

Wireshark Essentials

Get up and running with Wireshark to analyze network
packets and protocols effectively

James H. Baxter

BIRMINGHAM - MUMBAI

Wireshark Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1211014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-463-8

www.packtpub.com

www.packtpub.com

Credits

Author
James H. Baxter

Reviewers
Sarath Lakshman

Bruno Vernay

Ms. Samia Yousif

Commissioning Editor
Pramila Balan

Acquisition Editor
Larissa Pinto

Content Development Editor
Sweny M. Sukumaran

Technical Editor
Shashank Desai

Copy Editor
Roshni Banerjee

Project Coordinator
Akash Poojary

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Hemangini Bari

Rekha Nair

Graphics
Sheetal Aute

Abhinash Sahu

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

James H. Baxter is the President and CEO of PacketIQ Inc., a company which
specializes in network and application performance analysis and management,
including development of advanced analysis frameworks and tools.

With over 30 years of experience in the IT industry, his diverse technical background
includes electronics, RF, satellite, data/telecom, LAN/WAN and voice design,
network management, speech technologies, and Java/.NET programming. For most
of the last 20 years, he has been working specifically with network and application
performance issues.

James is a Wireshark Certified Network Analyst (WCNA). He is a member of the
IEEE, Computer Measurement Group, and Association of Computing Machinery,
and he follows advancements in artificial intelligence.

James is also a private pilot who holds an amateur radio Extra class license.
He is also a guitar player and an amateur astronomer. You can find out more
about James and PacketIQ Inc. at www.packetiq.com.

About the Reviewers

Sarath Lakshman is a software engineer at Couchbase. He is a core developer
for Couchbase MapReduce View Engine, and he works on storage and indexing
problems at Couchbase. Before Couchbase, he worked at Zynga for over 2 years,
building ZBase—a distributed storage platform that powered the entire social
games infrastructure at Zynga. He was attracted to Linux in his teenage years, and
he created a user-friendly Linux distribution called Slynux. He is also the author
of Linux Shell Scripting Cookbook, Packt Publishing. He holds a Bachelor's degree in
Computer Science from Model Engineering College, India. He is an open source
software enthusiast and has contributed to various projects in the past. To find out
more about Sarath, you can visit www.sarathlakshman.com.

Bruno Vernay has been working with all forms of web application design and
development for the last 15 years—a bit of CSS/JavaScript and a lot of Java, SQL,
Linux, and network. He even had the chance to work with Complex Event Processing,
Rules Engines, and Geographic Information Systems. He also touched on large clusters
as well as embedded devices and has been through various paradigms, from modeling
via UML to Test or Domain Driven Development and Domain Specific Language.
If he has time, he would like to work on Synthetic Biology and Biohacking. Now,
he is focusing on IoT Security, enjoying the variety of systems and opportunities.

www.sarathlakshman.com

Ms. Samia Yousif holds Master's and Bachelor's degrees from the University
of Bahrain as well as CCNA, CCNP, and CCDA from Bahrain Training Institute
and Diploma Mr. Tabatabai in culture Quranic from Islamic Enlightenment Society.
She has developed extensive knowledge and skills in various technical fields of
Computer Science and IT. She has published conference publications and books
and received the Research Award from Ahlia University and the e-Government
Excellence Award (e-Education Award). She has delivered several IT workshops
and has attended many seminars. Samia has 10 years of teaching experience at an
undergraduate level in Computer Science and IT. Furthermore, she has worked on
the development of numerous systems and professional website applications using
the most up-to-date web technologies. She is now an Assistant Director of ICT at Ahlia
University, Kingdom of Bahrain, and she is planning to undertake a PhD program.

She has contributed to the book Computer Jobs & Certifications Choose & Improve
Your IT Career, Dr. Mansoor Al-Aali, Lulu.com and also reviewed the book Packet
Tracer Network Simulator, Jesin A, Packt Publishing. She has also written a lab manual,
HTML Fundamental, for the Royal University for Women in October 2006 and
AMA International University, Bahrain, in May 2006.

To find out more about her, visit her website http://samiayousif.hostoi.com.

http://samiayousif.hostoi.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Getting Acquainted with Wireshark	 7

Installing Wireshark	 8
Installing Wireshark on Windows	 9
Installing Wireshark on Mac OS X	 10
Installing Wireshark on Linux/Unix	 11

Performing your first packet capture	 11
Selecting a network interface	 12
Performing a packet capture	 13
Wireshark user interface essentials	 14
Filtering out the noise	 15

Applying a display filter	 18
Saving the packet trace	 19

Summary	 21
Chapter 2: Networking for Packet Analysts	 23

The OSI model – why it matters	 24
Understanding network protocols	 25
The seven OSI layers	 25

Layer 1 – the physical layer	 25
Layer 2 – the data-link layer	 26
Layer 3 – the network layer	 28
Layer 4 – the transport layer	 31
Layer 5 – the session layer	 34
Layer 6 – the presentation layer	 34
Layer 7 – the application layer	 34

IP networks and subnets	 36
Switching and routing packets	 37

Ethernet frames and switches	 37
IP addresses and routers	 39

Table of Contents

[ii]

WAN links	 41
Wireless networking	 41
Summary	 43

Chapter 3: Capturing All the Right Packets	 45
Picking the best capture point	 46

User location	 46
Server location	 47
Other capture locations	 47

Mid-network captures	 47
Both sides of specialized network devices	 48

Test Access Ports and switch port mirroring	 49
Test Access Port	 50
Switch port mirroring	 51

Capturing packets on high traffic rate links	 52
Capturing interfaces, filters, and options	 52

Selecting the correct network interface	 52
Using capture filters	 54
Configuring capture filters	 55
Capture options	 57

Capturing filenames and locations	 57
Multiple file options	 57
Ring buffer	 58
Stop capture options	 58
Display options	 58
Name resolution options	 59

Verifying a good capture	 60
Saving the bulk capture file	 60
Isolating conversations of interest	 61
Using the Conversations window	 61

The Ethernet tab	 61
The TCP and UDP tabs	 62
The WLAN tab	 63

Wireshark display filters	 63
The Display Filter window	 63
The display filter syntax	 65
Typing in a display filter	 66
Display filters from a Conversations or Endpoints window	 66

Filter Expression Buttons	 66
Using the Expressions window button	 67
Right-click menus on specific packet fields	 67

Following TCP/UDP/SSL streams	 68

Table of Contents

[iii]

Marking and ignoring packets	 69
Saving the filtered traffic	 69
Summary	 71

Chapter 4: Configuring Wireshark	 73
Working with packet timestamps	 73

How Wireshark saves timestamps	 74
Wireshark time display options	 74
Adding a time column	 76

Conversation versus displayed packet time options	 79
Choosing the best Wireshark time display option	 80
Using the Time Reference option	 80

Colorization and coloring rules	 80
Packet colorization	 82

Wireshark preferences	 82
Wireshark profiles	 84

Creating a Wireshark profile	 85
Selecting a Wireshark profile	 86

Summary	 86
Chapter 5: Network Protocols	 87

The OSI and DARPA reference models	 88
Network layer protocols	 88

Wireshark IPv4 filters	 89
Wireshark ARP filters	 89

Internet Group Management Protocol	 89
Wireshark IGMP filters	 91

Internet Control Message Protocol	 91
ICMP pings	 91
ICMP traceroutes	 91
ICMP control message types	 92
ICMP redirects	 94

Internet Protocol Version 6	 95
IPv6 addressing	 96
IPv6 address types	 96
IPv6 header fields	 98
IPv6 transition methods	 99

Internet Control Message Protocol Version 6	 99
Multicast Listener Discovery	 101

Transport layer protocols	 101
User Datagram Protocol	 101

Wireshark UDP filters	 102
Transmission Control Protocol	 102

TCP flags	 104
TCP options	 105

Table of Contents

[iv]

Application layer protocols	 106
Dynamic Host Configuration Protocol	 106

Wireshark DHCP filters	 107
Dynamic Host Configuration Protocol Version 6	 107

Wireshark DHCPv6 filters	 107
Domain Name Service	 107

Wireshark DNS filters	 107
Hypertext Transfer Protocol	 108

HTTP Methods	 109
Host	 109
Request Modifiers	 109

Additional information	 111
Wireshark wiki	 111
Protocols on Wikipedia	 111
Requests for Comments	 111

Summary	 112
Chapter 6: Troubleshooting and Performance Analysis	 113

Troubleshooting methodology	 114
Gathering the right information	 114
Establishing the general nature of the problem	 116
Half-split troubleshooting and other logic	 117

Troubleshooting connectivity issues	 118
Enabling network interfaces	 119
Confirming physical connectivity	 119
Obtaining the workstation IP configuration	 119
Obtaining MAC addresses	 122
Obtaining network service IP addresses	 123
Basic network connectivity	 124

Connecting to the application services	 126
Troubleshooting functional issues	 126
Performance analysis methodology	 127

Top five reasons for poor application performance	 127
Preparing the tools and approach	 128
Performing, verifying, and saving a good packet capture	 128
Initial error analysis	 129
Detecting and prioritizing delays	 131
Server processing time events	 133
Application turn's delay	 135
Network path latency	 136
Bandwidth congestion	 137
Data transport	 139

Summary	 142

Table of Contents

[v]

Chapter 7: Packet Analysis for Security Tasks	 143
Security analysis methodology	 143

The importance of baselining	 144
Security assessment tools	 146
Identifying unacceptable or suspicious traffic	 146
Scans and sweeps	 148

ARP scans	 148
ICMP ping sweeps	 149
TCP port scans	 149
UDP port scans	 150

OS fingerprinting	 150
Malformed packets	 152
Phone home traffic	 153
Password-cracking traffic	 153
Unusual traffic	 154
Summary	 155

Chapter 8: Command-line and Other Utilities	 157
Wireshark command-line utilities	 157
Capturing traffic with Dumpcap	 158
Capturing traffic with Tshark	 159
Editing trace files with Editcap	 160
Merging trace files with Mergecap	 161

Mergecap batch file	 161
Other helpful tools	 163

HttpWatch	 163
SteelCentral Packet Analyzer Personal Edition	 164
AirPcap adapters	 165

Summary	 165
Index	 167

Preface
Wireshark is perhaps the world's most popular network packet analyzer used to
troubleshoot and analyze network and application protocols across wide variety of
technologies. Wireshark is free, open source, and available for Windows, Mac OS X,
Linux, and several Unix-like platforms, and it is continuously being improved and
expanded by its original developer, Gerald Combs, and over 500 code contributors.

Wireshark has a rich feature set, including the ability to capture, save, and import
packet files in a variety of formats. It provides an extensive filtering capability,
detailed protocol information, statistics, and built-in analysis and packet coloring
features to help you identify and analyze important events. This powerful analysis
capability is available to anyone who is willing to invest a little time to learn
Wireshark's basic features and how to interpret a relatively small set of core
network and application protocols.

This book is designed to introduce Wireshark and essential packet analysis
techniques to not only network engineers and administrators, but also application
developers, database designers and administrators, server administrators, and IT
security professionals. It also gives them the essential knowledge and practical
examples needed to effectively utilize Wireshark so they can include packet-level
analysis in their daily tasks.

Application developers can use Wireshark to view and understand how the
routines in their code that make network calls translate into request/response
packets, inspect how the application-related data fields within those packets are
structured, and verify that these calls are efficient and work in the way that they
are anticipated and intended.

Preface

[2]

Database designers and administrators can utilize the packet details provided by
Wireshark to examine the queries and responses carried by packets and to check
whether they are efficient. Are there a lot of small request/response cycles involved
in a transactional query that could be replaced by fewer, more efficient requests to
improve performance?

Server processing times can be a huge factor and point of contention in
performance-related issues across almost all IT arenas. This book will show you
how easy it is to use Wireshark to identify and measure server processing times
at the packet level where there can be no disputing the evidence.

IT security professionals inherently utilize protocol-level parameters to configure
firewalls and intrusion detection and prevention devices, but may lack the skills
to confidently establish and verify these factors themselves—instead relying upon
others for this critical input. The ability of a security professional to inspect packet
captures to identify, characterize, and guard against malicious traffic is assumed,
and a small investment of time with this book will open the door to mastering this
essential skill.

Finally, network support personnel are called upon on an almost daily basis to
troubleshoot strange connectivity or slow network issues. They need the visibility
and evidence that packet-level analysis provides to not only defend their domain,
but also to assist in identifying and resolving the real problem; that's usually the
only way the heat gets permanently turned off. Good Wireshark skills are a
must-have for these folks.

The focus of this book is to teach you how to become comfortable and proficient in
using basic Wireshark skills within your respective domain. At first glance, looking
at a screen full of packets of seemingly endless varieties and sources can be very
intimidating, but it is actually quite easy after learning the concepts provided in
this book to isolate just the packets that pertain to the area of interest and filter
everything else out, establish a high-level understanding of the packet flow and
sequence of events, and then find and inspect the correct packets and data fields
that address the issue at hand.

One of the additional advantages of learning how to use Wireshark is an increased
understanding of how networks and applications really work, the benefits of which
are helpful across all other aspects of your work. I'm confident the small investment in
time required to learn Wireshark and packet analysis skills will return huge dividends.

Preface

[3]

What this book covers
Chapter 1, Getting Acquainted with Wireshark, starts with the first step. This introductory
chapter will help you quickly start developing proficiency with Wireshark by getting
it installed and doing something fun and useful, such as performing a packet capture,
isolating and filtering some traffic of interest, and saving a trace file before diving into
more details and the supporting concepts in the later chapters.

Chapter 2, Networking for Packet Analysts, provides an overview of network
technologies, foundational network protocols including IP, UDP, and TCP, and how
the most common protocols fit together within the OSI and DARPA model levels.
The goal of this chapter is to develop a good mental model of how networks and
protocols function together to allow you to confidently and effectively approach
packet-level analysis.

Chapter 3, Capturing All the Right Packets, covers the details of how to correctly
position Wireshark in the network and configure it to capture the desired packets,
how to identify network conversations of interest and apply display filters to isolate
just those packets, and finally save a filtered file for further or later analysis. These
are the essential skills that support practical packet analysis.

Chapter 4, Configuring Wireshark, provides a number of features that can be
configured and employed to enhance the accuracy and ease of analysis activities.
The various ways to display and interpret packet timestamps are especially
important and we'll cover these topics thoroughly, along with other essential
configuration options, packet list coloring to help identify important events,
and how to save different configurations in customized profiles that can be
tailored and selected for various analysis tasks.

Chapter 5, Network Protocols, covers a number of other essential and useful network
protocols that you should be familiar with, including ICMP, DNS, DHCP, an
introductory review of Internet Protocol Version 6 (IPv6), and an example application
layer protocol (HTTP). We will also discuss basic Wireshark capture and display filters.

Chapter 6, Troubleshooting and Performance Analysis, provides methodologies to
apply your new skills and protocol knowledge to the primary purpose for which
Wireshark was developed: troubleshooting and analyzing network and application
issues and performance. We'll cover the top reasons for poor performance and how
to use Wireshark to detect and measure them.

Preface

[4]

Chapter 7, Packet Analysis for Security Tasks, introduces the use of Wireshark to
detect and analyze suspect traffic such as scans and sweeps, operating system
fingerprinting, malformed packets, phone home traffic, and other unusual packets
and patterns that could indicate malicious origin.

Chapter 8, Command-line and Other Utilities, covers some of the most useful
command-line utilities provided with Wireshark to perform packet captures with
minimal resources and to manipulate packet trace files. We will also discuss a few
other tools that can help you round out your packet analysis toolset.

What you need for this book
To accomplish the tasks and repeat the examples provided in this book, you only
need a computer on which you can install and use Wireshark and a wired LAN
connection to your home or business network.

Although you could capture from a Wireless interface, the additional overhead
of wireless management frames can be burdensome and distracting to analyze,
so it's much better for your learning experience to start off on a wired network.

In terms of background knowledge, if you are involved in some aspect of the IT
industry, you probably have at least some basic familiarity with the common
concepts and terms used with packet-level analysis, such as switches, routers,
packets, protocols, TCP/IP, and HTTP, but it is assumed that you possess only
a basic familiarity with network and application protocols.

Who this book is for
This book is aimed at a broad spectrum of IT professionals who want to develop
or enhance their Wireshark skills to expand their troubleshooting and analysis
capabilities and increase their value in the workplace: network designers and
administrators, application developers and support personnel, database designers and
administrators, IT security professionals, and anyone else whose job responsibilities
include supporting information technology in today's increasingly networked world.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[5]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The IP address of the target host was 10.1.1.125."

A block of code is set as follows:

(tcp.flags&02 && tcp.seq==0) || (tcp.flags&12 && tcp.seq==0) || (tcp.
flags.ack && tcp.seq==1 && !tcp.nxtseq > 0 && !tcp.ack >1) || tcp.
flags.fin == 1 || tcp.flags.reset ==1

Any command-line input or output is written as follows:

dumpcap -i 2 -f "host 192.168.1.115" -w capture.pcapng

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "This field
is roughly equivalent to the Time To Live field in IPv4; it is decremented by one by
each device that forwards the IPv6 packet."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Getting Acquainted with
Wireshark

Since its creation in 1997 by Gerald Combs to troubleshoot network problems at
a small ISP, Wireshark (originally called Ethereal) has now become one of the
most popular tools available for packet-level analysis of network and application
protocols. This is mostly because it is an open source solution, which makes it freely
available to any technical professional, as well as its extensive range of features,
coverage of over 1000 protocols, and the continued support and improvements made
possible by contributions from over 800 developers around the globe.

This introductory chapter will help you to quickly become proficient in Wireshark
by installing it on your system and doing something fun and useful with it, before
diving into more details and supporting concepts.

In this chapter, we will cover the following topics:

•	 Installing Wireshark
•	 Performing a packet capture
•	 Wireshark user interface essentials
•	 Using display filters to isolate traffic of interest
•	 Saving a filtered packet trace file

The chapters that follow will build on and provide the supporting concepts for these
basic functions to allow you to develop the Wireshark skills that are most applicable
to your technical role and objectives.

Getting Acquainted with Wireshark

[8]

Installing Wireshark
Wireshark can be installed on machines running 32- and 64-bit Windows (XP, Win7,
Win8.1, and so on), Mac OS X (10.5 and higher), and most flavors of Linux/Unix.
Installation on Windows and Mac machines is quick and easy because installers
are available from the Wireshark website download page. Wireshark is a standard
package available on many Linux distributions, and there is a list of links to
third-party installers provided on the Wireshark download page for a variety
of popular *nix platforms. Alternatively, you can download the source code and
compile Wireshark for your environment if a precompiled installation package
isn't available.

Wireshark relies on the WinPcap (Windows) or libpcap (Linux/Unix/Mac) libraries
to provide the packet capture and capture filtering functions; the appropriate library
is installed during the Wireshark installation.

You might need administrator (Windows) or root (Linux/Unix/Mac)
privileges to install Wireshark and the WinPcap/libpcap utilities on
your workstation.

Assuming that you're installing Wireshark on a Windows or Mac machine, you need
to go to the Wireshark website (https://www.wireshark.org/) and click on the
Download button at the top of the page. This will take you to the download page,
and at the same time attempt to perform an autodiscovery of your operating system
type and version from your browser info. The majority of the time, the correct
Wireshark installation package for your machine will be highlighted, and you only
have to click on the highlighted link to download the correct installer.

If you already have Wireshark installed, an autoupdate feature will
notify you of available version updates when you launch Wireshark.

https://www.wireshark.org/

Chapter 1

[9]

Installing Wireshark on Windows
In the following screenshot, the Wireshark download page has identified that a 64-bit
Windows installer is appropriate for this Windows workstation:

Clicking on the highlighted link downloads a Wireshark-win64-1.10.8.exe file or
similar executable file that you can save on your hard drive. Double-clicking on the
executable starts the installation process. You need to follow these steps:

1.	 Agree to the License Agreement.
2.	 Accept all of the defaults by clicking on Next for each prompt, including

the prompt to install WinPcap, which is a library needed to capture packets
from the Network Interface Card (NIC) on your workstation.

3.	 Early in the Wireshark installation, the process will pause and prompt
you to click on Install and several Next buttons in separate windows to
install WinPcap.

Getting Acquainted with Wireshark

[10]

4. After the WinPcap installation is complete, click through the remaining
Next prompts to finish the Wireshark installation.

Installing Wireshark on Mac OS X
The process to install Wireshark on Mac is the same as the process for Windows,
except that you will not be prompted to install WinPcap; libpcap, the packet capture
library for Mac and *nix machines, gets installed instead (without prompting).

There are, however, two additional requirements that may need to be addressed in a
Mac installation:

• The first is to install X11, a windowing system library. If this is needed for
your system, you will be informed and provided a link that ultimately takes
you to the XQuartz project download page so you can install this package.

• The second requirement that might come up is if upon starting Wireshark,
you are informed that there are no interfaces on which a capture can be done.
This is a permissions issue on the Berkeley packet filter (BPF) that can be
resolved by opening a terminal window and typing the following command:

bash-3.2$ sudo chmod 644 /dev/bpf*

If this process needs to be repeated each time you start Wireshark, you can perform a
web search for a more permanent permissions solution for your environment.

Chapter 1

[11]

Installing Wireshark on Linux/Unix
The requirements and process to install Wireshark on a Linux or Unix platform can
vary significantly depending on the particular environment. Wireshark is usually
available by default through the package management systems for your specific
Linux distribution. Guidance to install Wireshark on Linux can be found in Chapter 2,
Networking for Packet Analysts, or in the Wireshark user documentation located at
www.wireshark.org/docs/wsug_html_chunked/ChapterBuildInstall.html.

Performing your first packet capture
When you first start Wireshark, you are presented with an initial Start Page as
shown in the following screenshot:

Don't get too fond of this screen. Although you'll see this every time you start
Wireshark, once you do a capture, open a trace file, or perform any other function
within Wireshark, this screen will be replaced with the standard Wireshark user
interface and you won't see it again until the next time you start Wireshark.
So, we won't spend much time here.

www.wireshark.org/docs/wsug_html_chunked/ChapterBuildInstall.html

Getting Acquainted with Wireshark

[12]

Selecting a network interface
If you have a number of network interfaces on your machine, you may not be sure
which one to select to capture packets, but there's a fairly easy way to figure this out.
On the Wireshark start page, click on Interface List (alternatively, click on Interfaces
from the Capture menu or click on the first icon on the icon bar).

The Wireshark Capture Interfaces window that opens provides a list and
description of all the network interfaces on your machine, the IP address assigned
to each one (if an address has been assigned), and a couple of counters, such as
the total number of packets seen on the interface since this window opened and a
packets/s (packets per second) counter. If an interface has an IPv6 address assigned
(which may start with fe80:: and contain a number of colons) and this is being
displayed, you can click on the IPv6 address and it will toggle to display the IPv4
address. This is shown in the following screenshot:

On Linux/Unix/Mac platforms, you might also see a loopback interface
that can be selected to capture packets being sent between applications
on the same machine. However, in most cases, you'll only be interested
in capturing packets from a network interface.

The goal is to identify the active interface that will be used to communicate with the
Internet when you open a browser and navigate to a website. If you have a wired
local area network connection and the interface is enabled, that's probably the active
interface, but you might also have a wireless interface that is enabled and you may
or may not be the primary interface. The most reliable indicator of the active network
interface is that it will have greater number of steadily increasing packets with a
corresponding active number of packets/s (which will vary over time). Another
possible indicator is if an interface has an IP address assigned and others do not.
If you're still unsure, open a browser window and navigate to one of your favorite
websites and watch the packets and packets/s counters to identify the interface that
shows the greatest increase in activity.

Chapter 1

[13]

Performing a packet capture
Once you've identified the correct interface, select the checkbox on the left-hand side
of that interface and click on the Start button at the bottom of the Capture Interfaces
window. Wireshark will start capturing all the packets that can be seen from that
interface, including the packets sent to and from your workstation. You'll see a
bewildering variety of packets going by in the top section (called the Packet List pane)
of the screen; this is normal. If you don't see this, try a different interface.

It's a bit amazing just how much background traffic there is on a typical network, such
as broadcast packets from devices advertising their names, addresses, and services
to and from other devices asking for addresses of stations they want to communicate
with. Also, a fair amount of traffic is generated from your own workstation for
applications and services that are running in the background, and you had no idea
they were creating this much noise. Your Wireshark's Packet List pane may look
similar to the following screenshot; however, we can ignore all this for now:

We're ready to generate some traffic that we'll be interested in analyzing.
Open a new Internet browser window, enter www.wireshark.org in the address
box, and press Enter.

When the https://www.wireshark.org/ home page finishes loading, stop the
Wireshark capture by either selecting Stop from the Capture menu or by clicking
on the red square stop icon that's between the View and Go menu headers.

https://www.wireshark.org/

Getting Acquainted with Wireshark

[14]

Wireshark user interface essentials
Once you have completed your first capture, you will see the normal Wireshark
user interface main screen. So before we go much further, a quick introduction to
the primary parts of this user interface will be helpful so you'll know what's being
referred to as we continue the analysis process.

There are eight significant sections or elements of the default Wireshark user
interface, as shown in the following screenshot:

Let's look at the eight significant sections in detail:

•	 Title: This area reflects the interface from where a capture is being taken
or the filename of an open packet trace file

•	 Menu: This is the standard row of main functions and subfunctions
in Wireshark

•	 Main toolbar (icons): These provide a quick way to access the most useful
Wireshark functions and are well worth getting familiar with and using

•	 Display filter toolbar: This allows you to quickly create, edit, clear, apply,
and save filters to isolate packets of interest for analysis

Chapter 1

[15]

•	 Packet list pane: This section contains a summary info line for each captured
packet, as well as a packet number and relative timestamp

•	 Packet details pane: This section provides a hierarchical display of
information about a single packet that has been selected in the packet
list pane, which is divided into sections for the various protocols contained
in a packet

•	 Packet bytes pane: This section displays the selected packets' contents in hex
bytes or bits form, as well as an ASCII display of the data that can be helpful

•	 Status bar: This section provides an expert info indicator, edit capture
comments icon, trace file path name and size information, data on the
number of packets captured and displayed and other info, and a profile
display and selection section

Filtering out the noise
Somewhere in your packet capture, there are packets involved with loading the
Wireshark home page—but how do you find and view just those packets out of
all the background noise?

The simplest and most reliable method is to determine the IP address of the
Wireshark website and filter out all the packets except those flowing between
that IP address and the IP address of your workstation by using a display filter.
The best approach—and the one that you'll likely use as a first step for most of your
post-capture analysis work in future—is to investigate a list of all the conversations
by IP address and/or hostnames, sorted by the most active nodes, and identify your
target hostname, website name, or IP address from this list.

From the Wireshark menu, select Conversations from the Statistics menu, and in
the Conversations window that opens, select the IPv4 tab at the top. You'll see a list
of network conversations identified by Address A and Address B, with columns for
total Packets, Bytes, Packets A→B, Bytes A→B, Packets A←B, and Bytes A←B.

Scrolling over to the right-hand side of this window, there are Relative Start values.
These are the times when each particular conversation was first observed in the
capture, relative to the start of the capture in seconds. The next column is Duration,
which is how long this conversation persisted in the capture (first to last packet seen).

Getting Acquainted with Wireshark

[16]

Finally, there are average data rates in bits per second (bps) in each direction for
each conversation, which is the network impact for this conversation. All these are
shown in the following screenshot:

We want to sort the list of conversations to get the busiest ones—called the Top
Talkers in network jargon—at the top of the list. Click on the Bytes column header
and then click on it again. Your list should look something like the preceding
screenshot, and if you didn't get a great deal of other background traffic flowing
to/from your workstation, the traffic from https://www.wireshark.org/ should
have the greatest volume and therefore be at the top of the list.

In this example, the conversation between IP addresses 162.159.241.165 and
192.168.1.116 has the greatest overall volume, and looking at the Bytes A->B column,
it's apparent that the majority of the traffic was from the 162.159.241.165 address to
the 192.168.1.116 address. However, at this point, how do we know if this is really
the conversation that we're after?

We will need to resolve the IP addresses from our list to hostnames or website
addresses, and this can be done from within Wireshark by turning on Network Name
Resolution and trying to get hostnames and/or website addresses resolved for those
IP addresses using reverse DNS queries (using what is known as a pointer (PTR) DNS
record type). If you just installed or started Wireshark, the Name Resolution option
may not be turned on by default.

https://www.wireshark.org/

Chapter 1

[17]

This is usually a good thing, as Wireshark can create traffic of its own by transmitting
the DNS queries trying to resolve all the IP addresses that it comes across during the
capture, and you don't really want that going on during a capture. However, the Name
Resolution option can be very helpful to resolve IP addresses to proper hostnames
after a capture is complete.

To enable Name Resolution, navigate to View | Name Resolution | Enable
for Network Layer (click to turn on the checkmark) and make sure Use External
Network Name Resolver is enabled as well. Wireshark will attempt to resolve all
the IP addresses in the capture to their hostname or website address, and the
resolved names will then appear (replacing the previous IP addresses) in the
packet list as well as the Conversations window.

Note that the Name Resolution option at the bottom of the Conversations
window must be enabled as well (it usually is by default), and this setting affects
whether resolved names or IP addresses appear in the Conversations window
(if Name Resolution is enabled in the Wireshark main screen), as shown in the
following screenshot:

Getting Acquainted with Wireshark

[18]

At this point, you should see the conversation pair between wireshark.org and your
workstation at or near the top of the list, as shown in the following screenshot. Of
course, your workstation will have a different name or may only appear as an IP
address, but identifying the conversation to wireshark.org has been achieved.

