our
domain that we need to monitor, and then iterate through each one and call our GetDiskInfo
function.

In the following code block, you have the full script to list all of your servers’ disk space with
formatted values.

function GetDiskInfo($serverName){

Get-WMIObject -ComputerName $serverName Win32_ LogicalDisk |
?{($_.DriveType -eq 3)}|
#Select which attribute to show.
select @{n="Computer' ;e={"{0:n0}" -f ($serverName)}},
@{n="Drive' ;e={"{0@:n@}" -f ($_.name)}},
@{n="Capacity (Gb)' ;e={"{@:n2}" -f ($_.size/1gb)}},
@{n="Free Space (Gb)';e={"{0:n2}" -f
($_.freespace/1gb)}},

62

63

@{n="Percentage Free';e={"{0:n2}%" -f
($_.freespace/$.size*100)}}

}

#lList of servers to monitor.

$allServers = "ruimachado","computer2","computer3"

#Iterate each server.
$allServers | %{
GetDiskInfo -serverName $_

}

The result of this script execution is a list of all disks with the respective free space for each of
the servers declared in the array.

ruimachado
222,23

65,89
2% .65

ruimachado

13.04
2,08
15 .93

ruimachado
|

2.84

2.84

184, B8

Free Space <Gh>
Percentage Free

ruimachado

298 .09
217. 42
79 .94z

Free Space (Gh2>
Percentage Free

Figure 40: Disk Available List
You might not like how the information is being shown, and you might prefer a text file

containing all of this information. To create this, you can store the information retrieved by the
GetDiskInfo call inside of a foreach loop and then export it as a file.

#GetDiskInfo function goes here.
$allinfoArray=@()
#Iterate each server.

$allServers | %{
$allinfoArray += GetDiskInfo -serverName $_

}
$allinfoArray | Format-Table | Out-File -FilePath "c:\temp\diskLog.txt"

This will generate a formatted table inside of a text file, as shown in Figure 41.

File Edit Format View Help

~
Computer Drive Capacity (Gb) Free Space (Gb) Percentage Free
ruimachado C: 222,23 77,98 35,09%
ruimachada D: 13,84 2,08 15,93%
ruimachado E: 2,00 2,00 1ee0,00%
ruimachado F: 298,089 220,25 73,89%

v

Figure 41: Formatted File with Disk Space

65

Chapter 5 Remote PowerShell

Using Remote PowerShell

Remotely accessing a local machine or running scripts on remote machines is a feature that
Microsoft was reluctant to support, and until the first version of PowerShell there was no way to
do it. Since PowerShell 2.0, things have changed and Microsoft has made a big effort to
implement the Windows Management Foundation, which combines PowerShell with Windows
Remote Management, offering tools for system administrators who can now manage all
machines on one or more domains.

One thing that is important to note is that not all PowerShell commands allow remote access to
computers. However, there are many ways to run scripts remotely, either by executing them on
the remote computer or running them from your own computer.

Another important point before we move on to the practical cases is that some commands
require that PowerShell be installed on both machines, while others may be run on machines
without PowerShell installed.

In order to use PowerShell remotely on a computer, it must be active in that computer. To do so,
use the command.

Make sure you run the PowerShell console in administrator mode, otherwise you will see the
error shown in Figure 42.

[FS C:sUserssrui.machado?> Enable-PsRemoting

Figure 42: Enable-PSRemoting Error

Another error you might face is a network connection type. In order to activate remote
PowerShell, all of your network connections types must be either private or domain. The error is
shown in Figure 43.

JinRM Quick Configuration
[Running command "Set—-WSManQuickConfig" to enabhle remote management of this computer by using the Windows Remote

anagement (WinRM>» service.
This includes:
1. Starting or restarting (if already started> the WinRM service
2. Setting the WinRM service startup type to Automatic
3. Creating a listener to accept requests on any IP address
4. Enabling Windows Firewall inbound rule exceptions for WS—Management traffic <(for http onlyd.

Do you want to continue?

[¥]1 ¥Yes [A] Yes to A1l [M]1 No [L] Mo to A1l [51 Suspend [?]1 Help {(default iz ""¥"'>: y
JinRM has heen updated to receive requests.

JinRM service type changed successfully.

JinRM service started.

Figure 43: Enable-PSRemoting Network Connection Type

The solution to this problem is to change the connection type as previously mentioned, to either
public or domain. To do so, you must invoke the following function, which will change the
network type to the one specified by the type parameter. You can invoke this script for just one
network, or activate the flag (Boolean parameter “All”) to change it for all of your networks.

function {
param(
[ValidateSet("Domain","Public","Private")]
[string][Parameter(Mandatory=$true)]$Type,
[string][Parameter(Mandatory=$false)]$NetworkName,
[bool][Parameter(Mandatory=$true)]$ChangeAll
)
#Instantiate a network manager object using its CLSID (CLSID is a com
object ID).
[Activator]::CreateInstance([Type]::GetTypeFromCLSID([Guid]"{DCB@OCO1-
570F-4A9B-8D69-199FDBA5723B}")) | %{

#Get all connections.
$allConns = @()
if($ChangeAll -eq $true){
$_.GetNetworkConnections() | %{ $allConns+=
$.GetNetwork()}
}else{
$_.GetNetworkConnections() | ?{$_.GetNetwork().GetName() -
like "*$NetworkName*"} | %{$allConns+=$_.GetNetwork()}

}
$allConns | %{
<#
Network Connection Types Available
Public - @
Private - 1
Domain - 2 //Won't cover it in this script

66

#>

#Because we will change the context of execution to a
switch, we must save the network connection to a variable.