Applying a display filter
You now want to see just the conversation between your workstation and wireshark.
org, and get rid of all the extraneous conversations so you can focus on the traffic of
interest. This is accomplished by creating a filter that only displays the desired traffic.

Right-click on the line containing the wireshark.org entry and navigate to Apply as
Filter | Selected | A<->B, as shown in the following screenshot:

Chapter 1

[19]

Wireshark will create and apply a display filter string that isolates the displayed
traffic to just the conversation between the IP addresses of wireshark.org and your
workstation, as shown in the following screenshot. Note that if you create or edit a
display filter entry manually, you will need to click on Apply to apply the filter to
the trace file (or Clear to clear it).

This particular display filter syntax works with IP addresses, not with hostnames,
and uses an ip.addr== (IP address equals) syntax for each node along with the
&& (and) logic operator to build a string that says display any packet that
contains this IP address *and* that IP address. This is the type of display
filter that you will be using a great deal for packet analysis.

You'll notice as you scroll up and down in the Packet List pane that all the other
packets, except those between your workstation and wireshark.org, are gone.
They're not gone in the strict sense, they're just hidden—as you can observe by
inspecting the Packet No. column, there are gaps in the numbering sequence;
those are for the hidden packets.

Saving the packet trace
Now that you've isolated the traffic of interest using a display filter, you can save a
new packet trace file that contains just the filtered packets.

This serves two purposes. Firstly, you can close Wireshark, come back to it later,
open the filtered trace file, and pick up where you left off in your analysis, as well
as have a record of the capture in case you need to reference it later such as in a
troubleshooting scenario.

Secondly, it's much easier and quicker to work in the various Wireshark screens and
functions with a smaller, more focused trace file that contains just the packets that
you want to analyze.

To create a new packet trace file containing just the filtered/displayed packets, select
Export Specified Packets from the Wireshark File menu.

Getting Acquainted with Wireshark

[20]

You can navigate to and/or create a folder to hold your Wireshark trace files, and then
enter a filename for the trace file that you want to save. In this example, the filename
is wireshark_website.pcapng. By default, Wireshark will save the trace file in the
pcapng format (which is the preferred format). If you don't specify a file extension with
the filename, Wireshark will provide the appropriate extension based on the Save as
type selection, as shown in the following screenshot:

Also, by default, Wireshark will have the All packets option selected, and if a
display filter is applied (as it is in this scenario), the Displayed option will be
selected as opposed to the Captured option that saves all the packets regardless of
whether a filter was applied. Having entered a filename and confirmed that all the
save selections are correct, you can click on Save to save the new packet trace file.

Note that when you have finished this trace file save activity, Wireshark still has all
the original packets from the capture in memory, and they can still be viewed by
clicking on Clear in the Display Filter Toolbar menu. If you want to work further
with the new trace file you just saved, you'll need to open it by clicking on Open in
the File menu (or Open Recent in the File menu).

Chapter 1

[21]

Summary
Congratulations! If you accomplished all the activities covered in this chapter, you
have successfully installed Wireshark, performed a packet capture, created a filter
to isolate and display just the packets you were interested in from all the extraneous
noise, and created a new packet trace file containing just those packets so you can
analyze them later. Moreover, in the process, you gained an initial familiarity with
the Wireshark user interface and you learned how to use several of its most useful
and powerful features. Not bad for a first chapter.

In the next chapter, we'll review some essential network concepts needed to
provide a solid foundation to perform packet-level analysis. The main goal of the
next chapter is to help you develop a mental model of networking that lends itself
well to packet-level analysis without getting too tangled up in unnecessary details.

Networking for Packet
Analysts

Packet analysis is all about analyzing how applications transfer useful data from
point A to point B over networks. So, an understanding of how networks function
is essential.

In this chapter, we will cover the following topics:

•	 Why the seven-layer OSI model matters
•	 IP networks and subnets
•	 Switching and routing packets
•	 Ethernet frames and switches
•	 IP addresses and routers
•	 WAN links
•	 Wireless networking

The seven-layer OSI model will be mapped to the most common networking
terms, and we'll review frames, switching, IP addressing, routing, and a few other
networking topics of interest. The goal is to develop a mental model of networking
that lends itself well to packet-level analysis.

Networking for Packet Analysts

[24]

The OSI model – why it matters
The Open Systems Interconnections (OSI) reference model is an industry recognized
standard developed by the International Organization for Standardization (ISO)
to divide networking functions into seven logical layers to support and encourage
(relatively) independent development while providing (relatively) seamless
interconnectivity between each layer from different hardware/software environments,
platforms, and vendors. There's also a somewhat simpler four-layer Defense
Advanced Research Projects Agency (DARPA) model that maps to the OSI model,
but the OSI version is the most commonly referred to. I'll reference both models when
discussing the various layers.

The following diagram compares the OSI and DARPA reference models:

Presentation Layer

Application Layer

Session Layer

Application Layer

Transport Layer Transport Layer

Network Layer Internet Layer

Network Interface

Layer

Data Link Layer

Physical Layer

OSI model layers DARPA layers

Unless you're in the business of writing protocols, there's no need to study any of
the seven layers in great depth, but it is helpful to understand them conceptually
because these layers are referred to by the industry and your IT peers.

More importantly, it's essential that you know where and how these layers and their
associated protocols are presented in Wireshark's Packet Details pane. We'll cover
the layers from this aspect to help you remember them and get the most use from
the discussion.

Chapter 2

[25]

Understanding network protocols
Network protocols, like the OSI layers, are a set of industry standard rules and
designs used to exchange messages and data between computers and applications.
In any discussion about OSI layers, you are directly or indirectly referring to the
protocols associated with a given layer—the most commonly known protocols
are IP, UDP, TCP, HTTP, and so on—and the significant functions they perform.

For example, you'll often hear the terms network layer and IP layer used
interchangeably, and it is assumed and understood that you are talking about the
layer and the associated protocol that contains and uses IP addresses to route packets
from point A to point B across the network. The discussions that follow will tie the
OSI and DARPA layers to their associated protocols.

The seven OSI layers
As we cover the OSI layers starting from layer 1 and working up to layer 7, I'll
outline how each layer's associated protocol(s) are displayed in Wireshark and/or
used in networking hardware. The mental model you develop from this approach
should be the most accurate and useful for packet analysis.

Layer 1 – the physical layer
The physical layer encompasses the electrical characteristics and mechanical
standards to get data bits transmitted from a computer's Network Interface Card
(NIC) to a switch port or between switch and router ports. The most common
standards, terms, and devices you'll encounter at this layer include the following:

•	 Ethernet: This is a family of networking technologies for local area
networks (LANs).

•	 RJ-45: These are 8-pin modular connectors found on both ends of a copper
Ethernet cable that are plugged into the NIC on a computer and a wall jack
or switch port

•	 Cat 5 (Cat 5e or Cat 6) cables: These are Ethernet cables that use twisted-pair
copper wires. "Cat" stands for the category of cable and reflects its quality
and data speed capabilities.

•	 100Base-T, 1000Base-T, and 1000Base-LX: These represent a particular
Ethernet standard. 100Base-T is 100 Mbps over twisted-pair cable using
RJ-45 connectors, 1000Base-LX is 1000 Mbps over fiber, and so on.

•	 Single-mode and multimode fiber optic cables: These use pulses of light
from solid-state LEDs or lasers to transmit data bits.

Networking for Packet Analysts

[26]

The Ethernet standards used to connect NICs to switches are also used to connect
switches together and to connect switches to routers or other network devices,
although the cables and connectors used may vary depending on cable type and speed.

There are other layer 1 standards in common use, including 802.11 Wireless, Frame
Relay, and ATM; the last two are used in long distance wide area networks (WANs).

Layer 2 – the data-link layer
The data-link layer organizes raw bits from the physical layer (typically Ethernet)
into frames, which is the first manifestation of what is generally called a packet that
you'll see in Wireshark. This layer is a dividing line between physical networking,
electrical/mechanical standards, and the logical structures (protocols) used to format
and transmit, receive, and decode packets of data in the higher layers.

In the DARPA reference model, the physical and data-link OSI layers are combined
and called the network interface layer. The significant features and functions of this
layer (for Ethernet II frames) include:

•	 Media Access Control (MAC) addresses: These are the network
addresses used in LANs. They are 6-byte network hardware addresses
burned into memory chips on NICs, switches, routers, or other network
device ports/interfaces:

°° The first three bytes of a MAC address are assigned to and can
be associated with a specific manufacturer. Wireshark has a list
of these and can display MAC addresses as a combination of the
manufacturer code and the last three bytes. The manufacturer creates
a unique last-three-bytes address for every interface so that each
MAC address is unique across the globe. (Although, an NIC might be
programmed to use another arbitrary MAC address, which is done
for MAC spoofing for malicious attacks. But this is a very bad idea as
another card may be using the same address and can cause a loss of
data and some very confusing packet switching problems.)

°° Ethernet frames include a destination and source MAC address.
MAC addresses are used to switch (not route—we'll make the
distinction shortly) frames between computers on the same LAN
or between computers and a router or other device port on a LAN.

•	 Type (or EtherType) field: This indicates the next higher protocol layer
(typically IP (0800) or ARP (0806)). Wireshark uses this to determine the
next protocol dissector to apply in packet decodes.

•	 Payload: This is the packet or datagram carried by the Ethernet frame.

Chapter 2

[27]

•	 The frame check sequence: This is a 4-byte Cyclic Redundancy Check
(CRC) error-detection code calculated from all the bits in a frame and
added to the end of the frame. This is used to detect frames that have been
corrupted usually because of faulty cables, noise induced on the wires in a
cable from outside electrical signals, and so on. When a frame is received,
this code is recalculated based on the bits received and compared to the FCS
field. The bad frames are then discarded.

The following diagram illustrates the layout of the fields in an Ethernet frame:

Destination MAC Addr

c8 d7 19 21 b7 ec 00 1c 25 99 db 85 08 00 IP, ARP, etc. 46 55 e8 de

Source MAC Addr EtherType Payload CRC Checksum

MAC Header

(14 bytes)

Datagram

(46 - 1500 bytes)

FCS

(4 bytes)

Ethernet Type II Frame

(64 - 1518 bytes)

A key point here—and this is important to understand—is that Ethernet frames and
their MAC addresses are only able to transmit frames between devices on the local
area network (LAN and IP subnet) they belong to.

Routers form the boundary between LANs by virtue of their IP subnet (subnetwork)
addressing. All the devices belonging to the same IP subnet are part of the same
LAN, and getting packets to or from a different subnet requires a router.

Once a frame enters a router port to get routed to a different/distant network, the
Ethernet frame with its MAC addresses and FCS is stripped off and discarded. The
payload inside the frame is routed to the port and it will leave on its way to the next
device, and another frame with a different MAC address and recalculated FCS is
created to encase the packet. This frame is then transmitted to the next destination.

The network devices that work at this layer—usually switches—are commonly
referred to as layer 2 devices or layer 2 switches.

Finally, you should be aware that layer 2 switches can support several
networking enhancements such as Virtual LAN (VLAN) and Class of Service (CoS)
tagging, which is accomplished by adding a 4-byte 802.1Q field between the MAC
addresses and EtherType field. You might see these frames between switches
(but not on user ports).

Networking for Packet Analysts

[28]

VLAN is a layer 2 solution that allows administrative partitioning of various ports
on a switch into separate broadcast domains. Devices located on different VLANs
are effectively isolated from each other as if they were on separate physical networks.
VLANs can be dispersed across multiple switches without running separate cables
for each VLAN if the switches support VLAN tagging. Communication between
devices on separate VLANs generally requires using a router.

In the following Wireshark packet details screenshot, the Ethernet II frame
Destination and Source MAC addresses, Type (indicating that the next layer
protocol is IP), and Frame check sequence are circled, as is the Frame summary.

Wireshark displays a summary of each frame that includes frame
sizes, captured timestamps and interframe times, and other useful
information. This is metadata calculated by Wireshark to aid in
analysis and not a part of the captured frame.

The following screenshot highlights the significant fields of an Ethernet frame:

Any additional analysis provided by Wireshark in any area of the
Packet Details pane that is calculated or otherwise not part of actual
packet contents will be encased in brackets.

Layer 3 – the network layer
The network layer (called the Internet layer in the DARPA model) primarily
handles the routing of packets across and to other networks along the path from
source computers to destination hosts based on the destination IP address.
The two most common protocols seen at this layer are Internet Protocol and
Address Resolution Protocol.

Chapter 2

[29]

Internet Protocol
The most common protocol in use at this layer is Internet Protocol Version 4 (IPv4),
which includes several essential fields to accomplish the task of routing packets
across networks:

•	 Differentiated Services (DiffServ): This field supports an enhancement
to the IP that is generally called Quality of Service (QoS) and allows
classification of certain types of traffic (voice, video, and so on) so that these
packets can receive priority handling in cases of network congestion.

•	 Total length: This is the total length of the packet (minus the Ethernet
MAC header).

•	 Identification (IP ID): This an incrementing number used to support
fragmentation.

•	 Flags: These are used to support fragmenting (dividing a packet into two
or more smaller ones) in case the large packets have to be divided into
several smaller ones to traverse a packet-size-limited link. These flags along
with the IP ID field values allow proper reassembly of the fragmented
packets into the original.

•	 Fragment offset: If the Flag field is 1 (more fragments), the value in this field
indicates the offset from the start of the original payload in bytes that this
fragment packet contains.

•	 Time to Live (TTL): This is a "hop" or time counter that is decremented every
time a packet passes through a router. If the TTL reaches zero, the packet is
discarded. The primary purpose is to keep packets from living forever and
crashing the network in the case of an inadvertent path loop.

•	 Protocol: This identifies the protocol in the IP packet's payload. Wireshark
uses this to determine the next protocol dissector to apply to packet decodes.

•	 Source and destination IP addresses: These are the IP addresses of the
sending machine and the ultimate destination machine. IP addresses are
4 bytes long and are represented as four octets (numbered 0 through 255
decimal) separated by periods.

Networking for Packet Analysts

[30]

In the following screenshot, the significant IPv4 fields are circled. These are the
fields you'll want to inspect and be comfortable with when doing packet analysis
at this layer.

Address Resolution Protocol
Another protocol you'll see at the network layer is Address Resolution Protocol
(ARP), which is used by a device to obtain the MAC address of another device when
it only knows that device's IP address.

In the following Wireshark packet details screenshot, note that the Ethernet frame
destination MAC address is Broadcast (ff:ff:ff:ff:ff:ff), Type is ARP (0x0806), and the
station has provided its own MAC and IP address in the ARP protocol Sender fields
(which other stations listen to and use to build a table of MAC and IP addresses).
It provides the IP address of the target device and puts all zeros in the Target MAC
Address field. The target device should return a similar ARP packet addressed to the
requestor with its MAC address in the Sender field.

A station will send an ARP request only in the following situations:

•	 The station that requires a MAC address for a target device hasn't heard
a previous broadcast of that station's MAC address, or its ARP table has
timed out (ARP entries are only kept for a period).

Chapter 2

[31]

•	 The station that requires a MAC address for a target device has calculated
(from the target's IP address and its own subnet mask) that the target
device should be on the same LAN. Otherwise, the station assumes the
target device is on a different network and sends its first session initiation
packet to the default gateway (router) MAC address based on the entry in
the sending station's default gateway configuration setting. The default
gateway will forward the packet to the appropriate egress port to route
it to the destination.

•	 The station that needs to send a packet to a distant network doesn't know the
MAC address of its default gateway (for example, just after a power-up).

The following screenshot highlights the significant fields of an ARP packet:

Other protocols utilized at this layer include Internet Control Message Protocol
(ICMP), which is used to send network error messages between devices, and
Internet Group Management Protocol (IGMP), which is used by hosts and
adjacent routers to establish multicast (one-to-many) group memberships for
network applications such as streaming video and gaming.

Layer 4 – the transport layer
The transport layer, as it's called in both the OSI and DARPA models, is responsible
for transporting packets of data in unique sessions between applications or a user
and an application by means of port numbers. The combination of a device or user's
IP address and that device or user's assigned port number (referred to as a socket)
will be different from another devices or users' IP address and port numbers
(on the client side).

Networking for Packet Analysts

[32]

If the source host for a packet is a server, the source port is likely to be a well-known
number for standard applications and services, such as port 80 for HTTP.

The transport layer typically uses one of two protocols, User Datagram
Protocol or Transmission Control Protocol, with the latter being the more
prevalent for most applications.

User Datagram Protocol
The User Datagram Protocol (UDP) is a fairly simple protocol. It is considered an
unreliable transport as there's no guarantee of packet delivery or ordering, but it has
lower overhead and is used by time-sensitive applications such as voice and video
traffic, as well as by network services applications such as DNS.

The UDP header is only 8 bytes long and consists of the following:

•	 Source and Destination port number:These are 2 bytes each.
•	 Length: This is the length of the UDP header plus the payload.

This is a 2-byte field.
•	 Checksum: This is the 2-byte field used to check errors of the UDP

header and data. If no checksum was generated by the transmitter,
this will be all zeros.

The following screenshot shows the fields contained in a UDP header:

Transmission Control Protocol
Unlike UDP, the Transmission Control Protocol (TCP) provides reliable delivery of
data by detecting lost, duplicated, or out-of-order packets, requesting retransmission
of lost data, or rearranging packets in the right order before delivering them to
the application. TCP can also accept a large chunk of data from an application and
handle getting the data transported to the other end reliably using multiple packets
and reassembling them at the other end (as can UDP, but not reliably; the application
has to determine and recover from lost packets).

Chapter 2

[33]

The TCP header contents and length can vary depending on the options that may be
in use, but in its simplest implementation, it consists of:

•	 Source and Destination ports (2 bytes each): These are well-known
registered ports that are used (on servers) to access standard application
services such as HTTP, FTP, SMTP, databases, and so on. Port numbers
assigned to client/user sessions are usually in a higher number range and
assigned sequentially.

•	 Sequence number (4 bytes): This is a number that represents the first octet in
any given segment. Sequence numbers are initialized at the beginning of new
sessions as a random number, and then incremented as data bytes and sent.

•	 Acknowledgment number (4 bytes): When the ACK flag bit is set, this field
contains the next sequence number expected from the sender, which in turn
acknowledges receipt of all the bytes received up to that point.

The use of sequence and acknowledgment numbers are how the TCP
ensures reliable delivery of data by tracking the number and order of
received bytes.
Sequence and acknowledgment numbers are large and difficult
for humans to follow; Wireshark can convert and display these as
relative values that start with 0 at the beginning of a session to make
it easier to inspect them and relate the values to the number of bytes
transmitted and received.

•	 Flags (9 bits): These bits are used to control connection setups, terminations,
and flow control mechanisms.

•	 Window size (2 bytes): This indicates the current size of the buffer on this
host used to store received data until it can be handed off to the receiving
application. This information lets the sending host adjust data flow rates in
case of network or host congestion.

Networking for Packet Analysts

[34]

The following screenshot highlights the significant fields of a TCP header:

Layer 5 – the session layer
The session layer handles setting up, controlling, and ending sessions within an
application between two computers. This is not necessarily the same thing as,
for example, a TCP connection, although the two will be related. The application
sessions can span and outlive multiple network connections. An example of a
networking protocol that operates at this layer is Network Basic Input/Output
System (NetBIOS).

Layer 6 – the presentation layer
The presentation layer converts incoming and outgoing data from one format to
another and handles encryption/decryption and/or compression if any of these are
required. The presentation layer is also responsible for the delivery and formatting of
information to the application layer for further processing or display. An example of
a presentation service would be the conversion of an EBCDIC-coded text computer
file to an ASCII-coded file.

Layer 7 – the application layer
The application layer, which may (or may not) perform separate functions from the
application itself, handles message formatting, human to machine interfaces, and
so on. This layer represents the services that directly support applications such as
software for file transfers, database access, e-mail, and so on.

Chapter 2

[35]

In many widely used applications, no distinction is made between the presentation
and application layers. For example, HyperText Transfer Protocol (HTTP), which is
generally regarded as an application-layer protocol, has presentation-layer aspects
such as the ability to identify character encoding for proper conversion, which is then
done in the application layer.

In the DARPA model, the OSI layers 5-7 are combined into an application layer.
From a packet analysis standpoint, the particular manifestations and visibility
(in Wireshark) of the functions in the top layer(s) will vary depending on the
applications and specific protocols employed to support them.

The following diagram summarizes the OSI and DARPA layers and how various
networking protocols and services align with these layers and each other:

Transport Layer Transport Layer TCP UDP

Data Link Layer

Physical Layer

Network Interface

Layer Ethernet

802.11

wireless

LAN

Frame Relay ATM

Network Layer Internet Layer

ARP

IGMP ICMP ND MLD

IP (IPv4) IPv6

Application Layer

Presentation Layer

Session Layer

OSI model layers

Application Layer

DARPA layers

HTTP SMB2 SMTP DNS RTP SNMP

TCP/IP Protocol Suite

ICMPv6

Encapsulation
You may have observed by now that packets encapsulate various protocols into
successive layers, just like peeling an onion. An Ethernet frame contains a datagram
payload; this datagram is a packet with an IP header and payload. The IP packet
payload consists of a TCP header and data segment, which in turn may contain an
HTTP header and payload. This encapsulation is easier to visualize when working
within Wireshark's Packet Details pane.

Networking for Packet Analysts

[36]

IP networks and subnets
Before moving on, a short review of typical IP subnetting terms and typical
applications should help clarify the terms used in this book and will act as a
refresher for those already versed in IP addressing.

A /24 designator placed after a network IP address in diagrams or device
configurations is a Classless Inter-Domain Routing (CIDR) designator that
indicates the following:

•	 The first 24 out of the 32 bits in the 4-byte IP address represents the network
portion of any IP address on this network. This network is designated as
10.1.1.0 (the next /24 network would be 10.1.2.0, then 10.1.3.0,
and so on).

•	 The last 8 bits of the 32-bit address can be used to give workstations, hosts,
and other devices an IP address, with the following exceptions:

°° The first host address on this network is reserved as a network
designator to build routing tables: 10.1.1.0 (typically called the
loopback address)

°° The last host address on this network is reserved as an IP broadcast
address: 10.1.1.255

The 8 bits binary is equal to 256 decimal, minus the preceding two
exceptions. This leaves 254 usable IP addresses for devices, starting
with 10.1.1.1, 10.1.1.2, and so on up to 10.1.1.254.

•	 Another way of expressing subnet masks is in a dotted decimal format,
255.255.255.0, which again indicates that the first 24 bits of an IP address
is the network and the remaining 8 bits are for hosts.

•	 There are Class A, Class B, and Class C address ranges, as well as a subset
of IP ranges reserved as private addresses to use within organizations.
The following table shows the IP address ranges in the three major classes:

Class of IP address Starting IP address Ending IP address
A 1.0.0.0 126.255.255.255

B 128.0.0.0 191.255.255.255

C 192.0.0.0 223.255.255.255

Chapter 2

[37]

The following table shows the private IP address ranges:

Class of private
IP addresses

Starting IP address Ending IP address

A 10.0.0.0 10.255.255.255

B 172.16.0.0 172.32.255.255

C 192.168.0.0 192.168.255.255

•	 Subnet masks can be configured to allow more or fewer hosts per subnet
with a corresponding tradeoff in having fewer or greater network addresses
with which to build multiple networks within larger organizations.

A deeper review of IP addressing and subnetting is beyond the scope of this book.
If you're not familiar with these concepts, some additional study would be advisable
as a solid understanding of IP subnetting is essential for most analysis activities.

Switching and routing packets
So far, we've covered the topics required to discuss how packets of data get routed
from computer A to host B across LANs and/or WANs over distances that may
range from across a room to across the globe. The important concepts to remember
are that Ethernet frames work with switches and IP packets work with routers to
accomplish this feat, which we'll cover in the next section.

Ethernet frames and switches
To reiterate what was outlined in the layer 2 (the data-link layer) discussion, Ethernet
frames are switched from the entry port to the appropriate destination port based
on the destination MAC address. Network switches build tables of which MAC
addresses belong to each port, compare a frame's destination MAC address to these
tables, and switch the frame to the appropriate egress port if the destination is on the
same switch or out a trunk port to another switch or router otherwise.

Note that the first time a switch sees a destination MAC address it doesn't recognize,
it sends the packet (which will usually be an ARP packet) out all the ports until a
device answers and it can add the new MAC address to its content addressable
memory (CAM) table that maps MAC addresses to specific ports.

Networking for Packet Analysts

[38]

Frames carrying packets destined for remote networks are sent to the default
gateway port MAC address. If you look at a list of MAC addresses in the Ethernet
tab of a Conversations table in Wireshark and see an address with a drastically
higher volume of traffic than the other stations, this is likely a default gateway
(router) port MAC address. This port is the pathway into/out of this LAN
from/to other networks.

On any given LAN, you'll see workstations, servers, and routers generating ARP
and Domain Name Service (DNS) requests:

•	 ARP: This is used to resolve IP addresses to MAC addresses
•	 DNS: This is used to resolve hostnames to IP addresses

In the following diagram, there are two user workstations and a server that are
connected together in a LAN residing on the 10.1.1.0/24 IP network. A router is
attached to this network, which has a WAN link to another location.

Switch 2

Mgmt IP 10.1.1.6

NETWORK

10.1.1.0/24

MAC A

IP 10.1.1.30

MAC B

IP 10.1.1.47

Switch 3

Mgmt IP 10.1.1.7

HOST ‘Venus’

MAC C

IP 10.1.1.25

WAN LinkSwitch 1

Mgmt IP 10.1.1.5

Router 1

MAC D

Intf Fa/0 IP 10.1.1.1/24

The following two scenarios leverage this drawing to show how MAC addresses are
utilized to switch Ethernet frames around local area networks:

•	 The workstation with MAC address B wants to use an application on the
server Venus, which is unknown to all the network devices as it was just
powered up. The workstation knows the IP address of Venus as the IP
address was preconfigured in the client application, but it doesn't know
the server's MAC address.

Chapter 2

[39]

The workstation broadcasts an ARP packet with its own MAC and IP
address as the sender, the IP address of the Venus server, and all the
zeros for the MAC address in the Target fields. Venus responds to the
workstation with an ARP response that includes its MAC address of C
in the sender MAC address.
The workstation then sends a session initiation packet to the server using the
server's MAC address as the destination MAC in the Ethernet frame.
These Ethernet frames traversed switch 3, which learned both devices' MAC
addresses from observing the ARP conversations. The rest of the switches in
the LAN network learned workstation C's MAC address when it broadcasted
its ARP packet (because switch 3 sent this ARP packet out all ports), but not
the server's MAC as the server responded directly to C.

•	 The workstation with MAC address A now wants to use an application on
the server Venus. It doesn't know the server's MAC address either, so it
sends an ARP request as well, which switch 2 broadcasts out all its ports, as
does switch 1 and switch 3 as the switches only look at MAC addresses and
the destination MAC address of any ARP request is ff:ff:ff:ff:ff:ff, so each
switch is obliged to send the broadcast frame out all ports.

However, when the server Venus responds to A's ARP packet, using
A's MAC address, each switch in the path has learned which ports it saw
A's MAC address come in on. So, each switch only sends Venus' response out
the appropriate port back to workstation A. The same is true for learned non-
broadcast frames. If a switch doesn't recognize a destination MAC address of
a nonbroadcast frame, these are sent out all ports the first time
as well.
As switch CAM tables get populated with MAC addresses and their
associated ports, the number of frames that must be sent to every device in
the LAN as well as the workload on all these devices is reduced significantly.

IP addresses and routers
When packets need to leave the LAN to get to a remote IP network, routers are
required to route the packets based on their destination IP addresses. The following
scenario (still referring to the preceding screenshot) illustrates some of the details
involved in one possible situation.

Networking for Packet Analysts

[40]

Workstation A now wants to use an application on the server Mars, which resides on
a different network than in the previous scenarios. And in this case, workstation A
doesn't know the IP address of the server; it only needs its name. Workstation A will
send a DNS request packet to the DNS server IP address configured in its network
settings (the DNS server isn't shown here) with the hostname Mars; the DNS server
will return the IP address of Mars 10.1.2.25. Workstation A calculates that this host
isn't on its own network from a comparison of its IP address and subnet mask
with Mars' IP address, so it sends the session initiation packet to router 1, which
was configured as its default gateway in its network settings. We'll assume that
Workstation A already knows the MAC address of router 1's port from a previous
ARP exchange to find router 1's MAC address from the given IP address.

When the router receives A's frame, which was sent to the router port's MAC
address, it inspects the destination IP address inside the IP header and looks up
the appropriate port to forward the packet to. This routing process is supported by
routing table entries the router builds from route information broadcasted by other
routers; each router tells all the others what networks it knows a route to.

In this case, the Ethernet frame surrounding A's packet is stripped off and the
remaining payload (packet) is sent across the WAN link to router 2, which also
inspects the IP header destination IP address and looks up the correct port to
forward the packet to. Router 2 wraps the packet in a new Ethernet frame with its
own MAC address X as the source and the Mars server's Y address as the destination
MAC (assuming the router already has the server in its MAC table), and transmits
the packet out onto the LAN to get switched to the Mars server, as shown in the
following diagram:

NETWORK

10.1.1.0/24

HOST ‘Mars’

MAC Y

IP 10.1.1.25

WAN Link
Switch 20

Mgmt IP 10.1.1.5

Router 2

MAC X

Intf Fa/0 IP 10.1.1.1/24

Switch 25

Mgmt IP 10.1.2.10

Chapter 2

[41]

WAN links
Actually, network packets may traverse several routers and WAN links to reach
the destination network, and each router traversed is called a hop. In the context of
packet analysis, you should be aware that WAN links can introduce packet delivery
delays or latency due to the following four major factors:

•	 Physical speed-of-light propagation delay: This is the amount of time
required for electrical or light signals to travel across copper/fiber cables
over long distances.

•	 Network routing/geographical distance: The WAN link routes are never in a
straight line between points. They have to traverse major telephony switching
centers and route along railways, roads, and other opportunistic paths.

•	 Serialization delay into and across WAN links: The WAN links are often
slower speed links, and it takes a finite amount of time to send packet data
across these links one bit at a time.

•	 Queuing delays: In network device buffers, including additional delays that
may be induced by Quality of Service policies, some packets receive priority
and others have to wait longer for their turn to be transmitted.

The effects of network delay incurred across LAN and WAN links can be seen
and measured in Wireshark packet traces by inspecting the elapsed times between
session setup packets.

Wireless networking
Wireless networks utilize a range of 802.11 specifications to provide connectivity
over 2.4 or 5 GHz frequency bands at a variety of speeds. The significant differences
between wireless frames and those found on wired networks are as follows:

•	 Wireless networks employ carrier sense (every station is listening), multiple
access (shared medium), and collision avoidance (avoiding collisions instead
of just recovering from them) techniques, which reduce the throughput

•	 In addition to data frames, which get forwarded to the wired network,
wireless frame types include the following:

°° Management frames: This is used for authentication and
association tasks

°° Control frames: This controls send/receive functions on the
shared media to help avoid collisions

Networking for Packet Analysts

[42]

Wireshark can be used to capture and analyze packets on Wireless networks.
However, in order to analyze the control and management frames, as well as
select the radio channels to capture on without having to associate with a specific
channel, specialized adapters are required. These adapters are available from various
networking vendors.

These wireless adapters and their drivers enable Wireshark to display a pseudo
header just below the frame header in the Packet Details pane, which includes
information about:

•	 Data rate: This is the maximum data transfer rate possible across the
radio channel

•	 Channel frequency: This is the RF channel frequency that the station is using
•	 Channel type: This is the 802.11 protocol used, and the common types

are a, b, g, and n
•	 RF signal and noise levels: This is the received RF signal strength and

background noise levels; the larger the difference between these two the
better the signal can be decoded

Remember when analyzing wireless networks, the wireless access points utilize
a wired LAN connection to the rest of the network that may warrant a separate
analysis. The access point strips off the 802.11 header and encapsulates a packet
in an Ethernet frame before sending the packet off on the wired network.

The following screenshot illustrates the contents of a typical Radiotap Header and
IEEE 802.11 frame; note the Data Rate, Channel frequency, and Signal/Noise values:

Chapter 2

[43]

There are numerous reference materials and books that you can read to
learn more about networking and network protocols. One of the classic
sources is TCP/IP Illustrated Volumes I, II, and III, W. Richard Stevens,
Addison-Wesley Professional, available online or in book formats.

Summary
The important points covered in this chapter included how Ethernet frames
are switched to the appropriate switch ports on a LAN based on destination
MAC addresses that packets are routed across and to remote networks based on
destination IP addresses, and how the frames carrying packets destined for remote
networks based on the destination IP address are sent to the default gateway's port
MAC address.

We also covered how and why slower and/or longer distance WAN links can add
significant amounts of delay to packet transmissions, which slows application data
exchanges and increases user response times. We finished the chapter by discussing
how Wireshark can capture and analyze packets on 802.11 wireless networks using
specialized adapters.

In the next chapter, we'll cover in detail how to capture and filter packets
using Wireshark.

Capturing All the Right
Packets

In order to analyze packets to troubleshoot connectivity, performance, or security
issues, you have to successfully capture all of the right packets and then identify
and filter out just the packets that pertain to the goal at hand.

In this chapter, we will cover the following topics:

•	 Picking the best capture point
•	 TAPs and switch port mirroring
•	 Wireshark's capture interfaces, filters, and options
•	 Verifying a good capture
•	 Isolating the conversation(s) of interest
•	 Using the Wireshark Conversations window
•	 Wireshark's display filters
•	 Filtering expression buttons
•	 Following TCP/UDP/SSL streams
•	 Marking and ignoring packets
•	 Saving filtered traffic

Capturing All the Right Packets

[46]

You'll recognize that many of these activities are the same ones that we accomplished
in Chapter 1, Getting Acquainted with Wireshark, to perform a capture and filter just
the packets involved in loading a web page. In this chapter, we'll expand and finish
rounding out your skills in all these topics.

Picking the best capture point
Determining the best location to perform a packet capture depends on
several considerations:

•	 The nature of the issue being investigated
•	 The relative ability to perform a capture in a location that provides the

highest degree of usefulness to the analysis
•	 The amount of technical difficulty, risk, and time required to perform

a capture at a given location

User location
If you're troubleshooting a user complaint, the first capture point should be at the
user's workstation to gain a view from the user's perspective and verify/clarify
the situation that the user is reporting. From this vantage point, you can:

•	 Ensure that basic network services such as ARP and DNS are
working correctly

•	 Analyze the initial login process if the user authentication involves a
different device than the target application server

•	 Measure network round trip times from the user to the target host(s)
•	 Determine whether the TCP session setup handshake is appropriate for the

application being accessed
•	 Measure service response times (such as HTTP or SMB response times)
•	 Determine whether the user is experiencing packet loss and retransmissions,

out-of-order packets, or other network-related anomalies
•	 Capture any application error messages being sent to the user and the

requests that resulted in those errors

Chapter 3

[47]

Capturing from a user's location is usually much simpler from a practical standpoint
and there is a lot less traffic to deal with, which makes capture sizes smaller and
filtering the packets of interest simpler. Disconnecting a user's Ethernet cable for
a few minutes to insert a TAP (we'll discuss these in the next section) or installing
Wireshark on the user's workstation does not typically require special authorization
or preparation as the risk to other users is negligible.

Server location
If a capture from a complaining user's workstation isn't possible or practical,
a capture from the server end can still be useful, but it might be advantageous
to apply a capture filter to gather just the traffic to/from the user's workstation
(based on the user's IP address) to limit the capture file size. You can still measure
network round trip times, server response times, analyze TCP handshake
details, and detect retransmissions caused by packet loss, and perhaps the
login/authentication process from this location.

Capturing from a server location is also appropriate when analyzing backend service
response times. For example, if users interact with an application server but that app
server performs transactions with a backend database in order to fulfill user requests
and if there are complaints of slow response times, then an analysis of application
server-to-database server interactions can help isolate the true source of the poor
performance to one or the other host and the types of requests that result in slow
or erroneous responses.

Other capture locations
For the majority of packet captures, you'll likely be at user workstations or server
switch ports, but there will also be some cases where captures will need to be
performed at other locations.

Mid-network captures
Identifying the source of excessive packet loss or disordering over a network path
may require performing packet captures at various points along that path, typically
at distribution or core switch trunks, or interfaces to routers, firewalls, and so on, to
find the network segment where packet loss becomes apparent.

Capturing All the Right Packets

[48]

Both sides of specialized network devices
Today's modern networks often employ a number of network devices that
can actually alter the contents of packets flowing between clients and servers;
in some (occasional or last resort) cases, it may be necessary to capture on both
sides of these devices to isolate or prove a functional or configuration problem:

•	 Routers and gateways: These are also called Internet gateways in some
configurations and may be configured to perform a Network Address
Translation (NAT) function that alters and hides the user's actual IP address
from an outside network. This is done by substituting a public IP address
for the user's real address. This usually involves translating port numbers
as well so that a single public IP address can be used to support multiple
sessions; in which case, the solution is called Port Address Translation
(PAT). The end result of the PAT functionality is that a capture from the
client side and a capture at the server side of the same session conversation
will involve different IP addresses and port numbers.
The following diagram illustrates how a PAT device translates IP addresses
and ports from an internal private network to and from an externally visible
IP address and has translated the ports used for an individual user session:

NETWORK

10.1.1.0/24

10.1.1.30 10.1.1.47

10.1.1.1 155.57.1.12

NAT / PAT device

SRC: 10.1.1.30 port 1025 SRC: 155.57.1.12 port 2060

DST: 10.1.1.30 port 1025 DST: 155.57.1.12 port 2060

Internet

Chapter 3

[49]

•	 Proxy servers and firewalls: Devices such as these can act as an intermediary
between clients wanting to use resources from other (usually external)
servers. These devices are most typically deployed between users inside a
company and outside (web) services accessed via the Internet. These devices
are employed for their security capabilities, allowing administrative control
over what can be accessed and the type of data content that can be relayed
between the two networks, malware scanning, and so on. From a packet
analysis standpoint, you should be aware that in addition to performing a
NAT/PAT function, some implementations of these devices may actually
terminate a user session on one side and initiate a completely different
session between the device and the outside host on the other side, on
behalf of the user, such that the TCP handshake and session parameters,
IP addresses and port numbers, and packet sizes can all differ on either side.

•	 IP tunnels using Generic Routing Encapsulation: These are used to connect
two IP networks that don't otherwise have a native routing path to each
other. The original packets are encapsulated inside packets with different
IP addresses appropriate for the network media that they will traverse. The
most common use of IP tunneling is to connect private corporate networks
together through public Internet connections or to connect Internet Protocol
Version 6 (IPv6) networks together over traditional IPv4 network paths.
IP tunnels can be configured between routers and high-end switches.

Although it may be necessary (to validate an issue to other support teams) or more
practical to capture at or near the interfaces to the devices described earlier, it is
usually easier and just as effective to perform the captures at user and/or server
locations. Unless you're part of a network support team, you won't have to conduct
an analysis in such an advanced and complicated environment.

Test Access Ports and switch port
mirroring
If you're capturing from a user location and cannot or do not wish to install
Wireshark on the user's machine or you're capturing at another location in the
network, you have two options to obtain a copy of the packets traversing the
network: Test Access Ports or switch port mirroring.

Capturing All the Right Packets

[50]

Test Access Port
A Test Access Port (TAP) is a device that copies all the packets flowing through it to
one or more monitor ports. A station with Wireshark installed on it can be connected
to one of the monitor ports to capture the packets.

You should select an aggregating TAP that supports the link speed of the network
ports being analyzed (usually 100 Mbps or 1 Gbps) and that will copy and combine
the packets flowing in both directions (transmit data from the user's workstation and
receive data from the network); the aggregating TAP funnels the traffic to a single
connection (transmit to the Wireshark station) so that you can capture the traffic in
both directions with a single network interface on the Wireshark station. Be aware
that since you're copying packets from two directions into one pipe to the Wireshark
station, it is possible to oversubscribe the monitor port if traffic rates are extremely
high. If this happens, the excess packets will be dropped. Oversubscription usually
isn't a concern at user workstations, but it could be for switch trunks or other high
traffic areas.

The following figure illustrates how a TAP is inserted between a user workstation
and that workstation's switch port, and how a Wireshark workstation is attached to
capture packets:

Chapter 3

[51]

Switch port mirroring
Switch port mirroring, also known as a Switched Port Analyzer (SPAN) feature or
spanning a port, is the practice of configuring a network switch to perform the same
function as a TAP: to make a copy of the packets flowing in and out of a specified
port and send them to an otherwise unused monitor port where a Wireshark station
is attached to capture the packets.

The advantage of using port mirroring is that no connections need to be broken to
insert a TAP. The monitor port can be easily configured by a switch administrator
and just as easily disabled.

The potential issues with this option include the fact that not all switches
support port mirroring, and there is some evidence to suggest that using this
feature can affect the performance of the switch, at least for the port being monitored.
The possibility of oversubscribing the monitor port from excessive transmit plus
receiving traffic levels also exists for port mirroring, as is the case when using a TAP,
and this is likely when monitoring switch trunks to other switches, as these will be
carrying traffic for multiple users.

The following diagram is a simple illustration of a port mirroring scenario on a
switch. The packets to and from the workstation port are copied to the port where
the Wireshark station is connected.

Capturing All the Right Packets

[52]

Capturing packets on high traffic rate links
If you need to capture packets on a high traffic rate link such as a trunk link between
larger switches, Wireshark is probably not the best solution. It may not be able to
keep up with a busy link. Wireshark is actually a GUI tool that calls a command-line
executable called dumpcap, which captures the packets and saves them to a disk file.
Wireshark reads this file and presents the processed packets to the user interface.
An alternative to Wireshark is to use the dumpcap or tcpdump executable
directly (these are covered in Chapter 8, Command-line and Other Utilities)
or a high performance capture appliance offered by numerous vendors.

Capturing interfaces, filters, and options
Capturing packets with Wireshark consists of selecting the correct network interface
to capture packets from, applying any capture filters that may be appropriate, and
applying the correct options to accomplish the capture in the desired manner.
We'll cover these three topics in the following sections.

Selecting the correct network interface
As discussed in Chapter 1, Getting Acquainted with Wireshark, if you have multiple
network interfaces on your machine, you need to determine and select the correct
interface to capture packets. In Wireshark's Capture menu, click on Interface or click
on the first icon on the icon bar.

The Wireshark Capture Interfaces window provides a list and description of the
network interfaces on your machine, the IP addresses assigned, and the total packets
and packets per second counters for each interface. If an interface has an IPv6
address assigned and this is being displayed, you can click on the address to toggle
and display the IPv4 address.

The following screenshot illustrates a typical Capture Interfaces window listing a
LAN and wireless interface along with their IP addresses and packet counters:

Chapter 3

[53]

The Capture Interfaces window provides the following two options:

•	 Clicking on the Details button for any of the listed interfaces opens an
Interface Details window that provides a wide range of information that
can be useful to verify the interface's operation. The status of the Link and
Link Speed information is displayed in the Characteristics tab, and the
MAC address of the selected NIC is displayed in the 802.3 (Ethernet) tab.

•	 The rest of the capture options are configured in the Capture Options
window, which is opened by clicking on the Options button in the Capture
Interfaces window, or by selecting Options from the Capture menu, or by
clicking on the second icon in the icon bar.

The following screenshot illustrates a typical Capture Options window with
a number of options specified. You can refer to it for examples of the topics on
Capture Options.

Capturing All the Right Packets

[54]

As seen in the preceding screenshot, the Capture Options window displays the
available interfaces and their IP addresses and allows you to select one or more
of these interfaces to perform the capture. Wireshark can capture from multiple
interfaces simultaneously, as well as from virtual interfaces. The primary advantage
of starting with the Capture Interfaces window is the availability of the packet
counters to aid in identifying active interfaces, a feature not available in the Capture
Options window. Otherwise, if you know which interface you'll want to use, you
can skip using the Capture Interfaces window and start here.

Clicking on the Manage Interfaces button in the Capture Options window brings up
an Interface Management window. From the Local Interfaces tab, you can select to
hide interfaces that you do not wish to see displayed in the Capture Interfaces and
Capture Options windows.

There is an option to quickly enable Capture on all interfaces and a Use
promiscuous mode on all interfaces option that is enabled by default. In most cases,
this option should be left enabled so that the chosen interface(s) can capture and save
all the packets seen. Otherwise, only the packets that are being sent to the Wireshark
workstation's MAC address, broadcast, and/or multicast packets will be seen and
captured, which basically negates its usefulness as a capture device. The Compile
selected BPFs button provides a machine language display of the compiled capture
filter, but has no other functional purpose.

The Capture Filter field has a highlighting feature that indicates valid
versus invalid filter syntax. A green background indicates a good filter
and a red background indicates an invalid or incomplete filter.

Using capture filters
Capture filters are used to reduce the amount of traffic saved during a packet
capture. In practice, capture filters should be used sparingly, if used at all, to help
make sure that no packets that are important for an analysis are inadvertently
missed because they fall outside the capture filter parameters. Remember that you
can always filter out unwanted traffic from a capture, but you can't do anything
about missed packets once the capture is finished. If you're unsure about a capture,
perform the capture again with a more generous capture filter or none at all.

Chapter 3

[55]

One scenario where a capture filter is appropriate is when you want to let a capture
run for a long period of time. Then, you should filter out as much extraneous traffic as
possible to keep capture file sizes under control. However, take care to make sure the
capture filter you apply doesn't exclude any traffic that may be useful for the analysis.

It's usually a good idea to do some trial captures when using capture filters to
verify that the filter is working as desired before doing the official capture that
you want to keep.

Configuring capture filters
Wireshark provides a Capture Filter window that makes it easy to select a
preconfigured capture filter, or you can configure your own based on your needs.

Click on the Capture Filter button in the Capture Options window to open the
Capture Filters window. From this window, you can select from a number of
useful preconfigured capture filters, create a new and unique capture filter for your
purposes, or delete unwanted or erroneous filters. Creating a new filter only involves
giving the filter a name, entering the capture filter syntax, clicking on New to save
the filter, and then finally clicking on OK. Alternatively, you can click on an existing
filter and then click on New, which will create a copy of that filter at the bottom of
the list that can then be modified for your purposes.

The following screenshot illustrates a typical Capture Filter window. In this case,
a capture filter that will only allow traffic to and from a specific Ethernet MAC
address has been selected:

Capturing All the Right Packets

[56]

Wireshark's capture filters use a syntax that is known as the Berkley Packet Filter
(BPF) format, which has legacy roots in the Unix world and is still in use today with
packet-level drivers. Note that the syntax used to capture filters in Wireshark differs
significantly from the syntax used for display filters.

The default selection of capture filters from the Capture Filter window is helpful in
providing examples of capture filter syntax. Some additional examples of capture
filter syntax and examples of that syntax are outlined in the following table:

Description Syntax Examples
Filter on an Ethernet MAC
address
Filter to capture just the
traffic from or to a MAC
address

ether host
xx:xx:xx:xx:xx:xx

ether src or ether dst

ether host
00:1c:25:99:db:85

ether src
00:1c:25:99:db:85

Filter on an IP address or
hostname
Filter to capture just the
traffic between two IP
addresses
Filter traffic in one direction
only between two hosts

host xxx.xxx.xxx.xxx

src host and dst host

host 192.168.1.115

host www.wireshark.
org

host 192.168.1.115
and host 10.1.1.125
src host
192.168.1.115 and dst
host 10.1.1.125

Filter based on a port number
Filter for DNS packets
Filter for DHCP packets

port, dst port, and src
port port 53

port 67

Filter based on a protocol

Filter for HTTP traffic only

arp, icmp, ip, upd, tcp,
http, ip6, and icmp6

http

Capture filter logical
operators

Filter to exclude ARP and
DNS packets

=, !=, >, <, >=, <=, !, not,
&&, and, ||, or

not arp and port not
53

! arp && port ! 53

Chapter 3

[57]

More information and examples of capture filters can be found on the
Wireshark wiki at http://wiki.wireshark.org/CaptureFilters and the
protocol-specific capture filter syntax is included in the reference information
found at http://wiki.wireshark.org/ProtocolReference.

Capture options
The Wireshark Capture Options window offers a variety of controls to configure
captures to suit a particular need.

Capturing filenames and locations
Clicking on the Browse button on the File option allows you to navigate to a
chosen directory in which you can store the capture files and enter a filename
for the capture files.

When the File option is used, Wireshark will append a file number and
date-time stamp to the filename you specify and will not provide a file extension.
You should specify a .pcapng extension in the filename. This is better illustrated
with an example.

The user provided directory and filename is C:\Wireshark\long_capture.pcapng,
and Wireshark will create and save packets to files in the format C:\Wireshark\
long_capture_00001_20140724132952.pcapng.

If Wireshark is configured to capture to more than one file (this will be discussed
later), the file numbers and date-time stamps will be incremented accordingly as the
capture progresses, for example, long_capture_00002_20140724133343.pcapng
and long_capture_00003_20140724133612.pcapng.

Multiple file options
Wireshark can be configured to save packets to multiple files to allow long-term
captures, and offers a number of options to control how this is accomplished.

Selecting the Use multiple files option causes the appropriate underlying controls
to become active as specific options are enabled. You can choose to start a new
(next) file when each file reaches a given size and/or after a configurable period.

Wireshark can become very sluggish or might even crash when
working with capture file sizes of much greater than 100 MB,
so you should consider this as a good maximum file size.

http://wiki.wireshark.org/CaptureFilters
http://wiki.wireshark.org/ProtocolReference

Capturing All the Right Packets

[58]

Ring buffer
The Ring buffer option works in conjunction with the Next File every option
to cause Wireshark to fill the specified number of files, and as the capture
continues to progress, it deletes the oldest files.

This feature is useful to keep a capture running while waiting for some intermittent
problem or an event to occur, after which the capture is manually stopped. The ring
buffer files provide historical capture data for a period just prior to stopping the
capture, without filling a hard drive with an excessive number of large capture files.

Stop capture options
Wireshark has options to automatically stop a capture after a specified number
of packets, file size, or time period. If the Use multiple files option is enabled,
an option to stop the capture after a specified number of files can be employed.
Otherwise, the capture can be stopped after a specified number of packets,
file size, or time period has elapsed.

Display options
The Update list of packets in real time option specifies that Wireshark is to
periodically read the capture file as it is being written during the capture and
update the Packet List contents accordingly. Otherwise, the Wireshark user
interface will be grayed out during the capture.

The Automatically scroll during live capture option specifies that Wireshark
updates and displays the latest captured packets in the Packet List pane such
that the packets seem to scroll up as the list is updated. The Update list of
packets in real time option must be enabled for this option to function.

Both of these options have a processing time cost that could result in lost packets
and/or a sluggish display and should be disabled if capturing on a very busy
link. However, the ability to view and confirm that the expected packet flows are
occurring during the capture will be lost.

The Hide capture info dialog option (which is enabled by default) controls whether
a simple window is displayed during the capture that displays the packet counts
and percentages by protocol. Unless specifically needed, it is best to leave this
window hidden.

Chapter 3

[59]

Name resolution options
If the Resolve MAC addresses option is enabled, it causes Wireshark to
display MAC addresses with an assigned manufacturer code in place of the first
three octets. For example, Wireshark will display CiscoCon_21:b7:ec instead of
c8:d7:19:21:b7:ec. The list of manufacturer's codes is kept in the manuf file of the
Wireshark installation directory.

The Resolve network-layer names option works in conjunction with Use external
network name resolver to determine if or how captured IP addresses are resolved
into their hostnames, as follows:

•	 The Resolve network-layer names option specifies that Wireshark should
attempt to resolve IP addresses into hostnames. If the Use external network
name resolver option is enabled, Wireshark will perform reverse DNS
lookups for each unique IP address. This causes Wireshark to generate
traffic of its own.

•	 If the Use external network name resolver option is disabled, Wireshark
will attempt to resolve the IP addresses using a hosts text file provided by
a user (which uses typical IP address <tab> hostname syntax) located in
the Wireshark installation directory when using a default profile or in the
appropriate profile directory when using a custom profile.

During a capture, it is better to leave the Resolve network-layer names option
disabled so that Wireshark isn't creating additional network traffic while trying
to resolve IP addresses during a capture. This feature can always be temporarily
enabled (by navigating to View | Name Resolution | Enable for network layer
from the menu) after the capture is finished.

If the Resolve transport-layer name option is enabled, it causes Wireshark to display
the human-readable, port- and protocol-specific services' names instead of the port
numbers in the Info display field in the Packet List pane. For example, TCP port 80
will be displayed as HTTP. The list of port number services is kept in the services
file in the Wireshark installation directory.

The screenshot at the beginning of this section illustrates a Capture Option window
set to use the LAN interface, a filter to capture traffic only to and from a specific
Ethernet MAC address, to save up to five files of 100 MB each in a ring buffer
scenario, and to save those files in a provided directory with a specific leading
filename and extension. The Display Options and Name Resolution options have
been left in their default settings.

Once all the desired Capture Options have been selected, clicking on the
Start button will start the capture.

Capturing All the Right Packets

[60]

Having covered all the most useful Capture Options features, now is probably
the right time to tell you that for many of your captures, especially from a relatively
low traffic volume location such as from a user workstation, you don't want or need
to set any capture options (except the appropriate interface to capture from) and
can simply jump into starting a capture using all the defaults by clicking on the
third (green shark-fin shaped) icon on the icon bar or selecting Start from the
Capture menu. Not using a capture filter allows you to capture all the relevant
packets—without missing anything—and filter any unwanted traffic out using
display filters after the capture is done.

Verifying a good capture
After a capture is complete, you should scroll through and inspect the packets in the
Packet List pane to ensure that you're seeing the traffic you were expecting—usually
traffic to and from a specific host.

You should also ensure there were no dropped packets, which would be displayed
in the Packet Information section of the Status Bar at the bottom center of the
Wireshark user interface. Dropped packets indicate that Wireshark or the selected
NIC could not keep up with the traffic volume and had to discard packets, which
could of course affect the quality of your analysis. If dropped packets occur, you may
need to use a higher performance workstation to perform the captures or select a
lower traffic volume capture location.

Saving the bulk capture file
After completing and verifying a good capture, you should save the bulk
(all captured packets) capture file (assuming a single file capture) to your directory
of choice. You will later be filtering and saving a subset of packets to a smaller file,
but it is advantageous to be able to load the original capture file again at a later time
if during the analysis you discover that you might have inadvertently filtered out
more packets than you wanted.

Using the Save As option in the File menu, navigate to the directory of your choice
and give the file a name. If no file extension is specified, Wireshark will append a
file extension based on the Save as type option selected; the default is the .pcapng
format. However, you can save the file in several other popular vendor-specific
formats if you intend to share the capture file with someone who is using a different
protocol analysis tool.

If multiple files were saved using one of the multiple file and/or ring buffer capture
options, navigate to the File | File Set | List Files to select and open one of the files.

Chapter 3

[61]

Isolating conversations of interest
After you have completed a packet capture and saved a bulk capture file, you'll be
with an almost overwhelming number of packets of various types and addresses in
the Packet List pane. It's now time to par this down to just the packets that pertain to
the analysis task at hand.

The idea is to progressively eliminate unrelated packets; analyze the pertinent
conversations looking for anomalies; and again progressively filter, measure, and
analyze packet flow and application behavior until you have discovered and can
document the root cause of the issue.

There are two basic ways to isolate and inspect packets and conversations of
interest, and you'll likely use both of the following methods in most of your
analysis activities:

•	 Conversations: This window creates a list of conversation pairs by MAC
or IP address and/or TCP/UDP ports that can be sorted. It displays filters
that will isolate and display only the selected conversation packets can be
quickly applied from this window.

•	 Display Filters: These filters are based on MAC or IP addresses and/or
protocol-specific fields that limit the packets displayed in the Packet List pane.

We'll discuss each of these methods in the following sections.

Using the Conversations window
The basics of using the Conversations window were covered during the first capture
in Chapter 1, Getting Acquainted with Wireshark. In this section, we'll cover a few other
handy features of the Conversations window.

The Ethernet tab
The Conversations window exhibits specific behaviors in the Ethernet tab,
depending on the available Name Resolution settings. If Enable for Network Layer
in the Name Resolution menu, which can be found in the View menu, is enabled
and Name Resolution is also enabled in the Conversations window, then the IP
address that is associated with a given device's MAC address is displayed as an IP
address instead of a MAC address. Toggling the Name Resolution option in this
scenario is useful for easily associating a devices' IP address with its MAC address.

If the Enable for Network Layer option is not enabled, then the Name Resolution
option in the Conversations window controls whether the MAC addresses are
displayed with manufacturer prefixes or as the basic 6-octet MAC address.

Capturing All the Right Packets

[62]

The TCP and UDP tabs
The TCP and UDP tabs of the Conversations window list all of the conversations
between devices based on IP addresses and ports. Considering that network
communications between a pair of devices, each with their associated IP addresses,
could include multiple sequential or simultaneous sessions with differing port
numbers, the TCP and UDP tabs (depending on the protocol in use) make it
much easier to inspect the number and relative size and start/duration of these
individual sessions.

As can be done in any of the other tabs in the Conversations window, a display
filter can be quickly prepared or applied using the right-click functionality.

A helpful practice when investigating TCP or UDP sessions is to apply a display
filter on just the IP addresses initially and then enabling the Limit to display filter
option at the bottom of the Conversations window. Upon returning to the TCP or
UDP tab, only the port-level sessions between the filtered host pair are displayed,
which makes investigating these sessions much easier than picking them out from
the entire list.

The following screenshot shows the multiple TCP sessions that were involved in
loading the https://www.wireshark.org/ home page after applying a display filter
(from the bulk capture file) and enabling the Limit to display filter option in the
Conversations window. It can be seen that the (top) conversation between port 54581
on the user workstation and port 80 (HTTP) carried the vast majority of the traffic;
the remaining ports carried much smaller amounts of traffic.

https://www.wireshark.org/

Chapter 3

[63]

The WLAN tab
Since the Conversations window tabs are ordered alphabetically, the WLAN tab
comes at the end. This tab displays the wireless station MAC addresses, as well as
the Bytes, Packets, and other columns offered in the other tabs.

Wireshark display filters
Wireshark provides a very wide range of protocol-specific display filters that can be
extremely useful for analysis activities by allowing you to focus on specific packets,
based on criteria that you define. You can filter on just the traffic that you want to
see or filter undesired traffic out of view. Display filters are one of the most helpful
features of Wireshark, so they warrant becoming very familiar with.