$networkConnection = $_

switch($Type){
"Public"
{
$networkConnection.SetCategory(0);
break;

}

"Private"

{
$networkConnection.SetCategory(1);

break;

¥
default {"Only Private or Public type is

implemented."}

}
}

To invoke the command, just run the following code block:

ChangeNetworkConType -Type "Private" -ChangeAll $true

After you overcome all of these obstacles, enabling PowerShell remote shouldn’t give you any
more problems, but you may need to authorize several changes to your machine.

[FS C:xMWindows»zystem32> Enable-FSRemoting

JinRM Quick Configuration
[Running command '"Set-W8ManQuickConfig" to enable remote management of this computer by using the Windows Remote
anagement (WinRM)> seruvice.
This includes:
1. Starting or restarting (if already started) the WinRM service
2. Setting the WinRM service startup type to Automatic
3. Creating a listener to accept requests on any [P address
4. Enabling Windows Firewall inbound rule exceptions for WS-—Management traffic (for http onlyd.

Do you want to continue?

[¥] ¥Yes [A] ¥Yes to A1l [M]1 Mo [L] Mo to All [S]1 Suspend [?7]1 Help <(default is "¥'>: u
JinEM iz already set up to receive requests on this computer.

JinRM has been updated for remote management .

reated a WinRM listener on HITP:/»%* to accept WS—Man requests to any IP on this machine.
JinRM firewall exception enabled.

onf irm

Are you sure you want to perform this action?
erforming operation "Set—PS8SessionConfiguration' on Target "Name: microsoft.powershell SDDL:
INSG:=BAD:PCA5;GA5 5 sBADCAS sGA; ;s sSRMOS :PCAUFAZGA 5 sWDDCAUSAGEGH ;5 5WDD . This will allow selected users to remotely run
Jindows PowerShell commands on this computer'.
[A]l ¥Yes to A1l [M]1 Mo [L] Mo to All [S]1 Suspend [?7]1 Help <(default is "¥">: u

sure you want to perform this action?
erforming operation "Set—PSSessionConfiguration" on Target "Mame: microsoft.powerzhell.workflow SDDL:
O:=NSG:BAD:F<A;;GA;;sBA>CAS;GA;; sRMOS PCAUSFAGA 5 sWDDCAUSSASGRGH 5 55WD> . This will allow selected users remotely run
Jindows Powerfhell commands on this computer'.
[A] ¥Yes to A1l [N]1 Ho [L]1 Ho to A1l [%]1 Suspend [?] Help <{default iz "¥">: y

sure you want to perform this action?
erforming operation "Set—PSSessionConfiguration' on Target "MName: microsoft.powershell32 SDDL:
0:=NSG:BAD:P<A;;GA;::BADCAS;GA;; sRMOS:PCAUFA;GA: s sUDDCAUSAGEGY ;s sWD> . This will allow selected users to remotely run
Jindows PowerShell commands on this computer'.
[¥] ¥Yes [A] ¥Yes to All [H] Ho [L] Ho to A1l [S8]1 Suspend [?]1 Help {default is "¥">: y
[PS C:sHindowsssystem32>

Figure 44: Enable-PSRemoting run with no errors

Identify Remote PowerShell Compatible Commands

While working with remote PowerShell commands, you might face two types of context
application: one in which you have a remote compatible command and you invoke it remotely,
and another case in which you don’t have a remote compatible command. In this situation, you
need to invoke the script or command directly on the other machine through a remote session.
To evaluate which of these two scenarios are available for you, you need to check if a certain
command is compatible with remote PowerShell.

To evaluate a command’s compatibility in this context, you can simply check if it has a computer

name parameter, which means that you can get a full compatible list just by using the Get -
Command command. This will return a list of all commands available in PowerShell and then
filter that list to show only those that contain a computer name parameter.

#Get all commands.
Get-Command -CommandType Cmdlet | %{
#Filter the list to show those that contain computer name parameter.
if(($_.Parameters -ne $null) -
-and ($_.Parameters["ComputerName"] -ne $null)){
#Return the command name.
$.Name

Note: To invoke a command on a remote machine, it might need to have PowerShell
installed; however, there is a common technique used to overcome that problem,
which is to establish a remote desktop session.

Test a Remote Connection

Testing the connectivity between two computers is allowed in PowerShell through its Test -
Connection command, which works like the old ping command. It sends Internet Control
Message Protocol (ICMP) echo request packets (pings) to one or more remote computers and
returns the echo response replies.

#Test connection between this computer and another

Test-Connection -ComputerName "WIN-FI6G73MN5BB"

This command is easy to call in its most basic form; just call it with the target computer name
parameter and that’s it. The result of this call is shown in Figure 45, which in this case is a
success.

68

69

PS C:=xUserssrui.machado> #ilest connection between this computer and another
PS C:=sUserssrui.machado> Test—Connection —ComputerMame '"WIN-FI&6G?3HMHSBB"

Destination IPV4Address IPUGAddress

WIN-FI6G?IMNSEE 192.168.45.12%
WIN-FI6G?3IMNSEE 192.168.45.129
WIN-FI6G7?3MNSEE 192.168.45.12%
WIN-FI6G?3IMNSEE 192.168.45.129%

Figure 45: Test connection

After you check that the connection is established, you are ready to start invoking commands
and scripts on that machine.

Invoke Scripts in Remote Machines

Although the remote connection connects to a single computer, the host application can run the
Invoke-Command to run commands on other computers. With this concept, you are able to use
the Invoke-Command command, which runs commands on a local or remote computer and
returns all output from the commands, including errors, just by specifying the computer name as
a parameter. A temporary connection is automatically created between your computer and the
target machine.

#Invoke the command with the target computer and the script block
Invoke-Command -ComputerName “WIN-FI6G73MN5BB” -ScriptBlock {Get-Process}

When invoking this command, you might be faced with the following error, which can be caused
by several situations. | will give you the solution to most common one.

[WIN-FI6G73MN5BB] Connecting to remote server WIN-FI6G73MN5BB failed with the
following error message : WinRM cannot process the request. The following
error with errorcode 0x80090311 occurred while using Kerberos authentication:
There are currently no logon servers available to service the logon request.
Possible causes are:

-The user name or password specified are invalid.

-Kerberos is used when no authentication method and no user name are
specified.

-Kerberos accepts domain user names, but not local user names.

-The Service Principal Name (SPN) for the remote computer name and port
does not exist.
-The client and remote computers are in different domains and there is no
trust between the two domains.
After checking for the above issues, try the following:
-Check the Event Viewer for events related to authentication.
-Change the authentication method; add the destination computer to the
WinRM TrustedHosts configuration setting or use HTTPS transport.
Note that computers in the TrustedHosts list might not be authenticated.

To solve this problem, assuming that you have already enabled remote PowerShell on both
machines using the Enable-PsRemoting command, you can establish a trust relation when
using WinRM between both machines by using the following code. You must run this with
administrator rights on both the destination and target machines.

Set-Item wsman:\localhost\client\trustedhosts “DestinationMachineName”

PS5 G:sWindows~system32> Set—-Item wsman:“localhostsclientstrustedhosts “WIN-FI6G?3MNSEB"

inRM Security Configuration.
This command modifies the TrustedHosts list for the WinRM client. The computers in the TrustedHosts list might not he
lauthenticated. The client might send credential information to these computers. Are you sure that you want to modify

this list?
[¥] Yes [H]1 Mo [5]1 Suspend [?]1 Help <default iz "¥">:- vy
PS C:s\Windows“system32>

Figure 46: Set Trusted Hosts

F
@ Note: Remote connection between machines in PowerShell is managed by a security
and authentication mechanism named Kerberos. This mechanism prevents the remote
computer you are connected to from using your account to connect to additional
computers.

70

71

Chapter 6 Structured Files

Manipulating XML Files

Import XML from File

To import an XML structure from a previously built XML file, you can use the
command if your XML file was created by an command. CLIXML in
PowerShell is used to store object and its representation object to a file.

To manipulate your own XML structures, you should use command, casting the
object to XML. In this example, because my XML file was created outside PowerShell, | will use
the command.

$xmlFile = [xml]("C:\Users\rui.machado\Desktop\X.xml")
#Creates a DOM Object available
$xmlFile.PersonList | %{
$_
}

Load XML File from String

PowerShell allows you to easily build a DOM object of an XML structure using the .NET object
System.Xml.XmlDocument and invoking the LoadXml ($xm1String), building a DOM object and
allowing you to iterate in your XML tree structure. Now to try it, build a script to load an XML file
from a string. The following code block shows the XML string:

<PersonList>

<Person id='1"'>
<Name>Rui</Name>
<Age>24</Age>
<Address>Street A</Address>

</Person>

<Person id='2"'>
<Name>Peter</Name>
<Age>45</Age>
<Address>Street B</Address>

</Person>

<Person id='3"'>
<Name>Mary</Name>
<Age>10</Age>
<Address>Street C</Address>

</Person>

</PersonlList>

Using the XML file you are going to work with, create a routine to process the requirements.

$xmlString = @"
<PersonList>
<Person id='1'>
<Name>Rui</Name>
<Age>24</Age>
<Address>Street A</Address>
</Person>
<Person id='2"'>
<Name>Peter</Name>
<Age>45</Age>
<Address>Street B</Address>
</Person>
<Person id='3"'>
<Name>Mary</Name>
<Age>10</Age>
<Address>Street C</Address>
</Person>
</PersonList>

ll@
$xmlDoc = new-object System.Xml.XmlDocument
$xmlDoc.LoadXml($xmlString)

$xmlDoc.PersonList | %{
write $.Person.Name

}

Export XML to File

To export a data set to an XML file, you have two options. First, you can use the Export-
CliXml command. However, this is a very specialized XML format defined by PowerShell that
creates an XML-based representation of an object or objects and stores it in a file. You can then
use the Import-CLIXML command to recreate the saved object based on the contents of that
file. The second option is to export a structure using the .NET System.Xml.XmIDocument object,
which allows you to save it to the file system. You can also pipe the output to the out-File
command, which gives you more control over how the file is created. This second approach
creates XML files that are more easily consumed outside of PowerShell scripts.

#The structure to export.

$xml = @"
<CarslList>
<Car>

<Brand>Ferrari</Brand>

72

</Car>
<Car>
<Brand>Porsche</Brand>
</Car>
</CarsList>

‘e

#Create a new XML document.
$xmlDoc = New-Object System.Xml.XmlDocument

#Load the xml structure.
$xmlDoc.LoadXml($xml)

#Define the file path.
$pathToFile="c:\temp\FileXML.xml"

#Save the structure to a file.
$xmlDoc.Save($pathToFile)

In the previous example, | used the .NET object System.Xml.XmlDocument to load and save

the XML file to file system; however, you can use the out file command as well, as you can see
in the following example.