Display filters can be created in several ways:

•	 By applying display filters from the Display Filter window
•	 By typing in the display filter syntax (using autocomplete)
•	 By applying display filters from the Conversations (or Endpoints) window
•	 By applying saved display filters from Filter Expression Buttons
•	 Using the Expressions button for assistance creating filters
•	 Using right-click menus on specific packet fields

Remember that display filters use a proprietary Wireshark filter
format, which is protocol-dependent and significantly different
from capture filter syntax.

The Display Filter window
You can open the Display Filter window by selecting Display Filters from the
Analyze menu, by clicking on the Edit/apply display filter icon on the icon bar,
or by just clicking the Filters button next to the display filter textbox on the
display filter bar.

Capturing All the Right Packets

[64]

The Display Filter window looks and functions in a similar fashion to the capture
filters window, as shown in the following screenshot. You can create a new
custom display filter to be added to this window by entering a filter name
and the appropriate syntax and clicking on New or clicking an existing filter.
Click on New and modify/rename as per your requirements.

Display filters listed in this window were saved in a dfilters file in the Wireshark
installation directory for the default profile and in the appropriate Personal
configuration directory when custom profiles are in use.

When you apply a display filter, the Status Bar at the bottom of the Wireshark
user interface screen reflects the total number of packets and the packets displayed,
as illustrated in the following screenshot:

Chapter 3

[65]

The display filter syntax
The default selection of capture filters from the Display Filter window shown
previously provides examples of basic capture filter syntax. Additional examples
of display filter syntax are outlined in the following table:

Description Syntax Examples
Basic protocols arp, bootp, dns, dhcp6,

eth, snmp, smb, smb2, icmp,
rtp, ip, ipv6, udp, tcp,
http, and sip

Same as syntax examples

Display filter comparison
operators

eq, ==, ne, !=, gt, >, lt, <,
ge, >=, le, <=, !, not, and,
&&, or, ||, XOR, and ^^

ip.addr ==
192.168.1.115 and !(ip.
addr == 192.168.1.125)

Protocol-specific
extensions

protocol-specific ip.addr, tcp.port, tcp.
dstport, tcp.analysis,
udp.port, and udp.
srcport

Classless InterDomain
Routing (CIDR) notation
on IPv4 addresses

A.B.C.D/CIDR notation ip.addr ==
192.168.1.0/24 that
matches any IP address in
the 192.168.1.0 subnet

Using the != operator on expressions such as eth.addr, ip.addr,
tcp.port, and udp.port and alike may not work as expected
as there are usually two addresses and ports in a packet, and
the ! operator will not match both instances.
Use !(ip.addr == x.x.x.x) or a similar syntax for these types
of filters.

More information and examples of display filters can be found on the
Wireshark wiki at http://wiki.wireshark.org/DisplayFilters and
protocol-specific display filter syntax is included in the reference information
found at http://wiki.wireshark.org/ProtocolReference.

http://wiki.wireshark.org/DisplayFilters
http://wiki.wireshark.org/ProtocolReference

Capturing All the Right Packets

[66]

Typing in a display filter
You can type a display filter syntax directly into the Filter textbox in the display filter
bar, and then click on Apply to apply the filter or Clear to clear a filter and start over.

A helpful feature of typing the display filter syntax into the textbox is the
autocomplete function. Upon typing a protocol and then a period (.), the textbox will
display a list of available protocol-related extensions that can be selected and then
the appropriate comparison operator and value added before clicking on Apply.

The textbox also has a color-coded background indicating the display filter syntax
status. If the syntax is incorrect or incomplete, the background is red and a correct
filter results in a green background. A yellow background is a warning that the
entered syntax may not work as expected.

Display filters from a Conversations or
Endpoints window
Creating a display filter to be applied from a Conversations window has already
been covered. The same functionality is available from an Endpoints window,
which can be opened by selecting Endpoint List from the Statistics menu and
one of the listed protocols.

Filter Expression Buttons
Filter Expression Buttons are buttons you can create that are based on display filters;
these can be used to quickly apply previously-saved display filters to your capture
data to identify network and application problems.

For example, to create a Filter Expression Button option that displays just TCP
SYN, SYN/ACK, FIN, or RST packets to analyze the TCP session setup parameters,
network round-trip delay times, and session terminations:

1.	 Type the following display filter string into the Filter textbox on the
Display Filter Bar:
(tcp.flags&02 && tcp.seq==0) || (tcp.flags&12 && tcp.seq==0) ||
(tcp.flags.ack && tcp.seq==1 && !tcp.nxtseq > 0 && !tcp.ack >1)
|| tcp.flags.fin == 1 || tcp.flags.reset ==1

2.	 Clicking on Apply will apply this filter to a capture that you have loaded so
that you can confirm that it is working properly.

Chapter 3

[67]

3.	 Then, click on Save and give the button a name, such as TCP Handshake
(as illustrated in the following screenshot). Then, click on OK:

The filter expression buttons you create will appear on the right-hand side of the
initial controls in the display filter bar, as illustrated in the following screenshot:

The filter expression button definitions are stored in the preferences file for the
profile you are using. You can edit the button display order, edit the name or filter
syntax, or delete the buttons in Wireshark's Preferences window.

Using the Expressions window button
To the right-hand side of the textbox on the display filter toolbar is the Expression
button. Clicking on this button opens a Filter Expression window that allows you to
select a protocol and the extension to that protocol, one of the appropriate relation
(comparison) operators, and assign a comparison value. Click on OK to populate the
display filter textbox with the resultant display filter syntax and then click on Apply
to apply the filter.

Right-click menus on specific packet fields
If you right-click on a specific field in the Packet List or Packet Details panes,
you can select the Apply as Filter or Prepare a Filter option and the required
submenu option to create display filter syntax, as illustrated in the following
screenshot. This is a very quick way of creating display filter syntax:

Capturing All the Right Packets

[68]

If you are selecting a field and using the right-click functionality to create display
filter syntax, it is usually better to use the Prepare a Filter option, which will allow
you to edit the syntax before clicking on Apply to apply the filter.

Clicking on a protocol field in the Packet Details pane results in
that field and the display filter syntax that reflects that field to be
displayed in the bottom-left Status bar field. This is very helpful
for starting a display filter string that will use a particular field.

Following TCP/UDP/SSL streams
Selecting a packet in a conversation, right-clicking, and selecting a Follow TCP Stream,
Follow UDP Stream, or Follow SSL Stream option (as appropriate) from the menu
provides a display window that contains a textual depiction of the payload data from
all of the packets in a conversation. This is an excellent way to inspect the contents of a
stream without having to select and inspect multiple packets. Viewing the exchanges
between the client and server can be very helpful for troubleshooting purposes.

When a Follow Stream option is selected for a given packet, a display filter is
automatically created and applied to support creation of this window. The following
screenshot illustrates a Follow TCP Stream window. Also, note the display filter
syntax (tcp.stream eq 15) that was created and applied when this stream was selected:

Chapter 3

[69]

Marking and ignoring packets
You can toggle Mark/Unmark Packet or Ignore/Unignore Packet from the
Wireshark Edit menu, or by right-clicking on a packet in the Packet List pane
and selecting Mark Packet (toggle) or Ignore Packet (toggle).

The menu displayed by right-clicking on a packet in the Packet List pane is shown in
the following screenshot:

Wireshark allows you to mark one or more packets in the Packet List pane to make
it easier to find those packets later by giving the packet entry a black background
with white font. This marking can be toggled on and off on a per-packet basis.
Marking a packet has no other effect on the display or packet context.

You can also ignore one or more packets. However, when you invoke the ignore
function on a packet that packet entry disappears from the Packet List, Packet
Details, and Packet Bytes panes and it effectively ceases (temporarily) to be part
of the capture file. Note that ignoring packets can result in Wireshark reporting
re-transmissions or other error conditions caused by the missing packet.

The ignored packets aren't actually deleted from the capture file as you can use the
Reload option in the View menu or click the Reload icon on the icon bar to recover
the ignored packets.

Saving the filtered traffic
During or after completing an analysis, you will want to save a set of filtered packets
into a new capture file. Saving a filtered subset of the bulk capture data and opening
the new, smaller file in Wireshark is helpful to reduce the distracting background
noise packets displayed when clearing display filters, working with Conversations
windows, and so on during your analysis. Finally, upon completing your analysis,
you will want a filtered capture file that represents the analysis evidence and
conclusion and can be quickly loaded for review at a later time.

Capturing All the Right Packets

[70]

Use the Export Specified Packets option in the File menu to save a new capture
file consisting of just your filtered packets. Navigate to the desired directory; enter
a filename (Wireshark will provide the appropriate filename extension); make the
appropriate selections to save all the Displayed packets, Marked packets, and/or to
Remove Ignored packets; and then click on Save. Remember to save the complete
capture using the Save As option in the File menu as well, because you may need
this file again.

The following screenshot illustrates a typical Export Specified Packets window
and its selections:

Chapter 3

[71]

Summary
The important points covered in this chapter included picking an optimal capture
point, selecting between TAPs and mirrored/SPAN ports, Wireshark's capture filters
and options, verifying a good capture, using Wireshark's Conversation windows
and display filters to isolate packets of interest, creating Filter Expression Buttons,
marking and ignoring packets, and saving the filtered traffic for later or more
detailed analysis.

In the next chapter, we'll cover the rest of Wireshark's basic packet analysis features.

Configuring Wireshark
Wireshark offers a number of features that can be configured to enhance
the accuracy and ease of performing packet analysis activities such as
troubleshooting a functional or performance problem. Selecting the best format
to measure the elapsed time between packets is an important factor. There are a
number of protocol-specific options that affect how Wireshark displays time-related
information that are useful as well. Coloring rules, preferences settings, and profiles
let you customize Wireshark for your particular style of analysis, as well as the
different environments that you might work in.

In this chapter, we will cover the following topics:

•	 Working with packet timestamps
•	 Colorization and coloring rules
•	 Wireshark preferences
•	 Wireshark profiles

These topics will wrap up our introduction to the most essential and useful features
and options of Wireshark.

Working with packet timestamps
Understanding how Wireshark handles time and using the right incarnation of
packet timestamp displays is crucial to properly analyze packet flows and identify
time-related anomalies.

Configuring Wireshark

[74]

How Wireshark saves timestamps
When packets are captured, Wireshark gives each packet a timestamp derived
from the system clock of the machine from where the capture takes place. This
timestamp is converted to Universal Coordinated Time (UTC) based on an offset
calculated from the time zone setting and any Daylight Savings Time (DST) rules
that apply for the capture machine, and then converted again to an epoch number
(the UTC-based number of seconds since January 1, 1970). This is the time value that
gets saved in the capture file for each packet. When Wireshark reads the capture file,
it turns the epoch number back to the familiar date and time display, adjusted for the
time zone and DST offsets for your machine.

This means that if a packet capture is conducted on a machine in Los Angeles,
which has an offset from UTC of -8 hours, and you look at the same capture file
on a machine in Berlin, which is UTC +1 hour (an overall difference of 9 hours,
plus any DST differences), a packet that was captured at 10 a.m. local time in
Los Angeles will display a timestamp of 7 p.m. in Berlin.

Examples of the timestamp displays in different time zones are shown in the
following table:

Los Angeles London Berlin Bangalore
Capture file time (UTC) 10:00 10:00 10:00 10:00
Local offset to UTC -8 0 +1 +5:30
Displayed time (local time) 02:00 10:00 11:00 17:30

If you're going to look at a packet capture someone has sent you and the absolute
time when an event occurred is important to the analysis, you'll need to know or
ask what time zone the capture was taken in, determine the offset between your
time zone and the capture location time zone, and mentally make the time
difference adjustment for the timestamps that Wireshark will display. Otherwise,
this difference won't matter as you're usually more interested in the elapsed time
or the time between specific events in the capture.

Wireshark time display options
There are a wide variety of packet time displays available for use in Wireshark.
By default, Wireshark provides a Time column in the Packet List pane configured
to display Seconds Since Beginning of Capture with microsecond resolution
(123.123456) for each packet.

Chapter 4

[75]

However, the way in which time is displayed in this column can be changed
by selecting the desired format from the Time Display Format option in the
View menu, which is illustrated in the following screenshot:

If the Seconds Since Beginning of Capture option is in use, the first packet
in a capture displays a time value of 0.000000; all other packets are timed in
reference to this first packet such that the elapsed time from the beginning
of the capture is displayed.

The time display menu options provide examples of their formats and are fairly
self-explanatory, except perhaps Seconds Since Previous Captured Packet and
Seconds Since Previous Displayed Packet. The Seconds Since Previous Captured
Packet option provides the elapsed time between each captured packet, while the
Seconds Since Previous Displayed Packet option displays the elapsed time from
the previous packet that is visible when a display filter is applied.

The way the Displayed Packet option works is illustrated in the following screenshot.
You can see how the Captured Packet timestamps continue to increment, while the
Displayed Packet timestamps show the time since the last displayed packet.

Captured Packet Displayed Packet

0.000000

0.001000

0.003000

0.007000

0.002000

0.004000

0.005000

0.006000

0.000000

0.001000

0.002000

0.004000

Configuring Wireshark

[76]

The time display precision options in the Time Display Format menu are also
shown with examples of the display format and are self-explanatory, except for
the Automatic (File Format Precision) setting, which requires a description.

Wireshark relies on the NIC driver and the capture devices' system clock for packet
timestamps. The accuracy of these timestamps in terms of the precision and number
of subsecond digits (milliseconds, microseconds, and nanoseconds) will vary, but
usually a millisecond resolution is available. This precision value is saved in the
capture file. The Automatic (File Format Precision) setting tells Wireshark to display
timestamps using this precision value.

The ability to use the Nanoseconds precision setting depends on having an NIC
driver that supports this level of precision. If you select this option and the capture
file doesn't contain the higher resolution, the last three digits of each timestamp will
be all zeroes.

Adding a time column
It is often helpful to have two (or more) time columns in the Packet List pane to
provide a variety of time display types without having to change the format of
a single time column back and forth. You can add a new time column using one
of two methods.

The following is the first method, the preferences settings method:

1.	 Go to Preferences from the Edit menu, or click on the Preferences icon to
open the Preferences window.

2.	 Select Columns.
3.	 Click on Add to add a new entry at the bottom of the list.
4.	 Click on the Title area of the new entry and give the column a name.
5.	 Ensure that the new entry is highlighted, and select the desired time display

format from the drop-down Field type box.
6.	 Click and drag the new entry up the list to select its relative position in the

Packet List pane.
7.	 Finally, click on OK.

The selectable options in the Field type box for time display columns include
the following:

•	 Absolute date, as YYYY-MM-DD, and time: This is the actual capture date
and time based on the time zone of the capture device.

•	 Absolute date, as YYYY/DOY, and time: This is another format to display
the date and time based on the time zone of the capture device.

Chapter 4

[77]

•	 Relative time: This is the time from the first packet in a capture file.
This is similar to the Seconds Since Beginning of Capture option.

•	 Relative time (conversation): This is the time from the first packet in
the trace file for a conversation (this doesn't work).

•	 Delta time: This is the elapsed time from the previous packet to the
current packet.

•	 Delta time (conversation): This is the time from the previous packet to
the current packet in a conversation (this doesn't work).

•	 Delta time displayed: This is the time from the end of one packet to the
end of the next displayed packet only.

•	 Custom: The Relative time (conversation) and Delta time (conversation)
options, which are also listed in the preferences settings, no longer work in
the version of Wireshark currently available (v1.12) as of this writing. You
can accomplish the previously offered functionality with these options by
using the Custom option with display filter-style Field types instead. Select
the Custom Field type and enter either tcp.time_relative or tcp.time_
delta in the Field name field, leaving the Field occurrence field with the
default entry of 0.

An example of creating a functional Delta time (conv) time column using the Custom
option and the tcp.time_delta display filter is shown in the following screenshot:

Configuring Wireshark

[78]

For the tcp.time_relative and tcp.time_delta fields to work properly, you must also
enable Calculate conversation timestamps in the preferences settings using the
following steps:

1.	 In the Preferences window, select TCP from the Protocols menu.
2.	 Enable the Calculate conversation timestamps option.
3.	 Finally, click on OK.

An example of enabling Calculate conversation timestamps is depicted in the
following screenshot:

The following steps show you the second method, the right-click method of
adding a column:

1.	 Select an appropriate packet in the Packet List pane.
2.	 In the Packet Details pane, expand the Frame header, or if applicable,

expand the Transmission Control Protocol header.

Chapter 4

[79]

3.	 Locate the desired time value field in the Frame or TCP sections (these are
surrounded by brackets). If you are selecting a time value in the TCP section,
you will need to expand the [Timestamps] section to see the values.

4.	 Right-click on the desired time field and select Apply as Column from
the menu.

5.	 The new column will appear beside the Info column in the Packet List pane.
Click and drag the new column to the desired location.

6.	 You can right-click on the new column header, select Edit Column Details,
and give the column a shorter name if desired.

As previously discussed in the preferences settings method, you must enable
Calculate conversation timestamps in the TCP protocol option of the preferences
settings to view and use the time values in the TCP section.

Conversation versus displayed packet time options
The difference between time displays for a conversation versus a displayed packet
time option is perhaps subtle but important.

As illustrated previously, if you are using one of the displayed packet time options,
the time value shown for a given packet will be the elapsed time since the previous
packet was displayed in the Packet List pane. This time value option has no useful
value until you apply a display filter, after which you can easily see the elapsed time
between each packet being displayed with no other mental math or adjustments
necessary. This is very useful if you're sequentially filtering, clearing, and viewing
more than one conversation using, for example, a tcp.stream==xx display filter setting.

If you are not using a display filter, however, there may be packets from multiple
conversations displayed in the Packet List pane. If you are using one of the
conversations time displays, the time value shown for a given packet will be the
elapsed time since the previous packet for that conversation, regardless of other
packets that may be interspersed and visible between the packet you're looking
at and the previous packet in that conversation. This allows a quick perusal of
conversation packet times without having to apply a display filter.

Configuring Wireshark

[80]

Choosing the best Wireshark time display
option
With so many time display options available, it may be difficult to know when and
where to use a given option. Choosing the optimal time display in a Wireshark time
column depends greatly upon the objectives of the analysis:

•	 If you need to know the specific date and time of day when an event
occurred in a capture, as might be the case if you're trying to find and
correlate packets with user-reported events or log entries, you should
use one of the Absolute time formats.

•	 If you're looking for an event that occurred some known period of time after
a capture started, use one of the Relative time formats.

•	 On the other hand, if you just need to measure the time between certain
packets, such as when measuring the time between a request and a response,
one of the Delta time formats will be the most helpful.

Using the Time Reference option
Another useful Wireshark feature is the Time Reference menu option, which can be
used to measure time from one packet to another in the midst of a capture file. You
can click on a specific packet and toggle this option on and off for that packet using
either the Set/Unset Time Reference option from the Edit menu, or by right-clicking
and selecting the Set Time Reference (toggle) option from the pop-up menu. The
packet will be marked with a *REF* designator in the first time column, and any
relative timestamps following the Time Reference packet will be displayed relative
to that packet.

The Time Reference setting is temporary; it isn't saved to a capture file and will
disappear if you reload the file.

Colorization and coloring rules
Colorization of packets displayed in the Packet List pane can be an effective tool
to identify and highlight packets of interest, especially the packets that contain or
indicate some kind of error condition.

Wireshark has predefined coloring rules that are enabled by default and which
can result in a kaleidoscope of colored packets in the Packet List pane. You can
enable or disable the coloring rules by selecting Colorize Packet List from the View
menu or by clicking on the Colorize Packet List icon in the icon bar if this becomes
overwhelming.

Chapter 4

[81]

You can also view, enable/disable, add, delete, reorder, and edit the coloring rules
by selecting Coloring Rules from the View menu or by clicking on the Edit Coloring
Rules icon in the icon bar. There is a Clear button that removes all the changes you
may have made to the rules and restores them to default settings if needed.

A Coloring Rules window is depicted in the following screenshot:

Coloring rules employ display filter formats with specific values to identify packets
that should be colored. The rules are compared to packets starting with the top
rule and working down through the list. Only the first rule that matches a packet's
condition is applied, so the ordering of the rules dictates which rule gets applied
if more than one rule matches a packet. If you create or modify a rule, you have to
check the ordering to make sure you get the desired behavior.

Clicking on a rule and then clicking on Edit allows you to modify the foreground
and background colors for that rule, as well as change the filter string if desired.

You can also export/import coloring rules if you want to share them with others.
Coloring rules are stored in a file called colorfilters in one of your personal
configuration directories depending on the profile in use.

Configuring Wireshark

[82]

Packet colorization
You can also temporarily color a series of packets in a conversation by selecting one of
the conversation packets, selecting Colorize Conversation from the View menu, and
selecting a color from the adjoining menu, or by right-clicking on a packet, selecting
Colorize Conversation from the menu, selecting one of the protocol-specific options,
and then selecting the desired color. This colorization will disappear when the capture
file is reloaded, or you can select Reset Coloring 1-10 from the View menu.

Wireshark preferences
In the Adding a time column section, we opened the Preferences window using
Preferences in the Edit menu or by clicking on the Preferences icon in the icon bar to
configure the time display column options. There are quite a number of Preferences
options that you should be aware of and may want to adjust to customize your
Wireshark environment:

•	 Layout: This is used to select the ordering of the Packet List, Packet Details,
and Packet Bytes panes.

•	 Columns: This is used to add, remove, and move columns in the
Packet List pane.

•	 Capture: This is used to set the default capture options.
•	 Filter Expressions: This is used to add, remove, or move the Filter

Expression buttons.
•	 Name Resolution: This is used to set the MAC, transport, and network (IP)

resolution options.
•	 Protocols: There are options that can be set for all of the protocols that

Wireshark supports; some of the most important and useful of these
options include:

°° HTTP: This is used to add any additional TCP ports that should be
recognized as HTTP traffic in your environment.

°° IEEE 802.11: This is used to add/edit the Wireless Decryption keys if
needed to decode an encrypted wireless session.

°° IPv4: You may want to disable Validate IPv4 checksum if possible
to avoid inadvertent error messages caused by an NIC option called
checksum offloading, wherein checksums are checked after the
packet is sent to Wireshark.

Chapter 4

[83]

°° RTP: Enable Allow subdissector to reassemble RTP streams to
support decoding audio from VoIP captures.

°° SMB: Enable Reassemble SMB Transaction payload to support
exporting file objects from an SMB stream in a packet capture.

°° SSL: Wireshark can decrypt the SSL/TLS traffic if you have the private
key file. To add a key to Wireshark, go to the Preferences window
and click on the RSA keys list Edit button. Then, in the SSL Decrypt
window, click on New and complete the SSL Decrypt: New fields
(IP address of the SSL server; Port, which is usually 443 for HTTP;
Protocol, such as HTTP; and Key File, which is used to select the path
to an RSA private key (if the key file is a PKCS#12 keystore (usually
has a .pfx or .p12 extension), the Password field must be completed)),
and finally, click on OK to close each subsequent window.

°° TCP: This provides you with multiple options, as follows:
°° Validate TCP checksum if possible: Disable this to avoid

inadvertent error messages caused by checksum offloading.
°° Allow subdissector to reassemble TCP streams: Enable this

to support exporting file objects from a TCP stream.
°° Relative sequence numbers: Enable this to make it easier to

read and track TCP sequence numbers in a capture file.
°° Track number of bytes in flight: This is a value calculated

and displayed in the TCP protocol header in the Packet
Details pane, which is useful for performance analysis.

°° Calculate conversation timestamps: This is the setting
discussed earlier that is needed to support the tcp.time_
relative and tcp.time_delta time displays.

There are numerous other preferences settings that may be pertinent to your
personal preference or analysis environment; you will have to investigate most
or all of these options. If you are unsure of a particular setting, you can get more
information by clicking on the Help button at the bottom of the Preferences window.

The preferences settings are stored in a file called preferences in one of your
Personal configuration directories, depending on the profile in use.

Configuring Wireshark

[84]

Wireshark profiles
As we have covered the numerous Wireshark configuration options that are saved
in specific files, such as cfilters for Capture Filters, dfilters for Display Filters,
colorfilters for Coloring Rules, and preferences for preferences settings, it
was mentioned that these files were saved in one of your Personal configuration
directories, but I have left a full explanation of profiles and these configuration
directories until now so that you would better understand what makes up a profile
and why they are useful.

A profile is a collection of Wireshark configuration files customized for your specific
needs and tastes in capture and display filters, coloring rules, columns and layouts,
and so on for the particular environment you are working in. You can create one
or more profiles and quickly reconfigure Wireshark to work best in differing
environments by selecting the appropriate profile.

When you first install Wireshark, it operates with a default set of configuration files
that are located in the Global configuration directory, which is usually the same as the
System directory where the Wireshark program files reside. When you change any of
the default settings, the changes are saved in new configuration files that are stored in
a Personal configuration directory, the location of which varies depending upon your
installation. You can determine and quickly open the Personal configuration directory
for your installation from Wireshark by clicking on the About Wireshark option in the
Help menu and clicking on the Folders tab. Within this tab is a list of all the directories
that Wireshark uses, as shown in the following screenshot:

You can double-click on a Wireshark directory link to open a window to that directory.

Chapter 4

[85]

Double-clicking on the Personal configuration link in the Folders tab opens the
directory where (under a profiles subdirectory) your custom profile files are
stored. Each profile is stored in a separate subdirectory that reflects the name you
give a profile, as shown in the following screenshot:

Each custom profile directory contains all the Wireshark configuration files that
determine how that profile controls Wireshark's features. You can copy and share
these custom profile directories with other Wireshark users; copying the profile
directory into their Personal configuration directory makes that profile available
for selection.

Creating a Wireshark profile
To create a new Wireshark profile, follow these steps:

1.	 Right-click on the Profile section (on the right-hand side pane) of Status Bar
at the bottom of the Wireshark user interface and click on New, or navigate
to Edit | Configuration Profiles | New in the menu bar.

2.	 In the Create New Profile window that appears, you can give the profile a
name. You can also choose to create the profile starting with the settings from
an existing profile by making a selection from the Create from drop-down
list or start from scratch. The Create New Profile window is shown in the
following screenshot:

3.	 Clicking on OK will save the new profile in its own directory by the same
name in your Profiles directory in the Personal configuration menu.

Configuring Wireshark

[86]

Selecting a Wireshark profile
You can select one of your custom profiles by selecting Configuration Profiles from
the Edit menu, clicking on one of the listed profiles, and clicking on OK. A quicker
method is just clicking on the Profile section of Status Bar and selecting a profile
from the pop-up menu, as shown in the following screenshot:

Summary
The topics covered in this chapter included working with Wireshark's time displays,
colorization and coloring rules, selecting the appropriate Wireshark preferences for
a given analysis environment, and saving all of these settings in profiles that can be
selected as required.

In the next chapter, we'll cover a selection of network layer, transport layer, and
application layer protocols in common use in modern networks, which will help
you to prepare for more advanced packet analysis activities in the later chapters.

Network Protocols
Effective packet analysis requires familiarity with the primary protocols in use in
modern networks. In this chapter, we will review the most common protocols in
their respective layers:

•	 Network layer protocols
•	 Transport layer protocols
•	 Application layer protocols

We'll cover the significant purpose and relevant fields to support network
connectivity and/or application functionality in each protocol, as well a
sampling of Wireshark capture and display filters for each protocol.

Network Protocols

[88]

The OSI and DARPA reference models
We reviewed the purpose of the OSI and DARPA reference models in Chapter 2,
Networking for Packet Analysts. The visual depiction of their layers is repeated in the
following diagram as a reference and summary of some of the primary protocols and
where they fit into their respective layers:

TCP/IP Protocol Suite

OSI model layers DARPA layers

Transport Layer

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Internet Layer

Network Interface

Layer

HTTP SMB2 SMTP DNS RTP SNMP

TCP UDP

Ethernet

802.11

wireless

LAN

Frame Relay ATM

IP (IPv4)

IGMP ICMP

ARP IPv6

ND MLD

ICMPv6

Network layer protocols
Network layer protocols, also known as Internet layer protocols in the
DARPA reference model, provide basic network connectivity and internetwork
communications services. In this layer, you will predominantly find the IP protocol
being used to get packets transported across the network, along with ARP, IGMP,
and ICMP.

We covered the IP and ARP protocol packet header structures and fields in
Chapter 2, Networking for Packet Analysts, so this information won't be repeated.
However, basic Wireshark capture and display filters are provided here and also
for the remaining protocols in the following sections:

Chapter 5

[89]

Wireshark IPv4 filters
Capture filter(s): ip

Display filter(s): ip ip.addr==192.168.1.1 ip.src== ip.dst== ip.id > 2000

Wireshark ARP filters
Capture filter(s): arp

Display filter(s): arp arp.opcode==1 arp.src.hw_
mac==00:1c:25:99:db:85

Internet Group Management Protocol
The Internet Group Management Protocol (IGMP) is used by hosts to notify
adjacent routers of established multicast (one-to-any) group memberships. In other
words, IGMP enables a computer that provides content (video feeds), for example,
to provide such content to a distributed group of users using one set of the multicast
address ranges (in the 224.0.0.0 to 239.255.255.255 class D multicast range).
This multicast capability depends on routers that are capable and configured to
support this service; clients must join the multicast group. When a host wants to start
a multicast, it sends an IGMP Membership Report message to the 224.0.0.2 (all
multicast routers) address that specifies the multicast IP address for this particular
group. Clients who wish to join or leave this group (so they can receive the multicast
content) send an IGMP join or leave message to the router. The following table
shows the various ranges for addresses:

Starting address
range

Ending address
range

Description

224.0.0.0 224.0.0.255 These are reserved for special well-known
multicast addresses

224.0.1.0 238.255.255.255 These are globally-scoped (Internet-wide)
multicast addresses

239.0.0.0 239.255.255.255 These are locally-scoped and administered
multicast addresses

Network Protocols

[90]

The following screenshot shows the significant fields in the IGMP protocol header:

The preceding significant fields in the IGMP protocol header include:

•	 Type: This is a type of IGMP message. Type 22 is IGMPv3
Membership Report.