#The structure to export.

$xml = @"
<CarsList>
<Car>
<Brand>Ferrari</Brand>
</Car>
<Car>
<Brand>Porsche</Brand>
</Car>
</CarslList>
'@

#Define the file path.
$pathToFile="c:\temp\FileXML2.xml"

#Export the file.
$xml | Out-File $pathToFile

Both of these previous scripts will result in the same XML file. The difference is just in the
amount of code created and cleanliness of it, which in the second case is much better. The
resulting structure is shown in the following sample.

<CarsList>
<Car>
<Brand>Ferrari</Brand>
</Car>

<Car>
<Brand>Porsche</Brand>
</Car>
</CarsList>

Manipulating CSV Files

Import CSV from File

Importing CSV files in PowerShell might be important for projects like a technology migration in
which its records will be inserted in a SQL Server database. In the following code block, we
have a small example of a CSV file, which in this case will be imported to PowerShell as a
PSObiject, allowing you to iterate it as you wish.

Rui;24;Portugal
Tony;45;USA
Thiago;12;Brazil
Anna;56;Germany

To import a CSV file, use the Import-CSV command, having as parameters the path to the
CSV file, the file delimiter, and the header, which identifies every column in the structured file. If
your file has headers, you don’t need to use this parameter.

#Path to CSV file.
$path="c:\temp\ListaUsers.csv"

#Import your CVS file defining the file path, CSV delimiter and the header.
$csv=Import-CSV -Path $path -Delimiter ";" -Header
"Name", "Age","Nationality"
#Storing the CSV to a variable allows you to manipulate its content.
$csv | %{

$.Name

$_.Age

$.Nationality

74

75

Export CSV to File

Exporting to CSV in PowerShell is a little bit more complicated than
any other export for one simple reason: PowerShell's Export-Csv
command works with PSObjects, so you need to convert your
structures to one of this kind before exporting it to CSV. In the
following code block, | will be showing you how to create a PSObject
from an array, and then export it to CSV. To export, | will be using the
Export-Csv command, which converts objects into a series of
comma-separated (CSV) strings and saves the strings into a file.

#Path to export.
$path = "c:\temp\testeExport.csv"

#Structure to export.

PSObject

Encapsulates a base object
of type Object or type
PSCustomObject to allow for
a consistent view of any
object within the Windows
PowerShell environment.

$csv=("Rui", 24, "Portugal"), ("Helder",29,"China"), ("Vanessa",24,"Brasil")

#Initialize the array that will be exported.
$allRecords = @()

$csv | %{

#Export-CSV separates columns from PSObject members, so we need to

create one.
$customCSV = New-Object PSObject

#Add the name member to the PSObject

$customCSV | Add-Member -MemberType NoteProperty -Value $_[@] -Name

"NamE"

#Add the name member to the PSObject

$customCSV | Add-Member -MemberType NoteProperty -Value $_[1] -Name

IIAgeII
#Add the name member to the PSObject
$customCSV | Add-Member -MemberType NoteProperty -Value $_[2] -Name
"Nationality"
#Add the PSObject to the array that stores every object to export.
$allRecords+=$customCSV
}

#Export as CSV.

$allRecords | Export-Csv -Path $path -NoTypeInformation -Delimiter ";

Load CSV and Send Email

Rui,ruimachado@live.com.pt,Hello
Machado, ruimachado@outlook.pt,Hi!

With the previous common separated values file, we’ll use its values and send an email to every
recipient defined.

<#
Routine that matter CSV file. As the CSV file has columns use the
Header-parameter to set the column headers. We also need to define the
delimiter of the CSV,
which in this case is a comma, but can be any other.
#>

$userList= Import-Csv -Path "C:\Users\rui.machado\Desktop\Users.csv""
-Header "Name", "Email", "Subject"

-Delimiter ",

#SMTP Server
$smtpServer="smtp.gmail.com"

#Create a new .NET SMTP client onject (587 is the default smtp port)
$smtpClient = new-object Net.Mail.SmtpClient($smtpServer,587)

#Create a new .NET Credential object.
$credentials = New-Object Net.NetworkCredential

#Set your credentials username.
$credentials.UserName="powershellpt@gmail.com"

#Set your credentials password.
$credentials.Password="rpsrm@89"

#Set the smtp client credential with the one created previously.
$smtpClient.Credentials=%$credentials

#Create a new .NET mail message object.
$email = new-object Net.Mail.MailMessage

#Initialize the from field.
$from="powershellpt@gmail.com"

#Initialize the mail message body.
$message="Este é um email do powershellpt. Seja bem vindo

#Set the from field in the mail message.
$email.From = $from

76

77

#Set the Reply to field in the mail message.
$email.ReplyTo = $from

#Set the body field in the mail message.
$email.body = $message

foreach user in the CSV file, send the email.
$userList | %{
#Just send to users with a defined email.
if($_.Email -ne $null)
{
#Set recipient name.
$nome=$_.Name

#Add recipient email to the Mail message object.
$email.To.Add($_.Email)

#Set the subject.
$email.subject = $_.Subject

#This is a Google smtp server requirement.
$smtpClient.EnableSsl=%$true

#Send the email.
$smtpClient.Send($email)

Manipulating TXT Files

Import TXT from File

PowerShell does not have an explicit import command. Instead, you need to use the Get-
Content command to retrieve the text file content, which means that you only need to specify as
a parameter the file path. After you invoke the command, PowerShell will instantiate a
System.String object containing the text file content.

#Path to the txt file.
$path = "C:\temp\test.txt"

#Get content from the txt file.
$content = Get-Content -Path $path

#Print content.
$content

Export TXT to File

Exporting an object to a text file is provided in PowerShell through its Out-File command,
which sends a specific output to a file as a string. This command also allows you to define as a
parameter the encoding of the file you want to create.

#Path to the txt file.
$path = "C:\temp\newTest.txt"

<#

EXAMPLE 2

Create txt file and write to it.
#>

"Write to Txt" | Out-File $path

<#

EXAMPLE 2

Create txt file and write to it, setting the encoding to ACII.
#>
"Write to Txt" | Out-File $path -Encoding ASCII

<#
EXAMPLE 3
Create txt file and write to it, setting the encoding to ACII and the
width of 5,
which means that only the first 5 characters will be exported.
#>
"Write to Txt" | Out-File $path -Encoding ASCII -Width 5

Using XSL to Transform XML Files

Sometimes you might need to transform XML files in order to respect a predefined XML
schema, for instance a SQL Server database table. Imagine that you wish to query an SQL
Server database of a client, return the dataset as a XML document, transform it using an XSL
script, and then insert it in another SQL database table from another client. This is a very
powerful tool for integration projects in which source and destination structures are not equal. In
the following code block, I will you how you can use .NET
System.XML.XSL.XSLCompiledTransform object to apply a XSL script to an XML file.

To input an XML file, use the following one, which is a list of people. The goal is to transform the
three elements of a person (Name, Age, Address) into a comma-separated values element
(Data).

<PersonList>
<Person id='1"'>
<Name>Rui</Name>

78

79

<Age>24</Age>
<Address>Street A</Address>

</Person>

<Person id='2"'>
<Name>Peter</Name>
<Age>45</Age>
<Address>Street B</Address>

</Person>

<Person id='3"'>
<Name>Mary</Name>
<Age>10</Age>
<Address>Street C</Address>

</Person>

</PersonList>

The XSL file you are using is the following, which makes the transformation defined previously:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">

<PersonList>
<xsl:for-each select="PersonList/Person">
<Person>
<Data>
<xsl:value-of select="Name" />;
<xsl:value-of select="Age" />;
<xsl:value-of select="Address" />
</Data>
</Person>
</xsl:for-each>
</PersonList>

</xsl:template>
</xsl:stylesheet>

To achieve a transformation with an XSL file in PowerShell, use the
System.XML.XSL.XSLCompiledTransform as | have previously mentioned, particularly two of
its methods, the Load() method.

The first one will load the XSL script from its path, and the Transform() method applies the

transformation script to an input XML file and returns transformed structure to an output XML.
Both of these XML files are defined by their path as parameters of this method.

#Path to XSL stylesheet
$xslStylesheetPath = "C:\temp\XsltFile.xsl"

#Path to XML Input file
$xmlInputPath = "C:\temp\InputXml.xml"

#Path to XML Ouput file. The result of the transformation.

$xmlOutputPath = "C:\temp\OutputXml.xml"

#Instantiate the XslCompiledTransform .NET object.
$xslt = New-Object System.Xml.Xsl.XslCompiledTransform;

#Load the XSL script.
$xslt.Load($xslStylesheetPath);

#Applies the transformation to the input XML and return the result as an
ouput XML.
$xslt.Transform($xmlInputPath, $xmlOutputPath);

As a result, the transformation resulted in the following XML structure, with the person elements
transformed into one single comma-separated values element.

<?xml version="1.0" encoding="utf-8"?>
<PersonlList>
<Person>
<Data>Rui;24;Street A</Data>
</Person>
<Person>
<Data>Peter;45;Street B</Data>
</Person>
<Person>
<Data>Mary;10;Street C</Data>
</Person>
</PersonList>

80

81

Chapter 7 SQL Server and PowerShell

Using databases is a regular activity for most of today’s developers, which means that modern
programming languages must be able to connect to a wide variety of databases to be
successful, and PowerShell is no exception. Although database connection and querying is
always available out of the box thanks to the .NET framework, it is limited to its providers.

Even if you feel familiar with .NET, you should consider other options such as PowerShell
modules, which bring much better solutions to optimize your interaction with SQL Server. In this
chapter, you will learn to work with SQLPS, Microsoft's PowerShell SQL Server official module.
| use this module every day and it has proven to be very stable and efficient. To start using it,
you need to install SQL Server or install some requested features.

Install SQLPS

If you have SQL Server installed on your machine, then the SQLPS module is installed along
with that installation. However, you can simply install three stand-alone packages from the
Microsoft SQL Server 2012 feature pack. Click here to download these packages, and click on
Install Instructions to open a drop-down list of all the features available. Download and install
the following in this order:

1. Microsoft System CLR Types for Microsoft SQL Server 2012 (SQLSysCIrTypes.msi)
2. Microsoft SQL Server 2012 Shared Management Objects
(SharedManagementObjects.msi)

3. Microsoft Windows PowerShell Extensions for Microsoft SQL Server 2012
(PowerShellTools.msi)

After you finish installing these packages, you will be able to load the SQLPS module and start
working with your SQL Databases directly in PowerShell. An important notice is to select the
correct version of the install package according to your processor architecture. In Figure 47, you
see an example of the choices you will have for each feature to install.