•	 Record Type: There are different types of Group Records. The value of
Record Type 3 is Change To Include Mode, which indicates that content
from the source device is to be forwarded to the in-group hosts by the
multicast router.

•	 Multicast Address: This is the multicast IP address for a specific group.

You should also note the following interesting fields in the previous protocol layers:

•	 The Ethernet frame destination MAC address is one of a range of multicast
MAC addresses (01:00:5e:00:00:00 – 01:00:5e:7f:ff:ff)

•	 The Protocol field in the IP header specifies IGMP 2
•	 The IP layer destination IP Address is 224.0.0.22, which is a reserved

IGMPv3 multicast IP address

The IGMP protocol has multiple versions and is rather complex. Refer to the protocol
references provided at the beginning of this chapter for more information.

Chapter 5

[91]

Wireshark IGMP filters
Capture filter(s): igmp

Display filter(s): igmp igmp.type==0x22 igmp.record_type==4 igmp.
maddr==244.0.1.60

Internet Control Message Protocol
The Internet Control Message Protocol (ICMP) is used by network devices such
as routers to send error messages indicating that a requested service is not available,
or a host or network router could not be reached. ICMP is a control protocol. This
means that although it is transported as IP datagrams, it does not carry the application
data—instead, it carries the information about the status of the network itself.

ICMP pings
One of the most well-known uses of ICMP is to ping, wherein a device sends an
ICMP echo request (Type 8, Code 0) packet to a distant host (via that host's IP
address), which will (if the ICMP service isn't disabled or blocked by an intermediate
firewall) respond with an ICMP echo reply (Type 0, Code 0) packet. Pings are
used to determine whether the target host is available and can be reached over the
network. By measuring the time that expires between ping requests and replies, we
know the round trip time (RTT) delay time over the network path.

ICMP traceroutes
A variation of ping functionality is used to perform a traceroute (also known as
traceroute), which is a list of the IP addresses of the router interfaces that packets
traverse to get from a sending device to a target host or device. The traceroutes are
used to determine or confirm the network path taken from a sending device to a
target host or device.

A traceroute is accomplished by sending the ICMP echo request packets to a distant
host just as in a normal ping, but with modifications to the Time-to-Live (TTL)
field in the IP header of each packet. The traceroute function takes advantage of
the fact that each router in a network path decrements the TTL value in a packet by
1, so as the packet traverses, the routers in a path and the TTL value will decrease
accordingly along the way. If a router receives a packet with a TTL value of 1, it will
send an ICMP TTL exceeded in transit (Type 11, Code 0) error message back to the
sender (along with a copy of the request packet it received) and otherwise discard
(not forward) the packet.

Network Protocols

[92]

The traceroute works by sequentially setting the TTL in multiple ICMP request
packets to 1, then to 2, then 3, and so on, which results in each router in the network
path sending TTL exceeded error messages back to the sender. Since these returned
messages are sent by the in-path router using the IP address of the interface where
the ICMP packet was received, the traceroute utility can build and display a
progressive list of router interface IP addresses in the path and the RTT delay
to each router.

ICMP control message types
A sampling of the most commonly seen types of ICMP control messages, including
their type and code (subtype) numbers, are provided in the following table:

Type Code Description
0 0 This indicates echo reply (ping)
3 0 This indicates destination network unreachable
3 1 This indicates destination host unreachable
3 4 This indicates fragmentation required and do not fragment bit set
3 6 This indicates destination network unknown
3 7 This indicates destination host unknown
5 0 This indicates redirect datagram for the network
5 1 This indicates redirect datagram for the host
8 0 This indicates echo request (ping)
11 0 This indicates TTL expired in transit (seen in traceroutes)

The Wireshark packet details fields for the ICMP packet illustrated in the
following screenshot depict a Time-to-live exceeded message as seen in a
typical traceroute capture:

Chapter 5

[93]

The following points are significant to analyze this packet:

•	 The source IP address seen in the IPv4 header summary is 10.192.128.1,
which is the IP address of the router interface sending the ICMP message
to the originator, 192.168.1.115

•	 The ICMP packet is Type 11, Code 0 (TTL exceeded in transit)

Network Protocols

[94]

The second set of IPv4 and ICMP headers that follow the first IPv4 and ICMP
headers are copies of the original packet transmitted by the sender. This copy
is returned to allow determination of the packet that caused the ICMP message.
The significant points in the packet details of this ICMP message copy include:

•	 The target destination IP address, where the echo request packet was
intended to be sent (and would have been if the TTL value hadn't been
altered) is 205.251.242.51.

•	 The TTL value was 1 when this packet reached the 10.192.128.1 router
interface. This packet cannot be forwarded, resulting in the TTL exceeded
message being sent back to the sender.

•	 The original ICMP packet was a Type 8, Code 0 echo request message.
•	 The Header Data section of the ICMP packet for the echo requests and

replies will include a 16-bit identifier and 16-bit sequence number,
which are used to match echo replies to their requests.

ICMP redirects
Another common use of ICMP is to redirect a client to use a different default
gateway (router) to reach a host or network than the gateway it originally tried to
use. In the ICMP Redirect packet depicted in the following screenshot, a number of
packet fields should be noted:

•	 The source IP address of the ICMP redirect packet is 192.168.1.1, which
was the client's default gateway; this is the router sending the redirect packet
back to the client

•	 The ICMP Type is 5 (Redirect) and Code is 1 (Redirect for host)
•	 The gateway IP address that the router 192.168.1.1 is telling the client to

use to reach the desired target host is 192.168.1.2
•	 The IP address of the target host was 10.1.1.125

Chapter 5

[95]

The following screenshot shows the ICMP Redirect packets:

Wireshark ICMP filters
Capture filters(s): icmp

Display filter(s): icmp icmp.type==8 || icmp.type==0 (pings)
icmp.type==5
&& icmp.code==1 (host redirects)

Internet Protocol Version 6
The Internet Protocol Version 6 (IPv6) is the latest version of Internet protocol,
and although it is in its earliest stages of adoption, it is intended to eventually
replace IPv4—mostly to alleviate the shortage of IP addresses that can be assigned
to network devices. IPv4, with its 32-bit address space, provides approximately
4.3 billion addresses, nearly all of which have been assigned to companies and
private interests worldwide.

IPv6 utilizes a 128-bit address space, which allows 2128 or approximately 3.4 x 1038
addresses; that number is 340,282,366,920,463,463,374,607,431,768,211,456
unique addresses.

Network Protocols

[96]

IPv6 addressing
The 128 bits of an IPv6 address are represented in eight groups of 16 bits each,
written as four hexadecimal digits separated by colons (:). An example of an
IPv6 address is 2001:0db8:0000:0000:0000:ff00:0042:8329.

For convenience, an IPv6 address may be abbreviated to shorter notations by
application of the following rules, wherever possible:

•	 One or more leading zeroes from any groups of hexadecimal digits are
removed; this is usually done to either all or none of the leading zeroes.
For example, the hexadecimal group 0042 can be converted to just 42.

•	 Consecutive sections of zeroes are replaced with a double colon (::).
The double colon may only be used once in an address, as multiple use
would render the address indeterminate. A double colon must not be
used to denote a single section of omitted zeroes.

An example of applying these rules to IPv6 addresses is as follows:

•	 Initial address: 2001:0db8:0000:0000:0000:ff00:0042:8329
•	 After removing all leading zeroes: 2001:db8:0:0:0:ff00:42:8329
•	 After omitting consecutive sections of zeroes: 2001:db8::ff00:42:8329

The 128 bits of an IPv6 address are logically divided into a network prefix and a host
identifier. The Class Inter-Domain Routing (CIDR) notation is used to represent
IPv6 network prefixes, for example, 2001:DB8:0:CD30::/64 represents network
2001:DB8:0000:CD30::.

IPv6 address types
There are three basic types of IPv6 addresses:

•	 Unicast: These packets from one-to-one device use a single interface address.
Unicast addresses can be of one of the following three types:

°° Global Unicast: This is routable to and over the Internet. Global
Unicast addresses generally start with 2xxx (such as 2000::/3).

Chapter 5

[97]

°° Link-local: This is automatically assigned to an interface and
used on the local network link; this is not routable to the Internet,
much like a MAC address. Link-local Unicast addresses start with
FE80 (FE80::/10). They are automatically assigned to an interface
when it is initialized using an algorithm that uses a rearranged version
of the NIC's 48-bit MAC address in the IPv6 address and are used to
communicate on the local link. These addresses are not routable. IPv6
uses link-local addresses for neighbor discovery functions.

°° Unique local: This is not routable to the Internet, but it is routable
within an enterprise (similar to IPv4 private addresses). Unique
local Unicast addresses start with FC00 (FC00::/7). This block of
addresses is reserved for use in private IPv6 networks.

•	 Multicast: These are packets from one-to-many devices. Multicast
addresses start with FFxx. An example of a multicast address is
FF01:0:0:0:0:0:0:101, which can be shortened to FF01::101. There is
no broadcast address in IPv6; multicasts are used as a replacement. Some
well-known multicast addresses are shown in the following table:

Address Description Scope
ff01:0:0:0:0:0:0:1 All nodes address Interface-local (spans only a

single interface on a node useful
only for loopback transmission
of multicast packets)

ff02:0:0:0:0:0:0:1 All nodes address Link-local (all nodes on the local
network segment)

ff01:0:0:0:0:0:0:2 All routers address Interface-local
ff02:0:0:0:0:0:0:2 All routers address Link-local
ff05:0:0:0:0:0:0:2 All routers address Site-local (spans a single site)
ff02:0:0:0:0:0:1:2 DHCPv6 servers/agents Link-local
ff05:0:0:0:0:0:1:3 DHCPv6 servers/agents Site-local

•	 Anycast: These packets are from one to the nearest of a group of interfaces.
There is no special addresses scheme for Anycast addresses; they are similar
to Unicast addresses. An Anycast address is created automatically when a
Unicast address is assigned to more than one interface. Anycast addresses
can be used to set up a group of devices so that any one of the group devices
can respond to a request sent to a single IPv6 address.

Network Protocols

[98]

Further discussion of IPv6 addressing would cover quite a number of additional
features, which are beyond the scope of this book. The reader is encouraged to
research IPv6 addressing further online and/or by reading Request For Comments
(RFC) 4291 (IP Version 6 Addressing Architecture).

IPv6 header fields
An example of an IPv6 protocol header is illustrated in the following screenshot:

The IPv6 header fields are similar to many IPv4 headers and the fields include:

•	 Version: This is the IP version number, 6 for IPv6.
•	 Traffic class: This is similar to the IPv4 DiffServ field; it is used to identify

different classes or priorities of IPv6 packets.
•	 Flow label: These are used to identify sequences of packets that are labeled

as a set. An IPv6 flow is defined by the 20-bit Flow Label field and the source
and destination IPv6 address fields.

•	 Payload length: This is the length of the IPv6 payload, not including any
packet padding.

•	 Next header: This field indicates what's coming next in the packet. This is
equivalent to the IPv4 Protocol field. In the preceding example, the next layer
is a normal TCP (6) header.

•	 Hop limit: This field is roughly equivalent to the Time To Live field in IPv4;
it is decremented by one by each device that forwards the IPv6 packet.
When the value reaches one, the packet cannot be forwarded.

•	 Source and Destination addresses: These are the 128-bit IPv6 source and
destination addresses.

IPv6 supports extension headers that provide additional information fields and that
also extend the length of the IPv6 header. There is specific Next Header code that
indicates the presence of this added functionality.

Chapter 5

[99]

IPv6 transition methods
As part of the transition to IPv6, the current TCP/IP devices support dual stacks
(IPv4 and IPv6 simultaneously) and the ability to encapsulate and tunnel IPv6
packets inside IPv4 packets so that they can be routed by IPv4 networks. The three
of the most popular encapsulation methods are:

•	 6to4 tunneling: In this tunneling method, an IPv6 header follows an IPv4
header; the Protocol field of the IPv4 header will contain 41 (IPv6), and the
source IPv6 address in the IPv6 header will start with 2002.

•	 Teredo: In this tunneling method, an IPv6 header is encapsulated inside a
UDP packet. This method was developed to accommodate NAT devices that
do not handle protocol 41. Teredo tunneling can be identified in the UDP
packet header by a destination port of 3544.

•	 ISATAP: This tunneling method uses a locally assigned IPv4 address to
create a 64-bit interface identifier. For example, in ISATAP, the IPv4 address
24.6.173.220 becomes ::0:5EFE:1806:addc. ISATAP encapsulates IPv6
headers within IPv4 as in 6to4 tunneling.

Wireshark IPv6 filters
Capture filter(s): ip6 host fe80::1 ip proto 41 (capture IPv6-
over-IPv4 tunneled traffic)

Display filter(s): ipv6 ipv6.addr == fe80::f61f:c2ff:fe58:7dcb ipv6.
addr == ff02::1

Internet Control Message Protocol Version 6
Internet Control Message Protocol Version 6 (ICMPv6) is an integral part of IPv6,
and the base protocol must be fully implemented by every IPv6 node. ICMPv6
provides services for an IPv6 environment that are provided by other distinct
protocols in an IPv4 environment, such as Neighbor Solicitation to replace ARP.

The following table contains some of the common ICMPv6 packet types:

ICMPv6 packet type ICMPv6 type Purpose
Echo request 128 Ping request
Echo response 129 Ping response
Multicast listener query 130 Sent by multicast router to poll a network

segment for group members

Network Protocols

[100]

ICMPv6 packet type ICMPv6 type Purpose
Multicast listener report 131 Sent by a host when it joins a multicast

group, or in response to a multicast listener
query sent by a router

Multicast listener done 132 Sent by a host when it leaves a multicast
group and might be the last member of
that group on the network segment

Router solicitation 133 Discover the local router(s)
Router advertisement 134 Respond to Router Solicitation messages,

as well as sending this packet after
initialization and periodically afterwards

Neighbor solicitation 135 Used first for Duplicate Address Detection
(using a source address of ::) and then to
obtain the MAC address of the local router;
this function replaces ARP

Neighbor advertisement 136 Response to Neighbor Solicitation
messages

Redirect message 137 Redirect a device to the proper router to
send packets to a specific network or host

An example of a Neighbor Solicitation ICMPv6 packet is shown in the
following screenshot:

Chapter 5

[101]

The significant fields in this packet include:

•	 Next Header: This field contains 58, which indicates that the next protocol
header is to be ICMPv6.

•	 IPv6 Source Address: The presence of an unspecified address (::) indicates
this is a Duplicate Address Detection packet.

•	 IPv6 Destination Address: This is basically a multicast address.
•	 ICMPv6 Type: This is a Neighbor Solicitation message using Type 135.
•	 ICMPv6 Code: This is the subtype for Neighbor Solicitation messages;

this will be 0.
•	 ICMPv6 Target Address: This is the address the host wants to use.

If another node on the network is already using this address, they will
respond accordingly.

Multicast Listener Discovery
Multicast Listener Discovery (MLD) is another component of the IPv6 suite used by
IPv6 routers to discover multicast listeners on a directly attached link. MLD is part of
the ICMPv6 protocol and it replaces IGMP on IPv4 networks.

Wireshark ICMPv6 filters
Capture filter(s): icmp6

Display filter(s): icmpv6 icmpv6.type==1135 && icmpv6.code==0
(Neighbor Solicitation)

Transport layer protocols
The transport layer protocols include TCP and UDP used to transport
application protocols.

User Datagram Protocol
The User Datagram Protocol (UDP) is considered an unreliable transport. In this,
there's no guarantee of packet delivery or ordering, but it has a lower overhead and
is used by time-sensitive applications such as voice and video traffic.

Network Protocols

[102]

The following screenshot shows the fields contained in an UDP header:

The UDP header is only 8-bytes long, consisting of:

•	 Source and Destination port number: This is 2 bytes each.
•	 Length: This is the length of the UDP header plus the payload.

This is a 2-byte field.
•	 Checksum: This is a 2-byte field used to check for errors in the UDP

header and data. If no checksum was generated by the transmitter,
this will be all zeroes.

Wireshark UDP filters
Capture filter(s): udp udp port 2222

Display filter(s): udp udp.srcport == 161 (SNMP response) udp.length
> 256

Transmission Control Protocol
The Transmission Control Protocol (TCP) provides a reliable delivery of data by
detecting lost, duplicated, or out-of-order packets, requesting retransmission of
lost data, or rearranging packets in the right order before delivering them to the
application. TCP can also accept a large chunk of data from an application and
handle getting the data transported to the other end reliably using multiple packets
and reassembling them at the other end.

Chapter 5

[103]

The following screenshot highlights the significant fields of a basic TCP header:

The TCP header contents and length can vary depending on options that may be in
use, but in its simplest implementation it consists of:

•	 Source port and Destination port: These are well-known and registered
ports are used (on servers) to access standard application services such
as HTTP, FTP, SMTP, databases, and so on. Port numbers assigned to
client/user sessions are usually in a higher number range and assigned
sequentially.

•	 Sequence number: This is a number that represents the first octet in any
given segment. Sequence numbers are initialized at the beginning of new
sessions as a random number, and then incremented as data bytes are sent.

•	 Acknowledgment number: When the ACK flag bit is set, this field contains
the next sequence number expected from the sender, which in turn
acknowledges receipt of all the bytes received up to that point.

Network Protocols

[104]

The use of sequence and acknowledgment numbers is how TCP
ensures reliable delivery of data by tracking the number and order
of received bytes.
Sequence and acknowledgment numbers are large and difficult
for humans to follow. Wireshark can convert and display these as
relative values that start with 0 at the beginning of a session to make
it easier to inspect them and relate the values to the number of bytes
transmitted and received.

•	 Flags: These bits are used to control connection setups, terminations, and
flow control mechanisms.

•	 Window size: This field indicates the current size of the buffer on this
host used to store received data until it can be handed off to the receiving
application. This information enables the sending host to adjust data flow
rates in case of network or host congestion.

TCP flags
The following table lists the flags that are most commonly used in a TCP header:

Flag field name Description

URG (urgent) This indicates the Urgent Pointer field (after the TCP
header checksum) that should be examined. This flag is
normally 0; the Urgent Pointer field is only examined if
this bit is set.

ACK (acknowledgment) This is the acknowledgment packet.
PSH (push) This indicates whether the sending node's TCP stack

should bypass any buffering and pass the data directly
to the network and on to the receiving application.

RST (reset) This is used to close the connection explicitly.
SYN (synchronize) This is used to synchronize sequence numbers and used in

a three-way TCP session initiation handshake process.
FIN (finish) This is used when the transaction is finished. This does not

mean that the connection is to be closed explicitly, but is
commonly seen at the end of sessions.

Chapter 5

[105]

TCP options
The TCP also supports a number of additional options, several of which are in
common use in modern networks that you should be aware of. The snippet of
a TCP header illustrated in the following screenshot depicts several of the most
popular options:

The TCP options highlighted in the preceding screenshot include:

•	 Maximum Segment Size: This option allows you to specify of the number of
bytes that can follow the TCP header. This option exists to allow adjustment
to accommodate VLAN tagging or Multiprotocol Label Switching (MPLS).

•	 Window Scale: This option overcomes the inability of the Window Size field
in a standard TCP header to specify a window size greater than 65,535 bytes.
Window scaling allows you to specify a factor to multiply the advertised
window size to achieve a larger window size. Both sides of a session must
be able to support this option for it to apply; this is determined during the
session setup.

Network Protocols

[106]

•	 TCP SACK Permitted Option: This option indicates that this node supports
selective acknowledgments, which allows a node to acknowledge ongoing
and incoming data packets while still asking for a specific missing packet.
The recovery process only requires retransmission of the missing packet(s),
instead of the missing packet and all the packets that followed. Both sides of
a session must be able to support this option for it to apply, as determined
during session setup.

Wireshark TCP filters
Capture filter(s): tcp tcp port 80

Display filter(s): tcp tcp.port == 80 tcp.dstport == 8080 tcp.stream
== 2

Application layer protocols
The most common application layer protocols include DHCP used to obtain client IP
addresses and configuration information, DNS for hostname resolution, HTTP, SMB,
POP/SMTP, and FTP for the most common network services and SIP, RTP, and
RTCP for VoIP and video conferencing.

Extensive coverage of all the upper layer protocols is beyond the scope of this book.
A brief overview of DHCP and DNS will be provided, as these protocols universally
support network operations and HTTP as an example of one of the most common
application layer protocols. The reader is encouraged to research any or all of these
protocols further depending on their scope of interest and need to meet the analysis
tasks being addressed.

Dynamic Host Configuration Protocol
Dynamic Host Configuration Protocol (DHCP) allows a client to lease an IP address
from a pool managed by a DHCP server. The client can receive other configuration
options such as the default gateway, subnet mask, and one or more DNS server
addresses as well. DHCP is derived from an older BOOTP protocol; Wireshark uses
bootp in display filter syntax. DHCP works by the client sending a broadcast packet
using UDP source port 67 to UDP destination port 68. A DHCP server will respond to
the requestor's IP address and using UDP source port 68 to UDP destination port 67.

DHCP servers don't necessarily have to reside on the same local network segment
as clients. A relay agent such as a router can forward DHCP requests and respond
to/from a different network where a DHCP server resides.

Chapter 5

[107]

Wireshark DHCP filters
Capture filter(s): port 67 (DHCP is between ports 67 and 68; filtering on port 67
is sufficient to get both sides of the conversations)

Display filter(s): bootp bootp.option.value == 0 (DHCP Discover message)

Dynamic Host Configuration Protocol
Version 6
Dynamic Host Configuration Protocol Version 6 (DHCPv6) is the IPv6 version of
DHCP. Since IPv6 doesn't use broadcasts, DHCPv6 clients use the multicast address
for All_DHCP_Relay_Agents_and_Servers (ff02::1:2) to locate DHCPv6 servers
or relay agents.

Wireshark DHCPv6 filters
Capture filter(s): port 546 (DHCPv6 is between ports 546 and 547; either will work)

Display filter(s): dhcpv6 dhcpv6.msgtype == 1(DHCPv6 Solicit message)

Domain Name Service
Domain Name Service (DNS) is used to convert host names, such as
www.wireshark.org to IP addresses. DNS can also be used to identify the
hostname associated with an IP address (an inverse or pointer (PTR) query)
and several other network information services. This is a good protocol to become
familiar with as it is used extensively to locate nodes both within an enterprise and
on the Internet using hostnames.

Wireshark DNS filters
Capture filter(s): port 53

Display filter(s): dns dns.flags.response == 0(DNS query) dns.flags.
response == 1(DNS response) dns.flags.rcode != 0(DNS response contains
an error)

www.wireshark.org

Network Protocols

[108]

Hypertext Transfer Protocol
Hypertext Transfer Protocol (HTTP) is the application protocol used when someone
browses (unsecured) websites on the Internet, along with the secure version
(HTTPS). HTTP/1.1 is the current version—although HTTP/2.0 is starting to appear
in some environments. Be aware that some network devices such as proxy servers
and gateways may not support HTTP/2.0 yet.

An example of a HTTP packet delivering a GET request to a web server is depicted in
the following screenshot:

The most common features and fields of the HTTP protocol include HTTP Methods,
Host, and Request Modifiers.

In the preceding screenshot, the HTTP header includes:

•	 Request Method: GET
•	 Request URI: /Orion (a home page on the web server)
•	 Request Version: HTTP/1.1

Chapter 5

[109]

HTTP Methods
Some of the more common HTTP Methods are listed and described in the
following table:

Method Description
GET This retrieves information defined by the Uniform Resource

Identifier (URI) field
HEAD This retrieves meta data related to the desired URI
POST This sends data to the HTTP server/application
OPTIONS This determines the options associated with a resource
PUT This sends data to the HTTP server/application
DELETE This deletes the resource defined by the URI
CONNECT This is used to connect to a proxy device

Host
The Host field identifies the target host and port number of the resource being
requested. In the preceding screenshot, Host is pktiqsvr1 on port 8080.

Request Modifiers
HTTP requests and responses use Request Modifiers to provide details for the
request. In the preceding screenshot, Request Modifiers includes:

•	 Connection: This indicates the preference for a persistent connection
(keep-alive).

•	 Accept: This is a list of data formats (text/html and application/xhtml
plus xml) accepted.

•	 User-agent: This is a list of browser and operating system parameters
(Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit) for the
requesting device.

•	 Accept-encoding: This is a list of the acceptable HTTP compression
schemes (gzip, deflate, and sdch).

•	 Accept-language: The acceptable languages (en-US and en; q=0.8)
where q=0.8 is a relative quality factor that specifies the language
the user would prefer on a scale of 0 to 1.

•	 Cookie: This is a session ID cookie (ASP.NET_SessionId=sidsruxjbm4eaed
4d3dgg4zd) that was previously stored on the user's browser in a cookie and
is being provided to the website.

Network Protocols

[110]

The following table lists some of the more commonly used modifiers:

Request Modifier Description
Accept Acceptable content types
Accept-charset Acceptable character sets
Accept-encoding Acceptable encodings
Accept-language Acceptable languages
Accept-ranges Server can accept range requests
Authorization Authentication credentials for HTTP authentication
Cache-control Caching directives
Connection Type of connection preferred by the user agent
Cookie HTTP cookie (a small piece of data sent from the website and

stored in a user's browser, and/or sent back to the website the
next time the user visits containing session information)

Content-length Length of the request body in bytes
Content-type Mime type of the body (used with POST and PUT requests)
Date Date and time the message was sent
Expect Defines server behavior expected by the client
If-match Perform action if client-provided information matches
If-modified-since Provide date/time of cached data; return 304 Not Modified if

the cached data is still current
If-range Request for range of missing information
IF-unmodified-since Only send if unmodified since the provided date/time
Max-forwards Limit the number of forwards through proxies or gateways
Proxy-authorization Authorization credential for a proxy connection
Range Request only part of an entity
TE Transfer encodings accepted
User-agent A string containing browser and operating system information
Via The proxies traversed

Wireshark HTTP filters
Capture filter(s): tcp port http tcp port https

Display filter(s): http http.request.method == "GET" or
http.request.method == "POST" http.response.code > 399
(identifies client or server error packets)

Chapter 5

[111]

Additional information
Covering all the most common upper layer protocols or covering them to any great
depth is obviously more than what can be included in a book of this size. I encourage
you to spend some time studying those protocols that are of interest to you for
personal or job-related reasons. The return on your investment in time will be well
worth the effort.

Additional information for any of the protocols discussed in this chapter as well as
all those not covered can be found online.

Wireshark wiki
If you are inspecting a protocol within the Wireshark's Packet Details pane,
you can right-click on a protocol header or field within a header and select the
Wiki Protocol Page from the menu to go to the specific page on the Wireshark
wiki that contains information on that protocol. More information can be found
at http://wiki.wireshark.org/ProtocolReference.

You can also get a complete list of Wireshark display filters on specific protocols by
selecting a protocol header or a field within a header, right-clicking, and selecting
Filter Field Reference.

Protocols on Wikipedia
You can find general information on various protocols on Wikipedia. Start with
the Internet protocol. Additional links to the entire Internet protocol suite are also
provided at http://en.wikipedia.org/wiki/Internet_Protocol.

Requests for Comments
The Requests for Comment (RFC) documents contain detailed information
for all the Internet protocols. These documents are maintained by the Internet
Engineering Task Force (IETF) and are the final word on how the protocols should
be implemented and function (http://www.ietf.org/rfc.html). If you want to
search for a specific RFC by title or keyword, use the link http://www.rfc-editor.
org/search/rfc_search.php.

http://wiki.wireshark.org/ProtocolReference
http://en.wikipedia.org/wiki/Internet_Protocol
http://www.ietf.org/rfc.html
http://www.rfc-editor.org/search/rfc_search.php
http://www.rfc-editor.org/search/rfc_search.php

Network Protocols

[112]

Summary
The topics covered in this chapter included protocol and field coverage of the
network layer protocols IPv4, ARP, IGMP, ICMP, IPv6, and ICMPv6; the transport
layer protocols UDP and TCP; an overview of the application layer protocols DHCP,
DHCPv6, and DNS; and a more in-depth look at HTTP.

In the next chapter, we'll put all the topics covered so far to good use by using
Wireshark to troubleshoot the functionality and performance issues.

Troubleshooting and
Performance Analysis

In this chapter, we will discuss the use of Wireshark for its primary
purpose—troubleshooting network and application connectivity,
functionality, and performance issues.

The topics that will be covered include:

•	 Troubleshooting methodology
•	 Troubleshooting connectivity issues
•	 Troubleshooting functional issues
•	 Performance analysis methodology
•	 Top five reasons for poor application performance
•	 Detecting and prioritizing delays
•	 Server processing time events
•	 Application turn's delay
•	 Network path latency
•	 Bandwidth congestion
•	 Data transport issues

These topics cover the majority of problems you'll come across in your
analysis efforts.

Troubleshooting and Performance Analysis

[114]

Troubleshooting methodology
There are two fundamental reasons why you might be doing packet analysis:

•	 Troubleshooting a connectivity or functionality problem (a user can't
connect, an application doesn't work, or doesn't work right), which we'll
just call troubleshooting

•	 Analyzing a performance problem (the application works but is slow),
which we'll call performance analysis

A third gray area is an application that basically works but is slow and occasionally
times out, which could involve an underlying functional problem that causes the
performance issue, or just simply be a really poor performance.

Troubleshooting a connectivity or functional issue is just a matter of comparing what
normally works with what is going on, in the case you're working on.

A performance problem, on the other hand, requires determining where the majority
of the time for a particular transaction to complete is being spent, measuring the
delay and comparing that delay to what is normal or acceptable. The source and type
of excessive delay usually points to the next area to investigate further or resolve.

In any case, you need to gather the information that allows you to determine
whether this is a connectivity, functional, or performance issue and approach
the problem according to its nature.

Gathering the right information
The most important thing you can do when approaching a problem is to determine
what the real problem is so you can work on the right problem or the right aspect
of the problem. In order to determine what the real problem is, or at least get close,
you'll need to ask questions and interpret the answers. These questions could include
the appropriate selections (depending on the complaint) from the following list:

•	 Define the problem:
°° What were you trying to do (connect to a server, log in, send/receive

e-mails, general application usage, upload/download file, and
specific transactions or functions)?

°° Is nothing working or is this just a problem with a specific
application or multiple applications?

Chapter 6

[115]

°° What website/server/application were you trying / connecting to?
Do you know the hostname, URL, and/or IP address and port used
to access the application?

°° What is the symptom/nature of the problem? Has this application
or function/feature worked before, or is this the first time you've ever
tried to use it?

°° Did you receive any error messages or other indications of a problem?
°° Is the issue consistent or intermittent? Depends? On what?
°° How long has this been happening?
°° Was there some recent change that did or could have had an impact?
°° What has been identified or suspected so far? What has been done

to address this? Has it helped or changed anything?
°° Are there any other pertinent factors, symptoms, or recent changes

to the user environment that should be considered?

•	 Determine the scope of the issue:
°° Is this problem occurring for a single user or a group of users?
°° Is this problem occurring within a specific office, region, or across

the whole company?
°° Is this problem affecting different types of users differently?

•	 Collect system, application, and path information. For a more in-depth
analysis (beyond single user or small group issues), the applicable questions
from the following list might also need to be gathered and analyzed, as
appropriate to the complaint (some of this information may have to be
obtained from network or application support groups):

°° What is the browser type and version on the client (for web apps)?
Is this different from clients that are working properly?

°° What is the operating system type and version of the client(s)
and server?

°° What is the proper (vendor) application name and version?
Are there any known issues with the application that match
these symptoms (check the vendor's bug reports).

°° What is the database type and server environment behind the
application server?

Troubleshooting and Performance Analysis

[116]

°° Are there other backend-supporting data sources such as an online
data service or Documentum and SharePoint servers involved?

°° What is the network path between the client and server? Are there
firewalls, proxy servers, load balancers, and/or WAN accelerators in
the path? Are they configured and working properly?

°° Can you confirm the expected network path (and any WAN links
involved) with a traceroute and verify the bandwidth availability?

°° Can you measure the round trip time (RTT) path latency from
the user to the application server with pings or TCP handshake
completion times?

Establishing the general nature of the
problem
At this point, you should be able to identify the general nature of the problem
between one of the following three basic types:

•	 Determine whether this is a connectivity problem
°° User(s) cannot connect to anything
°° User(s) cannot connect to a specific server/application

•	 Determine whether this is a functionality or configuration problem
°° User(s) can connect (gets a login screen or other response from the

application server) but cannot log in (or get the expected response)
°° User(s) can connect and log in but some or all functions are failing

(for example, cannot send/receive e-mails)

•	 Determine whether this is a performance problem

°° User(s) can connect, log in, and use the application normally;
but it's slow

°° The application works normally but sometimes it stalls and/or
times out

Chapter 6

[117]

Half-split troubleshooting and other logic
When I was doing component-level repair of electronic equipment early in my
career, I learned to use the "half-split" troubleshooting method, which worked
very well in almost every single case. Half-split troubleshooting is the process of
cutting the problem domain (in my case, a piece of radio gear) in half by injecting
or measuring signals roughly midway through the system. The idea is to see which
half is working right and which half isn't, then shifting focus to the half that doesn't
work, analyzing it halfway through, and so on. This process is repeated until you
narrow the problem down to its source.

In the network and application world, the same half-split troubleshooting approach
can be applied as well, in a general sense. If users are complaining that the network
is slow, try to confirm or eliminate the network:

•	 Are users close to the server experiencing similar slowness? How about users
in other remote locations?

•	 If a certain application is slow for a remote user, are other applications slow
for that user as well?

•	 If users can't connect to a given server, can they connect to other servers
nearby or at other locations?

By a process of logical examination of what does and doesn't work, you can eliminate
a lot of guesswork and narrow your analysis down to just a few
plausible possibilities.

It's usually much easier to determine the source of a connectivity or functionality
problem if you have an environment where everything is working properly to
compare with a situation that does not work. A packet capture of a working versus
a non-working scenario can be compared to see what is different and if those
differences are significant.

It is important not to make too many assumptions about a problem, even if the
issue you're working on looks the same as the one that you've fixed before. Always
verify the problem and the resolution that you should be able to apply and remove
a fix and see the problem disappear/reappear reliably. Otherwise, you should
question yourself about whether you've found the true source of the issue or
are just affecting the symptoms.

Troubleshooting and Performance Analysis

[118]

Unless a reported problem is obviously a system-wide or specific server issue, it is
better to conduct at least the initial analysis at or as close to the complaining user's
workstation as possible. This has the advantages of offering the ability to perform
the following actions:

•	 View and verify the actual problem that the user is reporting
•	 Measure round-trip times to the target server(s)
•	 Capture and view the TCP handshake process upon session initiation
•	 Capture and investigate the login and any other background processes

and traffic
•	 Look for indications of network problems (lost packets and retransmissions)

as they are experienced by the user's device
•	 Measure the apparent network throughput to the user's workstation during

data downloads
•	 Eliminate the need to use a capture filter; the amount of traffic to/from a

single workstation should not be excessive

A capture at a user workstation, server, or other device should be conducted with
the use of an aggregating Test Access Point (TAP) versus using a switch SPAN
port (as discussed in Chapter 3, Capturing All the Right Packets, or as a last resort by
installing Wireshark on the user's workstation or server (if authorized).

Troubleshooting connectivity issues
Single user or small group connectivity issues can be resolved by confirming that
the networking functions required for a user workstation to access local and remote
network resources are functioning properly. The basic requirements or items to
confirm include:

•	 Enabling the correct network interface(s) (workstation configuration)
•	 Confirming layer 1 (physical) connectivity
•	 Obtaining an IP address, subnet mask, and default gateway for each

interface (DHCP)
•	 Obtaining the MAC address of the default gateway or other local network

services (ARP)
•	 Obtaining the IP address of a network service (DNS)
•	 Connecting to a network service (TCP handshake or UDP response)

Chapter 6

[119]

We'll briefly discuss each of these in order; while the first two steps will not involve
using Wireshark, they are a necessary part in a troubleshooting approach. If the
connectivity issue is affecting a group of users or a whole office, the first step is
probably not applicable.

Enabling network interfaces
While it may seem obvious that network interfaces need to be enabled, the
assumption that they are automatically enabled (especially for the wireless
connectivity) by default upon device boot up may be false.

On Windows, you can use the command-line utility ipconfig to view the status
and basic configuration (IP address, subnet mask, and default gateway) of network
interfaces; on Linux or MAC devices, the equivalent command is ifconfig or ip.

Confirming physical connectivity
If a connectivity problem is isolated to a single user's workstation, the physical
connections are suspected. There are a few items to check, and the troubleshooting
steps that can be taken are as follows:

•	 If there is a problem with the Ethernet cable from the workstation to a wall
jack, you need to swap the cable with a different one.

•	 If there is a problem with the cabling from the user's wall jack to the switch
port, you need to temporarily plug the user's Ethernet cable into another
(known good) wall jack.

•	 If there is a problem with the switch, switch port, or port configuration, you
need to temporarily plug the user's port cable into another (known good)
port. Be aware that some network security policies call to disable switch
ports until they are needed or configuring the port to be associated with a
single, specific MAC address. If so, a port may not work when you plug into
it although there is nothing physically wrong with it.

Obtaining the workstation IP configuration
Unless the workstation was manually configured, it will need to get its IP address,
subnet mask, default gateway, and DNS server settings from a DHCP server. If this
does not appear to be working properly (after checking the configuration using
ipconfig (Windows) or ifconfig, (Linux or Mac OS X)), you need to perform a
packet capture during the workstation initialization/boot-up process using a TAP
or SPAN port and investigate the DHCP requests and responses.

Troubleshooting and Performance Analysis

[120]

There are eight DHCP message types (not to be confused with the two Bootstrap
Protocol types, Boot Request and Boot Reply):

Message
type
number

Message type Description

1 DHCP Discover A client broadcast to locate an available DHCP server
2 DHCP Reply A server to client response to a DHCP Discover to

offer configuration parameters
3 DHCP Request A client message to a DHCP server to either one of the

following conditions:
•	 Request offered parameters from one server

and decline offers from other DHCP servers
•	 Confirm correctness of previously allocated

address after a reboot
•	 Extending the lease on an IP address

4 DHCP Decline Client message to DHCP server indicating the offered
address is not acceptable

5 DHCP
Acknowledgment

Server to client with configuration parameters
including a committed network address

6 DHCP Negative
Acknowledgement

Server to client indicating client's address is incorrect
or expired

7 DHCP Release Client to server releasing a network address and
canceling a lease

8 DHCP Informational Client to server asking for local configuration
parameters only

For a workstation that is booting up and was previously working on the network,
you'll generally see the DHCP Request and Acknowledgment packets verifying that
the workstation can still use a previously leased address. On an entirely cold start
up, the first two DHCP packets will be DHCP Discover and DHCP Offer packets,
followed by the Request and ACK packets.

In a DHCPv6 environment, the typical packet sequence is DHCPv6 Solicit, DHCPv6
Advertise, DHCPv6 Request, and DHCPv6 Reply.

Chapter 6

[121]

The fields to verify in a DHCP Response packet (or similar fields in a DHCPv6
Advertise packet) include the following four fields:

•	 Your (client) IP Address: This is the offered IP address for this workstation
•	 Subnet Mask: This is the subnet mask to use on this network
•	 Domain Name Server: This is the DNS server IP address
•	 Router: This is the IP address of the default gateway to use

This is minimum data required for any network communications; an example
of these fields being provided in a DHCP Reply packet is illustrated in the
following screenshot:

Troubleshooting and Performance Analysis

[122]

You can apply Wireshark display filters to isolate DHCP packets; the filter is
bootp, as this is the legacy name for DHCP:

•	 DHCP display filter: bootp bootp.option.dhcp == 5
(DHCP Message Type 'ACK')

•	 DHCPv6 display filter: dhcpv6 dhcpv6.msgtype == 2
(DHCPv6 'Advertise')

You can save the basic bootp and dhcpv6 display filters as a Filter Expression
Button (FEB) after entering the filter string in the textbox on the Display Filter
toolbar, clicking on Save, and giving the button a name such as DHCP Pkts and
DHCPv6 Pkts respectively. Alternatively, you could combine both filters with an
or (||) in one button, as shown in the following screenshot:

You might want to save another FEB that displays an abnormal DHCP condition
packets using the following display filter string and call the DHCP Errors button
or a similar as follows:

bootp.option.dhcp == 4 || bootp.option.dhcp == 6 || bootp.option.dhcp
== 7

Similar abnormal event display filters for DHCPv6 could include:

dhcpv6.msgtype == 8 || dhcpv6.msgtype == 9 || dhcpv6.msgtype == 10

You can research more about DHCP, DHCPv6, and the various DHCPv6 message
types online or from other sources if you need to analyze these in more detail.

Obtaining MAC addresses
A workstation will utilize the ARP protocol to obtain a MAC address for known
IP addresses of network services, such as its default gateway or the DNS server if
it's located on the same network segment. The ARP protocol and how it typically
functions has already been covered in Chapter 2, Networking for Packet Analysts.

You may want to create an ARP FEB using the arp display filter syntax to make it
quick and easy to inspect those packets.

Chapter 6

[123]

Obtaining network service IP addresses
A client workstation sends queries to a DNS server to obtain an IP address for
a given hostname; the DNS server responds with the information or asks other
DNS servers for the information on behalf of the client.

The format of the DNS query and response packet fields as displayed in the
Wireshark Packet Details pane is fairly intuitive. An example of a DNS response
packet containing a resolved IP address for time.windows.com, which actually
provided the IP address (137.170.185.211) for the alias time.microsoft.akadns.
com is shown in the following screenshot:

If a client workstation cannot obtain the IP address of a web service or application
server, a packet-level investigation of the request (which URL or hostname is
being requested), and what the response is from the DNS server (if any) should be
revealing. A comparison of a failing query with queries that work properly for other
hostnames or from other workstations should reveal the root of the problem (if DNS
is the problem). Failure to obtain an IP address can be caused by an inoperable DNS
server, improper hostname or URL, or a problem with connectivity from the user to
other parts of the network, which we'll check next.

Troubleshooting and Performance Analysis

[124]

Basic network connectivity
A few simple tests can confirm that basic network connectivity is working,
or reveal a routing issue or another issue that needs to be addressed by the
network support team.

Capturing and analyzing the ICMP packets sent and received during the following
tests can be revealing; although, the test results themselves are often telling enough:

•	 Ping the user's default gateway using the default gateway IP address
obtained from using ipconfig /all (Windows) or ip addr show (Linux) to
confirm that the user workstation has basic connectivity on the local network.

•	 Ping the hostname or URL of the target server. If this fails (request timed
out message), try to ping other hosts or URLs. If necessary, inspect the DNS
and/or ICMP responses in a packet capture of these tests to determine the
nature of the failure. Otherwise, take note of the average round trip times.

•	 If a ping works to the default gateway but pinging other targets fails,
a traceroute to a target server can reveal where in the network path
connectivity ceases to function or is blocked.

The traceroute command-line utility in Windows is tracert, whereas
for traceroutes on Linux/Unix and Mac OS X machines, the command is
traceroute. To do a traceroute in Windows, open a Command Prompt
(CMD) window and type tracert <hostname or IP Address of
target>. In most other environments, open a terminal window and
type traceroute <hostname or IP address of target>.

If you can ping the target server and network connectivity is functioning, you can
move on to the next step in the troubleshooting process. If not, be aware that some
hosts may be configured to not respond to ICMP ping requests, and/or ICMP
is blocked by a firewall between the user and server for security reasons. So, the
inability to ping a device is not necessarily a sign of a network problem. Traceroute
results should help determine how far and to what extent network connectivity is
functioning in the path towards the target server; testing to other targets should be
revealing as well.

Chapter 6

[125]

An example of pinging a default gateway, then a URL, and finally performing a
traceroute to the target URL is depicted in the following screenshot:

Troubleshooting and Performance Analysis

[126]

Connecting to the application services
If network connectivity from a user workstation to a target server is functional
(as proven by the ability to ping the host), a problem connecting to a specific
application hosted on that server may be caused by a number of factors:

•	 The URL or port used by the client to access the application is wrong
•	 The port used to access the application is blocked by a firewall
•	 The application service is not turned up or is not working properly

The first of these factors is far more likely for a single user issue. Any of the last two
factors would prevent anyone in a group or the whole organization from accessing
the application. A packet-level analysis (from the client side) of a user attempting
to connect to an application that is blocked should result in ICMP messages:
Destination Host is Unreachable or Destination Port is Unreachable, or there will
be no response at all if ICMP messages are being blocked by a firewall.

If the server is up, the application is reportedly operational but cannot be accessed;
a client-side capture does not offer any solid clues, but a packet capture of the TCP
session setup (if any) from or near the server end should be revealing.

Troubleshooting functional issues
If a user is able to connect and set up a TCP session with an application
server, but the application does not function otherwise, or function correctly, then,
there are a number of areas that can be investigated. These areas can be investigated
using a combination of packet-level analysis, error reports, and configuration
comparisons with captures and configurations from other users' machines:

•	 User credentials: The most common reason for specific-user issues with
application functionality is the lack of proper credentials, authorization,
rights, and so on. This is the first thing to check whether other users are
working normally.

•	 Application settings on the user machine: Some applications
require specific configuration files to be placed on a user's machine in a
specific location. Applications may also require certain version levels of
application-specific utilities, Java, .NET frameworks, and so on. Usually,
an application will provide an error message indicating at least the general
nature of a configuration problem.

•	 Application reported errors: You can look for the error code within response
packets or on the user screen that may reveal the nature of application errors:

°° Status code greater than 400 in HTTP, FTP, or SIP response packets
°° Error code in SMB response packets
°° Other application-specific exceptions, error codes, and messages

Chapter 6

[127]

•	 Differences in web browsers: Some web applications are designed to work
with specific browsers (Chrome, Internet Explorer, Firefox, Opera, and so on)
and may not work properly or at all on other browsers and there may not be
any error messages provided that indicate this is the case. A comparison of
the browser type and version with other working users may be revealing.

The causes of network connectivity and application functionality issues can vary
widely, so it is impossible to draw a clear roadmap for every possibility. The
best approach to successfully address these problems is not to make too many
assumptions without proving those assumptions correct with systematic, logical
troubleshooting steps, but try to find or create a scenario where the system, or at least
part of the system, works properly and compare the appropriate packet-level details
of the working environment to the one that doesn't work.

Performance analysis methodology
Analyzing an application's performance problem is basically a case of identifying
where the majority of the time for a particular task to complete is being spent,
and measuring/comparing that time to what is normal and/or acceptable for
that type of task.

Top five reasons for poor application
performance
Generally speaking, performance issues can be attributed to one of the following
five areas, in order of decreasing likelihood:

•	 Server processing time delay
•	 Application turns delay
•	 Network path latency
•	 Bandwidth congestion
•	 Data transport (TCP) issues

Client processing time is usually a relatively small component of overall
response time—except perhaps for some compute-extensive desktop applications,
which leaves the focus on the network and server environments and any
performance-affecting application design characteristics.

Troubleshooting and Performance Analysis

[128]

Preparing the tools and approach
As was done when preparing to troubleshoot a connectivity or functionality
problem, you'll need to gather the right information about the application
environment and problem domain. You'll also want to determine which tools you
may need to use during the analysis: Wireshark, TAPs to facilitate packet captures,
and any other analysis tools.

You will also need to determine where to perform the first packet capture:

•	 A client-side capture is the best place to begin a performance analysis
effort. From this vantage point, you can view and verify what the user is
complaining about, view any error messages presented to the user or evident
in the packet capture, measure network round-trip times, and capture the
performance characteristics to study within a packet capture without the
need to use a capture filter so you know you won't miss anything.

•	 A server-side capture may be needed because a client-side capture may not
be possible for a user that is at a long distance, or to analyze server-to-server
transactions to backend databases or other data sources.

•	 A packet capture at some intermediate point in the network path may
be needed to isolate the source of excessive packet loss/errors and the
associated retransmissions.

Remember that the use of an aggregating TAP is preferable over using SPAN ports,
or you can install Wireshark on the client workstation or server as a last resort, but
get the capture done any way you have to.

Performing, verifying, and saving a good
packet capture
After performing the capture and saving the bulk capture file, confirm the following:

1.	 Check the file to ensure there are no packets with the ACKed Unseen
Segment messages in the Wireshark Warnings tab in the Expert Info menu,
which means Wireshark saw a packet that was acknowledged but didn't see
the original packet; an indication that Wireshark is missing packets due to a
bad TAP or SPAN port configuration or excessive traffic levels. In any case,
if more than just a few of these show up, you'll want to do the capture again
after confirming the capture setup.

2.	 Next, you'll want to review the captured conversations in IPv4 in the
Conversations window and sort the Bytes column. The IP conversation
between the user and application server should be at or near the top so
you can select this conversation, right-click on it, and select A <-> B in the
Selected menu.

Chapter 6

[129]

3.	 After reviewing the filtered data to ensure it contains what you expected,
select Export Specified Packets from the File menu and save the filtered
capture file with a filename that reflects the fact that this is a filtered subset
of the bulk capture file.

4.	 Finally, open the filtered file you just saved so you're working with a smaller,
faster file without any distracting packets from other conversations that have
nothing to do with your analysis.

Initial error analysis
At the onset of your analysis, you should take a look through the Errors, Warnings,
and Notes tabs of Wireshark's Expert Info window (Analyze | Expert Info) for
significant errors such as excessive retransmissions, Zero Window conditions, or
application errors. These are very helpful to provide clues to the source of reported
poor performance.

Although a few lost packets and retransmissions are normal and of minimal
consequence in most packet captures, an excessive number indicates that network
congestion is occurring somewhere in the path between user and server, packets are
being discarded, and that an appreciable amount of time may be lost recovering from
these lost packets.

Seeing a high count number of Duplicate ACK packets in the Expert Info Notes
window may be alarming, but can be misleading. In the following screenshot, there
was up to 69 Duplicate ACKs for one lost packet, and for a second lost packet the
count went up to 89 (not shown in the following screenshot):

Troubleshooting and Performance Analysis

[130]

However, upon marking the time when the first Duplicate ACK occurred in
Wireshark using the Set/Unset Time Reference feature in the Edit menu and then
going to the last Duplicate ACK in this series by clicking the packet number in
the Expert Info screen and inspecting a Relative time column in the Packet List
pane, only 30 milliseconds had transpired. This is not a significant amount of time,
especially if Selective Acknowledgment is enabled (as it was in this example) and
other packets are being delivered and acknowledged in the meantime. Over longer
latency network paths, the Duplicate ACK count can go much higher; it's only when
the total number of lost packets and required retransmissions gets excessively high
that the delay may become noticeable to a user.

Another condition to look for in the Expert Info Notes window includes the TCP
Zero Window reports, which are caused by a receive buffer on the client or server
being too full to accept any more data until the application has time to retrieve and
process the data and make more room in the buffer. This isn't necessarily an error
condition, but it can lead to substantial delays in transferring data, depending on
how long it takes the buffer to get relieved.

You can measure this time by marking the TCP Zero Window packet with a time
reference and looking at the elapsed relative time until a TCP Window Update
packet is sent, which indicates the receiver is ready for more data. If this occurs
frequently, or the delay between Zero Window and Window Update packets is
long, you may need to inspect the host that is experiencing the full buffer condition
to see whether there are any background processes that are adversely affecting the
application that you're analyzing.

If you haven't added them already, you need to add the Relative
time and Delta time columns in the Packet List pane. Navigate to
Edit | Preferences | Columns to add these. Adding time columns
was also explained in Chapter 4, Configuring Wireshark.

You will probably see the connection reset (RST) messages in the Warnings tab.
These are not indicators of an error condition if they occur at the end of a client-
server exchange or session; they are normal indicators of sessions being terminated.

A very handy Filter Expression button you may want to add to Wireshark is a TCP
Issues button using this display filter string as follows:

tcp.analysis.flags && !tcp.analysis.window_update && !tcp.analysis.
keep_alive && !tcp.analysis.keep_alive_ack

This will filter and display most of the packets for which you will see the messages in
the Expert Info window and provide a quick overview of any significant issues.

Chapter 6

[131]

Detecting and prioritizing delays
Since we're addressing application performance, the first step is to identify any
delays in the packet flow so we can focus on the surrounding packets to identify
the source and nature of the delay.

One of the quickest ways to identify delay events is to sort a TCP Delta time column
(by clicking on the column header) so that the highest delay packets are arranged
at the top of the packet list. You can then inspect the Info field of these packets to
determine which, if any, reflect a valid performance affecting the event as most of
them do not.

In the following screenshot, a TCP Delta time column is sorted in order of
descending inter-packet times:

Let's have a detailed look at all the packets:

•	 The first two packets are the TCP Keep-Alive packets, which do just
what they're called. They are a way for the client (or server) to make sure
a connection is still alive (and not broken because the other end has gone
away) after some time has elapsed with no activity. You can disregard these;
they usually have nothing to do with the user experience.

•	 The third packet is a Reset packet, which is the last packet in the conversation
stream and was sent to terminate the connection. Again, it has no impact on
the user experience so you can ignore this.

Troubleshooting and Performance Analysis

[132]

•	 The next series of packets listed with a high inter-packet delay were GETs
and a POST. These are the start of a new request and have occurred
because the user clicked on a button or some other action on the application.
However, the time that expired before these packets appear were consumed
by the user think time—a period when the user was reading the last page
and deciding what to do next. These also did not affect the user's response
time experience and can be disregarded.

•	 Finally, Frame # 3691, which is a HTTP/1.1 200 OK, is a response from the
server to a previous request; this is a legitimate response time of 1.9 seconds
during which the user was waiting. If this response time had consumed more
than a few seconds, the user may have grown frustrated with the wait and
the type of request and reason for the excessive delay would warrant further
analysis to determine why it took so long.

The point of this discussion is to illustrate that not all delays you may see in a
packet trace affect the end user experience; you have to locate and focus on just
those that do.

You may want to add some extra columns to Wireshark to speed up the analysis
process; you can right-click on a column header and select Hide Column or
Displayed Columns to show or hide specific columns:

•	 TCP Delta (tcp.time_delta): This is the time from one packet in a TCP
conversation to the next packet in the same conversation/stream

•	 DNS Delta (dns.time): This is the time between DNS requests and responses
•	 HTTP Delta (http.time): This is the time between the HTTP requests

and responses

You should ensure that Calculate conversation timestamps is
enabled in the TCP option, which can be found by navigating
to Edit | References | Protocols, so that the delta time
columns will work properly.

Chapter 6

[133]

While you're adding columns, the following can also be helpful during a
performance analysis:

•	 Stream # (tcp.stream): This is the TCP conversation stream number.
You can right-click on a stream number in this column, and select
Selected from the Apply as a filter menu to quickly build a display
filter to inspect a single conversation.

•	 Calc Win Size (tcp.window_size): This is the calculated TCP window size.
This column can be used to quickly spot periods within a data delivery
flow when the buffer size is decreasing to the point where a Zero Window
condition occurred or almost occurred.

Server processing time events
One of the most common causes of poor response times are excessively long server
processing time events, which can be caused by processing times on the application
server itself and/or delays incurred from long response times from a high number of
requests to backend databases or other data sources.

Confirming and measuring these response times is easy within Wireshark using the
following approach:

1.	 Having used the sorted Delta Time column approach discussed in the
previous section to identify a legitimate response time event, click on the
suspect packet and then click on the Delta Time column header until it is
no longer in the sort mode. This should result in the selected packet being
highlighted in the middle of the Packet List pane and the displayed packets
are back in their original order.

2.	 Inspect the previous several packets to find the request that resulted in the
long response time. The pattern that you'll see time and again is:

1.	 The user sends a request to the server.
2.	 The server fairly quickly acknowledges the request

(with a [ACK] packet).
3.	 After some time, the server starts sending data packets to service the

request; the first of these packets is the packet you saw and selected
in the sorted Delta Time view.

Troubleshooting and Performance Analysis

[134]

The time that expires between the first user request packet and the third packet when
the server actually starts sending data is the First Byte response time. This is the area
where you'll see longer response times caused by server processing time. This effect
can be seen between users and servers, as well as between application servers and
database servers or other data sources.

In the following screenshot, you can see a GET request from the client followed by an
ACK packet from the server 198 milliseconds later (0.198651 seconds in the Delta Time
Displ column); 1.9 seconds after that the server sends the first data packet (HTTP/1.1
200 OK in the Info field) followed by the start of a series of additional packets to
deliver all of the requested data. In this illustration, a Time Reference has been set
on the request packet. Looking at the Rel Time column, it can be seen that 2.107481
seconds transpired between the original request packet and the first byte packet:

It should be noted that how the First Byte data packet is summarized in the Info
field depends upon the state of the Allow subdissector to reassemble TCP streams
setting in the TCP menu, which can be found by navigating to Edit | Preferences |
Protocols, as follows:

•	 If this option is disabled, the First Byte packet will display a summary of
the contents of the first data packet in the Info field, such as HTTP/1.1 200
OK shown in the preceding screenshot, followed by a series of data delivery
packets. The end of this delivery process has no remarkable signature; the
packet flow just stops until the next request is received.

•	 If the Allow subdissector to reassemble TCP streams option is enabled,
the First Byte packet will be summarized as simply a TCP segment of a
reassembled PDU or similar notation. The HTTP/1.1 200 OK summary will
be displayed in the Info field of the last data packet in this delivery process,
signifying that the requested data has been delivered. An example of having
this option enabled is illustrated in the following screenshot. This is the same
request/response stream as shown in the preceding screenshot. It can be seen
in the Rel Time column that the total elapsed time from the original request
to the last data delivery packet was 2.1097 seconds:

Chapter 6

[135]

The Reassemble SMB Transaction payload setting in the SMB
protocol preferences will affect how SMB and SMB2 responses are
summarized in the Info field in like fashion to the related setting
in the TCP protocol preferences.