Microsoft® System CLR Types for Microsoft® SQL Server® 2012

The SQL Server System CLR Types package contains the components implementing
the geometry, geography, and hierarchy id types in 50L Server 2012, This
component can be installed separately from the server to allow client applications to
use these types outside of the server.

Mote: This component also requires Windows Installer 4.5

X86 Package(SQLSysClrTypes.msi)
X64 Package (SQOLSysClrTypes.msi)

SQL Server System CLR Types Books on-line page

http://www.microsoft.com/en-us/download/details.aspx?id=29065

Figure 47: Install SQLPS feature

Add SQL Snap-in

To add the SQLPS module to a script, you just need to invoke the Import-Module command,
which will add the module to the current session. Note that the modules you import must be
installed on the local computer or a remote computer if you wish to run these scripts on it.

#Import the SQLPS module
Import-Module “sqlps”

After importing the SQLPS module to your script, some new commands should be available in

PowerShell. As you can see in Figure 48, you now have the ability to execute a SQL command,
invoke a process on a cube, or even process a dimension on a cube from Analysis Services.

Invoke-

©{lnvoke-ASCmd oS
v Invoke-Command

@ Invoke-Expression

@ Invoke-History

v Invoke-ltem

@ Invoke-PolicyEvaluation

¢ Invoke-ProcessCube

¢ Invoke-ProcessDimension

¢ Invoke-ProcessPartition

v Invoke-RestMethod v

Figure 48: New SQL commands

Invoke SQL Query

#Import the SQLPS module only if it is not already loaded.
if(-not (Get-Module "sqlps")){

Import-Module “sqlps”
}

#Set the database.
$database="rmBlog"

#Set the server and instance.
$server = ".\PRIO1"

#read the post name from the interactive shell.
"Please enter a post to seach n"

82

83

$post = Read-Host

#Set the query.

$query = "SELECT p.PostTitle,
p.PostText,
p.PostDate

FROM Post p

WHERE PostTitle like '%$post%'"

$query
#Invoke the command providing as parameters all that are necessary.
Invoke-Sqlcmd -ServerInstance $server -Database $database -Query $query

Invoking this script will return a dataset of results directly from SQL Server that you can use in
the rest of your script. Imagine you want the result as an XML file. Several possible solutions
might come to mind that would be acceptable, but if you are using SQL Server, why not use it to
retrieve our result as an XML file? You just need to change the query in order to convert the
result and export it to a XML file.

#...(Some code omitted)

#Set the query.

$query = “SELECT p.PostTitle,
p.PostText,
p.PostDate

FROM Post p

WHERE PostTitle like ‘%$post%’

FOR XML AUTO, ROOT(‘MyPosts’)”

#Invoke the command providing as parameters all that are necessary.
$result = Invoke-Sqlcmd -ServerInstance $server -Database $database -Query

$query

#Load the result as XML.
$xmlDoc = new-object System.Xml.XmlDocument
$xmlDoc.LoadXml($result[0])

#Export as XML.
$xmlDoc.InnerXml | Out-File “c:\temp\testeSQL.xml”

After you invoke this script, you will have an XML file with the full DOM object available for you
to work with. The following code block shows you the result of running this script.

<MyPosts>
<p PostTitle="Snnipet Creator C#"
PostText="My First Post"
PostDate="2013-06-18T20:29:18.857" />
</MyPosts>

There is one final important warning about using this SQL module. When you run the script to
invoke a call to a SQL database, you might face the following error:

Invoke-Sgqlcmd : A network-related or instance-specific error occurred while
establishing a connection to SQL Server. The server was not found or was not
accessible. Verify that the instance name is correct and that SQL Server is
configured to allow remote connections. (provider: SQL Network Interfaces,
error: 26 - Error Locating Server/Instance Specified)

If all server and database parameters are correct, this might be related to the SQL Server
configuration, which you need to change in order to allow remote connections for that server.
You can use SQL Server Management Studio as you can see in Figure 49.

Selecta page . !
é‘ General ‘S Seript ~ Help
A Memory
g grocessors Connections
|2 Securty
= Maximum number of concument connections {0 = unlimited):
| Database Settings 0 EI
|5 Advanced
éi Pemmissions |:| Use query govemor to prevent long-unning queries
Default connection options:
[[] implicit transactions ”
["] cursor close on commit
["] ansi wamings
["] ansi padding
[] ANSINULLS
[] arthmetic abort v
Connechon Remote server connections
S\T:‘né?& Alow remote connections to this server
.Co REmote querny timeout (in seconds, 0 = no timeout):
rinection:
i machado 600 EI
3 View connection properties ["] Require distributed transactions for serverto-server communication
Progress
Re
ady (@ Configured values () Running values
oK || canesl

Figure 49: Allow remote connections

84

Chapter 8 Microsoft Office Interop

Microsoft named its set of interaction capabilities with Microsoft Office as Primary Interop
Assemblies (PIAs), a package that contains all the major assemblies of the various Microsoft
Office Suite products. These packages allow you to interact with objects created by the Office
products. For example, if you create an Excel file with two sheets, through the Interop
assemblies you can get these objects and iterating with them. To use it, you just need to install
the PIAs assemblies and have Microsoft Office installed on your computer.

Note: Download PIAs assemblies here.