In either case, the total response time as experienced by the user will be the time that
transpires from the client request packet to the end of the data delivery packet plus
the (usually) small amount of time required for the client application to process the
received data and display the results on the user's screen.

In summary, measuring the time from the first request to the First Byte packets is the
server response time. The time from the first request packet to the final data delivery
packet is a good representation of the user response time experience.

Application turn's delay
The next, most likely source of poor response times—especially for remote users
accessing applications over longer distances—is a relatively high number of what
is known as application turns. An app turn is an instance where a client application
makes a request and nothing else can or does happen until the response is received,
after which another request/response cycle can occur, and so on.

Every client/server application is subject to the application turn effects and every
request/response cycle incurs one. An application that imposes a high number of
app turns to complete a task—due to poor application design, usually—can subject
an end user to poor response times over higher latency network paths as the time
spent waiting for these multiple requests and responses to traverse back and forth
across the network adds up, which it can do quickly.

For example, if an application requires 100 application turns to complete a task and
the round trip time (RTT) between the user and the application is 50 milliseconds
(a typical cross-country value), the app turns delay will be 5 seconds:

100 App Turns X 50 ms RTT network latency = 5 seconds

This app turns' effect is additional wait (response) time on top of any server
processing and network transport delays that is 5 seconds of totally wasted time.
The resultant longer time inevitably gets blamed on the network; the network
support teams assert that the network is working just fine and the application team
points out that the application works fine until the network gets involved. And on it
goes, so it is important to know about the app turns effects, what causes them, and
how to measure and account for them.

Troubleshooting and Performance Analysis

[136]

Web applications can incur a relatively high app turn count due to the need to
download one or more CSS files, JavaScript files, and multiple images to populate
a page. Web designers can use techniques to reduce the app turn and download
times, and modern browsers allow numerous connections to be used at the same
time so that multiple requests can be serviced simultaneously, but the effects can
still be significant over longer network paths. Many older, legacy applications and
Microsoft's Server Message Block (SMB) protocols are also known to impose a high
app turn count.

The presence and effects of application turns are not intuitively apparent in a packet
capture unless you know they exist and how to identify and count them. You can do
this in Wireshark for a client-side capture using a display filter:

ip.scr == 10.1.1.125 && tcp.analysis.ack_rtt > .008 && tcp.flags.ack
== 1

You will need to replace the ip.src IP address with that of your server, and
adjust the tcp.analysis.ack_rtt value to the RTT of the network path between
the user and server. Upon applying the filter, you will see a display of packets
that represent an application turn, and you can see the total app turns count in the
Displayed field in the center section of the Wireshark's Status Bar option at the
bottom of the user interface.

If you measure the total time required to complete a task (first request packet to last
data delivery packet) and divide that time into the time incurred for application
turns (number of app turns X network RTT), you can derive an approximate app
turn time percentage:

5 seconds app turns delay / 7.5 seconds total response time = 66% of RT

Any percentage over 25 percent warrants further investigation into what can be
done to reduce either the RTT latency (server placement) or the number app turns
(application design).

Network path latency
The next leading cause of high response times is network path latency, which
compounds the effects of application turns as discussed in the preceding section,
as well as affecting data transport throughput and how long it takes to recover
from packet loss and the subsequent retransmissions.

Chapter 6

[137]

You can measure the network path latency between a client and server using the
ICMP ping packets, but you can also determine this delay from a packet capture
by measuring the time that transpires from a client SYN packet to the server's SYN,
ACK response during a TCP three-way handshake process, as illustrated in the
following figure of a client-side capture:

CLIENT SIDE RTT

ACK ->

RTT = 10 ms

SYN -> 5 ms

<- SYN, ACK 5 ms

In a server-side capture, the time from the SYN, ACK to the client's ACK (third
packet in the three-way handshake), also reflects the RTT. In practice, from any
capture point, the time from the first SYN packet to the third ACK packet is a good
representation of the RTT as well assuming the client and server response times
during the handshake process are small. Be aware that the server response time to a
SYN packet, while usually short, can be longer than normal during periods of high
loading and can affect this measurement.

High network path latency isn't an error condition by itself, but can obviously
have adverse effects on the application's operation over the network as
previously discussed.

Bandwidth congestion
Bandwidth congestion affects the application's performance by extending the amount
of time required to transmit a given amount of data over a network path; for users
accessing an application server over a busy WAN link, these effects can become
significant. A network support team should be able to generate bandwidth usage and
availability reports for the in-path WAN links to check for this possibility, but you
can also look for evidence of bandwidth congestion by using a properly configured
Wireshark IO Graph to view network throughput during larger data transfers.

Troubleshooting and Performance Analysis

[138]

The following screenshot illustrates a data transfer that is affected by limited
bandwidth; the flatlining at the 2.5 Mbps mark (the total bandwidth availability
in this example), because no more bandwidth is available to support a faster
transfer is clearly visible:

You can determine the peak data transfer rate in bits-per-second (bps) from an IO
Graph by configuring the graph as follows:

•	 X Axis Tick interval: 1 sec
•	 Y Axis Unit: Bits/tick
•	 Graph 2 Filter: ip.dst == <IP address of server>
•	 Graph 4 Filter: ip.src == <IP address of server>

These settings result in an accurate bits-per-second display of network throughput
in client-to-server (red color) and server-to-client (blue color) directions. The Pixels
per tick option in the X Axis panel, the Scale option in the Y Axis panel, and
other settings can be modified as desired for the best display without affecting the
accuracy of the measurement.

Chapter 6

[139]

Be aware that most modern applications can generate short-term peak bandwidth
demands (over an unrestricted link) of multiple Mbps. The WAN links along a
network path should have enough spare capacity to accommodate these short
term demands or response time will suffer accordingly. This is an important
performance consideration.

Data transport
There are a number of TCP data transport effects that can affect application
performance; these can be analyzed in Wireshark.

TCP StreamGraph
Wireshark provides TCP StreamGraphs to analyze several key data transport
metrics, including:

•	 Round-trip time: This graphs the RTT from a data packet to the
corresponding ACK packet.

•	 Throughput: These are plots throughput in bytes per second.
•	 Time/sequence (Stephen's-style): This visualizes the TCP-based packet

sequence numbers (and the number of bytes transferred) over time.
An ideal graph flows from bottom-left to upper-right in a smooth fashion.

•	 Time/sequence (tcptrace): This is similar to the Stephen's graph, but provides
more information. The data packets are represented with an I-bar display,
where the taller the I-bar, the more data is being sent. A gray bar is also
displayed that represents the receive window size. When the gray bar moves
closer to the I-bars, the receive window size decreases.

•	 Window Scaling: This plots the receive window size.

The TCP StreamGraphs are unidirectional. You want to select a packet
for the direction that is transporting data to get the proper view.

These analysis graphs can be utilized by selecting one of the packets in a TCP stream
in the Packet List pane and selecting TCP StreamGraph from the Statistics menu
and then one of the options such as the Time-Sequence Graph (tcptrace).

Troubleshooting and Performance Analysis

[140]

The selected graph and Control Window will appear from the Graph type tab
of the Control Window that you can select one of the other types of analysis graphs,
as shown in the following screenshot:

The Time/Sequence Graph (tcptrace) shown in the following screenshot plots
sequence numbers as they increase during a data transfer, along with the gray
receive window size line:

Chapter 6

[141]

You can click and drag the mouse over a section of the graph to zoom into
a particular section, or press the + key to zoom in and the - key to zoom out.
Clicking on a point in any of the graphs will take you to the corresponding
packet in the Wireshark's Packet List pane.

IO Graph
You can also analyze a the effects of TCP issues on network throughput by applying
TCP analysis display filter strings to Wireshark's IO Graph, such as:

tcp.analysis.flags && !tcp.analysis.window_update

In the following screenshot of a slow SMB data transfer, it can be seen that the
multiple TCP issues (in this case, packet loss, Duplicate ACKs, and retransmissions)
in the red line correspond to a decrease in throughput (the black line):

Clicking on a point in the IO Graph takes you to the corresponding packet in the
Wireshark's Packet List pane so you can investigate the issue.

IO Graph – Wireshark 2.0
Wireshark 2.0, also known as Wireshark Qt, is a major change in Wireshark's version
history due to a transition from the GTK+ user interface library to Qt to provide
better ongoing UI coverage for the supported platforms. Most of the Wireshark
features and user interface controls will remain basically the same, but there are
changes to the IO Graph.

Troubleshooting and Performance Analysis

[142]

These are shown in the following screenshot, which shows the same TCP issues that
were seen in the preceding screenshot:

The new IO Graph window features the ability to add as many lines as desired
(using the + key) and to zoom in on a graph line, as well as the ability to save the
graph as an image or PDF document.

Summary
The topics covered in this chapter included troubleshooting methodology, how to
use Wireshark to troubleshoot connectivity and functionality issues, performance
analysis methodology, and the top five causes of poor application performance and
how to use Wireshark to analyze those causes.

In the next chapter, we will review some of the common types and sources of
malicious traffic and introduce how a security professional can use Wireshark to
detect these threats.

Packet Analysis for
Security Tasks

With the increasing threat of hackers, identity thieves, and corporate data theft,
you need to be able to analyze the security of your network at the packet level.

The topics that will be covered in this chapter include:

•	 Security analysis methodology
•	 Scans and sweeps
•	 OS fingerprinting
•	 Malformed packets
•	 Phone home traffic
•	 Password cracking traffic
•	 Unusual traffic

Security analysis methodology
Security analysis at the packet level is based on detecting and analyzing
suspect traffic, that is, the traffic that does not match normal patterns because of
the presence of unusual protocol types or ports, or unusual requests, responses, or
packet frequency. Suspicious traffic may include reconnaissance (discovery) sweeps,
phone home behavior, denial of service attacks, botnet commands, or other types of
behavior from direct attacks or virus- or botnet-based agents.

Wireshark captures strategic points in the network to investigate suspicious packets
from specific hosts or on network segments and egress points can also complement
any Intrusion Detection System (IDS) systems that may be in place to alert the IT
staff about the suspicious traffic.

Packet Analysis for Security Tasks

[144]

The importance of baselining
The ability to identify abnormal traffic patterns that bear investigation versus traffic
caused by poorly behaving applications, misconfigurations, or faulty devices can be
made much easier if you have a baseline of what is normal. A baseline is a snapshot
capture of typical conversations with your primary applications and servers and
the background traffic on the network segments that they reside on. In a potential
security breach situation, you can compare the normal protocols, traffic patterns,
and user sessions from a baseline with a current capture, filter out the normal traffic,
and then inspect the differences.

To allow the comparison of baselines in your security analysis, you need to
periodically capture and store packet trace files that cover a sufficient period of
time to provide a good sample of typical user and background traffic patterns while
keeping the file sizes manageable for use within Wireshark, for example, 100 MB to
1 GB per file. You can configure the Ring Buffer option within Wireshark's Capture
Options window to save a series of reasonably sized files for longer captures or
busier network segments.

Although your baselining needs and practices will depend on your environment,
some of the traffic aspects that you should inspect include:

•	 Broadcast and multicast types and rates:
°° What devices and applications are using broadcasts and multicasts?
°° What are the typical broadcast and multicast packet rates?

•	 Applications and protocols:
°° What applications are running over the network?
°° What protocols and ports are they using?
°° Application launch sequences and typical tasks
°° Are application sessions encrypted?
°° Are all users forced to use encryption? Any exceptions?
°° What are the login/logout sequences and dependencies?

•	 Routing protocol(s) and routing updates
•	 ICMP traffic
•	 Boot-up sequences

Chapter 7

[145]

•	 Name resolution sessions
•	 Wireless connectivity includes normal management, control, and data

frame contents
•	 VoIP and video communications
•	 Idle time traffic is the host communicating with other hosts when there are

no users logged in
•	 What backup processes are running at night and for how long?
•	 Are there any suspect protocols or broadcasts/scans taking place?

As you inspect your baseline captures, it is helpful to view a summary of the
protocols being used by selecting Protocol Hierarchy from the Wireshark's Statistics
menu. In the following screenshot, for example, you can see that there is some
Internet Relay Chat (IRC) traffic, as well as the Trivial File Transfer Protocol
(TFTP) traffic, neither of which might be normal on your network and could be an
indication of rogue communications with outside entities:

Analyzing baselines of normal traffic levels and patterns is also an excellent way
of getting familiar with your network environment and its typical packet flows
and protocols, which better prepares you to spot abnormal traffic.

Packet Analysis for Security Tasks

[146]

Security assessment tools
There are several popular tools that are used by security professionals to perform
security assessment and vulnerability testing. As these tools can generate the same
types of scans, fingerprinting, and other exploitive activities, as might be used by
hackers and malicious agents, they can be useful to a packet analyst to analyze the
packets that they generate with Wireshark to build familiarity with how different types
of activities appear in a packet trace and also to build display filters to detect them.

One of the most popular tools is Network Mapper (Nmap), a free and open source
utility for network discovery and security auditing. Nmap runs on all major
computer operating systems and offers a command-line and GUI version (Zenmap).

You can find more information about Nmap at http://nmap.org
and information on other top security tools can be found at
http://sectools.org.

Identifying unacceptable or suspicious
traffic
Wireshark can be used to identify unusual patterns or packet contents in the
network traffic including network scans, malformed packets, and unusual protocols,
applications, and or conversations that should not be running on your network.
The following is a general list of traffic types that may not be acceptable and/or
warrant investigation to validate their legitimacy in your environment:

•	 MAC or IP address scans: These attempt to identify active hosts on
the network

•	 TCP or UDP port scans: These attempt to identify active applications
and services

IP address and port scans can be generated from network management applications
to build or maintain their list of devices and applications to monitor/manage,
but that's usually the only legitimate source of these types of traffic.

•	 Clear text passwords: These are passwords that you can see in the
Wireshark's Packet Details or Packet Bytes fields. These are typical for
File Transfer Protocol (FTP) logins, but not typical or acceptable elsewhere.

http://nmap.org
http://sectools.org

Chapter 7

[147]

•	 Clear text data: This is the data in packet payloads that can be read. This is
typical for HTTP requests and responses and commonly seen in application
server to database requests and responses, but these database exchanges
should be between hosts on isolated, nonpublic network segments and
otherwise physically secure environments.

•	 Password cracking attempts: These are repeated, systematic attempts to
discover a working password, usually from a single device.

•	 Maliciously formed packets: These are packets with intentionally invalid
or improperly formatted data in protocol fields that are intended to exploit
vulnerabilities in applications.

•	 Phone home traffic: This is the traffic from a rogue agent that may be
resident on a server or workstation that periodically checks in with a
remote (usually off-network) host.

•	 Flooding or Denial of Service (DOS) attacks: This is the traffic that is
intentionally sent at a very high packet-per-second rate to one or more hosts
in an attempt to flood the host(s) or network with so much traffic that no one
else can access their services.

•	 Subversive activities: These include a number of techniques to prepare for
and facilitate the man-in-the-middle attacks where a device is tricked into
sending packets to a malicious host for the purpose of intercepting data.

This is only a sampling of types of malicious traffic that you might see on your
network; network security is an ever evolving exchange of increasingly sophisticated
attacks and subsequent countermeasures.

As you develop your security analysis skills, you might want to build a special
security profile in Wireshark that includes packet coloring rules based on display
filters to help identify suspicious or malformed packets, as well as a set of Filter
Expression Buttons that isolate and display various types of questionable traffic
you might be looking for.

Some examples of display filters to isolate and inspect suspicious packets include:

Filter description Display filter string
Detect ICMP pings and possible ping sweep icmp.type == 8 || icmp.type == 0

ICMP destination unreachable filter
(included redirects)

(icmp.type >= 3 && icmp.type
<= 5) || icmp.type == 11 ||
(icmpv6.type >= 1 && icmpv6.type
<= 4)

Unusual ICMP echo requests (icmp.type == 8) && !(icmp.code
== 0x00)

Packet Analysis for Security Tasks

[148]

Filter description Display filter string
TCP handshakes useful for detecting TCP
scans as well as inspecting normal session
setups/tear-downs/resets

(tcp.flags&02 && tcp.seq==0) ||
(tcp.flags&12 && tcp.seq==0) ||
(tcp.flags.ack && tcp.seq==1 &&
!tcp.nxtseq > 0 && !tcp.ack >1)
|| tcp.flags.fin == 1 || tcp.
flags.reset ==1

Detect Xmas scan (URG, FIN, and PUSH
flags set)

tcp.flags == 0x029

Other suspicious TCP settings: TCP SYN/
ACK w/ Win size greater than 1025, SYN,
FIN, PSH, URG bits set, no TCP flags set,
TCP max segment size set to less than 1460

((tcp.flags == 0x02) && (tcp.
window_size < 1025)) || tcp.
flags == 0x2b || tcp.flags ==
0x00 || tcp.options.mss_val <
1460

Internet Relay Chat (IRC) traffic
(is this normal in your network?)

tcp.port == 194 || (tcp.port >=
6660 && tcp.port <= 6669) ||
tcp.port == 7000

High number of DNS answers (could be a
list of command and control servers)

dns.count.answers > 5

Scans and sweeps
Malicious programs and rogue processes might investigate a network environment
for available ports and hosts using various scanning processes before launching
an exploit. Identifying the presence of these reconnaissance processes may allow
thwarting the attack before it is launched, as well as tracking down and/or blocking
the source of the malicious activity—especially if that source is inside the company
as some of them are.

ARP scans
ARP scans, also called as ARP sweeps, are used to discover active localhosts on
a network segment. An ARP sweep can be difficult to detect unless you apply a
display filter and observe a steady, incremental sweep from the same device,
as seen in the following screenshot:

Chapter 7

[149]

As ARP packets cannot pass through a router, the source device conducting the ARP
sweep must be on the same network segment that the ARP packets are seen on.

ICMP ping sweeps
ICMP ping sweeps are used to discover active hosts on local or remote network
segments (since ICMP uses IP and is routable) using ICMP Type 8 Echo Requests
and Type 0 Echo Replies for a range of IP addresses. You can easily detect ping
sweeps by using a display filter icmp.type == 8 || icmp.type == 0.

TCP port scans
TCP port scans allow a malicious agent to discover which TCP ports are open on a
target host. Network ports are the entry points to a server or workstation; a service
that listens on a given port is able to service requests from a client. Malicious agents
can sometimes exploit vulnerabilities in server code to gain access to sensitive data
or execute malicious code on the machine, which is why testing all active ports is
necessary for a complete coverage of any security validation.

Some of the most common ports used for TCP-based services include:

•	 80 HTTP
•	 443 HTTPS
•	 8080 HTTP proxy
•	 8000 HTTP alternate
•	 21 FTP
•	 22 SSH
•	 23 Telnet
•	 3389 Microsoft Remote Desktop
•	 5900 VNC
•	 25 SMTP
•	 110 POP3
•	 143 IMAP
•	 3306 MySQL
•	 1433 Microsoft SQL Server
•	 1720 H.323
•	 5060 SIP

Packet Analysis for Security Tasks

[150]

A TCP port scan device will send a TCP SYN packet to a port on a target host, which
will respond with either SYN, or ACK if the port is open, or RST if the port is closed.
Similar to an ARP scan, a TCP scan can be detected by a series of SYN packets from a
single IP address to a target IP address over a range of port numbers. A display filter
can make detecting these types of scans easier:

ip.dest == <IP Address of target host> && tcp.flags.syn

UDP port scans
UDP port scans are like TCP scans, but they are run against typical UDP-based
services, the most common of which include:

•	 53 DNS
•	 161/162 SNMP
•	 67/68 DHCP
•	 5060 SIP
•	 135 Microsoft Endpoint Mapper
•	 137/139 NetBIOS Name Service

The preceding topics cover just a sampling of the most common scans used by
malicious agents. Security analysts should research this topic further to identify
all the types of scans that may be used to exploit their particular environment's
vulnerabilities.

OS fingerprinting
OS fingerprinting is a technique wherein a remote machine sends various types of
commands to a target device and analyzes the responses to attempt to identify the
target devices' operating system and version. Knowing which operating system a
device is running makes it possible to use exploits specific to that operating system.

Nmap detects operating systems based on a series of port scans, ICMP pings, and
numerous other tests, and then runs a set of follow-up tests based on the results to
further define the OS version running.

Chapter 7

[151]

In the following screenshot, you can see the test results verbiage from the GUI
version of Nmap (Zenmap) as it completes an OS detection scan, as well as its
best estimate of the operating system and version:

A Wireshark capture of the OS detection activity described earlier included as an
example of one of the OS fingerprinting scripts that are run, a bogus HTTP request
to the target device (172.20.0.1) for /nice%20ports%2C/Tri%6Eity.txt%2ebak
to see exactly what kind of error response was generated, which is used to help
pinpoint the OS version:

Packet Analysis for Security Tasks

[152]

The exact format of the HTML response from the preceding request could be used
to identify the OS and/or web server version, as seen in the following Wireshark
packet details screenshot:

Analyzing packet captures of these kinds of OS fingerprinting requests and
responses will make it much easier to spot similar activities from malicious entities.

Malformed packets
Maliciously malformed packets take advantage of vulnerabilities in operating
systems and applications by intentionally altering the content of data fields in
network protocols. These vulnerabilities may include causing a system crash
(a form of denial of service) or forcing the system to execute the arbitrary code.

An example of malformed packet vulnerability is Cisco Security Advisory
cisco-sa-20140611-ipv6, wherein vulnerability in parsing malformed IPv6 packets in
a certain series of routers could cause a reload (reboot) of a certain card that carries
network traffic, which could intermittently cause service outages.

Another example of this kind of vulnerability is in some unpatched Windows or
Linux systems that will crash if they receive a series of fragmented packets where
the fragments overlap each other.

The types and possibilities of malformed packets are endless, but vulnerabilities
are usually announced as they are discovered and some may provide packet details.
You can build display filters and/or build coloring rules in Wireshark to detect these
packets. It also helps to study and understand what range of values the different
protocol fields normally and legally contain, and what TCP and other protocol
sequences normally look like so you can spot suspicious contents in packet flows.

Chapter 7

[153]

Phone home traffic
Phone home traffic originates from a rogue application on a device that periodically
connects to a remote (usually off-network) host to receive updates or commands or
deliver data collected from the infected host. The majority of phone home traffic will
be the operating system and virus protection updates, Dropbox or other external
services, and similar authorized and appropriate services, so it will take some effort
to identify malicious traffic out of this mix.

It is important to understand the risk that phone home traffic can represent: many
botnet Distributed Denial of Service (DDoS) attacks are supported by a "zombie
army" of hijacked computers running software that may lie undetected for some
period of time except for periodic communications with their Command and
Control (C&C) servers awaiting instructions to attack a target. In a similar fashion,
keylogging traffic will send periodic reports of video screenshots and keystroke data
to the collecting host.

One way to identify potentially malicious phone home traffic is to capture and
inspect the DNS queries as these sessions start up, looking at two distinct areas:

•	 The hostname(s) of legitimate services are often reasonably recognizable.
•	 DNS queries for illegitimate applications contacting C&C servers will often

return a long list of aliases with IP addresses that are not all in the same
general range (that is, from all over the world). A display filter that helps
identify DNS responses with long response lists is dns.count.answers > 5.

It also helps to have a baseline that includes the idle period traffic and a sample of
known updates/services dialogs to compare a questionable capture to.

Password-cracking traffic
Password-cracking traffic can be detected by observing numerous error messages
from a target host directed to a client that repeatedly and unsuccessfully attempts to
log in. There are two general types of password cracking attempts:

•	 Dictionary attacks work from a list of common words, names, and numbers
•	 Brute force attacks use a sequence of characters, numbers, and key values

Both of these types are often thwarted by login security measures that lock out an
account after a short number of failed login attempts.

Packet Analysis for Security Tasks

[154]

Unusual traffic
While it is difficult to anticipate what methods a hacker may use in an attempt to
infiltrate a network or host, there are a few things that should probably never happen
on a normal, healthy network. Due to their usefulness in testing and conveying error
conditions, ICMP packets are a likely target for malicious redirection. Since TCP is
the predominant transport protocol in use for most applications, you should look out
for abnormalities in TCP headers or payloads that could be a sign of malicious intent.

Some examples of abnormalities to look out for are discussed in the following table:

Suspicious content Description
TCP bad flags An illegal or unlikely combination of TCP flags. The

SYN, SYN/ACK, ACK, PSH, FIN, and RST flags are
normal when they're used in the appropriate places;
anything otherwise warrants investigation.

SYN packet contains data The initial TCP SYN packet should never contain
payload data; it is used to establish a session only.
Note, however, that the third ACK packet in the TCP
can contain data.

Suspicious datagram payload
contents

References to the operating system or other non-
application directories, strange executables, or other
payload data that doesn't seem to fit the purpose of the
application being used to send the data.

Suspicious ping payload text The text used to fill in the payload of an ICMP Echo
Request packet is usually a benign sequential series of
letters and numbers or similar meaningless text. If this
text appears to carry commands or meaningful data, it
warrants investigation.

Clear text passwords in FTP or
Telnet sessions

Seeing FTP used to transport sensitive business data,
or Telnet to administer switches and routers, isn't
malicious intent by a hacker. It's negligent practice
by employees as both protocols, by design, transmit
clear text login IDs and passwords over the network,
making it easy for even an unsophisticated hacker to
capture them. There are Secure FTP (sftp) and Secure
Shell (SSH) (Telnet alternative) solutions for all
platforms available on the Web.

Chapter 7

[155]

Summary
The topics covered in this chapter on security analysis included detecting scans
and sweeps to identify targets for planned attacks, operating system fingerprinting,
detecting malformed packets, and packets that are suspiciously fragmented or
sent out of order, phone home traffic from malicious agents, identifying password
cracking attempts, and identifying other abnormal packets and payloads.

In the next chapter, we'll review several key command-line utilities provided in a
Wireshark installation, as well as a few additional packet analysis tools that can
complement your toolset.

Command-line and
Other Utilities

Wireshark includes a number of command-line utilities to manipulate packet trace
files and offer GUI-free packet captures, and there are a few other tools that can help
round out your analysis toolset.

The topics that will be covered in this chapter include:

•	 Capturing traffic with Dumpcap and Tshark
•	 Editing trace files with Editcap
•	 Merging trace files with Mergecap
•	 Other helpful tools

Wireshark command-line utilities
When you install Wireshark, a range of command-line tools also gets
installed, including:

•	 capinfos.exe: This prints information about trace files
•	 dumpcap.exe: This captures packets and saves to a libpcap format file
•	 editcap.exe: This splits a trace file, alters timestamps, and removes

duplicate packets
•	 mergecap.exe: This merges two or more packet files into one file
•	 rawshark.exe: This reads a stream of packets and prints field descriptions
•	 text2pcap.exe: This reads an ASCII hex dump and writes a libpcap file
•	 tshark.exe: This captures network packets or displays data from a

saved trace file

Command-line and Other Utilities

[158]

The Wireshark.exe file launches the GUI version you're familiar with, but you can
also launch Wireshark from the command line with a number of parameters; type
Wireshark –h for a list of options and/or create shortcuts to launch Wireshark with
any of those options.

It is very helpful to add the Wireshark program directory to
your system's PATH statement so that you can execute any of the
command-line utilities from any working directory.

Capturing traffic with Dumpcap
The dumpcap.exe file is the executable that Wireshark actually runs under the
covers to capture packets and save them to a trace file in libpcap format. You can run
Dumpcap on the command line to circumvent using the Wireshark GUI and use fewer
resources. A list of command-line options is available by typing dumpcap.exe -h.

Some of the most useful options are as follows:

•	 -D: This prints a list of available interfaces and exits
•	 -i <interface>: This specifies a name or index number of an interface

to capture on
•	 -f <capture filter>: This applies a capture filter in the Berkeley

Packet Filter (BPF) syntax
•	 -b filesize: This is the file size
•	 -w <outfile>: This is the name of the file where the files will be saved

An example of viewing a list of interfaces and then running Dumpcap to capture a
specific interface with an IP address capture filter (note the use of quotes around the
filter syntax) configured to use a three-file ring buffer with file sizes of 100 MB and an
output filename derived from capture.pcap is illustrated in the following screenshot:

Chapter 8

[159]

You can get more information on Dumpcap options at https://www.wireshark.
org/docs/man-pages/dumpcap.html.

Capturing traffic with Tshark
Tshark can be used to capture network packets and/or display data from the capture
or a previously saved packet trace file; packets can be displayed on the screen or
saved to a new trace file.

The same syntax used to perform a basic capture using Dumpcap will work with
Tshark as well, so we won't repeat that here. However, Tshark offers a very wide
range of additional features, with a corresponding large number of command-line
options that can, as in all Wireshark utilities, be viewed by typing tshark –h in the
command prompt.

A number of Tshark options are to view statistics; an example of the command
syntax and statistical results from a capture (after pressing Ctrl + C to end the
capture) is illustrated in the following screenshot:

You will find an extensive number of details and examples on using statistics and other
Tshark options at https://www.wireshark.org/docs/man-pages/tshark.html.

https://www.wireshark.org/docs/man-pages/dumpcap.html
https://www.wireshark.org/docs/man-pages/dumpcap.html
https://www.wireshark.org/docs/man-pages/tshark.html

Command-line and Other Utilities

[160]

Editing trace files with Editcap
You can use Editcap to split a trace file that is too large to work with in Wireshark into
multiple smaller files, extract a subset of a trace file based on a start and stop time, alter
timestamps, remove duplicate packets, and a number of other useful functions.