A scenario that can portray the advantages of using Interop is simply trying to answer this
guestion: "How many sheets of your Excel file contain links to SQL databases?"

It is possible to manually answer this question just using your Excel files, but if you have two
hundred Excel files, how long do you think that will take? I'll show you how to quickly make a
PowerShell script that runs through all these files and returns a CSV file with all this information
processed and available in a tabular list. Answering these kinds of questions can be important in
analysis projects in which you need to identify dependencies between artifacts of your project
files.

Although my exercise will be about Excel files (workbooks and sheets), PIAs allow you to work
with almost all Office products. The following is a complete list of allowed products:

e Microsoft Access

e Microsoft Excel

e Microsoft InfoPath

e Microsoft Outlook

e Microsoft PowerPoint

e Microsoft Project

e Microsoft Publisher

e Microsoft SharePoint Designer
e Microsoft Visio

e Microsoft Word

Using PIAs Assemblies

Using any PIAs assembly always has the same algorithm. You start by loading the assembly to
your script and then you create the primary Office file type object and use it as you wish.

http://www.microsoft.com/en-us/download/details.aspx?id=3508

To load an assembly in PowerShell, you can use the same method often used in .NET projects,
which is LoadWithPartionName from the Reflection.Assembly namespace.

[Reflection.Assembly]::LoadWithPartialname("AssemblyName")

To load an Office assembly,

#lLoad Microsoft Office
[Reflection.Assembly]::

#lLoad Microsoft Office
[Reflection.Assembly]:

#Load Microsoft Office
[Reflection.Assembly]:

#lLoad Microsoft Office
[Reflection.Assembly]:

#Load Microsoft Office
[Reflection.Assembly]:

#Load Microsoft Office
[Reflection.Assembly]:

#Load Microsoft Office
[Reflection.Assembly]:

#Load Microsoft Office
[Reflection.Assembly]:

#fLoad Microsoft Office
[Reflection.Assembly]::

you have the following options:

Excel Assembly
LoadWithPartialname("Microsoft

Access Assembly

:LoadWithPartialname("Microsoft

InfoPath Assembly

:LoadWithPartialname("Microsoft

OneNote Assembly

:LoadWithPartialname("Microsoft

Outlook Assembly

:LoadWithPartialname("Microsoft

PowerPoint Assembly

:LoadWithPartialname("Microsoft

Publisher Assembly

:LoadWithPartialname("Microsoft

Visio Assembly

:LoadWithPartialname("Microsoft

Word Assembly

LoadWithPartialname("Microsoft.Office.

.Office.

.Office.

.Office.

.Office.

.Office.

.Office.

.Office.

.Office.

Interop.Excel™)
Interop.Access")
Interop.InfoPath")
Interop.OneNote")
Interop.Outlook™)
Interop.PowerPoint")
Interop.Publisher™)

Interop.Visio")

Interop.Word")

Using PIAs is similar from assembly to assembly, so | will only show you how to use the Excel
assembly for simple scenarios. You can use Word, Access, or any other as a similar script

structure.

Create an Instance of an Excel Application

To create an instance of an Excel application, you should use the ApplicationClass within the
PlAs Excel assembly. Note that PIAs always use ApplicationClass in every assembly to
instantiate a new application, in this case Excel. This is like opening Excel through an
executable file; PowerShell will create that Excel process as well.

86

87

$excel = new-object Microsoft.Office.Interop.Excel.ApplicationClass

W Tip: Because PowerShell creates a new Excel process and the only way to close it is
Killing the process, its a good idea to kill every Excel process before creating the Excel
application; to do so, run the following command: Get-Process |
where{$_.ProcessName -like "*EXCEL*"} | RilL.

#TIP: Kill every Excel application before creating a new one.
Get-Process | where{$_.ProcessName -like "*EXCEL*"} | kill

$excel = new-object Microsoft.Office.Interop.Excel.ApplicationClass

Retrieve Data from Excel File

After loading the assembly and creating your Excel application object, you are ready to start
pulling data out of it. For this example, we will use an Excel 2013 worksheet with a table in it
and we will try to get that data.

H - 5 test.xlsx - Excel s R | %, 4
HOME = INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW Team RuiMach.. -

.n.D X% A = % F3 Conditional Formatting - FH #

Paste E@ N Font Alignment Number I_FFormatasTable' Cells Editing

. oW . - - 7 Cell Styles - - -

Clipboard Styles £

15 - I v
A B C D E F G k|~

[l Mame nA.ge =

2 |Rui 24

3 |Peter 18

4 |Anthony 45

5 IMaria 88

5]

7

8

g

10

11

12

13

14

15 hd

Folhal ® 4 3

Figure 50: Excel File

To build our script, we need all previous knowledge about PIAs assemblies, as we will initialize
a new Excel application, load that specific file shown in the previous image, and query the sheet
for its table data. The following example is just a way of doing a retrieval of an Excel workbook;
the main goal is to learn some PIAs artifacts usage.

#lLoad Excel PIAs assembly.
[Reflection.Assembly]: :LoadWithPartialname("Microsoft.Office.Interop.Excel")

#Kill all Excel processes.
Get-Process | where{$_.ProcessName -like "*EXCEL*"} | kill

#Instantiate a new Excel application
$excel = new-object Microsoft.Office.Interop.Excel.ApplicationClass

#Path to our Excel file.
$filePath="c:\temp\test.xlsx"

#Instatiate a new workbook and then its path.
$book = $excel.Workbooks.Open("$filePath")

#Get the sheet - In this case we just have one.
$sheet = $book.Worksheets.Item(1)

#Get all list objects.
$10bjects = $sheet.ListObjects

#Get the range of data.
$range = $10bjects.Item(1).Range

#Print all cell data.
$10bjects.Item(1).Range.Rows | %{
$row = $.Row
$10bjects.Item(1).Range.Columns | % {
$col = $.Column

#Cell item
write $range.Item($row,$col).Value2

The result should be displayed as in Figure 51.

88

89

Hame
Lge

Rui

24
Peter
18
Anthony
45
Maria

aa
ool

Figure 51: Result of an Excel Data Retrieval

Exercise: How Many SQL Server Connections are in
That Excel File?

In this exercise, | will answer that first challenge | mentioned in the beginning of this chapter,
how to identify how many SQL Server connections in an Excel workbook. | will retrieve the
number of connections; however, you can increase the complexity of this exercise and also
retrieve the connection string of that SQL Server connection and even the range in which it is
used.

#Load Excel PIAs Assembly
[Reflection.Assembly]: :LoadWithPartialname("Microsoft.Office.Interop.Excel")

#Kill all Excel processes.
Get-Process | where{$_ .ProcessName -like "*EXCEL*"} | kill

#Instantiate a new Excel application.
$excel = new-object Microsoft.Office.Interop.Excel.ApplicationClass

#Path to our Excel file.
$filePath="c:\temp\test.xlsx"

#Instatiate a new workbook and then its path.
$book = $excel.Workbooks.Open("$filePath")

#Get all book connections.
$bookConnections = $book.Connections

#Get total number of connections.
$totalConnections = $bookConnections.Count

#Initialize the counter of SQL connections.
$conSql = ©

#Foreach connection check if it is SQL Server.
$bookConnections | %{
if($_.Type -eq 1){
$conn = $.OLEDBConnection.Connection

$conn = $conn.ToString()

if($conn -like "*SQL*"){
$conSql++

}

}

#Build an array with file name and number of connections.

$infoToExport = $book | select @{n="FileName";e={$_ .FullName};},
@{n="NumberConnectionsSQL";e={$conSql};}

#Close the book.

$book.Close($false, [System.Type]::Missing, [System.Type]::Missing)

#Show information as a grid view.
$infoToExport | Out-GridView

As a result you should now see a grid with your result.

| Filter

|4 Add criteria ¥ |

FileMame | MNumberConnections50L

chtempitestadsxy 2

Figure 52: Result Grid

90

91

Windows PowerShell Cookbook, Lee Holmes, 2010
PowerShell PT

MSDN: Parameter Attribute Declaration

MSDN: Windows PowerShell

References

http://powershellpt.wordpress.com/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms714348(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd835506(v=vs.85).aspx

	Table of Contents
	The Story behind the Succinctly Series of Books
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	A special thanks

	Introduction
	How PowerShell is different
	Who is this book for?
	Code Samples
	Notes

	Chapter 1 Basics
	PowerShell Version
	PowerShell Interactive Shell
	The Shell and Existing Tools
	Execution Policies
	How to Run a Program
	How to Run a Script
	How to Run Commands
	Get Help with Existing Commands
	Read and Write from the Interactive Shell
	PowerShell Snap-Ins
	Add a Snap-In to a Script
	Add a Script Reference to Another Script
	Using .NET classes

	Pipelines
	Variables
	Get properties from an Item
	Format Variable Output

	Strings
	PowerShell Here Strings
	Regular Expressions

	Lists of Items
	Arrays
	.NET Lists
	Hash Tables

	Flow Control
	Logical and Comparison Operators
	Conditional Statements
	Loops
	Managing the Flow

	Schedule Script Execution
	Extensibility and Code Reuse
	Create instances of objects
	Functions and Parameters
	Create a Windows Form

	Chapter 2 File System
	Current Location
	Get Files from a Directory
	Get the Content of a File
	Manipulate the Content of a File
	Create Temporary Files
	Manage Directories
	Create New Directories
	Change Directory Permissions
	Remove Directories
	Rename Directories
	Move a File or a Directory

	Managing Paths
	Join Parts into a Single Path
	Split Paths into multiple parts
	Test if Path Exists
	Resolve Paths

	Chapter 3 Processes
	List All Processes
	Get a Process by ID
	Stop a Process
	Start a Process

	Chapter 4 Windows Management Instrumentation
	Using WMI classes
	Access WMI Classes
	Exercise: Get Available Disk Space

	Chapter 5 Remote PowerShell
	Using Remote PowerShell
	Identify Remote PowerShell Compatible Commands
	Test a Remote Connection
	Invoke Scripts in Remote Machines

	Chapter 6 Structured Files
	Manipulating XML Files
	Import XML from File
	Load XML File from String
	Export XML to File

	Manipulating CSV Files
	Import CSV from File
	Export CSV to File
	Load CSV and Send Email

	Manipulating TXT Files
	Import TXT from File
	Export TXT to File

	Using XSL to Transform XML Files

	Chapter 7 SQL Server and PowerShell
	Install SQLPS
	Add SQL Snap-in
	Invoke SQL Query

	Chapter 8 Microsoft Office Interop
	Using PIAs Assemblies
	Create an Instance of an Excel Application
	Retrieve Data from Excel File
	Exercise: How Many SQL Server Connections are in That Excel File?

	References