Type editcap –h in the command prompt for a list of options. The syntax to extract
a single packet or a range of packets by packet numbers is as follows:

editcap –r <infile> <outfile> <packet#> [- <packet#>]

You must specify <infile> and <outfile>. The –r specifies to keep, not delete,
the specified packet or packet range, for example:

editcap –r MergedTraces.pcapng packetrange.pcapng 1-5000

You can split a source trace file into multiple sequential files, each containing the
number of packets specified by the –c option:

editcap –c 5000 MergedTraces.pcapng SplitTrace.pcapng

You can eliminate duplicate packets in a file within a five-packet proximity:

editcap –d hasdupes.pcapng nodupes.pcapng

If you have two trace files that have a significant span of time between them, and you
want to merge them into one file but closer together, you can investigate all of the
packets within one IO Graph or a similar analysis function; you can first use the –t
option on one of the files to adjust the timestamps in that file by a constant amount
(in seconds). For example, to subtract 5 hours from a trace file's timestamps, use the
following command:

editcap -t -18000 packetrange.pcapng adj_packetrange.pcapng

Comparing the two traces in Wireshark reveals the following details:

•	 Packet #500 before adjustment: 2014-09-04 15:27:38.696897
•	 Packet #500 after adjustment: 2014-09-04 10:27:38.696897

You can get more information on and examples of Editcap options at
https://www.wireshark.org/docs/man-pages/editcap.html.

https://www.wireshark.org/docs/man-pages/editcap.html

Chapter 8

[161]

Merging trace files with Mergecap
You can use Mergecap to merge two or more trace files into one file. The basic
syntax is as follows:

mergecap –w <outfile.pcapng> infile1.pcapng infile2.pcapng …

For example:

mergecap –w merged.pacap source1.pcapng source2.pcapng source3.
pcapng

One useful option you sometimes may want to use in Mergecap (and several of the
other command-line utilities) is –s <snaplen>. This will truncate the packets at the
specified length past the start of each frame, resulting in a smaller file; a typical value
for <snaplen> is 128 bytes:

mergecap –w merged_trimmed.pcapng -s 128 source1.pcapng source2.pcapng

Mergecap batch file
If the capture files you want to merge have a variety of naming formats, you can
create a MergeTraces.bat file containing the following Windows batch commands:

@echo off

cls

echo MergeTraces.bat

echo.

echo Merges multiple packet trace files with a .pcapng extension into one
.pcapng file

echo.

echo Usage: Copy MergeTraces.bat into the directory with the .pkt files
and execute

echo The utility will generate a 'MergedTraces.pcap' file

echo and a 'MergedFileList.txt' file which lists the .pcapng files
processed.

echo.

echo.

echo IMPORTANT!! You must type 'CMD /V:ON' from this window which enables

echo 'Delayed environment variable expansion' in order to properly
execute

echo this batch utility.

echo.

Command-line and Other Utilities

[162]

echo You must also add the path to Wireshark's mergecap.exe to your path
statement.

echo.

echo If you've not done this, Type Ctrl-C to exit; Otherwise

pause

echo.

echo Deleting old MergedFileList.txt...

if exist "MergedFileList.txt" del MergedFileList.txt

for %%f in (*.pcap-ng) do echo "%%f" >> MergedFileList.txt

echo Deleting old MergedTraces.pcapng...

if exist "MergedTraces.pcapng" del MergedTraces.pcapng

echo Preparing to merge:

echo.

type MergedFileList.txt

echo.

echo Merging..........

set FILELIST=

for %%f in (*.pcap-ng) do set FILELIST=!FILELIST! %%f

:: DEBUG

:: echo %FILELIST%

mergecap -w MergedTraces.pcapng %FILELIST%

echo.

if exist MergedTraces.pcapng @echo Done!

if NOT exist MergedTraces.pcapng @echo Error!! -- Check your settings.

echo.

Copy the batch file into a directory containing just the packet trace files you want
to merge and execute it. The batch file will merge all the .pcapng files into one file
called MergedTraces.pcapng. This is much easier than trying to specify a long list of
unique source files in a command line, especially if the filenames contain date-time
stamps. If you need to work with the .pcap files, change all instances of .pcapng to
.pcap in the batch commands; you can also alter the output filename as desired.

You can also merge trace files by clicking-and-dragging the
files into the Wireshark desktop. The files will be merged in
chronological order based on their timestamps after selecting
Merge from the Wireshark File menu. This works reasonably
well as long as the total file size doesn't exceed 1GB.

You can get more info and examples of Mergecap options at
https://www.wireshark.org/docs/man-pages/mergecap.html.

https://www.wireshark.org/docs/man-pages/mergecap.html

Chapter 8

[163]

Other helpful tools
Wireshark is an extremely versatile and useful tool. However, there are some things
it doesn't do easily or at all, so we'll discuss a few other tools you may want to
include in your analysis toolset.

HttpWatch
HttpWatch is a packet-based performance analysis utility that integrates with
Internet Explorer and Firefox browsers to view a graphical depiction and statistical
values from HTTP interactions between the browser and websites. This kind of
utility makes it easy to discover and measure from the user's perspective when
significant delays are occurring and the source of those delays.

The following screenshot shows the HttpWatch visual and numerical analysis by
loading the www.wireshark.org home page:

You can get more information about HttpWatch from http://www.httpwatch.com/.
Also, a similar performance analysis utility is Fiddler, which can be found at
http://www.telerik.com/fiddler.

www.wireshark.org
http://www.httpwatch.com/
http://www.telerik.com/fiddler

Command-line and Other Utilities

[164]

SteelCentral Packet Analyzer Personal Edition
SteelCentral Packet Analyzer (previously known as Cascade Pilot) is available in
Standard and Personal Edition versions. Unlike Wireshark, this utility is able to
open and analyze multigigabyte trace files; you can quickly isolate a conversation of
interest, right-click on it, and save that conversation in a separate packet trace file or
launch Wireshark directly and pass that conversation to it from the same menu.

In addition, the utility offers a variety of network analysis screens called Views that
provide graphical displays and reports on a wide range of performance perspectives.
The following screenshot illustrates a set of MAC Overview Views:

Chapter 8

[165]

You can get more information on the SteelCentral Packet Analyzer products at
http://www.riverbed.com/products/performance-management-control/
network-performance-management/packet-analysis.html.

AirPcap adapters
If you are using Wireshark to analyze wireless networks, you will need a wireless
adapter that provides the ability to see all of the available channels and provides a
Radiotap Header, which offers additional information for each frame such as radio
channel and signal/noise strengths.

The prevalent wireless adaptor for use with Wireshark or SteelCentral Packet
Analyzer on Windows platforms is the Riverbed AirPcap adapter, which is available
from the Riverbed website. The AirPcap adapter plugs into a USB port and includes
drivers to integrate with Wireshark and provide the Radiotap Header information.
There are several product models that offer increasing coverage of the various
WLAN bands; AirPcap Nx offers the widest coverage. The following image depicts
two of the available adapters:

You can get more information on the Riverbed AirPcap adapters at
http://www.riverbed.com/products/performance-management-control/
network-performance-management/wireless-packet-capture.html.

Summary
The topics covered in this chapter included several of Wireshark's command-line
utilities to capture packets and edit and merge packet trace files, as well as several
useful tools to compliment your analysis toolset.

This is the final chapter of this book on Wireshark. I hope you enjoyed reading it,
and mostly, I hope you use it as a foundation to become a Wireshark expert!

http://www.riverbed.com/products/performance-management-control/network-performance-management/packet-analysis.html
http://www.riverbed.com/products/performance-management-control/network-performance-management/packet-analysis.html
http://www.riverbed.com/products/performance-management-control/network-performance-management/wireless-packet-capture.html
http://www.riverbed.com/products/performance-management-control/network-performance-management/wireless-packet-capture.html

Index
Symbols
6to4 tunneling method 99

A
abnormalities, TCP

examples 154
Address Resolution Protocol (ARP) 30
AirPcap adapters 165
Anycast addresses 97
application layer, OSI

about 34, 35
encapsulation 35

application layer protocols
about 106
additional information 111
Domain Name Service (DNS) 107
Dynamic Host Configuration Protocol

(DHCP) 106
Dynamic Host Configuration Protocol

Version 6 (DHCPv6) 107
Hypertext Transfer Protocol (HTTP) 108

areas, functional issues troubleshooting
application reported errors 126
application settings, user machine 126
user credentials 126
web browsers differences 127

ARP packet
significant fields 31

ARP scans 148, 149
ARP sweeps 148, 149

B
baselining

about 144
importance 144
traffic aspects 144, 145

basic network connectivity
application services, connecting to 126
testing 124, 125

Berkeley packet filter (BPF) 10

C
capinfos.exe 157
Capture Filter field 54
capture filters

about 52
configuring 55, 56
reference link 57
using 54

Capture Interfaces window
about 52
options 53

Capture Options window
about 53-57
display options 58
filename, capturing 57
location, capturing 57
multiple file options 57
name resolution options 59, 60
Ring buffer option 58
stop capture options 58

[168]

Cascade Pilot. See SteelCentral
Packet Analyzer

Classless Inter-Domain Routing (CIDR)
designator 36

Class of Service (CoS) tagging 27
Command and Control (C&C) servers 153
command-line tools

capinfos.exe 157
dumpcap.exe 157
editcap.exe 157
mergecap.exe 157
rawshark.exe 157
text2pcap.exe 157
tshark.exe 157

Command Prompt (CMD) 124
configuration, Wireshark

packet colorization 80
packet timestamps, working with 73
performing 73
preferences 82
profiles 84

connectivity issues troubleshooting
basic network connectivity 124
MAC addresses, obtaining 122
network interfaces, enabling 119
network service IP addresses, obtaining 123
performing 118, 119
physical connectivity, confirming 119
workstation IP configuration,

obtaining 119-122
Conversations window

about 61
Ethernet tab 61
TCP tab 62
UDP tab 62
using 61
WLAN tab 63

D
DARPA model 88
data-link layer, OSI

about 26
Cyclic Redundancy Check (CRC) 27
Ethernet frame 28
Ethernet II frame 27

frame check sequence 27
Media Access Control (MAC) addresses 26
Payload 26
Type (or EtherType) field 26

data transport
about 139
IO Graph 141
IO Graph – Wireshark 2.0 141
TCP StreamGraph 139

Defense Advanced Research Projects
Agency (DARPA) 24

delays
detecting 131, 132
prioritizing 131, 132

DHCP message types
DHCP Acknowledgment 120
DHCP Decline 120
DHCP Discover 120
DHCP Informational 120
DHCP Negative Acknowledgement 120
DHCP Release 120
DHCP Reply 120
DHCP Request 120

display filters
about 63
creating, from Conversations window 66
creating, from Endpoints window 66
display filter syntax 65
Display Filter window 63, 64
reference link 65
typing in 66
ways of creating 63

Distributed Denial of Service (DDoS)
attacks 153

Domain Name Service (DNS)
about 38, 107
Wireshark DNS filters 107

Dumpcap
used, for capturing traffic 158

dumpcap.exe 157
Dumpcap options

-b filesize 158
-D 158
-f <capture filter> 158
-i <interface> 158
-w <outfile> 158
reference link 159

[169]

Dynamic Host Configuration
Protocol (DHCP)

about 106
Wireshark DHCP filters 107

Dynamic Host Configuration Protocol
Version 6 (DHCPv6)

about 107
Wireshark DHCPv6 filters 107

E
Editcap

about 160
reference link 160
used, for editing trace files 160

editcap.exe 157
Ethernet frame

significant fields 28
working, with switches 37, 38

Ethernet tab 61

F
Fiddler

URL 163
filtered traffic

saving 69, 70
Filter Expression Button option

FIN 66
RST 66
SYN/ACK 66
TCP SYN 66

Filter Expression Buttons
about 66, 67, 147
Expressions window button, using 67
right-click menus, on specific packet

fields 67
Follow SSL Stream window 68
Follow TCP Stream window 68
Follow UDP Stream window 68
functional issues

troubleshooting 126, 127

H
half-split troubleshooting

about 117
advantages 118

hop 41
Host field 109
HTTP Methods

about 109
CONNECT 109
DELETE 109
GET 109
HEAD 109
OPTIONS 109
POST 109
PUT 109

HttpWatch
about 163
URL 163

Hypertext Transfer Protocol (HTTP)
about 108
features 108
header 108
Host field 109
Request Modifiers 109

I
ICMP control message types 92-94
ICMP pings 91
ICMP ping sweeps 149
ICMP redirects 94
ICMP traceroutes 91
ICMPv6 packet types

about 99
Echo request 99
Echo response 99
Multicast listener done 100
Multicast listener query 99
Multicast listener report 100
Neighbor advertisement 100
Neighbor solicitation 100
Redirect message 100
Router advertisement 100
Router solicitation 100

[170]

IGMP protocol header
significant fields 90

installation
Wireshark 8
Wireshark, on Linux/Unix 11
Wireshark, on Mac OS X 10
Wireshark, on Windows 9

Internet Control Message Protocol (ICMP)
about 31, 91
control message types 92, 94
Multicast Listener Discovery (MLD) 101
pings 91
redirects 94
significant fields 101
traceroutes 91
Wireshark ICMP filters 95

Internet Control Message Protocol
Version 6 (ICMPv6) 99

Internet Engineering Task Force (IETF) 111
Internet Group Management Protocol

(IGMP)
about 31, 89
interesting fields 90
significant fields 90
Wireshark IGMP filters 90

Internet Protocol Version 4 (IPv4)
about 29
Differentiated Services (DiffServ) 29
Flags 29
Fragment offset 29
Identification (IP ID) 29
Protocol 29
Source and destination IP addresses 29
Time to Live (TTL) 29
Total length 29

Internet Protocol Version 6 (IPv6)
about 95
addressing 96
address types 96-98
header fields 98
transition methods 99

Internet Relay Chat (IRC) traffic 145, 148
Intrusion Detection System (IDS)

systems 143
IO Graph 141

IP addresses
working, with routers 39

IP address ranges 36
IP networks

working, with subnets 36
IPv6 addressing

about 96
rules 96

IPv6 address types
about 96
Anycast 97
Multicast 97
Unicast 96

IPv6 header fields
Flow label 98
Hop limit 98
Next header 98
Payload length 98
Source and Destination addresses 98
Traffic class 98
Version 98

IPv6 transition methods
6to4 tunneling 99
about 99
ISATAP tunneling 99
Teredo tunneling 99
Wireshark IPv6 filters 99

L
Linux/Unix

Wireshark, installing 11

M
MAC addresses

obtaining 122, 123
MAC or IP address scans 146
Mac OS X

Wireshark, installing 10
malformed packets 152
Mergecap

about 161
batch file 161, 162
reference link 162
used, for merging trace files 161

[171]

mergecap.exe 157
methodology troubleshooting

general nature of problem, identifying 116
half-split troubleshooting 117
performing 114
right information, gathering 114-116

Multicast addresses 97
Multicast Listener Discovery (MLD)

about 101
Wireshark ICMPv6 filters 101

Multiprotocol Label Switching (MPLS) 105

N
Neighbor Solicitation ICMPv6 packet 100
Network Basic Input/Output System

(NetBIOS) 34
network interface

enabling 119
selecting 12, 52-54

Network Interface Card (NIC) 9, 25
network layer, OSI

about 28
Address Resolution Protocol (ARP) 30
Internet Protocol 29, 30

network layer protocols
about 88
Internet Control Message Protocol

(ICMP) 91
Internet Control Message Protocol

Version 6 (ICMPv6) 99
Internet Group Management

Protocol (IGMP) 89
Internet Protocol Version 6 (IPv6) 95
Wireshark IPv4 filters 88

Network Mapper (Nmap)
about 146
URL 146

network traffic
clear text data 147
clear text passwords 146
flooding or Denial of Service (DOS)

attacks 147

maliciously formed packets 147
password cracking attempts 147
phone home traffic 147
subversive activities 147

Next Header code 98

O
OS fingerprinting 150-152
OSI layers

about 25
application layer 34
data-link layer 26
network layer 28
physical layer 25
presentation layer 34
session layer 34
transport layer 31

OSI model
about 24, 88
comparing, with DARPA 24
importance 24
network protocols 25

P
packet analysis 23
packet capture

bulk capture file, saving 60
capture point, picking 46
conversations of interest, isolating 61
display filter, applying 18, 19
location, determining 128
noise, filtering 15-17
packet trace, saving 19, 20
performing 11, 13, 128, 129
saving 128, 129
verifying 60, 128, 129

packet capture point
mid-network captures 47
other locations 47
selecting 46
server location 47
user location 46

packet colorization
about 80-82
coloring rules 80, 81

[172]

Packet Details pane
channel frequency 42
channel type 42
data rate 42
RF signal and noise levels 42

packets
capturing, on high traffic rate links 52
filtered traffic, saving 69, 70
ignoring 69
marking 69
routing 37
switching 37

packet timestamps
conversation versus displayed

packet time options 79
saving 74
time column, adding 76-79
time display options 74-76
time display option, selecting 80
Time Reference option, using 80
working with 73

packet trace
saving 19, 20

password-cracking traffic 153
performance analysis methodology

about 127
poor application performance, reasons 127

phone home traffic 153
physical connectivity

confirming 119
physical layer, OSI

100Base-T 25
100Base-FX 25
1000Base-T 25
about 25
Cat 5 (Cat 5e or Cat 6) cables standard 25
Ethernet standard 25
RJ-45 standard 25
single-mode and multimode fiber

optic cables 25
poor performance reasons, application

about 127
application turn's delay 135, 136
bandwidth congestion 137-139
data transport 139
delays, detecting 131, 132

delays, prioritizing 131, 132
initial error analysis 129, 130
network path latency 136, 137
packet capture 128
server processing time events 133-135
tools, preparing 128

preferences, Wireshark
about 82
Capture 82
Columns 82
Filter Expressions 82
Layout 82
Name Resolution 82
Options 83
Protocols 82

presentation layer, OSI 34
private IP address ranges 37
profiles, Wireshark

about 84, 85
creating 85
selecting 86

protocols on Wikipedia
about 111
URL 111

protocols, Wireshark preferences
about 82
HTTP 82
IEEE 802.11 82
IPv4 82
RTP 83
SMB 83
SSL 83
TCP 83

R
rawshark.exe 157
Request Modifiers

Accept 109, 110
Accept-charset 110
Accept-encoding 109, 110
Accept-language 109, 110
Accept-ranges 110
Authorization 110
Cache-control 110

[173]

Connection 109, 110
Content-length 110
Content-type 110
Cookie 109, 110
Date 110
Expect 110
If-match 110
If-modified-since 110
If-range 110
IF-unmodified-since 110
Max-forwards 110
Proxy-authorization 110
Range 110
TE 110
User-agent 109, 110
Via 110
Wireshark HTTP filters 110

Requests for Comment (RFC) 111
Riverbed AirPcap adapter

about 165
reference link 165

round trip time (RTT) 91, 116, 135

S
scans, security analysis

about 148
ARP scans 148, 149
TCP port scans 149, 150
UDP port scans 150

Secure FTP (sftp) 154
Secure Shell (SSH) 154
security analysis

about 143
baselining 144, 145
malformed packets 152
OS fingerprinting 150-152
password-cracking traffic 153
phone home traffic 153
scans 148
security assessment tools 146
suspicious traffic, identifying 146, 147
sweeps 148
unusual traffic 154

security assessment tools
about 146
Network Mapper (Nmap) 146

session layer, OSI 34
SteelCentral Packet Analyzer

about 164
Personal Edition 164
reference link 165
Standard version 164

subnets
IP networks, working with 37

sweeps, security analysis
about 148
ARP sweeps 148, 149
ICMP ping sweeps 149, 150

Switched Port Analyzer (SPAN) 51
switch port mirroring

about 51
advantage 51
diagrammatic representation 51

T
TAP

about 49, 118
diagrammatic representation 50

TCP
about 32, 102
flags 104
options 105
Wireshark TCP filters 106

TCP header
about 33
Acknowledgment number 33, 103
Flags 33, 104
Sequence number 33, 103
significant fields 34, 103
Source and Destination ports 33, 103
Window size 33, 104

TCP port scans 146, 149
TCP StreamGraph

about 139-141
round-trip time 139
throughput 139
time/sequence (Stephen's-style) 139
time/sequence (tcptrace) 139
window scaling 139

[174]

TCP tab 62
Teredo tunneling method 99
Test Access Port. See TAP
text2pcap.exe 157
tools

about 163
AirPcap adapters 165
HttpWatch 163
SteelCentral Packet Analyzer 164

trace files
editing, with Editcap 160
managing, with Mergecap 161

traffic
capturing, with Dumpcap 158
capturing, with Tshark 159

Transmission Control Protocol. See TCP
transport layer, OSI

about 31
TCP 32
UDP 32

transport layer protocols
TCP 101
UDP 101

Trivial File Transfer Protocol (TFTP)
traffic 145

Tshark
about 159
reference link 159
used, for capturing traffic 159

tshark.exe 157

U
UDP

about 32, 101
Wireshark UDP filters 102

UDP header
Checksum 32, 102
Fields 32, 102
Length 32, 102
Source and Destination port

number 32, 102
UDP port scans 146, 150
UDP tab 62

Unicast addresses
about 96
Global Unicast 96
Link-local 97
Unique local 97

Uniform Resource Identifier (URI) 109
unusual traffic 154
User Datagram Protocol. See UDP
user interface essentials

about 14
Display filter toolbar 14
Main toolbar (icons) 14
Menu 14
Packet bytes pane 15
Packet details pane 15
Packet list pane 15
Status bar 15
Title 14

V
Views 164
Virtual LAN (VLAN) 27

W
WAN links

about 41
network routing/geographical distance 41
physical speed-of-light propagation

delay 41
queuing delays 41
serialization delay 41

wide area networks (WANs) 26
Windows

Wireshark, installing 9
wireless frame types

control frames 41
management frames 41

wireless networking 41, 42
Wireshark

about 7
command-line utilities 157, 158
configuring 73
display filters 63

[175]

installing 8
installing, on Linux/Unix 11
installing, on Mac OS X 10
installing, on Windows 9
network interface, selecting 12
packet capture, performing 11, 13
URL 8
URL, for documentation 11
user interface essentials 14

Wireshark 2.0 (Wireshark Qt) 141, 142
Wireshark ARP filters 89
Wireshark DHCP filters 107
Wireshark DHCPv6 filters 107
Wireshark DNS filters 107
Wireshark.exe file 158
Wireshark IGMP filters 91
Wireshark IPv4 filters 89
Wireshark TCP filters 106
Wireshark UDP filters 102
Wireshark wiki

about 111
URL 111

WLAN tab 63
workstation IP configuration

obtaining 119-122

Z
Zenmap 146

Thank you for buying
Wireshark Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Network Analysis Using
Wireshark Cookbook
ISBN: 978-1-84951-764-5 Paperback: 452 pages

Over 80 recipes to analyze and troubleshoot network
problems using Wireshark

1.	 Place Wireshark in the network and configure
it for effective network analysis.

2.	 Use Wireshark's powerful statistical
tools and expert system for pinpointing
network problems.

3.	 Use Wireshark for troubleshooting network
performance, applications, and security
problems in the network.

Learning Kendo UI Web
Development
ISBN: 978-1-84969-434-6 Paperback: 288 pages

An easy-to-follow practical tutorial to add
exciting features to your web pages without
being a JavaScript expert

1.	 Learn from clear and specific examples on
how to utilize the full range of the Kendo UI
toolset for the Web.

2.	 Add powerful tools to your website
supported by a familiar and trusted name
in innovative technology.

3.	 Learn how to add amazing features with
clear examples and make your website more
interactive without being a JavaScript expert.

Please check www.PacktPub.com for information on our titles

Instant Wireshark Starter
ISBN: 978-1-84969-564-0 Paperback: 68 pages

A quick and easy guide to getting started with
network analysis using Wireshark

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2.	 Documents key features and tasks that can
be performed using Wireshark.

3.	 Covers details of filters, statistical analysis,
and other important tasks.

Instant Traffic Analysis with
Tshark How-to
ISBN: 978-1-78216-538-5 Paperback: 68 pages

Master the terminal-based version of Wireshark for
dealing with network security incidents

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2.	 Terminal-based version of Wireshark for
dealing with network security incidents.

3.	 Useful filters to quickly identify and limit
network problems derived from malware
and a variety of network attacks.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Acquainted with Wireshark
	Installing Wireshark
	Installing Wireshark on Windows
	Installing Wireshark on Mac OS X
	Installing Wireshark on Linux/Unix

	Performing your first packet capture
	Selecting a network interface
	Performing the packet capture
	Wireshark user interface essentials
	Filtering out the noise
	Applying a display filter

	Saving the packet trace

	Summary

	Chapter 2: Networking for Packet Analysts
	The OSI model – why it matters
	Network protocols
	The seven OSI layers
	Layer 1 – the physical layer
	Layer 2 – the data-link layer
	Layer 3 – the network layer
	Layer 4 – the transport layer
	Layer 5 – the session layer
	Layer 6 – the presentation layer
	Layer 7 – the application layer

	IP networks and subnets
	Switching and routing packets
	Ethernet frames and switches
	IP addresses and routers

	WAN links
	Wireless networking
	Summary

	Chapter 3: Capturing All the Right Packets
	Picking the best capture point
	User location
	Server location
	Other capture locations
	Mid-network captures
	Both sides of specialized network devices

	TAPs and switch port mirroring
	Test Access Port
	Switch port mirroring
	Capturing packets on high traffic rate links

	Capturing interfaces, filters, and options
	Selecting the correct network interface
	Using capture filters
	Configuring capture filters
	Capture options
	Capturing filenames and locations
	Multiple file options
	Ring buffer
	Stop capture options
	The display options
	Name resolution options

	Verifying a good capture
	Saving the bulk capture file
	Isolating conversations of interest
	Using the Conversations window
	The Ethernet tab
	The TCP and UDP tabs
	The WLAN tab

	Wireshark display filters
	The Display Filter window
	The display filter syntax
	Typing in a display filter
	Display filters from a Conversations or Endpoints window

	The filter expression buttons
	Using the Expressions window button
	Right-click menus on specific packet fields

	Following TCP/UDP/SSL streams
	Marking and ignoring packets
	Saving filtered traffic
	Summary

	Chapter 4: Configuring Wireshark
	Working with packet timestamps
	How Wireshark saves timestamps
	Wireshark time display options
	Adding a time column
	Conversation versus displayed packet time options

	Choosing the best Wireshark time display option
	Using the Time Reference option

	Colorization and coloring rules
	Packet colorization

	Wireshark preferences
	Wireshark profiles
	Creating a Wireshark profile
	Selecting a Wireshark profile

	Summary

	Chapter 5: Network Protocols
	The OSI and DARPA reference models
	Network layer protocols
	Wireshark IPv4 filters
	Wireshark ARP filters

	Internet Group Management Protocol
	Wireshark IGMP filters

	Internet Control Message Protocol
	ICMP pings
	ICMP traceroutes
	ICMP control message types
	ICMP redirects

	Internet Protocol Version 6
	IPv6 addressing
	IPv6 address types
	IPv6 header fields
	IPv6 transition methods

	Internet Control Message Protocol Version 6
	Multicast Listener Discovery

	The transport layer protocols
	User Datagram Protocol
	Wireshark UDP filters

	Transmission Control Protocol
	TCP flags
	TCP options

	Application layer protocols
	Dynamic Host Configuration Protocol
	Wireshark DHCP filters

	Dynamic Host Configuration Protocol
Version 6
	Wireshark DHCPv6 filters

	Domain Name Service
	Wireshark DNS filters

	Hypertext Transfer Protocol
	HTTP Methods
	Host
	Request Modifiers

	Additional information
	Wireshark wiki
	Protocols on Wikipedia
	Requests for Comments

	Summary

	Chapter 6: Troubleshooting and Performance Analysis
	Troubleshooting methodology
	Gathering the right information
	Establishing the general nature of the problem
	Half-split troubleshooting and other logic

	Troubleshooting connectivity issues
	Enabling network interfaces
	Confirming physical connectivity
	Obtaining the workstation IP configuration
	Obtaining MAC addresses
	Obtaining network service IP addresses
	Basic network connectivity
	Connecting to the application services

	Troubleshooting functional issues
	Performance analysis methodology
	Top five reasons for poor application performance
	Preparing the tools and approach
	Performing, verifying, and saving a good packet capture
	Initial error analysis
	Detecting and prioritizing delays
	Server processing time events
	Application turn's delay
	Network path latency
	Bandwidth congestion
	Data transport

	Summary

	Chapter 7: Packet Analysis for Security Tasks
	Security analysis methodology
	The importance of baselining

	Security assessment tools
	Identifying unacceptable or suspicious traffic
	Scans and sweeps
	ARP scans
	ICMP ping sweeps
	TCP port scans
	UDP port scans

	OS fingerprinting
	Malformed packets
	Phone home traffic
	Password-cracking traffic
	Unusual traffic
	Summary

	Chapter 8: Command-line and Other Utilities
	Wireshark command-line utilities
	Capturing traffic with Dumpcap
	Capturing traffic with Tshark
	Editing trace files with Editcap
	Merging trace files with Mergecap
	Mergecap batch file

	Other helpful tools
	HttpWatch
	SteelCentral Packet Analyzer Personal Edition
	AirPcap adapters

	Summary

	Index

